Deterministic compressive sampling for high-quality image reconstruction of ultrasound tomography.
Huy, Tran Quang; Tue, Huynh Huu; Long, Ton That; Duc-Tan, Tran
2017-05-25
A well-known diagnostic imaging modality, termed ultrasound tomography, was quickly developed for the detection of very small tumors whose sizes are smaller than the wavelength of the incident pressure wave without ionizing radiation, compared to the current gold-standard X-ray mammography. Based on inverse scattering technique, ultrasound tomography uses some material properties such as sound contrast or attenuation to detect small targets. The Distorted Born Iterative Method (DBIM) based on first-order Born approximation is an efficient diffraction tomography approach. One of the challenges for a high quality reconstruction is to obtain many measurements from the number of transmitters and receivers. Given the fact that biomedical images are often sparse, the compressed sensing (CS) technique could be therefore effectively applied to ultrasound tomography by reducing the number of transmitters and receivers, while maintaining a high quality of image reconstruction. There are currently several work on CS that dispose randomly distributed locations for the measurement system. However, this random configuration is relatively difficult to implement in practice. Instead of it, we should adopt a methodology that helps determine the locations of measurement devices in a deterministic way. For this, we develop the novel DCS-DBIM algorithm that is highly applicable in practice. Inspired of the exploitation of the deterministic compressed sensing technique (DCS) introduced by the authors few years ago with the image reconstruction process implemented using l 1 regularization. Simulation results of the proposed approach have demonstrated its high performance, with the normalized error approximately 90% reduced, compared to the conventional approach, this new approach can save half of number of measurements and only uses two iterations. Universal image quality index is also evaluated in order to prove the efficiency of the proposed approach. Numerical simulation results indicate that CS and DCS techniques offer equivalent image reconstruction quality with simpler practical implementation. It would be a very promising approach in practical applications of modern biomedical imaging technology.
Material characterization using ultrasound tomography
NASA Astrophysics Data System (ADS)
Falardeau, Timothe; Belanger, Pierre
2018-04-01
Characterization of material properties can be performed using a wide array of methods e.g. X-ray diffraction or tensile testing. Each method leads to a limited set of material properties. This paper is interested in using ultrasound tomography to map speed of sound inside a material sample. The velocity inside the sample is directly related to its elastic properties. Recent develop-ments in ultrasound diffraction tomography have enabled velocity mapping of high velocity contrast objects using a combination of bent-ray time-of-flight tomography and diffraction tomography. In this study, ultrasound diffraction tomography was investigated using simulations in human bone phantoms. A finite element model was developed to assess the influence of the frequency, the number of transduction positions and the distance from the sample as well as to adapt the imaging algorithm. The average velocity in both regions of the bone phantoms were within 5% of the true value.
Tomography with energy dispersive diffraction
NASA Astrophysics Data System (ADS)
Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.
2017-09-01
X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.
ODTbrain: a Python library for full-view, dense diffraction tomography.
Müller, Paul; Schürmann, Mirjam; Guck, Jochen
2015-11-04
Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.
Leemreize, Hanna; Almer, Jonathan D.; Stock, Stuart R.; Birkedal, Henrik
2013-01-01
Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular. PMID:23804437
Diffraction scattering computed tomography: a window into the structures of complex nanomaterials
Birkbak, M. E.; Leemreize, H.; Frølich, S.; Stock, S. R.
2015-01-01
Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials. PMID:26505175
Measurement of 3D refractive index distribution by optical diffraction tomography
NASA Astrophysics Data System (ADS)
Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan
2018-01-01
Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.
An Efficient Image Recovery Algorithm for Diffraction Tomography Systems
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1993-01-01
A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...
Nanoscale Fresnel coherent diffraction imaging tomography using ptychography.
Peterson, I; Abbey, B; Putkunz, C T; Vine, D J; van Riessen, G A; Cadenazzi, G A; Balaur, E; Ryan, R; Quiney, H M; McNulty, I; Peele, A G; Nugent, K A
2012-10-22
We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.
NASA Astrophysics Data System (ADS)
Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.
The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.
Gueninchault, N; Proudhon, H; Ludwig, W
2016-11-01
Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al-Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment.
Gueninchault, N.; Proudhon, H.; Ludwig, W.
2016-01-01
Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al–Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment. PMID:27787253
Ultrasound Imaging Using Diffraction Tomography in a Cylindrical Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, D H; Littrup, P
2002-01-24
Tomographic images of tissue phantoms and a sample of breast tissue have been produced from an acoustic synthetic array system for frequencies near 500 kHz. The images for sound speed and attenuation show millimeter resolution and demonstrate the feasibility of obtaining high-resolution tomographic images with frequencies that can deeply penetrate tissue. The image reconstruction method is based on the Born approximation to acoustic scattering and is a simplified version of a method previously used by Andre (Andre, et. al., Int. J. Imaging Systems and Technology, Vol 8, No. 1, 1997) for a circular acoustic array system. The images have comparablemore » resolution to conventional ultrasound images at much higher frequencies (3-5 MHz) but with lower speckle noise. This shows the potential of low frequency, deeply penetrating, ultrasound for high-resolution quantitative imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frølich, S.; Leemreize, H.; Jakus, A.
A model sample consisting of two different hydroxyapatite (hAp) powders was used as a bone phantom to investigate the extent to which X-ray diffraction tomography could map differences in hAp lattice constants and crystallite size. The diffraction data were collected at beamline 1-ID, the Advanced Photon Source, using monochromatic 65 keV X-radiation, a 25 × 25 µm pinhole beam and translation/rotation data collection. The diffraction pattern was reconstructed for each volume element (voxel) in the sample, and Rietveld refinement was used to determine the hAp lattice constants. The crystallite size for each voxel was also determined from the 00.2 hApmore » diffraction peak width. The results clearly show that differences between hAp powders could be measured with diffraction tomography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepoittevin, Christophe, E-mail: christophe.lepoittevin@neel.cnrs.fr
2016-10-15
The crystal structure of the strontium ferrite Sr{sub 5}Fe{sub 6}O{sub 15.4}, was solved by direct methods on electron diffraction tomography data acquired on a transmission electron microscope. The refined cell parameters are a=27.4047(3) Å, b=5.48590(7) Å and c=42.7442(4) Å in Fm2m symmetry. Its structure is built up from the intergrowth sequence between a quadruple perovskite-type layer with a complex rock-salt (RS)-type block. In the latter iron atoms are found in two different environments : tetragonal pyramid and tetrahedron. The structural model was refined by Rietveld method based on the powder X-ray diffraction pattern. - Highlights: • Complex structure of Sr{submore » 5}Fe{sub 6}O{sub 15.4} solved by electron diffraction tomography. • Observed Fourier maps allow determining missing oxygen atoms in the structure. • Structural model refined from powder X-ray diffraction data. • Intergrowth between quadruple perovskite layer with double rock-salt-type layer.« less
Mohajerani, Pouyan; Ntziachristos, Vasilis
2013-07-01
The 360° rotation geometry of the hybrid fluorescence molecular tomography/x-ray computed tomography modality allows for acquisition of very large datasets, which pose numerical limitations on the reconstruction. We propose a compression method that takes advantage of the correlation of the Born-normalized signal among sources in spatially formed clusters to reduce the size of system model. The proposed method has been validated using an ex vivo study and an in vivo study of a nude mouse with a subcutaneous 4T1 tumor, with and without inclusion of a priori anatomical information. Compression rates of up to two orders of magnitude with minimum distortion of reconstruction have been demonstrated, resulting in large reduction in weight matrix size and reconstruction time.
Probing the structure of heterogeneous diluted materials by diffraction tomography.
Bleuet, Pierre; Welcomme, Eléonore; Dooryhée, Eric; Susini, Jean; Hodeau, Jean-Louis; Walter, Philippe
2008-06-01
The advent of nanosciences calls for the development of local structural probes, in particular to characterize ill-ordered or heterogeneous materials. Furthermore, because materials properties are often related to their heterogeneity and the hierarchical arrangement of their structure, different structural probes covering a wide range of scales are required. X-ray diffraction is one of the prime structural methods but suffers from a relatively poor detection limit, whereas transmission electron analysis involves destructive sample preparation. Here we show the potential of coupling pencil-beam tomography with X-ray diffraction to examine unidentified phases in nanomaterials and polycrystalline materials. The demonstration is carried out on a high-pressure pellet containing several carbon phases and on a heterogeneous powder containing chalcedony and iron pigments. The present method enables a non-invasive structural refinement with a weight sensitivity of one part per thousand. It enables the extraction of the scattering patterns of amorphous and crystalline compounds with similar atomic densities and compositions. Furthermore, such a diffraction-tomography experiment can be carried out simultaneously with X-ray fluorescence, Compton and absorption tomographies, enabling a multimodal analysis of prime importance in materials science, chemistry, geology, environmental science, medical science, palaeontology and cultural heritage.
Quantitative damage imaging using Lamb wave diffraction tomography
NASA Astrophysics Data System (ADS)
Zhang, Hai-Yan; Ruan, Min; Zhu, Wen-Fa; Chai, Xiao-Dong
2016-12-01
In this paper, we investigate the diffraction tomography for quantitative imaging damages of partly through-thickness holes with various shapes in isotropic plates by using converted and non-converted scattered Lamb waves generated numerically. Finite element simulations are carried out to provide the scattered wave data. The validity of the finite element model is confirmed by the comparison of scattering directivity pattern (SDP) of circle blind hole damage between the finite element simulations and the analytical results. The imaging method is based on a theoretical relation between the one-dimensional (1D) Fourier transform of the scattered projection and two-dimensional (2D) spatial Fourier transform of the scattering object. A quantitative image of the damage is obtained by carrying out the 2D inverse Fourier transform of the scattering object. The proposed approach employs a circle transducer network containing forward and backward projections, which lead to so-called transmission mode (TMDT) and reflection mode diffraction tomography (RMDT), respectively. The reconstructed results of the two projections for a non-converted S0 scattered mode are investigated to illuminate the influence of the scattering field data. The results show that Lamb wave diffraction tomography using the combination of TMDT and RMDT improves the imaging effect compared with by using only the TMDT or RMDT. The scattered data of the converted A0 mode are also used to assess the performance of the diffraction tomography method. It is found that the circle and elliptical shaped damages can still be reasonably identified from the reconstructed images while the reconstructed results of other complex shaped damages like crisscross rectangles and racecourse are relatively poor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474195, 11274226, 11674214, and 51478258).
Interlaced X-ray diffraction computed tomography
Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.
2016-01-01
An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305
de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.
2014-01-01
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992
Non-linear 3-D Born shear waveform tomography in Southeast Asia
NASA Astrophysics Data System (ADS)
Panning, Mark P.; Cao, Aimin; Kim, Ahyi; Romanowicz, Barbara A.
2012-07-01
Southeast (SE) Asia is a tectonically complex region surrounded by many active source regions, thus an ideal test bed for developments in seismic tomography. Much recent development in tomography has been based on 3-D sensitivity kernels based on the first-order Born approximation, but there are potential problems with this approach when applied to waveform data. In this study, we develop a radially anisotropic model of SE Asia using long-period multimode waveforms. We use a theoretical 'cascade' approach, starting with a large-scale Eurasian model developed using 2-D Non-linear Asymptotic Coupling Theory (NACT) sensitivity kernels, and then using a modified Born approximation (nBorn), shown to be more accurate at modelling waveforms, to invert a subset of the data for structure in a subregion (longitude 75°-150° and latitude 0°-45°). In this subregion, the model is parametrized at a spherical spline level 6 (˜200 km). The data set is also inverted using NACT and purely linear 3-D Born kernels. All three final models fit the data well, with just under 80 per cent variance reduction as calculated using the corresponding theory, but the nBorn model shows more detailed structure than the NACT model throughout and has much better resolution at depths greater than 250 km. Based on variance analysis, the purely linear Born kernels do not provide as good a fit to the data due to deviations from linearity for the waveform data set used in this modelling. The nBorn isotropic model shows a stronger fast velocity anomaly beneath the Tibetan Plateau in the depth range of 150-250 km, which disappears at greater depth, consistent with other studies. It also indicates moderate thinning of the high-velocity plate in the middle of Tibet, consistent with a model where Tibet is underplated by Indian lithosphere from the south and Eurasian lithosphere from the north, in contrast to a model with continuous underplating by Indian lithosphere across the entire plateau. The nBorn anisotropic model detects negative ξ anomalies suggestive of vertical deformation associated with subducted slabs and convergent zones at the Himalayan front and Tien Shan at depths near 150 km.
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut
2014-01-01
A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonior, Jason D; Hu, Zhen; Guo, Terry N.
This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.
3D Imaging with Holographic Tomography
NASA Astrophysics Data System (ADS)
Sheppard, Colin J. R.; Kou, Shan Shan
2010-04-01
There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.
Breaking the acoustic diffraction barrier with localization optoacoustic tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Razansky, Daniel
2018-02-01
Diffraction causes blurring of high-resolution features in images and has been traditionally associated to the resolution limit in light microscopy and other imaging modalities. The resolution of an imaging system can be generally assessed via its point spread function, corresponding to the image acquired from a point source. However, the precision in determining the position of an isolated source can greatly exceed the diffraction limit. By combining the estimated positions of multiple sources, localization-based imaging has resulted in groundbreaking methods such as super-resolution fluorescence optical microscopy and has also enabled ultrasound imaging of microvascular structures with unprecedented spatial resolution in deep tissues. Herein, we introduce localization optoacoustic tomography (LOT) and discuss on the prospects of using localization imaging principles in optoacoustic imaging. LOT was experimentally implemented by real-time imaging of flowing particles in 3D with a recently-developed volumetric optoacoustic tomography system. Provided the particles were separated by a distance larger than the diffraction-limited resolution, their individual locations could be accurately determined in each frame of the acquired image sequence and the localization image was formed by superimposing a set of points corresponding to the localized positions of the absorbers. The presented results demonstrate that LOT can significantly enhance the well-established advantages of optoacoustic imaging by breaking the acoustic diffraction barrier in deep tissues and mitigating artifacts due to limited-view tomographic acquisitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin
The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less
Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.
La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M
2017-04-01
The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.
NASA Astrophysics Data System (ADS)
Shin, Seungwoo; Kim, Kyoohyun; Kim, Taeho; Yoon, Jonghee; Hong, Kihyun; Park, Jinah; Park, YongKeun
2016-03-01
Optical diffraction tomography (ODT) is an interferometric microscopy technique capable of measuring 3-D refractive index (RI) distribution of transparent samples. Multiple 2-D holograms of a sample illuminated with various angles are measured, from which 3-D RI map of the sample is reconstructed via the diffraction theory. ODT has been proved as a powerful tool for the study of biological cells, due to its non-invasiveness, label-free and quantitative imaging capability. Recently, our group has demonstrated that a digital micromirror device (DMD) can be exploited for fast and precise control of illumination beams for ODT. In this work, we systematically study the precision and stability of the ODT system equipped with a DMD and present measurements of 3-D and 4-D RI maps of various types of live cells including human red blood cells, white blood cells, hepatocytes, and HeLa cells. Furthermore, we also demonstrate the effective visualization of 3-D RI maps of live cells utilizing the measured information about the values and gradient of RI tomograms.
Bindu, G; Semenov, S
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.
Diffraction Contrast Tomography: A Novel 3D Polycrystalline Grain Imaging Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuettner, Lindsey Ann
2017-06-06
Diffraction contrast tomography (DCT) is a non-destructive way of imaging microstructures of polycrystalline materials such as metals or crystalline organics. It is a useful technique to map 3D grain structures as well as providing crystallographic information such as crystal orientation, grain shape, and strain. Understanding the internal microstructure of a material is important in understanding the bulk material properties. This report gives a general overview of the similar techniques, DCT data acquisition, and analysis processes. Following the short literature review, potential work and research at Los Alamos National Laboratory (LANL) is discussed.
Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.
Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T
2013-06-01
This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).
Renversade, Loïc; Quey, Romain; Ludwig, Wolfgang; Menasche, David; Maddali, Siddharth; Suter, Robert M; Borbély, András
2016-01-01
The grain structure of an Al-0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT) and high-energy diffraction microscopy (HEDM). 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques.
Curved crystals for high-resolution focusing of X and gamma rays through a Laue lens
NASA Astrophysics Data System (ADS)
Guidi, Vincenzo; Bellucci, Valerio; Camattari, Riccardo; Neri, Ilaria
2013-08-01
Crystals with curved diffracting planes have been investigated as high-efficiency optical components for the realization of a Laue lens for satellite-borne experiments in astrophysics. At Sensor and Semiconductor Laboratory (Ferrara, Italy) a research and development plan to implement Si and Ge curved crystals by surface grooving technique has been undertaken. The method of surface grooving allows obtaining Si and Ge curved crystals with self-standing curvature, i.e., with no need for external bending device, which is a mandatory issue in satellite-borne experiments. Si and Ge grooved crystals have been characterized by X-ray diffraction at ESRF and ILL to prove their functionality for a high-reflectivity Laue lens.
Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix
NASA Astrophysics Data System (ADS)
Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian
2015-07-01
We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun
2014-01-01
We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.
Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.
2013-01-01
Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986
Rius, Jordi; Mugnaioli, Enrico; Vallcorba, Oriol; Kolb, Ute
2013-07-01
δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400]. This new phasing method has a clear theoretical basis and was developed with ideal single-crystal X-ray diffraction data. On the other hand, introduction of the automated diffraction tomography (ADT) technique has represented a significant advance in electron diffraction data collection [Kolb et al. (2007). Ultramicroscopy, 107, 507-513]. When combined with precession electron diffraction, it delivers quasi-kinematical intensity data even for complex inorganic compounds, so that single-crystal diffraction data of nanometric volumes are now available for structure determination by direct methods. To check the tolerance of δ recycling to missing data-collection corrections and to deviations from kinematical behaviour of ADT intensities, δ recycling has been applied to differently shaped nanocrystals of various inorganic materials. The results confirm that it can phase ADT data very efficiently. In some cases even more complete structure models than those derived from conventional direct methods and least-squares refinement have been found. During this study it has been demonstrated that the Wilson-plot scaling procedure is largely insensitive to sample thickness variations and missing absorption corrections affecting electron ADT intensities.
Status of the Neutron Imaging and Diffraction Instrument IMAT
NASA Astrophysics Data System (ADS)
Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.
A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.
Bindu, G.; Semenov, S.
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell’s equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness. PMID:24058889
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brázda, Petr, E-mail: brazda@fzu.cz; Palatinus, Lukáš; Klementová, Mariana
2015-07-15
We have used electron diffraction tomography and powder X-ray diffraction to elucidate the structural properties of layered cobaltate γ-La{sub 0.30}CoO{sub 2}. The structure consists of hexagonal sheets of edge-sharing CoO{sub 6} octahedra interleaved by lanthanum monolayers. The La{sup 3+} cations occupy only one third of available P2 sites, forming a 2-dimensional a√3×a√3 superstructure in a–b plane. The results show that there exists no order in the mutual relative shift between the neighbouring La interlayers within the a–b plane. This is manifested in the observed monotonous decrease of the diffracted intensity of the superstructure diffractions along c{sup ⁎} in both X-raymore » and electron diffraction data. The observed lack of stacking order differentiates the La{sub x}CoO{sub 2} from its Ca and Sr analogues where at least a partial stacking order of the cationic interlayers is manifested in experimental data published in literature. - Highlights: • We use electron diffraction tomography for reciprocal space mapping of La{sub 0.30}CoO{sub 2}. • We observed a complete disorder of the stacking of Lanthanum interlayers. • Co{sub 3}O{sub 4} intergrown with La{sub 0.30}CoO{sub 2} crystals brings about fake superstructure diffractions. • Twinning of Co{sub 3}O{sub 4} enhances the problem of fake superstructure diffractions.« less
Transurethral Ultrasound Diffraction Tomography
2007-03-01
the covariance matrix was derived. The covariance reduced to that of the X- ray CT under the assumptions of linear operator and real data.[5] The...the covariance matrix in the linear x- ray computed tomography is a special case of the inverse scattering matrix derived in this paper. The matrix was...is derived in Sec. IV, and its relation to that of the linear x- ray computed tomography appears in Sec. V. In Sec. VI, the inverse scattering
NASA Astrophysics Data System (ADS)
Barnea, A. Ronny; Cheshnovsky, Ori; Even, Uzi
2018-02-01
Interference experiments have been paramount in our understanding of quantum mechanics and are frequently the basis of testing the superposition principle in the framework of quantum theory. In recent years, several studies have challenged the nature of wave-function interference from the perspective of Born's rule—namely, the manifestation of so-called high-order interference terms in a superposition generated by diffraction of the wave functions. Here we present an experimental test of multipath interference in the diffraction of metastable helium atoms, with large-number counting statistics, comparable to photon-based experiments. We use a variation of the original triple-slit experiment and accurate single-event counting techniques to provide a new experimental bound of 2.9 ×10-5 on the statistical deviation from the commonly approximated null third-order interference term in Born's rule for matter waves. Our value is on the order of the maximal contribution predicted for multipath trajectories by Feynman path integrals.
Using Diffraction Tomography to Estimate Marine Animal Size
NASA Astrophysics Data System (ADS)
Jaffe, J. S.; Roberts, P.
In this article we consider the development of acoustic methods which have the potential to size marine animals. The proposed technique uses scattered sound in order to invert for both animal size and shape. The technique uses the Distorted Wave Born Approximation (DWBA) in order to model sound scattered from these organisms. The use of the DWBA also provides a valuable context for formulating data analysis techniques in order to invert for parameters of the animal. Although 3-dimensional observations can be obtained from a complete set of views, due to the difficulty of collecting full 3-dimensional scatter, it is useful to simplify the inversion by approximating the animal by a few parameters. Here, the animals are modeled as 3-dimensional ellipsoids. This reduces the complexity of the problem to a determination of the 3 semi axes for the x, y and z dimensions from just a few radial spokes through the 3-dimensional Fourier Transform. In order to test the idea, simulated scatter data is taken from a 3-dimensional model of a marine animal and the resultant data are inverted in order to estimate animal shape
Local reconstruction in computed tomography of diffraction enhanced imaging
NASA Astrophysics Data System (ADS)
Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia
2007-07-01
Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.
High-energy cryo x-ray nano-imaging at the ID16A beamline of ESRF
NASA Astrophysics Data System (ADS)
da Silva, Julio C.; Pacureanu, Alexandra; Yang, Yang; Fus, Florin; Hubert, Maxime; Bloch, Leonid; Salome, Murielle; Bohic, Sylvain; Cloetens, Peter
2017-09-01
The ID16A beamline at ESRF offers unique capabilities for X-ray nano-imaging, and currently produces the worlds brightest high energy diffraction-limited nanofocus. Such a nanoprobe was designed for quantitative characterization of the morphology and the elemental composition of specimens at both room and cryogenic temperatures. Billions of photons per second can be delivered in a diffraction-limited focus spot size down to 13 nm. Coherent X-ray imaging techniques, as magnified holographic-tomography and ptychographic-tomography, are implemented as well as X-ray fluorescence nanoscopy. We will show the latest developments in coherent and spectroscopic X-ray nanoimaging implemented at the ID16A beamline
Seeberger, Robin; Abe-Nickler, Dorothee; Hoffmann, Jürgen; Kunzmann, Kevin; Zingler, Sebastian
2015-12-01
To evaluate and compare the effects of tooth-borne and bone-borne distraction devices in surgically assisted maxillary expansion (SARME) on dental and skeletal structures. A sample of 33 skeletally mature patients with transverse maxillary deficiencies was examined with cone beam computed tomography (CBCT) before and 3 months after surgery. Fourteen patients were treated with tooth-borne devices and 19 patients with bone-borne devices. Dental crown expansion in the first premolars did not differ significantly between the two groups, and median expansion was 5.55 mm (interquartile range [IQR] 5.23) in the tooth-borne device group and 4.6 mm (IQR 3.4) in the bone-borne device group. In the first molars, crown expansion and lateral tipping were significantly greater in the tooth-borne device group (P ≤ .02). The median skeletal nasal isthmus increase was significantly more in the bone-borne device group at 3.0 mm than in the tooth-borne device group at 0.98 mm (P ≤ .02). Both tooth-borne and bone-borne devices are effective treatment modalities to correct maxillary transverse deficiencies. Bone-borne devices produced greater widening of the skeletal nasal floor and fewer dental side effects in the first molars. Copyright © 2015 Elsevier Inc. All rights reserved.
Chan, Eugene; Rose, L R Francis; Wang, Chun H
2015-05-01
Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Lensfree diffractive tomography for the imaging of 3D cell cultures
NASA Astrophysics Data System (ADS)
Berdeu, Anthony; Momey, Fabien; Dinten, Jean-Marc; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric
2017-02-01
New microscopes are needed to help reaching the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended periods of time while preserving the integrity of the living sample. In order to reconstruct large volumes while preserving the ability to catch every single cell, we propose new imaging platforms based on lens-free microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We built lens-free diffractive tomography setups performing multi-angle acquisitions of 3D organoid cultures embedded in Matrigel and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wave front and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduce numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi-wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularised inverse problem approach directly applied on the 3D volume to reconstruct. 3D reconstructions were performed on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to 25 mm3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lens-free diffractive tomography enabling to reconstruct large fully 3D volumes of unstained biological samples.
Variable-permittivity linear inverse problem for the H(sub z)-polarized case
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Chew, W. C.
1993-01-01
The H(sub z)-polarized inverse problem has rarely been studied before due to the complicated way in which the unknown permittivity appears in the wave equation. This problem is equivalent to the acoustic inverse problem with variable density. We have recently reported the solution to the nonlinear variable-permittivity H(sub z)-polarized inverse problem using the Born iterative method. Here, the linear inverse problem is solved for permittivity (epsilon) and permeability (mu) using a different approach which is an extension of the basic ideas of diffraction tomography (DT). The key to solving this problem is to utilize frequency diversity to obtain the required independent measurements. The receivers are assumed to be in the far field of the object, and plane wave incidence is also assumed. It is assumed that the scatterer is weak, so that the Born approximation can be used to arrive at a relationship between the measured pressure field and two terms related to the spatial Fourier transform of the two unknowns, epsilon and mu. The term involving permeability corresponds to monopole scattering and that for permittivity to dipole scattering. Measurements at several frequencies are used and a least squares problem is solved to reconstruct epsilon and mu. It is observed that the low spatial frequencies in the spectra of epsilon and mu produce inaccuracies in the results. Hence, a regularization method is devised to remove this problem. Several results are shown. Low contrast objects for which the above analysis holds are used to show that good reconstructions are obtained for both permittivity and permeability after regularization is applied.
The GKSS beamlines at PETRA III and DORIS III
NASA Astrophysics Data System (ADS)
Haibel, A.; Beckmann, F.; Dose, T.; Herzen, J.; Utcke, S.; Lippmann, T.; Schell, N.; Schreyer, A.
2008-08-01
Due to the high brilliance of the new storage ring PETRA III at DESY in Hamburg, the low emittance of 1 nmrad and the high fraction of coherent photons also in the hard X-ray range extremely intense and sharply focused X-ray light will be provided. These advantages of the beam fulfill excellently the qualifications for the planned Imaging BeamLine IBL and the High Energy Materials Science Beamline (HEMS) at PETRA III, i.e. for absorption tomography, phase enhanced and phase contrast experiments, for diffraction, for nano focusing, for nano tomography, and for high speed or in-situ experiments with highest spatial resolution. The existing HARWI II beamline at the DORIS III storage ring at DESY completes the GKSS beamline concept with setups for high energy tomography (16-150 keV) and diffraction (16-250 keV), characterized by a large field of view and an excellent absorption contrast with spatial resolutions down to 2 μm.
Jin, Di; Zhou, Renjie; Yaqoob, Zahid; So, Peter T C
2018-01-08
Optical diffraction tomography (ODT) is an emerging microscopy technique for three-dimensional (3D) refractive index (RI) mapping of transparent specimens. Recently, the digital micromirror device (DMD) based scheme for angle-controlled plane wave illumination has been proposed to improve the imaging speed and stability of ODT. However, undesired diffraction noise always exists in the reported DMD-based illumination scheme, which leads to a limited contrast ratio of the measurement fringe and hence inaccurate RI mapping. Here we present a novel spatial filtering method, based on a second DMD, to dynamically remove the diffraction noise. The reported results illustrate significantly enhanced image quality of the obtained interferograms and the subsequently derived phase maps. And moreover, with this method, we demonstrate mapping of 3D RI distribution of polystyrene beads as well as biological cells with high accuracy. Importantly, with the proper hardware configuration, our method does not compromise the 3D imaging speed advantage promised by the DMD-based illumination scheme. Specifically, we have been able to successfully obtain interferograms at over 1 kHz speed, which is critical for potential high-throughput label-free 3D image cytometry applications.
Grimaldi, Francesco Maria (1618-63)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Italian astronomer and optician, born in Bologna, became a Jesuit. Prepared a map of the Moon that Riccioli used to assign the currently used names to its principal features. Discovered diffraction of light at small apertures....
Laser Scattering Tomography for the Study of Defects in Protein Crystals
NASA Technical Reports Server (NTRS)
Feigelson, Robert S.; DeLucas, Lawrence; DeMattei, R. C.
1997-01-01
The goal of this research is to explore the application of the non-destructive technique of Laser Scattering Tomography (LST) to study the defects in protein crystals and relate them to the x-ray diffraction performance of the crystals. LST has been used successfully for the study of defects in inorganic crystals and. in the case of lysozyme, for protein crystals.
Dyadic contrast function and quadratic forward model for radio frequency tomography
NASA Astrophysics Data System (ADS)
Picco, Vittorio
Radio Frequency Tomography is an underground imaging technology that aims to reconstruct extended, deeply buried objects such as tunnels or Underground Facilities (UGF). A network of sensors collects scattered electromagnetic field samples, which are processed to obtain 2D or 3D images of the complex dielectric permittivity profile of the volume under investigation. Unlike systems such as Synthetic Aperture Radar (SAR) or Ground Penetrating Radar (GPR) which normally employ wide-band pulses, RF Tomography uses Continuous Wave (CW) signals to illuminate the scene. The information about the target is not retrieved by relying on bandwidth but by exploiting spatial, frequency and/or polarization diversity. Interestingly, RF Tomography can be readily adapted to obtain images of targets in free space. In this context, in the Andrew Electromagnetics Laboratory of the University of Illinois at Chicago, a measurement system aimed to validate experimentally the performance of RF Tomography has been designed and built. Experimental data have been used to validate its forward model, different inversion algorithms, its performance in terms of resolution and the ability of the system to distinguish between metallic and non-metallic targets. In the specific case of imaging of metallic targets, this thesis proposes to extend the capabilities of RF Tomography by introducing a dyadic permittivity contrast. Electromagnetic scattering from a thin, wire-like object placed in free space with its main axis at an angle with respect to the incident electric field is studied. It is possible to show that for this configuration a fundamental difference exists between a metallic and a dielectric object. This phenomenon can be modeled into Maxwell's equations by using a dyadic permittivity contrast, as it is commonly done when studying crystals. As a result a new formulation of the RF Tomography forward model is obtained, based on a dyadic contrast function. Reconstruction of this dyad allows to estimate not only the location and shape, but also the spatial orientation of the target. In addition, this dissertation proposes an alternative modification of the forward model which removes some limitations caused by the Born approximation. Traditionally, the Born approximation is used to linearize the inherently non-linear forward model. This approximation is valid if the scatterer is small and does not interact strongly with other objects. A quadratic forward model represents a more correct formulation of the scattering phenomenon, and it allows to attempt quantitative reconstruction. Numerical results are presented to highlight the advantages that such a formulation provides over the Born approximation.
Shin, Seungwoo; Kim, Doyeon; Kim, Kyoohyun; Park, YongKeun
2018-06-15
We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.
Computational optical tomography using 3-D deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Nguyen, Thanh; Bui, Vy; Nehmetallah, George
2018-04-01
Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.
Chowdhury, Shwetadwip; Eldridge, Will J.; Wax, Adam; Izatt, Joseph A.
2017-01-01
Sub-diffraction resolution imaging has played a pivotal role in biological research by visualizing key, but previously unresolvable, sub-cellular structures. Unfortunately, applications of far-field sub-diffraction resolution are currently divided between fluorescent and coherent-diffraction regimes, and a multimodal sub-diffraction technique that bridges this gap has not yet been demonstrated. Here we report that structured illumination (SI) allows multimodal sub-diffraction imaging of both coherent quantitative-phase (QP) and fluorescence. Due to SI’s conventionally fluorescent applications, we first demonstrate the principle of SI-enabled three-dimensional (3D) QP sub-diffraction imaging with calibration microspheres. Image analysis confirmed enhanced lateral and axial resolutions over diffraction-limited QP imaging, and established striking parallels between coherent SI and conventional optical diffraction tomography. We next introduce an optical system utilizing SI to achieve 3D sub-diffraction, multimodal QP/fluorescent visualization of A549 biological cells fluorescently tagged for F-actin. Our results suggest that SI has a unique utility in studying biological phenomena with significant molecular, biophysical, and biochemical components. PMID:28663887
Advances in 6d diffraction contrast tomography
NASA Astrophysics Data System (ADS)
Viganò, N.; Ludwig, W.
2018-04-01
The ability to measure 3D orientation fields and to determine grain boundary character plays a key role in understanding many material science processes, including: crack formation and propagation, grain coarsening, and corrosion processes. X-ray diffraction imaging techniques offer the ability to retrieve such information in a non-destructive manner. Among them, Diffraction Contrast Tomography (DCT) is a monochromatic beam, near-field technique, that uses an extended beam and offers fast mapping of 3D sample volumes. It was previously shown that the six-dimensional extension of DCT can be applied to moderately deformed samples (<= 5% total strain), made from materials that exhibit low levels of elastic deformation of the unit cell (<= 1%). In this article, we improved over the previously proposed 6D-DCT reconstruction method, through the introduction of both a more advanced forward model and reconstruction algorithm. The results obtained with the proposed improvements are compared against the reconstructions previously published in [1], using Electron Backscatter Diffraction (EBSD) measurements as a reference. The result was a noticeably higher quality reconstruction of the grain boundary positions and local orientation fields. The achieved reconstruction quality, together with the low acquisition times, render DCT a valuable tool for the stop-motion study of polycrystalline microstructures, evolving as a function of applied strain or thermal annealing treatments, for selected materials.
Non-invasive imaging of the crystalline structure within a human tooth.
Egan, Christopher K; Jacques, Simon D M; Di Michiel, Marco; Cai, Biao; Zandbergen, Mathijs W; Lee, Peter D; Beale, Andrew M; Cernik, Robert J
2013-09-01
The internal crystalline structure of a human molar tooth has been non-destructively imaged in cross-section using X-ray diffraction computed tomography. Diffraction signals from high-energy X-rays which have large attenuation lengths for hard biomaterials have been collected in a transmission geometry. Coupling this with a computed tomography data acquisition and mathematically reconstructing their spatial origins, diffraction patterns from every voxel within the tooth can be obtained. Using this method we have observed the spatial variations of some key material parameters including nanocrystallite size, organic content, lattice parameters, crystallographic preferred orientation and degree of orientation. We have also made a link between the spatial variations of the unit cell lattice parameters and the chemical make-up of the tooth. In addition, we have determined how the onset of tooth decay occurs through clear amorphization of the hydroxyapatite crystal, and we have been able to map the extent of decay within the tooth. The described method has strong prospects for non-destructive probing of mineralized biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stock, Stuart R.; Almer, Jonathan D.; Birkedal, Henrik
2016-10-01
Scattered x-radiation can be used for computed tomographic reconstruction of the distribution of crystallographic phases within the interior of specimens, and diffraction patterns can be measured for each volume element (voxel) within a reconstructed slice. This modality has been applied to systems as diverse as mineralized tissues and inorganic composites. Use of high energy x-rays (E < 40 keV) offers advantages including the ability to study volumes deep with specimens and to sample large ranges of reciprocal space, i.e., many reflections. The bases of diffraction tomography are reviewed, and the power of the technique is illustrated by the results obtained for specimens containing: a) different materials (SiC/Al composite), b) different polytypes (calcite/aragonite in a bivalve attachment system); c) mixtures of nanocrystalline and amorphous phases; d) a single phase, but volumes with different lattice parameters (hydroxyapatite, hAp, the mineral in bone and tooth); e) a single phase containing a spatial distribution of crystallographic texture (bone); a single phase with a spatial distribution of strains produced by in situ loading (bone). Finally, challenges and future directions are discussed.
Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries
NASA Astrophysics Data System (ADS)
Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard
Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.
Resolution Study of a Hyperspectral Sensor using Computed Tomography in the Presence of Noise
2012-06-14
diffraction efficiency is dependent on wavelength. Compared to techniques developed by later work, simple algebraic reconstruction techniques were used...spectral di- mension, using computed tomography (CT) techniques with only a finite number of diverse images. CTHIS require a reconstruction algorithm in...many frames are needed to reconstruct the spectral cube of a simple object using a theoretical lower bound. In this research a new algorithm is derived
DMD-based quantitative phase microscopy and optical diffraction tomography
NASA Astrophysics Data System (ADS)
Zhou, Renjie
2018-02-01
Digital micromirror devices (DMDs), which offer high speed and high degree of freedoms in steering light illuminations, have been increasingly applied to optical microscopy systems in recent years. Lately, we introduced DMDs into digital holography to enable new imaging modalities and break existing imaging limitations. In this paper, we will first present our progress in using DMDs for demonstrating laser-illumination Fourier ptychographic microscopy (FPM) with shotnoise limited detection. After that, we will present a novel common-path quantitative phase microscopy (QPM) system based on using a DMD. Building on those early developments, a DMD-based high speed optical diffraction tomography (ODT) system has been recently demonstrated, and the results will also be presented. This ODT system is able to achieve video-rate 3D refractive-index imaging, which can potentially enable observations of high-speed 3D sample structural changes.
Sparse-View Ultrasound Diffraction Tomography Using Compressed Sensing with Nonuniform FFT
2014-01-01
Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography (UDT). In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed method can provide higher resolution and lower artifacts with the same view number. The robustness to noise and the computation complexity are also discussed. PMID:24868241
Characterization of a neutron imaging setup at the INES facility
NASA Astrophysics Data System (ADS)
Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.
2013-10-01
The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.
Stoica, Florina; Chirita-Emandi, Adela; Andreescu, Nicoleta; Stanciu, Alina; Zimbru, Cristian G; Puiu, Maria
2018-03-01
We aimed to assess the macular anatomy using spectral domain optical coherence tomography (SD-OCT), in children born preterm who had laser-treated retinopathy of prematurity (ROP), and to investigate the relationship between structural changes in macula and visual function. Thirty-seven 3-8 years old children were included in the study in two groups: 20 children born preterm [(<34 weeks of gestation, birthweight (BW) <2000 g)] who had laser-treated ROP in the Neonatology Department, Municipal Clinical Emergency Hospital of Timisoara, Romania; and 17 controls (children born at term, without eye disease, matched for age and gender). Spectral domain optical coherence tomography (SD-OCT) imaging (Spectralis OCT) was performed at central fovea and 1 mm nasally. In the ROP group (total 34 eyes), we included both eyes in 14 children, and on one eye in six other children. In the control group, both eyes for all 17 children were included. Central fovea thickness (CFT) was significantly higher in children born preterm and with laser-treated ROP as compared to controls (275 ± 34.8 μm versus 224 ± 27.2 μm; p < 0.001). The laser-treated eyes with ROP had mean best-corrected visual acuity (BCVA) = 0.19 logMAR (20/31 Snellen); 35% had BCVA ≥0.3 logMAR (20/40 Snellen). In receiver operating characteristic curve (ROC) analysis, with BCVA as static variable (category 0 = BCVA ≤0.3 logMAR), the CFT cut-off was 257 μm (sensitivity: 0.917; specificity: 0.661; area under the curve: 0.810, p = 0.001). Years after the laser intervention, central fovea was significantly thicker in ROP laser-treated children born preterm when compared to controls. Central fovea thickness (CFT) correlated strongly and inversely with BW and gestational age (GA) at birth, while a CFT value above 257 μm was suggestive for suboptimal visual acuity. The proposed cut-off value needs to be validated in future larger studies. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Sim, Cheul Muu; Seong, Bong Jae; Kim, Dong Won; Kim, Yong Bum; Wi, Seung Gon; Kim, Gyuil; Oh, Hwasuk; Kim, TaeJoo; Chung, Byung Yeoup; Song, Jeong Young; Kim, Hong Gi; Oh, Sang-Keun; Shin, Young Dol; Seok, Jea Hwan; Kang, Min Young; Lee, Yunhee; Radebe, Mabuti Jacob; Kardjilov, Nikolay; Honermeier, Bernd
2018-02-01
Various medicinal plants are threatened with extinction owing to their over-exploitation and the prevalence of soil borne pathogens. In this study, soils infected with root-rot pathogens, which prevent continuous-cropping, were treated with an electron beam. The level of soil-borne fungus was reduced to ≤0.01% by soil electron beam treatment without appreciable effects on the levels of antagonistic microorganism or on the physicochemical properties of the soil. The survival rate of 4-year-old plant was higher in electron beam-treated soil (81.0%) than in fumigated (62.5%), virgin (78%), or untreated-replanting soil (0%). Additionally, under various soils conditions, neutron tomography permitted the monitoring of plant health and the detection of root pathological changes over a period of 4-6 years by quantitatively measuring root water content in situ. These methods allow continual cropping on the same soil without pesticide treatment. This is a major step toward the environmentally friendly production of endangered therapeutic herbs.
Born scattering of long-period body waves
NASA Astrophysics Data System (ADS)
Dalkolmo, Jörg; Friederich, Wolfgang
2000-09-01
The Born approximation is applied to the modelling of the propagation of deeply turning long-period body waves through heterogeneities in the lowermost mantle. We use an exact Green's function for a spherically symmetric earth model that also satisfies the appropriate boundary conditions at internal boundaries and the surface of the earth. The scattered displacement field is obtained by a numerical quadrature of the product of the Green's function, the exciting wavefield and structural perturbations. We study three examples: scattering of long-period P waves from a plume rising from the core-mantle boundary (CMB), generation of long-period precursors to PKIKP by strong, localized scatterers at the CMB, and propagation of core-diffracted P waves through large-scale heterogeneities in D''. The main results are as follows: (1) the signals scattered from a realistic plume are small with relative amplitudes of less than 2 per cent at a period of 20s, rendering plume detection a fairly difficult task; (2) strong heterogeneities at the CMB of appropriate size may produce observable long-period precursors to PKIKP in spite of the presence of a diffraction from the PKP-B caustic; (3) core-diffracted P waves (Pdiff) are sensitive to structure in D'' far off the geometrical ray path and also far beyond the entry and exit points of the ray into and out of D'' sensitivity kernels exhibit ring-shaped patterns of alternating sign reminiscent of Fresnel zones; (4) Pdiff also shows a non-negligible sensitivity to shear wave velocity in D'' (5) down to periods of 40s, the Born approximation is sufficiently accurate to allow waveform modelling of Pdiff through large-scale heterogeneities in D'' of up to 5 per cent.
Almqvist, M; Holm, A; Persson, H W; Lindström, K
2000-01-01
The aim of this work was to show the applicability of light diffraction tomography on airborne ultrasound in the frequency range 40 kHz-2 MHz. Seven different air-coupled transducers were measured to show the method's performance regarding linearity, absolute pressure measurements, phase measurements, frequency response, S/N ratio and spatial resolution. A calibrated microphone and the pulse-echo method were used to evaluate the results. The absolute measurements agreed within the calibrated microphone's uncertainty range. Pulse waveforms and corresponding FFT diagrams show the method's higher bandwidth compared with the microphone. Further, the method offers non-perturbing measurements with high spatial resolution, which was especially advantageous for measurements close to the transducer surfaces. The S/N ratio was higher than or in the same range as that of the two comparison methods.
The MATS Satellite Mission - Tomographic Perspectives on the Mesosphere
NASA Astrophysics Data System (ADS)
Karlsson, B.; Gumbel, J.
2015-12-01
Tomography in combination with space-borne limb imaging opens exciting new ways of probing atmospheric structures. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a new Swedish satellite mission that applies these ideas to the mesosphere. MATS science questions focus on mesospheric wave activity and noctilucent clouds. Primary measurement targets are O2 Atmospheric band dayglow and nightglow in the near infrared (759-767 nm) and sunlight scattered from noctilucent clouds in the ultraviolet (270-300 nm). While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric composition, temperature and cloud properties. This poster introduces instrument and analysis ideas, and discusses scientific perspectives and connections to other missions. MATS is being prepared for a launch in 2018.
Advantages of phase retrieval for fast x-ray tomographic microscopy
NASA Astrophysics Data System (ADS)
Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.
2013-12-01
In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.
Micro- and nano-tomography at the DIAMOND beamline I13L imaging and coherence
NASA Astrophysics Data System (ADS)
Rau, C.; Bodey, A.; Storm, M.; Cipiccia, S.; Marathe, S.; Zdora, M.-C.; Zanette, I.; Wagner, U.; Batey, D.; Shi, X.
2017-10-01
The Diamond Beamline I13L is dedicated to imaging on the micro- and nano-lengthsale, operating in the energy range between 6 and 30keV. For this purpose two independently operating branchlines and endstations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometre resolution. Grating interferometry is currently implemented, adding the capability of measuring phase and small-angle information. For tomography with increased resolution a full-field microscope providing 50nm spatial resolution with a field of view of 100μm is being tested. The instrument provides a large working distance between optics and sample to adapt a wide range of customised sample environments. On the coherence branch coherent diffraction imaging techniques such as ptychography, coherent X-ray diffraction (CXRD) are currently developed for three dimensional imaging with the highest resolution. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline. The scientific applications cover a large area including bio-medicine, materials science, chemistry geology and more. The present paper provides an overview about the current status of the beamline and the science addressed.
Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z
2009-10-21
Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.
NASA Astrophysics Data System (ADS)
Trappe, Neil; Murphy, J. Anthony; Withington, Stafford
2003-07-01
Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking—for comparison—examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration.
Kim, Ki-Nam; Cha, Bong-Kuen; Choi, Dong-Soon; Jang, Insan; Yi, Yang-Jin; Jost-Brinkmann, Paul-Georg
2012-05-01
To evaluate the biomechanical effect of midsymphyseal distraction osteogenesis with three types of distractors on the mandible and articular disc using a three-dimensional finite element model analysis. A virtual model of the mandible was produced from computed tomography scan images of a healthy 27-year-old man. On the finite element model of the mandible, expansion of the bone-borne, tooth-borne, and hybrid type distractors were simulated with the jaw-closing muscles. The displacement and stress distribution of the mandible and articular disc were analyzed. With the bone-borne appliance the alveolar process area was displaced more than the basal bone area. The tooth-borne appliance displaced the mandibular body in a parallel manner and showed high level of the von Mises stress in the alveolar process and the ramal region as well as in the condylar neck area. The hybrid type showed medium amount of displacement and stress distribution compared with the bone-borne and tooth-borne type. At the articular disc the compressive stress was concentrated in the anteromedial and posterolateral area, and it was highest in the tooth-borne distractor, followed by hybrid appliance and bone-borne appliance. The tooth-borne distractor produced more parallel bony widening in the midsymphyseal area and larger expansion in the molar region; however, it induced higher stress concentration on the articular disc than the hybrid appliance and bone-borne appliance. Whether any long-term side effects on the temporomandibular joint are anticipated, especially in tooth-borne distractor, remains to be investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashida, Misa; Malac, Marek; Egerton, Ray F.
Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy ofmore » the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.« less
Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute
2018-03-01
Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.
Apparatus for X-ray diffraction microscopy and tomography of cryo specimens
Beetz, T.; Howells, M. R.; Jacobsen, C.; ...
2005-03-14
An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less
Electron coherent diffraction tomography of a nanocrystal
NASA Astrophysics Data System (ADS)
Dronyak, Roman; Liang, Keng S.; Tsai, Jin-Sheng; Stetsko, Yuri P.; Lee, Ting-Kuo; Chen, Fu-Rong
2010-05-01
Coherent diffractive imaging (CDI) with electron or x-ray sources is a promising technique for investigating the structure of nanoparticles down to the atomic scale. In electron CDI, a two-dimensional reconstruction is demonstrated using highly coherent illumination from a field-emission gun as a source of electrons. In a three-dimensional (3D) electron CDI, we experimentally determine the morphology of a single MgO nanocrystal using the Bragg diffraction geometry. An iterative algorithm is applied to invert the 3D diffraction pattern about a (200) reflection of the nanoparticle measured at an angular range of 1.8°. The results reveal a 3D image of the sample at ˜8 nm resolution, and agree with a simulation. Our work demonstrates an alternative approach to obtain the 3D structure of nanocrystals with an electron microscope.
Optical diffraction tomography: accuracy of an off-axis reconstruction
NASA Astrophysics Data System (ADS)
Kostencka, Julianna; Kozacki, Tomasz
2014-05-01
Optical diffraction tomography is an increasingly popular method that allows for reconstruction of three-dimensional refractive index distribution of semi-transparent samples using multiple measurements of an optical field transmitted through the sample for various illumination directions. The process of assembly of the angular measurements is usually performed with one of two methods: filtered backprojection (FBPJ) or filtered backpropagation (FBPP) tomographic reconstruction algorithm. The former approach, although conceptually very simple, provides an accurate reconstruction for the object regions located close to the plane of focus. However, since FBPJ ignores diffraction, its use for spatially extended structures is arguable. According to the theory of scattering, more precise restoration of a 3D structure shall be achieved with the FBPP algorithm, which unlike the former approach incorporates diffraction. It is believed that with this method one is allowed to obtain a high accuracy reconstruction in a large measurement volume exceeding depth of focus of an imaging system. However, some studies have suggested that a considerable improvement of the FBPP results can be achieved with prior propagation of the transmitted fields back to the centre of the object. This, supposedly, enables reduction of errors due to approximated diffraction formulas used in FBPP. In our view this finding casts doubt on quality of the FBPP reconstruction in the regions far from the rotation axis. The objective of this paper is to investigate limitation of the FBPP algorithm in terms of an off-axis reconstruction and compare its performance with the FBPJ approach. Moreover, in this work we propose some modifications to the FBPP algorithm that allow for more precise restoration of a sample structure in off-axis locations. The research is based on extensive numerical simulations supported with wave-propagation method.
McDonald, S A; Holzner, C; Lauridsen, E M; Reischig, P; Merkle, A P; Withers, P J
2017-07-12
Pressureless sintering of loose or compacted granular bodies at elevated temperature occurs by a combination of particle rearrangement, rotation, local deformation and diffusion, and grain growth. Understanding of how each of these processes contributes to the densification of a powder body is still immature. Here we report a fundamental study coupling the crystallographic imaging capability of laboratory diffraction contrast tomography (LabDCT) with conventional computed tomography (CT) in a time-lapse study. We are able to follow and differentiate these processes non-destructively and in three-dimensions during the sintering of a simple copper powder sample at 1050 °C. LabDCT quantifies particle rotation (to <0.05° accuracy) and grain growth while absorption CT simultaneously records the diffusion and deformation-related morphological changes of the sintering particles. We find that the rate of particle rotation is lowest for the more highly coordinated particles and decreases during sintering. Consequently, rotations are greater for surface breaking particles than for more highly coordinated interior ones. Both rolling (cooperative) and sliding particle rotations are observed. By tracking individual grains the grain growth/shrinkage kinetics during sintering are quantified grain by grain for the first time. Rapid, abnormal grain growth is observed for one grain while others either grow or are consumed more gradually.
Digital holographic tomography based on spectral interferometry.
Yu, Lingfeng; Chen, Zhongping
2007-10-15
A digital holographic tomography system has been developed with the use of an inexpensive broadband light source and a fiber-based spectral interferometer. Multiple synthesized holograms (or object wave fields) of different wavelengths are obtained by transversely scanning a probe beam. The acquisition speed is improved compared with conventional wavelength-scanning digital holographic systems. The optical field of a volume around the object location is calculated by numerical diffraction from each synthesized hologram, and all such field volumes are numerically superposed to create the three-dimensional tomographic image. Experiments were performed to demonstrate the idea.
Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries
Cojocaru-Mirédin, Oana; Schwarz, Torsten; Choi, Pyuck-Pa; Herbig, Michael; Wuerz, Roland; Raabe, Dierk
2013-01-01
Compared with the existent techniques, atom probe tomography is a unique technique able to chemically characterize the internal interfaces at the nanoscale and in three dimensions. Indeed, APT possesses high sensitivity (in the order of ppm) and high spatial resolution (sub nm). Considerable efforts were done here to prepare an APT tip which contains the desired grain boundary with a known structure. Indeed, site-specific sample preparation using combined focused-ion-beam, electron backscatter diffraction, and transmission electron microscopy is presented in this work. This method allows selected grain boundaries with a known structure and location in Cu(In,Ga)Se2 thin-films to be studied by atom probe tomography. Finally, we discuss the advantages and drawbacks of using the atom probe tomography technique to study the grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. PMID:23629452
Burnett, T. L.; McDonald, S. A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S. J.; Ornek, C.; Almuaili, F.; Engelberg, D. L.; Thompson, G. E.; Withers, P. J.
2014-01-01
Increasingly researchers are looking to bring together perspectives across multiple scales, or to combine insights from different techniques, for the same region of interest. To this end, correlative microscopy has already yielded substantial new insights in two dimensions (2D). Here we develop correlative tomography where the correlative task is somewhat more challenging because the volume of interest is typically hidden beneath the sample surface. We have threaded together x-ray computed tomography, serial section FIB-SEM tomography, electron backscatter diffraction and finally TEM elemental analysis all for the same 3D region. This has allowed observation of the competition between pitting corrosion and intergranular corrosion at multiple scales revealing the structural hierarchy, crystallography and chemistry of veiled corrosion pits in stainless steel. With automated correlative workflows and co-visualization of the multi-scale or multi-modal datasets the technique promises to provide insights across biological, geological and materials science that are impossible using either individual or multiple uncorrelated techniques. PMID:24736640
Minimal-scan filtered backpropagation algorithms for diffraction tomography.
Pan, X; Anastasio, M A
1999-12-01
The filtered backpropagation (FBPP) algorithm, originally developed by Devaney [Ultrason. Imaging 4, 336 (1982)], has been widely used for reconstructing images in diffraction tomography. It is generally known that the FBPP algorithm requires scattered data from a full angular range of 2 pi for exact reconstruction of a generally complex-valued object function. However, we reveal that one needs scattered data only over the angular range 0 < or = phi < or = 3 pi/2 for exact reconstruction of a generally complex-valued object function. Using this insight, we develop and analyze a family of minimal-scan filtered backpropagation (MS-FBPP) algorithms, which, unlike the FBPP algorithm, use scattered data acquired from view angles over the range 0 < or = phi < or = 3 pi/2. We show analytically that these MS-FBPP algorithms are mathematically identical to the FBPP algorithm. We also perform computer simulation studies for validation, demonstration, and comparison of these MS-FBPP algorithms. The numerical results in these simulation studies corroborate our theoretical assertions.
Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography.
Baruchel, J; Cloetens, P; Härtwig, J; Ludwig, W; Mancini, L; Pernot, P; Schlenker, M
2000-05-01
Several hard X-rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the 'long' (145 m) ID19 'imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample ('effective divergence' approximately microradians). When using the ;propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the 'edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro-heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three-dimensional density mapping of the sample ('holotomography'). The combination of diffraction topography and phase-contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination.
Time Dependent Tomography of the Solar Corona in Three Spatial Dimensions
NASA Astrophysics Data System (ADS)
Butala, M. D.; Frazin, R. A.; Kamalabadi, F.
2006-12-01
The combination of the soon to be launched STEREO mission with SOHO will provide scientists with three simultaneous space-borne views of the Sun. The increase in available measurements will reduce the data acquisition time necessary to obtain 3D coronal electron density (N_e) estimates from coronagraph images using a technique called solar rotational tomography (SRT). However, the data acquisition period will still be long enough for the corona to dynamically evolve, requiring time dependent solar tomography. The Kalman filter (KF) would seem to be an ideal computational method for time dependent SRT. Unfortunately, the KF scales poorly with problem size and is, as a result, inapplicable. A Monte Carlo approximation to the KF called the localized ensemble Kalman filter was developed for massive applications and has the promise of making the time dependent estimation of the 3D coronal N_e possible. We present simulations showing that this method will make time dependent tomography in three spatial dimensions computationally feasible.
Radial reflection diffraction tomography
Lehman, Sean K.
2012-12-18
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Hydrogen positions in single nanocrystals revealed by electron diffraction
NASA Astrophysics Data System (ADS)
Palatinus, L.; Brázda, P.; Boullay, P.; Perez, O.; Klementová, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S.
2017-01-01
The localization of hydrogen atoms is an essential part of crystal structure analysis, but it is difficult because of their small scattering power. We report the direct localization of hydrogen atoms in nanocrystalline materials, achieved using the recently developed approach of dynamical refinement of precession electron diffraction tomography data. We used this method to locate hydrogen atoms in both an organic (paracetamol) and an inorganic (framework cobalt aluminophosphate) material. The results demonstrate that the technique can reliably reveal fine structural details, including the positions of hydrogen atoms in single crystals with micro- to nanosized dimensions.
NASA Astrophysics Data System (ADS)
Born, Max; Wolf, Emil
1999-10-01
Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past forty years. This edition has been thoroughly revised and updated, with new material covering the CAT scan, interference with broad-band light and the so-called Rayleigh-Sommerfeld diffraction theory. This edition also details scattering from inhomogeneous media and presents an account of the principles of diffraction tomography to which Emil Wolf has made a basic contribution. Several new appendices are also included. This new edition will be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.
Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B
2015-03-21
How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, GwangSik; Shin, SeungWoo; Kim, Kyoohyun; Park, YongKeun
2017-02-01
Optical diffraction tomography (ODT) has been an emerging optical technique for label-free imaging of three-dimensional (3-D) refractive index (RI) distribution of biological samples. ODT employs interferometric microscopy for measuring multiple holograms of samples with various incident angles, from which the Fourier diffraction theorem reconstructs the 3-D RI distribution of samples from retrieved complex optical fields. Since the RI value is linearly proportional to the protein concentration of biological samples where the proportional coefficient is called as refractive index increment (RII), reconstructed 3-D RI tomograms provide precise structural and biochemical information of individual biological samples. Because most proteins have similar RII value, however, ODT has limited molecular specificity, especially for imaging eukaryotic cells having various types of proteins and subcellular organelles. Here, we present an ODT system combined with structured illumination microscopy which can measure the 3-D RI distribution of biological samples as well as 3-D super-resolution fluorescent images in the same optical setup. A digital micromirror device (DMD) controls the incident angle of the illumination beam for tomogram reconstruction, and the same DMD modulates the structured illumination pattern of the excitation beam for super-resolution fluorescent imaging. We first validate the proposed method for simultaneous optical diffraction tomographic imaging and super-resolution fluorescent imaging of fluorescent beads. The proposed method is also exploited for various biological samples.
Multifrequency measurements of core-diffracted P waves (Pdiff) for global waveform tomography
NASA Astrophysics Data System (ADS)
Hosseini, Kasra; Sigloch, Karin
2015-10-01
The lower third of the mantle is sampled extensively by body waves that diffract around the earth's core (Pdiff and Sdiff phases), which could deliver highly resolved tomographic images of this poorly understood region. But core-diffracted waves-especially Pdiff waves-are not often used in tomography because they are difficult to model adequately. Our aim is to make core-diffracted body waves usable for global waveform tomography, across their entire frequency range. Here we present the data processing part of this effort. A method is demonstrated that routinely calculates finite-frequency traveltimes of Pdiff waves by cross-correlating large quantities of waveform data with synthetic seismograms, in frequency passbands ranging from 30.0 to 2.7 s dominant period. Green's functions for 1857 earthquakes, typically comprising thousands of seismograms, are calculated by theoretically exact wave propagation through a spherically symmetric earth model, up to 1 Hz dominant period. Out of 418 226 candidates, 165 651 (39.6 per cent) source-receiver pairs yielded at least one successful passband measurement of a Pdiff traveltime anomaly, for a total of 479 559 traveltimes in the eight passbands considered. Measurements of teleseismic P waves yielded 448 178 usable source-receiver paths from 613 057 candidates (73.1 per cent success rate), for a total of 2 306 755 usable teleseismic dT in eight passbands. Observed and predicted characteristics of Pdiff traveltimes are discussed and compared to teleseismic P for this very large data set. Pdiff measurements are noise-limited due to severe wave attenuation with epicentral distance and frequency. Measurement success drops from 40-60 per cent at 80° distance, to 5-10 per cent at 140°. Frequency has a 2-3 times stronger influence on measurement success for Pdiff than for P. The fewest usable dT measurements are obtained in the microseismic noise band, whereas the fewest usable teleseismic P measurements occur at the highest frequencies. dT anomalies are larger for Pdiff than for P, and frequency dependence of dT due to 3-D heterogeneity (rather than just diffraction) is larger for Pdiff as well. Projecting the Pdiff traveltime anomalies on their core-grazing segments, we retrieve well-known, large-scale structural heterogeneities of the lowermost mantle, such as the two Large Low Shear Velocity Provinces, an Ultra-Low Velocity Zone west of Hawaii, and subducted slab accumulations under East Asia and Central America.
Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.
Prosa, Ty J; Larson, David J
2017-04-01
Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.
Crystallization and preliminary crystallographic analysis of the Clostridium perfringens enterotoxin
Briggs, David C.; Smedley, James G.; McClane, Bruce A.; Basak, Ajit K.
2010-01-01
Clostridium perfringens is a Gram-positive anaerobic species of bacterium that is notable for its ability to produce a plethora of toxins, including membrane-active toxins (α-toxins), pore-forming toxins (∊-toxins) and binary toxins (ι-toxins). Here, the crystallization of the full-length wild-type C. perfringens enterotoxin is reported, which is the causative agent of the second most prevalent food-borne illness in the United States and has been implicated in many other gastrointestinal pathologies. Several crystal forms were obtained. However, only two of these optimized crystal forms (I and II) were useable for X-ray diffraction data collection. The form I crystals diffracted to d min = 2.7 Å and belonged to space group C2, while the form II crystals diffracted to d min = 4 Å and belonged to space group P213. PMID:20606275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Dario Ferreira; Weleguela, Monica Larissa Djomeni; Audoit, Guillaume
2014-10-28
Here, white X-ray μ-beam Laue diffraction is developed and applied to investigate elastic strain distributions in three-dimensional (3D) materials, more specifically, for the study of strain in Cu 10 μm diameter–80 μm deep through-silicon vias (TSVs). Two different approaches have been applied: (i) two-dimensional μ-Laue scanning and (ii) μ-beam Laue tomography. 2D μ-Laue scans provided the maps of the deviatoric strain tensor integrated along the via length over an array of TSVs in a 100 μm thick sample prepared by Focused Ion Beam. The μ-beam Laue tomography analysis enabled to obtain the 3D grain and elemental distribution of both Cu and Si. Themore » position, size (about 3 μm), shape, and orientation of Cu grains were obtained. Radial profiles of the equivalent deviatoric strain around the TSVs have been derived through both approaches. The results from both methods are compared and discussed.« less
Deformation and spallation of a magnesium alloy under high strain rate loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, M.; Lu, L.; Li, C.
2016-04-01
We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolvemore » three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Egorov, D. I.
2017-06-01
Our study focuses on an analysis of the original method of investigation biological tissues in the spectral OCT (optical coherence tomography) with usage hyperchromatic lenses. Using hyperchromatic lens, i.e. the lens with uncorrected longitudinal color allows scanning in the depth of the object by changing the wavelength of the emitter. In this case, the depth of the scan will be determined not by the microlens depth of field, but the value of axial color. In our study, we demonstrated the advantages of this method of research on biological tissues existing. Spectral OCT schemes with the hyperchromatic lens could increase the depth of spectral scanning, eliminate the use of multi-channel systems with a set of microscope objectives, reduce the time of measurement. In our paper, we show the developed method of calculation of hyperchromatic lenses and hybrid hyperchromatic lens consisting of a diffractive and refractive component in spectral OCT systems. We also demonstrate the results of aberration calculation designed microscope lenses. We show examples of developed hyperchromatic lenses with the diffractive element and without it.
Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography
NASA Astrophysics Data System (ADS)
Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé
2014-08-01
Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10 nm and 10 μm). In this study, the grain localization in a 2D slice of a 20 μm solidified atomized γU-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.
Purification and crystallization of Kokobera virus helicase
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Colibus, Luigi; Speroni, Silvia; Coutard, Bruno
2007-03-01
Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method and exhibit a diffraction limit of 2.3 Å. Kokobera virus is a mosquito-borne flavivirus belonging, like West Nile virus, to the Japanese encephalitis virus serocomplex. The flavivirus genus is characterized by a positive-sense single-stranded RNA genome. The unique open reading frame of the viral RNA is transcribed and translated as a single polyprotein which is post-translationally cleaved to yield three structural and seven nonstructural proteins, one of which ismore » the NS3 gene that encodes a C-terminal helicase domain consisting of 431 amino acids. Helicase inhibitors are potential antiviral drugs as the helicase is essential to viral replication. Crystals of the Kokobera virus helicase domain were obtained by the hanging-drop vapour-diffusion method. The crystals belong to space group P3{sub 1}21 (or P3{sub 2}21), with unit-cell parameters a = 88.6, c = 138.6 Å, and exhibit a diffraction limit of 2.3 Å.« less
A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere
Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing
2008-01-01
The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).
NASA Astrophysics Data System (ADS)
Slabu, I.; Wirch, N.; Caumanns, T.; Theissmann, R.; Krüger, M.; Schmitz-Rode, T.; Weirich, T. E.
2017-08-01
Superparamagnetic iron oxide nanoparticles (SPIONPs) incorporated into the base material of implants are used as contrast agents in magnetic resonance imaging for the delineation of the implants from the surrounding tissue. However, the delineation quality is strongly related to the structural characteristics of the incorporated SPIONPs and their interparticle interaction as well as their interaction with the polymer matrix of the implant. Consequently, a profound knowledge of the formation of aggregates inside the polymer matrix, which are responsible for strong interparticle interactions, and of their structural characteristics, is required for controlling the magnetic resonance image quality of the implants. In this work, transmission electron microscopy methods such as electron tomography and nano-electron diffraction were used to depict SPIONP aggregates inside the melt-spin polyvinylidene fluoride fibers used for the assembly of implants and to determine the crystal structure of individual nanocrystals inside these aggregates, respectively. Using these techniques it was possible for the first time to characterize the aggregates inside the fibers of implants and to validate the magnetization measurements that have been previously used to assess the interaction phenomena inside the fibers of implants. With electron tomography, inhomogeneously sized distributed aggregates were delineated and 3D models of these aggregates were constructed. Furthermore, the distribution of the aggregates inside the fibers was verified by means of magnetic force microscopy. With nano-diffraction measurements, the SPIONP crystal structure inside the fibers of the implant could not be clearly assigned to that of magnetite (Fe3O4) or maghemite (γ-Fe2O3). Therefore, additional electron energy loss spectroscopy measurements were performed, which revealed the presence of both phases of Fe3O4 and γ-Fe2O3, probably caused by oxidation processes during the manufacture of the fibers by melt-spinning.
NASA Astrophysics Data System (ADS)
Laubscher, Markus; Bourquin, Stéphane; Froehly, Luc; Karamata, Boris; Lasser, Theo
2004-07-01
Current spectroscopic optical coherence tomography (OCT) methods rely on a posteriori numerical calculation. We present an experimental alternative for accessing spectroscopic information in OCT without post-processing based on wavelength de-multiplexing and parallel detection using a diffraction grating and a smart pixel detector array. Both a conventional A-scan with high axial resolution and the spectrally resolved measurement are acquired simultaneously. A proof-of-principle demonstration is given on a dynamically changing absorbing sample. The method's potential for fast spectroscopic OCT imaging is discussed. The spectral measurements obtained with this approach are insensitive to scan non-linearities or sample movements.
THz computed tomography system with zero-order Bessel beam
NASA Astrophysics Data System (ADS)
Niu, Liting; Wu, Qiao; Wang, Kejia; Liu, Jinsong; Yang, Zhengang
2018-01-01
Terahertz (THz) waves can penetrate many optically opaque dielectric materials such as plastics, ceramics and colorants. It is effective to reveal the internal structures of these materials. We have built a THz Computed Tomography (CT) system with 0.3 THz zero-order Bessel beam to improve the depth of focus of this imaging system for the non-diffraction property of Bessel beam. The THz CT system has been used to detect a paper cup with a metal rod inside. Finally, the acquired projection data have been processed by the filtered back-projection algorithm and the reconstructed image of the sample has been obtained.
Ramaz, F; Forget, B; Atlan, M; Boccara, A C; Gross, M; Delaye, P; Roosen, G
2004-11-01
We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.
Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography.
Benoit a la Guillaume, Emilie; Bortolozzo, Umberto; Huignard, Jean-Pierre; Residori, Stefania; Ramaz, Francois
2013-02-01
Photorefractive Bi(12)SiO(20) single crystal is used for acousto-optic imaging in thick scattering media in the green part of the spectrum, in an adaptive speckle correlation configuration. Light fields at the output of the scattering sample exhibit typical speckle grains of 1 μm size within the volume of the nonlinear crystal. This heterogeneous illumination induces a complex refractive index structure without applying a reference beam on the crystal, leading to a self-referenced diffraction correlation scheme. We demonstrate that this simple and robust configuration is able to perform axially resolved ultrasound modulated optical tomography of thick scattering media with an improved optical etendue.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
HIT collaborative base project at APS of Argonne
NASA Astrophysics Data System (ADS)
Liu, H.; Wang, L.
2012-12-01
Harbin Institute of Technology (HIT) launched collaborative base project at Argonne National Laboratory in 2010, and progress will be presented in this paper. The staff and students from HIT involved in advanced technological developments, which included tomography. high energy PDF, diffraction and scattering, and inelastic scattering techniques in APS to study structures changes under high pressure conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cil, Mehmet B.; Alshibli, Khalid A.; Kenesei, Peter
3D synchrotron X-ray diffraction (3DXRD) and synchrotron micro-computed tomography (SMT) techniques were used to measure and monitor the lattice strain evolution and fracture behavior of natural Ottawa sand particles subjected to 1D compression loading. The particle-averaged lattice strain within sand particles was measured using 3DXRD and then was used to calculate the corresponding lattice stress tensor. In addition, the evolution and mode of fracture of sand particles was investigated using high-resolution 3D SMT images. The results of diffraction data analyses revealed that the major principal component of the lattice strain or stress tensor increased in most of the particles asmore » the global applied compressive load increased until the onset of fracture. Particle fracture and subsequent rearrangements caused significant variation and fluctuations in measured lattice strain/stress values from one particle to another and from one load step to the next one. SMT image analysis at the particle-scale showed that cracks in fractured sand particles generally initiate and propagate along the plane that connects the two contact points. Fractured particles initially split into two or three major fragments followed by disintegration into multiple smaller fragments in some cases. In conclusion, microscale analysis of fractured particles showed that particle position, morphology, the number and location of contact points play a major role in the occurrence of particle fracture in confined comminution of the sand assembly.« less
Cil, Mehmet B.; Alshibli, Khalid A.; Kenesei, Peter
2017-05-27
3D synchrotron X-ray diffraction (3DXRD) and synchrotron micro-computed tomography (SMT) techniques were used to measure and monitor the lattice strain evolution and fracture behavior of natural Ottawa sand particles subjected to 1D compression loading. The particle-averaged lattice strain within sand particles was measured using 3DXRD and then was used to calculate the corresponding lattice stress tensor. In addition, the evolution and mode of fracture of sand particles was investigated using high-resolution 3D SMT images. The results of diffraction data analyses revealed that the major principal component of the lattice strain or stress tensor increased in most of the particles asmore » the global applied compressive load increased until the onset of fracture. Particle fracture and subsequent rearrangements caused significant variation and fluctuations in measured lattice strain/stress values from one particle to another and from one load step to the next one. SMT image analysis at the particle-scale showed that cracks in fractured sand particles generally initiate and propagate along the plane that connects the two contact points. Fractured particles initially split into two or three major fragments followed by disintegration into multiple smaller fragments in some cases. In conclusion, microscale analysis of fractured particles showed that particle position, morphology, the number and location of contact points play a major role in the occurrence of particle fracture in confined comminution of the sand assembly.« less
Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdogan,S.; Garboczi, E.; Fowler, D.
Microfine rock aggregates, formed naturally or in a crushing process, pass a No. 200 ASTM sieve, so have at least two orthogonal principal dimensions less than 75 {mu}m, the sieve opening size. In this paper, for the first time, we capture true 3-D shape and size data of several different types of microfine aggregates, using X-ray microcomputed tomography ({mu}CT) with a voxel size of 2 {mu}m. This information is used to generate shape analyses of various kinds. Particle size distributions are also generated from the {mu}CT data and quantitatively compared to the results of laser diffraction, which is the leadingmore » method for measuring particle size distributions of sub-millimeter size particles. By taking into account the actual particle shape, the differences between {mu}CT and laser diffraction can be qualitatively explained.« less
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly
NASA Astrophysics Data System (ADS)
Boulenguez, J.; Berthier, S.; Leroy, F.
2012-03-01
The iridescence of Morpho rhetenor butterfly is known to result from a photonic structure on wing scales, where multilayer interference and grating diffraction occur simultaneously. We characterize the disorder at the photonic structure length scale and at the butterfly scale. We measure the scattering pattern of the wing. Through RCWA and 1st Born approximation models, we link the different disorders to different features in the scattering patterns.
Samuha, Shmuel; Mugnaioli, Enrico; Grushko, Benjamin; Kolb, Ute; Meshi, Louisa
2014-12-01
The crystal structure of the novel Al77Rh15Ru8 phase (which is an approximant of decagonal quasicrystals) was determined using modern direct methods (MDM) applied to automated electron diffraction tomography (ADT) data. The Al77Rh15Ru8 E-phase is orthorhombic [Pbma, a = 23.40 (5), b = 16.20 (4) and c = 20.00 (5) Å] and has one of the most complicated intermetallic structures solved solely by electron diffraction methods. Its structural model consists of 78 unique atomic positions in the unit cell (19 Rh/Ru and 59 Al). Precession electron diffraction (PED) patterns and high-resolution electron microscopy (HRTEM) images were used for the validation of the proposed atomic model. The structure of the E-phase is described using hierarchical packing of polyhedra and a single type of tiling in the form of a parallelogram. Based on this description, the structure of the E-phase is compared with that of the ε6-phase formed in Al-Rh-Ru at close compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics
A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less
ON MEASUREMENT OF CARBON CONTENT IN RETAINED AUSTENITE IN A NANOSTRUCTURED BAINITIC STEEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Mateo, C.; Caballero, Francesca G.; Miller, Michael K
2012-01-01
In this study, the carbon content of retained austenite in a nanostructured bainitic steel was measured by atom probe tomography and compared with data derived from the austenite lattice parameter determined by X-ray diffraction. The results provide new evidence about the heterogeneous distribution of carbon in austenite, a fundamental issue controlling ductility in this type of microstructure.
NASA Astrophysics Data System (ADS)
Yoon, Jonghee; Kim, Kyoohyun; Kim, Min-hyeok; Kang, Suk-Jo; Park, YongKeun
2016-03-01
White blood cells (WBC) have crucial roles in immune systems which defend the host against from disease conditions and harmful invaders. Various WBC subsets have been characterized and reported to be involved in many pathophysiologic conditions. It is crucial to isolate a specific WBC subset to study its pathophysiological roles in diseases. Identification methods for a specific WBC population are rely on invasive approaches, including Wright-Gimesa staining for observing cellular morphologies and fluorescence staining for specific protein markers. While these methods enable precise classification of WBC populations, they could disturb cellular viability or functions. In order to classify WBC populations in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a three-dimensional (3-D) quantitative phase imaging technique that measures 3-D refractive index (RI) distributions of individual WBCs. To test feasibility of label-free classification of WBC populations using ODT, we measured four subtypes of WBCs, including B cell, CD4 T cell, CD8 T cell, and natural killer (NK) cell. From measured 3-D RI tomograms of WBCs, we obtain quantitative structural and biochemical information and classify each WBC population using a machine learning algorithm.
Elastic scattering of spin-polarized electrons and positrons from 23Na nuclei
NASA Astrophysics Data System (ADS)
Jakubassa-Amundsen, D. H.
2018-07-01
Differential cross sections and polarization correlations for the scattering of relativistic spin-polarized leptons from unpolarized ground-state sodium nuclei are calculated within the distorted-wave Born approximation (DWBA). Various nuclear ground-state charge distributions are probed. Besides potential scattering, also electric C2 and magnetic M1 and M3 transitions are taken into account. It is shown that even for a light nucleus such as 23Na there are considerable electron-positron differences at high collision energies and large scattering angles. In particular, the symmetry of the Sherman function with respect to a global sign change, as predicted by the second-order Born approximation when replacing electrons by positrons, is broken whenever the diffraction structures come into play beyond 100 MeV.
Investigation of Next-Generation Earth Radiation Budget Radiometry
NASA Technical Reports Server (NTRS)
Coffey, Katherine L.; Mahan, J. R.
1999-01-01
The current effort addresses two issues important to the research conducted by the Thermal Radiation Group at Virginia Tech. The first research topic involves the development of a method which can properly model the diffraction of radiation as it enters an instrument aperture. The second topic involves the study of a potential next-generation space-borne radiometric instrument concept. Presented are multiple modeling efforts to describe the diffraction of monochromatic radiant energy passing through an aperture for use in the Monte-Carlo ray-trace environment. Described in detail is a deterministic model based upon Heisenberg's uncertainty principle and the particle theory of light. This method is applicable to either Fraunhofer or Fresnel diffraction situations, but is incapable of predicting the secondary fringes in a diffraction pattern. Also presented is a second diffraction model, based on the Huygens-Fresnel principle with a correcting obliquity factor. This model is useful for predicting Fraunhofer diffraction, and can predict the secondary fringes because it keeps track of phase. NASA is planning for the next-generation of instruments to follow CERES (Clouds and the Earth's Radiant Energy System), an instrument which measures components of the Earth's radiant energy budget in three spectral bands. A potential next-generation concept involves modification of the current CERES instrument to measure in a larger number of wavelength bands. This increased spectral partitioning would be achieved by the addition of filters and detectors to the current CERES geometry. The capacity of the CERES telescope to serve for this purpose is addressed in this thesis.
Compressed sensing for ultrasound computed tomography.
van Sloun, Ruud; Pandharipande, Ashish; Mischi, Massimo; Demi, Libertario
2015-06-01
Ultrasound computed tomography (UCT) allows the reconstruction of quantitative tissue characteristics, such as speed of sound, mass density, and attenuation. Lowering its acquisition time would be beneficial; however, this is fundamentally limited by the physical time of flight and the number of transmission events. In this letter, we propose a compressed sensing solution for UCT. The adopted measurement scheme is based on compressed acquisitions, with concurrent randomised transmissions in a circular array configuration. Reconstruction of the image is then obtained by combining the born iterative method and total variation minimization, thereby exploiting variation sparsity in the image domain. Evaluation using simulated UCT scattering measurements shows that the proposed transmission scheme performs better than uniform undersampling, and is able to reduce acquisition time by almost one order of magnitude, while maintaining high spatial resolution.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
NASA Technical Reports Server (NTRS)
Neumann, Maxim; Hensley, Scott; Lavalle, Marco; Ahmed, Razi
2013-01-01
This paper concerns forest remote sensing using JPL's multi-baseline polarimetric interferometric UAVSAR data. It presents exemplary results and analyzes the possibilities and limitations of using SAR Tomography and Polarimetric SAR Interferometry (PolInSAR) techniques for the estimation of forest structure. Performance and error indicators for the applicability and reliability of the used multi-baseline (MB) multi-temporal (MT) PolInSAR random volume over ground (RVoG) model are discussed. Experimental results are presented based on JPL's L-band repeat-pass polarimetric interferometric UAVSAR data over temperate and tropical forest biomes in the Harvard Forest, Massachusetts, and in the La Amistad Park, Panama and Costa Rica. The results are partially compared with ground field measurements and with air-borne LVIS lidar data.
Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera
NASA Astrophysics Data System (ADS)
Trichopoulos, Georgios C.; Sertel, Kubilay
2015-07-01
We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.
The thin hot plume beneath Iceland
Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.
1999-01-01
We present the results of a seismological investigation of the frequency-dependent amplitude variations across Iceland using data from the HOTSPOT array currently deployed there. The array is composed of 30 broad-band PASSCAL instruments. We use the parameter t(*), defined in the usual manner from spectral ratios (Halderman and Davis 1991), to compare observed S-wave amplitude variations with those predicted due to both anelastic attenuation and diffraction effects. Four teleseismic events at a range of azimuths are used to measure t(*). A 2-D vertical cylindrical plume model with a Gaussian-shaped velocity anomaly is used to model the variations. That part of t(*) caused by attenuation was estimated by tracing a ray through IASP91, then superimposing our plume model velocity anomaly and calculating the path integral of 1/vQ. That part of t(*) caused by diffraction was estimated using a 2-D finite difference code to generate synthetic seismograms. The same spectral ratio technique used for the data was then used to extract a predicted t(*). The t(*) variations caused by anelastic attenuation are unable to account for the variations we observe, but those caused by diffraction do. We calculate the t(*) variations caused by diffraction for different plume models and obtain our best-fit plume, which exhibits good agreement between the observed and measured t(*). The best-fit plume model has a maximum S-velocity anomaly of - 12 per cent and falls to 1/e of its maximum at 100 km from the plume centre. This is narrower than previous estimates from seismic tomography, which are broadened and damped by the methods of tomography. This velocity model would suggest greater ray theoretical traveltime delays than observed. However, we find that for such a plume, wave-front healing effects at frequencies of 0.03-0.175 Hz (the frequency range used to pick S-wave arrivals) causes a 40 per cent reduction in traveltime delay, reducing the ray theoretical delay to that observed.
Harbin Institute of Technology collaborative base project at APS of Argonne
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, L. L.
2013-05-01
In this paper, the progress of Harbin Institute of Technology (HIT) collaborative base project, which was launched at Argonne National Laboratory in 2010, will be presented. The staff and students from HIT involved in advanced technological developments, which included tomography, high energy PDF, diffraction and scattering, and inelastic scattering techniques in APS to study structures changes of minerals and materials under high pressure conditions.
NASA Astrophysics Data System (ADS)
Marquardt, Drew; Williams, Justin; Kucerka, Norbert; Atkinson, Jeffrey; Katsaras, John; Wassall, Stephen; Harroun, Thad
2013-03-01
There are no proven health benefits to supplementing with Vitamin E, so why do we require it for healthy living? The whole notion that vitamin E is an in-vivo antioxidant is now being seriously questioned. Using neutron diffraction and supporting techniques, we have correlated vitamin E's location in model membranes with its antioxidant activity. experiments were conducted using phosphatidylcholine (PC) bilayers whose fatty acid chains varied in their degree of unsaturation. We observe vitamin E up-right in all lipids examined, with its overall height in the bilayer lipid dependant. Interestingly we observe vitamin E's hydroxyl in the headgroup region of the bilayer for both the fully saturated and poly unsaturated lipids. Vitamin E was most effective at intercepting water borne oxidants than radical initiated within the bilayer core. However for lipids where vitamin E resides slightly lower (glycerol backbone) we observe comparable antioxidant activity against both water borne and hydrocarbon borne oxidants. Thus showing lipid species can modulate the location of vitamin E's activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang; Huang, Li; Porter, Lisa M.
2016-07-15
Calculated frequency distributions of atom probe tomography reconstructions (∼80 nm field of view) of very thin Al{sub x}Ga{sub 1−x}N (0.18 ≤ x ≤ 0.51) films grown via metalorganic vapor phase epitaxy on both (0001) GaN/AlN/SiC and (0001) GaN/sapphire heterostructures revealed homogeneous concentrations of Al and chemically abrupt Al{sub x}Ga{sub 1−x}N/GaN interfaces. The results of scanning transmission electron microscopy and selected area diffraction corroborated these results and revealed that neither superlattice ordering nor phase separation was present at nanometer length scales.
Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba
NASA Astrophysics Data System (ADS)
Charrière, Florian; Pavillon, Nicolas; Colomb, Tristan; Depeursinge, Christian; Heger, Thierry J.; Mitchell, Edward A. D.; Marquet, Pierre; Rappaz, Benjamin
2006-08-01
This paper presents an optical diffraction tomography technique based on digital holographic microscopy. Quantitative 2-dimensional phase images are acquired for regularly-spaced angular positions of the specimen covering a total angle of π, allowing to built 3-dimensional quantitative refractive index distributions by an inverse Radon transform. A 20x magnification allows a resolution better than 3 μm in all three dimensions, with accuracy better than 0.01 for the refractive index measurements. This technique is for the first time to our knowledge applied to living specimen (testate amoeba, Protista). Morphometric measurements are extracted from the tomographic reconstructions, showing that the commonly used method for testate amoeba biovolume evaluation leads to systematic under evaluations by about 50%.
Application of Patterson-function direct methods to materials characterization.
Rius, Jordi
2014-09-01
The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM), from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.
Imaging complex objects using learning tomography
NASA Astrophysics Data System (ADS)
Lim, JooWon; Goy, Alexandre; Shoreh, Morteza Hasani; Unser, Michael; Psaltis, Demetri
2018-02-01
Optical diffraction tomography (ODT) can be described using the scattering process through an inhomogeneous media. An inherent nonlinearity exists relating the scattering medium and the scattered field due to multiple scattering. Multiple scattering is often assumed to be negligible in weakly scattering media. This assumption becomes invalid as the sample gets more complex resulting in distorted image reconstructions. This issue becomes very critical when we image a complex sample. Multiple scattering can be simulated using the beam propagation method (BPM) as the forward model of ODT combined with an iterative reconstruction scheme. The iterative error reduction scheme and the multi-layer structure of BPM are similar to neural networks. Therefore we refer to our imaging method as learning tomography (LT). To fairly assess the performance of LT in imaging complex samples, we compared LT with the conventional iterative linear scheme using Mie theory which provides the ground truth. We also demonstrate the capacity of LT to image complex samples using experimental data of a biological cell.
Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography
NASA Astrophysics Data System (ADS)
Bonef, Bastien; Cramer, Richard; Speck, James S.
2017-06-01
Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.
A Comparison of Ultrasound Tomography Methods in Circular Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leach, R R; Azevedo, S G; Berryman, J G
2002-01-24
Extremely high quality data was acquired using an experimental ultrasound scanner developed at Lawrence Livermore National Laboratory using a 2D ring geometry with up to 720 transmitter/receiver transducer positions. This unique geometry allows reflection and transmission modes and transmission imaging and quantification of a 3D volume using 2D slice data. Standard image reconstruction methods were applied to the data including straight-ray filtered back projection, reflection tomography, and diffraction tomography. Newer approaches were also tested such as full wave, full wave adjoint method, bent-ray filtered back projection, and full-aperture tomography. A variety of data sets were collected including a formalin-fixed humanmore » breast tissue sample, a commercial ultrasound complex breast phantom, and cylindrical objects with and without inclusions. The resulting reconstruction quality of the images ranges from poor to excellent. The method and results of this study are described including like-data reconstructions produced by different algorithms with side-by-side image comparisons. Comparisons to medical B-scan and x-ray CT scan images are also shown. Reconstruction methods with respect to image quality using resolution, noise, and quantitative accuracy, and computational efficiency metrics will also be discussed.« less
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging
Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-01-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required. PMID:23793151
Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.
Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf
2013-07-01
The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.
Micro- and nano-imaging at the diamond beamline I13L-imaging and coherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, C., E-mail: Christoph.rau@diamond.ac.uk; University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS; Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008
2016-07-27
The Diamond Beamline I13L is dedicated to imaging on the micron- and nano-lengthscale, operating in the energy range between 6 and 30 keV. For this purpose two independent stations have been built. The imaging branch is fully operational for micro-tomography and in-line phase contrast imaging with micrometer resolution. Currently a full-field microscope providing 50nm spatial resolution over a field of view of 100 µm is being tested. On the coherence branch, coherent diffraction imaging techniques such as ptychography and coherent X-ray Bragg diffraction are currently developed. The beamline contains a number of unique features. The machine layout has been modifiedmore » to the so-called mini-beta scheme, providing significantly increased flux from the two canted undulators. New instrumental designs such as a robot arm for the detector in diffraction experiments have been employed. The imaging branch is operated in collaboration with Manchester University, called therefore the Diamond-Manchester Branchline.« less
Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion
NASA Astrophysics Data System (ADS)
Rao, Jing; Ratassepp, Madis; Fan, Zheng
2017-07-01
Guided wave tomography is a promising tool to accurately determine the remaining wall thicknesses of corrosion damages, which are among the major concerns for many industries. Full Waveform Inversion (FWI) algorithm is an attractive guided wave tomography method, which uses a numerical forward model to predict the waveform of guided waves when propagating through corrosion defects, and an inverse model to reconstruct the thickness map from the ultrasonic signals captured by transducers around the defect. This paper discusses the reconstruction accuracy of the FWI algorithm on plate-like structures by using simulations as well as experiments. It was shown that this algorithm can obtain a resolution of around 0.7 wavelengths for defects with smooth depth variations from the acoustic modeling data, and about 1.5-2 wavelengths from the elastic modeling data. Further analysis showed that the reconstruction accuracy is also dependent on the shape of the defect. It was demonstrated that the algorithm maintains the accuracy in the case of multiple defects compared to conventional algorithms based on Born approximation.
High-density diffuse optical tomography of term infant visual cortex in the nursery
NASA Astrophysics Data System (ADS)
Liao, Steve M.; Ferradal, Silvina L.; White, Brian R.; Gregg, Nicholas; Inder, Terrie E.; Culver, Joseph P.
2012-08-01
Advancements in antenatal and neonatal medicine over the last few decades have led to significant improvement in the survival rates of sick newborn infants. However, this improvement in survival has not been matched by a reduction in neurodevelopmental morbidities with increasing recognition of the diverse cognitive and behavioral challenges that preterm infants face in childhood. Conventional neuroimaging modalities, such as cranial ultrasound and magnetic resonance imaging, provide an important definition of neuroanatomy with recognition of brain injury. However, they fail to define the functional integrity of the immature brain, particularly during this critical developmental period. Diffuse optical tomography methods have established success in imaging adult brain function; however, few studies exist to demonstrate their feasibility in the neonatal population. We demonstrate the feasibility of using recently developed high-density diffuse optical tomography (HD-DOT) to map functional activation of the visual cortex in healthy term-born infants. The functional images show high contrast-to-noise ratio obtained in seven neonates. These results illustrate the potential for HD-DOT and provide a foundation for investigations of brain function in more vulnerable newborns, such as preterm infants.
A Nominal Balloon Instrument Payload to Address Questions from the Planetary Decadal Survey
NASA Astrophysics Data System (ADS)
Young, Eliot; Kremic, Tibor; Dankanich, John
The Planetary Science Decadal Survey (entitled "Visions and Voyages for Planetary Science in the Decade 2013 - 2022", available online at https://solarsystem.nasa.gov/2013decadal/) serves as a roadmap for activities to be pursued by the Planetary Science Division of NASA's Science Mission Directorate. This document outlines roughly 200 key research areas and questions in chapters covering different parts of the solar system (e.g., Mars, Small Bodies, etc.). We have reviewed the Decadal Survey to assess whether any of the key questions can be addressed by high altitude balloon-borne payloads. Although some questions can only be answered by in situ experiments, we found that approximately one quarter of the key questions were well suited to balloon payloads. In many of those cases, balloons were competitive or superior to other existing facilities, including HST, SOFIA or Keck telescopes. We will present specific telescope and instrument bench designs that are capable of addressing key questions in the Decadal Survey. The instrument bench takes advantage of two of the main benefits of high-altitude observations: diffraction-limited imaging in visible and UV wavelengths and unobstructed spectroscopy in near-IR (1 - 5 microns) wavelengths. Our optical prescription produces diffraction-limited PSFs in both visible and IR beams. We will discuss pointing and thermal stability, two of the main challenges facing a balloon-borne telescope.
Mytko, Christine
2018-05-18
A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mytko, Christine
2014-03-31
A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong,Z.; Bennett, D.; Chapman, D.
We explored diffraction enhanced imaging (DEI) in both planar and computed tomography (CT) modes for early detection of beta amyloid deposition, a hallmark feature in Alzheimer's disease (AD). Since amyloid plaques precede clinical symptoms by years, their early detection is of great interest. These findings were correlated with results from synchrotron infrared microspectroscopic imaging and X-ray fluorescence microscopy, to determine the secondary structure of the amyloid beta protein and metal concentration in the amyloid plaques, respectively.
NASA Astrophysics Data System (ADS)
Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun
2018-01-01
To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-01-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
NASA Astrophysics Data System (ADS)
McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.
2015-10-01
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.
McDonald, S A; Reischig, P; Holzner, C; Lauridsen, E M; Withers, P J; Merkle, A P; Feser, M
2015-10-23
The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through '4D' in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.
Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.
Lin, C D; Xu, Junliang
2012-10-14
We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.
Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L
2017-01-01
X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.
Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.
Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I
2011-09-01
Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography. © 2011 Acoustical Society of America
Calculation of organ doses in x-ray examinations of premature babies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smans, Kristien; Tapiovaara, Markku; Cannie, Mieke
Lung disease represents one of the most life-threatening conditions in prematurely born children. In the evaluation of the neonatal chest, the primary and most important diagnostic study is the chest radiograph. Since prematurely born children are very sensitive to radiation, those radiographs may lead to a significant radiation detriment. Knowledge of the radiation dose is therefore necessary to justify the exposures. To calculate doses in the entire body and in specific organs, computational models of the human anatomy are needed. Using medical imaging techniques, voxel phantoms have been developed to achieve a representation as close as possible to the anatomicalmore » properties. In this study two voxel phantoms, representing prematurely born babies, were created from computed tomography- and magnetic resonance images: Phantom 1 (1910 g) and Phantom 2 (590 g). The two voxel phantoms were used in Monte Carlo calculations (MCNPX) to assess organ doses. The results were compared with the commercially available software package PCXMC in which the available mathematical phantoms can be downsized toward the prematurely born baby. The simple phantom-scaling method used in PCXMC seems to be sufficient to calculate doses for organs within the radiation field. However, one should be careful in specifying the irradiation geometry. Doses in organs that are wholly or partially outside the primary radiation field depend critically on the irradiation conditions and the phantom model.« less
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...
2016-04-07
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Search for hidden high-Z materials inside containers with the Muon Portal Project
NASA Astrophysics Data System (ADS)
La Rocca, P.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Belluso, M.; Billotta, S.; Blancato, A. A.; Bonanno, D.; Bonanno, G.; Costa, A.; Fallica, G.; Garozzo, S.; Indelicato, V.; Leonora, E.; Longhitano, F.; Longo, S.; Lo Presti, D.; Massimino, P.; Petta, C.; Pistagna, C.; Pugliatti, C.; Puglisi, M.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Russo, G. V.; Santagati, G.; Valvo, G.; Vitello, F.; Zaia, A.; Zappalà, G.
2014-01-01
The Muon Portal is a recently born project that plans to build a large area muon detector for a noninvasive inspection of shipping containers in the ports, searching for the presence of potential fissile (U, Pu) threats. The technique employed by the project is the well-known muon tomography, based on cosmic muon scattering from high-Z materials. The design and operational parameters of the muon portal under construction will be described in this paper, together with preliminary simulation and test results.
New Instrumentation for Nanoscale Subsurface Spectroscopy and Tomography
2009-12-22
George Lengel from RHK Technology, Troy, MI. Several ideas were born during these workshops and were later pursued by the team. For example, Rainer...1234 (2008). [51] M. S. Ünlü, A. Yalcin, M. Dogan, A. K. Swan, B. B. Goldberg, and C. R. Cantor , “Applications of Optical Resonance to Biological...34 Phys. Rev. B. 74, 205405 (2006). [60] L. Moiseev, A. K. Swan, M. S. Ünlü, B. B. Goldberg and C. R. Cantor , "DNA Conformation on Surfaces Measured by
Imaging cellular and subcellular structure of human brain tissue using micro computed tomography
NASA Astrophysics Data System (ADS)
Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert
2017-09-01
Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.
Park, Jun-Sang; Zhang, Xuan; Kenesei, Peter; ...
2017-08-31
A suite of non-destructive, three-dimensional X-ray microscopy techniques have recently been developed and used to characterize the microstructures of polycrystalline materials. These techniques utilize high-energy synchrotron radiation and include near-field and far-field diffraction microscopy (NF- and FF-HEDM, respectively) and absorption tomography. Several compatible sample environments have also been developed, enabling a wide range of 3D studies of material evolution. In this article, the FF-HEDM technique is described in detail, including its implementation at the 1-ID beamline of the Advanced Photon Source. Examples of how the information obtained from FF-HEDM can be used to deepen our understanding of structure-property-processing relationships inmore » selected materials are presented.« less
Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei
2015-03-01
Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.
NASA Astrophysics Data System (ADS)
Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.
2014-04-01
A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.
Ulker Karbeyaz, Başak; Miller, Eric L; Cleveland, Robin O
2008-05-01
A shaped-based ultrasound tomography method is proposed to reconstruct ellipsoidal objects using a linearized scattering model. The method is motivated by the desire to detect the presence of lesions created by high intensity focused ultrasound (HIFU) in applications of cancer therapy. The computational size and limited view nature of the relevant three-dimensional inverse problem renders impractical the use of traditional pixel-based reconstruction methods. However, by employing a shape-based parametrization it is only necessary to estimate a small number of unknowns describing the geometry of the lesion, in this paper assumed to be ellipsoidal. The details of the shape-based nonlinear inversion method are provided. Results obtained from a commercial ultrasound scanner and a tissue phantom containing a HIFU-like lesion demonstrate the feasibility of the approach where a 20 mm x 5 mm x 6 mm ellipsoidal inclusion was detected with an accuracy of around 5%.
Wide-field fluorescence diffuse optical tomography with epi-illumination of sinusoidal pattern
NASA Astrophysics Data System (ADS)
Li, Tongxin; Gao, Feng; Chen, Weiting; Qi, Caixia; Yan, Panpan; Zhao, Huijuan
2017-02-01
We present a wide-field fluorescence tomography with epi-illumination of sinusoidal pattern. In this scheme, a DMD projector is employed as a spatial light modulator to generate independently wide-field sinusoidal illumination patterns at varying spatial frequencies on a sample, and then the emitted photons at the sample surface were captured with a EM-CCD camera. This method results in a significantly reduced number of the optical field measurements as compared to the point-source-scanning ones and thereby achieves a fast data acquisition that is desired for a dynamic imaging application. Fluorescence yield images are reconstructed using the normalized-Born formulated inversion of the diffusion model. Experimental reconstructions are presented on a phantom embedding the fluorescent targets and compared for a combination of the multiply frequencies. The results validate the ability of the method to determine the target relative depth and quantification with an increasing accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baoqiang; Berti, Romain; Abran, Maxime
2014-05-15
Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore,more » a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.« less
NASA Astrophysics Data System (ADS)
Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis
2016-03-01
Optical Neuroimaging is a highly dynamical field of research owing to the combination of many advanced imaging techniques and computational tools that uncovered unexplored paths through the functioning of the brain. Light propagation modelling through such complicated structures has always played a crucial role as the basis for a high resolution and quantitative imaging where even the slightest improvement could lead to significant results. Fluorescence Diffuse Optical Tomography (fDOT), a widely used technique for three dimensional imaging of small animals and tissues, has been proved to be inaccurate for neuroimaging the mouse head without the knowledge of a-priori anatomical information of the subject. Commonly a normalized Born approximation model is used in fDOT reconstruction based on forward photon propagation using Diffusive Equation (DE) which has strong limitations in the optically clear regime. The presence of the Cerebral Spinal Fluid (CSF) instead, a thin optically clear layer surrounding the brain, can be more accurately taken into account using Monte Carlo approaches which nowadays is becoming more usable thanks to parallelized GPU algorithms. In this work we discuss the results of a synthetic experimental comparison, resulting to the increase of the accuracy for the Born approximation by introducing the CSF layer in a realistic mouse head structure with respect to the current model. We point out the importance of such clear layer for complex geometrical models, while for simple slab phantoms neglecting it does not introduce a significant error.
Air trapping and airflow obstruction in newborn cystic fibrosis piglets.
Adam, Ryan J; Michalski, Andrew S; Bauer, Christian; Abou Alaiwa, Mahmoud H; Gross, Thomas J; Awadalla, Maged S; Bouzek, Drake C; Gansemer, Nicholas D; Taft, Peter J; Hoegger, Mark J; Diwakar, Amit; Ochs, Matthias; Reinhardt, Joseph M; Hoffman, Eric A; Beichel, Reinhard R; Meyerholz, David K; Stoltz, David A
2013-12-15
Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup. To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis. On the day they are born, piglets with cystic fibrosis lack airway infection and inflammation. Therefore, we used newborn wild-type piglets and piglets with cystic fibrosis to assess air trapping, airway size, and lung volume with inspiratory and expiratory X-ray computed tomography scans. Micro-computed tomography scanning was used to assess more distal airway sizes. Airway resistance was determined with a mechanical ventilator. Mean linear intercept and alveolar surface area were determined using stereologic methods. On the day they were born, piglets with cystic fibrosis exhibited air trapping more frequently than wild-type piglets (75% vs. 12.5%, respectively). Moreover, newborn piglets with cystic fibrosis had increased airway resistance that was accompanied by luminal size reduction in the trachea, mainstem bronchi, and proximal airways. In contrast, mean linear intercept length, alveolar surface area, and lung volume were similar between both genotypes. The presence of air trapping, airflow obstruction, and airway size reduction in newborn piglets with cystic fibrosis before the onset of airway infection, inflammation, and mucus accumulation indicates that cystic fibrosis impacts airway development. Our findings suggest that early airflow obstruction and air trapping in infants with cystic fibrosis might, in part, be caused by congenital airway abnormalities.
Three-dimensional full-field X-ray orientation microscopy
Viganò, Nicola; Tanguy, Alexandre; Hallais, Simon; Dimanov, Alexandre; Bornert, Michel; Batenburg, Kees Joost; Ludwig, Wolfgang
2016-01-01
A previously introduced mathematical framework for full-field X-ray orientation microscopy is for the first time applied to experimental near-field diffraction data acquired from a polycrystalline sample. Grain by grain tomographic reconstructions using convex optimization and prior knowledge are carried out in a six-dimensional representation of position-orientation space, used for modelling the inverse problem of X-ray orientation imaging. From the 6D reconstruction output we derive 3D orientation maps, which are then assembled into a common sample volume. The obtained 3D orientation map is compared to an EBSD surface map and local misorientations, as well as remaining discrepancies in grain boundary positions are quantified. The new approach replaces the single orientation reconstruction scheme behind X-ray diffraction contrast tomography and extends the applicability of this diffraction imaging technique to material micro-structures exhibiting sub-grains and/or intra-granular orientation spreads of up to a few degrees. As demonstrated on textured sub-regions of the sample, the new framework can be extended to operate on experimental raw data, thereby bypassing the concept of orientation indexation based on diffraction spot peak positions. This new method enables fast, three-dimensional characterization with isotropic spatial resolution, suitable for time-lapse observations of grain microstructures evolving as a function of applied strain or temperature. PMID:26868303
Computer-generated holographic near-eye display system based on LCoS phase only modulator
NASA Astrophysics Data System (ADS)
Sun, Peng; Chang, Shengqian; Zhang, Siman; Xie, Ting; Li, Huaye; Liu, Siqi; Wang, Chang; Tao, Xiao; Zheng, Zhenrong
2017-09-01
Augmented reality (AR) technology has been applied in various areas, such as large-scale manufacturing, national defense, healthcare, movie and mass media and so on. An important way to realize AR display is using computer-generated hologram (CGH), which is accompanied by low image quality and heavy computing defects. Meanwhile, the diffraction of Liquid Crystal on Silicon (LCoS) has a negative effect on image quality. In this paper, a modified algorithm based on traditional Gerchberg-Saxton (GS) algorithm was proposed to improve the image quality, and new method to establish experimental system was used to broaden field of view (FOV). In the experiment, undesired zero-order diffracted light was eliminated and high definition 2D image was acquired with FOV broadened to 36.1 degree. We have also done some pilot research in 3D reconstruction with tomography algorithm based on Fresnel diffraction. With the same experimental system, experimental results demonstrate the feasibility of 3D reconstruction. These modifications are effective and efficient, and may provide a better solution in AR realization.
NASA Astrophysics Data System (ADS)
Li, Jiao; Wang, Xin; Yi, Xi; Zhang, Limin; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng
2012-09-01
The importance of cellular pH has been shown clearly in the study of cell activity, pathological feature, and drug metabolism. Monitoring pH changes of living cells and imaging the regions with abnormal pH-values, in vivo, could provide invaluable physiological and pathological information for the research of the cell biology, pharmacokinetics, diagnostics, and therapeutics of certain diseases such as cancer. Naturally, pH-sensitive fluorescence imaging of bulk tissues has been attracting great attentions from the realm of near infrared diffuse fluorescence tomography (DFT). Herein, the feasibility of quantifying pH-induced fluorescence changes in turbid medium is investigated using a continuous-wave difference-DFT technique that is based on the specifically designed computed tomography-analogous photon counting system and the Born normalized difference image reconstruction scheme. We have validated the methodology using two-dimensional imaging experiments on a small-animal-sized phantom, embedding an inclusion with varying pH-values. The results show that the proposed approach can accurately localize the target with a quantitative resolution to pH-sensitive variation of the fluorescent yield, and might provide a promising alternative method of pH-sensitive fluorescence imaging in addition to the fluorescence-lifetime imaging.
2017-02-17
time for the tomography and diffraction sweeps was approximately 42 min. In a typical quasi -static in-situ experiment, loading is halted and the...data is used to extract individual grain- average stress tensors in a large aggregate of Ti-7Al grains (z500) over a time series of prescribed states...for public release: distribution unlimited. © 2017 ELSEVIER LTD (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING
Soto, Juan M; Rodrigo, José A; Alieva, Tatiana
2018-01-01
Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.
Simple and versatile long range swept source for optical coherence tomography applications
NASA Astrophysics Data System (ADS)
Bräuer, Bastian; Lippok, Norman; Murdoch, Stuart G.; Vanholsbeeck, Frédérique
2015-12-01
We present a versatile long coherence length swept-source laser design for optical coherence tomography applications. This design consists of a polygonal spinning mirror and an optical gain chip in a modified Littman-Metcalf cavity. A narrowband intra-cavity filter is implemented through multiple passes off a diffraction grating set at grazing incidence. The key advantage of this design is that it can be readily adapted to any wavelength regions for which broadband gain chips are available. We demonstrate this by implementing sources at 1650 nm, 1550 nm, 1310 nm and 1050 nm. In particular, we present a 1310 nm swept source laser with 24 mm coherence length, 95 nm optical bandwidth, 2 kHz maximum sweep frequency and 7.5 mW average output power. These parameters make it a suitable source for the imaging of biological samples.
High-Pressure Neutron Diffraction Studies for Materials Sciences and Energy Sciences
NASA Astrophysics Data System (ADS)
Zhao, Y.; Los Alamos High Pressure Materials Research Team
2013-05-01
The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials sciences, as well as earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at LANSCE to conduct in situ high P-T neutron diffraction experiments. We have worked out a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high-P and low-T. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometery. Recently, we have developed high-P low-T gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments. These techniques enable in-situ and real-time examination of gas uptake/release processes and allow high-resolution time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equation of state, structural phase transition, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation of methane and hydrogen clathrates, and hydrogen adsorption of the inclusion compounds such as the recently discovered metal-organic frameworks (MOFs). The aim of our research is to accurately map phase diagram, lattice parameters, thermal parameters, bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. We are currently developing further high P-T technology with a new "true" triaxial loading press, TAP_6x, to compress cubic sample package to achieve pressures up to 20 GPa and temperatures up to 2000 K in routine experiments. The implementation of TAP_6x300 with high-pressure neutron beamlines is underway for simultaneous high P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high-pressure neutron diffraction are important for multidisciplinary science, particularly for the theoretical/computational modeling/simulations.;
Digital focusing of OCT images based on scalar diffraction theory and information entropy.
Liu, Guozhong; Zhi, Zhongwei; Wang, Ruikang K
2012-11-01
This paper describes a digital method that is capable of automatically focusing optical coherence tomography (OCT) en face images without prior knowledge of the point spread function of the imaging system. The method utilizes a scalar diffraction model to simulate wave propagation from out-of-focus scatter to the focal plane, from which the propagation distance between the out-of-focus plane and the focal plane is determined automatically via an image-definition-evaluation criterion based on information entropy theory. By use of the proposed approach, we demonstrate that the lateral resolution close to that at the focal plane can be recovered from the imaging planes outside the depth of field region with minimal loss of resolution. Fresh onion tissues and mouse fat tissues are used in the experiments to show the performance of the proposed method.
The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie
2012-07-01
An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.
Synthetic Incoherence via Scanned Gaussian Beams
Levine, Zachary H.
2006-01-01
Tomography, in most formulations, requires an incoherent signal. For a conventional transmission electron microscope, the coherence of the beam often results in diffraction effects that limit the ability to perform a 3D reconstruction from a tilt series with conventional tomographic reconstruction algorithms. In this paper, an analytic solution is given to a scanned Gaussian beam, which reduces the beam coherence to be effectively incoherent for medium-size (of order 100 voxels thick) tomographic applications. The scanned Gaussian beam leads to more incoherence than hollow-cone illumination. PMID:27274945
Pressure induced phase transitions studies using advanced synchrotron techniques
NASA Astrophysics Data System (ADS)
Liu, Haozhe; Liu, Lisa; Zhao, Jinggeng; HIT Overseas Collaborative Base at Argonne Collaboration
2013-06-01
In this presentation, the joint effort on high pressure research through program of Harbin Institute of Technology (HIT) Overseas Collaborative Base at Argonne will be introduced. Selected research projects on pressure induced phase transitions at room temperature and high/low temperature conditions, such as A2B3 type topological insulators, iron arsenide superconductors, piezoelectric/ferroelectric materials, ABO3 type single crystals and metallic glasses, will be presented. Recent development on imaging and diffraction tomography techniques in diamond anvil cell will be reviewed as well.
Thymidine Kinase PET Reporter Gene Imaging of Cancer Cells In Vivo.
McCracken, Melissa N
2018-01-01
Positron emission tomography (PET) is a three dimensional imaging modality that detects the accumulation of radiolabeled isotopes in vivo. Ectopic expression of a thymidine kinase reporter gene allows for the specific detection of reporter cells in vivo by imaging with the reporter specific probe. PET reporter imaging is sensitive, quantitative and can be scaled into larger tumors or animals with little to no tissue diffraction. Here, we describe how thymidine kinase PET reporter genes can be used to noninvasively image cancer cells in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, S.; Devaraj, A.; Kovarik, L.
Transformation kinetics of metastable body-centered cubic γ-UMo phase in U-10 wt.percent Mo alloy during annealing at sub-eutectoid temperatures of 500C and 400C has been determined as a function of time using detailed microstructural characterization by scanning electron microscopy, X-ray diffraction analysis, scanning transmission electron microscopy, and atom probe tomography. Based on the results, we found that the phase transformation is initiated by cellular transformation at both the temperatures, which results in formation of a lamellar microstructure along prior γ-UMo grain boundaries.
Current problems in applied mathematics and mathematical physics
NASA Astrophysics Data System (ADS)
Samarskii, A. A.
Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.
Witcomb, Luci A; Czupryna, Julie; Francis, Kevin P; Frankel, Gad; Taylor, Peter W
2017-08-15
In contrast to two-dimensional bioluminescence imaging, three dimensional diffuse light imaging tomography with integrated micro-computed tomography (DLIT-μCT) has the potential to realise spatial variations in infection patterns when imaging experimental animals dosed with derivatives of virulent bacteria carrying bioluminescent reporter genes such as the lux operon from the bacterium Photorhabdus luminescens. The method provides an opportunity to precisely localise the bacterial infection sites within the animal and enables the generation of four-dimensional movies of the infection cycle. Here, we describe the use of the PerkinElmer IVIS SpectrumCT in vivo imaging system to investigate progression of lethal systemic infection in neonatal rats following colonisation of the gastrointestinal tract with the neonatal pathogen Escherichia coli K1. We confirm previous observations that these bacteria stably colonize the colon and small intestine following feeding of the infectious dose from a micropipette; invading bacteria migrate across the gut epithelium into the blood circulation and establish foci of infection in major organs, including the brain. DLIT-μCT revealed novel multiple sites of colonisation within the alimentary canal, including the tongue, oesophagus and stomach, with penetration of the non-keratinised oesophageal epithelial surface, providing strong evidence of a further major site for bacterial dissemination. We highlight technical issues associated with imaging of infections in new born rat pups and show that the whole-body and organ bioburden correlates with disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.
Chronic Hypoxia Accentuates Dysanaptic Lung Growth.
Llapur, Conrado J; Martínez, Myriam R; Grassino, Pedro T; Stok, Ana; Altieri, Héctor H; Bonilla, Federico; Caram, María M; Krowchuk, Natasha M; Kirby, Miranda; Coxson, Harvey O; Tepper, Robert S
2016-08-01
Adults born and raised at high altitudes have larger lung volumes and greater pulmonary diffusion capacity compared with adults at low altitude; however, it remains unclear whether the air and tissue volumes have comparable increases and whether there is a difference in airway size. To assess the effect of chronic hypoxia on lung growth using in vivo high-resolution computed tomography measurements. Healthy adults born and raised at moderate altitude (2,000 m above sea level; n = 19) and at low altitude (400 m above sea level; n = 23) underwent high-resolution computed tomography. Differences in total lung, air, and tissue volume, mean lung density, as well as airway lumen and wall areas in anatomically matched airways were compared between groups. No significant differences for age, sex, weight, or height were found between the two groups (P > 0.05). In a multivariate regression model, altitude was a significant contributor for total lung volume (P = 0.02), air volume (P = 0.03), and tissue volume (P = 0.03), whereby the volumes were greater for the moderate- versus the low-altitude group. However, altitude was not a significant contributor for mean lung density (P = 0.35) or lumen and wall areas in anatomically matched segmental, subsegmental, and subsubsegmental airways. Our findings suggest that the adult lung did not increase lung volume later in life by expansion of an existing number of alveoli, but rather from increased alveolarization early in life. In addition, chronic hypoxia accentuates dysanaptic lung growth by increasing the lung parenchyma but not the airways.
Non-destructive testing of satellite nozzles made of carbon fibre ceramic matrix composite, C/SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebelo Kornmeier, J.; Hofmann, M.; Schmidt, S.
Carbon fibre ceramic matrix composite materials, C/SiC, are excellent candidates as lightweight structural materials for high performance hot structures such as in aerospace applications. Satellite nozzles are manufactured from C/SiC, using, for instance, the Liquid Polymer Infiltration (LPI) process. In this article the applicability of different non-destructive analysis methods for the characterisation of C/SiC components will be discussed. By using synchrotron and neutron tomography it is possible to characterise the C/SiC material in each desired location or orientation. Synchrotron radiation using tomography on small samples with a resolution of 1.4 {mu}m, i.e. the fibre scale, was used to characterise threemore » dimensionally fibre orientation and integrity, matrix homogeneity and dimensions and distributions of micro pores. Neutron radiation tomography with a resolution of about 300 {mu}m was used to analyse the over-all C/SiC satellite nozzle component with respect to the fibre content. The special solder connection of a C/SiC satellite nozzle to a metallic ring was also successfully analysed by neutron tomography. In addition, the residual stress state of a temperature tested satellite nozzle was analysed non-destructively in depth by neutron diffraction. The results revealed almost zero stress for the principal directions, radial, axial and tangential, which can be considered to be the principal directions.« less
Nayak, Nadiya B.; Nayak, Bibhuti B.
2016-01-01
Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738
Ren, Xiaochen; Riley, James R.; Koleske, Daniel; ...
2015-07-14
In this study, atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of In xGa 1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate.more » Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.« less
Digital focusing of OCT images based on scalar diffraction theory and information entropy
Liu, Guozhong; Zhi, Zhongwei; Wang, Ruikang K.
2012-01-01
This paper describes a digital method that is capable of automatically focusing optical coherence tomography (OCT) en face images without prior knowledge of the point spread function of the imaging system. The method utilizes a scalar diffraction model to simulate wave propagation from out-of-focus scatter to the focal plane, from which the propagation distance between the out-of-focus plane and the focal plane is determined automatically via an image-definition-evaluation criterion based on information entropy theory. By use of the proposed approach, we demonstrate that the lateral resolution close to that at the focal plane can be recovered from the imaging planes outside the depth of field region with minimal loss of resolution. Fresh onion tissues and mouse fat tissues are used in the experiments to show the performance of the proposed method. PMID:23162717
CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS
NASA Astrophysics Data System (ADS)
Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.
2017-06-01
The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.
NASA Astrophysics Data System (ADS)
Asimow, P. D.; Akin, M. C.; Homel, M.; Crum, R. S.; Pagan, D.; Lind, J.; Bernier, J.; Mosenfelder, J. L.; Dillman, A. M.; Lavina, B.; Lee, S.; Fat'yanov, O. V.; Newman, M. G.
2017-06-01
The phase transitions of forsterite under shock were studied by x-ray diffraction and pyrometry. Samples of 2 mm thick, near-full density (>98% TMD) polycrystalline forsterite were characterized by EBSD and computed tomography and shock compressed to 50 and 75 GPa by two-stage gas gun at the Dynamic Compression Sector, Advanced Photon Source, with diffraction imaged during compression and release. Changes in diffraction confirm a phase transition by 75 GPa. In parallel, single-crystal forsterite shock temperatures were taken from 120 to 210 GPa with improved absolute calibration procedures on the Caltech 6-channel pyrometer and two-stage gun and used to examine the interpretation of superheating and P-T slope of the liquid Hugoniot. This work performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, supported in part by LLNL's LDRD program under Grants 15-ERD-012 and 16-ERD-010. The Dynamic Compression Sector (35) is supported by DOE / National Nuclear Security Administration under Award Number DE-NA0002442. This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Caltech lab supported by NSF EAR-1426526.
FIB-SEM cathodoluminescence tomography: practical and theoretical considerations.
De Winter, D A M; Lebbink, M N; Wiggers De Vries, D F; Post, J A; Drury, M R
2011-09-01
Focused ion beam-scanning electron microscope (FIB-SEM) tomography is a powerful application in obtaining three-dimensional (3D) information. The FIB creates a cross section and subsequently removes thin slices. The SEM takes images using secondary or backscattered electrons, or maps every slice using X-rays and/or electron backscatter diffraction patterns. The objective of this study is to assess the possibilities of combining FIB-SEM tomography with cathodoluminescence (CL) imaging. The intensity of CL emission is related to variations in defect or impurity concentrations. A potential problem with FIB-SEM CL tomography is that ion milling may change the defect state of the material and the CL emission. In addition the conventional tilted sample geometry used in FIB-SEM tomography is not compatible with conventional CL detectors. Here we examine the influence of the FIB on CL emission in natural diamond and the feasibility of FIB-SEM CL tomography. A systematic investigation establishes that the ion beam influences CL emission of diamond, with a dependency on both the ion beam and electron beam acceleration voltage. CL emission in natural diamond is enhanced particularly at low ion beam and electron beam voltages. This enhancement of the CL emission can be partly explained by an increase in surface defects induced by ion milling. CL emission enhancement could be used to improve the CL image quality. To conduct FIB-SEM CL tomography, a recently developed novel specimen geometry is adopted to enable sequential ion milling and CL imaging on an untilted sample. We show that CL imaging can be manually combined with FIB-SEM tomography with a modified protocol for 3D microstructure reconstruction. In principle, automated FIB-SEM CL tomography should be feasible, provided that dedicated CL detectors are developed that allow subsequent milling and CL imaging without manual intervention, as the current CL detector needs to be manually retracted before a slice can be milled. Due to the required high electron beam acceleration voltage for CL emission, the resolution for FIB-SEM CL tomography is currently limited to several hundreds of nm in XY and up to 650 nm in Z for diamonds. Opaque materials are likely to have an improved Z resolution, as CL emission generated deeper in the material is not able to escape from it. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Guignot, N.; Itié, J.; Zerbino, P.; Delmotte, A.; Moreno, T.
2013-12-01
The PSICHE beamline (for 'Pressure, Structure and Imaging by Contrast at High Energy') is a new facility opened for high pressure experiments at synchrotron SOLEIL (St-Aubin, France). With its source, optics, detectors and 3 experimental stations, it can handle a large variety of experimental setups. High energy photons are produced with an in-vacuum wiggler. The white beam obtained, with photons energy ranging continuously from 15 to 80 keV (from a 2.75 GeV machine), is used on the first experimental station for energy dispersive X-ray diffraction (EDX) measurements using different pressure cells. The main setup is a 1200 tons load capacity multi-anvil press featuring a (100) DIA compression module with a 15° horizontal aperture, allowing measurements up to 30° in 2theta by rotating the press. Other setups are a Paris-Edinburgh (PE) large volume press and diamond anvil cells (DACs). On the detection side we have a rotating Ge detector, based on the CAESAR design described by Wang et al. (2004) (combination of EDX and angular dispersive X-ray diffraction, ADX). One of the difficulties when building such setups is the rotation mechanism which cannot be physically attached to the rotation axis, potentially leading to large circle of confusions on the horizontal position of this axis. Thanks to translation corrections done at each angle step, the circle of confusion is minimized to 3x6 μm2 along the 35° travel, making possible measurements on very small objects. Combining EDX and ADX has a lot of advantages and we will present our first results obtained using this setup. The PSICHE focusing optics and monochromator are also used to focus monochromatic beams (up to 52 keV) on 2 different experimental stations. The first focal point at 31 m gives a beam size of 100x50 μm2 (HxV) and is useful for low pressure experiments and experiments done with the PE press associated with Soller slits. A PerkinElmer flatpanel detector can be precisely scanned in 3 directions, making ADX measurements at the highest possible resolution on this beamline. This station will also be used for diffraction tomography experiments. The second focal point at 37.6 m is located behind KB mirrors on the third experimental station. 10x10 μm2 beam sizes (full width) are expected. This station will be used for DAC experiments, with or without our future laser heating setup. Finally, parallel beams can be produced with sizes up to 15x5 mm2 (HxV) for tomography experiments, in pink (filtered white) beam or monochromatic beam. We plan to use rotating anvils presses such as the rotoPEc (J. Philippe et al., 2013) to take full advantage of this beam mode, but it can be opened to other techniques. The PSICHE beamline is opened for users since July 2013. Some stations are not available yet, and will be opened through 2014 and 2015. References X. Dong et al., Ray tracing application in hard x-ray optical development: Soleil first wiggler beamline (PSICHÉ) case" (2011), Proc. SPIE 8141, 814113 Y. Wang et al., A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation (2004), J. Appl. Cryst. 37, 947-956 J. Philippe, Y. Le Godec, F. Bergame et M. Morand, Patent INPI 11 62335 (2013)
NASA Astrophysics Data System (ADS)
Zhou, Renjie; So, Peter T. C.; Yaqoob, Zahid; Jin, Di; Hosseini, Poorya; Kuang, Cuifang; Singh, Vijay Raj; Kim, Yang-Hyo; Dasari, Ramachandra R.
2017-02-01
Most of the quantitative phase microscopy systems are unable to provide depth-resolved information for measuring complex biological structures. Optical diffraction tomography provides a non-trivial solution to it by 3D reconstructing the object with multiple measurements through different ways of realization. Previously, our lab developed a reflection-mode dynamic speckle-field phase microscopy (DSPM) technique, which can be used to perform depth resolved measurements in a single shot. Thus, this system is suitable for measuring dynamics in a layer of interest in the sample. DSPM can be also used for tomographic imaging, which promises to solve the long-existing "missing cone" problem in 3D imaging. However, the 3D imaging theory for this type of system has not been developed in the literature. Recently, we have developed an inverse scattering model to rigorously describe the imaging physics in DSPM. Our model is based on the diffraction tomography theory and the speckle statistics. Using our model, we first precisely calculated the defocus response and the depth resolution in our system. Then, we further calculated the 3D coherence transfer function to link the 3D object structural information with the axially scanned imaging data. From this transfer function, we found that in the reflection mode excellent sectioning effect exists in the low lateral spatial frequency region, thus allowing us to solve the "missing cone" problem. Currently, we are working on using this coherence transfer function to reconstruct layered structures and complex cells.
Sokiranski, R; Pirsig, W; Nerlich, A
2005-03-01
A still-born male fetus from the 19th century, fixed in formalin and presenting as diprosopia triophthalmica, was analysed by helical computer tomography and virtually reconstructed without damage. This rare, incomplete, symmetrical duplication of the face on a single head with three eyes, two noses and two mouths develops in the first 3 weeks of gestation and is a subset of the category of conjoined twins with unknown underlying etiology. Spiral computer tomography of fixed tissue demonstrated in the more than 100 year old specimen that virtual reconstruction can be performed in nearly the same way as in patients (contrast medium application not possible). The radiological reconstruction of the Munich fetus, here confined to head and neck data, is the basis for comparison with a number of imaging procedures of the last 3000 years. Starting with some Neolithic Mesoamerican ceramics, the "Pretty Ladies of Tlatilco", diprosopia triophthalmica was also depicted on engravings of the 16th and 17th century A.D. by artists as well as by the anatomist Soemmering and his engraver Berndt in the 18th century. Our modern spiral computer tomography confirms the ability of our ancestors to depict diprosopia triophthalmica in paintings and sculptures with a high level of natural precision.
NASA Astrophysics Data System (ADS)
Cushley, Alex Clay
The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).
SUPER-RESOLUTION ULTRASOUND TOMOGRAPHY: A PRELIMINARY STUDY WITH A RING ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
HUANG, LIANJIE; SIMONETTI, FRANCESCO; DURIC, NEBOJSA
2007-01-18
Ultrasound tomography attempts to retrieve the structure of an objective by exploiting the interaction of acoustic waves with the object. A fundamental limit of ultrasound tomography is that features cannot be resolved if they are spaced less than {lambda}/2 apart, where {lambda} is wavelength of the probing wave, regardless of the degree of accuracy of the measurements. Therefore, since the attenuation of the probing wave with propagation distance increases as {lambda} decreases, resolution has to be traded against imaging depth. Recently, it has been shown that the {lambda}/2 limit is a consequence of the Born approximation (implicit in the imagingmore » algorithms currently employed) which neglects the distortion of the probing wavefield as it travels through the medium to be imaged. On the other hand, such a distortion, which is due to the multiple scattering phenomenon, can encode unlimited resolution in the radiating component of the scattered field. Previously, a resolution better than {lambda}/3 has been reported in these proceedings [F. Simonetti, pp. 126 (2006)] in the case of elastic wave probing. In this paper, they demonstrate experimentally a resolution better than {lambda}/4 for objects immersed in a water bth probed by means of a ring array which excites and detects pressure waves in a full view configuration.« less
Spatial Modulation Improves Performance in CTIS
NASA Technical Reports Server (NTRS)
Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.
2009-01-01
Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of such scenes tend to approximate correct values to within acceptably small errors near the edges of the field of view but to be poor approximations away from the edges. The additional structure imposed on a scene according to the present method enables the CTIS algorithms to reconstruct acceptable approximations of the spectral data throughout the scene.
An ultra-wideband microwave tomography system: preliminary results.
Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe
2009-01-01
We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.
End-to-end performance analysis using engineering confidence models and a ground processor prototype
NASA Astrophysics Data System (ADS)
Kruse, Klaus-Werner; Sauer, Maximilian; Jäger, Thomas; Herzog, Alexandra; Schmitt, Michael; Huchler, Markus; Wallace, Kotska; Eisinger, Michael; Heliere, Arnaud; Lefebvre, Alain; Maher, Mat; Chang, Mark; Phillips, Tracy; Knight, Steve; de Goeij, Bryan T. G.; van der Knaap, Frits; Van't Hof, Adriaan
2015-10-01
The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop the EarthCARE satellite mission with the fundamental objective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. The EarthCARE Multispectral Imager (MSI) is relatively compact for a space borne imager. As a consequence, the immediate point-spread function (PSF) of the instrument will be mainly determined by the diffraction caused by the relatively small optical aperture. In order to still achieve a high contrast image, de-convolution processing is applied to remove the impact of diffraction on the PSF. A Lucy-Richardson algorithm has been chosen for this purpose. This paper will describe the system setup and the necessary data pre-processing and post-processing steps applied in order to compare the end-to-end image quality with the L1b performance required by the science community.
Scaled-model guidelines for formation-flying solar coronagraph missions.
Landini, Federico; Romoli, Marco; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio; Galano, Damien; Kirschner, Volker
2016-02-15
Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a scaled model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.
Kerr effect from diffractive skew scattering in chiral px +/- ipy superconductors
NASA Astrophysics Data System (ADS)
König, Elio; Levchenko, Alex
We calculate the temperature dependent anomalous ac Hall conductance σH (Ω , T) for a two-dimensional chiral p-wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4. We concentrate on a single band model with arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors. This work was financially supported in part by NSF Grants No. DMR-1606517 and ECCS-1560732 and at U of Wisconsin by the Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1985-01-01
An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.
1992-03-01
Synchrotron Radiation Facility, France. A novel method for depositing large size multilayers is de - GRAND ROOM scribed. A plasma produced by distributed...explained by the uphill diffusion of metal Univ. Paris, France. The Born approximation is applied to de - atoms. (p. 27) scribe the diffractive properties of...D. G. TuAl Roughness evolution in films and multilayer struc- Steams, Lawrence Livermore National Laboratory. The de - tuns, M. G. Lagally, Univ
2012-08-01
unlimited that Ni and Al occupy different sites of the γ’ lattice and also in agreement with Equations ( 4 ) - ( 6 ). At E1 = 5989 eV, the structure factor...3. DATES COVERED (From - To) August 2012 Technical Paper 1 July 2012 – 1 August 2012 4 . TITLE AND SUBTITLE DETERMINATION OF γ’SITE OCCUPANCIES...PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) J. Tiley, O. Senkov, and G. Viswanathan (AFRL/RXCM) S. Nag and R. Banerjee (University of North Texas
Diffraction mode terahertz tomography
Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng
2006-10-31
A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.
X-Ray Diffraction Contrast Tomography in micro-CT Lab Source Systems
2014-05-16
microstrucutre as determined from DCT. (e) Surface mesh representing the fracture surface, colour coded with respect to its crystallographic orientation. Grain...sake of readability, we refrain from delving too deep into the mathematics of the projection models. Instead, we refer to Appendix A where more in...S−D 2 ). From the definition of the dot product, we learn that cos θ = B ·G ‖B‖‖G‖ = B ·G f . 1.9 Given sin2 θ + cos2 θ = 1, sin θ can be also
Soft x-ray holographic tomography for biological specimens
NASA Astrophysics Data System (ADS)
Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan
2003-10-01
In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial frequencies to improve the depth resolution. In NSRL, we performed soft X-ray holographic tomography experiments. The specimen was the spider filaments and PM M A as recording medium. By 3D CT reconstruction of the projection data, three dimensional density distribution of the specimen was obtained. Also, we developed a new X-ray holographic tomography m ethod called pre-amplified holographic tomography. The method permits a digital real-time 3D reconstruction with high-resolution and a simple and compact experimental setup as well.
Carotid body size measured by computed tomographic angiography in individuals born prematurely.
Bates, Melissa L; Welch, Brian T; Randall, Jess T; Petersen-Jones, Humphrey G; Limberg, Jacqueline K
2018-05-24
We tested the hypothesis that the carotid bodies would be smaller in individuals born prematurely or exposed to perinatal oxygen therapy when compared individuals born full term that did not receive oxygen therapy. A retrospective chart review was conducted on patients who underwent head/neck computed tomography angiography (CTA) at the Mayo Clinic between 10 and 40 years of age (n = 2503). Patients were identified as premature ( < 38 weeks) or receiving perinatal oxygen therapy by physician completion or billing codes (n = 16 premature and n = 7 receiving oxygen). Widest axial measurements of the carotid body images captured during the CTA were performed. Carotid body visualization was possible in 43% of patients and 52% of age, sex, and body mass index (BMI)-matched controls but only 17% of juvenile preterm subjects (p = 0.07). Of the carotid bodies that could be visualized, widest axial measurements of the carotid bodies in individuals born prematurely (n = 7, 34 ± 4 weeks gestation, birth weight: 2460 ± 454 g; average size: 2.5 ± 0.2 cm) or individuals exposed to perinatal oxygen therapy (n = 3, 38 ± 2 weeks gestation, Average size: 2.2 ± 0.1 cm) were not different when compared to controls (2.3 ± 0.2 cm and 2.3 ± 0.2 cm, respectively, p > 0.05). Carotid body size, as measured using CTA, is not smaller in adults born prematurely or exposed to perinatal oxygen therapy when compared to sex, age, and BMI-matched controls. However, carotid body visualization was lower in juvenile premature patients. The decreased ability to visualize the carotid bodies in these individuals may be a result of their prematurity. Copyright © 2018. Published by Elsevier B.V.
Large volume serial section tomography by Xe Plasma FIB dual beam microscopy.
Burnett, T L; Kelley, R; Winiarski, B; Contreras, L; Daly, M; Gholinia, A; Burke, M G; Withers, P J
2016-02-01
Ga(+) Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga(+) FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe(+) Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC-Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga(+) FIB milling WC-Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60nA at 30kV. Xe(+) PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Computational adaptive optics for broadband interferometric tomography of tissues and cells
NASA Astrophysics Data System (ADS)
Adie, Steven G.; Mulligan, Jeffrey A.
2016-03-01
Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.
X-ray diffraction microscopy on frozen hydrated specimens
NASA Astrophysics Data System (ADS)
Nelson, Johanna
X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.
NASA Technical Reports Server (NTRS)
Bradford, C. M.; Bock, J. J.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H.; Zmuidzinas, J.
2004-01-01
The discovery of galaxies beyond z approximately equal to 1 which emit the bulk of their luminosity at long wavelengths has demonstrated the need for high sensitivity, broadband spectroscopy in the far-IR/submm/mm bands. Because many of these sources are not detectable in the optical, long wavelength spectroscopy is key to measuring their redshifts and ISM conditions. The continuum source list will increase in the next decade with new ground-based instruments (SCUBA2, Bolocam, MAMBO) and the surveys of HSO and SIRTF. Yet the planned spectroscopic capabilities lag behind, primarily due to the difficulty in scaling existing IR spectrograph designs to longer wavelengths. To overcome these limitations, we are developing WaFIRS, a novel concept for long-wavelength spectroscopy which utilizes a parallel-plate waveguide and a curved diffraction grating. WaFIRS provides the large (approximately 60%) instantaneous bandwidth and high throughput of a conventional grating system, but offers a dramatic reduction in volume and mass. WaFIRS requires no space overheads for extra optical elements beyond the diffraction grating itself, and is two-dimensional because the propagation is confined between two parallel plates. Thus several modules could be stacked to multiplex either spatially or in different frequency bands. The size and mass savings provide opportunities for spectroscopy from space-borne observatories which would be impractical with conventional spectrographs. With background-limited detectors and a cooled 3.5 telescope, the line sensitivity would be better than that of ALMA, with instantaneous broad-band coverage. We have built and tested a WaFIRS prototype for 1-1.6 mm, and are currently constructing Z-Spec, a 100 mK model to be used as a ground-based lambda/DELTAlambda approximately equal to 350 submillimeter galaxy redshift machine.
RF Tomography for Tunnel Detection: Principles and Inversion Schemes
NASA Astrophysics Data System (ADS)
Lo Monte, L.; Erricolo, D.; Inan, U. S.; Wicks, M. C.
2008-12-01
We propose a novel way to detect underground tunnels based on classical seismic tomography, Ground Penetrating Radar (GPR), inverse scattering principles, and the deployment of distributed sensors, which we call "Distributed RF Tomography". Tunnel detection has been a critical problem that cannot be considered fully solved. Presently, tunnel detection is performed by methods that include seismic sensors, electrical impedance, microgravity, boreholes, and GPR. All of these methods have drawbacks that make them not applicable for use in unfriendly environments, such as battlefields. Specifically, they do not cover wide surface areas, they are generally shallow, they are limited to vertical prospecting, and require the user to be in situ, which may jeopardize one's safety. Additional application of the proposed distributed RF tomography include monitoring sensitive areas, (e.g. banks, power plants, military bases, prisons, national borders) and civil applications (e.g. environmental engineering, mine safety, search and rescue, speleology, archaeology and geophysics). The novelty of a Distributed RF tomography system consists of the following. 1) Sensors are scattered randomly above the ground, thus saving time and money compared to the use of boreholes. 2) The use of lower operating frequency (around HF), which allows for deeper penetration. 3) The use of CW diffraction tomography, which increases the resolution to sub-wavelength values, independently from the sensor displacement, and increases the SNR. 4) Use of linear inversion schemes that are suited for tunnel detection. 5) The use of modulation schemes and signal processing algorithms to mitigate interferences and noise. This presentation will cover: 1. Current physical limits of existing techniques for tunnel detection. 2. Concept of Distributed RF Tomography. 3. Inversion theories and strategies a. Proper forward model for voids buried into an homogeneous medium b. Extended matched filtering inversion c. Near field formulation : Dyadic representation d. Fourier approach: principles and techniques aimed at improving the reconstructed image. e. Theoretical Limits f. Super-Resolution : Singular Values Decomposition and MUSIC 4. Propagation Model and theoretical limitations. 5. Transmitting and Receiving design, with signal processing and modulation. 6. Numerical Simulations using FDTD tools.
NASA Astrophysics Data System (ADS)
Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.
2015-07-01
An experimental steel with the composition Fe-1.39Cu-2.70Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C (at. pct) has been developed at Northwestern University, which has both high toughness and high strength after quenching and aging treatments. Simulated heat-affected zone (HAZ) samples are utilized to analyze the microstructures typically obtained after gas metal arc welding (GMAW). Dissolution within the HAZ of cementite (Fe3C) and NbC (F.C.C.) is revealed using synchrotron X-ray diffraction, while dissolution of Cu precipitates is measured employing local electrode atom probe tomography. The results are compared to Thermo-Calc equilibrium calculations. Comparison of measured Cu precipitate radii, number density, and volume fraction with similar measurements from a GMAW sample suggests that the cooling rate in the simulations is faster than in the experimental GMAW sample, resulting in significantly less Cu precipitate nucleation and growth during the cooling part of the weld thermal cycle. The few Cu precipitates detected in the simulated samples are primarily located on grain boundaries resulting from heterogeneous nucleation. The dissolution of NbC precipitates and the resultant austenite coarsening in the highest-temperature sample, coupled with a rapid cooling rate, results in the growth of bainite, and an increase in the strength of the matrix in the absence of significant Cu precipitation.
Design of high energy laser pulse delivery in a multimode fiber for photoacoustic tomography.
Ai, Min; Shu, Weihang; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo
2017-07-24
In photoacoustic tomography (PAT), delivering high energy pulses through optical fiber is critical for achieving high quality imaging. A fiber coupling scheme with a beam homogenizer is demonstrated for coupling high energy pulses in a single multimode fiber. This scheme can benefit PAT applications that require miniaturized illumination or internal illumination with a small fiber. The beam homogenizer is achieved by using a cross cylindrical lens array, which provides a periodic spatial modulation on the phase of the input light. Thus the lens array acts as a phase grating which diffracts the beam into a 2D diffraction pattern. Both theoretical analysis and experiments demonstrate that the focused beam can be split into a 2D spot array that can reduce the peak power on the fiber tip surface and thus enhance the coupling performance. The theoretical analysis of the intensity distribution of the focused beam is carried out by Fourier optics. In experiments, coupled energy at 48 mJ/pulse and 60 mJ/pulse have been achieved and the corresponding coupling efficiency is 70% and 90% in a 1000-μm and a 1500-μm-core-diameter fiber, respectively. The high energy pulses delivered by the multimode fiber are further tested for PAT imaging in phantoms. PAT imaging of a printed dot array shows a large illumination area of 7 cm 2 under 5 mm thick chicken breast tissue. In vivo imaging is also demonstrated on the human forearm. The large improvement in coupling energy can potentially benefit PAT with single fiber delivery to achieve large area imaging and deep penetration detection.
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao
2017-08-01
Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.
NASA Astrophysics Data System (ADS)
Kostencka, Julianna; Kozacki, Tomasz; Hennelly, Bryan; Sheridan, John T.
2017-06-01
Holographic tomography (HT) allows noninvasive, quantitative, 3D imaging of transparent microobjects, such as living biological cells and fiber optics elements. The technique is based on acquisition of multiple scattered fields for various sample perspectives using digital holographic microscopy. Then, the captured data is processed with one of the tomographic reconstruction algorithms, which enables 3D reconstruction of refractive index distribution. In our recent works we addressed the issue of spatially variant accuracy of the HT reconstructions, which results from the insufficient model of diffraction that is applied in the widely-used tomographic reconstruction algorithms basing on the Rytov approximation. In the present study, we continue investigating the spatially variant properties of the HT imaging, however, we are now focusing on the limited spatial size of holograms as a source of this problem. Using the Wigner distribution representation and the Ewald sphere approach, we show that the limited size of the holograms results in a decreased quality of tomographic imaging in off-center regions of the HT reconstructions. This is because the finite detector extent becomes a limiting aperture that prohibits acquisition of full information about diffracted fields coming from the out-of-focus structures of a sample. The incompleteness of the data results in an effective truncation of the tomographic transfer function for the out-of-center regions of the tomographic image. In this paper, the described effect is quantitatively characterized for three types of the tomographic systems: the configuration with 1) object rotation, 2) scanning of the illumination direction, 3) the hybrid HT solution combing both previous approaches.
Characterization of Structure and Damage in Materials in Four Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, I. M.; Schuh, C. A.; Vetrano, J. S.
2010-09-30
The materials characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when materials scientists can quantify material structure across orders of magnitude in length and time scales (i.e., in four dimensions) completely. This paper presents a viewpoint on the materials characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom-probe tomography; X-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Particular attention is paid to studies that havemore » pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization, and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving materials damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.« less
Bananas, Doughnuts and Seismic Traveltimes
NASA Astrophysics Data System (ADS)
Dahlen, F. A.
2002-12-01
Most of what we know about the 3-D seismic heterogeneity of the mantle is based upon ray-theoretical traveltime tomography. In this infinite-frequency approximation, a measured traveltime anomaly depends only upon the wavespeed along an infinitesimally thin geometrical ray between a seismic source and a seismographic station. In this lecture I shall describe a new formulation of the seismic traveltime inverse problem which accounts for the ability of a finite-frequency wave to ``feel'' 3-D structure off of the source-receiver ray. Finite-frequency diffraction effects associated with this off-ray sensitivity act to ``heal'' the corrugations that develop in a wavefront propagating through a heterogeneous medium. Ray-theoretical tomography is based upon the premise that a seismic wave ``remembers'' all of the traveltime advances or delays that it accrues along its path, whereas actual finite-frequency waves ``forget''. I shall describe a number of recent analytical and numerical investigations, which have led to an improved theoretical understanding of this phenomenon.
Numerical correction of distorted images in full-field optical coherence tomography
NASA Astrophysics Data System (ADS)
Min, Gihyeon; Kim, Ju Wan; Choi, Woo June; Lee, Byeong Ha
2012-03-01
We propose a numerical method which can numerically correct the distorted en face images obtained with a full field optical coherence tomography (FF-OCT) system. It is shown that the FF-OCT image of the deep region of a biological sample is easily blurred or degraded because the sample has a refractive index (RI) much higher than its surrounding medium in general. It is analyzed that the focal plane of the imaging system is segregated from the imaging plane of the coherence-gated system due to the RI mismatch. This image-blurring phenomenon is experimentally confirmed by imaging the chrome pattern of a resolution test target through its glass substrate in water. Moreover, we demonstrate that the blurred image can be appreciably corrected by using the numerical correction process based on the Fresnel-Kirchhoff diffraction theory. The proposed correction method is applied to enhance the image of a human hair, which permits the distinct identification of the melanin granules inside the cortex layer of the hair shaft.
X-ray micro-beam techniques and phase contrast tomography applied to biomaterials
NASA Astrophysics Data System (ADS)
Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia
2015-12-01
A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-01-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa
2016-06-01
We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.
NASA Astrophysics Data System (ADS)
Da Pieve, F.
2016-01-01
A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.
Progress on ultrasonic flaw sizing in turbine-engine rotor components: bore and web geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, J.H.; Gray, T.A.; Thompson, R.B.
1983-01-01
The application of generic flaw-sizing techniques to specific components generally involves difficulties associated with geometrical complexity and simplifications arising from a knowledge of the expected flaw distribution. This paper is concerned with the case of ultrasonic flaw sizing in turbine-engine rotor components. The sizing of flat penny-shaped cracks in the web geometry discussed and new crack-sizing algorithms based on the Born and Kirchhoff approximations are introduced. Additionally, we propose a simple method for finding the size of a flat, penny-shaped crack given only the magnitude of the scattering amplitude. The bore geometry is discussed with primary emphasis on the cylindricalmore » focusing of the incident beam. Important questions which are addressed include the effects of diffraction and the position of the flaw with respect to the focal line. The appropriate deconvolution procedures to account for these effects are introduced. Generic features of the theory are compared with experiment. Finally, the effects of focused transducers on the Born inversion algorithm are discussed.« less
Guo, Lei; Abbosh, Amin
2018-05-01
For any chance for stroke patients to survive, the stroke type should be classified to enable giving medication within a few hours of the onset of symptoms. In this paper, a microwave-based stroke localization and classification framework is proposed. It is based on microwave tomography, k-means clustering, and a support vector machine (SVM) method. The dielectric profile of the brain is first calculated using the Born iterative method, whereas the amplitude of the dielectric profile is then taken as the input to k-means clustering. The cluster is selected as the feature vector for constructing and testing the SVM. A database of MRI-derived realistic head phantoms at different signal-to-noise ratios is used in the classification procedure. The performance of the proposed framework is evaluated using the receiver operating characteristic (ROC) curve. The results based on a two-dimensional framework show that 88% classification accuracy, with a sensitivity of 91% and a specificity of 87%, can be achieved. Bioelectromagnetics. 39:312-324, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Patel, Jay Prakash; Senyshyn, Anatoliy; Fuess, Hartmut; Pandey, Dhananjai
2013-09-01
Magnetization, dielectric, and calorimetric studies on Bi0.8 Pb0.2 Fe0.9 Nb0.1O3 (BF-0.2PFN) reveal very weak ferromagnetism but strong dielectric anomaly at the antiferromagnetic transition temperature (TN) characteristic of magnetoelectric coupling. We correlate these results with nuclear and magnetic structure studies using x-ray and neutron powder diffraction techniques, respectively. Rietveld refinements using x-ray powder diffraction data in the temperature range 300 to 673 K reveal pronounced anomalies in the unit cell parameters at TN, indicating strong magnetoelastic coupling. The nuclear and magnetic structures of BF-0.2PFN were determined from neutron powder diffraction data using a representation theory approach. They show the occurrence of a first-order isostructural phase transition (IPT) accompanying the magnetic ordering below TN˜566 K, leading to significant discontinuous change in the ionic polarization (ΔPz˜1.6(3) μC/cm2) and octahedral tilt angle (˜0.3°) at TN. The ionic polarization obtained from refined positional coordinates of the nuclear structure and Born effective charges is shown to scale linearly with sublattice magnetization, confirming the presence of linear magnetoelectric coupling in BF-0.2PFN at the atomic level, despite the very low value of remanent magnetization (Mr).
Radial Reflection diffraction tomorgraphy
Lehman, Sean K
2013-11-19
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Imaging Cellular Architecture with X-rays
Larabell, Carolyn A.; Nugent, Keith A.
2012-01-01
X-ray imaging of biological samples is progressing rapidly. In this paper we review the progress to date in high resolution imaging of cellular architecture. In particular we survey the progress in soft X-ray tomography and argue that the field is coming of age and that important biological insights are starting to emerge. We then review the new ideas based on coherent diffraction. These methods are at a much earlier stage of development but, as they eliminate the need for X-ray optics, have the capacity to provide substantially better spatial resolution than zone plate based methods. PMID:20869868
NASA Astrophysics Data System (ADS)
Krauze, W.; Makowski, P.; Kujawińska, M.
2015-06-01
Standard tomographic algorithms applied to optical limited-angle tomography result in the reconstructions that have highly anisotropic resolution and thus special algorithms are developed. State of the art approaches utilize the Total Variation (TV) minimization technique. These methods give very good results but are applicable to piecewise constant structures only. In this paper, we propose a novel algorithm for 3D limited-angle tomography - Total Variation Iterative Constraint method (TVIC) which enhances the applicability of the TV regularization to non-piecewise constant samples, like biological cells. This approach consists of two parts. First, the TV minimization is used as a strong regularizer to create a sharp-edged image converted to a 3D binary mask which is then iteratively applied in the tomographic reconstruction as a constraint in the object domain. In the present work we test the method on a synthetic object designed to mimic basic structures of a living cell. For simplicity, the test reconstructions were performed within the straight-line propagation model (SIRT3D solver from the ASTRA Tomography Toolbox), but the strategy is general enough to supplement any algorithm for tomographic reconstruction that supports arbitrary geometries of plane-wave projection acquisition. This includes optical diffraction tomography solvers. The obtained reconstructions present resolution uniformity and general shape accuracy expected from the TV regularization based solvers, but keeping the smooth internal structures of the object at the same time. Comparison between three different patterns of object illumination arrangement show very small impact of the projection acquisition geometry on the image quality.
Scattering of S waves diffracted at the core-mantle boundary: forward modelling
NASA Astrophysics Data System (ADS)
Emery, Valérie; Maupin, Valérie; Nataf, Henri-Claude
1999-11-01
The lowermost 200-300 km of the Earth's mantle, known as the D'' layer, is an extremely complex and heterogeneous region where transfer processes between the core and the mantle take place. Diffracted S waves propagate over large distances and are very sensitive to the velocity structure of this region. Strong variations of ampli-tudes and waveforms are observed on recordings from networks of broad-band seismic stations. We perform forward modelling of diffracted S waves in laterally heterogeneous structures in order to analyse whether or not these observations can be related to lateral inhomogeneities in D''. We combine the diffraction due to the core and the scattering due to small-scale volumetric heterogeneities (10-100 km) by coupling single scattering (Born approximation) with the Langer approximation, which describes Sdiff wave propagation. The influence on the direct as well as on the scattered wavefields of the CMB as well as of possible tunnelling in the core or in D'' is fully accounted for. The SH and the SV components of the diffracted waves are analysed, as well as their coupling. The modelling is applied in heterogeneous models with different geometries: isolated heterogeneities, vertical cylinders, horizontal inhomogeneities and random media. Amplitudes of scattered waves are weak and only velocity perturbations of the order of 10 per cent over a volume of 240 x 240 x 300 km3 produce visible effects on seismograms. The two polarizations of Sdiff have different radial sensitivities, the SH components being more sensitive to heterogeneities closer to the CMB. However, we do not observe significant time-shifts between the two components similar to those produced by anisotropy. The long-period Sdiff have a poor lateral resolution and average the velocity perturbations in their Fresnel zone. Random small-scale heterogeneities with +/- 10 per cent velocity contrast in the layer therefore have little effect on Sdiff, in contrast to their effect on PKIKP.
Nasal airway changes in bone-borne and tooth-borne rapid maxillary expansion treatments.
Kabalan, Ousama; Gordon, Jillian; Heo, Giseon; Lagravère, Manuel O
2015-03-01
Our aim was to determine the presence of a correlation between the nasal airway skeletal transverse dimension and air intake changes in rapid maxillary expansion treatments. Sixty-one patients with maxillary transverse deficiency (11-17 years old) were randomly allocated into three groups (two treatment groups - tooth- [hyrax] or bone-borne [miniscrew-implant-based] expander - and one control group). Cone-beam computed tomography scans (CBCT) were obtained from each patient as well as acoustic rhinometry (AR) readings. Specifically, in AR, airway volume up to minimum cross-sectional areas (Vol. 1&2) and minimum cross-sectional areas (Min. 1&2) in the nasal cavity were measured. Records were obtained at two time points (initial T1 and at removal of appliance at 6 months T2). CBCTs were analyzed using AVIZO software and landmarks were placed on the nasal base. Descriptive statistics were compiled and student's t-test was used. Of the 480 pairings measured, only 9 showed statistically significant positive correlations between T1 and T2. Correlation data were highly variable in all categories, showing no clear tendencies. No statistical difference was found when comparing all groups in terms of airway changes. With very few positive correlations observed and otherwise highly variable data, no really conclusive finding was obtained to suggest any realistic correlation between changes in the skeletal dimensions and changes in the nasal airway. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
X-ray diffraction analysis of residual stress in zirconia dental composites
NASA Astrophysics Data System (ADS)
Allahkarami, Masoud
Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.
Effects of the measurement configuration in GPR prospecting
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Soldovieri, Francesco
2017-04-01
The measurement configuration is an issue of great interest in problems of inverse scattering in general, and in particular in problems regarding GPR data. In particular, the measurement configuration has an influence on the amount of retrievable information [1-2] and can be a way to achieve an intrinsic two dimensional filtering of the data [3], possibly accounting for the characteristics of the exploited antennas too [4]. However, no filter is able to erase exactly the undesired contribution to the comprehensive signal while leaving unperturbed the useful part of the gathered datum. In other word, any filtering of the data (included those implicitly imposed through the measurement configuration) has some price in terms of loss or distortion of the received information, and therefore it has to be applied only when needed and only at the right degree of intensity. In particular, differential measurement configurations have been introduced in the last few years, especially with interest in the field of detection of UXO [5-6]. The filtering effects in some differential configuration are not immediately understood, but need some deep reasoning. In particular, the theory of the diffraction tomography, allows to quantify the retrievable spatial frequencies under the measurement configuration at hand, and so allows to quantify the filtering effect of the differential configurations. Examples will be shown at the conference, regarding both a horizontal and a vertical differential configuration. References [1] R. Persico, R. Bernini, F. Soldovieri, "The role of the measurement configuration in inverse scattering from buried objects under the Born approximation", IEEE Trans. On Antennas and Prop., vol. 53, n. 6, pp. 1875-1886, June 2005. [2] R. Persico, "On the role of measurement Configuration in Contactless GPR data Processing by Means of Linear Inverse Scattering, IEEE Trans. On Antennas and Prop AP, Vol. 54 n. 7 p. 2062-2071, July 2006. [3] R. Persico, F. Soldovieri, Effects of the Background Removal in Linear Inverse Scattering, IEEE Trans. on Geos. and Rem. Sens., vol. 46, n. 4, pp. 1104-1114, April 2008. [4] F. Soldovieri, R. Persico and G. Leone, "Effect of source and receiver radiation characteristics in subsurface prospecting within the DBA", Radio Science, vol. 40, RS3006, May 2005. [5] R. Persico, F. Soldovieri, A Microwave Tomography approach for a Differential Configuration in GPR Prospecting, IEEE Trans. On Antennas and Prop AP, vol. 54, n. 11, pp. 3541-3548, November 2006. [6] R. Persico, G. Pochanin, V. Ruban, I. Catapano, F. Soldovieri, Performances of a Microwave Tomographic Algorithm for GPR Systems Working in Differential Configuration, IEEE Jstars, vol. 9, n. 4, pp. 1343-1356, April 2016.
Electromagnetic modelling of a space-borne far-infrared interferometer
NASA Astrophysics Data System (ADS)
Donohoe, Anthony; O'Sullivan, Créidhe; Murphy, J. Anthony; Bracken, Colm; Savini, Giorgio; Pascale, Enzo; Ade, Peter; Sudiwala, Rashmi; Hornsby, Amber
2016-02-01
In this paper I will describe work done as part of an EU-funded project `Far-infrared space interferometer critical assessment' (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.
Combined effect of Pt and W alloying elements on Ni-silicide formation
NASA Astrophysics Data System (ADS)
Luo, T.; Mangelinck, D.; Descoins, M.; Bertoglio, M.; Mouaici, N.; Hallén, A.; Girardeaux, C.
2018-03-01
A combinatorial study of the combined effect of Pt and W on Ni silicide formation is performed. Ni(Pt, W) films with thickness and composition gradients were prepared by a co-deposition composition spread technique using sputtering deposition from Pt, W, and Ni targets. The deposited Ni(Pt,W) films were characterized by X-ray diffraction, X-ray reflectivity, Rutherford backscattering, and atom probe tomography. The maximum content of alloying elements is close to 27 at. %. Simulations of the thickness and composition were carried out and compared with experimental results. In situ X-ray diffraction and atom probe tomography were used to study the phase formation. Both additive alloying elements (Pt + W) slow down the Ni consumption and the effect of W is more pronounced than the one of Pt. Regarding the effect of alloying elements on Ni silicides formation, three regions could be distinguished in the Ni(Pt,W)/Si wafer. For the region close to the Ni target, the low contents of alloying elements (Pt + W) have little impact on the phase sequence (δ-Ni2Si is the first silicide and NiSi forms when Ni is entirely consumed) but the kinetics of silicide formation slows down. The region close to the Pt target has high contents of (Pt + W) and is rich in Pt and a simultaneous phase formation of δ-Ni2Si and NiSi is observed. For the high (Pt + W) contents and W-rich region, NiSi forms unexpectedly before δ-Ni2Si and the subsequent growth of δ-Ni2Si is accompanied by the NiSi consumption. When Ni is entirely consumed, NiSi regrows at the expense of δ-Ni2Si.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, A N; Turchin, I V
2013-12-31
The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resultingmore » field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)« less
New Developments and Geoscience Applications of Synchrotron Computed Microtomography (Invited)
NASA Astrophysics Data System (ADS)
Rivers, M. L.; Wang, Y.; Newville, M.; Sutton, S. R.; Yu, T.; Lanzirotti, A.
2013-12-01
Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution below one micron. - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element. - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa. - High speed radiography and tomography, with 100 microsecond temporal resolution. - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x-ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Studies of the evolution of the early solar system from 3-D textures in meteorites - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.
NASA Astrophysics Data System (ADS)
Cushley, A. C.
2013-12-01
The proposed launch of a satellite carrying the first space-borne ADS-B receiver by the Royal Military College of Canada (RMCC) will create a unique opportunity to study the modification of the 1090 MHz radio waves following propagation through the ionosphere from the transmitting aircraft to the passive satellite receiver(s). Experimental work successfully demonstrated that ADS-B data can be used to reconstruct two dimensional (2D) electron density maps of the ionosphere using computerized tomography (CT). The goal of this work is to evaluate the feasibility of CT reconstruction. The data is modelled using Ray-tracing techniques. This allows us to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation (FR) is determined and converted to total electron content (TEC) along the ray-paths. The resulting TEC is used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique (ART). This study concentrated on meso-scale structures 100-1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Multiple feature input electron density profile to ray-tracing program. Top: reconstructed relative electron density map of ray-trace input (Fig. 1) using TEC measurements and line-of-sight path. Bottom: reconstructed electron density map of ray-trace input using quiet background a priori estimate.
Frank, Viktoria; Chushkin, Yuriy; Fröhlich, Benjamin; Abuillan, Wasim; Rieger, Harden; Becker, Alexandra S; Yamamoto, Akihisa; Rossetti, Fernanda F; Kaufmann, Stefan; Lanzer, Michael; Zontone, Federico; Tanaka, Motomu
2017-10-26
Lensless, coherent X-ray diffraction microscopy has been drawing considerable attentions for tomographic imaging of whole human cells. In this study, we performed cryogenic coherent X-ray diffraction imaging of human erythrocytes with and without malaria infection. To shed light on structural features near the surface, "ghost cells" were prepared by the removal of cytoplasm. From two-dimensional images, we found that the surface of erythrocytes after 32 h of infection became much rougher compared to that of healthy, uninfected erythrocytes. The Gaussian roughness of an infected erythrocyte surface (69 nm) is about two times larger than that of an uninfected one (31 nm), reflecting the formation of protein knobs on infected erythrocyte surfaces. Three-dimensional tomography further enables to obtain images of the whole cells with no remarkable radiation damage, whose accuracy was estimated using phase retrieval transfer functions to be as good as 64 nm for uninfected and 80 nm for infected erythrocytes, respectively. Future improvements in phase retrieval algorithm, increase in degree of coherence, and higher flux in combination with complementary X-ray fluorescence are necessary to gain both structural and chemical details of mesoscopic architectures, such as cytoskeletons, membraneous structures, and protein complexes, in frozen hydrated human cells, especially under diseased states.
Beam-smiling in bent-Laue monochromators
NASA Astrophysics Data System (ADS)
Ren, B.; Dilmanian, F. A.; Chapman, L. D.; Wu, X. Y.; Zhong, Z.; Ivanov, I.; Thomlinson, W. C.; Huang, X.
1997-07-01
When a wide fan-shaped x-ray beam is diffracted by a bent crystal in the Laue geometry, the profile of the diffracted beam generally does not appear as a straight line, but as a line with its ends curved up or curved down. This effect, referred to as "beam-smiling", has been a major obstacle in developing bent-Laue crystal monochromators for medical applications of synchrotron x-ray. We modeled a cylindrically bent crystal using the Finite Element Analysis (FEA) method, and we carried out experiments at the National Synchrotron Light Source and Cornell High Energy Synchrotron Source. Our studies show that, while beam-smiling exists in most of the crystal's area because of anticlastic bending effects, there is a region parallel to the bending axis of the crystal where the diffracted beam is "smile-free". By applying asymmetrical bending, this smile-free region can be shifted vertically away from the geometric center of the crystal, as desired. This leads to a novel method of compensating for beam-smiling. We will discuss the method of "differential bending" for smile removal, beam-smiling in the Cauchios and the polychromatic geometry, and the implications of the method on developing single- and double-bent Laue monochromators. The experimental results will be discussed, concentrating on specific beam-smiling observation and removal as applied to the new monochromator of the Multiple Energy Computed Tomography [MECT] project of the Medical Department, Brookhaven National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Yifei; Kim, Honggyu; Zuo, Jian-Min
2014-07-07
We propose a digital model for high quality superlattices by including fluctuations in the superlattice periods. The composition and strain profiles are assumed to be coherent and persist throughout the superlattice. Using this model, we have significantly improved the fit with experimental X-ray diffraction data recorded from the nominal InAs/GaSb superlattice. The lattice spacing of individual layers inside the superlattice and the extent of interfacial intermixing are refined by including both (002) and (004) and their satellite peaks in the fitting. For the InAs/GaSb strained layer superlattice, results show: (i) the GaSb-on-InAs interface is chemically sharper than the InAs-on-GaSb interface,more » (ii) the GaSb layers experience compressive strain with In incorporation, (iii) there are interfacial strain associated with InSb-like bonds in GaSb and GaAs-like bonds in InAs, (iv) Sb substitutes a significant amount of In inside InAs layer near the InAs-on-GaSb interface. For support, we show that the composition profiles determined by X-ray diffraction are in good agreement with those obtained from atom probe tomography measurement. Comparison with the kinetic growth model shows a good agreement in terms of the composition profiles of anions, while the kinetic model underestimates the intermixing of cations.« less
Lattice strains and load partitioning in bovine trabecular bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhtar, R.; Daymond, M. R.; Almer, J. D.
2012-02-01
Microdamage and failure mechanisms have been well characterized in bovine trabecular bone. However, little is known about how elastic strains develop in the apatite crystals of the trabecular struts and their relationship with different deformation mechanisms. In this study, wide-angle high-energy synchrotron X-ray diffraction has been used to determine bulk elastic strains under in situ compression. Dehydrated bone is compared to hydrated bone in terms of their response to load. During compression, load is initially borne by trabeculae aligned parallel to loading direction with non-parallel trabeculae deforming by bending. Ineffective load partitioning is noted in dehydrated bone whereas hydrated bonemore » behaves like a plastically yielding foam« less
Changes in nasal volume after surgically assisted bone-borne rapid maxillary expansion.
Deeb, Wayel; Hansen, Lars; Hotan, Thorsten; Hietschold, Volker; Harzer, Winfried; Tausche, Eve
2010-06-01
The purposes of this study were to detect, locate, and examine the changes in transverse nasal width, area, and volume from bone-borne, surgically assisted rapid maxillary expansion (SARME) with the Dresden distractor by using computer tomography (CT). Sixteen patients (average age, 28.7 years) underwent axial CT scanning before and 6 months after SARME. They also underwent CT fusion on specific bony structures. The nasal bone width was examined in the coronal plane. The cross-sectional images of the nasal cavity were taken of the area surrounding the apertura piriformis, the choanae, and in between. We calculated cross-sectional areas and nasal volume according to these data. All but 2 patients had an increase in nasal volume of at least 5.1% (SD, 4.6%). The largest value of 35.3% (SD, 45.8%) was measured anteriorly on the nasal floor, decreasing cranially and posteriorly. This correlated with the V-shaped opening of the sutura palatina. There was no significant correlation between increase in nasal volume and transversal expansion. Because most of the air we breathe passes over the lower nasal floor, SARME is likely to improve nasal breathing. 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Origin of Noncubic Scaling Law in Disordered Granular Packing.
Xia, Chengjie; Li, Jindong; Kou, Binquan; Cao, Yixin; Li, Zhifeng; Xiao, Xianghui; Fu, Yanan; Xiao, Tiqiao; Hong, Liang; Zhang, Jie; Kob, Walter; Wang, Yujie
2017-06-09
Recent diffraction experiments on metallic glasses have unveiled an unexpected noncubic scaling law between density and average interatomic distance, which led to the speculation of the presence of fractal glass order. Using x-ray tomography we identify here a similar noncubic scaling law in disordered granular packing of spherical particles. We find that the scaling law is directly related to the contact neighbors within the first nearest neighbor shell, and, therefore, is closely connected to the phenomenon of jamming. The seemingly universal scaling exponent around 2.5 arises due to the isostatic condition with a contact number around 6, and we argue that the exponent should not be universal.
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour.
Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Davenport, A; Street, S; Scott, T B
2017-08-11
Uranium encapsulated in grout was exposed to water vapour for extended periods of time. Through synchrotron x-ray powder diffraction and tomography measurements, uranium dioxide was determined the dominant corrosion product over a 50-week time period. The oxide growth rate initiated rapidly, with rates comparable to the U + H 2 O reaction. Over time, the reaction rate decreased and eventually plateaued to a rate similar to the U + H 2 O + O 2 reaction. This behaviour was not attributed to oxygen ingress, but instead the decreasing permeability of the grout, limiting oxidising species access to the metal surface.
Rietveld-refinement and optical study of the Fe doped ZnO thin film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, Arun; Dhiman, Pooja; Singh, M.
2017-05-01
Fe Doped ZnO Dilute Magnetic Semiconductor thin film prepared by RF magnetron sputtering on glass substrate and Influence of 3% Fe-doping on structural and Optical properties has been studied. The Rietveld-refinement analysis shows that Fe doping has a significant effect on crystalline structure, grain size and strain in the thin film. Two dimensional and three-dimensional atom probe tomography of the thin film shows that Fe ions are randomly distributed which is supported by Xray Diffraction (XRD). Fe-doping is found to effectively modify the band gap energy up to 3.5 eV.
Three-dimensional holographic display of ultrasound computed tomograms
NASA Astrophysics Data System (ADS)
Andre, Michael P.; Janee, Helmar S.; Ysrael, Mariana Z.; Hodler, Jeurg; Olson, Linda K.; Leopold, George R.; Schulz, Raymond
1997-05-01
Breast ultrasound is a valuable adjunct to mammography but is limited by a very small field of view, particularly with high-resolution transducers necessary for breast diagnosis. We have been developing an ultrasound system based on a diffraction tomography method that provides slices through the breast on a large 20-cm diameter circular field of view. Eight to fifteen images are typically produced in sequential coronal planes from the nipple to the chest wall with either 0.25 or 0.5 mm pixels. As a means to simplify the interpretation of this large set of images, we report experience with 3D life-sized displays of the entire breast of human volunteers using a digital holographic technique. The compound 3D holographic images are produced from the digital image matrix, recorded on 14 X 17 inch transparency and projected on a special white-light viewbox. Holographic visualization of the entire breast has proved to be the preferred method for 3D display of ultrasound computed tomography images. It provides a unique perspective on breast anatomy and may prove useful for biopsy guidance and surgical planning.
Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki
2011-10-01
The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.
Microwave tomography for GPR data processing in archaeology and cultural heritages diagnostics
NASA Astrophysics Data System (ADS)
Soldovieri, F.
2009-04-01
Ground Penetrating Radar (GPR) is one of the most feasible and friendly instrumentation to detect buried remains and perform diagnostics of archaeological structures with the aim of detecting hidden objects (defects, voids, constructive typology; etc..). In fact, GPR technique allows to perform measurements over large areas in a very fast way thanks to a portable instrumentation. Despite of the widespread exploitation of the GPR as data acquisition system, many difficulties arise in processing GPR data so to obtain images reliable and easily interpretable by the end-users. This difficulty is exacerbated when no a priori information is available as for example arises in the case of historical heritages for which the knowledge of the constructive modalities and materials of the structure might be completely missed. A possible answer to the above cited difficulties resides in the development and the exploitation of microwave tomography algorithms [1, 2], based on more refined electromagnetic scattering model with respect to the ones usually adopted in the classic radaristic approach. By exploitation of the microwave tomographic approach, it is possible to gain accurate and reliable "images" of the investigated structure in order to detect, localize and possibly determine the extent and the geometrical features of the embedded objects. In this framework, the adoption of simplified models of the electromagnetic scattering appears very convenient for practical and theoretical reasons. First, the linear inversion algorithms are numerically efficient thus allowing to investigate domains large in terms of the probing wavelength in a quasi real- time also in the case of 3D case also by adopting schemes based on the combination of 2D reconstruction [3]. In addition, the solution approaches are very robust against the uncertainties in the parameters of the measurement configuration and on the investigated scenario. From a theoretical point of view, the linear models allow further advantages such as: the absence of the false solutions (a question to be arisen in non linear inverse problems); the exploitation of well known regularization tools for achieving a stable solution of the problem; the possibility to analyze the reconstruction performances of the algorithm once the measurement configuration and the properties of the host medium are known. Here, we will present the main features and the reconstruction results of a linear inversion algorithm based on the Born approximation in realistic applications in archaeology and cultural heritage diagnostics. Born model is useful when penetrable objects are under investigations. As well known, the Born Approximation is used to solve the forward problem, that is the determination of the scattered field from a known object under the hypothesis of weak scatterer, i.e. an object whose dielectric permittivity is slightly different from the one of the host medium and whose extent is small in term of probing wavelength. Differently, for the inverse scattering problem, the above hypotheses can be relaxed at the cost to renounce to a "quantitative reconstruction" of the object. In fact, as already shown by results in realistic conditions [4, 5], the adoption of a Born model inversion scheme allows to detect, to localize and to determine the geometry of the object also in the case of not weak scattering objects. [1] R. Persico, R. Bernini, F. Soldovieri, "The role of the measurement configuration in inverse scattering from buried objects under the Born approximation", IEEE Trans. Antennas and Propagation, vol. 53, no.6, pp. 1875-1887, June 2005. [2] F. Soldovieri, J. Hugenschmidt, R. Persico and G. Leone, "A linear inverse scattering algorithm for realistic GPR applications", Near Surface Geophysics, vol. 5, no. 1, pp. 29-42, February 2007. [3] R. Solimene, F. Soldovieri, G. Prisco, R.Pierri, "Three-Dimensional Microwave Tomography by a 2-D Slice-Based Reconstruction Algorithm", IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 4, pp. 556 - 560, Oct. 2007. [4] L. Orlando, F. Soldovieri, "Two different approaches for georadar data processing: a case study in archaeological prospecting", Journal of Applied Geophysics, vol. 64, pp. 1-13, March 2008. [5] F. Soldovieri, M. Bavusi, L. Crocco, S. Piscitelli, A. Giocoli, F. Vallianatos, S. Pantellis, A. Sarris, "A comparison between two GPR data processing techniques for fracture detection and characterization", Proc. of 70th EAGE Conference & Exhibition, Rome, Italy, 9 - 12 June 2008
Yang, Il-Hyung; Chang, Young-Il; Kim, Tae-Woo; Ahn, Sug-Joon; Lim, Won-Hee; Lee, Nam-Ki; Baek, Seung-Hak
2012-03-01
To investigate biomechanical effects of cleft type (unilateral/bilateral cleft lip and palate), facemask anchorage method (tooth-borne and miniplate anchorage), and alveolar bone graft on maxillary protraction. Three-dimensional finite element analysis with application of orthopedic force (30° downward and forward to the occlusal plane, 500 g per side). Computed tomography data from a 13.5-year-old girl with maxillary hypoplasia. Eight three-dimensional finite element models were fabricated according to cleft type, facemask anchorage method, and alveolar bone graft. Initial stress distribution and displacement after force application were analyzed. Unilateral cleft lip and palate showed an asymmetric pattern in stress distribution and displacement before alveolar bone graft and demonstrated a symmetric pattern after alveolar bone graft. However, bilateral cleft lip and palate showed symmetric patterns in stress distribution and displacement before and after alveolar bone graft. In both cleft types, the graft extended the stress distribution area laterally beyond the infraorbital foramen. For both unilateral and bilateral cleft lip and palate, a facemask with a tooth-borne anchorage showed a dentoalveolar effect with prominent stress distribution and displacement on the upper canine point. In contrast, a facemask with miniplate anchorage exhibited an orthopedic effect with more favorable stress distribution and displacement on the middle maxilla point. In addition, the facemask with a miniplate anchorage showed a larger stress distribution area and sutural stress values than did the facemask with a tooth-borne anchorage. The pterygopalatine and zygomatico-maxillary sutures showed the largest sutural stress values with a facemask with a miniplate anchorage and after alveolar bone grafting, respectively. In this three-dimensional finite element analysis, it would be more advantageous to perform maxillary protraction using a facemask with a miniplate anchorage than a facemask with a tooth-borne anchorage and after alveolar bone graft rather than before alveolar bone graft, regardless of cleft type.
Zhou, Renjie; Jin, Di; Hosseini, Poorya; Singh, Vijay Raj; Kim, Yang-hyo; Kuang, Cuifang; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.
2017-01-01
Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues. PMID:28085800
I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.
Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz
2015-05-01
I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.
I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source
Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz
2015-01-01
I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103
Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Suter, Robert
2014-03-01
Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel superalloys and a titanium alloy under tensile forces. Work supported by NSF grant DMR-1105173
Ronald N. Bracewell: An Appreciation
NASA Astrophysics Data System (ADS)
Thompson, A. Richard; Frater, Robert H.
2010-11-01
Ronald Newbold Bracewell (1921-2007) made fundamental contributions to the development of radio astronomy in the areas of interferometry, signal processing, and imaging, and also to tomography, various areas of data analysis, and the understanding of Fourier transforms. He was born in Sydney, Australia, and received a B.Sc. degree in mathematics and physics, and B.E. and M.E. degrees in electrical engineering from the University of Sydney, and his Ph.D. from the University of Cambridge, U.K., for research on the ionosphere. In 1949 he joined the Radiophysics Laboratory of CSIRO, where he became interested in radio astronomy. In 1955 he moved to Stanford University, California, where he became Lewis M. Terman Professor of Electrical Engineering. He retired from teaching in 1991, but continued to be active in radio astronomy and other applications of imaging techniques, etc. During his career he published ten books and more than 250 papers. Honors that he received include the Duddell Premium of the Institute of Electrical Engineers, London, the Hertz Medal of the IEEE, and the Order of Australia. For his work on imaging in tomography he was elected to Associate Membership of the Institute of Medicine of the U.S. National Academy of Sciences.
Walter Thompson Welford 31 August 1916 - 18 September 1990.
Barnett, Michael; Smith, Robin
2004-01-01
Walter Thompson Welford (Walter Weinstein until 1957), born in London, left Hackney Technical Institute at the age of 16 years to become a technician at the London Hospital and later at Oxford University Biochemistry Department. In 1942, after obtaining a first-class honours external degree in mathematics from London University by private study, he returned to London to work at Adam Hilger Ltd. He moved to Imperial College, London, as a research assistant in 1947, became a lecturer in 1951, a senior lecturer in 1959, Reader in 1964 and Professor of Physics in 1973. He was elected a Fellow of The Royal Society in 1980. After formal retirement in 1983 he continued to be research active at Imperial College and the University of Chicago until his death from throat cancer in 1990.Walter's scientific work was in the craft of optical instrumentation, in which he became an internationally recognized master. His contributions ranged from basic aberration theory to the design, construction and testing of a vast ranger of optical instrumentation. His research fields were principally lens aberrations, optical microscopy, bubble chamber optics, laser speckle, non-imaging optics, diffraction gratings and diffraction lenses. Many will also remember him as a kindly and inspiring educator.
Jay, N P; van de Ven, R J; Hopkins, D L
2014-10-01
Coopworth cross lambs born over three years were examined in this study. Differences between two machines; a computer tomography (CT) scanner and a VIAScan® system for the estimation of carcase lean weight in lamb carcases was examined. The CT scanner provided a significantly higher estimate of carcase lean. The rank correlation (0.84) between the CT scanner and the VIAScan® system for the prediction of carcase lean was significant, but there was a different ranking for carcase lean depending on which machine was used. This has important ramifications for the use of VIAScan® data in the New Zealand Sheep Improvement Ltd genetic programme. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced Ultrasonic Tomograph of Children's Bones
NASA Astrophysics Data System (ADS)
Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe
This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, L. L.; Li, R.; Li, L.
2015-12-01
Liquid gallium exhibits unusual and unique physical properties. A rich polymorphism and metastable modifications of solid Ga have been discovered and a number of studies of liquid gallium under high pressure conditions were reported. However, some fundamental properties, such as the equation of state (EoS) of Ga melt under extreme conditions remain unclear. To compare to the previous reports, we performed the pair distribution function (PDF) study using diamond anvil cell, in which synchrotron high-energy x-ray total scattering data, combined with reverse Monte Carlo simulation, was used to study the microstructure and EoS of liquid gallium under high pressure at room temperature conditions. The EoS of Ga melt, which was measured from synchrotron x-ray tomography method at room temperature, was used to avoid the potential relatively big errors for the density estimation from the reverse Monte Carlo simulation with the mathematical fit to the measured structure factor data. The volume change of liquid gallium have been studied as a function of pressure and temperature up to 5 GPa at 370 K using synchrotron x-ray microtomography combined with energy dispersive x-ray diffraction (EDXRD) techniques using Drickamer press. The directly measured P-V-T curves were obtained from 3D tomography reconstruction data. The existence of possible liquid-liquid phase transition regions is proposed based on the abnormal compressibility and local structure change in Ga melts.
Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pang, Sean; Zhu, Zheyuan
2017-05-01
Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.
NASA Astrophysics Data System (ADS)
Yu, Y.; Shen, Y.; Chen, Y. J.
2015-12-01
By using ray theory in conjunction with the Born approximation, Dahlen et al. [2000] computed 3-D sensitivity kernels for finite-frequency seismic traveltimes. A series of studies have been conducted based on this theory to model the mantle velocity structure [e.g., Hung et al., 2004; Montelli et al., 2004; Ren and Shen, 2008; Yang et al., 2009; Liang et al., 2011; Tang et al., 2014]. One of the simplifications in the calculation of the kernels is the paraxial assumption, which may not be strictly valid near the receiver, the region of interest in regional teleseismic tomography. In this study, we improve the accuracy of traveltime sensitivity kernels of the first P arrival by eliminating the paraxial approximation. For calculation efficiency, the traveltime table built by the Fast Marching Method (FMM) is used to calculate both the wave vector and the geometrical spreading at every grid in the whole volume. The improved kernels maintain the sign, but with different amplitudes at different locations. We also find that when the directivity of the scattered wave is being taken into consideration, the differential sensitivity kernel of traveltimes measured at the vertical and radial component of the same receiver concentrates beneath the receiver, which can be used to invert for the structure inside the Earth. Compared with conventional teleseismic tomography, which uses the differential traveltimes between two stations in an array, this method is not affected by instrument response and timing errors, and reduces the uncertainty caused by the finite dimension of the model in regional tomography. In addition, the cross-dependence of P traveltimes to S-wave velocity anomaly is significant and sensitive to the structure beneath the receiver. So with the component-differential finite-frequency sensitivity kernel, the anomaly of both P-wave and S-wave velocity and Vp/Vs ratio can be achieved at the same time.
Origin of Noncubic Scaling Law in Disordered Granular Packing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Chengjie; Li, Jindong; Kou, Binquan
Recent diffraction experiments on metallic glasses have unveiled an unexpected non-cubic scaling law between density and average interatomic distance, which lead to the speculations on the presence of fractal glass order. Using X-ray tomography we identify here a similar non-cubic scaling law in disordered granular packing of spherical particles. We find that the scaling law is directly related to the contact neighbors within first nearest neighbor shell, and therefore is closely connected to the phenomenon of jamming. The seemingly universal scaling exponent around 2.5 arises due to the isostatic condition with contact number around 6, and we argue that themore » exponent should not be universal.« less
NASA Astrophysics Data System (ADS)
Pfeiffer, Franz
2018-01-01
X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures
LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.; ...
2017-06-05
The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.
Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.
The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2: Corrosion in water.
Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Pullin, H; Davenport, A; Street, S; Scott, T B
2018-06-18
To reflect potential conditions in a geological disposal facility, uranium was encapsulated in grout and submersed in de-ionised water for time periods between 2-47 weeks. Synchrotron X-ray Powder Diffraction and X-ray Tomography were used to identify the dominant corrosion products and measure their dimensions. Uranium dioxide was observed as the dominant corrosion product and time dependent thickness measurements were used to calculate oxidation rates. The effectiveness of physical and chemical grout properties to uranium corrosion and mobilisation is discussed and Inductively Coupled Plasma Mass Spectrometry was used to measure 238 U (aq) content in the residual water of several samples.
NASA Astrophysics Data System (ADS)
Stewart, P. A. E.
1987-05-01
Present and projected applications of penetrating radiation techniques to gas turbine research and development are considered. Approaches discussed include the visualization and measurement of metal component movement using high energy X-rays, the measurement of metal temperatures using epithermal neutrons, the measurement of metal stresses using thermal neutron diffraction, and the visualization and measurement of oil and fuel systems using either cold neutron radiography or emitting isotope tomography. By selecting the radiation appropriate to the problem, the desired data can be probed for and obtained through imaging or signal acquisition, and the necessary information can then be extracted with digital image processing or knowledge based image manipulation and pattern recognition.
Anevska, Kristina; Cheong, Jean N; Wark, John D; Wlodek, Mary E; Romano, Tania
2018-02-01
Females born growth restricted have poor adult bone health. Stress exposure during pregnancy increases risk of pregnancy complications. We determined whether maternal stress exposure in growth-restricted females exacerbates long-term maternal and offspring bone phenotypes. On gestational day 18, bilateral uterine vessel ligation (restricted) or sham (control) surgery was performed on Wistar-Kyoto rats. At 4 mo, control and restricted females were mated and allocated to unstressed or stressed pregnancies. Stressed pregnancies had physiological measurements performed; unstressed females were not handled. After birth, mothers were aged to 13 mo. Second-generation (F2) offspring generated four experimental groups: control unstressed, restricted unstressed, control stressed and restricted stressed. F2 offspring were studied at postnatal day 35 (PN35), 6, 12, and 16 mo. Peripheral quantitative computed tomography was performed on maternal and F2 offspring femurs. Restricted females, irrespective of stress during pregnancy, had decreased endosteal circumference, bending strength, and increased osteocalcin concentrations after pregnancy at 13 mo. F2 offspring of stressed mothers were born lighter. F2 male offspring from stressed pregnancies had decreased trabecular content at 6 mo and decreased endosteal circumference at 16 mo. F2 female offspring from growth-restricted mothers had reduced cortical thickness at PN35 and reduced endosteal circumference at 6 mo. At 12 mo, females from unstressed restricted and stressed control mothers had decreased trabecular content. Low birth weight females had long-term bone changes, highlighting programming effects on bone health. Stress during pregnancy did not exacerbate these programmed effects. Male and female offspring responded differently to maternal growth restriction and stress, indicating gender-specific programming effects.
Powassan Virus-A New Reemerging Tick-Borne Disease.
Fatmi, Syed Soheb; Zehra, Rija; Carpenter, David O
2017-01-01
Powassan virus is a neurovirulent flavivirus consisting of two lineages causing meningoencephalitis. It is the only member of the tick-borne encephalitis serogroup which is present in mainland North America. With a total number of 27 cases from 1958 to 1998 and 98 cases from 1999 to 2016, reported cases have increased by 671% over the last 18 years. Powassan infection is transmitted by different tick species in different geographical regions. Ixodes scapularis is the primary vector that transmits the virus on the East Coast of US and Ixodes cookei in the Midwest and Canada, while Hemaphysalis longicornis is the vector in Russia. Powassan has no singular pathognomonic finding and presents with a wide spectrum of symptoms including severe neurological symptoms. The clinical challenge lies within the management of the disease as there is no standard diagnostic protocol and most cases are only diagnosed after a patient goes through an extensive workup for other infectious disease. The diagnosis is established by a combination of imaging and serologic tests. In case of Powassan meningoencephalitis, computed tomography scan and magnetic resonance imaging show vascular insults, which are also seen in cases of tick-borne encephalitis virus, another flavivirus of medical importance. Serologic tests are the gold standard for diagnosis, although testing is not widely available and only state health departments and Center for Disease Control and Prevention can perform Powassan-specific IgM antibody testing utilizing enzyme-linked immunosorbent assay and immunofluorescence antibody. Powassan is also of veterinary medical importance. Wildlife animals act as a reservoir to the pathogens, hence possessing threat to humans and domestic animals. This review highlights Powassan's neurotropic presentation, epidemiology, diagnostic challenges, and prevalence. Strong emphasis is placed on establishing diagnostic protocols, widespread Powassan-specific IgM testing, role of the vector in disease presentation, and necessary preventive research.
Nasal airway and septal variation in unilateral and bilateral cleft lip and palate.
Starbuck, John M; Friel, Michael T; Ghoneima, Ahmed; Flores, Roberto L; Tholpady, Sunil; Kula, Katherine
2014-10-01
Cleft lip and palate (CLP) affects the dentoalveolar and nasolabial facial regions. Internal and external nasal dysmorphology may persist in individuals born with CLP despite surgical interventions. 7-18 year old individuals born with unilateral and bilateral CLP (n = 50) were retrospectively assessed using cone beam computed tomography. Anterior, middle, and posterior nasal airway volumes were measured on each facial side. Septal deviation was measured at the anterior and posterior nasal spine, and the midpoint between these two locations. Data were evaluated using principal components analysis (PCA), multivariate analysis of variance (MANOVA), and post-hoc ANOVA tests. PCA results show partial separation in high dimensional space along PC1 (48.5% variance) based on age groups and partial separation along PC2 (29.8% variance) based on CLP type and septal deviation patterns. MANOVA results indicate that age (P = 0.007) and CLP type (P ≤ 0.001) significantly affect nasal airway volume and septal deviation. ANOVA results indicate that anterior nasal volume is significantly affected by age (P ≤ 0.001), whereas septal deviation patterns are significantly affected by CLP type (P ≤ 0.001). Age and CLP type affect nasal airway volume and septal deviation patterns. Nasal airway volumes tend to be reduced on the clefted sides of the face relative to non-clefted sides of the face. Nasal airway volumes tend to strongly increase with age, whereas septal deviation values tend to increase only slightly with age. These results suggest that functional nasal breathing may be impaired in individuals born with the unilateral and bilateral CLP deformity. © 2014 Wiley Periodicals, Inc.
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.
Military applications and examples of near-surface seismic surface wave methods (Invited)
NASA Astrophysics Data System (ADS)
sloan, S.; Stevens, R.
2013-12-01
Although not always widely known or publicized, the military uses a variety of geophysical methods for a wide range of applications--some that are already common practice in the industry while others are truly novel. Some of those applications include unexploded ordnance detection, general site characterization, anomaly detection, countering improvised explosive devices (IEDs), and security monitoring, to name a few. Techniques used may include, but are not limited to, ground penetrating radar, seismic, electrical, gravity, and electromagnetic methods. Seismic methods employed include surface wave analysis, refraction tomography, and high-resolution reflection methods. Although the military employs geophysical methods, that does not necessarily mean that those methods enable or support combat operations--often times they are being used for humanitarian applications within the military's area of operations to support local populations. The work presented here will focus on the applied use of seismic surface wave methods, including multichannel analysis of surface waves (MASW) and backscattered surface waves, often in conjunction with other methods such as refraction tomography or body-wave diffraction analysis. Multiple field examples will be shown, including explosives testing, tunnel detection, pre-construction site characterization, and cavity detection.
Liquid metal anode x-ray tubes: interesting, but are they useful?
NASA Astrophysics Data System (ADS)
Harding, Geoffrey
2004-10-01
An analysis is presented of factors affecting the specific loadability (W mm-2 K-1) of electron impact liquid metal anode x-ray sources (LIMAX). It is shown that in general, the limit to loadability is set by energy deposited in the electron window by inelastic electron scattering. Removal of this energy through convection cooling by the liquid metal stream represents the least efficient thermal transport process in LIMAX. As the electron window energy loss is approximately inversely proportional to the electron beam energy, the power loadability of a LIMAX source operated under otherwise constant conditions scales roughly with the square of the tube voltage. A comparison of the loadability of the liquid metal anode x-ray concept to conventional stationary anode x-ray tubes demonstrates the superiority of the former. The utility of LIMAX-based computed tomography in the field of air cargo container inspection is briefly discussed. In particular its characteristics relative to linac-based air cargo container inspection are highlighted: these include a higher contrast-to-noise ratio (CNR); compact radiation shielding and collimation; reduced detector cross-talk; improved image contrast; and the possibility of combining container CT with material-specific alarm resolution capability based on x-ray diffraction tomography.
Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.
Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P
2017-04-01
Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.
Three-dimensional characterization of ODS ferritic steel using by FIB-SEM serial sectioning method.
Endo, T; Sugino, Y; Ohono, N; Ukai, S; Miyazaki, N; Wang, Y; Ohnuki, S
2014-11-01
Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Neonatal Meningoventriculitis Due to Proteus Mirabilis – A Case Report
Juyal, Deepak; Rathaur, Vyas Kumar; Sharma, Neelam
2013-01-01
A five day old full term born baby was admitted to our Neonatal Intensive Care Unit with seizures, opisthotonous posture and was icteric upto thigh. Baby had a three day history of poor feeding, lethargy and abnormal body movements. Mother was a 29 years old primigravida and had a normal vaginal delivery at home. Sepsis profile of the patient was requested, lumbar puncture and ventricular tap was performed. Patient was put on third generation cephalosporins, aminoglycosides and phenobarbitone. Culture and sensitivity report of blood, Cerebro spinal fluid and ventricular fluid showed Proteus mirabilis. Computerized Tomography scan showed a large parenchymal lesion in the right frontal lobe and diffuse ependymal enhancement along both the lateral ventricles suggestive of meningoventriculitis. We hereby present a fatal case of neonatal meningoventriculitis due to Proteus mirabilis. PMID:23543669
Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Offerdahl, Danielle K.
The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranesmore » to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.« less
NASA Astrophysics Data System (ADS)
Hegymegi, Erika; Gyöngy, Miklós; Bodolai, Tamás; Divós, Ferenc; Barta, Edit; Gribovszki, Katalin; Bokelmann, Götz; Hegymegi, Csaba; Lednická, Markéta; Kovács, Károly
2016-04-01
Intact and vulnerable, candle-stick type stalagmites can be used as prehistoric-earthquake indicators during seismic-hazard analysis of a given region, because they are old enough to survive several earthquakes. The continued intactness of the stalagmites indicates a lack of earthquakes that had the strength to destroy them. To make sure that the stalagmites are intact, we have to image their internal structure in order to estimate the steadiness more accurate and potential failure in the last few thousand years, during their evolution. These stalagmites play an important indicator role and carry fundamental information; however, legally they are strictly protected natural objects in Europe. Therefore it is impossible to examine them in the laboratory by conventional equipment such as computer tomography (CT) or X-ray, because this would require taking samples. With the presented non-destructive methods (ultrasound and acoustic tomography) we tried to detect macroholes, cracks and velocity anomalies inside the stalagmites on the mm scale in situ, in the cave. The acoustic tomography applied in the current work is an existing method in forest research. Forest researchers use it to non-destructively detect the size and location of decayed or hollow parts in the trunk and this technique is able to detect the velocity changing of wave propagation and anomalies in the stalagmites as well. The other method that we use is ultrasound imaging, which uses (and is able to calculate) the velocity of sound propagation. Here, the frequency used is much higher (typically 250 kHz to 5 MHz), which increases resolution but at the same time decreases penetration depth compared to acoustic tomography. In this latter work, through transmission and TOFD (time-of-flight-diffraction) ultrasound methods are using thickness-mode ultrasound transducers (Panametrics, Olympus). Such equipment is well-adapted to the cave environment and this is the first time that it has been used for these aims and in situ in cave environment.
Finite frequency shear wave splitting tomography: a model space search approach
NASA Astrophysics Data System (ADS)
Mondal, P.; Long, M. D.
2017-12-01
Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.
A Rutile Chevron Modulation in Delafossite-Like Ga 3–x In 3 Ti x O 9+x/2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickert, Karl; Boullay, Philippe; Malo, Sylvie
2016-05-02
The structure solution of the modulated, delafossite-related, orthorhombic Ga 3–xIn 3Ti xO 9+x/2 for x = 1.5 is reported here in conjunction with a model describing the modulation as a function of x for the entire system. Previously reported structures in the related A 3–xIn 3Ti xO 9+x/2 (A = Al, Cr, or Fe) systems use X-ray diffraction to determine that the anion lattice is the source of modulation. Neutron diffraction, with its enhanced sensitivity to light atoms, offers a route to solving the modulation and is used here, in combination with precession electron diffraction tomography (PEDT), to solve themore » structure of Ga 1.5In 3Ti 1.5O 9.75. We construct a model that describes the anion modulation through the formation of rutile chevrons as a function of x. This model accommodates the orthorhombic phase (1.5 ≤ x ≤ 2.1) in the Ga 3-xIn 3Ti xO 9+x/2 system, which transitions to a biphasic mixture (2.2 ≤ x ≤ 2.3) with a monoclinic, delafossite-related phase (2.4 ≤ x ≤ 2.5). The optical band gaps of this system are determined, and are stable at ~3.4 eV before a ~0.4 eV decrease between x = 1.9 and 2.0. After this decrease, stability resumes at ~3.0 eV. Resistance to oxidation and reduction is also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousse, Gwenaelle; Ahouari, Hania; Pomjakushin, Vladimir
We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ~320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed tomore » two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly “monodentate”, forming one short (2.14 Å) and one long (3.01 Å) Mn–O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.« less
Non-Destructive Characterization of UO2+x Nuclear Fuels
Pokharel, Reeju; Brown, Donald W.; Clausen, Bjørn; ...
2017-10-27
This article describes the effect of fabrication conditions on as-sintered microstructures of various stoichiometric ratios of uranium dioxide, UO 2+x, with the aim of enhancing the understanding of fabrication process and developing and validating a predictive microstructurebased model for fuel performance. We demonstrate the ability of novel, non-destructive methods such as near-field high-energy X-ray diffraction microscopy (nf-HEDM) and micro-computed tomography (μ-CT) to probe bulk samples of high-Z materials by non-destructively characterizing three samples: UO 2.00, UO 2.11, and UO 2.16, which were sintered at 1450°C for 4 hours. The measured 3D microstructures revealed that grain size and porosity were influencedmore » by deviation from stoichiometry.« less
Tempering of Low-Temperature Bainite
NASA Astrophysics Data System (ADS)
Peet, Mathew J.; Babu, Sudarsanam Suresh; Miller, Mike K.; Bhadeshia, H. K. D. H.
2017-07-01
Electron microscopy, X-ray diffraction, and atom probe tomography have been used to identify the changes which occur during the tempering of a carbide-free bainitic steel transformed at 473 K (200 °C). Partitioning of solute between ferrite and thin-films of retained austenite was observed on tempering at 673 K (400 °C) for 30 minutes. After tempering at 673 K (400 °C) and 773 K (500 °C) for 30 minutes, cementite was observed in the form of nanometre scale precipitates. Proximity histograms showed that the partitioning of solutes other than silicon from the cementite was slight at 673 K (400 °C) and more obvious at 773 K (500 °C). In both cases, the nanometre scale carbides are greatly depleted in silicon.
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy
NASA Astrophysics Data System (ADS)
Goodfellow, A. J.; Galindo-Nava, E. I.; Christofidou, K. A.; Jones, N. G.; Martin, T.; Bagot, P. A. J.; Boyer, C. D.; Hardy, M. C.; Stone, H. J.
2018-03-01
The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography, and neutron diffraction. Variations in phase composition and precipitate morphology, size, and volume fraction were observed during aging, while the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, while significant differences were identified between the experimental and predicted results from the γ' phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.
NASA Astrophysics Data System (ADS)
Delbary, Fabrice; Aramini, Riccardo; Bozza, Giovanni; Brignone, Massimo; Piana, Michele
2008-11-01
Microwave tomography is a non-invasive approach to the early diagnosis of breast cancer. However the problem of visualizing tumors from diffracted microwaves is a difficult nonlinear ill-posed inverse scattering problem. We propose a qualitative approach to the solution of such a problem, whereby the shape and location of cancerous tissues can be detected by means of a combination of the Reciprocity Gap Functional method and the Linear Sampling method. We validate this approach to synthetic near-fields produced by a finite element method for boundary integral equations, where the breast is mimicked by the axial view of two nested cylinders, the external one representing the skin and the internal one representing the fat tissue.
Jabbari, Fatemeh; Wiklander, Laila; Reiser, Erika; Thor, Andreas; Hakelius, Malin; Nowinski, Daniel
2018-02-01
To identify factors of oral health important for the final outcome, after secondary alveolar bone grafting in patients born with unilateral cleft lip and palate and compare occlusal radiographs with cone beam computed tomography (CBCT) in assessment of alveolar bone height. Observational follow-up study. Cleft Lip and Palate Team, Craniofacial Center, Uppsala University Hospital, Sweden. 40 nonsyndromic, Caucasian patients with unilateral complete cleft lip and palate. Clinical examination, CBCT, and occlusal radiographs. Alveolar bone height was evaluated according to Bergland index at a 20-year follow-up. The alveolar bone height in the cleft area was significantly reduced compared to a previously reported 10-year follow-up in the same cohort by total ( P = .045) and by subgroup with dental restoration ( P = .0078). This was positively correlated with the gingival bleeding index (GBI) ( r = 0.51, P = .0008) and presence of dental restorations in the cleft area ( r = 0.45, P = .0170). There was no difference in the Bergland index generated from scoring the alveolar bone height on occlusal radiographs as with the equivalent index on CBCT. Patients rehabilitated with complex dental restoration seems to be at higher risk for progression of bone loss in the cleft area. Supportive periodontal therapy should be implemented after complex dental restorations in cleft patients. Conventional occlusal radiographs provide an adequate image for evaluating postoperative bone height in clinical follow-up.
Schowalter, Marco; Schmidt, Martin U.; Czank, Michael; Depmeier, Wulf; Rosenauer, Andreas
2017-01-01
Denisovite is a rare mineral occurring as aggregates of fibres typically 200–500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD), electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-angle annular dark-field imaging (HAADF), high-resolution transmission electron microscopy (HRTEM), precession electron diffraction (PED) and electron diffraction tomography (EDT). A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data by ab initio structure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters are a = 31.024 (1), b = 19.554 (1) and c = 7.1441 (5) Å, β = 95.99 (3)°, V = 4310.1 (5) Å3 and space group P12/a1. The structure consists of three topologically distinct dreier silicate chains, viz. two xonotlite-like dreier double chains, [Si6O17]10−, and a tubular loop-branched dreier triple chain, [Si12O30]12−. The silicate chains occur between three walls of edge-sharing (Ca,Na) octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to the z axis and form a layer parallel to (100). Water molecules and K+ cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to their z position along these walls, with displacements between neighbouring layers being either Δz = c/4 or −c/4. Such behaviour is typical for polytypic sequences and leads to disorder along [100]. In fact, the diffraction pattern does not show any sharp reflections with l odd, but continuous diffuse streaks parallel to a* instead. Only reflections with l even are sharp. The diffuse scattering is caused by (100) nanolamellae separated by stacking faults and twin boundaries. The structure can be described according to the order–disorder (OD) theory as a stacking of layers parallel to (100). PMID:28512570
The effect of density fluctuations on electron cyclotron beam broadening and implications for ITER
NASA Astrophysics Data System (ADS)
Snicker, A.; Poli, E.; Maj, O.; Guidi, L.; Köhn, A.; Weber, H.; Conway, G.; Henderson, M.; Saibene, G.
2018-01-01
We present state-of-the-art computations of propagation and absorption of electron cyclotron waves, retaining the effects of scattering due to electron density fluctuations. In ITER, injected microwaves are foreseen to suppress neoclassical tearing modes (NTMs) by driving current at the q=2 and q=3/2 resonant surfaces. Scattering of the beam can spoil the good localization of the absorption and thus impair NTM control capabilities. A novel tool, the WKBeam code, has been employed here in order to investigate this issue. The code is a Monte Carlo solver for the wave kinetic equation and retains diffraction, full axisymmetric tokamak geometry, determination of the absorption profile and an integral form of the scattering operator which describes the effects of turbulent density fluctuations within the limits of the Born scattering approximation. The approach has been benchmarked against the paraxial WKB code TORBEAM and the full-wave code IPF-FDMC. In particular, the Born approximation is found to be valid for ITER parameters. In this paper, we show that the radiative transport of EC beams due to wave scattering in ITER is diffusive unlike in present experiments, thus causing up to a factor of 2-4 broadening in the absorption profile. However, the broadening depends strongly on the turbulence model assumed for the density fluctuations, which still has large uncertainties.
Pan, Long; Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying
2016-12-01
To obtain 2D materials with large quantity, low cost, and little pollution, liquid-phase exfoliation of their bulk form in water is a particularly fascinating concept. However, the current strategies for water-borne exfoliation exclusively employ stabilizers, such as surfactants, polymers, or inorganic salts, to minimize the extremely high surface energy of these nanosheets and stabilize them by steric repulsion. It is worth noting, however, that the remaining impurities inevitably bring about adverse effects to the ultimate performances of 2D materials. Here, a facile and green route to large-scale production of impurity-free aqueous solutions of WS 2 nanosheets is reported by direct exfoliation in water. Crucial parameters such as initial concentration, sonication time, centrifugation speed, and centrifugation time are systematically evaluated to screen out an optimized condition for scaling up. Statistics based on morphological characterization prove that substantial fraction (66%) of the obtained WS 2 nanosheets are one to five layers. X-ray diffraction and Raman characterizations reveal a high quality with few, if any, structural distortions. The water-borne exfoliation route opens up new opportunities for easy, clean processing of WS 2 -based film devices that may shine in the fields of, e.g., energy storage and functional nanocomposites owing to their excellent electrochemical, mechanical, and thermal properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schönauer, K.; Weiss, S.; Feyer, V.; Lüftner, D.; Stadtmüller, B.; Schwarz, D.; Sueyoshi, T.; Kumpf, C.; Puschnig, P.; Ramsey, M. G.; Tautz, F. S.; Soubatch, S.
2016-11-01
On the Ag(110) surface copper phthalocyanine (CuPc) orders in two structurally similar superstructures, as revealed by low-energy electron diffraction. Scanning tunneling microscopy (STM) shows that in both superstructures the molecular planes are oriented parallel to the surface and the long molecular axes, defined as diagonals of the square molecule, are rotated by ≃±32∘ away from the high-symmetry directions [1 1 ¯0 ] and [001] of the silver surface. Similarly to many other adsorbed metal phthalocyanines, the CuPc molecules on Ag(110) appear in STM as crosslike features with twofold symmetry. Photoemission tomography based on angle-resolved photoemission spectroscopy reveals a charge transfer from the substrate into the molecule. A symmetry analysis of experimental and theoretical constant binding energy maps of the photoemission intensity in the kx,ky -plane points to a preferential occupation of one of the two initially degenerate lowest unoccupied molecular orbitals (LUMOs) of eg symmetry. The occupied eg orbital is rotated by 32∘ against the [001] direction of the substrate. The lifting of the degeneracy of the LUMOs and the related reduction of the symmetry of the adsorbed CuPc molecule are attributed to an anisotropy in the chemical reactivity of the Ag(110) surface.
Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research.
Ercius, Peter; Alaidi, Osama; Rames, Matthew J; Ren, Gang
2015-10-14
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A computerized tomography system for transcranial ultrasound imaging.
Tang, Sai Chun; Clement, Gregory T
Hardware for tomographic imaging presents both challenge and opportunity for simplification when compared with traditional pulse-echo imaging systems. Specifically, point diffraction tomography does not require simultaneous powering of elements, in theory allowing just a single transmit channel and a single receive channel to be coupled with a switching or multiplexing network. In our ongoing work on transcranial imaging, we have developed a 512-channel system designed to transmit and/or receive a high voltage signal from/to arbitrary elements of an imaging array. The overall design follows a hierarchy of modules including a software interface, microcontroller, pulse generator, pulse amplifier, high-voltage power converter, switching mother board, switching daughter board, receiver amplifier, analog-to-digital converter, peak detector, memory, and USB communication. Two pulse amplifiers are included, each capable of producing up to 400Vpp via power MOSFETS. Switching is based around mechanical relays that allow passage of 200V, while still achieving switching times of under 2ms, with an operating frequency ranging from below 100kHz to 10MHz. The system is demonstrated through ex vivo human skulls using 1MHz transducers. The overall system design is applicable to planned human studies in transcranial image acquisition, and may have additional tomographic applications for other materials necessitating a high signal output.
Yoshida, Kenta; Shimodaira, Masaki; Toyama, Takeshi; Shimizu, Yasuo; Inoue, Koji; Yoshiie, Toshimasa; Milan, Konstantinovic J; Gerard, Robert; Nagai, Yasuyoshi
2017-04-01
To evaluate dislocations induced by neutron irradiation, we developed a weak-beam scanning transmission electron microscopy (WB-STEM) system by installing a novel beam selector, an annular detector, a high-speed CCD camera and an imaging filter in the camera chamber of a spherical aberration-corrected transmission electron microscope. The capabilities of the WB-STEM with respect to wide-view imaging, real-time diffraction monitoring and multi-contrast imaging are demonstrated using typical reactor pressure vessel steel that had been used in an European nuclear reactor for 30 years as a surveillance test piece with a fluence of 1.09 × 1020 neutrons cm-2. The quantitatively measured size distribution (average loop size = 3.6 ± 2.1 nm), number density of the dislocation loops (3.6 × 1022 m-3) and dislocation density (7.8 × 1013 m m-3) were carefully compared with the values obtained via conventional weak-beam transmission electron microscopy studies. In addition, cluster analysis using atom probe tomography (APT) further demonstrated the potential of the WB-STEM for correlative electron tomography/APT experiments. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhu, Bangshang; Yuan, Falei; Yuan, Xiaoya; Bo, Yang; Wang, Yongting; Yang, Guo-Yuan; Drummen, Gregor P. C.; Zhu, Xinyuan
2014-02-01
Micro-computed tomography (micro-CT) is a powerful tool for visualizing the vascular systems of tissues, organs, or entire small animals. Vascular contrast agents play a vital role in micro-CT imaging in order to obtain clear and high-quality images. In this study, a new kind of nanostructured barium phosphate was fabricated and used as a contrast agent for ex vivo micro-CT imaging of blood vessels in the mouse brain. Nanostructured barium phosphate was synthesized through a simple wet precipitation method using Ba(NO3)2, and (NH4)2HPO4 as starting materials. The physiochemical properties of barium phosphate were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermal analysis. Furthermore, the impact of the produced nanostructures on cell viability was evaluated via the MTT assay, which generally showed low to moderate cytotoxicity. Finally, the animal test images demonstrated that the use of nanostructured barium phosphate as a contrast agent in Micro-CT imaging produced sharp images with excellent contrast. Both major vessels and the microvasculature were clearly observable in the imaged mouse brain. Overall, the results indicate that nanostructured barium phosphate is a potential and useful vascular contrast agent for micro-CT imaging.
High indium content homogenous InAlN layers grown by plasma-assisted molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kyle, Erin C. H.; Kaun, Stephen W.; Wu, Feng; Bonef, Bastien; Speck, James S.
2016-11-01
InAlN grown by plasma-assisted molecular beam epitaxy often contains a honeycomb microstructure. The honeycomb microstructure consists of 5-10 nm diameter aluminum-rich regions which are surrounded by indium-rich regions. Layers without this microstructure were previously developed for nominally lattice-matched InAlN and have been developed here for higher indium content InAlN. In this study, InAlN was grown in a nitrogen-rich environment with high indium to aluminum flux ratios at low growth temperatures. Samples were characterized by high-resolution x-ray diffraction, atomic force microscopy, high-angle annular dark-field scanning transmission electron microscopy, and atom probe tomography. Atomic force microscopy showed InAlN layers grown at temperatures below 450 °C under nitrogen-rich conditions were free of droplets. InAlN films with indium contents up to 81% were grown at temperatures between 410 and 440 °C. High-angle annular dark-field scanning transmission electron microscopy and atom probe tomography showed no evidence of honeycomb microstructure for samples with indium contents of 34% and 62%. These layers are homogeneous and follow a random alloy distribution. A growth diagram for InAlN of all indium contents is reported.
X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts
NASA Astrophysics Data System (ADS)
Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James
2017-11-01
The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
Fast kinematic ray tracing of first- and later-arriving global seismic phases
NASA Astrophysics Data System (ADS)
Bijwaard, Harmen; Spakman, Wim
1999-11-01
We have developed a ray tracing algorithm that traces first- and later-arriving global seismic phases precisely (traveltime errors of the order of 0.1 s), and with great computational efficiency (15 rays s- 1). To achieve this, we have extended and adapted two existing ray tracing techniques: a graph method and a perturbation method. The two resulting algorithms are able to trace (critically) refracted, (multiply) reflected, some diffracted (Pdiff), and (multiply) converted seismic phases in a 3-D spherical geometry, thus including the largest part of seismic phases that are commonly observed on seismograms. We have tested and compared the two methods in 2-D and 3-D Cartesian and spherical models, for which both algorithms have yielded precise paths and traveltimes. These tests indicate that only the perturbation method is computationally efficient enough to perform 3-D ray tracing on global data sets of several million phases. To demonstrate its potential for non-linear tomography, we have applied the ray perturbation algorithm to a data set of 7.6 million P and pP phases used by Bijwaard et al. (1998) for linearized tomography. This showed that the expected heterogeneity within the Earth's mantle leads to significant non-linear effects on traveltimes for 10 per cent of the applied phases.
NASA Astrophysics Data System (ADS)
Davis, P. M.; Foote, E. J.; Stubailo, I.; Phillips, K. E.; Clayton, R. W.; Skinner, S.; Audin, L.; Tavera, H.; Dominguez Ramirez, L. A.; Lukac, M. L.
2010-12-01
This work describes preliminary tomography results from the Peru Seismic Experiment (PERUSE) a 100 station broadband seismic network installed in Peru. The network consists a linear array of broadband seismic stations that was installed mid-2008 that runs from the Peruvian coast near Mollendo to Lake Titicaca. A second line was added in late 2009 between Lake Titicaca and Cusco. Teleseismic and local earthquake travel time residuals are being combined in the tomographic inversions. The crust under the Andes is found to be 70-80 km thick decreasing to 30 km near the coast. The morphology of the Moho is consistent with the receiver function images (Phillips et al., 2010; this meeting) and also gravity. Ray tracing through the heterogeneous structure is used to locate earthquakes. However the rapid spatial variation in crustal thickness, possibly some of the most rapid in the world, generates shadow zones when using conventional ray tracing for the tomography. We use asymptotic ray theory that approximates effects from finite frequency kernels to model diffracted waves in these regions. The observation of thickened crust suggests that models that attribute the recent acceleration of the Altiplano uplift to crustal delamination are less likely than those that attribute it to crustal compression.
LETTER TO THE EDITOR: Free-response operator characteristic models for visual search
NASA Astrophysics Data System (ADS)
Hutchinson, T. P.
2007-05-01
Computed tomography of diffraction enhanced imaging (DEI-CT) is a novel x-ray phase-contrast computed tomography which is applied to inspect weakly absorbing low-Z samples. Refraction-angle images which are extracted from a series of raw DEI images measured in different positions of the rocking curve of the analyser can be regarded as projections of DEI-CT. Based on them, the distribution of refractive index decrement in the sample can be reconstructed according to the principles of CT. How to combine extraction methods and reconstruction algorithms to obtain the most accurate reconstructed results is investigated in detail in this paper. Two kinds of comparison, the comparison of different extraction methods and the comparison between 'two-step' algorithms and the Hilbert filtered backprojection (HFBP) algorithm, draw the conclusion that the HFBP algorithm based on the maximum refraction-angle (MRA) method may be the best combination at present. Though all current extraction methods including the MRA method are approximate methods and cannot calculate very large refraction-angle values, the HFBP algorithm based on the MRA method is able to provide quite acceptable estimations of the distribution of refractive index decrement of the sample. The conclusion is proved by the experimental results at the Beijing Synchrotron Radiation Facility.
Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research
Alaidi, Osama; Rames, Matthew J.
2016-01-01
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. PMID:26087941
NASA Astrophysics Data System (ADS)
Reif-Acherman, Simón
2014-12-01
The Swedish astronomer Anders Jonas Ångström, born two centuries ago and professor of physics at Uppsala University, was one of the founders of optical spectroscopy. By using diffraction gratings out of glass plates with fine scorings across the face, he was able to observe the spectrum of the Sun, announcing in 1862 that he had discovered the lines of hydrogen in the solar spectrum. His most important work, ;Recherches sur la Spectre Solaire;, including an atlas of close to a thousand spectral lines, became the standard of spectroscopy for at least a quarter of a century. This article deals with his life as well as his main contributions to the development of several areas of physical science, stressing his pioneer activities in spectroscopy.
The nucleation and growth mechanism of Ni-Sn eutectic in a single crystal superalloy
NASA Astrophysics Data System (ADS)
Jiang, Weiguo; Wang, Li; Li, Xiangwei; Lou, Langhong
2017-12-01
The microstructure of single crystal superalloy with and without tin layer on the surface of as-cast and heat-treatment state was investigated by optical microscope (OM) and scanning electron microscopy (SEM). The composition of different regions on the surface was tested by energy dispersive X-ray (EDS). The reaction intermetallic compound (IMC) formed in the heat treatment process was confirmed by X-ray diffraction (XRD). The orientations of different microstructure in samples as heat treatment state were determined by electron back-scattering diffraction (EBSD) method. The porosity location in the interdendritic region was observed by X-ray computed tomography (XCT). The experiment results showed that the remained Sn on the surface of the superalloy reacted with Ni, and then formed Ni3Sn4 in the as-cast state. Sn enriched by diffusion along the porosity located in the interdendritic region and γ + γ‧ (contain a little of Sn) eutectic and Ni3Sn2 formed in single crystal superalloy during heat treatment, and the recalescence behaviors were found. Ni3Sn2 nucleated independently in the cooled liquid at the front of (γ + γ‧) (Sn) eutectic. The nucleation and growth mechanism of the eutectic and Ni3Sn2 IMC during heat treatment was discussed in the present paper.
Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro
2016-06-20
Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.
Priors for X-ray in-line phase tomography of heterogeneous objects.
Langer, Max; Cloetens, Peter; Hesse, Bernhard; Suhonen, Heikki; Pacureanu, Alexandra; Raum, Kay; Peyrin, Françoise
2014-03-06
We present a new prior for phase retrieval from X-ray Fresnel diffraction patterns. Fresnel diffraction patterns are achieved by letting a highly coherent X-ray beam propagate in free space after interaction with an object. Previously, either homogeneous or multi-material object assumptions have been used. The advantage of the homogeneous object assumption is that the prior can be introduced in the Radon domain. Heterogeneous object priors, on the other hand, have to be applied in the object domain. Here, we let the relationship between attenuation and refractive index vary as a function of the measured attenuation index. The method is evaluated using images acquired at beamline ID19 (ESRF, Grenoble, France) of a phantom where the prior is calculated by linear interpolation and of a healing bone obtained from a rat osteotomy model. It is shown that the ratio between attenuation and refractive index in bone for different levels of mineralization follows a power law. Reconstruction was performed using the mixed approach but is compatible with other, more advanced models. We achieve more precise reconstructions than previously reported in literature. We believe that the proposed method will find application in biomedical imaging problems where the object is strongly heterogeneous, such as bone healing and biomaterials engineering.
Cai, Xiangran; Zhou, Qingchun; Yu, Juan; Xian, Zhaohui; Feng, Youzhen; Yang, Wencai; Mo, Xukai
2014-10-01
To evaluate the impact of reduced-radiation dual-energy (DE) protocols using 320-detector row computed tomography on the differentiation of urinary calculus components. A total of 58 urinary calculi were placed into the same phantom and underwent DE scanning with 320-detector row computed tomography. Each calculus was scanned 4 times with the DE protocols using 135 kV and 80 kV tube voltage and different tube current combinations, including 100 mA and 570 mA (group A), 50 mA and 290 mA (group B), 30 mA and 170 mA (group C), and 10 mA and 60 mA (group D). The acquisition data of all 4 groups were then analyzed by stone DE analysis software, and the results were compared with x-ray diffraction analysis. Noise, contrast-to-noise ratio, and radiation dose were compared. Calculi were correctly identified in 56 of 58 stones (96.6%) using group A and B protocols. However, only 35 stones (60.3%) and 16 stones (27.6%) were correctly diagnosed using group C and D protocols, respectively. Mean noise increased significantly and mean contrast-to-noise ratio decreased significantly from groups A to D (P <.05). In addition, the effective dose decreased markedly from groups A to D at 3.78, 1.81, 1.07, and 0.37 mSv, respectively. Decreasing the DE tube currents from 100 mA and 570 mA to 50 mA and 290 mA resulted in 96.6% accuracy for urinary calculus component analysis while reducing patient radiation exposure to 1.81 mSv. Further reduction of tube currents may compromise diagnostic accuracy. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.
2018-02-01
Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.
Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research
Ercius, Peter; Alaidi, Osama; Rames, Matthew J.; ...
2015-06-18
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is amore » technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. Here, this review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. Electron tomography produces quantitative 3D reconstructions for biological and physical sciences from sets of 2D projections acquired at different tilting angles in a transmission electron microscope. Finally, state-of-the-art techniques capable of producing 3D representations such as Pt-Pd core-shell nanoparticles and IgG1 antibody molecules are reviewed.« less
NASA Astrophysics Data System (ADS)
King, A.; Guignot, N.; Boulard, E.; Deslandes, J. P.; Clark, A. N.; Morard, G.; Itié, J. P.
2017-12-01
Synchrotron diffraction is an ideal technique for investigating materials at high pressure and temperature, because the penetrating nature of high-energy X-rays allows measurements to be made inside pressure cells or sample environments. Wang et al. described the CAESAR acquisition strategy, in which energy and angular dispersive techniques are combined to produce an instrument particularly suitable for quantitative measurements from samples inside high-pressure apparati [1]. The PSICHE beam line of the SOLEIL Synchrotron is equipped with such a CAESAR system. Uniquely, this system allows energy dispersive diffraction spectra to be acquired at scattering angles between -5 and +30 degrees two theta, while maintaining a sphere of confusion at the measurement position in the order of 10 microns. The slits used to define the scattering angle act as Soller slits and select the diffracted volume, separating the sample from its environment. By developing an optimised acquisition strategy we are able to obtain data covering a very wide Q range (to 160nm-1 or more), while minimising the total acquisition time (one hour per complete acquisition). In addition, the 2D nature (angle and energy) of the acquired dataset enables the effective incident spectrum to be efficiently determined with no addition measurements, in order to normalise the acquired data. The resulting profile of scattered intensity as a function of Q is suitable for Fourier transform analysis of liquid or amorphous structures. PSICHE is a multi technique beam line, with a part of the beam time dedicated to parallel beam absorption and phase contrast radiography and tomography [2]. Examples will be given to show how these techniques can be combined with diffraction techniques to greatly enrich studies of materials at extreme conditions. [1] Wang, Y., Uchida, T., Von Dreele, R., Rivers, M. L., Nishiyama, N., Funakoshi, K., Nozawa, A., and Keneko, H., J. Appl. Crystallogr. 37, 947 (2004). [2] King, A., Guignot, N., Zerbino, P., Boulard, E., Desjardins, K., Bourdessoule, M., Leclerq, N., Le, S., Renaud, G., Cerato, M., Bornert, M., Lenoir, N., Delzon, S., Perrillat, J.-P., Legodec, Y., Itié, J.-P. Rev. Sci. Instrum. 87, 093704 (2016).
Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.
Effect of Silicon in U-10Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautz, Elizabeth J.; Devaraj, Arun; Kovarik, Libor
2017-08-31
This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showedmore » that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.« less
Differentiation of grain orientation with corrosive and colour etching on a granular bainitic steel.
Reisinger, S; Ressel, G; Eck, S; Marsoner, S
2017-08-01
This study presents a detailed verification of the etching methods with Nital and Klemm on a granular bainitic steel. It is shown that both methods allow the identification of the crystal orientation, whereas Klemm etching enables also a quantification of the apparent phases, as also retained austenite can be distinguished from the other bainitic microstructures. A combination of atom probe tomography with electron-back-scattered-diffraction showed that both etching methods emphasize the bainitic {100} crystal orientation. However, a cross-section produced by focused ion beam evidenced that Klemm etching leads to the formation of a topography of the different oriented bainitic crystals that directly affects the thickness and therefore the apparent colour of the deposited layer formed during etching. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tempering of low-temperature bainite
Peet, Mathew J.; Babu, Sudarsanam Suresh; Miller, Mike K.; ...
2017-04-10
Electron microscopy, X-ray diffraction, and atom probe tomography have been used to identify the changes which occur during the tempering of a carbide-free bainitic steel transformed at 473 K (200 °C). Partitioning of solute between ferrite and thin-films of retained austenite was observed on tempering at 673 K (400 °C) for 30 minutes. After tempering at 673 K (400 °C) and 773 K (500 °C) for 30 minutes, cementite was observed in the form of nanometre scale precipitates. Here, proximity histograms showed that the partitioning of solutes other than silicon from the cementite was slight at 673 K (400 °C)more » and more obvious at 773 K (500 °C). In both cases, the nanometre scale carbides are greatly depleted in silicon.« less
Harker, N. J.; Hallam, K. R.; Paraskevoulakos, C.; Banos, A.; Rennie, S.; Jowsey, J.
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed. PMID:26176551
An improved interface to process GPR data by means of microwave tomography
NASA Astrophysics Data System (ADS)
Catapano, Ilaria; Affinito, Antonio; Soldovieri, Francesco
2015-04-01
Ground Penetrating Radar (GPR) systems are well assessed non-invasive diagnostic tools, which are worth being considered in civil engineering surveys since they allow to gather information on constructive materials and techniques of manmade structures as well as on the aging and risk factors affecting their healthiness. However, the practical use of GPR depends strictly on the availability of data processing tools, on one hand, capable of providing reliable and easily interpretable images of the probed scenarios and, on the other side, easy to be used by not expert users. In this frame, 2D and full 3D microwave tomographic approaches based on the Born approximation have been developed and proved to be effective in several practical conditions [1, 2]. Generally speaking, a GPR data processing chain exploiting microwave tomography is made by two main steps: the pre-processing and the data inversion. The pre-processing groups standard procedures like start time correction, muting and background removal, which are performed in time domain to remove the direct antennas coupling, to reduce noise and to improve the targets footprint. The data inversion faces the imaging as the solution of a linear inverse scattering problem in the frequency domain. Hence, a linear integral equation relating the scattered field (i.e. the data) to the unknown electric contrast function is solved by using the truncated Singular Value Decomposition (SVD) as a regularized inversion scheme. Pre-processing and the data inversion are linked by a Discrete Fourier Transform (DFT), which allows to pass from the time domain to the frequency domain. In this respect, a frequency analysis of the GPR signals (traces) is also performed to identify the actual frequency range of the data. Unfortunately, the adoption of microwave tomography is strongly subjected to the involvement of expert people capable of managing properly the processing chain. To overcome this drawback, a couple of years ago, an end-user friendly software interface was developed to make possible a simple management of 2D microwave tomographic approaches [3]. Aim of this communication, is to present a novel interface, which is a significantly improved version with respect to the previous one. In particular, the new interface allows both 2D and full 3D imaging by taking as input GPR data gathered by means of different measurement configurations, i.e. by using down looking systems, with the antenna located close to the air-medium interface or at non negligible (in terms of the probing wavelength) distance from it, as well as by means of airborne and forward looking systems. In this frame, the users can select the data format among those of the most common commercial GPR systems or process data gathered by means of GPR prototypes, provided that they are saved in ASCII format. Moreover, the users can perform all the steps, which are needed to obtain tomographic images, and select the Born approximation based approach most suitable to the adopted measurement configuration. Raw-radargrams, intermediate and final results can be displayed for users convenience. REFERENCES [1] I. Catapano, R. Di Napoli, F. Soldovieri, M. Bavusi, A. Loperte, J. Dumoulin, "Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site", J. Geophys. Eng. 9, S100-S107, 2012. [2] I. Catapano, A. Affinito, G. Gennarelli, F.di Maio, A. Loperte, F. Soldovieri, "Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting", Appl. Phys. A, 2013, DOI 10.1007/s00339-013-8053-0. [3] I. Catapano, A. Affinito, F. Soldovieri, A user friendly interface for microwave tomography enhanced GPR surveys", EGU General Assembly 2013, vol. 15.
Powassan Virus—A New Reemerging Tick-Borne Disease
Fatmi, Syed Soheb; Zehra, Rija; Carpenter, David O.
2017-01-01
Powassan virus is a neurovirulent flavivirus consisting of two lineages causing meningoencephalitis. It is the only member of the tick-borne encephalitis serogroup which is present in mainland North America. With a total number of 27 cases from 1958 to 1998 and 98 cases from 1999 to 2016, reported cases have increased by 671% over the last 18 years. Powassan infection is transmitted by different tick species in different geographical regions. Ixodes scapularis is the primary vector that transmits the virus on the East Coast of US and Ixodes cookei in the Midwest and Canada, while Hemaphysalis longicornis is the vector in Russia. Powassan has no singular pathognomonic finding and presents with a wide spectrum of symptoms including severe neurological symptoms. The clinical challenge lies within the management of the disease as there is no standard diagnostic protocol and most cases are only diagnosed after a patient goes through an extensive workup for other infectious disease. The diagnosis is established by a combination of imaging and serologic tests. In case of Powassan meningoencephalitis, computed tomography scan and magnetic resonance imaging show vascular insults, which are also seen in cases of tick-borne encephalitis virus, another flavivirus of medical importance. Serologic tests are the gold standard for diagnosis, although testing is not widely available and only state health departments and Center for Disease Control and Prevention can perform Powassan-specific IgM antibody testing utilizing enzyme-linked immunosorbent assay and immunofluorescence antibody. Powassan is also of veterinary medical importance. Wildlife animals act as a reservoir to the pathogens, hence possessing threat to humans and domestic animals. This review highlights Powassan’s neurotropic presentation, epidemiology, diagnostic challenges, and prevalence. Strong emphasis is placed on establishing diagnostic protocols, widespread Powassan-specific IgM testing, role of the vector in disease presentation, and necessary preventive research. PMID:29312918
Reinprecht, Faina; Axelsson, Johan; Siennicki-Lantz, Arkadiusz; Elmståhl, Sölve
2008-01-01
BACKGROUND: “Men born in 1914” is a population-based cohort study of the epidemiology of cardiovascular and cerebral disease. Little is known about how diurnal variation in blood pressure (BP) levels influence cerebral perfusion in very elderly populations. OBJECTIVES: To study the association between systolic (SBP) and diastolic BP (DBP) levels, during the day and at night, expressed through 24 h ambulatory BP monitoring (ABPM) and regional cerebral blood flow (rCBF) disturbances. METHODS: A cross-sectional study from a population-based cohort of 108 men 81 years of age (born in 1914) was performed in an out-patient university clinic. Cerebral blood flow measurements using 99mTc-hexamethylpropyleneamine oxime single photon emission computed tomography and 24 h ABPM were performed. Eleven men were excluded due to incomplete ABPM data. RESULTS: Mean DBP at night for each tertile was correlated to rCBF for the medial temporal right (P=0.012) and left (P=0.039) regions. Also, DBP during the day was correlated to the medial temporal right region (P=0.025). When analyses were stratified for DBP during the day, subjects with high DBP during the day (greater than 70 mmHg) showed a stronger association between low medial temporal right rCBF and low mean DBP at night (r=0.32, P=0.009) compared with subjects who had a lower daytime DBP. A corresponding positive correlation was noted for the medial temporal left region and daytime SBP, whereas a negative correlation was noted for frontal left region blood flow and SBP at night. CONCLUSIONS: A significant association was seen between low BP levels, especially at night, and rCBF in subjects with otherwise normal daytime DBP that may indicate a risk for nocturnal cerebral ischemia. PMID:22477391
Seeberger, Robin; Kater, Wolfgang; Schulte-Geers, Michael; Davids, Rolf; Freier, Kolja; Thiele, Oliver
2011-07-01
Different devices are available to aid surgically-assisted maxillary expansion. In this study we have evaluated the changes to the anchoring teeth, the hard palate, and the lower nasal passage made by tooth-borne distraction devices. Thirty-one patients (mean (SD) age 28 (2) years) with deficiencies in the transverse width of the maxilla were examined by computed tomography and cone beam scans before and after operation. The data were analysed with the help of Wilcoxon's signed rank test and Spearman's r correlation. The mean (SD) distraction width was 6.5 (2.3) mm. All anchorage teeth were tilted (p<0.01). The axes changed by a mean (SD) of 4.8 (0.9)° in the first premolar and 3.1 (0.8)° in the first molar. The nasal isthmus increased by a mean (SD) of 2.5 (0.3) mm. The hard palate adjacent to the anchoring teeth increased anteriorly by a mean (SD) of 2.8 (0.4) mm and posteriorly by 2.7 (0.4) mm. The hard palate was lowered by 1.2 (0.8) mm. There was a significant correlation in the distraction width, with changes in the intercoronal and interapical distances of the anchoring premolars (p<0.05) and with the interapical distance of the anchoring molars (p<0.01). There was also a correlation between the distraction width and the overall gain in width of the lower nasal passage (p<0.05). The results suggested that surgically-assisted maxillary expansion with tooth-borne devices has significant effects on the anchoring teeth, the nasal floor, and the hard palate. Both tilting of the teeth and an evenly distributed movement of the segments were seen. Copyright © 2010 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
High resolution TEM and 3D imaging of polymer-based and dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Suh, Youngjoon
Since 1950s, solar energy has been the most attractive energy source as an alternative to fossil fuels including oil and natural gas. However, these types of solar cells have high raw material and manufacturing costs. So, alternative solar cells using low cost materials and manufacturing processes have been actively studied for more than 10 years. The power conversion efficiency of some of the alternative solar cells has been recently improved so much as to be used for real life applications in the near future. However, their relatively short lifetime still remains as a bottleneck in their commercialized use. In this dissertation, we studied cross sections of three types of solar cells using TEM micrographs and TEM related analysis methods; selected area diffraction, energy dispersive spectroscopy, electron tomography, and nanobeam diffraction. A thin Ag layer used for a top metal electrode in an inverted polymer solar cell was broken down into particles. Absorption of water by the PEDOT:PSS layer followed by corrosion of the Ag layer was thought to be the main cause of this phenomenon. The structure and materials of the photoactive layer in hybrid polymer solar cells have an important influence on the performance of the solar cell devices. Three kinds of efforts were made to improve the electrical characteristics of the devices; removal of a dark TiO2 layer at the polymer/TiO2 interface, using bulk heterojunction structures, and coating a fullerene interlayer on the inorganic nanostructure. An optimum concentration of carbon nanotubes (CNTs) combined with Ru could increase the interface area of CNTs, and improve the performances of dye sensitized solar cells. In order to develop plastic solar cell, two different methods of mixing TiO2 particles with either nanoglues or PMMA were tried. Cross-sectional TEM microstructures were examined to come up with optimum processing parameters such as the sintering temperature and the amount of PMMA added into the structure. Cross-sectional TEM and electron tomography have been very useful for developing new kinds of solar cell structures as well as finding various defects in the structures.
Static and dynamic structural characterization of nanomaterial catalysts
NASA Astrophysics Data System (ADS)
Masiel, Daniel Joseph
Heterogeneous catalysts systems are pervasive in industry, technology and academia. These systems often involve nanostructured transition metal particles that have crucial interfaces with either their supports or solid products. Understanding the nature of these interfaces as well as the structure of the catalysts and support materials themselves is crucial for the advancement of catalysis in general. Recent developments in the field of transmission electron microscopy (TEM) including dynamic transmission electron microscopy (DTEM), electron tomography, and in situ techniques stand poised to provide fresh insight into nanostructured catalyst systems. Several electron microscopy techniques are applied in this study to elucidate the mechanism of silica nanocoil growth and to discern the role of the support material and catalyst size in carbon dioxide and steam reforming of methane. The growth of silica nanocoils by faceted cobalt nanoparticles is a process that was initially believed to take place via a vapor-liquid-solid growth mechanism similar to other nanowire growth techniques. The extensive TEM work described here suggests that the process may instead occur via transport of silicate and silica species over the nanoparticle surface. Electron tomography studies of the interface between the catalyst particles and the wire indicate that they grow from edges between facets. Studies on reduction of the Co 3O4 nanoparticle precursors to the faceted pure cobalt catalysts were carried out using DTEM and in situ heating. Supported catalyst systems for methane reforming were studied using dark field scanning TEM to better understand sintering effects and the increased activity of Ni/Co catalysts supported by carbon nanotubes. Several novel electron microscopy techniques are described including annular dark field DTEM and a metaheuristic algorithm for solving the phase problem of coherent diffractive imaging. By inserting an annular dark field aperture into the back focal plane of the objective lens in a DTEM, time-resolved dark field images can be produced that have vastly improved contrast for supported catalyst materials compared to bright field DTEM imaging. A new algorithm called swarm optimized phase retrieval is described that uses a population-based approach to solve for the missing phases of diffraction data from discrete particles.
Hiatal hernia uptake of iodine-131 mimicking mediastinal metastasis of papillary thyroid carcinoma.
Haghighatafshar, Mahdi; Khajehrahimi, Farnaz
2015-01-01
There are a few case reports of hiatal hernia demonstrating thoracic uptake on I-131 scintigraphy. In this case, high thyroglobulin levels in combination with misinterpretation of I-131 uptake in the mediastinum, leaded to mismanagement of the patient. Here we present a case of focal I-131 uptake within a hiatal hernia initially mimicking an isolated mediastinal metastasis. There are many potential causes of false-positive I-131 scan result. In this case, adjunctive chest computed tomography and gastroesophageal barium study helped to elucidate the true nature of this I-131 uptake. False-positive findings may be caused by a wide variety of nonthyroidal carcinomas, which can concentrate radioiodine or from skin contamination. Several organs, such as the gastric, salivary glands, renal cyst, pericardial effusion, and ovarian can accumulate I-131. It should be borne in mind as a potential source of false-positive whole-body I-131 imaging.
Multiscale solvers and systematic upscaling in computational physics
NASA Astrophysics Data System (ADS)
Brandt, A.
2005-07-01
Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These algorithms employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in ways which use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential equations, highly efficient multiscale techniques have more recently been developed for many other types of computational tasks, including: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fields; fast computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; astrophysics; molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state optimization; practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sampling in statistical physics; and general, systematic methods of upscaling (accurate numerical derivation of large-scale equations from microscopic laws).
Geoscience Applications of Synchrotron X-ray Computed Microtomography
NASA Astrophysics Data System (ADS)
Rivers, M. L.
2009-05-01
Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of cracks in rocks at potential nuclear waste repositories. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.
Hassan, Ghada S
2013-01-01
This chapter includes the aspects of Menadione (vitamin K). The drug is synthesized by the use of itaconic acid obtained through Friedel-Craft condensation or by direct oxidation of the 2-methyl-1,4-naphthquinone. Vitamin K generally maintains healthy blood clotting and prevents excessive bleeding and hemorrhage, it is also important for maintaining healthy bone structure and for carbohydrate storage in the body. In addition, it is given to newborn babies born in hospitals to prevent the development of life-threatening bleeding caused by low prothrombin levels. The chapter discusses the drug metabolism and pharmacokinetics and presents various method of analysis of this drug such as compendial tests, electrochemical analysis, spectroscopic analysis, and chromatographic techniques of separation. It also discusses its physical properties such as solubility characteristics, X-ray powder diffraction pattern, and thermal methods of analysis. The chapter is concluded with a discussion on its biological properties such as activity, toxicity, and safety. Copyright © 2013 Elsevier Inc. All rights reserved.
Reflectance of topologically disordered photonic-crystal films
NASA Astrophysics Data System (ADS)
Vigneron, Jean-Pol; Lousse, Virginie M.; Biro, Laszlo P.; Vertesy, Zofia; Balint, Zolt
2005-04-01
Periodicity implies the creation of discretely diffracted beams while various departures from periodicity lead to broadened scattering angles. This effect is investigated for disturbed lattices exhibiting randomly varying periods. In the Born approximation, the diffused reflection is shown to be related to a pair correlation function constructed from the distribution of the film scattering power. The technique is first applied to a natural photonic crystal found on the ventral side of the wings of the butterfly Cyanophrys remus, where scanning electron microscopy reveals the formation of polycrystalline photonic structures. Second, the disorder in the distribution of the cross-ribs on the scales another butterfly, Lycaena virgaureae, is investigated. The irregular arrangement of scatterers found in chitin structure of this insect produces light reflection in the long-wavelength part of the visible range, with a quite unusual broad directionality. The use of the pair correlation function allows to propose estimates of the diffusive spreading in these very different systems.
Ab initio study of phase stability of NaZr{sub 2}(PO{sub 4}){sub 3} under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinnappan, Ravi; Kaur, Gurpreet; Panigrahi, B. K.
2016-05-23
The elastic constants of NaZr{sub 2}(PO{sub 4}){sub 3} were computed as a function of pressure through Density Functional Theory calculations. The behavior of elastic constants show that the rhombohedral (R-3c) NaZr{sub 2}(PO{sub 4}){sub 3} becomes unstable above 8 GPa and is driven by softening of C{sub 44} through one of the Born stability criteria. High pressure equation of state and enthalpy show further that the ambient rhombohedral (R-3c)) NaZr{sub 2}(PO{sub 4}){sub 3} transforms first to another rhombohedral (R3) phase and subsequently to LiZr{sub 2}(PO{sub 4}){sub 3}-type orthorhombic phase at pressures above 6 and 8 GPa respectively which are in agreement with recentmore » X-ray diffraction study.« less
Passive isolation/damping system for the Hubble space telescope reaction wheels
NASA Technical Reports Server (NTRS)
Hasha, Martin D.
1987-01-01
NASA's Hubble Space Telescope contain large, diffraction limited optics with extraordinary resolution and performance for surpassing existing observatories. The need to reduce structural borne vibration and resultant optical jitter from critical Pointing Control System components, Reaction Wheels, prompted the feasibility investigation and eventual development of a passive isolation system. Alternative design concepts considered were required to meet a host of stringent specifications and pass rigid tests to be successfully verified and integrated into the already built flight vehicle. The final design employs multiple arrays of fluid damped springs that attenuate over a wide spectrum, while confining newly introduced resonances to benign regions of vehicle dynamic response. Overall jitter improvement of roughly a factor of 2 to 3 is attained with this system. The basis, evolution, and performance of the isolation system, specifically discussing design concepts considered, optimization studies, development lessons learned, innovative features, and analytical and ground test verified results are presented.
Miorin, Lisa; Romero-Brey, Inés; Maiuri, Paolo; Hoppe, Simone; Krijnse-Locker, Jacomine; Bartenschlager, Ralf; Marcello, Alessandro
2013-06-01
Flavivirus replication is accompanied by the rearrangement of cellular membranes that may facilitate viral genome replication and protect viral components from host cell responses. The topological organization of viral replication sites and the fate of replicated viral RNA are not fully understood. We exploited electron microscopy to map the organization of tick-borne encephalitis virus (TBEV) replication compartments in infected cells and in cells transfected with a replicon. Under both conditions, 80-nm vesicles were seen within the lumen of the endoplasmic reticulum (ER) that in infected cells also contained virions. By electron tomography, the vesicles appeared as invaginations of the ER membrane, displaying a pore that could enable release of newly synthesized viral RNA into the cytoplasm. To track the fate of TBEV RNA, we took advantage of our recently developed method of viral RNA fluorescent tagging for live-cell imaging combined with bleaching techniques. TBEV RNA was found outside virus-induced vesicles either associated to ER membranes or free to move within a defined area of juxtaposed ER cisternae. From our results, we propose a biologically relevant model of the possible topological organization of flavivirus replication compartments composed of replication vesicles and a confined extravesicular space where replicated viral RNA is retained. Hence, TBEV modifies the ER membrane architecture to provide a protected environment for viral replication and for the maintenance of newly replicated RNA available for subsequent steps of the virus life cycle.
Computational high-resolution optical imaging of the living human retina
NASA Astrophysics Data System (ADS)
Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.
2015-07-01
High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.
Homogeneity of lithium distribution in cylinder-type Li-ion batteries
Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.
2015-01-01
Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode. PMID:26681110
Growth studies at bulk III-Vs by image processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donecker, J.; Hempel, G.; Kluge, J.
1996-12-01
The patterns of inhomogeneities in GaAs and InP are studied by scattering and diffraction of light. An adapted version of laser scattering tomography is used for observations with short exposure times and large fields. The information about the three-dimensional distribution of the scatterers in GaAs are evaluated by video travels through the crystal and images of intensities added in interesting directions. Near-infrared transmission and striation distance mapping act like special data compression techniques due to their optical principles. In general, columnar extension of cellular patterns and striations could not be detected in s.i. GaAs. Long-range correlations exist for lineages andmore » slip lines. The comparison with the behavior of striations in doped InP cannot confirm the idea that cellular patterns in GaAs originate from constitutional supercooling during solidification.« less
Active illumination using a digital micromirror device for quantitative phase imaging.
Shin, Seungwoo; Kim, Kyoohyun; Yoon, Jonghee; Park, YongKeun
2015-11-15
We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution 2D synthetic aperture phase image and a 3D refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination-control capability of the proposed method by imaging colloidal spheres and biological cells. The capability of high-speed optical diffraction tomography is also demonstrated by measuring 3D Brownian motion of colloidal particles with the tomogram acquisition rate of 100 Hz.
GMTIFS: The Giant Magellan Telescope integral fields spectrograph and imager
NASA Astrophysics Data System (ADS)
Sharp, Rob; Bloxham, G.; Boz, R.; Bundy, D.; Davies, J.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Vaccarella, A.; Vest, C.; Young, P.; McGregor, P.
2016-08-01
GMTIFS is the first-generation adaptive optics integral-field spectrograph for the GMT, having been selected through a competitive review process in 2011. The GMTIFS concept is for a workhorse single-object integral-field spectrograph, operating at intermediate resolution (R 5,000 and 10,000) with a parallel imaging channel. The IFS offers variable spaxel scales to Nyquist sample the diffraction limited GMT PSF from λ 1-2.5 μm as well as a 50 mas scale to provide high sensitivity for low surface brightness objects. The GMTIFS will operate with all AO modes of the GMT (Natural guide star - NGSAO, Laser Tomography - LTAO, and, Ground Layer - GLAO) with an emphasis on achieving high sky coverage for LTAO observations. We summarize the principle science drivers for GMTIFS and the major design concepts that allow these goals to be achieved.
Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Zhenke; Zhang, F; Miller, Michael K
2012-01-01
NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model inmore » the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.« less
Rementeria, Rosalia; Poplawsky, Jonathan D.; Aranda, Maria M.; ...
2016-12-19
Current studies using atom probe tomography (APT) show that bainitic ferrite formed at low temperature contains more carbon than what is consistent with the paraequilibrium phase diagram. However, nanocrystalline bainitic ferrite exhibits a non-homogeneous distribution of carbon atoms in arrangements with specific compositions, i.e. Cottrell atmospheres, carbon clusters, and carbides, in most cases with a size of a few nanometers. The ferrite volume within a single platelet that is free of these carbon-enriched regions is extremely small. Proximity histograms can be compromised on the ferrite side, and a great deal of care should be taken to estimate the carbon contentmore » in regions of bainitic ferrite free from carbon agglomeration. For this purpose, APT measurements were first validated for the ferritic phase in a pearlitic sample and further performed for the bainitic ferrite matrix in high-silicon steels isothermally transformed between 200 °C and 350 °C. Additionally, results were compared with the carbon concentration values derived from X-ray diffraction (XRD) analyses considering a tetragonal lattice and previous APT studies. In conclusion, the present results reveal a strong disagreement between the carbon content values in the bainitic ferrite matrix as obtained by APT and those derived from XRD measurements. Those differences have been attributed to the development of carbon-clustered regions with an increased tetragonality in a carbon-depleted matrix.« less
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
Long working distance optical coherence tomography for pediatric imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Qian, Ruobing; Carrasco-Zevallos, Oscar; Vajzovic, Lejla; Gramatikov, Boris I.; Guyton, David L.; Toth, Cynthia A.; Izatt, Joseph A.
2016-03-01
Conventional optical coherence tomography (OCT) systems have working distances of about 25 mm, and require cooperative subjects to immobilize and fixate on a target. Handheld OCT probes have also been demonstrated for successful imaging of pre-term infants and neonates up to ~1 year old. However, no technology yet exists for OCT in young children due to their lack of attention and inherent fear of large objects close to their face. In this work, we demonstrate a prototype retinal swept-source OCT system with a long working distance (from the last optical element to the subject's eye) to facilitate pediatric imaging. To reduce the footprint and weight of the system compared to the conventional 4f scheme, a novel 2f scanning configuration was implemented to achieve a working distance of 348mm with a +/- 8° scanning angle prior to cornea. Employing two custom-designed lenses, the system design resolution was nearly diffraction limited throughout a -8D to +5D refractive corrections. A fixation target displayed on a LCD monitor and an iris camera were used to facilitate alignment and imaging. Our prototype was tested in consented adult subjects and has the potential to facilitate imaging of young children. With this apparatus, young children could potentially sit comfortably in caretaker's lap while viewing entertainment on the fixation screen designed to direct their gaze into the imaging apparatus.
NASA Astrophysics Data System (ADS)
LaRocca, Francesco; Nankivil, Derek; Keller, Brenton; Farsiu, Sina; Izatt, Joseph A.
2017-02-01
Handheld optical coherence tomography (OCT) systems facilitate imaging of young children, bedridden subjects, and those with less stable fixation. Smaller and lighter OCT probes allow for more efficient imaging and reduced operator fatigue, which is critical for prolonged use in either the operating room or neonatal intensive care unit. In addition to size and weight, the imaging speed, image quality, field of view, resolution, and focus correction capability are critical parameters that determine the clinical utility of a handheld probe. Here, we describe an ultra-compact swept source (SS) OCT handheld probe weighing only 211 g (half the weight of the next lightest handheld SSOCT probe in the literature) with 20.1 µm lateral resolution, 7 µm axial resolution, 102 dB peak sensitivity, a 27° x 23° field of view, and motorized focus adjustment for refraction correction between -10 to +16 D. A 2D microelectromechanical systems (MEMS) scanner, a converging beam-at-scanner telescope configuration, and an optical design employing 6 different custom optics were used to minimize device size and weight while achieving diffraction limited performance throughout the system's field of view. Custom graphics processing unit (GPU)-accelerated software was used to provide real-time display of OCT B-scans and volumes. Retinal images were acquired from adult volunteers to demonstrate imaging performance.
Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography
Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.
2016-01-01
Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800
Regularized Dual Averaging Image Reconstruction for Full-Wave Ultrasound Computed Tomography.
Matthews, Thomas P; Wang, Kun; Li, Cuiping; Duric, Neb; Anastasio, Mark A
2017-05-01
Ultrasound computed tomography (USCT) holds great promise for breast cancer screening. Waveform inversion-based image reconstruction methods account for higher order diffraction effects and can produce high-resolution USCT images, but are computationally demanding. Recently, a source encoding technique has been combined with stochastic gradient descent (SGD) to greatly reduce image reconstruction times. However, this method bundles the stochastic data fidelity term with the deterministic regularization term. This limitation can be overcome by replacing SGD with a structured optimization method, such as the regularized dual averaging method, that exploits knowledge of the composition of the cost function. In this paper, the dual averaging method is combined with source encoding techniques to improve the effectiveness of regularization while maintaining the reduced reconstruction times afforded by source encoding. It is demonstrated that each iteration can be decomposed into a gradient descent step based on the data fidelity term and a proximal update step corresponding to the regularization term. Furthermore, the regularization term is never explicitly differentiated, allowing nonsmooth regularization penalties to be naturally incorporated. The wave equation is solved by the use of a time-domain method. The effectiveness of this approach is demonstrated through computer simulation and experimental studies. The results suggest that the dual averaging method can produce images with less noise and comparable resolution to those obtained by the use of SGD.
Dahlen Receives 2003 Inge Lehmann Medal
NASA Astrophysics Data System (ADS)
Nolet, Guust; Dahlen, Francis A., Jr.
2004-01-01
``I feel honored and pleased to cite my friend and Princeton colleague Tony Dahlen for the Inge Lehmann medal. Given Tony's wide range of important contributions, there is actually a choice of AGU honors one might cite him for; his influence extends well beyond those fields that are primarily associated with the Lehmann Medal. ``Tony started his scientific journey as an undergraduate at Caltech. By the time he moved on to graduate studies with George Backus and Freeman Gilbert at Scripps he was already applying his many talents to geophysics. He soon pioneered a series of papers on normal modes that represent the first substantial step away from Earth's spherical symmetry. In fact, all of the current research on the use of low-frequency seismic data for the determination of the Earth's three-dimensional structure is based on this early work, its extension to an inverse problem, and subsequent research with Martin Smith and John Woodhouse. His interest in the theory of global tomography has survived until this day: Recently he developed a very elegant and efficient theory to include the frequency-dependent effects of diffraction into body wave tomography, a theoretical improvement that was almost immediately rewarded by the imaging of a large number of mantle plumes. These represent the first concrete seismological evidence that many hot spots originate deep in the mantle, confirming Jason Morgan's long-standing hypothesis.
NASA Astrophysics Data System (ADS)
Hansen, Anders K.; Jensen, Ole B.; Sumpf, Bernd; Erbert, Götz; Unterhuber, Angelika; Drexler, Wolfgang; Andersen, Peter E.; Petersen, Paul Michael
2014-02-01
Many applications, e.g., within biomedicine stand to benefit greatly from the development of diode laser-based multi- Watt efficient compact green laser sources. The low power of existing diode lasers in the green area (about 100 mW) means that the most promising approach remains nonlinear frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re-focusing and dispersion compensating optics between the two nonlinear crystals. In the low-power limit, such a cascade of two crystals has the theoretical potential for generation of four times as much power as a single crystal without adding significantly to the complexity of the system. The experimentally achieved power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications, such as optical coherence tomography or multimodal imaging devices, e.g., FTCARS-OCT, based on a strongly pumped ultrafast Ti:Sapphire laser.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V
2015-08-24
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.
Manipulating the motion of large molecules: Information from the molecular frame
NASA Astrophysics Data System (ADS)
Küpper, Jochen
2011-05-01
Large molecules have complex potential-energy surfaces with many local minima. They exhibit multiple stereoisomers, even at the low temperatures (~1 K) in a molecular beam, with rich intra- and intermolecular dynamics. Over the last years, we have developed methods to manipulate the motion of large, complex molecules and to select their quantum states. We have exploited this state-selectivity, for example, to spatially separate individual structural isomers of complex molecules and to demonstrate unprecedented degrees of laser alignment and mixed-field orientation of these molecules. Such clean, well-defined samples strongly benefit, or simply allow, novel experiments on the dynamics of complex molecules, for instance, femtosecond pump-probe measurements, X-ray or electron diffraction of molecular ensembles (including diffraction-from-within experiments), or tomographic reconstructions of molecular orbitals. These samples could also be very advantageous for metrology applications, such as, for example, matter-wave interferometry or the search for electroweak interactions in chiral molecules. Moreover, they provide an extreme level of control for stereo-dynamically controlled reaction dynamics. We have recently exploited these state-selected and oriented samples to measure photoelectron angular distributions in the molecular frame (MFPADs) from non-resonant femtosecond-laser photoionization and using the X-ray Free-Electron-Laser LCLS. We have also investigated X-ray diffraction imaging and, using ion momentum imaging, the induced radiation damage of these samples using the LCLS. This work was carried out within a collaboration for which J. Küpper, H. Chapman, and D. Rolles are spokespersons. The collaboration consists of CFEL (DESY, MPG, University Hamburg), Fritz-Haber-Institute Berlin, MPI Nuclear Physics Heidelberg, MPG Semi-conductor Lab, Aarhus University, FOM AMOLF Amsterdam, Lund University, MPI Medical Research Heidelberg, TU Berlin, Max Born Institute Berlin, and SLAC Menlo Park, CA, USA. The experiments were carried out using CAMP (designed and built by the MPG-ASG at CFEL) at the LCLS (operated by Stanford University on behalf of the US DOE).
Frustrated total internal reflection acoustic field sensor
Kallman, Jeffrey S.
2000-01-01
A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.
Multi-scale mechanics of granular solids from grain-resolved X-ray measurements
NASA Astrophysics Data System (ADS)
Hurley, R. C.; Hall, S. A.; Wright, J. P.
2017-11-01
This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure-property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.
Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications
NASA Astrophysics Data System (ADS)
Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I.; Du Plessis, A.
2018-03-01
Rectangular Ti6Al4V extralow interstitials (ELI) samples were manufactured by laser powder bed fusion (LPBF) in vertical and horizontal orientations relative to the build platform and subjected to various heat treatments. Detailed analyses of porosity, microstructure, residual stress, tensile properties, fatigue, and fracture surfaces were performed based on x-ray micro-computed tomography, scanning electron microscopy, and x-ray diffraction methods. The types of fracture and the tensile fracture mechanisms of the LPBF Ti6Al4V ELI alloy were also studied. Detailed analysis of the microstructure and the corresponding mechanical properties were compared against standard specifications for conventional Ti6Al4V alloy for use in surgical implant applications. Conclusions regarding the mechanical properties and heat treatment of LPBF Ti6Al4V ELI for biomedical applications are made.
Reconstruction methods for phase-contrast tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raven, C.
Phase contrast imaging with coherent x-rays can be distinguished in outline imaging and holography, depending on the wavelength {lambda}, the object size d and the object-to-detector distance r. When r << d{sup 2}{lambda}, phase contrast occurs only in regions where the refractive index fastly changes, i.e. at interfaces and edges in the sample. With increasing object-to-detector distance we come in the area of holographic imaging. The image contrast outside the shadow region of the object is due to interference of the direct, undiffracted beam and a beam diffracted by the object, or, in terms of holography, the interference of amore » reference wave with the object wave. Both, outline imaging and holography, offer the possibility to obtain three dimensional information of the sample in conjunction with a tomographic technique. But the data treatment and the kind of information one can obtain from the reconstruction is different.« less
Nazaretski, E.; Yan, H.; Lauer, K.; ...
2017-10-05
A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less
Strain Measurements of Chondrules and Refraction Inclusion in Allende
NASA Technical Reports Server (NTRS)
Tait, Alastair W.; Fisher, Kent R.; Simon, Justin I.
2013-01-01
This study uses traditional strain measurement techniques, combined with X-ray computerized tomography (CT), to evaluate petrographic evidence in the Allende CV3 chondrite for preferred orientation and to measure strain in three dimensions. The existence of petrofabrics and lineations was first observed in carbonaceous meteorites in the 1960's. Yet, fifty years later only a few studies have reported that meteorites record such features. Impacts are often cited as the mechanism for this feature, although plastic deformation from overburden and nebular imbrication have also been proposed. Previous work conducted on the Leoville CV3 and the Parnallee LL3 chondrites, exhibited a minimum uniaxial shortening of 33% and 21%, respectively. Petrofabrics in Allende CV3 have been looked at before; previous workers using Electron Back Scatter Diffraction (EBSD) found a major-axis alignment of olivine inside dark inclusions and an "augen"-like preferred orientation of olivine grains around more competent chondrules
Characterization of the new neutron imaging and materials science facility IMAT
NASA Astrophysics Data System (ADS)
Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried
2018-04-01
IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, E.; Yan, H.; Lauer, K.
A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less
NASA Astrophysics Data System (ADS)
Hawkins, Cameron; Tschuaner, Oliver; Fussell, Zachary; Smith, Jesse
2017-06-01
A novel approach that spatially identifies inhomogeneities from microscale (defects, con-formational disorder) to mesoscale (voids, inclusions) is developed using synchrotron x-ray methods: tomography, Lang topography, and micro-diffraction mapping. These techniques pro-vide a non-destructive method for characterization of mm-sized samples prior to shock experiments. These characterization maps can be used to correlate continuum level measurements in shock compression experiments to the mesoscale and microscale structure. Specifically examined is a sample of C4. We show extensive conformational disorder in gamma-RDX, which is the main component. Further, we observe that the minor HMX-component in C4 contains at least two different phases: alpha- and beta-HMX. This work supported by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy and by the Site-Directed Research and Development Program. DOE/NV/25946-3071.
NASA Astrophysics Data System (ADS)
Antonov, Stoichko; Sun, Eugene; Tin, Sammy
2018-06-01
Detailed ex-situ electron microscopy and atom probe tomography (APT) were combined with in-situ synchrotron diffraction to systematically quantify the chemical, morphological, and lattice instabilities that occur during aging of a polycrystalline high-refractory content Ni-base superalloy. The morphological changes and splitting phenomenon associated with the secondary γ' precipitates were related to a combination of discrete chemical composition variations at the secondary γ'/γ interfaces and additional chemical energy arising from γ precipitates that form within the secondary γ' particles. The compositional phase inhomogeneities led to the precipitation of finely dispersed tertiary γ' particles within the γ matrix and secondary γ particles within the secondary γ' precipitates, which, along with surface grooving of the secondary γ' particles, likely due to a spike in the lattice misfit at the particle interfaces, contributed to the splitting of the precipitates during aging.
Hard X-ray Microscopy with sub 30 nm Spatial Resolution
NASA Astrophysics Data System (ADS)
Tang, Mau-Tsu; Song, Yen-Fang; Yin, Gung-Chian; Chen, Fu-Rong; Chen, Jian-Hua; Chen, Yi-Ming; Liang, Keng S.; Duewer, F.; Yun, Wenbing
2007-01-01
A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC.
Tomographic phase microscopy and its biological applications
NASA Astrophysics Data System (ADS)
Choi, Wonshik
2012-12-01
Conventional interferometric microscopy techniques such as digital holographic microscopy and quantitative phase microscopy are often classified as 3D imaging techniques because a recorded complex field image can be numerically propagated to a different depth. In a strict sense, however, a single complex field image contains only 2D information on a specimen. The measured 2D image is only a subset of the 3D structure. For the 3D mapping of an object, multiple independent 2D images are to be taken, for example at multiple incident angles or wavelengths, and then combined by the so-called optical diffraction tomography (ODT). In this Letter, tomographic phase microscopy (TPM) is reviewed that experimentally realizes the concept of the ODT for the 3D mapping of biological cells in their native state, and some of its interesting biological and biomedical applications are introduced. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Hunter, Allen H.
Novel high-strength high-toughness alloys strengthened by precipitation are investigated for use in naval applications. The mechanical properties of an experimental steel alloy, NUCu-140, are evaluated and are not suitable for the naval requirements due to poor impact toughness at -40°C. An investigation is conducted to determine optimum processing conditions to restore toughness. A detailed aging study is conducted at 450, 500, and 550°C to determine the evolution of the microstructure and mechanical properties. A combination of transmission electron microscopy (TEM), synchrotron X-ray Diffraction (XRD), and Local electrode atom probe (LEAP) tomography are used to measure the evolution of the Cu precipitates, austenite, NbC, and cementite phases during aging. The evolution of the Cu precipitates significantly affects the yield strength of the steel, but low temperature toughness is controlled by the cementite precipitates. Extended aging is effective at improving the impact toughness but the yield strength is also decreased due to coarsening of the Cu precipitates. To provide a foundation for successful welding of NUCu-140 steel, an investigation of the effects of gas metal arc welding (GMAW) are performed. The microstructures in the base metal (BM), heat affected zone (HAZ), and fusion zone (FZ) of a GMAW sample are analyzed to determine the effects of the welding thermal cycle. Weld simulation samples with known thermal histories are prepared and analyzed by XRD and LEAP tomography. A significant loss in microhardness is observed as a result of dissolution of the Cu precipitates after the weld thermal cycle. The cooling time is too rapid to allow significant precipitation of Cu. In addition to the NUCu-140 alloy, a production HSLA-115 steel alloy is investigated using TEM, XRD, and LEAP tomography. The strength of the HSLA-115 is found to be derived primarily from Cu precipitates. The volume fractions of cementite, austenite, and NbC are measured by XRD. Austenite precipitates are observed at martensite lath boundaries using TEM.
NASA Astrophysics Data System (ADS)
Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu
2016-11-01
A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.
Mugnaioli, Enrico; Gemmi, Mauro; Merlini, Marco; Gregorkiewitz, Michele
2016-01-01
(Nax□1 − x)5[MnO2]13 has been synthesized with x = 0.80 (4), corresponding to Na0.31[MnO2]. This well known material is usually cited as Na0.4[MnO2] and is believed to have a romanèchite-like framework. Here, its true structure is determined, ab initio, by single-crystal electron diffraction tomography (EDT) and refined both by EDT data applying dynamical scattering theory and by the Rietveld method based on synchrotron powder diffraction data (χ2 = 0.690, R wp = 0.051, R p = 0.037, R F2 = 0.035). The unit cell is monoclinic C2/m, a = 22.5199 (6), b = 2.83987 (6), c = 14.8815 (4) Å, β = 105.0925 (16)°, V = 918.90 (4) Å3, Z = 2. A hitherto unknown [MnO2] framework is found, which is mainly based on edge- and corner-sharing octahedra and comprises three types of tunnels: per unit cell, two are defined by S-shaped 10-rings, four by egg-shaped 8-rings, and two by slightly oval 6-rings of Mn polyhedra. Na occupies all tunnels. The so-determined structure excellently explains previous reports on the electrochemistry of (Na,□)5[MnO2]13. The trivalent Mn3+ ions concentrate at two of the seven Mn sites where larger Mn—O distances and Jahn–Teller distortion are observed. One of the Mn3+ sites is five-coordinated in a square pyramid which, on oxidation to Mn4+, may easily undergo topotactic transformation to an octahedron suggesting a possible pathway for the transition among different tunnel structures. PMID:27910840
A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices
NASA Astrophysics Data System (ADS)
Maser, Jörg; Lai, Barry; Buonassisi, Tonio; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Jacobsen, Chris; Preissner, Curt; Roehrig, Chris; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan
2014-01-01
The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick-Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. We furthermore discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar cells, one of the lines of inquiries for which the ISN is being developed.
3D investigation of inclusions in diamonds using X-ray micro-tomography
NASA Astrophysics Data System (ADS)
Parisatto, M.; Nestola, F.; Artioli, G.; Nimis, P.; Harris, J. W.; Kopylova, M.; Pearson, G. D.
2012-04-01
The study of mineral inclusions in diamonds is providing invaluable insights into the geochemistry, geodynamics and geophysics of the Earth's mantle. Over the last two decades, the identification of different inclusion assemblages allowed to recognize diamonds deriving from the deep upper mantle, the transition zone and even the lower mantle. In such research field the in-situ investigation of inclusions using non-destructive techniques is often essential but still remains a challenging task. In particular, conventional 2D imaging techniques (e.g. SEM) are limited to the investigation of surfaces and the lack of access to the third dimension represents a major limitation when trying to extract quantitative information. Another critical aspect is related to sample preparation (cutting, polishing) which is typically very invasive. Nowadays, X-ray computed micro-tomography (X-μCT) allows to overcome such limitations, enabling the internal microstructure of totally undisturbed samples to be visualized in a three-dimensional (3D) manner at the sub-micrometric scale. The final output of a micro-tomography experiment is a greyvalue 3D map of the variations of the X-ray attenuation coefficient (µ) within the studied object. The high X-ray absorption contrast between diamond (almost transparent to X-rays) and the typical inclusion-forming minerals (olivines, garnets, pyroxenes, oxides and sulphides) makes X-μCT a straightforward method for the 3D visualization of inclusions and for the study of their spatial relationships with the diamond host. In this work we applied microfocus X-μCT to investigate silicate inclusions still trapped in diamonds, in order to obtain in-situ information on their exact position, crystal size, shape and X-ray absorption coefficient (which is related to their composition). We selected diamond samples from different deposits containing mainly olivine and garnet inclusions. The investigated samples derived from the Udachnaya pipe (Siberia, Russia), the Jericho Kimberlite (Slave Craton, Canada) and São Luiz-Juina (Brazil). The information obtained by tomographic experiments were combined with X-ray single-crystal diffraction data (see Nestola et al 2011) in order to identify the inclusion parageneses (peridotitic, eclogitic or websteritic) and to finally determine the origin of the studied diamonds. Our results showed that, by combining X-μCT with X-ray diffraction data, it is possible to exactly determine the 3D position of each inclusion together with their crystal size, even though they cannot be detected by using an optical microscope. In addition, such method could have strong crystallographic implications for inclusions still trapped in diamonds as it enables the application of a reliable numerical absorption correction to the 3D intensity data collections. REF. Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J.W., Manghnani, M.H., Fedortchouk, Y. (2011): First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth's mantle. Earth Planet. Sci. Lett., 305, 249-255.
NASA Astrophysics Data System (ADS)
Fankhauser, Kerstin; Guzman, Daisy R. Lucas; Oggier, Nicole; Maurer, Hansruedi; Springman, Sarah M.
2015-04-01
Various types of mass movements cause extensive natural hazards in populated mountain regions. They need to be quantified, and possibly predicted, for implementing effective mitigation and protection measures. The Meretschibach catchment in the Valais area, Switzerland, is a source region for such events. Various forms of instabilities occur on the steep slopes. They manifest themselves in form of smaller rock falls and rock slides on the open scree slopes. Moreover, large sediment volumes of channelized stream deposits can evolve into debris flows, with a substantial run-out along the Meretschibach. Geophysical methods, such as electrical resistivity tomography (ERT) and ground-penetrating-radar (GPR) have been proven to be powerful tools for characterizing mass movements and slope instabilities. They complement other remote sensing techniques and in-situ geotechnical experiments. Ground-based and helicopter-borne GPR measurements were carried out at the Meretschibach test site, to determine the depth to the bedrock. The results indicate that the bedrock is generally shallow, ranging from a few centimetres to about 5 metres vertically below the surface. A particularly interesting aspect of the GPR investigations was the observation that bedrock depth could be resolved by both, ground-based and helicopter-borne GPR data. Ground-based GPR surveying proved to be extremely challenging on the steep slopes, and some areas were even inaccessible due to safety concerns. It is therefore encouraging for future projects that helicopter-borne GPR acquisition offers a promising alternative. The spatial distribution of the soil moisture content and the temporal variations were determined with repeated ERT measurements. The resulting tomograms allowed a conductive soil layer and more resistive bedrock to be distinguished clearly. The ERT results were in good agreement with in-situ geotechnical measurements in a nearby test pit, and the depth of the soil-bedrock interface was broadly consistent with the GPR results. A comparison of tomograms obtained during the relatively dry month of June 2014, with those acquired after heavy rainfall in July 2014, showed significant changes of the shallow subsurface resistivities. These changes could be attributed in a quantitative fashion to variations of the soil water Saturation.
The Balloon-borne Large Aperture Submillimeter Telescope: BLAST
NASA Astrophysics Data System (ADS)
Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.
2009-01-01
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.
Marco, A; Solé, R; Raguer, E; Aranda, M
2014-01-01
Tuberculous cold abscesses or gumma are an unusual form of tuberculosis. We report a case of gumma as initial diagnosis of disseminated tuberculosis. This case was studied in 2012 in Barcelona ( Spain). Source data was compiled from the electronic clinical records, hospital reports and additional diagnostic testing. Immunocompetent inmate, born in Cape Verde, living in Spain since the age of four. Positive tuberculin skin test. Initial examination without interest, but a palpable mass in lower back. Fine needle aspiration of the abscess was positive (PCR and Lowenstein) for M. tuberculosis. Computed tomography showed lung cavitary nodes in apical part and lung upper right side. After respiratory isolation, antituberculous therapy and an excellent evolution, the patient was discharged from hospital with disseminated tuberculosis diagnosis. It is advisable to monitor the injuries since, although rare, it may be secondary to Mycobacterium tuberculosis infection, mainly in inmuno-compromised populations and in immigrants coming from hyper-endemic tuberculosis areas.
CT analysis of nasal volume changes after surgically-assisted rapid maxillary expansion.
Tausche, Eve; Deeb, Wayel; Hansen, Lars; Hietschold, Volker; Harzer, Winfried; Schneider, Matthias
2009-07-01
Aim of this study was to detect the changes in nasal volume due to bone-borne, surgically-assisted rapid palatal expansion (RPE) with the Dresden Distractor using computed tomography (CT). 17 patients (mean age 28.8) underwent axial CT scanning before and 6 months after RPE. The nasal bone width was examined in the coronal plane. Cross-sectional images of the nasal cavity were taken of the area surrounding the piriform aperture, choanae and in between. Bony nasal volume was computed by connecting the three cross-sectional areas. All but two patients showed a 4.8% increase in nasal volume (SD 4.6%). The highest value, 33.3% (SD 45.1%), was measured anteriorly at the level of the nasal floor. This correlated with the midpalatal suture's V-shaped opening. There was no significant correlation between an increase in nasal volume and transverse dental arch expansion. As most of the air we breathe passes the lower nasal floor, an improvement in nasal breathing is likely.
Rubin, Geoffrey D.; Leipsic, Jonathon; Schoepf, U. Joseph; Fleischmann, Dominik; Napel, Sandy
2015-01-01
Through a marriage of spiral computed tomography (CT) and graphical volumetric image processing, CT angiography was born 20 years ago. Fueled by a series of technical innovations in CT and image processing, over the next 5–15 years, CT angiography toppled conventional angiography, the undisputed diagnostic reference standard for vascular disease for the prior 70 years, as the preferred modality for the diagnosis and characterization of most cardiovascular abnormalities. This review recounts the evolution of CT angiography from its development and early challenges to a maturing modality that has provided unique insights into cardiovascular disease characterization and management. Selected clinical challenges, which include acute aortic syndromes, peripheral vascular disease, aortic stent-graft and transcatheter aortic valve assessment, and coronary artery disease, are presented as contrasting examples of how CT angiography is changing our approach to cardiovascular disease diagnosis and management. Finally, the recently introduced capabilities for multispectral imaging, tissue perfusion imaging, and radiation dose reduction through iterative reconstruction are explored with consideration toward the continued refinement and advancement of CT angiography. PMID:24848958
Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines.
Offerdahl, Danielle K; Dorward, David W; Hansen, Bryan T; Bloom, Marshall E
2017-01-15
The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60-100nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20-30nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. Published by Elsevier Inc.
Henriques, Margarida; Diogo, Luísa; Garcia, Paula; Pratas, João; Simões, Marta; Grazina, Manuela
2012-08-01
MC, female, is the third child of a nonconsanguineous Portuguese couple, born after an uneventful pregnancy and delivery. A positive family history of ornithine transcarbamylase deficiency, associated with the IVS8+1 G>A mutation in the ornithine transcarbamylase gene, prompted prenatal diagnosis with identification of the same mutation in the proband. During an episode of Klebsiella pneumoniae sepsis at 1.5 months of age, lactic acidosis and moderate hyperammonemia were noticed. After a short asymptomatic period, progressive neurologic symptoms, with normal ammonemia, persistent hyperlactacidemia, and typical lesions in brain computed tomography (CT) scan led to a diagnosis of Leigh syndrome. Mitochondrial respiratory chain complex V was reduced in the liver. The mtDNA 8993T>G mutation was identified in the liver, muscle, and blood (82%-87% heteroplasmy). She died at 6 months of age. This case represents a benign phenotype of ornithine transcarbamylase deficiency, associated with a severe mitochondrial respiratory chain disorder due to an mtDNA pathogenic mutation.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.
2017-01-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089
Adaptive Optics Optical Coherence Tomography in Glaucoma
Dong, Zachary M.; Wollstein, Gadi; Wang, Bo; Schuman, Joel S.
2016-01-01
Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm3. It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal. PMID:27916682
NASA Astrophysics Data System (ADS)
Cleland, Timothy P.; Stoskopf, Michael K.; Schweitzer, Mary H.
2011-03-01
A three-dimensional, iron-cemented structure found in the anterior thoracic cavity of articulated Thescelosaurus skeletal remains was hypothesized to be the fossilized remains of the animal's four-chambered heart. This was important because the finding could be interpreted to support a hypothesis that non-avian dinosaurs were endothermic. Mammals and birds, the only extant organisms with four-chambered hearts and single aortae, are endotherms. The hypothesis that this Thescelosaurus has a preserved heart was controversial, and therefore, we reexamined it using higher-resolution computed tomography, paleohistological examination, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy. This suite of analyses allows for detailed morphological and chemical examination beyond what was provided in the original work. Neither the more detailed examination of the gross morphology and orientation of the thoracic "heart" nor the microstructural studies supported the hypothesis that the structure was a heart. The more advanced computed tomography showed the same three areas of low density as the earlier studies with no evidence of additional low-density areas as might be expected from examinations of an ex situ ostrich heart. Microstructural examination of a fragment taken from the "heart" was consistent with cemented sand grains, and no chemical signal consistent with a biological origin was detected. However, small patches of cell-like microstructures were preserved in the sandstone matrix of the thoracic structure. A possible biological origin for these microstructures is the focus of ongoing investigation.
A user friendly interface for microwave tomography enhanced GPR surveys
NASA Astrophysics Data System (ADS)
Catapano, Ilaria; Affinito, Antonio; Soldovieri, Francesco
2013-04-01
Ground Penetrating Radar (GPR) systems are nowadays widely used in civil applications among which structural monitoring is one of the most critical issues due to its importance in terms of risks prevents and cost effective management of the structure itself. Despite GPR systems are assessed devices, there is a continuous interest towards their optimization, which involves both hardware and software aspects, with the common final goal to achieve accurate and highly informative images while keeping as low as possible difficulties and times involved in on field surveys. As far as data processing is concerned, one of the key aims is the development of imaging approaches capable of providing images easily interpretable by not expert users while keeping feasible the requirements in terms of computational resources. To satisfy this request or at least improve the reconstruction capabilities of data processing tools actually available in commercial GPR systems, microwave tomographic approaches based on the Born approximation have been developed and tested in several practical conditions, such as civil and archeological investigations, sub-service monitoring, security surveys and so on [1-3]. However, the adoption of these approaches is subjected to the involvement of expert workers, which have to be capable of properly managing the gathered data and their processing, which involves the solution of a linear inverse scattering problem. In order to overcome this drawback, aim of this contribution is to present an end-user friendly software interface that makes possible a simple management of the microwave tomographic approaches. In particular, the proposed interface allows us to upload both synthetic and experimental data sets saved in .txt, .dt and .dt1 formats, to perform all the steps needed to obtain tomographic images and to display raw-radargrams, intermediate and final results. By means of the interface, the users can apply time gating, back-ground removal or both to extract from the gathered data the meaningful signal, they can process the full set of the gathered A-scans or select a their portion as well as they can choose to account for an arbitrary time window inside that adopted during the measurement stage. Finally, the interface allows us to perform the imaging according to two different tomographic approaches, both modeling the scattering phenomenon according to the Born approximation and looking for cylindrical objects of arbitrary cross section (2D geometry) probed by an incident field polarized along the invariance axis (scalar case). One approach is based on the assumption that the scattering phenomenon arises in a homogeneous medium, while the second one accounts for the presence of a flat air-medium interface. REFERENCES [1] F. Soldovieri, J. Hugenschmidt, R. Persico and G. Leone, "A linear inverse scattering algorithm for realistic GPR applications, Near Surf. Geophys., vol. 5, pp.29-42, 2007. [2] R. Persico, F. Soldovieri, E. Utsi, "Microwave tomography for processing of GPR data at Ballachulish, J. Geophys. and Eng., vol.7, pp.164-173, 2010. [3] I. Catapano, L. Crocco R. Di Napoli, F. Soldovieri, A. Brancaccio, F. Pesando, A. Aiello, "Microwave tomography enhanced GPR surveys in Centaur's Domus, Regio VI of Pompeii, Italy", J. Geophys. Eng., vol.9, S92-S99, 2012.
Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.
2015-01-01
Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169
On the Chemistry and Physical Properties of Flux and Floating Zone Grown SmB6 Single Crystals
Phelan, W. A.; Koohpayeh, S. M.; Cottingham, P.; Tutmaher, J. A.; Leiner, J. C.; Lumsden, M. D.; Lavelle, C. M.; Wang, X. P.; Hoffmann, C.; Siegler, M. A.; Haldolaarachchige, N.; Young, D. P.; McQueen, T. M.
2016-01-01
Recent theoretical and experimental findings suggest the long-known but not well understood low temperature resistance plateau of SmB6 may originate from protected surface states arising from a topologically non-trivial bulk band structure having strong Kondo hybridization. Yet others have ascribed this feature to impurities, vacancies, and surface reconstructions. Given the typical methods used to prepare SmB6 single crystals, flux and floating-zone procedures, such ascriptions should not be taken lightly. We demonstrate how compositional variations and/or observable amounts of impurities in SmB6 crystals grown using both procedures affect the physical properties. From X-ray diffraction, neutron diffraction, and X-ray computed tomography experiments we observe that natural isotope containing (SmB6) and doubly isotope enriched (154Sm11B6) crystals prepared using aluminum flux contain co-crystallized, epitaxial aluminum. Further, a large, nearly stoichiometric crystal of SmB6 was successfully grown using the float-zone technique; upon continuing the zone melting, samarium vacancies were introduced. These samarium vacancies drastically alter the resistance and plateauing magnitude of the low temperature resistance compared to stoichiometric SmB6. These results highlight that impurities and compositional variations, even at low concentrations, must be considered when collecting/analyzing physical property data of SmB6. Finally, a more accurate samarium-154 coherent neutron scattering length, 8.9(1) fm, is reported. PMID:26892648
Characterization of Metal Powders Used for Additive Manufacturing.
Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A
2014-01-01
Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.
X-ray microtomography experiments using a diffraction tube and a focusing multilayer-mirror
NASA Astrophysics Data System (ADS)
Gurker, N.; Nell, R.; Backfrieder, W.; Kandutsch, J.; Sarg, K.; Prevrhal, S.; Nentwich, C.
1994-10-01
A first-generation (i.e. translate-rotate) micro X-ray transmission computed tomography system has been developed, which utilizes a standard 2.2 kW long-fine-focus diffraction tube with Cu-anode as the X-ray source, a spherical W/C multilayer-mirror to condense and spectrally select the CuKα-radiation (8.04 keV) from the tube and a scintillation counter to detect the X-ray photons; in the present configuration the optical system demagnifies the original source size in the direction parallel to the imaged object slice by a factor of 5, where a small slit captures the radiation and thus gives an intense microscopic (pseudo-) source of monochromatic X-radiation in close vicinity of the scanned specimen. The system provides tomographic images of small objects (up to 25 mm in diameter) reconstructed as 128 × 128 matrices with resolutions between ˜ 20 and 200 μm in ≥ 10 min. The software package which is available for image reconstruction includes filtered backprojection, correcting backprojection (ART, MART) and a new type of weighted backprojection, which turns out to be a simplified version of MART (SMART). A dedicated scan- and reconstruction-procedure demonstrates the feasibility to image selected regions-of-interest within the investigated specimen slice with (up to 1 order of magnitude) higher spatial resolution than their surroundings without major artefacts (Zoom-CT). The hard-and software-components of this CT-system are discussed, several examples are given and perspectives of further development are outlined.
On the Chemistry and Physical Properties of Flux and Floating Zone Grown SmB 6 Single Crystals
Phelan, W. A.; Koohpayeh, S. M.; Cottingham, P.; ...
2016-02-19
Recent theoretical and experimental findings suggest the long-known but not well understood low temperature resistance plateau of SmB 6 may originate from protected surface states arising from a topologically non-trivial bulk band structure having strong Kondo hybridization. Yet others have ascribed this feature to impurities, vacancies, and surface reconstructions. Given the typical methods used to prepare SmB 6 single crystals, flux and floating-zone procedures, such ascriptions should not be taken lightly. We demonstrate how compositional variations and/or observable amounts of impurities in SmB 6 crystals grown using both procedures affect the physical properties. From X-ray diffraction, neutron diffraction, and X-raymore » computed tomography experiments we observe that natural isotope containing (SmB 6) and doubly isotope enriched ( 154Sm 11B 6) crystals prepared using aluminum flux contain co-crystallized, epitaxial aluminum. Further, a large, nearly stoichiometric crystal of SmB 6 was successfully grown using the float-zone technique; upon continuing the zone melting, samarium vacancies were introduced. These samarium vacancies drastically alter the resistance and plateauing magnitude of the low temperature resistance compared to stoichiometric SmB 6. Finally, these results highlight that impurities and compositional variations, even at low concentrations, must be considered when collecting/analyzing physical property data of SmB 6. Finally, a more accurate samarium-154 coherent neutron scattering length, 8.9(1) fm, is reported.« less
Starbuck, John M; Ghoneima, Ahmed; Kula, Katherine
2015-07-01
Bilateral cleft lip and palate (BCLP) is caused by a lack of merging of maxillary and nasal facial prominences during development and morphogenesis. BCLP is associated with congenital defects of the oronasal facial region that can impair ingestion, mastication, speech, and dentofacial development. Using cone beam computed tomography (CBCT) images, 7- to 18-year old individuals born with BCLP (n = 15) and age- and sex-matched controls (n = 15) were retrospectively assessed. Coordinate values of three-dimensional facial skeletal anatomical landmarks (n = 32) were measured from each CBCT image. Data were evaluated using principal coordinates analysis (PCOORD) and Euclidean Distance Matrix Analysis (EDMA). PCOORD axes 1-3 explain approximately 45% of the morphological variation between samples, and specific patterns of morphological differences were associated with each axis. Approximately, 30% of facial skeletal measures significantly differ by confidence interval testing (α = 0.10) between samples. While significant form differences occur across the facial skeleton, strong patterns of differences are localized to the lateral and superioinferior aspects of the nasal aperture. In conclusion, the BCLP deformity significantly alters facial skeletal morphology of the midface and oronasal regions of the face, but morphological differences were also found in the upper facial skeleton and to a lesser extent, the lower facial skeleton. This pattern of strong differences in the oronasal region of the facial skeleton combined with differences across the rest of the facial complex underscores the idea that bones of the craniofacial skeleton are integrated. © 2015 Wiley Periodicals, Inc.
Microwave tomography for an effective imaging in GPR on UAV/airborne observational platforms
NASA Astrophysics Data System (ADS)
Soldovieri, Francesco; Catapano, Ilaria; Ludeno, Giovanni
2017-04-01
GPR was originally thought as a non-invasive diagnostics technique working in contact with the underground or structure to be investigated. On the other hand, in the recent years several challenging necessities and opportunities entail the necessity to work with antenna not in contact with the structure to be investigated. This necessity arises for example in the case of landmine detection but also for cultural heritage diagnostics. Other field of application regards the forward-looking GPR aiming at shallower hidden targets forward the platfrom (vehicle) carrying the GPR [1]. Finally, a recent application is concerned with the deployment of airborne/UAV GPR, able to ensure several advantages in terms of large scale surveys and "freedom" of logistics constraint [2]. For all the above mentioned cases, the interest is towards the development of effective data processing able to make imaging task in real time. The presentation will show different data processing strategies, based on microwave tomography [1,2], for a reliable and real time imaging in the case of GPR platforms far from the interface of the structure/underground to be investigated. [1] I. Catapano, A. Affinito, A. Del Moro,.G. Alli, and F. Soldovieri, "Forward-Looking Ground-Penetrating Radar via a Linear Inverse Scattering Approach," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, pp. 5624 - 5633, Oct. 2015. [2] I. Catapano, L. Crocco, Y. Krellmann, G. Triltzsch, and F. Soldovieri, "A tomographic approach for helicopter-borne ground penetrating radar imaging," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 378-382, May 2012.
Ocular Manifestations of Oblique Facial Clefts
Ortube, Maria Carolina; Dipple, Katrina; Setoguchi, Yoshio; Kawamoto, Henry K.; Demer, Joseph L.
2014-01-01
Introduction In the Tessier classification, craniofacial clefts are numbered from 0 to 14 and extend along constant axes through the eyebrows, eyelids, maxilla, nostrils, and the lips. We studied a patient with bilateral cleft 10 associated with ocular abnormalities. Method Clinical report with orbital and cranial computed tomography. Results After pregnancy complicated by oligohydramnios, digoxin, and lisinopril exposure, a boy was born with facial and ocular dysmorphism. Examination at age 26 months showed bilateral epibulbar dermoids, covering half the corneal surface, and unilateral morning glory anomaly of the optic nerve. Ductions of the right eye were normal, but the left eye had severely impaired ductions in all directions, left hypotropia, and esotropia. Under anesthesia, the left eye could not be rotated freely in any direction. Bilateral Tessier cleft number 10 was implicated by the presence of colobomata of the middle third of the upper eyelids and eyebrows. As the cleft continued into the hairline, there was marked anterior scalp alopecia. Computed x-ray tomography showed a left middle cranial fossa arachnoid cyst and calcification of the reflected tendon of the superior oblique muscle, trochlea, and underlying sclera, with downward and lateral globe displacement. Discussion Tessier 10 clefts are very rare and usually associated with encephalocele. Bilateral 10 clefts have not been reported previously. In this case, there was coexisting unilateral morning glory anomaly and arachnoid cyst of the left middle cranial fossa but no encephalocele. Conclusions Bilateral Tessier facial cleft 10 may be associated with alopecia, morning glory anomaly, epibulbar dermoids, arachnoid cyst, and restrictive strabismus. PMID:20856062
McLeod, Lauren; Hernández, Ivonne A; Heo, Giseon; Lagravère, Manuel O
2016-09-01
The aim of this study was to determine the presence of condylar spatial changes in patients having rapid maxillary expansion treatments compared to a control group. Thirty-seven patients with maxillary transverse deficiency (11-17 years old) were randomly allocated into two groups (one treatment group - tooth borne expander [hyrax] - and one control group). Cone-beam computer tomographies (CBCT) were obtained from each patient at two time points (initial T1 and at removal of appliance at 6 months T2). CBCTs were analyzed using AVIZO software and landmarks were placed on the upper first molars and premolars, cranial base, condyles and glenoid fossa. Descriptive statistics, intraclass correlation coefficients and one-way Anova analysis were used to determine if there was a change in condyle position with respect to the glenoid fossa and cranial base and if there was a statistically significant difference between groups. Descriptive statistics show that changes in the condyle position with respect to the glenoid fossa were minor in both groups (<1.9mm average for both groups). The largest difference in both groups was found when measuring the distance between the left and right condyle heads. When comparing changes between both groups, no statistically significant difference was found between changes in the condyles (P<0.05). Rapid maxillary expansion treatments present mild effects/changes on the condylar position. Nevertheless, these changes do not present a significant difference with controls, thus not constituting a limitation for applying this treatment. Copyright © 2016 CEO. Published by Elsevier Masson SAS. All rights reserved.
Metamaterial bricks and quantization of meta-surfaces
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-01-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators. PMID:28240283
NASA Astrophysics Data System (ADS)
Oxley, Paul; Ade, Peter A.; Baccigalupi, C.; deBernardis, Pierluigi; Cho, Hsiao-Mei; Devlin, Mark J.; Hanany, Shaul; Johnson, B. R.; Jones, T.; Lee, Adrian T.; Matsumura, T.; Miller, Amber D.; Milligan, M.; Renbarger, T.; Spieler, Helmuth G.; Stompor, R.; Tucker, Gregory S.; Zaldarriaga, Matias
2004-11-01
EBEX is a balloon-borne polarimeter designed to measure the intensity and polarization of the cosmic microwave background radiation. The measurements would probe the inflationary epoch that took place shortly after the big bang and would significantly improve constraints on the values of several cosmological parameters. EBEX is unique in its broad frequency coverage and in its ability to provide critical information about the level of polarized Galactic foregrounds which will be necessary for all future CMB polarization experiments. EBEX consists of a 1.5 m Dragone-type telescope that provides a resolution of less than 8 arcminutes over four focal planes each of 4 degree diffraction limited field of view at frequencies up to 450 GHz. The experiment is designed to accommodate 330 transition edge bolometric detectors per focal plane, for a total of up to 1320 detectors. EBEX will operate with frequency bands centered at 150, 250, 350, and 450 GHz. Polarimetry is achieved with a rotating achromatic half-wave plate. EBEX is currently in the design and construction phase, and first light is scheduled for 2008.
Metamaterial bricks and quantization of meta-surfaces
NASA Astrophysics Data System (ADS)
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-02-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units--which we call metamaterial bricks--each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
The life and achievements of Erwin-Félix Lewy-Bertaut (1913-2003)
NASA Astrophysics Data System (ADS)
Férey, Gérard; Hodeau, Jean-Louis
2015-02-01
Erwin-Félix Lewy-Bertaut was initially a lawyer. He left Germany for France when the Nazis rose to power, having been born into a German Jewish family. He became a French citizen in 1936 and embarked upon a scientific career, first in organic chemistry in Bordeaux. The troubles associated with World War II obliged him to move to Grenoble under the protection of Louis Néel. In addition to his creative activity in the new field of inorganic solid state chemistry, he rapidly became a crystallographer and a physicist of magnetism, noted for his impressive activity in both of these domains. He became a pioneer of neutron diffraction and was pivotal to the creation of the Institut Laue-Langevin. Owing to the impact of his work, he was involved in the key international organizations responsible for shaping crystallography and physics. A member of the French Academy of Sciences, Monsieur Bertaut received many international awards. He was a very kind man of culture.
Metamaterial bricks and quantization of meta-surfaces.
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R; Drinkwater, Bruce W; Subramanian, Sriram
2017-02-27
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
NASA Astrophysics Data System (ADS)
Olmi, Luca
2017-11-01
More than half a century ago, in 1952, Giuliano Toraldo di Francia suggested that the resolving power of an optical instrument could be improved using a filter consisting of finite-width concentric coronae of different amplitude and phase transmittance, now known as Toraldo Pupils (TPs). The concept of 'super- resolution' was born, and in the cur- rent literature it is generally associated with various meth- ods for improving the angular resolution of an optical imag- ing system beyond the classical diffraction limit. In the mi- crowave range, the first successful laboratory test of TPs was performed in 2003. These first results suggested that TPs could represent a viable approach to achieve super- resolution in Radio Astronomy. We have therefore started a project devoted to an exhaustive study of TPs and how they could be implemented on a radio telescope. In this work we present a summary of the status of this project, and then we will describe our future plans.
Exploring cosmic origins with CORE: The instrument
NASA Astrophysics Data System (ADS)
de Bernardis, P.; Ade, P. A. R.; Baselmans, J. J. A.; Battistelli, E. S.; Benoit, A.; Bersanelli, M.; Bideaud, A.; Calvo, M.; Casas, F. J.; Castellano, M. G.; Catalano, A.; Charles, I.; Colantoni, I.; Columbro, F.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; Delabrouille, J.; Doyle, S.; Franceschet, C.; Gomez, A.; Goupy, J.; Hanany, S.; Hills, M.; Lamagna, L.; Macias-Perez, J.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; McCarthy, D.; Mennella, A.; Monfardini, A.; Noviello, F.; Paiella, A.; Piacentini, F.; Piat, M.; Pisano, G.; Signorelli, G.; Tan, C. Y.; Tartari, A.; Trappe, N.; Triqueneaux, S.; Tucker, C.; Vermeulen, G.; Young, K.; Zannoni, M.; Achúcarro, A.; Allison, R.; Artall, E.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z. Y.; Carvalho, C. S.; Challinor, A.; Chluba, J.; Clesse, S.; De Gasperis, G.; De Zotti, G.; Di Valentino, E.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Hagstotz, S.; Greenslade, J.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Martins, C. J. A. P.; Matarrese, S.; Melchiorri, A.; Melin, J. B.; Molinari, D.; Natoli, P.; Negrello, M.; Notari, A.; Paoletti, D.; Patanchon, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J. A.; Salvati, L.; Tomasi, M.; Tramonte, D.; Trombetti, T.; Väliviita, J.; Van de Weyjgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.
2018-04-01
We describe a space-borne, multi-band, multi-beam polarimeter aiming at a precise and accurate measurement of the polarization of the Cosmic Microwave Background. The instrument is optimized to be compatible with the strict budget requirements of a medium-size space mission within the Cosmic Vision Programme of the European Space Agency. The instrument has no moving parts, and uses arrays of diffraction-limited Kinetic Inductance Detectors to cover the frequency range from 60 GHz to 600 GHz in 19 wide bands, in the focal plane of a 1.2 m aperture telescope cooled at 40 K, allowing for an accurate extraction of the CMB signal from polarized foreground emission. The projected CMB polarization survey sensitivity of this instrument, after foregrounds removal, is 1.7 μKṡarcmin. The design is robust enough to allow, if needed, a downscoped version of the instrument covering the 100 GHz to 600 GHz range with a 0.8 m aperture telescope cooled at 85 K, with a projected CMB polarization survey sensitivity of 3.2 μKṡarcmin.
Optical coherence tomography - principles and applications
NASA Astrophysics Data System (ADS)
Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.
2003-02-01
There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.
Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus
Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but maymore » also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.« less
Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F
2017-02-21
Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO 2 , standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO 2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.
Characterizing tuberculosis genotype clusters along the United States-Mexico border.
Baker, B J; Moonan, P K
2014-03-01
We examined the growth of tuberculosis (TB) genotype clusters during 2005-2010 in the United States, categorized by country of origin and ethnicity of the index case and geographic proximity to the US-Mexico border at the time of TB diagnosis. Nationwide, 38.9% of cases subsequent to Mexico-born index cases were US-born. Among clusters following US-born Hispanic and US-born non-Hispanic index cases, respectively 29.2% and 5.3% of subsequent cluster members were Mexico-born. In border areas, the majority of subsequent cases were Mexico-born following US-born Hispanic (56.4%) and US-born non-Hispanic (55.6%) index cases. These findings suggest that TB transmission commonly occurs between US-born and Mexico-born persons. Along the US-Mexico border, prioritizing TB genotype clusters following US-born index cases for investigation may prevent subsequent cases among both US-born and Mexico-born persons.
NASA Astrophysics Data System (ADS)
Qu, P.; Chen, Y. J.; Yu, Y.
2017-12-01
South China Continent is major formed from the Paleo-South China plate. The continent has experienced complicated tectonic history after Neoproterozoic. Previous studies suggested some possible model for the collision between South China Continent and North China Continent. Body wave tomography and surface wave tomography are widely used to inverse upper mantle velocity structure. In our study, finite frequency tomography were carried on to get explanation more correctly. We gathered nearly 60000 pieces of teleseismic event records by 166 broad band seismic stations with Mw > 5.5. Here sensitive kernel of ak135 velocity structure was calculated, which is based on Born approximation, and then we applied multi-channel cross-correlation to pick arrival time difference under 3 frequency band. Combining with crust thickness correct from receiver function, we solve the inversion matrix by LSQR method, and get accurate upper mantle structure of P, S velocity. For more accurate results, we apply a method to calculate Vp/Vs ratio, to help to verify the velocity anomaly. The result in this research shows: 1. A strong velocity anomaly exists in the northern of South China Continent, in an area 31°N between 112°-118°E. The anomaly is about . We suggest that, this anomaly is related to the collision from North China Continent. It implies the collision underthrusted to southward. 2. A clearly slow velocity anomaly exists in the northern of Cathaysia block. This low velocity anomaly exist on the boundary of Yangtz block and Cathysian block, it is related to the left over of block collision in early phanerozoic. 3. We recognized some little velocity anomaly exit in the research area. Comparing these velocity anomaly with U-Pb zircon ages, we suggest complicated orogenesis in Phanerozoic is the cause of the formation of these little anomaly. The result in our study support the collision model, which shows the underthrust direction is southward, on the south of Qinling-Dabie Orogen. The anomaly mass is larger than the composite orogenic in Yangtze block.
Differences in the self-reported racism experiences of US-born and foreign-born Black pregnant women
Dominguez, Tyan Parker; Strong, Emily Ficklin; Krieger, Nancy; Gillman, Matthew W.; Rich-Edwards, Janet W.
2013-01-01
Differential exposure to minority status stressors may help explain differences in United States (US)-born and foreign-born Black women’s birth outcomes. We explored self-reports of racism recorded in a survey of 185 US-born and 114 foreign-born Black pregnant women enrolled in Project Viva, a prospective cohort study of pregnant women in Boston, Massachusetts, USA. Self-reported prevalence of personal racism and group racism was significantly higher among US-born than foreign-born Black pregnant women, with US-born women having 4.1 and 7.8 times the odds, respectively, of childhood exposure. In multivariate analyses, US-born women’s personal and group racism exposure also was more pervasive across the eight life domains we queried. Examined by immigrant subgroups, US-born women were more similar in their self-reports of racism to foreign-born women who moved to the US before age 18 than to women who immigrated after age 18. Moreover, US-born women more closely resembled foreign-born women from the Caribbean than those from Africa. Differential exposure to self-reported racism over the life course may be a critically important factor that distinguishes US-born Black women from their foreign-born counterparts. PMID:19386406
NASA Astrophysics Data System (ADS)
Bai, Nan
A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have been performed to reveal the time dependent nature of scattering patterns. The experimental work has been compared with simulation results and demonstrated the feasibility of extending this technique for microcolony identification. Lastly, a quantitative phase imaging technique based on the phase gradient driven intensity variation has been studied and implemented to render the 2D phase map of the colony sample.
Stratified Volume Diffractive Optical Elements as Low-Mass Coherent Lidar Scanners
NASA Technical Reports Server (NTRS)
Chambers, Diana M.; Nordin, Gregory P.; Kavaya, Michael J.
1999-01-01
Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the difficulties encountered in these approaches, we have developed a new type of high-efficiency grating which we call a Stratified Volume Diffractive Optical Element (SVDOE). The features of the gratings in this approach can be easily fabricated using standard photolithography and etching techniques and the materials used in the grating can be chosen specifically for a given application, In this paper we will briefly discuss the SVDOE technique and will present an example design of a lidar scanner using this approach. We will also discuss performance predictions for the example design.
Health Beliefs of College Students Born in the United States, China, and India
ERIC Educational Resources Information Center
Rothstein, William G.; Rajapaksa, Sushama
2003-01-01
The authors surveyed 243 urban public university students who were born in the United States, China, and India to compare the health beliefs of the China-born, India-born, and US-born students. Although the China- and India-born students shared beliefs in many preventive and therapeutic practices of Western medicine with the US-born students, they…
Pires, Pedro; Jungmann, Patricia; Galvão, Jully Moura; Hazin, Adriano; Menezes, Luiza; Ximenes, Ricardo; Tonni, Gabriele; Araujo Júnior, Edward
2018-05-01
This study aimed to describe the prenatal and postnatal neuroimaging and clinical findings in a clinical series following congenital Zika virus syndrome during the first epidemic Zika virus (ZIKV) outbreak in the State of Pernambuco, Brazil. We (the authors) conducted a retrospective study of a prospectively collected case series of fetuses and neonates with microcephaly born to mothers with presumed/confirmed congenital ZIKV syndrome. Prenatal ultrasound findings were reviewed to identify potential central nervous system (CNS) abnormalities. Neonates underwent postnatal neuroimaging follow up by computed tomography (CT)-scan or magnetic resonance (MR) imaging. The prenatal and postnatal outcomes of eight fetuses/neonates born to mothers with presumed/confirmed congenital ZIKV syndrome were examined. The mean gestational age at ultrasound was 31.3 weeks. Severe microcephaly was identified in seven fetuses (87.5%), while ventriculomegaly and brain calcifications were detected in all fetuses. The mean gestational age at delivery and head circumference were 38 weeks and 30.2 cm, respectively. All cases of microcephaly but one was confirmed postnatally. Brain CT scans or MRIs were performed in seven newborns, and all had periventricular and/or parenchymal calcifications, symmetrical or asymmetrical ventriculomegaly, pachygyria, and reduced sulcation and gyration. MR imaging aided the detection of one undetected case of corpus callosum dysgenesis and was essential in documenting reduced mantel of the cerebral cortex and reduced gyration and sulcation, especially involving the parietal lobe. In addition, MR imaging was also able to display irregular interfaces with the subcortical white matter, a finding consistent with polymicrogyria, more frequently seen at the level of the frontal lobe and atrophic and thinned pons. Severe microcephaly and CNS abnormalities may be associated with congenital ZIKV syndrome.
Early Recollections of First-Borns.
ERIC Educational Resources Information Center
Fakouri, M. Ebrahim; Hafner, James L.
1984-01-01
Compared the early recollections of 50 first-borns and 98 later-borns. The first-borns mentioned significantly more nonfamily members, illness/injury, hospital/doctor's office. Later-borns mentioned significantly more siblings than did first-borns. Findings were discussed in the context of Adler's personality theory. (JAC)
Grant, Bridget F; Stinson, Frederick S; Hasin, Deborah S; Dawson, Deborah A; Chou, S Patricia; Anderson, Karyn
2004-12-01
There exist no national prevalence data on specific DSM-IV Axis I psychiatric disorders among foreign-born and US-born Mexican Americans and non-Hispanic whites. To present nationally representative data on the prevalence of DSM-IV lifetime psychiatric disorders among foreign-born and US-born Mexican Americans and non-Hispanic whites. Face-to-face survey conducted in the 2001-2002 National Epidemiologic Survey on Alcohol and Related Conditions. The United States and District of Columbia, including Alaska and Hawaii. Household and group-quarters residents, aged 18 years and older (n = 43 093). Prevalence of DSM-IV substance use disorders and mood and anxiety disorders. With few exceptions, foreign-born Mexican Americans and foreign-born non-Hispanic whites were at significantly lower risk (P<.05) of DSM-IV substance use and mood and anxiety disorders compared with their US-born counterparts. Although the risk of specific psychiatric disorders was similar between foreign-born Mexican Americans and foreign-born non-Hispanic whites, US-born Mexican Americans were at significantly lower risk (P<.05) of psychiatric morbidity than US-born non-Hispanic whites. Data favoring foreign-born Mexican Americans with respect to mental health may extend to foreign-born non-Hispanic whites. Future research among foreign-born and US-born Mexican Americans and the foreign-born and US-born of other origins and descents is needed to understand what appears to be the protective effects of culture and the deleterious effects of acculturation on psychiatric morbidity in the United States.
HIV Transmission Dynamics Among Foreign-Born Persons in the United States.
Valverde, Eduardo E; Oster, Alexandra M; Xu, Songli; Wertheim, Joel O; Hernandez, Angela L
2017-12-15
In the United States (US), foreign-born persons are disproportionately affected by HIV and differ epidemiologically from US-born persons with diagnosed HIV infection. Understanding HIV transmission dynamics among foreign-born persons is important to guide HIV prevention efforts for these populations. We conducted molecular transmission network analysis to describe HIV transmission dynamics among foreign-born persons with diagnosed HIV. Using HIV-1 polymerase nucleotide sequences reported to the US National HIV Surveillance System for persons with diagnosed HIV infection during 2001-2013, we constructed a genetic distance-based transmission network using HIV-TRACE and examined the birth region of potential transmission partners in this network. Of 77,686 people, 12,064 (16%) were foreign born. Overall, 28% of foreign-born persons linked to at least one other person in the transmission network. Of potential transmission partners, 62% were born in the United States, 31% were born in the same region as the foreign-born person, and 7% were born in another region of the world. Most transmission partners of male foreign-born persons (63%) were born in the United States, whereas most transmission partners of female foreign-borns (57%) were born in their same world region. These finding suggests that a majority of HIV infections among foreign-born persons in our network occurred after immigrating to the United States. Efforts to prevent HIV infection among foreign-born persons in the United States should include information of the transmission networks in which these individuals acquire or transmit HIV to develop more targeted HIV prevention interventions.
AsteroidFinder - the space-borne telescope to search for NEO Asteroids
NASA Astrophysics Data System (ADS)
Hartl, M.; Mosebach, H.; Schubert, J.; Michaelis, H.; Mottola, S.; Kührt, E.; Schindler, K.
2017-11-01
This paper presents the mission profile as well as the optical configuration of the space-borne AsteroidFinder telescope. Its main objective is to retrieve asteroids with orbits interior to the earth's orbit. The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5mag (V-Band) and astrometric accuracy of 1arcsec (1σ). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak > 90%) and very low noise, which is only limited by zodiacal background. The telescope will observe the sky between 30° and 60° in solar elongation. The telescope optics is based on a Cook type TMA. An effective 2°×2° field of view (FOV) is achieved by a fast F/3.4 telescope with near diffraction-limited performance. The absence of centre obscuration or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. Design drivers for the telescope are the required point spread function (PSF) values, an extremely efficient stray light suppression (due to the magnitude requirement mentioned above), the detector performance, and the overall optical and mechanical stability for all orientations of the satellite. To accommodate the passive thermal stabilization scheme and the necessary structural stability, the materials selection for the telescope main structure and the mirrors are of vital importance. A focal plane with four EMCCD detectors is envisaged. The EMCCD technology features shorter integration times, which is in favor regarding the pointing performance of the satellite. The launch of the mission is foreseen for the year 2013 with a subsequent mission lifetime of at least 1 year.
Dynamic properties of III-V polytypes from density-functional theory
NASA Astrophysics Data System (ADS)
Benyahia, N.; Zaoui, A.; Madouri, D.; Ferhat, M.
2017-03-01
The recently discovered hexagonal wurtzite phase of several III-V nanowires opens up strong opportunity to engineer optoelectronic and transport properties of III-V materials. Herein, we explore the dynamical and dielectric properties of cubic (3C) and wurtzite (2H) III-V compounds (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb). For cubic III-V compounds, our calculated phonon frequencies agree well with neutron diffraction and Raman-scattering measurements. In the case of 2H III-V materials, our calculated phonon modes at the zone-center Γ point are in distinguished agreement with available Raman-spectroscopy measurements of wurtzite GaAs, InP, GaP, and InAs nanowires. Particularly, the "fingerprint" of the wurtzite phase, which is our predicted E2(high) phonon mode, at 261 cm-1(GaAs), 308 cm-1(InP), 358 cm-1(GaP), and 214 cm-1(InAs) matches perfectly the respective Raman values of 258 cm-1, 306.4 cm-1, 353 cm-1, and 213.7 cm-1 for GaAs, InP, GaP, and InAs. Moreover, the dynamic charges and high-frequency dielectric constants are predicted for III-V materials in both cubic (3C) and hexagonal (2H) crystal polytypes. It is found that the dielectric properties of InAs and InSb contrast markedly from those of other 2H III-V compounds. Furthermore, InAs and InSb evidence relative strong anisotropy in their dielectric constants and Born effective charges, whereas GaP evinces the higher Born effective charge anisotropy of 2H III-V compounds.
NASA Astrophysics Data System (ADS)
Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.
2016-10-01
The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.
Design of a concise Féry-prism hyperspectral imaging system based on multi-configuration
NASA Astrophysics Data System (ADS)
Dong, Wei; Nie, Yun-feng; Zhou, Jin-song
2013-08-01
In order to meet the needs of space borne and airborne hyperspectral imaging system for light weight, simplification and high spatial resolution, a novel design of Féry-prism hyperspectral imaging system based on Zemax multi-configuration method is presented. The novel structure is well arranged by analyzing optical monochromatic aberrations theoretically, and the optical structure of this design is concise. The fundamental of this design is Offner relay configuration, whereas the secondary mirror is replaced by Féry-prism with curved surfaces and a reflective front face. By reflection, the light beam passes through the Féry-prism twice, which promotes spectral resolution and enhances image quality at the same time. The result shows that the system can achieve light weight and simplification, compared to other hyperspectral imaging systems. Composed of merely two spherical mirrors and one achromatized Féry-prism to perform both dispersion and imaging functions, this structure is concise and compact. The average spectral resolution is 6.2nm; The MTFs for 0.45~1.00um spectral range are greater than 0.75, RMSs are less than 2.4um; The maximal smile is less than 10% pixel, while the keystones is less than 2.8% pixel; image quality approximates the diffraction limit. The design result shows that hyperspectral imaging system with one modified Féry-prism substituting the secondary mirror of Offner relay configuration is feasible from the perspective of both theory and practice, and possesses the merits of simple structure, convenient optical alignment, and good image quality, high resolution in space and spectra, adjustable dispersive nonlinearity. The system satisfies the requirements of airborne or space borne hyperspectral imaging system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solanki, S. K.; Riethmüller, T. L.; Barthol, P.
The Sunrise balloon-borne solar observatory, consisting of a 1 m aperture telescope that provides a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in 2013 June. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg ii k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000 Å after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments andmore » the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR 11768 observed relatively close to disk center is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500 G, and while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.« less
Fang, Jing; Ayala, Carma; Loustalot, Fleetwood
2012-12-01
Over the past few decades, the proportion of US adults who were foreign-born has been increasing, as has the overall prevalence of hypertension. Here, we compared the prevalence of self-reported hypertension among native-born adults with that among foreign-born adults, classified by racial/ethnic group. Using 2006-2010 data from the National Health Interview Survey (NHIS), we compared the age-adjusted prevalence of hypertension among native-born adults to foreign-born adults, specified by continent of birthplace and race/ethnicity. Results are expressed as unadjusted odds ratios (ORs) and three sets of adjusted odds ratios (AORs) adjusted for selected sociodemographic, behavioral and health-related characteristics. All results accounted for NHIS sampling design variables. The analytic sample was 124,260 with 16.3% foreign-born adults. Among the foreign-born adults, 56% were from Central or South America, 22% from Asia, 13% from Europe, and 4% from Africa. Overall and after adjustment, hypertension prevalence was significantly higher among US-born adults than among foreign-born adults (AOR: 1.28, 95% CI: 1.21-1.36). By race/ethnicity, hypertension prevalence was higher among US-born non-Hispanic blacks than either foreign-born non-Hispanic blacks (AOR: 1.24, 95%CI: 1.02-1.50) or all Africa-born immigrants of any race/ethnicity [AOR: 1.45, 95% confidence interval (CI): 1.07-1.97]. Among foreign-born adults, duration of US residence was positively associated with the likelihood of hypertension. Hypertension prevalence was higher among US-born adults than among foreign-born adults and higher among US-born non-Hispanic blacks than in any other group. Among foreign-born adults, hypertension risk increased with the number of years they had lived in the United States.
Birth order progressively affects childhood height.
Savage, Tim; Derraik, José G B; Miles, Harriet L; Mouat, Fran; Cutfield, Wayne S; Hofman, Paul L
2013-09-01
There is evidence suggesting that first-born children and adults are anthropometrically different to later-borns. Thus, we aimed to assess whether birth order was associated with changes in growth and metabolism in childhood. We studied 312 healthy prepubertal children: 157 first-borns and 155 later-borns. Children were aged 3-10 years, born 37-41 weeks gestation, and of birth weight appropriate-for-gestational-age. Clinical assessments included measurement of children's height, weight, fasting lipid and hormonal profiles and DEXA-derived body composition. First-borns were taller than later-borns (P < 0·0001), even when adjusted for parents' heights (0·31 vs 0·03 SDS; P = 0·001). There was an incremental height decrease with increasing birth order, so that first-borns were taller than second-borns (P < 0·001), who were in turn taller than third-borns (P = 0·007). Further, among sibling pairs both height SDS (P = 0·009) and adjusted height SDS (P < 0·0001) were lower in second- vs first-born children. Consistent with differences in stature, first- (P = 0·043) and second-borns (P = 0·003) had higher IGF-I concentrations than third-borns. Both first- (P < 0·001) and second-borns (P = 0·004) also had reduced abdominal adiposity (lower android fat to gynoid fat ratio) when compared with third-borns. Other parameters of adiposity and blood lipids were unaffected by birth order. First-borns were taller than later-born children, with an incremental height reduction from first to third birth order. These differences were present after correction for genetic height, and associated to some extent with alterations in plasma IGF-I. Our findings strengthen the evidence that birth order is associated with phenotypic changes in childhood. © 2013 John Wiley & Sons Ltd.
What transmission electron microscopes can visualize now and in the future.
Müller, Shirley A; Aebi, Ueli; Engel, Andreas
2008-09-01
Our review concentrates on the progress made in high-resolution transmission electron microscopy (TEM) in the past decade. This includes significant improvements in sample preparation by quick-freezing aimed at preserving the specimen in a close-to-native state in the high vacuum of the microscope. Following advances in cold stage and TEM vacuum technology systems, the observation of native, frozen hydrated specimens has become a widely used approach. It fostered the development of computer guided, fully automated low-dose data acquisition systems allowing matched pairs of images and diffraction patterns to be recorded for electron crystallography, and the collection of entire tilt-series for electron tomography. To achieve optimal information transfer to atomic resolution, field emission electron guns combined with acceleration voltages of 200-300 kV are now routinely used. The outcome of these advances is illustrated by the atomic structure of mammalian aquaporin-O and by the pore-forming bacterial cytotoxin ClyA resolved to 12 A. Further, the Yersinia injectisome needle, a bacterial pseudopilus and the binding of phalloidin to muscle actin filaments were chosen to document the advantage of the high contrast offered by dedicated scanning transmission electron microscopy (STEM) and/or the STEM's ability to measure the mass of protein complexes and directly link this to their shape. Continued progress emerging from leading research laboratories and microscope manufacturers will eventually enable us to determine the proteome of a single cell by electron tomography, and to more routinely solve the atomic structure of membrane proteins by electron crystallography.
Revealing the sub-nanometere three-dimensional microscture of a metallic meteorite
NASA Astrophysics Data System (ADS)
Einsle, J. F.; Harrison, R.; Blukis, R.; Eggeman, A.; Saghi, Z.; Martineau, B.; Bagot, P.; Collins, S. M.; Midgley, P. A.
2017-12-01
Coming from from the core of differentiated planetesimals, iron-nickel meteorites provide some of the only direct material artefacts from planetary cores. Iron - nickel meteorites contain a record of their thermal and magnetic history, written in the intergrowth of iron-rich and nickel-rich phases that formed during slow cooling over millions of years. Of intense interest for understanding the thermal and magnetic history is the `'cloudy zone''. This nanoscale intergrowth that has recently been used to provide a record of magnetic activity on the parent body of stony-iron meteorites. The cloudy zone consists of islands of tetrataenite surrounded by a matrix phase, Here we use a multi-scale and multidimensional comparative study using high-resolution electron diffraction, scanning transmission electron tomography with chemical mapping, atom probe tomography and micromagnetic simulations to reveal the three-dimensional architecture of the cloudy zone with sub-nanometre spatial resolution. Machine learning data deconvolution strategies enable the three microanalytical techniques to converge on a consistent microstructural description for the cloudy zone. Isolated islands of tetrataenite are found, embedded in a continuous matrix of an FCC-supercell of Fe27Ni5 structure, never before identified in nature. The tetrataenite islands are arranged in clusters of three crystallographic variants, which control how magnetic information is encoded into the nanostructure during slow cooling. The new compositional, crystallographic and micromagnetic data have profound implications for how the cloudy zone acquires magnetic remanence, and requires a revision of the low-temperature metastable phase diagram of the Fe-Ni system. This can lead to a refinement of core dynamics in small planetoids.
PSOCT studies of intervertebral disk
NASA Astrophysics Data System (ADS)
Matcher, Stephen J.; Winlove, Peter C.; Gangnus, Sergey V.
2004-07-01
Polarization-sensitive optical coherence tomography (PSOCT) is an emerging optical imaging technique that is sensitive to the birefringence properties of tissues. It thus has applications in studying the large-scale ordering of collagen fibers within connective tissues. This ordering not only provides useful insights into the relationship between structure and function for various anatomical structures but also is an indicator of pathology. Intervertebral disk is an elastic tissue of the spine and possesses a 3-D collagen structure well suited to study using PSOCT. Since the outer layer of the disk has a lamellar structure with collagen fibers oriented in a trellis-like arrangement between lamellae, the birefringence fast-axis shows pronounced variations with depth, on a spatial scale of about 100 μm. The lamellar thickness varies with age and possibly with disease. We have used a polarisation-sensitive optical coherence tomography system to measure the birefringence properties of freshly excised, hydrated bovine caudal intervertebral disk and compared this with equine flexor tendon. Our results clearly demonstrate the ability of PSOCT to detect the outer three lamellae, down to a depth of at least 700 μm, via discontinuities in the depth-resolved retardance. We have applied a simple semi-empirical model based on Jones calculus to quantify the variation in the fast-axis orientation with depth. Our data and modeling is in broad agreement with previous studies using x-ray diffraction and polarization microscopy applied to histological sections of dehydrated disk. Our results imply that PSOCT may prove a useful tool to study collagen organisation within intervertebral disk in vitro and possibly in vivo and its variation with age and disease.
García-Bella, Javier; Martínez de la Casa, José M; Talavero González, Paula; Fernández-Vigo, José I; Valcarce Rial, Laura; García-Feijóo, Julián
2018-01-01
To establish the changes produced after implantation of a trifocal intraocular lens (IOL) on retinal nerve fiber layer measurements performed with Fourier-domain optical coherence tomography (OCT). This prospective study included 100 eyes of 50 patients with bilateral cataract in surgical range, no other associated ocular involvement, refractive errors between +5 and -5 spherical diopters, and less than 1.5 D of corneal astigmatism. The eyes were operated by phacoemulsification with implantation of 2 different trifocal IOLs (FineVision and AT LISA tri 839MP) in randomized equal groups. Cirrus OCT and Spectralis OCT were performed before surgery and 3 months later. Both analyzed the thickness of the nerve fiber layer and thickness divided by quadrants (6 in case of Spectralis and 4 in case of Cirrus HD). The mean age of patients was 67.5 ± 5.8 years. The global nerve fiber layer thickness measured with Spectralis OCT was 96.77 μm before surgery and 99.55 μm after. With Cirrus OCT, the global thickness was 85.29 μm before surgery and 89.77 μm after. Statistically significant differences in global thickness measurements between preimplantation and postimplantation of the IOL were found with both OCT in the 2 groups. Statistically significant differences were also found in temporal and superior quadrants. The implantation of a diffractive trifocal IOL alters the results of the optic nerve fiber layer on Fourier-domain OCT in these patients, which should be taken into account in the posterior study of these patients.
Demeke, Hanna B; Johnson, Anna S; Wu, Baohua; Nwangwu-Ike, Ndidi; King, Hope; Dean, Hazel D
2018-01-27
Despite improvements in its treatment, HIV infection continues to affect Blacks disproportionally. Using National HIV Surveillance System data from 50 U.S. states and the District of Columbia, we examined demographic and epidemiologic differences between U.S.-born and non-U.S.-born Black adults. Of 110,452 Black adults reported with diagnosed HIV during 2008-2014 with complete country of birth information, 11.1% were non-U.S.-born. Non-U.S.-born were more likely to be older, female, have HIV infection attributed to heterosexual contact, have been diagnosed late, and live in the northeastern U.S. region. During 2014, the HIV diagnosis rate among African-born Black females was 1.4 times the rate of U.S.-born Black males, 2 times the rate of African-born Black males, and 5.3 times the rate of U.S.-born Black females. We elucidate the differences between U.S.-born and non-U.S.-born Blacks on which to base culturally appropriate HIV-prevention programs and policies.
Sturrock, Craig J.; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J.; Ray, Rumiana V.
2015-01-01
Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host–pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field. PMID:26157449
NASA Astrophysics Data System (ADS)
Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim
2017-02-01
Oxygen saturation (sO2) of RBCs in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e. measuring hemoglobin sO2) is feasible from dispersed red blood cells (RBCs) at the single-capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. Here we provide a theoretical model to calculate the backscattering spectra of single RBCs based on the first-order Born approximation, considering the orientation, size variation, and deformation of RBCs. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different deformations of RBCs, allowing the sO2 of individual RBCs in capillaries to be characterized. The theoretical model is verified by Mie theory and experiments using visible light optical coherence tomography (vis-OCT). Thus, this study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single-capillary level by backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single-capillary level. This is promising for in vivo backscattering-based optical oximetry at the single-capillary level, to measure local capillary sO2 for early diagnosis, progression monitoring, and treatment evaluation of diabetic retinopathy and cancer.
Sturrock, Craig J; Woodhall, James; Brown, Matthew; Walker, Catherine; Mooney, Sacha J; Ray, Rumiana V
2015-01-01
Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host-pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.
El Reda, Darline K; Grigorescu, Violanda; Posner, Samuel F; Davis-Harrier, Amanda
2007-11-01
Preterm birth (PTB), <37 weeks gestation, occurs in 12.1% of live births annually and is associated with significant morbidity and mortality in the United States. Racial/ethnic subgroups are disproportionately affected by PTB. Michigan is home to one of the largest Arab-American communities in the country; however, little is known about PTB in this population. This study examined the maternal demographic profile and risk factors of preterm birth (PTB) among foreign-born and US-born women of Arab ancestry relative to US-born Whites in Michigan. Using Michigan Vital Statistics data, we examined correlates of PTB for primiparous U.S.-born white (n = 205,749), U.S.-born Arab (n=1,697), and foreign-born Arab (n=5,997) women who had had a live-born singleton infant during 1993-2002. We examined variables commonly reported to be associated with PTB, including mother's age and education; insurance type; marital status of parents; receipt of prenatal care; mother's chronic hypertension, diabetes, and tobacco use; and infant sex. Foreign-born Arabs are less educated and more likely to be on Medicaid, and they receive less prenatal care than US-born Whites. Prevalence of PTB was 8.5, 8.0, and 7.5% for US-born Whites, US-born Arabs, and foreign-born Arabs, respectively. Pregnancy-related hypertension was the only predictor of PTB that these three groups had in common: Adjusted Odds Ratio (AOR)=2.1 (95% Confidence Interval (CI)=1.99, 2.21), AOR=2.6 (95% CI=1.24, 5.51), and AOR=2.6 (95% CI=1.55, 4.31) for US-born whites, US-born Arabs, and foreign-born Arabs, respectively. Foreign-born Arab women in Michigan have a higher-risk maternal demographic profile than that of their US-born white counterparts; however, their prevalence of PTB is lower, which is consistent with the epidemiologic paradox reported among foreign-born Hispanic women.
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao
2017-10-01
Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.
Huebinger, Jan; Han, Hong-Mei; Hofnagel, Oliver; Vetter, Ingrid R.; Bastiaens, Philippe I.H.; Grabenbauer, Markus
2016-01-01
Complex living systems such as mammalian cells can be arrested in a solid phase by ultrarapid cooling. This allows for precise observation of cellular structures as well as cryopreservation of cells. The state of water, the main constituent of biological samples, is crucial for the success of cryogenic applications. Water exhibits many different solid states. If it is cooled extremely rapidly, liquid water turns into amorphous ice, also called vitreous water, a glassy and amorphous solid. For cryo-preservation, the vitrification of cells is believed to be mandatory for cell survival after freezing. Intracellular ice crystallization is assumed to be lethal, but experimental data on the state of water during cryopreservation are lacking. To better understand the water conditions in cells subjected to freezing protocols, we chose to directly analyze their subcellular water states by cryo-electron microscopy and tomography, cryoelectron diffraction, and x-ray diffraction both in the cryofixed state and after warming to different temperatures. By correlating the survival rates of cells with their respective water states during cryopreservation, we found that survival is less dependent on ice-crystal formation than expected. Using high-resolution cryo-imaging, we were able to directly show that cells tolerate crystallization of extra- and intracellular water. However, if warming is too slow, many small ice crystals will recrystallize into fewer but bigger crystals, which is lethal. The applied cryoprotective agents determine which crystal size is tolerable. This suggests that cryoprotectants can act by inhibiting crystallization or recrystallization, but they also increase the tolerance toward ice-crystal growth. PMID:26541066
Characterization of Metal Powders Used for Additive Manufacturing
Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA
2014-01-01
Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040
NASA Astrophysics Data System (ADS)
Casalena, Lee
The development of viable high-temperature shape memory alloys (HTSMAs) demands a coordinated multimodal characterization effort linking nanoscale crystal structure to macroscale thermomechanical properties. In this work, several high performance NiTi-based shape memory alloys are comprehensively explored with the goal of gaining insight into the complex transformation and deformation mechanisms responsible for their remarkable behavior. Through precise control of alloying and aging parameters, microstructures are optimized to enhance properties such as high-temperature strength and stability. These are crucial requirements for the development of advanced applications such as actuators and adaptive components that operate in demanding automotive and aerospace environments. An array of NiTiHf and NiTiAu alloys are at the core of this effort, offering the possibility of increased capability over traditional pneumatic and hydraulic systems, while simultaneously reducing weight and energy requirements. NiTi-20Hf alloys exhibit a favorable balance of properties, including high strength, stability, and work output at temperatures in excess of 150 °C. The raw material cost of Hf is also much lower compared with Pt, Pd, and Au containing counterparts. Advanced scanning transmission electron microscopy (STEM) and synchrotron X-ray characterization techniques are used to explore unusual nanoscale effects of precipitate-matrix interactions, coherency strain, and dislocation activity in these alloys. Novel use of the 4D STEM strain mapping technique is used to quantify strain fields associated with precipitates, which are being coupled with new phase field modeling approaches to particle/defect interactions. Volume fractions of nanoscale precipitates are measured using STEM-based tomography techniques, atom probe tomography, and synchrotron diffraction of bulk samples. Plastic deformation of the HTSMA austenite phase is shown to occur through B2 type slip for the first time. NiTiAu alloys are shown to demonstrate work output at extremely high temperatures - above 400 °C - where the potential benefits may offset material cost. Crystal structures and chemical effects of previously undocumented secondary phases are extensively examined using STEM and X-ray energy dispersive spectroscopy (XEDS). These insights are combined with mechanical test data to develop an understanding of the critical microstructure-property relationships involved. In addition to the native corrosion resistance common to all these alloys, a nickel rich NiTi-1Hf alloy is shown to demonstrate extremely high strength and wear resistance, making it an ideal candidate for tribological applications such as bearings used in corrosive environments. Details of the stress-induced martensite phase are revealed in this alloy system using synchrotron radiation and aberration-corrected STEM. Finally, post mortem Transmission Kikuchi Diffraction (TKD) and in situ High Energy Diffraction Microscopy (HEDM) are used to explore the remarkable grain refinement process that occurs in NiTi and related alloys through load-biased thermal cycling. Microstructural changes in the form of defect generation and subgrain development are key mechanistic insights sought to further understand the processes resulting in unrecovered strain accumulation, which lead to detrimental functional fatigue in these alloys.
Hammig, Bart; Henry, Jean; Davis, Donna
2018-01-31
We examined health insurance coverage among U.S. and Mexican/Central American (M/CA) born labor workers living in the U.S. Using data from the 2010-2015 National Health Interview Survey, we employed logistic regression models to examine health insurance coverage and covariates among U.S. and M/CA born labor workers. Prevalence ratios between U.S. and M/CA born workers were also obtained. U.S. born workers had double the prevalence of insurance coverage. Regarding private insurance coverage, U.S. born workers had a higher prevalence of coverage compared to their M/CA born counterparts. Among foreign born workers with U.S. citizenship, the odds of having insurance coverage was greater than that of noncitizens. Additionally, those who had lived in the U.S. for 10 or more years had higher odds of having health insurance coverage. Disparities in health care coverage exist between U.S. born and foreign born labor workers.
Wang, Liguang; Wang, Jiajun; Guo, Fangmin; ...
2018-11-13
Transition metal sulfides are promising high capacity anodes for sodium-ion batteries in terms of the conversion reaction with multiple alkali metal ions. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change, and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding the complex sodium ion storage mechanism particularly at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemicalmore » impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ions diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Finally, such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.« less
Real-time data-intensive computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkinson, Dilworth Y., E-mail: dyparkinson@lbl.gov; Chen, Xian; Hexemer, Alexander
2016-07-27
Today users visit synchrotrons as sources of understanding and discovery—not as sources of just light, and not as sources of data. To achieve this, the synchrotron facilities frequently provide not just light but often the entire end station and increasingly, advanced computational facilities that can reduce terabytes of data into a form that can reveal a new key insight. The Advanced Light Source (ALS) has partnered with high performance computing, fast networking, and applied mathematics groups to create a “super-facility”, giving users simultaneous access to the experimental, computational, and algorithmic resources to make this possible. This combination forms an efficientmore » closed loop, where data—despite its high rate and volume—is transferred and processed immediately and automatically on appropriate computing resources, and results are extracted, visualized, and presented to users or to the experimental control system, both to provide immediate insight and to guide decisions about subsequent experiments during beamtime. We will describe our work at the ALS ptychography, scattering, micro-diffraction, and micro-tomography beamlines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liguang; Wang, Jiajun; Guo, Fangmin
Transition metal sulfides are promising high capacity anodes for sodium-ion batteries in terms of the conversion reaction with multiple alkali metal ions. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change, and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding the complex sodium ion storage mechanism particularly at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemicalmore » impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ions diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Finally, such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.« less
NASA Astrophysics Data System (ADS)
Liu, Qingdong; Wen, Haiming; Zhang, Han; Gu, Jianfeng; Li, Chuanwei; Lavernia, Enrique J.
2016-05-01
The influence of Cu-rich precipitates (CRPs) and reverted austenite (RA) on the strength and impact toughness of a Cu-containing 3.5 wt pct Ni high-strength low-alloy (HSLA) steel after various heat treatments involving quenching (Q), lamellarization (L), and tempering (T) is studied using electron back-scatter diffraction, transmission electron microscopy, and atom probe tomography. The QT sample exhibits high strength but low impact toughness, whereas the QL samples mostly possess improved impact toughness but moderate strength, but the QLT samples again have degraded impact toughness due to additional tempering. The dispersion of nanoscale CRPs, which are formed during tempering, is responsible for the enhanced strength but simultaneously leads to the degraded impact toughness. The RA formed during lamellarization contributes to the improved impact toughness. Based on the present study, new heat treatment schedules are proposed to balance strength and impact toughness by optimizing the precipitation of CRPs and RA.
NASA Astrophysics Data System (ADS)
Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.
2013-05-01
Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.
Review of advanced imaging techniques
Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron
2012-01-01
Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737
NASA Astrophysics Data System (ADS)
Medghalchi, Setareh; Jamebozorgi, Vahid; Bala Krishnan, Arjun; Vincent, Smobin; Salomon, Steffen; Basir Parsa, Alireza; Pfetzing, Janine; Kostka, Aleksander; Li, Yujiao; Eggeler, Gunther; Li, Tong
2018-05-01
The dependence of the microstructure on the degree of deformation in near-surface regions of a 16MnCr5 gear wheel after 2.1 × 106 loading cycles has been investigated by x-ray diffraction analysis, transmission electron microscopy, and atom probe tomography. Retained austenite and large martensite plates, along with elongated lamella-like cementite, were present in a less deformed region. Comparatively, the heavily deformed region consisted of a nanocrystalline structure with carbon segregation up to 2 at.% at grain boundaries. Spheroid-shaped cementite, formed at the grain boundaries and triple junctions of the nanosized grains, was enriched with Cr and Mn but depleted with Si. Such partitioning of Cr, Mn, and Si was not observed in the elongated cementite formed in the less deformed zone. This implies that rolling contact loading induced severe plastic deformation as well as a pronounced annealing effect in the active contact region of the toothed gear during cyclic loading.
NASA Astrophysics Data System (ADS)
Milazzo, R.; Impellizzeri, G.; Piccinotti, D.; De Salvador, D.; Portavoce, A.; La Magna, A.; Fortunato, G.; Mangelinck, D.; Privitera, V.; Carnera, A.; Napolitani, E.
2017-01-01
Heavy doping of Ge is crucial for several advanced micro- and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 × 1020 cm-3 by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 °C reaching an active concentration of ˜4 × 1019 cm-3. No significant As diffusion is detected up to 450 °C, where the As activation decreases further to ˜3 × 1019 cm-3. The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge.
Deformation Behavior and Microstructure of Ti6Al4V Manufactured by SLM
NASA Astrophysics Data System (ADS)
Krakhmalev, P.; Fredriksson, G.; Yadroitsava, I.; Kazantseva, N.; Plessis, A. du; Yadroitsev, I.
Mechanical properties, porosity, and microstructure of Ti6Al4V (ELI) material produced by Selective Laser Melting (SLM) under controlled oxygen content were analyzed. Fully martensitic α'structure with high dislocation density and stacking faults was observed in both as-built and stress relieved samples by means of XRD and TEM. Tensile {101 ̅2} twinning was identified by TEM and electron diffraction. Accommodation of thermal stresses during manufacturing was suggested as a possible reason for twinning. Computed tomography of pores was carried out. Pores in the specimens were evenly distributed and mostly had an elongated shape. Defect analysis by micro CT scans in pre-strained samples confirmed that the pore coalescence was the main crack formation mechanism in the final fracture with typical cup-and-cone fracture morphology. Additionally, typical dimples and quasi-cleavage were revealed. Mechanical properties of the samples after stress relieving heat treatment at 650°C for 3 h are complied with the international standard for Ti alloys for biomedical applications.
Jorgensen, Scott W.; Johnson, Terry A.; Payzant, E. Andrew; ...
2016-06-11
Deuterium desorption in an automotive-scale hydrogen storage tube was studied in-situ using neutron diffraction. Gradients in the concentration of the various alanate phases were observed along the length of the tube but no significant radial anisotropy was present. In addition, neutron radiography and computed tomography showed large scale cracks and density fluctuations, confirming the presence of these structures in an undisturbed storage system. These results demonstrate that large scale storage structures are not uniform even after many absorption/desorption cycles and that movement of gaseous hydrogen cannot be properly modeled by a simple porous bed model. In addition, the evidence indicatesmore » that there is slow transformation of species at one end of the tube indicating loss of catalyst functionality. These observations explain the unusually fast movement of hydrogen in a full scale system and shows that loss of capacity is not occurring uniformly in this type of hydrogen-storage system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strand, Matthew B.; Leong, G. Jeremy; Tassone, Christopher J.
Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate themore » fundamental mechanisms of SGD. Furthermore, characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.« less
Strand, Matthew B.; Leong, G. Jeremy; Tassone, Christopher J.; ...
2016-10-13
Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate themore » fundamental mechanisms of SGD. Furthermore, characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube.« less
Lee, Sang Yun; Park, Hyun Joo; Best-Popescu, Catherine; Jang, Seongsoo; Park, Yong Keun
2015-01-01
Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdem, Savas, E-mail: evxse1@nottingham.ac.uk; Dawson, Andrew Robert; Thom, Nicholas Howard
2012-02-15
The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity - sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing.more » In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.« less
Experimental investigation of the ordering pathway in a Ni-33 at.%Cr alloy
Gwalani, B.; Alam, T.; Miller, C.; ...
2016-06-17
The present study involves a detailed experimental investigation of the concurrent compositional clustering and long-range ordering tendencies in a Ni-33 at.%Cr alloy, carried out by coupling synchrotron-based X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). Synchrotron-based XRD results clearly exhibited progressively increasing lattice contraction in the matrix with increasing isothermal aging time, at 475 degrees C, eventually leading to the development of long-range ordering (LRO) of the Pt2Mo-type. Detailed TEM and APT investigations revealed that this LRO in the matrix is manifested in the form of nanometer-scale ordered domains, and the spatial distribution, size, morphology andmore » compositional evolution of these domains have been carefully investigated. Here, the APT results also revealed the early stages of compositional clustering prior to the onset of long-range ordering in this alloy and such compositional clustering can potentially be correlated to the lattice contraction and previously proposed short-range ordering tendencies.« less
A super-resolution ultrasound method for brain vascular mapping
O'Reilly, Meaghan A.; Hynynen, Kullervo
2013-01-01
Purpose: High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom. Methods: Emissions from single bubbles within a tube phantom were mapped through an ex vivo human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT). Results: The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging. Conclusions: This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain. PMID:24320408
A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications.
Bowden, D; Krysiak, Y; Palatinus, L; Tsivoulas, D; Plana-Ruiz, S; Sarakinou, E; Kolb, U; Stewart, D; Preuss, M
2018-04-10
Hardfacing alloys provide strong, wear-resistant and corrosion-resistant coatings for extreme environments such as those within nuclear reactors. Here, we report an ultra-high-strength Fe-Cr-Ni silicide phase, named π-ferrosilicide, within a hardfacing Fe-based alloy. Electron diffraction tomography has allowed the determination of the atomic structure of this phase. Nanohardness testing indicates that the π-ferrosilicide phase is up to 2.5 times harder than the surrounding austenite and ferrite phases. The compressive strength of the π-ferrosilicide phase is exceptionally high and does not yield despite loading in excess of 1.6 GPa. Such a high-strength silicide phase could not only provide a new type of strong, wear-resistant and corrosion-resistant Fe-based coating, replacing more costly and hazardous Co-based alloys for nuclear applications, but also lead to the development of a new class of high-performance silicide-strengthened stainless steels, no longer reliant on carbon for strengthening.
X-RAY IMAGING Achieving the third dimension using coherence
Robinson, Ian; Huang, Xiaojing
2017-01-25
X-ray imaging is extensively used in medical and materials science. Traditionally, the depth dimension is obtained by turning the sample to gain different views. The famous penetrating properties of X-rays mean that projection views of the subject sample can be readily obtained in the linear absorption regime. 180 degrees of projections can then be combined using computed tomography (CT) methods to obtain a full 3D image, a technique extensively used in medical imaging. In the work now presented in Nature Materials, Stephan Hruszkewycz and colleagues have demonstrated genuine 3D imaging by a new method called 3D Bragg projection ptychography1. Ourmore » approach combines the 'side view' capability of using Bragg diffraction from a crystalline sample with the coherence capabilities of ptychography. Thus, it results in a 3D image from a 2D raster scan of a coherent beam across a sample that does not have to be rotated.« less
Lidke, Diane S; Lidke, Keith A
2012-06-01
A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.
Force measurements in stiff, 3D, opaque granular materials
NASA Astrophysics Data System (ADS)
Hurley, Ryan C.; Hall, Stephen A.; Andrade, José E.; Wright, Jonathan
2017-06-01
We present results from two experiments that provide the first quantification of inter-particle force networks in stiff, 3D, opaque granular materials. Force vectors between all grains were determined using a mathematical optimization technique that seeks to satisfy grain equilibrium and strain measurements. Quantities needed in the optimization - the spatial location of the inter-particle contact network and tensor grain strains - were found using 3D X-ray diffraction and X-ray computed tomography. The statistics of the force networks are consistent with those found in past simulations and 2D experiments. In particular, we observe an exponential decay of normal forces above the mean and a partition of forces into strong and weak networks. In the first experiment, involving 77 single-crystal quartz grains, we also report on the temporal correlation of the force network across two sequential load cycles. In the second experiment, involving 1099 single-crystal ruby grains, we characterize force network statistics at low levels of compression.
Shock induced damage in copper: A before and after, three-dimensional study
NASA Astrophysics Data System (ADS)
Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.
2016-04-01
We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.
NASA Astrophysics Data System (ADS)
Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.
2013-04-01
Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.
NASA Astrophysics Data System (ADS)
Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.
2012-12-01
X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.
Chavan, Saurabh; Goodman, Michael; Jemal, Ahmedin; Fedewa, Stacey A
2014-01-01
While effects of age, race, place of residence, and marital status on receipt of treatment among female breast cancer patients have been well documented, place of birth is a relatively less studied factor. The purpose of our study was to assess the relationship between birth place and type of surgery performed for early-stage breast cancer among US women of different racial and ethnic backgrounds. Eligible cases (n=119,560) were selected from the SEER registries for the period 2004-2009. US-born and foreign-born patients of different racial/ethnic groups were compared to US-born non-Hispanic Whites (NHW) with respect to receipt of breast conserving surgery (BCS) or mastectomy. Results of multivariable logistic regression analyses were expressed as adjusted odds ratios (OR) and the corresponding 95% confidence intervals (CI). The proportion of BCS was highest in foreign-born Whites (62.5%) and lowest in foreign-born Asians (50.3%). Relative to US-born NHW, BCS was more common in foreign-born Whites (OR=1.21. 95% CI: 1.15-1.28) and foreign-born Blacks (OR=1.21. 95% CI: 1.15-1.28). In contrast, foreign-born Asians received less BCS compared to both US-born NHW (OR=.76, 95% CI: .72-0.80) and US-born Asians (OR=.74, 95% CI: .64-.86). Foreign-born Asian breast cancer patients are less likely to receive BSC compared to US-born Whites or Asian-Americans, whereas foreign-born Whites and foreign-born Blacks are more likely to receive BCS than US-born Whites. Further studies are needed to understand cultural and or health systems factors that may explain these observations.
The sexual and reproductive health of foreign-born women in the United States.
Tapales, Athena; Douglas-Hall, Ayana; Whitehead, Hannah
2018-02-14
To explore the sexual and reproductive health (SRH) behaviors, health insurance coverage and use of SRH services of women in the United States (U.S.) by nativity, disaggregated by race and ethnicity. We analyzed publicly available and restricted data from the National Survey of Family Growth to assess differences and similarities between foreign-born and U.S.-born women, both overall and within Hispanic, non-Hispanic (NH) white, NH black and NH Asian groups. A larger proportion of foreign-born women than U.S.-born women lacked health insurance coverage. Foreign-born women utilized SRH services at lower rates than U.S.-born women; this effect diminished at the multivariate level, although race and ethnicity differences remained. Overall, foreign-born women were less likely to pay for SRH services with private insurance than U.S.-born women. Foreign-born women were less likely to use the most effective contraceptive methods than U.S.-born women, with some variation across race and ethnicity: NH white and NH black foreign-born women were less likely to use highly effective contraceptive methods than their U.S.-born counterparts, but among Hispanic women, the reverse was true. Our findings demonstrate that the SRH behaviors, needs and outcomes of foreign-born women differ from those of U.S-born women within the same race/ethnic group. This paper contributes to the emergent literature on immigrants in the U.S. by laying the foundation for further research on the SRH of the foreign-born population in the country, which is critical for developing public health policies and programs to understand better and serve this growing and diverse population. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X
1993-05-01
The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.
Diffraction and Dissipation of Atmospheric Waves in the Vicinity of Caustics
NASA Astrophysics Data System (ADS)
Godin, O. A.
2015-12-01
A large and increasing number of ground-based and satellite-borne instruments has been demonstrated to reliably reveal ionospheric manifestations of natural hazards such as large earthquakes, strong tsunamis, and powerful tornadoes. To transition from detection of ionospheric manifestations of natural hazards to characterization of the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it is necessary to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard and, in particular, accurately model propagation of atmospheric waves from the ground or ocean surface to the ionosphere. The ray theory has been used extensively to model propagation of atmospheric waves and proved to be very efficient in elucidating the effects of atmospheric variability on ionospheric signatures of natural hazards. However, the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified in the vicinity of caustics. This paper presents an asymptotic theory that describes diffraction, focusing and increased dissipation of acoustic-gravity waves in the vicinity of caustics and turning points. Air temperature, viscosity, thermal conductivity, and wind velocity are assumed to vary gradually with height and horizontal coordinates, and slowness of these variations determines the large parameter of the problem. Uniform asymptotics of the wave field are expressed in terms of Airy functions and their derivatives. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In addition to the wave field in the vicinity of the caustic, these asymptotics describe wave reflection from the caustic and the evanescent wave field beyond the caustic. The evanescent wave field is found to play an important role in ionospheric manifestations of tsunamis.
U.S.-born compared to non-U.S.-born abused women: analysis of baseline data.
Montalvo-Liendo, Nora; Koci, Anne; McFarlane, Judith; Gilroy, Heidi; Maddoux, John
2013-01-01
It is evident from recent studies that a woman's citizenship status does not exempt her from exposure to partner violence. The purpose of this article was to examine if social support, self-efficacy, and marginalization of abused women differ based on U.S. born compared to non-U.S. born with and without documentation. The findings suggest that women who were born in the United States had significantly higher self-efficacy scores compared to non-U.S.-born women without documents. There were no significant differences in social support among abused women who are U.S. born compared to non-U.S. born with and without documentation. In addition, women who were not born in the United States and did not have documents had higher marginalization.
Multi scale imaging of the Cloudy Zone in the Tazewell IIICD Meteorite
NASA Astrophysics Data System (ADS)
Einsle, J. F.; Harrison, R. J.; Nichols, C. I. O.; Blukis, R.; Midgley, P. A.; Eggeman, A.; Saghi, Z.; Bagot, P.
2015-12-01
Paleomagnetic studies of iron and stony iron meteorites suggest that many small planetary bodies possessed molten cores resulting in the generation of a magnetic field. As these bodies cooled, Fe-Ni metal trapped within their mantle underwent a series of low-temperature transitions, leading to the familiar Widmanstatten intergrowth of kamacite and taenite. Adjacent to the kamacite/taenite interface is the so-called "cloudy zone" (CZ): a nanoscale intergrowth of tetrataenite islands in an Fe-rich matrix phase formed via spinodal decomposition. It has recently been shown (Bryson et al. 2015, Nature) that the CZ encodes a time-series record of the evolution of the magnetic field generated by the molten core of the planetary body. Extracting meaningful paleomagnetic data from the CZ relies, on a thorough understanding of the 3D chemical and magnetic properties of the intergrowth focsusing on the interactions between the magnetically hard tetrataenite islands and the magnetically soft matrix. Here we present a multi scale study of the chemical and crystallographic make up of the CZ in the Tazewell IIICD meteorite, using a range of advanced microscopy techniques. The results provide unprecedented insight into the architecture of the CZ, with implications for how the CZ acquires chemical transformation remanance during cooling on the parent body. Previous 2D transmission electron microscope studies of the CZ suggested that the matrix is an ordered Fe3Ni phase with the L12 structure. Interpretation of the electron diffraction patterns and chemical maps in these studies was hindered by a failure to resolve signals from overlapping island and matrix phases. Here we obtain high resolution electron diffraction and 3D chemical maps with near atomic resolution using a combination of scanning precession electron diffraction, 3D STEM EDS and atom probe tomography. Using this combined methodology we reslove for the first time the phenomena of secondary precipitation in the tetrataenite islands and chemical partitioning of trace elements between the island and matrix phases. The new crystallographic and compositional measurements present a quantitative picture of low-temperature local equilibrium in the Fe-Ni system. This leads to an improved understanding of the magnetic models used to perform paleomagnetism of the CZ.
Obesity Among U.S.- and Foreign-Born Blacks by Region of Birth.
Mehta, Neil K; Elo, Irma T; Ford, Nicole D; Siegel, Karen R
2015-08-01
Large, recent migration streams from the non-Hispanic Caribbean islands and Africa have increased the share of U.S. blacks born outside of the U.S. Little is known about health patterns in these foreign-born populations. The purpose of this study is to compare obesity levels among self-identified U.S. blacks across birth regions and examine potential explanations for subgroup differences. Data were from the 2000-2013 National Health Interview Surveys. Three birthplace subgroups were examined: individuals born in the U.S., Caribbean/South America, and Africa, aged 25-59 years. Data were analyzed in 2013-2014. Compared to U.S.-born participants, foreign-born participants had significantly lower obesity (BMI ≥30) odds. The AORs were 0.51 (Caribbean/South American-born, 95% CI=0.44, 0.58) and 0.41 (African-born, 95% CI=0.34, 0.50) with reference to U.S.-born individuals. Education, income, and cigarette smoking did not explain the favorable weight pattern of the foreign born. Among the foreign born, those residing in the U.S. for ≥15 years had 51% (95% CI=10%, 108%) higher obesity odds compared with those residing for <5 years. No statistically significant differences in obesity odds between those born in the Caribbean/South America and Africa were detected. Foreign-born blacks generally had lower obesity levels compared to their U.S.-born counterparts, which was not explained by SES or smoking behaviors. Despite this advantage, obesity prevalence among foreign-born black women was around 30%, suggesting that obesity poses a significant health risk this population. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Survival Differences among Native-Born and Foreign-Born Older Adults in the United States
Dupre, Matthew E.; Gu, Danan; Vaupel, James W.
2012-01-01
Background Studies show that the U.S. foreign-born population has lower mortality than the native-born population before age 65. Until recently, the lack of data prohibited reliable comparisons of U.S. mortality by nativity at older ages. This study provides reliable estimates of U.S. foreign-born and native-born mortality at ages 65 and older at the end of the 20th century. Life expectancies of the U.S. foreign born are compared to other developed nations and the foreign-born contribution to total life expectancy (TLE) in the United States is assessed. Methods Newly available data from Medicare Part B records linked with Social Security Administration files are used to estimate period life tables for nearly all U.S. adults aged 65 and older in 1995. Age-specific survival differences and life expectancies are examined in 1995 by sex, race, and place of birth. Results Foreign-born men and women had lower mortality at almost every age from 65 to 100 compared to native-born men and women. Survival differences by nativity were substantially greater for blacks than whites. Foreign-born blacks had the longest life expectancy of all population groups (18.73 [95% confidence interval {CI}, 18.15–19.30] years at age 65 for men and 22.76 [95% CI, 22.28–23.23] years at age 65 for women). The foreign-born population increased TLE in the United States at older ages, and by international comparison, the U.S. foreign born were among the longest-lived persons in the world. Conclusion Survival estimates based on reliable Medicare data confirm that foreign-born adults have longer life expectancy at older ages than native-born adults in the United States. PMID:22615929
Mehta, Neil K; Elo, Irma T; Engelman, Michal; Lauderdale, Diane S; Kestenbaum, Bert M
2016-08-01
In recent decades, the geographic origins of America's foreign-born population have become increasingly diverse. The sending countries of the U.S. foreign-born vary substantially in levels of health and economic development, and immigrants have arrived with distinct distributions of socioeconomic status, visa type, year of immigration, and age at immigration. We use high-quality linked Social Security and Medicare records to estimate life tables for the older U.S. population over the full range of birth regions. In 2000-2009, the foreign-born had a 2.4-year advantage in life expectancy at age 65 relative to the U.S.-born, with Asian-born subgroups displaying exceptionally high longevity. Foreign-born individuals who migrated more recently had lower mortality compared with those who migrated earlier. Nonetheless, we also find remarkable similarities in life expectancy among many foreign-born subgroups that were born in very different geographic and socioeconomic contexts (e.g., Central America, western/eastern Europe, and Africa).
Kew, M C; Kassianides, C; Hodkinson, J; Coppin, A; Paterson, A C
1986-01-01
Chronic hepatitis B virus infection is far less common in urban born than in rural born southern African blacks, who also have a high incidence of hepatocellular carcinoma. A case-control study was carried out to determine the relative frequency of hepatocellular carcinoma and its relation to hepatitis B virus infection in urban born blacks. Three hundred and ninety two black patients with hepatocellular carcinoma and matched controls seen at two city hospitals were classified by questioning as urban born or rural born. The ratio of rural born to urban born blacks among the controls was 1.1:1.0 (207/185), whereas in the patients with cancer the ratio was 4.8:1.0 (324/68) (p less than 0.0001). Analysis of the prevalence of hepatitis B markers in 62 urban born and matched rural born blacks with hepatocellular carcinoma showed no differences in the frequency of current or past hepatitis B virus infection. It is concluded that urban born blacks are less likely than rural born blacks to develop hepatocellular carcinoma, but when they do the tumour is equally likely to be related to infection with hepatitis B virus. The findings lend further support to an important role for chronic hepatitis B virus infection in the aetiology of hepatocellular carcinoma. PMID:3024771
Epidemiology of Tuberculosis in Young Children in the United States
Pang, Jenny; Teeter, Larry D.; Katz, Dolly J.; Davidow, Amy L.; Miranda, Wilson; Wall, Kirsten; Ghosh, Smita; Stein-Hart, Trudy; Restrepo, Blanca I.; Reves, Randall; Graviss, Edward A.
2016-01-01
OBJECTIVES To estimate tuberculosis (TB) rates among young children in the United States by children’s and parents’ birth origins and describe the epidemiology of TB among young children who are foreign-born or have at least 1 foreign-born parent. METHODS Study subjects were children <5 years old diagnosed with TB in 20 US jurisdictions during 2005–2006. TB rates were calculated from jurisdictions’ TB case counts and American Community Survey population estimates. An observational study collected demographics, immigration and travel histories, and clinical and source case details from parental interviews and health department and TB surveillance records. RESULTS Compared with TB rates among US-born children with US-born parents, rates were 32 times higher in foreign-born children and 6 times higher in US-born children with foreign-born parents. Most TB cases (53%) were among the 29% of children who were US born with foreign-born parents. In the observational study, US-born children with foreign-born parents were more likely than foreign-born children to be infants (30% vs 7%), Hispanic (73% vs 37%), diagnosed through contact tracing (40% vs 7%), and have an identified source case (61% vs 19%); two-thirds of children were exposed in the United States. CONCLUSIONS Young children who are US born of foreign-born parents have relatively high rates of TB and account for most cases in this age group. Prompt diagnosis and treatment of adult source cases, effective contact investigations prioritizing young contacts, and targeted testing and treatment of latent TB infection are necessary to reduce TB morbidity in this population. PMID:24515517
Erickson, Sarah J.; Duvall, Susanne W.; Fuller, Janell; Schrader, Ron; MacLean, Peggy; Lowe, Jean
2013-01-01
Background Parental “scaffolding” behavior has been associated with developmental outcomes in at-risk children. Aims Because there are limited empirical data regarding how scaffolding is associated with emotion-based developmental skills, the purpose of this study was to compare associations between maternal verbal scaffolding and toddler emotion regulation, including fewer displays of negative affect and increased contentment and enjoyment during play, in toddlers born preterm and full term. Study Design This study was a cross-sectional cohort design. Maternal and toddler behavior was assessed during 5 minutes of videotaped free play with standardized toys. Subjects 131 toddlers (18-22 months) and their mothers were included (77 born preterm; 54 born full term). Outcome Measures Toddler emotion regulation, negative affect, and dyadic mutual enjoyment were coded from videotaped play. Results The association between maternal scaffolding and emotion regulation was different for dyads with a toddler born preterm versus full term, wherein the association was positive for toddlers born preterm and non-significant for toddlers born full term. Similarly, the association between maternal scaffolding and negative affect was different for the two groups: negative for toddlers born preterm and non-significant for toddlers born full term. Finally, the association between maternal scaffolding and mutual enjoyment was positive for toddlers born preterm and non-significant for toddlers born full term. Conclusions Our findings highlight early differences in mother-child interactive style correlates of children born preterm compared to those born full term. Maternal scaffolding behavior may be uniquely associated with emotion regulation and a positive dyadic encounter for toddlers born preterm. PMID:23773306
Agudelo-Suárez, Andrés; Benavides, Fernando G.; Schenker, Marc; García, Ana M.; Benach, Joan; Delclos, Carlos; López-Jacob, María José; Ruiz-Frutos, Carlos; Ronda-Pérez, Elena; Porthé, Victoria
2010-01-01
Objective To analyze the relationship of legal status and employment conditions with health indicators in foreign-born and Spanish-born workers in Spain. Methods Cross-sectional study of 1,849 foreign-born and 509 Spanish-born workers (2008–2009, ITSAL Project). Considered employment conditions: permanent, temporary and no contract (foreign-born and Spanish-born); considered legal statuses: documented and undocumented (foreign-born). Joint relationships with self-rated health (SRH) and mental health (MH) were analyzed via logistical regression. Results When compared with male permanently contracted Spanish-born workers, worse health is seen in undocumented foreign-born, time in Spain ≤3 years (SRH aOR 2.68, 95% CI 1.09–6.56; MH aOR 2.26, 95% CI 1.15–4.42); in Spanish-born, temporary contracts (SRH aOR 2.40, 95% CI 1.04–5.53); and in foreign-born, temporary contracts, time in Spain >3 years (MH: aOR 1.96, 95% CI 1.13–3.38). In females, highest self-rated health risks are in foreign-born, temporary contracts (aOR 2.36, 95% CI 1.13–4.91) and without contracts, time in Spain >3 years (aOR 4.63, 95% CI 1.95–10.97). Conclusions Contract type is a health determinant in both foreign-born and Spanish-born workers. This study offers an uncommon exploration of undocumented migration and raises methodological issues to consider in future research. PMID:20401513
Positron Emission Tomography - Computed Tomography (PET/CT)
... A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) uses small amounts of ... What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, also called PET imaging ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxley, P.; Ade, P.; Baccigalupi, C.
2005-01-06
EBEX is a balloon-borne polarimeter designed to measure the intensity and polarization of the cosmic microwave background radiation. The measurements would probe the inflationary epoch that took place shortly after the big bang and would significantly improve constraints on the values of several cosmological parameters. EBEX is unique in its broad frequency coverage and in its ability to provide critical information about the level of polarized Galactic foregrounds which will be necessary for all future CMB polarization experiments. EBEX consists of a 1.5 m Dragone-type telescope that provides a resolution of less than 8 arcminutes over four focal planes eachmore » of 4. diffraction limited field of view at frequencies up to 450 GHz. The experiment is designed to accommodate 330 transition edge bolometric detectors per focal plane, for a total of up to 1320 detectors. EBEX will operate with frequency bands centered at 150, 250, 350, and 450 GHz. Polarimetry is achieved with a rotating achromatic half-wave plate. EBEX is currently in the design and construction phase, and first light is scheduled for 2008.« less
The Preston of the Guinier-Preston Zones. Guinier
NASA Astrophysics Data System (ADS)
Hardouin Duparc, O. B. M.
2010-10-01
Almost all materials scientists know about the Guinier-Preston (GP) zones, which were discovered in age-hardened aluminum-copper alloys in 1938. One of the discoverers, the French André Guinier, is rightly well known. The other discoverer, the British G.D. Preston, is totally ignored, even in English scientific biographies. I wish here to partly make up for this “oblivion” by giving elements about George Preston’s life (August 8, 1896 to June 22, 1972) and scientific work. Born in Ireland to the physicist Thomas Preston and deceased in Scotland, G. Preston carried out his scientific achievements in England, mainly studying the crystallographic structure of metals, metallic alloys, and thin films of metal oxides in a pioneering way. He also discussed the atomistic structure of twins in 1927. He mastered many kinds of X-ray and electron diffraction techniques up to diffuse scattering, which allowed him to detect the GP zones. Although he was involved in several controversies, including one about diamonds, he always remained a forthright person until his final professorship in Dundee. André Guinier’s career is briefly recalled in a parallel way.
The Preston of the Guinier-Preston Zones. Guinier
NASA Astrophysics Data System (ADS)
Hardouin Duparc, O. B. M.
2010-08-01
Almost all materials scientists know about the Guinier-Preston (GP) zones, which were discovered in age-hardened aluminum-copper alloys in 1938. One of the discoverers, the French André Guinier, is rightly well known. The other discoverer, the British G.D. Preston, is totally ignored, even in English scientific biographies. I wish here to partly make up for this “oblivion” by giving elements about George Preston’s life (August 8, 1896 to June 22, 1972) and scientific work. Born in Ireland to the physicist Thomas Preston and deceased in Scotland, G. Preston carried out his scientific achievements in England, mainly studying the crystallographic structure of metals, metallic alloys, and thin films of metal oxides in a pioneering way. He also discussed the atomistic structure of twins in 1927. He mastered many kinds of X-ray and electron diffraction techniques up to diffuse scattering, which allowed him to detect the GP zones. Although he was involved in several controversies, including one about diamonds, he always remained a forthright person until his final professorship in Dundee. André Guinier’s career is briefly recalled in a parallel way.
Design of space-borne imager with wide field of view based on freeform aberration theory
NASA Astrophysics Data System (ADS)
Shi, Haodong; Zhang, Jizhen; Wang, Lingjie; Zhang, Xin; Jiang, Huilin
2016-10-01
Freeform surfaces have advantages on balancing asymmetric aberration of the unobscured push-broom imager. However, since the conventional paraxial aberration theory is no longer appropriate for the freeform system design, designers are lack of insights on the imaging quality from the freeform aberration distribution. In order to design the freeform optical system efficiently, the contribution and nodal behavior of coma and astigmatism introduced by Standard Zernike polynomial surface are discussed in detail. An unobscured three-mirror optical system with 850 mm effective focal length, 20°× 2° field of view (FOV) is designed. The coma and astigmatism nodal positions are moved into the real-FOV by selecting and optimizing the Zernike terms pointedly, which has balanced the off-axis asymmetric aberration. The results show that the modulation transfer function (MTF) is close to diffraction limit, and the distortion throughout full-FOV is less than 0.25%. At last, a computer-generated hologram (CGH) for freeform surface testing is designed. The CGH design error RMS is lower than λ/1000 at 632.8 nm, which meets the requirements for measurement.
Distribution of tick-borne diseases in China
2013-01-01
As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. PMID:23617899
Celi, Ann C; Rich-Edwards, Janet W; Richardson, Marcie K; Kleinman, Ken P; Gillman, Matthew W
2005-03-01
To determine the impact of immigration status as well as race/ethnicity and social and economic factors on breastfeeding initiation. Cohort. Multisite group practice in eastern Massachusetts. One thousand eight hundred twenty-nine pregnant women prospectively followed up in Project Viva. Whether the participant breastfed her infant. The overall breastfeeding initiation rate was 83%. In multivariate models that included race/ethnicity and social, economic, and demographic factors, foreign-born women were more likely to initiate breastfeeding than US-born women (odds ratio [OR], 3.2 [95% confidence interval (CI), 2.0-5.2]). In models stratified by both race/ethnicity and immigration status, and further adjusted for whether the mother herself was breastfed as an infant and the mother's parents' immigration status, US-born and foreign-born black and Hispanic women initiated breastfeeding at rates at least as high as US-born white women (US-born black vs US-born white women, OR, 1.2 [95% CI, 0.8-1.9], US-born Hispanic vs US-born white women, OR, 1.1 [95% CI, 0.6-1.9], foreign-born black vs US-born white women, OR, 2.6 [95% CI, 1.1-6.0], and foreign-born Hispanic vs US-born white women, OR, 1.8 [95% CI, 0.7-4.8]). Calculations of predicted prevalences showed that, for example, the 2.6-fold increase in odds for the foreign-born black vs US-born white women translated to an increase in probability of approximately 1.4. Higher maternal education and household income also predicted higher initiation rates. Immigration status was strongly associated with increased breastfeeding initiation in this cohort, implying that cultural factors are important in the decision to breastfeed. Immigrants of all races/ethnicities initiated breastfeeding more often than their US-born counterparts. In addition, US-born minority groups initiated breastfeeding at rates at least as high as their white counterparts, likely due in part to high levels of education and income as well as to access to a medical care system that explicitly supports breastfeeding.
NASA Astrophysics Data System (ADS)
Mercereau, Luc; Todd, Nicolas; Rey, Gregoire; Valleron, Alain-Jacques
2017-10-01
The daily temperature-mortality relationship is typically U shaped. The temperature of minimum mortality (MMT) has been shown to vary in space (higher at lower latitudes) and time (higher in recent periods). This indicates human populations adapt to their local environment. The pace of this adaptation is unknown. The objective of this study was to investigate the differences in the temperature-mortality relationship in continental France between foreign born and natives. Source data were the 5,273,005 death certificates of individuals living in continental France between 2000 and 2009 at the time of their death. Foreign-born deaths ( N = 573,384) were matched 1:1 with a native-born death based on date of birth, sex, and place of death. Four regions of France based on similarity of their temperatures profiles were defined by unsupervised clustering. For each of these four regions, variations of all causes mortality with season and temperature of the day were modeled and compared between four groups of foreign born (Maghreb, sub-Saharan Africa, Southern Europe, and Northern Europe) and matched groups of natives. Overall, the temperature-mortality relationship and MMT were close in foreign born and in native born: The only difference between foreign born and native born concerned the attributable mortality to cold, found in several instances larger in foreign born. There are little differences in France between the temperature-mortality relationships in native born and in foreign born. This supports the hypothesis of an adaptation of these populations to the temperature patterns of continental France, which for those born in Africa differ markedly from the climatic pattern of their birth country.
Garreau, Emilie; Bouscaillou, Julie; Rattier, Simon; Ferri, Joël; Raoul, Gwenaël
2016-06-01
Orthodontic distraction after surgical maxillary expansion is a mode of treatment regularly used in the context of transverse maxillary constriction. There is, however, no consensus in the literature as to the type of distractor (bone-borne or tooth-borne) that should be used. This retrospective study compared orthodontic distraction using a bone-borne or a tooth-borne distractor from the point of view of tolerance, ease of use and overall patient satisfaction, by means of a questionnaire completed by patients undergoing maxillary expansion surgery in the Stomatology and Maxillofacial Surgery Department of Lille University Hospital between January 2013 and March 2015. The efficacy of the two distractors was also assessed. Thirty-two patients were included: 10 in the bone-borne distractor group and 22 in the tooth-borne group. Sixty percent of patients questioned found the bone-borne distractor easy to use compared with 32% for the tooth-borne distractor (P=0.167). Tolerance was noted to be comparable and acceptable by the two groups. The overall satisfaction rate was high for both groups at over 90%, and was correlated with ease of use and clear information. The average space gain between the first molars was 11.1mm with the bone-borne device and 10.7mm for the tooth-borne appliance. The use of a bone-borne distractor for orthodontic distraction after maxillary expansion surgery appears to be an effective, simple and well-tolerated alternative to the use of a tooth-borne distractor. According to patients, this distractor also appears easier to use than the traditional Hyrax-type distractor. This ease of use is correlated with overall satisfaction. Copyright © 2016. Published by Elsevier Masson SAS.
Lemola, Sakari; Oser, Nadine; Urfer-Maurer, Natalie; Brand, Serge; Holsboer-Trachsler, Edith; Bechtel, Nina; Grob, Alexander; Weber, Peter; Datta, Alexandre N
2017-01-01
To determine whether the relationship of gestational age (GA) with brain volumes and cognitive functions is linear or whether it follows a threshold model in preterm and term born children during school-age. We studied 106 children (M = 10 years 1 month, SD = 16 months; 40 females) enrolled in primary school: 57 were healthy very preterm children (10 children born 24-27 completed weeks' gestation (extremely preterm), 14 children born 28-29 completed weeks' gestation, 19 children born 30-31 completed weeks' gestation (very preterm), and 14 born 32 completed weeks' gestation (moderately preterm)) all born appropriate for GA (AGA) and 49 term-born children. Neuroimaging involved voxel-based morphometry with the statistical parametric mapping software. Cognitive functions were assessed with the WISC-IV. General Linear Models and multiple regressions were conducted controlling age, sex, and maternal education. Compared to groups of children born 30 completed weeks' gestation and later, children born <28 completed weeks' gestation had less gray matter volume (GMV) and white matter volume (WMV) and poorer cognitive functions including decreased full scale IQ, and processing speed. Differences in GMV partially mediated the relationship between GA and full scale IQ in preterm born children. In preterm children who are born AGA and without major complications GA is associated with brain volume and cognitive functions. In particular, decreased brain volume becomes evident in the extremely preterm group (born <28 completed weeks' gestation). In preterm children born 30 completed weeks' gestation and later the relationship of GA with brain volume and cognitive functions may be less strong as previously thought.
Eliasson, Arne H; Eliasson, Arn H; Lettieri, Christopher J
2017-05-01
To inform the design of a sleep improvement program for college students, we assessed academic performance, sleep habits, study hours, and extracurricular time, hypothesizing that there would be differences between US-born and foreign-born students. Questionnaires queried participants on bedtimes, wake times, nap frequency, differences in weekday and weekend sleep habits, study hours, grade point average, time spent at paid employment, and other extracurricular activities. Comparisons were made using chi square tests for categorical data and t tests for continuous data between US-born and foreign-born students. Of 120 participants (55 % women) with racial diversity (49 whites, 18 blacks, 26 Hispanics, 14 Asians, and 13 other), 49 (41 %) were foreign-born. Comparisons between US-born and foreign-born students showed no differences in average age or gender though US-born had more whites. There were no differences between US-born and foreign-born students for grade point averages, weekday bedtimes, wake times, or total sleep times. However, US-born students averaged 50 min less study time per day (p = 0.01), had almost 9 h less paid employment per week (14.5 vs 23.4 h per week, p = 0.001), and stayed up to socialize more frequently (63 vs 43 %, p = 0.03). Foreign-born students awakened an hour earlier and averaged 40 min less sleep per night on weekends. Cultural differences among college students have a profound effect on sleep habits, study hours, and extracurricular time. The design of a sleep improvement program targeting a population with diverse cultural backgrounds must factor in such behavioral variations in order to have relevance and impact.
Park, Song-Yi; Murphy, Suzanne P; Sharma, Sangita; Kolonel, Laurence N
2005-10-01
This study assessed and compared heath-related behaviours and nutrient and food group intakes between US-born and Korea-born Korean American women. Cross-sectional analyses were performed for ethnic Koreans who participated in the Multiethnic Cohort Study in Hawaii and Los Angeles in 1993-1996. The sample included 492 Korean American women aged 45-75 years who were born in the USA (n = 274) or Korea (n = 218). Participants were recruited using driver's license files as a primary sampling source and completed a self-administered questionnaire, including a quantitative food frequency section. The proportion overweight or obese was 31.4% in US-born and 9.4% in Korea-born women. US-born women had higher intakes of total fat and fat as a percentage of energy, and lower intakes of sodium, vitamin C, beta-carotene and carbohydrate as a percentage of energy, than Korea-born women. Comparing intakes of food group servings from the Food Guide Pyramid, US-born women reported more whole grains, red meat and nuts, and less soy products, than did Korea-born women. US-born women also consumed fewer vegetables and fruit than those born in Korea. Few women in either group reported intakes that met the recommendations for dairy foods. Intake of discretionary fat from the Pyramid tip was higher in US-born than in Korea-born women. These findings indicate that the acculturation of Korean immigrants affects dietary intakes in ways that may alter risks of several chronic diseases. Further studies will be necessary to examine the effects of dietary acculturation on disease patterns.
Mercereau, Luc; Todd, Nicolas; Rey, Gregoire; Valleron, Alain-Jacques
2017-10-01
The daily temperature-mortality relationship is typically U shaped. The temperature of minimum mortality (MMT) has been shown to vary in space (higher at lower latitudes) and time (higher in recent periods). This indicates human populations adapt to their local environment. The pace of this adaptation is unknown. The objective of this study was to investigate the differences in the temperature-mortality relationship in continental France between foreign born and natives. Source data were the 5,273,005 death certificates of individuals living in continental France between 2000 and 2009 at the time of their death. Foreign-born deaths (N = 573,384) were matched 1:1 with a native-born death based on date of birth, sex, and place of death. Four regions of France based on similarity of their temperatures profiles were defined by unsupervised clustering. For each of these four regions, variations of all causes mortality with season and temperature of the day were modeled and compared between four groups of foreign born (Maghreb, sub-Saharan Africa, Southern Europe, and Northern Europe) and matched groups of natives. Overall, the temperature-mortality relationship and MMT were close in foreign born and in native born: The only difference between foreign born and native born concerned the attributable mortality to cold, found in several instances larger in foreign born. There are little differences in France between the temperature-mortality relationships in native born and in foreign born. This supports the hypothesis of an adaptation of these populations to the temperature patterns of continental France, which for those born in Africa differ markedly from the climatic pattern of their birth country.
Aoki, Sayaka; Hashimoto, Keiji; Ogawa, Kohei; Horikawa, Reiko; Sago, Haruhiko
2018-05-01
This study aimed to investigate developmental outcomes of Japanese babies born through Assisted Reproductive Technology (ART) at ages 2 and 3. The data were gathered from 1085 children in a hospital-based cohort study conducted in Japan. The children's level of development was assessed through a parent-rated questionnaire, the Kinder Infant Development Scale, which consists of nine developmental domains. We compared the development of children born through ART and those born naturally by conducting analyses of covariance. For the analyses, the effect of maternal age, family income, parental education and multiple birth were controlled for. At 24 months, no significant difference was found between children born through ART and those born naturally in development in any domain. At 36 months, a significant difference was found in development of Receptive language (F (1, 845) = 6.148, P = 0.013), Expressive language (F (1, 845) = 4.060, P = 0.044) and Language concept (F (1, 845) = 6.968, P = 0.008). For these domains, children born through ART had a significantly higher developmental age compared to children born naturally. At age 2, no significant difference was found between the children born through ART and those born naturally in nine developmental domains, although at age 3, the children born through ART showed significantly better language development than the children born naturally. © 2018 Japan Society of Obstetrics and Gynecology.
33 CFR 150.624 - What are the requirements for protecting personnel from blood-borne pathogens?
Code of Federal Regulations, 2010 CFR
2010-07-01
... protecting personnel from blood-borne pathogens? 150.624 Section 150.624 Navigation and Navigable Waters... Workplace Safety and Health Blood-Borne Pathogens § 150.624 What are the requirements for protecting personnel from blood-borne pathogens? Measures for protection from the dangers of blood-borne pathogens must...
33 CFR 150.624 - What are the requirements for protecting personnel from blood-borne pathogens?
Code of Federal Regulations, 2014 CFR
2014-07-01
... protecting personnel from blood-borne pathogens? 150.624 Section 150.624 Navigation and Navigable Waters... Workplace Safety and Health Blood-Borne Pathogens § 150.624 What are the requirements for protecting personnel from blood-borne pathogens? Measures for protection from the dangers of blood-borne pathogens must...
33 CFR 150.624 - What are the requirements for protecting personnel from blood-borne pathogens?
Code of Federal Regulations, 2012 CFR
2012-07-01
... protecting personnel from blood-borne pathogens? 150.624 Section 150.624 Navigation and Navigable Waters... Workplace Safety and Health Blood-Borne Pathogens § 150.624 What are the requirements for protecting personnel from blood-borne pathogens? Measures for protection from the dangers of blood-borne pathogens must...
33 CFR 150.624 - What are the requirements for protecting personnel from blood-borne pathogens?
Code of Federal Regulations, 2013 CFR
2013-07-01
... protecting personnel from blood-borne pathogens? 150.624 Section 150.624 Navigation and Navigable Waters... Workplace Safety and Health Blood-Borne Pathogens § 150.624 What are the requirements for protecting personnel from blood-borne pathogens? Measures for protection from the dangers of blood-borne pathogens must...
33 CFR 150.624 - What are the requirements for protecting personnel from blood-borne pathogens?
Code of Federal Regulations, 2011 CFR
2011-07-01
... protecting personnel from blood-borne pathogens? 150.624 Section 150.624 Navigation and Navigable Waters... Workplace Safety and Health Blood-Borne Pathogens § 150.624 What are the requirements for protecting personnel from blood-borne pathogens? Measures for protection from the dangers of blood-borne pathogens must...
8 CFR 289.3 - Recording the entry of certain American Indians born in Canada.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Indians born in Canada. 289.3 Section 289.3 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS AMERICAN INDIANS BORN IN CANADA § 289.3 Recording the entry of certain American Indians born in Canada. The lawful admission for permanent residence of an American Indian born in Canada...
Thomas, Kevin J A
2009-08-01
In this study, I examine disparities in schooling progress among children born to immigrant and U.S.-born blacks. I find that in one- and two-parent families, children born to black immigrants are less likely to fall behind in school than those born to U.S.-born blacks. In two-parent immigrant families, children born to two immigrant parents have a significant schooling advantage over children born to one immigrant parent. While children born to two immigrant parents in the wealthiest black immigrant families do better in the second generation than in the first, the reverse is observed among children in less wealthy families. These findings contribute in two ways to our understanding of the assimilation processes of children born to black immigrant parents. First, they show that there is a positive association between the number of immigrant parents in a family and children's schooling performance. Second, they suggest that disparities in the assimilation patterns of the children of black immigrants are a likely product of the interaction between their parental characteristics and the socioeconomic circumstances of their families.
Immigration, citizenship, and the mental health of adolescents
Fenelon, Andrew; Boudreaux, Michel
2018-01-01
Purpose To examine the reported mental health outcomes of adolescent foreign-born non-citizens and adolescent foreign-born U.S. citizens compared to adolescent U.S.-born citizens. Methods Using the Strengths and Difficulties Questionnaire in the National Health Interview Survey, we compared mental health status of U.S.-born adolescent citizens to foreign-born citizens and non-citizens in the years 2010–2015, and examined how differences in emotional difficulty changed based on time spent in the U.S. Results Results suggest that non-citizen adolescents experience better mental health outcomes than U.S.-born citizens. However, the mental health status of foreign-born citizens is indistinguishable from that of the U.S.-born, after accounting for basic socio-demographic characteristics. The prevalence of emotional difficulty experienced by immigrant adolescents increased with a family’s duration in the U.S. Conclusion Our findings are consistent with a broader health advantage for the foreign-born, but we present new evidence that the mental health advantage of foreign-born adolescents exists only for non-citizens. PMID:29723297
Mehta, Neil K.; Elo, Irma T.; Engelman, Michal; Lauderdale, Diane S.; Kestenbaum, Bert M.
2016-01-01
In recent decades, the geographic origins of America’s foreign-born population have become increasingly diverse. The sending countries of the U.S. foreign-born vary substantially in levels of health and economic development, and immigrants have arrived with distinct distributions of socioeconomic status, visa type, year of immigration, and age at immigration. We use high-quality linked Social Security and Medicare records to estimate life tables for the older U.S. population over the full range of birth regions. In 2000–2009, the foreign-born had a 2.4-year advantage in life expectancy at age 65 relative to the U.S.-born, with Asian-born subgroups displaying exceptionally high longevity. Foreign-born individuals who migrated more recently had lower mortality compared with those who migrated earlier. Nonetheless, we also find remarkable similarities in life expectancy among many foreign-born subgroups that were born in very different geographic and socioeconomic contexts (e.g., Central America, western/eastern Europe, and Africa). PMID:27383845
Among overweight middle-aged men, first-borns have lower insulin sensitivity than second-borns
Albert, Benjamin B.; de Bock, Martin; Derraik, José G. B.; Brennan, Christine M.; Biggs, Janene B.; Hofman, Paul L.; Cutfield, Wayne S.
2014-01-01
We aimed to assess whether birth order affects metabolism and body composition in overweight middle-aged men. We studied 50 men aged 45.6 ± 5.5 years, who were overweight (BMI 27.5 ± 1.7 kg/m2) but otherwise healthy in Auckland, New Zealand. These included 26 first-borns and 24 second-borns. Insulin sensitivity was assessed by the Matsuda method from an oral glucose tolerance test. Other assessments included DXA-derived body composition, lipid profiles, 24-hour ambulatory blood pressure, and carotid intima-media thickness. First-born men were 6.9 kg heavier (p = 0.013) and had greater BMI (29.1 vs 27.5 kg/m2; p = 0.004) than second-borns. Insulin sensitivity in first-born men was 33% lower than in second-borns (4.38 vs 6.51; p = 0.014), despite adjustment for fat mass. There were no significant differences in ambulatory blood pressure, lipid profile or carotid intima-media thickness between first- and second-borns. Thus, first-born adults may be at a greater risk of metabolic and cardiovascular diseases. PMID:24503677
Tuberculosis disease among Mexico-born individuals living in New York City, 2001-2014.
Stennis, N L; Meissner, J S; Bhavnani, D; Kreiswirth, B; Ahuja, S Desai
2017-06-01
Tuberculosis (TB) has decreased substantially in New York City (NYC), but progress has slowed in recent years. Continued declines will require novel approaches tailored to foreign-born populations. To describe TB epidemiology among the Mexico-born population of NYC to inform interventions in this community. The study included NYC patients with TB disease identified from 2001 to 2014. Incidence rates were compared by country of birth groupings. Demographic and patient characteristics were analyzed for all Mexico-born TB patients. Patients were compared by Mycobacterium bovis vs. non-M. bovis TB strain. Culture-confirmed patients were compared by genotype clustering status. From 2001 to 2014, 621 Mexico-born TB patients were identified in NYC. TB rates were significantly higher among Mexico-born vs. US-born persons every year. Mexico-born patients had lived in the United States for a median 7 years at diagnosis. The geographic distribution of Mexico-born TB patients was similar to that of the total Mexico-born population. Overall, 71% of patients reported previous employment; 52% of non-M. bovis patients were clustered based on genotyping results. Our results provide a foundation to inform future interventions in the Mexico-born population. Additional work is needed to explore possible local TB transmission and health care-seeking practices.
Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health
Eisen, Rebecca J.; Kugeler, Kiersten J.; Eisen, Lars; Beard, Charles B.; Paddock, Christopher D.
2017-01-01
In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents. PMID:28369515
Racial/ethnic disparities in obesity among US-born and foreign-born adults by sex and education.
Barrington, Debbie S; Baquero, Maria C; Borrell, Luisa N; Crawford, Natalie D
2010-02-01
This study examines sex and education variations in obesity among US- and foreign-born whites, blacks, and Hispanics utilizing 1997-2005 data from the National Health Interview Survey on 267,585 adults aged > or =18 years. After adjusting for various demographic, health, and socioeconomic factors via logistic regression, foreign-born black men had the lowest odds for obesity relative to US-born white men. The largest racial/ethnic disparity in obesity was between US-born black and white women. High educational attainment diminished the US-born black-white and Hispanic-white disparities among women, increased these disparities among men, and had minimal effect on foreign-born Hispanic-white disparities among women and men. Comprehension of these relationships is vital for conducting effective obesity research and interventions within an increasingly diverse United States.
Travel patterns and characteristics of foreign-born sub-population in New York state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Shih-Miao; Hwang, Ho-Ling; Reuscher, Tim
According to the 2010 Census, over 22% of total New York State (NYS) residents were foreign-born and over one in three persons living in New York City (NYC) were foreign-born. Foreign-born and their dependents impact local economies in many different ways, including purchasing power, transportation service needs, business sales and receipts generated, and workforce. To allow better policy decision making and program planning of transportation developments and investments in NYS, a clear understanding of the foreign-born population’s travel characteristics and behaviors, as well as their unique transportation service needs, are necessary. This report documents the characteristics of the foreign-born populationmore » and identified differences in travel behaviors and mobility issues between foreign-born residents of NYS and their U.S.-born counterparts.« less
Viani, Alberto; Sotiriadis, Konstantinos; Kumpová, Ivana; Mancini, Lucia; Appavou, Marie-Sousai
2017-04-01
To characterize the microstructure of two zinc phosphate cement formulations in order to investigate the role of liquid/solid ratio and composition of powder component, on the developed porosity and, consequently, on compressive strength. X-ray powder diffraction with the Rietveld method was used to study the phase composition of zinc oxide powder and cements. Powder component and cement microstructure were investigated with scanning electron microscopy. Small angle neutron scattering (SANS) and microfocus X-ray computed tomography (XmCT) were together employed to characterize porosity and microstructure of dental cements. Compressive strength tests were performed to evaluate their mechanical performance. The beneficial effects obtained by the addition of Al, Mg and B to modulate powder reactivity were mitigated by the crystallization of a Zn aluminate phase not involved in the cement setting reaction. Both cements showed spherical pores with a bimodal distribution at the micro/nano-scale. Pores, containing a low density gel-like phase, developed through segregation of liquid during setting. Increasing liquid/solid ratio from 0.378 to 0.571, increased both SANS and XmCT-derived specific surface area (by 56% and 22%, respectively), porosity (XmCT-derived porosity increased from 3.8% to 5.2%), the relative fraction of large pores ≥50μm, decreased compressive strength from 50±3MPa to 39±3MPa, and favored microstructural and compositional inhomogeneities. Explain aspects of powder design affecting the setting reaction and, in turn, cement performance, to help in optimizing cement formulation. The mechanism behind development of porosity and specific surface area explains mechanical performance, and processes such as erosion and fluoride release/uptake. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Konig, Karsten; Wang, Bagui; Krauss, Oliver; Riemann, Iris; Schubert, Harald; Kirste, Sigrun; Fischer, Peter
2004-07-01
We report on a method for refractive laser surgery based on low-energy femtosecond laser pulses provided by ultracompact turn-key non-amplified laser systems. An additional excimer laser is not required for ablation of the stroma. The novel method has the potential to be used for (i) optical flap creation as well as stroma ablation and (ii) for non-invasive flap-free intrastromal ablation. In addition, 3D multiphoton imaging of the cornea can be performed. In particular, we used sub-nanojoule near infrared 80 MHz femtosecond laser pulses for multiphoton imaging of corneal structures with ultrahigh resolution (< 1μm) as well as for highly precise intraocular refractive surgery. Imaging based on two-photon excited cellular autofluorescence and SHG formation in collagen structures was performed at GW/cm2 intensities, whereas destructive optical breakdown for nanoprocessing occurred at TW/cm2 light intensities. These high intensities were realized with sub-nJ pulses within a subfemtoliter intrastromal volume by diffraction-limited focussing with high NA objectives and beam scanning 50 to 140 μm below the epithelial surface. Multiphoton tomography of the cornea was used to determine the target of interest and to visualize intraocular post-laser effects. Histological examination with light- and electron microscopes of laser-exposed porcine and rabbit eyes reveal a minimum intratissue cut size below 1 μm without destructive effects to surrounding collagen structures. LASIK flaps and intracorneal cavities could be realized with high precision using 200 fs, 80 MHz, sub-nanojoule pulses at 800 nm. First studies on 80 MHz femtosecond laser surgery on living rabbits have been performed.
Grunwaldt, Jan-Dierk; Schroer, Christian G
2010-12-01
X-ray microscopic techniques are excellent and presently emerging techniques for chemical imaging of heterogeneous catalysts. Spatially resolved studies in heterogeneous catalysis require the understanding of both the macro and the microstructure, since both have decisive influence on the final performance of the industrially applied catalysts. A particularly important aspect is the study of the catalysts during their preparation, activation and under operating conditions, where X-rays have an inherent advantage due to their good penetration length especially in the hard X-ray regime. Whereas reaction cell design for hard X-rays is straightforward, recently smart in situ cells have also been reported for the soft X-ray regime. In the first part of the tutorial review, the constraints from a catalysis view are outlined, then the scanning and full-field X-ray microscopy as well as coherent X-ray diffraction imaging techniques are described together with the challenging design of suitable environmental cells. Selected examples demonstrate the application of X-ray microscopy and tomography to monitor structural gradients in catalytic reactors and catalyst preparation with micrometre resolution but also the possibility to follow structural changes in the sub-100 nm regime. Moreover, the potential of the new synchrotron radiation sources with higher brilliance, recent milestones in focusing of hard X-rays as well as spatiotemporal studies are highlighted. The tutorial review concludes with a view on future developments in the field of X-ray microscopy that will have strong impact on the understanding of catalysts in the future and should be combined with in situ electron microscopic studies on the nanoscale and other spectroscopic studies like microRaman, microIR and microUV-vis on the macroscale.
Foreign-Born and U.S.-Born Black Women: Differences in Health Behaviors and Birth Outcomes.
ERIC Educational Resources Information Center
Cabral, Howard; And Others
1990-01-01
Study of the health behaviors and birth outcomes among 201 foreign-born and 616 U.S.-born women who received prenatal care at Boston City Hospital reveals that foreign-born women had better pre-pregnancy nutritional status and prenatal health behaviors, and their infants had greater birth weight. Limitations of this study are discussed. (Author)
Henning-Smith, Carrie; Shippee, Tetyana P; McAlpine, Donna; Hardeman, Rachel; Farah, Farhiya
2013-05-01
We examined differences in self-reported mental health (SRMH) between US-born and Somalia-born Black Americans compared with White Americans. We tested how SRMH was affected by stigma toward seeing a mental health provider, discrimination in the health care setting, or symptoms of depression. Data were from a 2008 survey of adults in Minnesota and were limited to US-born and Somalia-born Black and White Americans (n = 938). Somalia-born adults were more likely to report better SRMH than either US-born Black or White Americans. They also reported lower levels of discrimination (18.6%) than US-born Black Americans (33.4%), higher levels of stigma (23.6% vs 4.7%), and lower levels of depressive symptoms (9.1% vs 31.6%). Controlling for stigma, discrimination, and symptomatology, Somalia-born Black Americans reported better SRMH than White and Black Americans (odds ratio = 4.76). Mental health programming and health care providers who focus on Black Americans' mental health might be missing important sources of heterogeneity. It is essential to consider the role of race and ethnicity, but also of nativity, in mental health policy and programming.
Shippee, Tetyana P.; McAlpine, Donna; Hardeman, Rachel; Farah, Farhiya
2013-01-01
Objectives. We examined differences in self-reported mental health (SRMH) between US-born and Somalia-born Black Americans compared with White Americans. We tested how SRMH was affected by stigma toward seeing a mental health provider, discrimination in the health care setting, or symptoms of depression. Methods. Data were from a 2008 survey of adults in Minnesota and were limited to US-born and Somalia-born Black and White Americans (n = 938). Results. Somalia-born adults were more likely to report better SRMH than either US-born Black or White Americans. They also reported lower levels of discrimination (18.6%) than US-born Black Americans (33.4%), higher levels of stigma (23.6% vs 4.7%), and lower levels of depressive symptoms (9.1% vs 31.6%). Controlling for stigma, discrimination, and symptomatology, Somalia-born Black Americans reported better SRMH than White and Black Americans (odds ratio = 4.76). Conclusions. Mental health programming and health care providers who focus on Black Americans’ mental health might be missing important sources of heterogeneity. It is essential to consider the role of race and ethnicity, but also of nativity, in mental health policy and programming. PMID:23488506
[Nutritional status of adolescents from a cohort of preterm children].
González Stäger, M Angélica; Rodríguez Fernández, Alejandra; Muñoz Valenzuela, Carolina; Ojeda Sáez, Alejandra; San Martín Navarrete, Ana
2016-01-01
Catch-up growth in preterm-born children occurs in the first months of life, but in some cases, growth recovery takes place in adolescence. The objective of this study was to study the growth and development of preterm-born adolescents from a cohort of preterm infants born between 1995 and 1996, who resided in the cities of Chillán and San Carlos in the Biobío Region, Chile. The results were then compared with term-born adolescents. A sample of 91 children from the cohort was studied and compared with 91 term-born adolescents matched for gender, age, and attendance at the same educational institution. The nutritional status was assessed by BMI-for-age, height-for-age, body composition by skinfold, cardiovascular risk due to blood pressure, and waist circumference. There was 23.0% and 24.1% overweight and obesity in preterm-born and term-born adolescents, respectively, with 25.5% of preterm-born and small for gestational age adolescents vs. 14.5% of those born adequate for gestational age were overweight. Lower height was observed in 16.5% and 5.5% of the preterm-born and term-born adolescents, respectively, and with a higher proportion of girls (P<.04). Preterm-born adolescents had a more fat mass than the controls, particularly in the suprailiac skinfold. No significant differences were found in blood pressure and waist circumference. The results indicate that there is a group of preterm-born children who do not recover height during adolescence, especially girls. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Olson, Nicole A; Davidow, Amy L; Winston, Carla A; Chen, Michael P; Gazmararian, Julie A; Katz, Dolores J
2012-05-18
Tuberculosis (TB) in developed countries has historically been associated with poverty and low socioeconomic status (SES). In the past quarter century, TB in the United States has changed from primarily a disease of native-born to primarily a disease of foreign-born persons, who accounted for more than 60% of newly-diagnosed TB cases in 2010. The purpose of this study was to assess the association of SES with rates of TB in U.S.-born and foreign-born persons in the United States, overall and for the five most common foreign countries of origin. National TB surveillance data for 1996-2005 was linked with ZIP Code-level measures of SES (crowding, unemployment, education, and income) from U.S. Census 2000. ZIP Codes were grouped into quartiles from low SES to high SES and TB rates were calculated for foreign-born and U.S.-born populations in each quartile. TB rates were highest in the quartiles with low SES for both U.S.-born and foreign-born populations. However, while TB rates increased five-fold or more from the two highest to the two lowest SES quartiles among the U.S.-born, they increased only by a factor of 1.3 among the foreign-born. Low SES is only weakly associated with TB among foreign-born persons in the United States. The traditional associations of TB with poverty are not sufficient to explain the epidemiology of TB among foreign-born persons in this country and perhaps in other developed countries. TB outreach and research efforts that focus only on low SES will miss an important segment of the foreign-born population.
Country of Birth of Children With Diagnosed HIV Infection in the United States, 2008-2014.
Nesheim, Steven R; Linley, Laurie; Gray, Kristen M; Zhang, Tianchi; Shi, Jing; Lampe, Margaret A; FitzHarris, Lauren F
2018-01-01
Diagnoses of HIV infection among children in the United States have been declining; however, a notable percentage of diagnoses are among those born outside the United States. The impact of foreign birth among children with diagnosed infections has not been examined in the United States. Using the Centers for Disease Control and Prevention National HIV Surveillance System, we analyzed data for children aged <13 years with diagnosed HIV infection ("children") in the United States (reported from 50 states and the District of Columbia) during 2008-2014, by place of birth and selected characteristics. There were 1516 children [726 US born (47.9%) and 676 foreign born (44.6%)]. US-born children accounted for 70.0% in 2008, declining to 32.3% in 2013, and 40.9% in 2014. Foreign-born children have exceeded US-born children in number since 2011. Age at diagnosis was younger for US-born than foreign-born children (0-18 months: 72.6% vs. 9.8%; 5-12 years: 16.9% vs. 60.3%). HIV diagnoses in mothers of US-born children were made more often before pregnancy (49.7% vs. 21.4%), or during pregnancy (16.6% vs. 13.9%), and less often after birth (23.7% vs. 41%). Custodians of US-born children were more often biological parents (71.9% vs. 43.2%) and less likely to be foster or nonrelated adoptive parents (10.4% vs. 55.1%). Of 676 foreign-born children with known place of birth, 65.5% were born in sub-Saharan Africa and 14.3% in Eastern Europe. The top countries of birth were Ethiopia, Ukraine, Uganda, Haiti, and Russia. The increasing number of foreign-born children with diagnosed HIV infection in the United States requires specific considerations for care and treatment.
Salinero-Fort, Miguel A; Jiménez-García, Rodrigo; de Burgos-Lunar, Carmen; Chico-Moraleja, Rosa M; Gómez-Campelo, Paloma
2015-03-01
Our main objective was to estimate and compare the prevalence of the most common mental disorders between Latin American-born and Spanish-born patients in Madrid, Spain. We also analyzed sociodemographic factors associated with these disorders and the role of the length of residency for Latin American-born patients. We performed a cross-sectional study to compare Latin American-born (n = 691) and Spanish-born outpatients (n = 903) from 15 primary health care centers in Madrid, Spain. The Primary Care Evaluation of Mental Disorders was used to diagnose common mental disorders. Sociodemographic, psychosocial, and migration data were collected. We detected common mental disorders in 49.9 % (95 % CI = 47.4-52.3 %) of the total sample. Values were higher in Latin American-born patients than in Spanish-born patients for any disorder (57.8 % vs. 43.9 %, p < 0.001), mood disorders (40.1 % vs. 34.8 %, p = 0.030), anxiety disorders (20.5 % vs. 15.3 %, p = 0.006), and somatoform disorders (18.1 % vs. 6.6 %, p < 0.001). There were no statistically significant differences in prevalence between Latin American-born patients with less than 5 years of residency and Latin American-born residents with 5 or more years of residency. Finally, multivariate analysis shows that gender, having/not having children, monthly income, geographic origin, and social support were significantly associated with several disorders. The sample was neither population-based nor representative of the general immigrant or autochthonous populations. The study provides further evidence of the high prevalence of common mental disorders in Latin American-born patients in Spain compared with Spanish-born patients.
Have women born outside the U.K. driven the rise in U.K. births since 2001?
Tromans, Nicola; Natamba, Eva; Jefferie, Julie
2009-01-01
The number of births in the U.K. has increased each year since 2001. This article examines the demographic drivers underlying this rise, assessing the contribution of U.K. born and foreign born women. It brings together key information from across the U.K. to provide a coherent picture of childbearing trends among U.K. born and foreign born women since 2001. Geographical variations in the proportion of births to foreign born women are also explored at the local authority level.
Birth order and its relationship to depression, anxiety, and self-concept test scores in children.
Gates, L; Lineberger, M R; Crockett, J; Hubbard, J
1988-03-01
Children (N = 404), 7 to 12 years old, were given the Children's Depression Inventory, the State-Trait Anxiety Inventory for Children, and the Piers-Harris Self-Concept Scale. First-born children scored significantly lower on depression than second-, third-, fourth-born, and youngest children. First borns showed significantly less trait anxiety than third-born children. First-born children also showed significantly higher levels of self-esteem than second-born and youngest children. Girls in this study showed significantly more trait anxiety than boys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naragani, Diwakar; Sangid, Michael D.; Shade, Paul A.
Crack initiation at inclusions is a dominant, unavoidable and life-limiting failure mechanism of important structural materials. Fatigue progresses in a complex manner to find the ‘weakest link’ in the microstructure, leading to crack nucleation. In this study, fully 3-D characterization methods using high-energy synchrotron x-rays are combined with in-situ mechanical testing to study the crack initiation mechanism in a Ni-based superalloy specimen. The specimen was produced via powder metallurgy and seeded with a non-metallic inclusion. Two x-ray techniques were employed: absorption contrast computed micro-tomography (μ-CT) to determine the morphology of the inclusion and its location in the gauge section ofmore » the specimen; and far-field high-energy diffraction microscopy (FF-HEDM) to resolve the centroids, average orientations, and lattice strains of the individual grains comprising the microstructure surrounding the inclusion. Sequential μ-CT and FF-HEDM scans were carried out at both peak and zero applied stress following schedules of cyclic deformation. The µ-CT data showed the onset and location of crack initiation, and the FF-HEDM data provided temporal and spatial evolution of the intergranular strains. Strain partitioning and the associated stress heterogeneities that develop are shown to stabilize within a few loading cycles. Elasto-viscoplastic fast Fourier transform simulations were utilized to supplement interpretation of the experimental stress distributions and compared with the experimental stress distributions. In conclusion, appropriate conditions for crack nucleation in the form of stress gradients were demonstrated and created by virtue of the inclusion, specifically the residual stress state and local bonding state at the inclusion-matrix interface.« less
Naragani, Diwakar; Sangid, Michael D.; Shade, Paul A.; ...
2017-07-14
Crack initiation at inclusions is a dominant, unavoidable and life-limiting failure mechanism of important structural materials. Fatigue progresses in a complex manner to find the ‘weakest link’ in the microstructure, leading to crack nucleation. In this study, fully 3-D characterization methods using high-energy synchrotron x-rays are combined with in-situ mechanical testing to study the crack initiation mechanism in a Ni-based superalloy specimen. The specimen was produced via powder metallurgy and seeded with a non-metallic inclusion. Two x-ray techniques were employed: absorption contrast computed micro-tomography (μ-CT) to determine the morphology of the inclusion and its location in the gauge section ofmore » the specimen; and far-field high-energy diffraction microscopy (FF-HEDM) to resolve the centroids, average orientations, and lattice strains of the individual grains comprising the microstructure surrounding the inclusion. Sequential μ-CT and FF-HEDM scans were carried out at both peak and zero applied stress following schedules of cyclic deformation. The µ-CT data showed the onset and location of crack initiation, and the FF-HEDM data provided temporal and spatial evolution of the intergranular strains. Strain partitioning and the associated stress heterogeneities that develop are shown to stabilize within a few loading cycles. Elasto-viscoplastic fast Fourier transform simulations were utilized to supplement interpretation of the experimental stress distributions and compared with the experimental stress distributions. In conclusion, appropriate conditions for crack nucleation in the form of stress gradients were demonstrated and created by virtue of the inclusion, specifically the residual stress state and local bonding state at the inclusion-matrix interface.« less
NASA Astrophysics Data System (ADS)
Prichard, H. M.; Barnes, S. J.; Godel, B.; Reddy, S. M.; Vukmanovic, Z.; Halfpenny, A.; Neary, C. R.; Fisher, P. C.
2015-03-01
Nodular chromite is a characteristic feature of ophiolitic podiform chromitite and there has been much debate about how it forms. Nodular chromite from the Troodos ophiolite in Cyprus is unusual in that it contains skeletal crystals enclosed within the centres of the nodules and interstitial to them. 3D imaging and electron backscatter diffraction have shown that the skeletal crystals within the nodules are single crystals that are surrounded by a rim of polycrystalline chromite. 3D analysis reveals that the skeletal crystals are partially or completely formed cage or hopper structures elongated along the < 111 > axis. The rim is composed of a patchwork of chromite grains that are truncated on the outer edge of the rim. The skeletal crystals formed first from a magma supersaturated in chromite and silicate minerals crystallised from melt trapped between the chromite skeletal crystal blades as they grew. The formation of skeletal crystals was followed by a crystallisation event which formed a silicate-poor rim of chromite grains around the skeletal crystals. These crystals show a weak preferred orientation related to the orientation of the core skeletal crystal implying that they formed by nucleation and growth on this core, and did not form by random mechanical aggregation. Patches of equilibrium adcumulate textures within the rim attest to in situ development of such textures. The nodules were subsequently exposed to chromite undersaturated magma resulting in dissolution, recorded by truncated grain boundaries in the rim and a smooth outer surface to the nodule. None of these stages of formation require a turbulent magma. Lastly the nodules impinged on each other causing local deformation at points of contact.
Acevedo-Garcia, Dolores; Soobader, Mah-J; Berkman, Lisa F
2007-12-01
We investigated whether maternal foreign-born status confers a protective effect against low birthweight (LBW) across US Hispanic/Latino subgroups (i.e., Mexicans, Puerto Ricans, Cubans and Central/South Americans) in the USA, and whether the association between maternal education and LBW varies by Hispanic/Latino subgroup and by foreign-born status. We conducted logistic regression analyses of the 2002 US Natality Detail Data (n=634,797). Overall, foreign-born Latino women are less likely to have LBW infants than US-born Latino women. The protective effect of foreign-born status is stronger among Latino women with less than high school education. The maternal education gradient is significantly flatter among foreign-born Latino women than among their US-born counterparts (p<0.001). Patterns among Mexican-origin women account for the overall trends among all Latinos.Foreign-born status (main effect) reduces the risk of LBW among Mexicans by about 21% but does not protect against LBW among other Latino subgroups (i.e., Puerto Ricans, Cubans and Central/South Americans). Among Mexicans and Central South Americans, the protective effect of foreign-born status is stronger among women with low education (i.e., 0-11 and 12 years) than among women with more education (i.e., 13-15 and 16+ years). The educational gradient in LBW is less pronounced among foreign-born Mexicans and Central/South Americans than among their US-born counterparts. As such, maternal foreign-born status and education are associated with LBW, though the direction and strength of these associations vary across Latino subgroups. A "health paradox" is apparent for foreign-born Mexican and Central/South American women among whom there is a weak maternal educational gradient in LBW. Future research may test hypotheses regarding the mechanisms underlying these variations in LBW among Latino subgroups, i.e., different gradients in sending countries, health selection of immigrants, cultural factors, and social support.