Sample records for born implicit solvent

  1. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations.

    PubMed

    Godschalk, Frithjof; Genheden, Samuel; Söderhjelm, Pär; Ryde, Ulf

    2013-05-28

    Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) is a popular method to calculate the free energy of the binding of ligands to proteins. It involves molecular dynamics (MD) simulations with an explicit solvent of the protein-ligand complex to give a set of snapshots for which energies are calculated with an implicit solvent. This change in the solvation method (explicit → implicit) would strictly require that the energies are reweighted with the implicit-solvent energies, which is normally not done. In this paper we calculate MM/GBSA energies with two generalised Born models for snapshots generated by the same methods or by explicit-solvent simulations for five synthetic N-acetyllactosamine derivatives binding to galectin-3. We show that the resulting energies are very different both in absolute and relative terms, showing that the change in the solvent model is far from innocent and that standard MM/GBSA is not a consistent method. The ensembles generated with the various solvent models are quite different with root-mean-square deviations of 1.2-1.4 Å. The ensembles can be converted to each other by performing short MD simulations with the new method, but the convergence is slow, showing mean absolute differences in the calculated energies of 6-7 kJ mol(-1) after 2 ps simulations. Minimisations show even slower convergence and there are strong indications that the energies obtained from minimised structures are different from those obtained by MD.

  2. Can a continuum solvent model reproduce the free energy landscape of a -hairpin folding in water?

    NASA Astrophysics Data System (ADS)

    Zhou, Ruhong; Berne, Bruce J.

    2002-10-01

    The folding free energy landscape of the C-terminal -hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the -hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native -strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this -hairpin. Furthermore, the -hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.

  3. Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

    PubMed Central

    Zhou, Ruhong; Berne, Bruce J.

    2002-01-01

    The folding free energy landscape of the C-terminal β-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the β-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native β-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this β-hairpin. Furthermore, the β-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and ≈80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields. PMID:12242327

  4. Can a continuum solvent model reproduce the free energy landscape of a beta -hairpin folding in water?

    PubMed

    Zhou, Ruhong; Berne, Bruce J

    2002-10-01

    The folding free energy landscape of the C-terminal beta-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the beta-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native beta-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this beta-hairpin. Furthermore, the beta-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and approximately equal 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.

  5. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome

    PubMed Central

    Olson, Mark A.

    2017-01-01

    Intrinsically disordered proteins that populate the so-called “Dark Proteome” offer challenging benchmarks of atomistic simulation methods to accurately model conformational transitions on a multidimensional energy landscape. This work explores the application of parallel tempering with implicit solvent models as a computational framework to capture the conformational ensemble of an intrinsically disordered peptide derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported a protein-peptide interface where the VP35 peptide underwent a folding transition from a disordered form to a helix-β-turn-helix topological fold upon molecular association with the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with temperature-based replica exchange dynamics to calculate the disorder propensity of the peptide and its probability density of states in a continuum solvent. A further comparison is presented of applying an explicit/implicit solvent hybrid replica exchange simulation of the peptide to determine the effect of modeling water interactions at the all-atom resolution. PMID:28197405

  6. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome.

    PubMed

    Olson, Mark A

    2017-01-01

    Intrinsically disordered proteins that populate the so-called "Dark Proteome" offer challenging benchmarks of atomistic simulation methods to accurately model conformational transitions on a multidimensional energy landscape. This work explores the application of parallel tempering with implicit solvent models as a computational framework to capture the conformational ensemble of an intrinsically disordered peptide derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported a protein-peptide interface where the VP35 peptide underwent a folding transition from a disordered form to a helix-β-turn-helix topological fold upon molecular association with the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with temperature-based replica exchange dynamics to calculate the disorder propensity of the peptide and its probability density of states in a continuum solvent. A further comparison is presented of applying an explicit/implicit solvent hybrid replica exchange simulation of the peptide to determine the effect of modeling water interactions at the all-atom resolution.

  7. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    PubMed

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Improving the Efficiency of Non-equilibrium Sampling in the Aqueous Environment via Implicit-Solvent Simulations.

    PubMed

    Liu, Hui; Chen, Fu; Sun, Huiyong; Li, Dan; Hou, Tingjun

    2017-04-11

    By means of estimators based on non-equilibrium work, equilibrium free energy differences or potentials of mean force (PMFs) of a system of interest can be computed from biased molecular dynamics (MD) simulations. The approach, however, is often plagued by slow conformational sampling and poor convergence, especially when the solvent effects are taken into account. Here, as a possible way to alleviate the problem, several widely used implicit-solvent models, which are derived from the analytic generalized Born (GB) equation and implemented in the AMBER suite of programs, were employed in free energy calculations based on non-equilibrium work and evaluated for their abilities to emulate explicit water. As a test case, pulling MD simulations were carried out on an alanine polypeptide with different solvent models and protocols, followed by comparisons of the reconstructed PMF profiles along the unfolding coordinate. The results show that when employing the non-equilibrium work method, sampling with an implicit-solvent model is several times faster and, more importantly, converges more rapidly than that with explicit water due to reduction of dissipation. Among the assessed GB models, the Neck variants outperform the OBC and HCT variants in terms of accuracy, whereas their computational costs are comparable. In addition, for the best-performing models, the impact of the solvent-accessible surface area (SASA) dependent nonpolar solvation term was also examined. The present study highlights the advantages of implicit-solvent models for non-equilibrium sampling.

  9. Calculation of Protein Heat Capacity from Replica-Exchange Molecular Dynamics Simulations with Different Implicit Solvent Models

    DTIC Science & Technology

    2008-10-30

    rigorous Poisson-based methods generally apply a Lee-Richards mo- lecular surface.9 This surface is considered the de facto description for continuum...definition and calculation of the Born radii. To evaluate the Born radii, two approximations are invoked. The first is the Coulomb field approximation (CFA...energy term, and depending on the particular GB formulation, higher-order non- Coulomb correction terms may be added to the Born radii to account for the

  10. Free energy landscape of protein folding in water: explicit vs. implicit solvent.

    PubMed

    Zhou, Ruhong

    2003-11-01

    The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy landscape with various GB models, and the results are compared to the explicit solvent simulations and experiments. All free energy landscapes are obtained from extensive conformation space sampling with a highly parallel replica exchange method. Because solvation model parameters are strongly coupled with force fields, five different force field/solvation model combinations are examined and compared in this study, namely the explicit solvent model: OPLSAA/SPC model, and the implicit solvent models: OPLSAA/SGB (Surface GB), AMBER94/GBSA (GB with Solvent Accessible Surface Area), AMBER96/GBSA, and AMBER99/GBSA. Surprisingly, we find that the free energy landscapes from implicit solvent models are quite different from that of the explicit solvent model. Except for AMBER96/GBSA, all other implicit solvent models find the lowest free energy state not the native state. All implicit solvent models show erroneous salt-bridge effects between charged residues, particularly in OPLSAA/SGB model, where the overly strong salt-bridge effect results in an overweighting of a non-native structure with one hydrophobic residue F52 expelled from the hydrophobic core in order to make better salt bridges. On the other hand, both AMBER94/GBSA and AMBER99/GBSA models turn the beta-hairpin in to an alpha-helix, and the alpha-helical content is much higher than the previously reported alpha-helices in an explicit solvent simulation with AMBER94 (AMBER94/TIP3P). Only AMBER96/GBSA shows a reasonable free energy landscape with the lowest free energy structure the native one despite an erroneous salt-bridge between D47 and K50. Detailed results on free energy contour maps, lowest free energy structures, distribution of native contacts, alpha-helical content during the folding process, NOE comparison with NMR, and temperature dependences are reported and discussed for all five models. Copyright 2003 Wiley-Liss, Inc.

  11. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome

    DTIC Science & Technology

    2017-01-10

    benchmarks of conformational sampling methods and their all-atom force fields plus solvent descriptions to accurately model structural transitions on a...atom simulations of proteins is the replacement of explicit water interactions with a continuum description of treating implicitly the bulk physical... structure was reported by Amarasinghe and coworkers (Leung et al., 2015) of the Ebola nucleoprotein NP in complex with a 28-residue peptide extracted

  12. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  13. Investigating the Effect of Charge Hydration Asymmetry and Incorporating it in Continuum Solvation Framework

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Abhishek

    One of the essential requirements of biomolecular modeling is an accurate description of water as a solvent. The challenge is to make this description computationally facile - reasonably fast, simple, robust and easy to incorporate into existing software packages, yet accurate. The most rigorous procedure to model the effect of aqueous solvent is to explicitly model every water molecule in the system. For many practical applications, this approach is computationally too intense, as the number of required water atoms is on an average at least one order of magnitude larger than the number of atoms of the molecule of interest. Implicit solvent models, in which solvent molecules are replaced by a continuous dielectric, have become a popular alternative to explicit solvent methods. However, implicit solvation models often lack various microscopic details which are crucial for accuracy. One such missing effect that is currently missing from popular implicit models is the so called effect of charge hydration asymmetry (CHA). The missing effect of charge hydration asymmetry - the asymmetric response of water upon the sign of solute charge - manifests a characteristic, strong dependence of solvation free energies on the sign of solute charge. Here, we incorporate this missing effect into the continuum solvation framework via the conceptually simplest Born equation and also in the generalized Born model. We identify the key electric multipole moments of model water molecules critical for the various degrees of CHA effect observed in studies based on molecular dynamics simulations using different rigid water models. We then use this gained insight to incorporate this effect first into the Born model and then into the generalized Born model. The proposed framework significantly improves accuracy of the hydration free energy estimates tested on a comprehensive set of varied molecular solutes - monovalent and divalent ions, small drug-like molecules, charged and uncharged amino acid dipeptides, and small proteins. We finally develop a methodology to resolve the issue with unacceptably large uncertainty that stems from a variety of fundamental and technical difficulties in experimental quantification of CHA from charged solutes. Using the proposed corrections in the continuum framework, we untangle the charge-asymmetric response of water from its symmetric response, and further circumvent the difficulties by extracting accurate estimate propensity of water to cause CHA from accurate experimental hydration free energies of neutral polar molecules. We show that the asymmetry in water's response is strong, about 50% of the symmetric response.

  14. Parallel Tempering of Dark Matter from the Ebola Virus Proteome: Comparison of CHARMM36m and CHARMM22 Force Fields with Implicit Solvent and Coarse Grained Model

    DTIC Science & Technology

    2017-08-10

    simulation models the conformational plasticity along the helix-forming reaction coordinate was limited by free - energy barriers. By comparison the coarse...revealed. The latter becomes evident in comparing the energy Z-score landscapes , where CHARMM22 simulation shows a manifold of shuttling...solvent simulations of calculating the charging free energy of protein conformations.33 Deviation to the protocol by modification of Born radii

  15. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    PubMed

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified force field and then refines these structures with implicit solvent using the REX method. We systematically examine the reliability and efficacy of this protocol using four proteins of various sizes ranging from the 56-residue B1 domain of Streptococcal protein G to the 370-residue Maltose-binding protein. Significant improvement in the structures was observed in all cases when refinement was based on low-redundancy restraint data. The proposed protocol is anticipated to be particularly useful in early stages of NMR structure determination where a reliable estimate of the native fold from limited data can significantly expedite the overall process. This refinement procedure is also expected to be useful when redundant experimental data are not readily available, such as for large multidomain biomolecules and in solid-state NMR structure determination.

  16. Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

    PubMed Central

    Gong, Haipeng; Freed, Karl F.

    2010-01-01

    Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761

  17. Treecode-based generalized Born method

    NASA Astrophysics Data System (ADS)

    Xu, Zhenli; Cheng, Xiaolin; Yang, Haizhao

    2011-02-01

    We have developed a treecode-based O(Nlog N) algorithm for the generalized Born (GB) implicit solvation model. Our treecode-based GB (tGB) is based on the GBr6 [J. Phys. Chem. B 111, 3055 (2007)], an analytical GB method with a pairwise descreening approximation for the R6 volume integral expression. The algorithm is composed of a cutoff scheme for the effective Born radii calculation, and a treecode implementation of the GB charge-charge pair interactions. Test results demonstrate that the tGB algorithm can reproduce the vdW surface based Poisson solvation energy with an average relative error less than 0.6% while providing an almost linear-scaling calculation for a representative set of 25 proteins with different sizes (from 2815 atoms to 65456 atoms). For a typical system of 10k atoms, the tGB calculation is three times faster than the direct summation as implemented in the original GBr6 model. Thus, our tGB method provides an efficient way for performing implicit solvent GB simulations of larger biomolecular systems at longer time scales.

  18. Prediction of Protein-Peptide Interactions: Application of the XPairIT to Anthrax Lethal Factor and Substrates

    DTIC Science & Technology

    2013-09-01

    hydrogen bonds in Tyrosine-containing peptides. Dalkas et al[7] used docking and molecular dynamics simulations to study a variety of MAPKK-based... simulated using NAMD molecular dynamics and the CHARMM[20] forcefield at 300K and employing the Generalized Born Implicit Solvent (GBIS[21]) with the...which were reported in Section 2. Specifically, after a ~10ns molecular dynamics simulation in TIP3 explicit water, significant motion of domains III

  19. Connecting Free Energy Surfaces in Implicit and Explicit Solvent: an Efficient Method to Compute Conformational and Solvation Free Energies

    PubMed Central

    Deng, Nanjie; Zhang, Bin W.; Levy, Ronald M.

    2015-01-01

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions and protein-ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ~3 kcal/mol at only ~8 % of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the explicit/implicit thermodynamic cycle. PMID:26236174

  20. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    PubMed

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  1. Testing the Use of Implicit Solvent in the Molecular Dynamics Modelling of DNA Flexibility

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Harris, S.

    DNA flexibility controls packaging, looping and in some cases sequence specific protein binding. Molecular dynamics simulations carried out with a computationally efficient implicit solvent model are potentially a powerful tool for studying larger DNA molecules than can be currently simulated when water and counterions are represented explicitly. In this work we compare DNA flexibility at the base pair step level modelled using an implicit solvent model to that previously determined from explicit solvent simulations and database analysis. Although much of the sequence dependent behaviour is preserved in implicit solvent, the DNA is considerably more flexible when the approximate model is used. In addition we test the ability of the implicit solvent to model stress induced DNA disruptions by simulating a series of DNA minicircle topoisomers which vary in size and superhelical density. When compared with previously run explicit solvent simulations, we find that while the levels of DNA denaturation are similar using both computational methodologies, the specific structural form of the disruptions is different.

  2. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less

  3. Surveying implicit solvent models for estimating small molecule absolute hydration free energies

    PubMed Central

    Knight, Jennifer L.

    2011-01-01

    Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452

  4. Virtual screening using molecular simulations.

    PubMed

    Yang, Tianyi; Wu, Johnny C; Yan, Chunli; Wang, Yuanfeng; Luo, Ray; Gonzales, Michael B; Dalby, Kevin N; Ren, Pengyu

    2011-06-01

    Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery. Copyright © 2011 Wiley-Liss, Inc.

  5. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born

    PubMed Central

    2012-01-01

    We present an implementation of generalized Born implicit solvent all-atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA enabled NVIDIA graphics processing units (GPUs). We discuss the algorithms that are used to exploit the processing power of the GPUs and show the performance that can be achieved in comparison to simulations on conventional CPU clusters. The implementation supports three different precision models in which the contributions to the forces are calculated in single precision floating point arithmetic but accumulated in double precision (SPDP), or everything is computed in single precision (SPSP) or double precision (DPDP). In addition to performance, we have focused on understanding the implications of the different precision models on the outcome of implicit solvent MD simulations. We show results for a range of tests including the accuracy of single point force evaluations and energy conservation as well as structural properties pertainining to protein dynamics. The numerical noise due to rounding errors within the SPSP precision model is sufficiently large to lead to an accumulation of errors which can result in unphysical trajectories for long time scale simulations. We recommend the use of the mixed-precision SPDP model since the numerical results obtained are comparable with those of the full double precision DPDP model and the reference double precision CPU implementation but at significantly reduced computational cost. Our implementation provides performance for GB simulations on a single desktop that is on par with, and in some cases exceeds, that of traditional supercomputers. PMID:22582031

  6. Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations.

    PubMed

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2018-01-01

    Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.

  7. Structure and Dynamics of End-to-End Loop Formation of the Penta-Peptide Cys-Ala-Gly-Gln-Trp in Implicit Solvents

    DTIC Science & Technology

    2009-01-01

    implicit solvents on peptide structure and dynamics , we performed extensive molecular dynamics simulations on the penta-peptide Cys-Ala-Gly-Gln-Trp. Two...end-to-end distances and dihedral angles obtained from molecular dynamics simulations with implicit solvent models were in a good agreement with those...to maintain the temperature of the systems. Introduction Molecular dynamics (MD) simulation techniques are widely used to study structure and

  8. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  9. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

  10. Implicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations

    PubMed Central

    2012-01-01

    Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent–solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom–specific solvation parameter σiSASA. A procedure for the determination of values for the σiSASA parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the σiSASA parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types σgSASA was obtained via partitioning of the atom–type σiSASA distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/Solvent_Forces. PMID:23180979

  11. Explicit ions/implicit water generalized Born model for nucleic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.

    Ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model, and utilizes a non-standard approach to defining the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes – disconnected dielectric boundary around the solute-ion or ion-ion pairs. Fully analytical description of all energymore » components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force (PMF) for Na+-Cl− ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of DNA duplex; these differences in the counterion binding patters were shown earlier to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with homopolymeric poly(dA·dT) DNA duplex with modified (de-methylated) and native Thymine bases are used to explore the physics behind CoHex-Thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-Thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range, and may be important to consider in the context of methylation effects on DNA condensation.« less

  12. Explicit ions/implicit water generalized Born model for nucleic acids

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.

    2018-05-01

    The ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure, and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model and utilizes a non-standard approach to define the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes—disconnected dielectric boundary around the solute-ion or ion-ion pairs. A fully analytical description of all energy components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force for Na+-Cl- ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of the RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of the DNA duplex; these differences in the counterion binding patters were earlier shown to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with the homopolymeric poly(dA.dT) DNA duplex with modified (de-methylated) and native thymine bases are used to explore the physics behind CoHex-thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range and may be important to consider in the context of methylation effects on DNA condensation.

  13. An implicit boundary integral method for computing electric potential of macromolecules in solvent

    NASA Astrophysics Data System (ADS)

    Zhong, Yimin; Ren, Kui; Tsai, Richard

    2018-04-01

    A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.

  14. A simple method for the fast calculation of charge redistribution of solutes in an implicit solvent model

    NASA Astrophysics Data System (ADS)

    Dias, L. G.; Shimizu, K.; Farah, J. P. S.; Chaimovich, H.

    2002-09-01

    We propose and demonstrate the usefulness of a method, defined as generalized Born electronegativity equalization method (GBEEM) to estimate solvent-induced charge redistribution. The charges obtained by GBEEM, in a representative series of small organic molecules, were compared to PM3-CM1 charges in vacuum and in water. Linear regressions with appropriate correlation coefficients and standard deviations between GBEEM and PM3-CM1 methods were obtained ( R=0.94,SD=0.15, Ftest=234, N=32, in vacuum; R=0.94,SD=0.16, Ftest=218, N=29, in water). In order to test the GBEEM response when intermolecular interactions are involved we calculated a water dimer in dielectric water using both GBEEM and PM3-CM1 and the results were similar. Hence, the method developed here is comparable to established calculation methods.

  15. New solution decomposition and minimization schemes for Poisson-Boltzmann equation in calculation of biomolecular electrostatics

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan

    2014-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.

  16. Molecular Dynamics based on a Generalized Born solvation model: application to protein folding

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey

    2004-03-01

    An accurate description of the aqueous environment is essential for realistic biomolecular simulations, but may become very expensive computationally. We have developed a version of the Generalized Born model suitable for describing large conformational changes in macromolecules. The model represents the solvent implicitly as continuum with the dielectric properties of water, and include charge screening effects of salt. The computational cost associated with the use of this model in Molecular Dynamics simulations is generally considerably smaller than the cost of representing water explicitly. Also, compared to traditional Molecular Dynamics simulations based on explicit water representation, conformational changes occur much faster in implicit solvation environment due to the absence of viscosity. The combined speed-up allow one to probe conformational changes that occur on much longer effective time-scales. We apply the model to folding of a 46-residue three helix bundle protein (residues 10-55 of protein A, PDB ID 1BDD). Starting from an unfolded structure at 450 K, the protein folds to the lowest energy state in 6 ns of simulation time, which takes about a day on a 16 processor SGI machine. The predicted structure differs from the native one by 2.4 A (backbone RMSD). Analysis of the structures seen on the folding pathway reveals details of the folding process unavailable form experiment.

  17. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and their Complexes with Proteins

    PubMed Central

    Nguyen, Hai; Pérez, Alberto; Bermeo, Sherry; Simmerling, Carlos

    2016-01-01

    The Generalized Born (GB) implicit solvent model has undergone significant improvements in accuracy for modeling of proteins and small molecules. However, GB still remains a less widely explored option for nucleic acid simulations, in part because fast GB models are often unable to maintain stable nucleic acid structures, or they introduce structural bias in proteins, leading to difficulty in application of GB models in simulations of protein-nucleic acid complexes. Recently, GB-neck2 was developed to improve the behavior of protein simulations. In an effort to create a more accurate model for nucleic acids, a similar procedure to the development of GB-neck2 is described here for nucleic acids. The resulting parameter set significantly reduces absolute and relative energy error relative to Poisson Boltzmann for both nucleic acids and nucleic acid-protein complexes, when compared to its predecessor GB-neck model. This improvement in solvation energy calculation translates to increased structural stability for simulations of DNA and RNA duplexes, quadruplexes, and protein-nucleic acid complexes. The GB-neck2 model also enables successful folding of small DNA and RNA hairpins to near native structures as determined from comparison with experiment. The functional form and all required parameters are provided here and also implemented in the AMBER software. PMID:26574454

  18. Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms

    PubMed Central

    Wagoner, Jason A.; Baker, Nathan A.

    2006-01-01

    Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675

  19. Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER.

    PubMed

    Voelz, Vincent A; Dill, Ken A; Chorny, Ilya

    2011-01-01

    To test the accuracy of existing AMBER force field models in predicting peptoid conformation and dynamics, we simulated a set of model peptoid molecules recently examined by Butterfoss et al. (JACS 2009, 131, 16798-16807) using QM methods as well as three peptoid sequences with experimentally determined structures. We found that AMBER force fields, when used with a Generalized Born/Surface Area (GBSA) implicit solvation model, could accurately reproduce the peptoid torsional landscape as well as the major conformers of known peptoid structures. Enhanced sampling by replica exchange molecular dynamics (REMD) using temperatures from 300 to 800 K was used to sample over cis-trans isomerization barriers. Compared to (Nrch)5 and cyclo-octasarcosyl, the free energy of N-(2-nitro-3-hydroxyl phenyl)glycine-N-(phenyl)glycine has the most "foldable" free energy landscape, due to deep trans-amide minima dictated by N-aryl sidechains. For peptoids with (S)-N (1-phenylethyl) (Nspe) side chains, we observe a discrepancy in backbone dihedral propensities between molecular simulations and QM calculations, which may be due to force field effects or the inability to capture n --> n* interactions. For these residues, an empirical phi-angle biasing potential can "rescue" the backbone propensities seen in QM. This approach can serve as a general strategy for addressing force fields without resorting to a complete reparameterization. Overall, this study demonstrates the utility of implicit-solvent REMD simulations for efficient sampling to predict peptoid conformational landscapes, providing a potential tool for first-principles design of sequences with specific folding properties.

  20. Dendrimer Interactions with Lipid Bilayer: Comparison of Force Field and Effect of Implicit vs Explicit Solvation.

    PubMed

    Kanchi, Subbarao; Gosika, Mounika; Ayappa, K G; Maiti, Prabal K

    2018-06-13

    The understanding of dendrimer interactions with cell membranes has great importance in drug/gene delivery based therapeutics. Although molecular simulations have been used to understand the nature of dendrimer interactions with lipid membranes, its dependency on available force field parameters is poorly understood. In this study, we have carried out fully atomistic molecular dynamics (MD) simulations of a protonated G3 poly(amido amine) (PAMAM) dendrimer-dimyristoylphosphatidylcholine (DMPC) lipid bilayer complex using three different force fields (FFs) namely, CHARMM, GAFF, and GROMOS in the presence of explicit water to understand the structure of the lipid-dendrimer complex and nature of their interaction. CHARMM and GAFF dendrimers initially in contact with the lipid head groups were found to move away from the lipid bilayer during the course of simulation; however, the dendrimer remained strongly bound to the lipid head groups with the GROMOS FF. Potential of the mean force (PMF) computations of the dendrimer along the bilayer normal showed a repulsive barrier (∼20 kcal/mol) between dendrimer and lipid bilayer in the case of CHARMM and GAFF force fields. In contrast, an attractive interaction (∼40 kcal/mol) is obtained with the GROMOS force field, consistent with experimental observations of membrane binding observed with lower generation G3 PAMAM dendrimers. This difference with the GROMOS dendrimer is attributed to the strong dendrimer-lipid interaction and lowered surface hydration of the dendrimer. Assessing the role of solvent, we find that the CHARMM and GAFF dendrimers strongly bind to the lipid bilayer with an implicit solvent (Generalized Born) model, whereas binding is not observed with explicit water (TIP3P). The opposing nature of dendrimer-membrane interactions in the presence of explicit and implicit solvents demonstrates that hydration effects play an important role in modulating the dendrimer-lipid interaction warranting a case for refinement of the existing dendrimer/lipid force fields.

  1. Tailoring the Variational Implicit Solvent Method for New Challenges: Biomolecular Recognition and Assembly

    PubMed Central

    Ricci, Clarisse Gravina; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew

    2018-01-01

    Predicting solvation free energies and describing the complex water behavior that plays an important role in essentially all biological processes is a major challenge from the computational standpoint. While an atomistic, explicit description of the solvent can turn out to be too expensive in large biomolecular systems, most implicit solvent methods fail to capture “dewetting” effects and heterogeneous hydration by relying on a pre-established (i.e., guessed) solvation interface. Here we focus on the Variational Implicit Solvent Method, an implicit solvent method that adds water “plasticity” back to the picture by formulating the solvation free energy as a functional of all possible solvation interfaces. We survey VISM's applications to the problem of molecular recognition and report some of the most recent efforts to tailor VISM for more challenging scenarios, with the ultimate goal of including thermal fluctuations into the framework. The advances reported herein pave the way to make VISM a uniquely successful approach to characterize complex solvation properties in the recognition and binding of large-scale biomolecular complexes. PMID:29484300

  2. Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects.

    PubMed

    Lomize, Andrei L; Pogozheva, Irina D; Mosberg, Henry I

    2011-04-25

    A new implicit solvation model was developed for calculating free energies of transfer of molecules from water to any solvent with defined bulk properties. The transfer energy was calculated as a sum of the first solvation shell energy and the long-range electrostatic contribution. The first term was proportional to solvent accessible surface area and solvation parameters (σ(i)) for different atom types. The electrostatic term was computed as a product of group dipole moments and dipolar solvation parameter (η) for neutral molecules or using a modified Born equation for ions. The regression coefficients in linear dependencies of solvation parameters σ(i) and η on dielectric constant, solvatochromic polarizability parameter π*, and hydrogen-bonding donor and acceptor capacities of solvents were optimized using 1269 experimental transfer energies from 19 organic solvents to water. The root-mean-square errors for neutral compounds and ions were 0.82 and 1.61 kcal/mol, respectively. Quantification of energy components demonstrates the dominant roles of hydrophobic effect for nonpolar atoms and of hydrogen-bonding for polar atoms. The estimated first solvation shell energy outweighs the long-range electrostatics for most compounds including ions. The simplicity and computational efficiency of the model allows its application for modeling of macromolecules in anisotropic environments, such as biological membranes.

  3. Solvent Reaction Field Potential inside an Uncharged Globular Protein: A Bridge between Implicit and Explicit Solvent Models?

    PubMed Central

    Baker, Nathan A.; McCammon, J. Andrew

    2008-01-01

    The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217

  4. Solvent reaction field potential inside an uncharged globular protein: A bridge between implicit and explicit solvent models?

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew

    2007-10-01

    The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.

  5. Design and application of implicit solvent models in biomolecular simulations.

    PubMed

    Kleinjung, Jens; Fraternali, Franca

    2014-04-01

    We review implicit solvent models and their parametrisation by introducing the concepts and recent devlopments of the most popular models with a focus on parametrisation via force matching. An overview of recent applications of the solvation energy term in protein dynamics, modelling, design and prediction is given to illustrate the usability and versatility of implicit solvation in reproducing the physical behaviour of biomolecular systems. Limitations of implicit modes are discussed through the example of more challenging systems like nucleic acids and membranes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Evaluation of DNA Force Fields in Implicit Solvation

    PubMed Central

    Gaillard, Thomas; Case, David A.

    2011-01-01

    DNA structural deformations and dynamics are crucial to its interactions in the cell. Theoretical simulations are essential tools to explore the structure, dynamics, and thermodynamics of biomolecules in a systematic way. Molecular mechanics force fields for DNA have benefited from constant improvements during the last decades. Several studies have evaluated and compared available force fields when the solvent is modeled by explicit molecules. On the other hand, few systematic studies have assessed the quality of duplex DNA models when implicit solvation is employed. The interest of an implicit modeling of the solvent consists in the important gain in the simulation performance and conformational sampling speed. In this study, respective influences of the force field and the implicit solvation model choice on DNA simulation quality are evaluated. To this end, extensive implicit solvent duplex DNA simulations are performed, attempting to reach both conformational and sequence diversity convergence. Structural parameters are extracted from simulations and statistically compared to available experimental and explicit solvation simulation data. Our results quantitatively expose the respective strengths and weaknesses of the different DNA force fields and implicit solvation models studied. This work can lead to the suggestion of improvements to current DNA theoretical models. PMID:22043178

  7. Simulating botulinum neurotoxin with constant pH molecular dynamics in Generalized Born implicit solvent

    NASA Astrophysics Data System (ADS)

    Chen, Yongzhi; Chen, Xin; Deng, Yuefan

    2007-07-01

    A new method was proposed by Mongan et al. for constant pH molecular dynamics simulation and was implemented in AMBER 8 package. Protonation states are modeled with different charge sets, and titrating residues are sampled from a Boltzmann distribution of protonation states. The simulation periodically adopts Monte Carlo sampling based on Generalized Born (GB) derived energies. However, when this approach was applied to a bio-toxin, Botulinum Neurotoxin Type A (BoNT/A) at pH 4.4, 4.7, 5.0, 6.8 and 7.2, the pK predictions yielded by the method were inconsistent with the experimental values. The systems being simulated were divergent. Furthermore, the system behaviors in a very weak acidic solution (pH 6.8) and in a very weak basic solution (pH 7.2) were significantly different from the neutral case (pH 7.0). Hence, we speculate this method may require further study for modeling large biomolecule.

  8. Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent.

    PubMed

    Rodriguez, Alex; Mokoema, Pol; Corcho, Francesc; Bisetty, Khrisna; Perez, Juan J

    2011-02-17

    The prediction capabilities of atomistic simulations of peptides are hampered by different difficulties, including the reliability of force fields, the treatment of the solvent or the adequate sampling of the conformational space. In this work, we have studied the conformational profile of the 10 residue miniprotein CLN025 known to exhibit a β-hairpin in its native state to understand the limitations of implicit methods to describe solvent effects and how these may be compensated by using different force fields. For this purpose, we carried out a thorough sampling of the conformational space of CLN025 in explicit solvent using the replica exchange molecular dynamics method as a sampling technique and compared the results with simulations of the system modeled using the analytical linearized Poisson-Boltzmann (ALPB) method with three different AMBER force fields: parm94, parm96, and parm99SB. The results show the peptide to exhibit a funnel-like free energy landscape with two minima in explicit solvent. In contrast, the higher minimum nearly disappears from the energy surface when the system is studied with an implicit representation of the solvent. Moreover, the different force fields used in combination with the ALPB method do not describe the system in the same manner. The results of this work suggest that the balance between intra- and intermolecular interactions is the cause of the differences between implicit and explicit solvent simulations in this system, stressing the role of the environment to define properly the conformational profile of a peptide in solution.

  9. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    DOE PAGES

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...

    2015-11-03

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less

  10. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less

  11. Constrained Unfolding of a Helical Peptide: Implicit versus Explicit Solvents.

    PubMed

    Bureau, Hailey R; Merz, Dale R; Hershkovits, Eli; Quirk, Stephen; Hernandez, Rigoberto

    2015-01-01

    Steered Molecular Dynamics (SMD) has been seen to provide the potential of mean force (PMF) along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD) has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD) or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD). Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.

  12. Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations

    PubMed Central

    Im, Wonpil; Brooks, Charles L.

    2005-01-01

    The mechanism of interfacial folding and membrane insertion of designed peptides is explored by using an implicit membrane generalized Born model and replica-exchange molecular dynamics. Folding/insertion simulations initiated from fully extended peptide conformations in the aqueous phase, at least 28 Å away from the membrane interface, demonstrate a general mechanism for structure formation and insertion (when it occurs). The predominately hydrophobic peptides from the synthetic WALP and TMX series first become localized at the membrane-solvent interface where they form significant helical secondary structure via a helix–turn–helix motif that inserts the central hydrophobic residues into the membrane interior, and then fluctuations occur that provide a persistent helical structure throughout the peptide and it inserts with its N-terminal end moving across the membrane. More specifically, we observed that: (i) the WALP peptides (WALP16, WALP19, and WALP23) spontaneously insert in the membrane as just noted; (ii) TMX-1 also inserts spontaneously after a similar mechanism and forms a transmembrane helix with a population of ≈50% at 300 K; and (iii) TMX-3 does not insert, but exists in a fluctuating membrane interface-bound form. These findings are in excellent agreement with available experimental data and demonstrate the potential for new implicit solvent/membrane models together with advanced simulation protocols to guide experimental programs in exploring the nature and mechanism of membrane-associated folding and insertion of biologically important peptides. PMID:15860587

  13. Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model with Coulomb-Field Approximation.

    PubMed

    Guo, Zuojun; Li, Bo; Dzubiella, Joachim; Cheng, Li-Tien; McCammon, J Andrew; Che, Jianwei

    2013-03-12

    In this article, we systematically apply a novel implicit-solvent model, the variational implicit-solvent model (VISM) together with the Coulomb-Field Approximation (CFA), to calculate the hydration free energy of a large set of small organic molecules. Because these molecules have been studied in detail by molecular dynamics simulations and other implicit-solvent models, they provide a good benchmark for evaluating the performance of VISM-CFA. With all-atom Amber force field parameters, VISM-CFA is able to reproduce well not only the experimental and MD simulated total hydration free energy but also the polar and nonpolar contributions individually. The correlation between VISM-CFA and experiments is R 2 = 0.763 for the total hydration free energy, with a root-mean-square deviation (RMSD) of 1.83 kcal/mol, and the correlation to results from TIP3P explicit water MD simulations is R 2 = 0.839 with a RMSD = 1.36 kcal/mol. In addition, we demonstrate that VISM captures dewetting phenomena in the p53/MDM2 complex and hydrophobic characteristics in the system. This work demonstrates that the level-set VISM-CFA can be used to study the energetic behavior of realistic molecular systems with complicated geometries in solvation, protein-ligand binding, protein-protein association, and protein folding processes.

  14. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations.

    PubMed

    Lee, Michael S; Olson, Mark A

    2013-07-28

    Implicit solvent models for molecular dynamics simulations are often composed of polar and nonpolar terms. Typically, the nonpolar solvation free energy is approximated by the solvent-accessible-surface area times a constant factor. More sophisticated approaches incorporate an estimate of the attractive dispersion forces of the solvent and∕or a solvent-accessible volume cavitation term. In this work, we confirm that a single volume-based nonpolar term most closely fits the dispersion and cavitation forces obtained from benchmark explicit solvent simulations of fixed protein conformations. Next, we incorporated the volume term into molecular dynamics simulations and find the term is not universally suitable for folding up small proteins. We surmise that while mean-field cavitation terms such as volume and SASA often tilt the energy landscape towards native-like folds, they also may sporadically introduce bottlenecks into the folding pathway that hinder the progression towards the native state.

  15. Comparison of volume and surface area nonpolar solvation free energy terms for implicit solvent simulations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Olson, Mark A.

    2013-07-01

    Implicit solvent models for molecular dynamics simulations are often composed of polar and nonpolar terms. Typically, the nonpolar solvation free energy is approximated by the solvent-accessible-surface area times a constant factor. More sophisticated approaches incorporate an estimate of the attractive dispersion forces of the solvent and/or a solvent-accessible volume cavitation term. In this work, we confirm that a single volume-based nonpolar term most closely fits the dispersion and cavitation forces obtained from benchmark explicit solvent simulations of fixed protein conformations. Next, we incorporated the volume term into molecular dynamics simulations and find the term is not universally suitable for folding up small proteins. We surmise that while mean-field cavitation terms such as volume and SASA often tilt the energy landscape towards native-like folds, they also may sporadically introduce bottlenecks into the folding pathway that hinder the progression towards the native state.

  16. Implicit and explicit motor sequence learning in children born very preterm.

    PubMed

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steiner, K; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2017-01-01

    Motor skills can be learned explicitly (dependent on working memory (WM)) or implicitly (relatively independent of WM). Children born very preterm (VPT) often have working memory deficits. Explicit learning may be compromised in these children. This study investigated implicit and explicit motor learning and the role of working memory in VPT children and controls. Three groups (6-9 years) participated: 20 VPT children with motor problems, 20 VPT children without motor problems, and 20 controls. A nine button sequence was learned implicitly (pressing the lighted button as quickly as possible) and explicitly (discovering the sequence via trial-and-error). Children learned implicitly and explicitly, evidenced by decreased movement duration of the sequence over time. In the explicit condition, children also reduced the number of errors over time. Controls made more errors than VPT children without motor problems. Visual WM had positive effects on both explicit and implicit performance. VPT birth and low motor proficiency did not negatively affect implicit or explicit learning. Visual WM was positively related to both implicit and explicit performance, but did not influence learning curves. These findings question the theoretical difference between implicit and explicit learning and the proposed role of visual WM therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations

    PubMed Central

    Zhou, Shenggao; Sun, Hui; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J. Andrew

    2016-01-01

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the inclusion of fluctuations into the VISM and understanding the impact of interfacial fluctuations on biomolecular solvation with an implicit-solvent approach. PMID:27497546

  18. Atomistic details of the disordered states of KID and pKID. Implications in coupled binding and folding.

    PubMed

    Ganguly, Debabani; Chen, Jianhan

    2009-04-15

    Intrinsically disordered proteins (IDPs) are a newly recognized class of functional proteins for which a lack of stable tertiary fold is required for function. Because of the heterogeneous and dynamical nature, molecular modeling is necessary to provide the missing details of disordered states of IDP that are crucial for understanding their functions. In particular, generalized Born (GB) implicit solvent, combined with replica exchange (REX), might offer an optimal balance between accuracy and efficiency for modeling IDPs. We carried out extensive REX simulations in an optimized GB force field to characterize the disordered states of a regulatory IDP, KID domain of transcription factor CREB, and its phosphorylated form, pKID. The results revealed that both KID and pKID, though highly disordered on the tertiary level, are compact and mainly occupy a small number of helical substates. Interestingly, although phosphorylation of KID Ser133 leads only to marginal changes in average helicities on the ensemble level, underlying conformational substates differ significantly. In particular, pSer133 appears to restrict the accessible conformational space of the loop region and thus reduces the entropic cost of KID folding upon binding to the KIX domain of CREB-binding protein. Such an expanded role of phosphorylation in the KID:KIX recognition was not previously recognized because of a lack of substantial conformational changes on the ensemble level and inaccessibility of the structural details from experiments. The results also suggest that an implicit solvent-based modeling framework, despite various existing limitations, might be feasible for accurate atomistic simulation of small IDPs in general.

  19. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-12-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  20. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    PubMed

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  1. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson–Boltzmann electrostatics

    PubMed Central

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-01-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  2. Constant pH Molecular Dynamics of Proteins in Explicit Solvent with Proton Tautomerism

    PubMed Central

    Goh, Garrett B.; Hulbert, Benjamin S.; Zhou, Huiqing; Brooks, Charles L.

    2015-01-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMDMSλD). In the CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMDMSλD simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules – proteins and nucleic acids is now possible. PMID:24375620

  3. Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models.

    PubMed

    Qin, Zhao; Buehler, Markus J

    2011-01-01

    Intermediate filaments, in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, and play an important role in mechanotransduction as well as in providing mechanical stability to cells at large stretch. The molecular structures, mechanical and dynamical properties of the intermediate filament basic building blocks, the dimer and the tetramer, however, have remained elusive due to persistent experimental challenges owing to the large size and fibrillar geometry of this protein. We have recently reported an atomistic-level model of the human vimentin dimer and tetramer, obtained through a bottom-up approach based on structural optimization via molecular simulation based on an implicit solvent model (Qin et al. in PLoS ONE 2009 4(10):e7294, 9). Here we present extensive simulations and structural analyses of the model based on ultra large-scale atomistic-level simulations in an explicit solvent model, with system sizes exceeding 500,000 atoms and simulations carried out at 20 ns time-scales. We report a detailed comparison of the structural and dynamical behavior of this large biomolecular model with implicit and explicit solvent models. Our simulations confirm the stability of the molecular model and provide insight into the dynamical properties of the dimer and tetramer. Specifically, our simulations reveal a heterogeneous distribution of the bending stiffness along the molecular axis with the formation of rather soft and highly flexible hinge-like regions defined by non-alpha-helical linker domains. We report a comparison of Ramachandran maps and the solvent accessible surface area between implicit and explicit solvent models, and compute the persistence length of the dimer and tetramer structure of vimentin intermediate filaments for various subdomains of the protein. Our simulations provide detailed insight into the dynamical properties of the vimentin dimer and tetramer intermediate filament building blocks, which may guide the development of novel coarse-grained models of intermediate filaments, and could also help in understanding assembly mechanisms.

  4. Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan

    The absorption spectrum of the MnO$_{4}$$^{-}$ ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO$_{4}$$^{-}$, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO$_{4}$$^{-}$ in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO$_{4}$$^{-}$ absorption spectrum, whose assignment has been elusive.

  5. Structure and Dynamics of Solvated Polymers near a Silica Surface: On the Different Roles Played by Solvent.

    PubMed

    Perrin, Elsa; Schoen, Martin; Coudert, François-Xavier; Boutin, Anne

    2018-04-26

    Whereas it is experimentally known that the inclusion of nanoparticles in hydrogels can lead to a mechanical reinforcement, a detailed molecular understanding of the adhesion mechanism is still lacking. Here we use coarse-grained molecular dynamics simulations to investigate the nature of the interface between silica surfaces and solvated polymers. We show how differences in the nature of the polymer and the polymer-solvent interactions can lead to drastically different behavior of the polymer-surface adhesion. Comparing explicit and implicit solvent models, we conclude that this effect cannot be fully described in an implicit solvent. We highlight the crucial role of polymer solvation for the adsorption of the polymer chain on the silica surface, the significant dynamics of polymer chains on the surface, and details of the modifications in the structure solvated polymer close to the interface.

  6. Efficient implementation of constant pH molecular dynamics on modern graphics processors.

    PubMed

    Arthur, Evan J; Brooks, Charles L

    2016-09-15

    The treatment of pH sensitive ionization states for titratable residues in proteins is often omitted from molecular dynamics (MD) simulations. While static charge models can answer many questions regarding protein conformational equilibrium and protein-ligand interactions, pH-sensitive phenomena such as acid-activated chaperones and amyloidogenic protein aggregation are inaccessible to such models. Constant pH molecular dynamics (CPHMD) coupled with the Generalized Born with a Simple sWitching function (GBSW) implicit solvent model provide an accurate framework for simulating pH sensitive processes in biological systems. Although this combination has demonstrated success in predicting pKa values of protein structures, and in exploring dynamics of ionizable side-chains, its speed has been an impediment to routine application. The recent availability of low-cost graphics processing unit (GPU) chipsets with thousands of processing cores, together with the implementation of the accurate GBSW implicit solvent model on those chipsets (Arthur and Brooks, J. Comput. Chem. 2016, 37, 927), provide an opportunity to improve the speed of CPHMD and ionization modeling greatly. Here, we present a first implementation of GPU-enabled CPHMD within the CHARMM-OpenMM simulation package interface. Depending on the system size and nonbonded force cutoff parameters, we find speed increases of between one and three orders of magnitude. Additionally, the algorithm scales better with system size than the CPU-based algorithm, thus allowing for larger systems to be modeled in a cost effective manner. We anticipate that the improved performance of this methodology will open the door for broad-spread application of CPHMD in its modeling pH-mediated biological processes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.

    PubMed

    Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L

    2014-07-01

    pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible. © 2013 Wiley Periodicals, Inc.

  8. Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry

    DOE PAGES

    Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; ...

    2015-11-17

    The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF 6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC) n(DMC) m–Li+ and (EC) n(DMC) m–LiPF 6 solvates in the gas-phase and for an implicit solvent (asmore » a function of the solvent dielectric constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC 4)–Li+ and (EC) 3–LiPF 6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF 6 mixed solvent electrolyte was studied using the BOMD simulations.« less

  9. Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4

    NASA Astrophysics Data System (ADS)

    König, Gerhard; Pickard, Frank C.; Mei, Ye; Brooks, Bernard R.

    2014-03-01

    The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model.

  10. An ellipsoid-chain model for conjugated polymer solutions

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.; Chen, Show A.

    2012-02-01

    We propose an ellipsoid-chain model which may be routinely parameterized to capture large-scale properties of semiflexible, amphiphilic conjugated polymers in various solvent media. The model naturally utilizes the defect locations as pivotal centers connecting adjacent ellipsoids (each currently representing ten monomer units), and a variant umbrella-sampling scheme is employed to construct the potentials of mean force (PMF) for specific solvent media using atomistic dynamics data and simplex optimization. The performances, both efficacy and efficiency, of the model are thoroughly evaluated by comparing the simulation results on long, single-chain (i.e., 300-mer) structures with those from two existing, finer-grained models for a standard conjugated polymer (i.e., poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) or MEH-PPV) in two distinct solvents (i.e., chloroform or toluene) as well as a hybrid, binary-solvent medium (i.e., chloroform/toluene = 1:1 in number density). The coarse-grained Monte Carlo (CGMC) simulation of the ellipsoid-chain model is shown to be the most efficient—about 300 times faster than the coarse-grained molecular dynamics (CGMD) simulation of the finest CG model that employs explicit solvents—in capturing elementary single-chain structures for both single-solvent media, and is a few times faster than the coarse-grained Langevin dynamics (CGLD) simulation of another implicit-solvent polymer model with a slightly greater coarse-graining level than in the CGMD simulation. For the binary-solvent system considered, however, both of the two implicit-solvent schemes (i.e., CGMC and CGLD) fail to capture the effects of conspicuous concentration fluctuations near the polymer-solvent interface, arising from a pronounced coupling between the solvent molecules and different parts of the polymer. Essential physical implications are elaborated on the success as well as the failure of the two implicit-solvent CG schemes under varying solvent conditions. Within the ellipsoid-chain model, the impact of synthesized defects on local segmental ordering as well as bulk chain conformation is also scrutinized, and essential consequences in practical applications discussed. In future perspectives, we remark on strategy that takes advantage of the coordination among various CG models and simulation schemes to warrant computational efficiency and accuracy, with the anticipated capability of simulating larger-scale, many-chain aggregate systems.

  11. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn

    2015-03-28

    The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much lessmore » computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.« less

  12. Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation

    PubMed Central

    2011-01-01

    Central in the variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett.2006, 96, 087802 and J. Chem. Phys.2006, 124, 084905] of molecular solvation is a mean-field free-energy functional of all possible solute–solvent interfaces or dielectric boundaries. Such a functional can be minimized numerically by a level-set method to determine stable equilibrium conformations and solvation free energies. Applications to nonpolar systems have shown that the level-set VISM is efficient and leads to qualitatively and often quantitatively correct results. In particular, it is capable of capturing capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics (MD) simulations. In this work, we introduce into the VISM the Coulomb-field approximation of the electrostatic free energy. Such an approximation is a volume integral over an arbitrary shaped solvent region, requiring no solutions to any partial differential equations. With this approximation, we obtain the effective boundary force and use it as the “normal velocity” in the level-set relaxation. We test the new approach by calculating solvation free energies and potentials of mean force for small and large molecules, including the two-domain protein BphC. Our results reveal the importance of coupling polar and nonpolar interactions in the underlying molecular systems. In particular, dehydration near the domain interface of BphC subunits is found to be highly sensitive to local electrostatic potentials as seen in previous MD simulations. This is a first step toward capturing the complex protein dehydration process by an implicit-solvent approach. PMID:22346739

  13. Free energy landscapes of small peptides in an implicit solvent model determined by force-biased multicanonical molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukihisa S.; Kim, Jae Gil; Fukunishi, Yoshifumi; Nakamura, Haruki

    2004-12-01

    In order to investigate whether the implicit solvent (GB/SA) model could reproduce the free energy landscapes of peptides, the potential of mean forces (PMFs) of eight tripeptides was examined and compared with the PMFs of the explicit water model. The force-biased multicanonical molecular dynamics method was used for the enhanced conformational sampling. Consequently, the GB/SA model reproduced almost all the global and local minima in the PMFs observed with the explicit water model. However, the GB/SA model overestimated frequencies of the structures that are stabilized by intra-peptide hydrogen bonds.

  14. Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution

    NASA Astrophysics Data System (ADS)

    Zuehlsdorff, T. J.; Isborn, C. M.

    2018-01-01

    The correct treatment of vibronic effects is vital for the modeling of absorption spectra of many solvated dyes. Vibronic spectra for small dyes in solution can be easily computed within the Franck-Condon approximation using an implicit solvent model. However, implicit solvent models neglect specific solute-solvent interactions on the electronic excited state. On the other hand, a straightforward way to account for solute-solvent interactions and temperature-dependent broadening is by computing vertical excitation energies obtained from an ensemble of solute-solvent conformations. Ensemble approaches usually do not account for vibronic transitions and thus often produce spectral shapes in poor agreement with experiment. We address these shortcomings by combining zero-temperature vibronic fine structure with vertical excitations computed for a room-temperature ensemble of solute-solvent configurations. In this combined approach, all temperature-dependent broadening is treated classically through the sampling of configurations and quantum mechanical vibronic contributions are included as a zero-temperature correction to each vertical transition. In our calculation of the vertical excitations, significant regions of the solvent environment are treated fully quantum mechanically to account for solute-solvent polarization and charge-transfer. For the Franck-Condon calculations, a small amount of frozen explicit solvent is considered in order to capture solvent effects on the vibronic shape function. We test the proposed method by comparing calculated and experimental absorption spectra of Nile red and the green fluorescent protein chromophore in polar and non-polar solvents. For systems with strong solute-solvent interactions, the combined approach yields significant improvements over the ensemble approach. For systems with weak to moderate solute-solvent interactions, both the high-energy vibronic tail and the width of the spectra are in excellent agreement with experiments.

  15. Grid-Based Surface Generalized Born Model for Calculation of Electrostatic Binding Free Energies.

    PubMed

    Forouzesh, Negin; Izadi, Saeed; Onufriev, Alexey V

    2017-10-23

    Fast and accurate calculation of solvation free energies is central to many applications, such as rational drug design. In this study, we present a grid-based molecular surface implementation of "R6" flavor of the generalized Born (GB) implicit solvent model, named GBNSR6. The speed, accuracy relative to numerical Poisson-Boltzmann treatment, and sensitivity to grid surface parameters are tested on a set of 15 small protein-ligand complexes and a set of biomolecules in the range of 268 to 25099 atoms. Our results demonstrate that the proposed model provides a relatively successful compromise between the speed and accuracy of computing polar components of the solvation free energies (ΔG pol ) and binding free energies (ΔΔG pol ). The model tolerates a relatively coarse grid size h = 0.5 Å, where the grid artifact error in computing ΔΔG pol remains in the range of k B T ∼ 0.6 kcal/mol. The estimated ΔΔG pol s are well correlated (r 2 = 0.97) with the numerical Poisson-Boltzmann reference, while showing virtually no systematic bias and RMSE = 1.43 kcal/mol. The grid-based GBNSR6 model is available in Amber (AmberTools) package of molecular simulation programs.

  16. Modeling the thermal unfolding 2DIR spectra of a β-hairpin peptide based on the implicit solvent MD simulation.

    PubMed

    Wu, Tianmin; Yang, Lijiang; Zhang, Ruiting; Shao, Qiang; Zhuang, Wei

    2013-07-25

    We simulated the equilibrium isotope-edited FTIR and 2DIR spectra of a β-hairpin peptide trpzip2 at a series of temperatures. The simulation was based on the configuration distributions generated using the GB(OBC) implicit solvent model and the integrated tempering sampling (ITS) technique. A soaking procedure was adapted to generate the peptide in explicit solvent configurations for the spectroscopy calculations. The nonlinear exciton propagation (NEP) method was then used to calculate the spectra. Agreeing with the experiments, the intensities and ellipticities of the isotope-shifted peaks in our simulated signals have the site-specific temperature dependences, which suggest the inhomogeneous local thermal stabilities along the peptide chain. Our simulation thus proposes a cost-effective means to understand a peptide's conformational change and related IR spectra across its thermal unfolding transition.

  17. Reconstructing Solvent Density of Myoglobin Unit Cell from Proximal Radial Distribution Functions of Amino Acids

    NASA Astrophysics Data System (ADS)

    Galbraith, Madeline; Lynch, Gc; Pettitt, Bm

    Understanding the solvent density around a protein crystal structure is an important step for refining accurate crystal structures for use in dynamics simulations or in free energy calculations. The free energy of solvation has typically been approximated using an implicit continuum solvent model or an all atom MD simulation, with a trade-off between accuracy and computation time. For proteins, using precomputed proximal radial distribution functions (pRDFs) of the solvent to reconstruct solvent density on a grid is much faster than all atom MD simulations and more accurate than using implicit solvent models. MD simulations were run for the 20 common amino acids and pRDFs were calculated for several atom type data sets with and without hydrogens, using atom types representative of amino acid side chain atoms. Preliminary results from reconstructions suggest using a data set with 15 heavy atoms and 3 hydrogen yields results with the lowest error without a tradeoff on time. The results of using precomputed pRDFs to reconstruct the solvent density of water for the myoglobin (pdb ID 2mgk) unit cell quantifies the accuracy of the method in comparison with the crystallographic data. Funding Acknowledgement: This research was funded by the CPRIT Summer Undergraduate Program in Computational Cancer Biology, training Grant award RP 140113 from the Cancer Prevention & Research Institute of Texas (CPRIT).

  18. Postprocessing of docked protein-ligand complexes using implicit solvation models.

    PubMed

    Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna

    2011-02-28

    Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.

  19. Interactions between Nanoparticles and Polymer Brushes: Molecular Dynamics Simulations and Self-consistent Field Theory Calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei

    2015-03-01

    Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.

  20. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms☆

    PubMed Central

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-01-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins. Guest Editors: J.C. Gumbart and Sergei Noskov. PMID:26766517

  1. The importance of excluded solvent volume effects in computing hydration free energies.

    PubMed

    Yang, Pei-Kun; Lim, Carmay

    2008-11-27

    Continuum dielectric methods such as the Born equation have been widely used to compute the electrostatic component of the solvation free energy, DeltaG(solv)(elec), because they do not need to include solvent molecules explicitly and are thus far less costly compared to molecular simulations. All of these methods can be derived from Gauss Law of Maxwell's equations, which yields an analytical solution for the solvation free energy, DeltaG(Born), when the solute is spherical. However, in Maxwell's equations, the solvent is assumed to be a structureless continuum, whereas in reality, the near-solute solvent molecules are highly structured unlike far-solute bulk solvent. Since we have recently reformulated Gauss Law of Maxwell's equations to incorporate the near-solute solvent structure by considering excluded solvent volume effects, we have used it in this work to derive an analytical solution for the hydration free energy of an ion. In contrast to continuum solvent models, which assume that the normalized induced solvent electric dipole density P(n) is constant, P(n) mimics that observed from simulations. The analytical formula for the ionic hydration free energy shows that the Born radius, which has been used as an adjustable parameter to fit experimental hydration free energies, is no longer ill defined but is related to the radius and polarizability of the water molecule, the hydration number, and the first peak position of the solute-solvent radial distribution function. The resulting DeltaG(solv)(elec) values are shown to be close to the respective experimental numbers.

  2. Predicting hydration free energies with a hybrid QM/MM approach

    PubMed Central

    König, Gerhard; Pickard, Frank C.; Mei, Ye; Brooks, Bernard R.

    2014-01-01

    The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model. PMID:24504703

  3. Temperature-Dependent Implicit-Solvent Model of Polyethylene Glycol in Aqueous Solution.

    PubMed

    Chudoba, Richard; Heyda, Jan; Dzubiella, Joachim

    2017-12-12

    A temperature (T)-dependent coarse-grained (CG) Hamiltonian of polyethylene glycol/oxide (PEG/PEO) in aqueous solution is reported to be used in implicit-solvent material models in a wide temperature (i.e., solvent quality) range. The T-dependent nonbonded CG interactions are derived from a combined "bottom-up" and "top-down" approach. The pair potentials calculated from atomistic replica-exchange molecular dynamics simulations in combination with the iterative Boltzmann inversion are postrefined by benchmarking to experimental data of the radius of gyration. For better handling and a fully continuous transferability in T-space, the pair potentials are conveniently truncated and mapped to an analytic formula with three structural parameters expressed as explicit continuous functions of T. It is then demonstrated that this model without further adjustments successfully reproduces other experimentally known key thermodynamic properties of semidilute PEG solutions such as the full equation of state (i.e., T-dependent osmotic pressure) for various chain lengths as well as their cloud point (or collapse) temperature.

  4. Derivation of Reliable Geometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and Restrained Implicit Solvent QM Optimizations of G-Quadruplexes.

    PubMed

    Gkionis, Konstantinos; Kruse, Holger; Šponer, Jiří

    2016-04-12

    Modern dispersion-corrected DFT methods have made it possible to perform reliable QM studies on complete nucleic acid (NA) building blocks having hundreds of atoms. Such calculations, although still limited to investigations of potential energy surfaces, enhance the portfolio of computational methods applicable to NAs and offer considerably more accurate intrinsic descriptions of NAs than standard MM. However, in practice such calculations are hampered by the use of implicit solvent environments and truncation of the systems. Conventional QM optimizations are spoiled by spurious intramolecular interactions and severe structural deformations. Here we compare two approaches designed to suppress such artifacts: partially restrained continuum solvent QM and explicit solvent QM/MM optimizations. We report geometry relaxations of a set of diverse double-quartet guanine quadruplex (GQ) DNA stems. Both methods provide neat structures without major artifacts. However, each one also has distinct weaknesses. In restrained optimizations, all errors in the target geometries (i.e., low-resolution X-ray and NMR structures) are transferred to the optimized geometries. In QM/MM, the initial solvent configuration causes some heterogeneity in the geometries. Nevertheless, both approaches represent a decisive step forward compared to conventional optimizations. We refine earlier computations that revealed sizable differences in the relative energies of GQ stems computed with AMBER MM and QM. We also explore the dependence of the QM/MM results on the applied computational protocol.

  5. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms.

    PubMed

    Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji

    2016-07-01

    This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shenggao, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu; Sun, Hui; Cheng, Li-Tien

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. Wemore » also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the inclusion of fluctuations into the VISM and understanding the impact of interfacial fluctuations on biomolecular solvation with an implicit-solvent approach.« less

  7. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.

    PubMed

    Bardhan, Jaydeep P

    2008-10-14

    The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement is obtained in only a few iterations. The boundary-integral-equation framework may also provide a means to derive rigorous results explaining how the empirical correction terms in many modern GB models significantly improve accuracy despite their simple analytical forms.

  8. Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent

    DOE PAGES

    Bjorgaard, J. A.; Nelson, T.; Kalinin, K.; ...

    2015-04-28

    In this study, an efficient method of treating solvent effects in excited state molecular dynamics (ESMD) is implemented and tested by exploring the solvatochromic effects in substituted p-phenylene vinylene oligomers. A continuum solvent model is used which has very little computational overhead. This allows simulations of ESMD with solvent effects on the scale of hundreds of picoseconds for systems of up to hundreds of atoms. At these time scales, solvatochromic shifts in fluoresence spectra can be described. Solvatochromic shifts in absorption and fluorescence spectra from ESMD are compared with time-dependent density functional theory calculations and experiments.

  9. I can do that: the impact of implicit theories on leadership role model effectiveness.

    PubMed

    Hoyt, Crystal L; Burnette, Jeni L; Innella, Audrey N

    2012-02-01

    This research investigates the role of implicit theories in influencing the effectiveness of successful role models in the leadership domain. Across two studies, the authors test the prediction that incremental theorists ("leaders are made") compared to entity theorists ("leaders are born") will respond more positively to being presented with a role model before undertaking a leadership task. In Study 1, measuring people's naturally occurring implicit theories of leadership, the authors showed that after being primed with a role model, incremental theorists reported greater leadership confidence and less anxious-depressed affect than entity theorists following the leadership task. In Study 2, the authors demonstrated the causal role of implicit theories by manipulating participants' theory of leadership ability. They replicated the findings from Study 1 and demonstrated that identification with the role model mediated the relationship between implicit theories and both confidence and affect. In addition, incremental theorists outperformed entity theorists on the leadership task.

  10. Solvatochromic Effects on the Absorption Spectrum of 2-Thiocytosine

    PubMed Central

    2017-01-01

    The solvatochromic effects of six different solvents on the UV absorption spectrum of 2-thiocytosine have been studied by a combination of experimental and theoretical techniques. The steady-state absorption spectra show significant shifts of the absorption bands, where in more polar solvents the first absorption maximum shifts to higher transition energies and the second maximum to lower energies. The observed solvatochromic shifts have been rationalized using three popular solvatochromic scales and with high-level multireference quantum chemistry calculations including implicit and explicit solvent effects. It has been found that the dipole moments of the excited states account for some general shifts in the excitation energies, whereas the explicit solvent interactions explain the differences in the spectra recorded in the different solvents. PMID:28452483

  11. 40 CFR 60.434 - Monitoring of operations and recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...

  12. 40 CFR 60.434 - Monitoring of operations and recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...

  13. 40 CFR 60.434 - Monitoring of operations and recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...

  14. Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation

    NASA Astrophysics Data System (ADS)

    Zhao, Yanxiang; Kwan, Yuen-Yick; Che, Jianwei; Li, Bo; McCammon, J. Andrew

    2013-07-01

    A phase-field variational implicit-solvent approach is developed for the solvation of charged molecules. The starting point of such an approach is the representation of a solute-solvent interface by a phase field that takes one value in the solute region and another in the solvent region, with a smooth transition from one to the other on a small transition layer. The minimization of an effective free-energy functional of all possible phase fields determines the equilibrium conformations and free energies of an underlying molecular system. All the surface energy, the solute-solvent van der Waals interaction, and the electrostatic interaction are coupled together self-consistently through a phase field. The surface energy results from the minimization of a double-well potential and the gradient of a field. The electrostatic interaction is described by the Coulomb-field approximation. Accurate and efficient methods are designed and implemented to numerically relax an underlying charged molecular system. Applications to single ions, a two-plate system, and a two-domain protein reveal that the new theory and methods can capture capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics simulations. Comparisons of the phase-field and the original sharp-interface variational approaches are discussed.

  15. Interaction of Charged Patchy Protein Models with Like-Charged Polyelectrolyte Brushes.

    PubMed

    Yigit, Cemil; Kanduč, Matej; Ballauff, Matthias; Dzubiella, Joachim

    2017-01-10

    We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined one- and two-patched spherical globules, each of the same net charge and (nanometer) size, with mono- and multipole moments comparable to those of small globular proteins. We focus on electrostatic effects on the adsorption far away from the isoelectric point of typical proteins, i.e., where charge regulation plays no role. Despite the same net charge of the brush and globule, we observe large binding affinities up to tens of the thermal energy, k B T, which are enhanced by decreasing salt concentration and increasing charge of the patch(es). Our analysis of the distance-resolved potentials of mean force together with a phenomenological description of all leading interaction contributions shows that the attraction is strongest at the brush surface, driven by multipolar, Born (self-energy), and counterion-release contributions, dominating locally over the monopolar and steric repulsions.

  16. Interfaces and hydrophobic interactions in receptor-ligand systems: A level-set variational implicit solvent approach.

    PubMed

    Cheng, Li-Tien; Wang, Zhongming; Setny, Piotr; Dzubiella, Joachim; Li, Bo; McCammon, J Andrew

    2009-10-14

    A model nanometer-sized hydrophobic receptor-ligand system in aqueous solution is studied by the recently developed level-set variational implicit solvent model (VISM). This approach is compared to all-atom computer simulations. The simulations reveal complex hydration effects within the (concave) receptor pocket, sensitive to the distance of the (convex) approaching ligand. The ligand induces and controls an intermittent switching between dry and wet states of the hosting pocket, which determines the range and magnitude of the pocket-ligand attraction. In the level-set VISM, a geometric free-energy functional of all possible solute-solvent interfaces coupled to the local dispersion potential is minimized numerically. This approach captures the distinct metastable states that correspond to topologically different solute-solvent interfaces, and thereby reproduces the bimodal hydration behavior observed in the all-atom simulation. Geometrical singularities formed during the interface relaxation are found to contribute significantly to the energy barrier between different metastable states. While the hydration phenomena can thus be explained by capillary effects, the explicit inclusion of dispersion and curvature corrections seems to be essential for a quantitative description of hydrophobically confined systems on nanoscales. This study may shed more light onto the tight connection between geometric and energetic aspects of biomolecular hydration and may represent a valuable step toward the proper interpretation of experimental receptor-ligand binding rates.

  17. Discrimination of Native-like States of Membrane Proteins with Implicit Membrane-based Scoring Functions.

    PubMed

    Dutagaci, Bercem; Wittayanarakul, Kitiyaporn; Mori, Takaharu; Feig, Michael

    2017-06-13

    A scoring protocol based on implicit membrane-based scoring functions and a new protocol for optimizing the positioning of proteins inside the membrane was evaluated for its capacity to discriminate native-like states from misfolded decoys. A decoy set previously established by the Baker lab (Proteins: Struct., Funct., Genet. 2006, 62, 1010-1025) was used along with a second set that was generated to cover higher resolution models. The Implicit Membrane Model 1 (IMM1), IMM1 model with CHARMM 36 parameters (IMM1-p36), generalized Born with simple switching (GBSW), and heterogeneous dielectric generalized Born versions 2 (HDGBv2) and 3 (HDGBv3) were tested along with the new HDGB van der Waals (HDGBvdW) model that adds implicit van der Waals contributions to the solvation free energy. For comparison, scores were also calculated with the distance-scaled finite ideal-gas reference (DFIRE) scoring function. Z-scores for native state discrimination, energy vs root-mean-square deviation (RMSD) correlations, and the ability to select the most native-like structures as top-scoring decoys were evaluated to assess the performance of the scoring functions. Ranking of the decoys in the Baker set that were relatively far from the native state was challenging and dominated largely by packing interactions that were captured best by DFIRE with less benefit of the implicit membrane-based models. Accounting for the membrane environment was much more important in the second decoy set where especially the HDGB-based scoring functions performed very well in ranking decoys and providing significant correlations between scores and RMSD, which shows promise for improving membrane protein structure prediction and refinement applications. The new membrane structure scoring protocol was implemented in the MEMScore web server ( http://feiglab.org/memscore ).

  18. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.

    PubMed

    Vorobjev, Y N; Almagro, J C; Hermans, J

    1998-09-01

    A new method for calculating the total conformational free energy of proteins in water solvent is presented. The method consists of a relatively brief simulation by molecular dynamics with explicit solvent (ES) molecules to produce a set of microstates of the macroscopic conformation. Conformational energy and entropy are obtained from the simulation, the latter in the quasi-harmonic approximation by analysis of the covariance matrix. The implicit solvent (IS) dielectric continuum model is used to calculate the average solvation free energy as the sum of the free energies of creating the solute-size hydrophobic cavity, of the van der Waals solute-solvent interactions, and of the polarization of water solvent by the solute's charges. The reliability of the solvation free energy depends on a number of factors: the details of arrangement of the protein's charges, especially those near the surface; the definition of the molecular surface; and the method chosen for solving the Poisson equation. Molecular dynamics simulation in explicit solvent relaxes the protein's conformation and allows polar surface groups to assume conformations compatible with interaction with solvent, while averaging of internal energy and solvation free energy tend to enhance the precision. Two recently developed methods--SIMS, for calculation of a smooth invariant molecular surface, and FAMBE, for solution of the Poisson equation via a fast adaptive multigrid boundary element--have been employed. The SIMS and FAMBE programs scale linearly with the number of atoms. SIMS is superior to Connolly's MS (molecular surface) program: it is faster, more accurate, and more stable, and it smooths singularities of the molecular surface. Solvation free energies calculated with these two programs do not depend on molecular position or orientation and are stable along a molecular dynamics trajectory. We have applied this method to calculate the conformational free energy of native and intentionally misfolded globular conformations of proteins (the EMBL set of deliberately misfolded proteins) and have obtained good discrimination in favor of the native conformations in all instances.

  19. Exposing Racial Discrimination: Implicit & Explicit Measures–The My Body, My Story Study of 1005 US-Born Black & White Community Health Center Members

    PubMed Central

    Krieger, Nancy; Waterman, Pamela D.; Kosheleva, Anna; Chen, Jarvis T.; Carney, Dana R.; Smith, Kevin W.; Bennett, Gary G.; Williams, David R.; Freeman, Elmer; Russell, Beverley; Thornhill, Gisele; Mikolowsky, Kristin; Rifkin, Rachel; Samuel, Latrice

    2011-01-01

    Background To date, research on racial discrimination and health typically has employed explicit self-report measures, despite their potentially being affected by what people are able and willing to say. We accordingly employed an Implicit Association Test (IAT) for racial discrimination, first developed and used in two recent published studies, and measured associations of the explicit and implicit discrimination measures with each other, socioeconomic and psychosocial variables, and smoking. Methodology/Principal Findings Among the 504 black and 501 white US-born participants, age 35–64, randomly recruited in 2008–2010 from 4 community health centers in Boston, MA, black participants were over 1.5 times more likely (p<0.05) to be worse off economically (e.g., for poverty and low education) and have higher social desirability scores (43.8 vs. 28.2); their explicit discrimination exposure was also 2.5 to 3.7 times higher (p<0.05) depending on the measure used, with over 60% reporting exposure in 3 or more domains and within the last year. Higher IAT scores for target vs. perpetrator of discrimination occurred for the black versus white participants: for “black person vs. white person”: 0.26 vs. 0.13; and for “me vs. them”: 0.24 vs. 0.19. In both groups, only low non-significant correlations existed between the implicit and explicit discrimination measures; social desirability was significantly associated with the explicit but not implicit measures. Although neither the explicit nor implicit discrimination measures were associated with odds of being a current smoker, the excess risk for black participants (controlling for age and gender) rose in models that also controlled for the racial discrimination and psychosocial variables; additional control for socioeconomic position sharply reduced and rendered the association null. Conclusions Implicit and explicit measures of racial discrimination are not equivalent and both warrant use in research on racial discrimination and health, along with data on socioeconomic position and social desirability. PMID:22125618

  20. 40 CFR 60.434 - Monitoring of operations and recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recordkeeping. 60.434 Section 60.434 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...

  1. 40 CFR 60.434 - Monitoring of operations and recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... recordkeeping. 60.434 Section 60.434 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... affected facility using waterborne ink systems or solvent-borne ink systems with solvent recovery systems...) If affected facilities share the same raw ink storage/handling system with existing facilities...

  2. Parallel Tempering of Dark Matter from the Ebola Virus Proteome: Comparison of CHARMM36m and CHARMM22 Force Fields with Implicit Solvent.

    PubMed

    Olson, Mark A

    2018-01-22

    Intrinsically disordered proteins are characterized by their large manifold of thermally accessible conformations and their related statistical weights, making them an interesting target of simulation studies. To assess the development of a computational framework for modeling this distinct class of proteins, this work examines temperature-based replica-exchange simulations to generate a conformational ensemble of a 28-residue peptide from the Ebola virus protein VP35. Starting from a prefolded helix-β-turn-helix topology observed in a crystallographic assembly, the simulation strategy tested is the recently refined CHARMM36m force field combined with a generalized Born solvent model. A comparison of two replica-exchange methods is provided, where one is a traditional approach with a fixed set of temperatures and the other is an adaptive scheme in which the thermal windows are allowed to move in temperature space. The assessment is further extended to include a comparison with equivalent CHARMM22 simulation data sets. The analysis finds CHARMM36m to shift the minimum in the potential of mean force (PMF) to a lower fractional helicity compared with CHARMM22, while the latter showed greater conformational plasticity along the helix-forming reaction coordinate. Among the simulation models, only the adaptive tempering method with CHARMM36m found an ensemble of conformational heterogeneity consisting of transitions between α-helix-β-hairpin folds and unstructured states that produced a PMF of fractional fold propensity in qualitative agreement with circular dichroism experiments reporting a disordered peptide.

  3. Structure refinement of membrane proteins via molecular dynamics simulations.

    PubMed

    Dutagaci, Bercem; Heo, Lim; Feig, Michael

    2018-07-01

    A refinement protocol based on physics-based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge-based or implicit membrane-based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane-based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models. © 2018 Wiley Periodicals, Inc.

  4. Maintenance of electrostatic stabilization in altered tubulin lateral contacts may facilitate formation of helical filaments in foraminifera.

    PubMed

    Bassen, David M; Hou, Yubo; Bowser, Samuel S; Banavali, Nilesh K

    2016-08-19

    Microtubules in foraminiferan protists (forams) can convert into helical filament structures, in which longitudinal intraprotofilament interactions between tubulin heterodimers are thought to be lost, while lateral contacts across protofilaments are still maintained. The coarse geometric features of helical filaments are known through low-resolution negative stain electron microscopy (EM). In this study, geometric restraints derived from these experimental data were used to generate an average atomic-scale helical filament model, which anticipated a modest reorientation in the lateral tubulin heterodimer interface. Restrained molecular dynamics (MD) simulations of the nearest neighbor interactions combined with a Genalized Born implicit solvent model were used to assess the lateral, longitudinal, and seam contacts in 13-3 microtubules and the reoriented lateral contacts in the helical filament model. This electrostatic analysis suggests that the change in the lateral interface in the helical filament does not greatly diminish the lateral electrostatic interaction. After longitudinal dissociation, the 13-3 seam interaction is much weaker than the reoriented lateral interface in the helical filament model, providing a plausible atomic-detail explanation for seam-to-lateral contact transition that enables the transition to a helical filament structure.

  5. Maintenance of electrostatic stabilization in altered tubulin lateral contacts may facilitate formation of helical filaments in foraminifera

    NASA Astrophysics Data System (ADS)

    Bassen, David M.; Hou, Yubo; Bowser, Samuel S.; Banavali, Nilesh K.

    2016-08-01

    Microtubules in foraminiferan protists (forams) can convert into helical filament structures, in which longitudinal intraprotofilament interactions between tubulin heterodimers are thought to be lost, while lateral contacts across protofilaments are still maintained. The coarse geometric features of helical filaments are known through low-resolution negative stain electron microscopy (EM). In this study, geometric restraints derived from these experimental data were used to generate an average atomic-scale helical filament model, which anticipated a modest reorientation in the lateral tubulin heterodimer interface. Restrained molecular dynamics (MD) simulations of the nearest neighbor interactions combined with a Genalized Born implicit solvent model were used to assess the lateral, longitudinal, and seam contacts in 13-3 microtubules and the reoriented lateral contacts in the helical filament model. This electrostatic analysis suggests that the change in the lateral interface in the helical filament does not greatly diminish the lateral electrostatic interaction. After longitudinal dissociation, the 13-3 seam interaction is much weaker than the reoriented lateral interface in the helical filament model, providing a plausible atomic-detail explanation for seam-to-lateral contact transition that enables the transition to a helical filament structure.

  6. FT-IR study and solvent-implicit and explicit effect on stepwise tautomerism of Guanylurea: M06-2X as a case of study

    NASA Astrophysics Data System (ADS)

    Karimzadeh, Morteza; Manouchehri, Neda; Saberi, Dariush; Niknam, Khodabakhsh

    2018-06-01

    All 66 conformers of guanylurea were optimized and frequency calculations were performed at M06-2X/6-311++G(d,p) level of theory. Theses conformers were categorized into five tautomers, and the most stable conformer of each tautomer were found. Geometrical parameters indicated that these tautomers have almost planar structure. Complete stepwise tautomerism were studied through both intramolecular proton transfer routs and internal rotations. Results indicated that the proton transfer routs involving four-membered heterocyclic structures were rate-determining steps. Also, intramolecular proton movement having six-membered transition state structures had very low energy barrier comparable to the transition states of internal rotation routs. Differentiation of studied tautomers could easily be done through their FT-IR spectra in the range of 3200 to 3900 cm-1 by comparing absorption bands and intensity of peaks. Solvent-implicit effects on the stability of tautomers were also studied through re-optimization and frequency calculation in four solvents. Water, DMSO, acetone and toluene had stabilization effect on all considered tautomers, but the order of stabilization effect was as follows: water > DMSO > acetone > toluene. Finally, solvent-explicit, base-explicit and acid-explicit effect were also studied by taking place of studied tautomer nearside of acid, base or solvent and optimization of them. Frequency calculation for proton movement by contribution of explicit effect showed that formic acid had a very strong effect on proton transfer from tautomer A1 to tautomer D8 by lowering the energy barrier from 42.57 to 0.8 kcal/mol. In addition, ammonia-explicit effect was found to lower the barrier from 42.57 to 22.46 kcal/mol, but this effect is lower than that of water and methanol-explicit effect.

  7. Prediction, Refinement and Persistency of Transmembrane Helix Dimers in Lipid Bilayers using Implicit and Explicit Solvent/Lipid Representations: Microsecond Molecular Dynamics Simulations of ErbB1/B2 and EphA1

    PubMed Central

    Zhang, Liqun; Sodt, Alexander J.; Venable, Richard M.; Pastor, Richard W.; Buck, Matthias

    2012-01-01

    All-atom simulations are carried out on ErbB1/B2 and EphA1 transmembrane helix dimers in lipid bilayers starting from their solution/DMPC bicelle NMR structures. Over the course of microsecond trajectories, the structures remain in close proximity to the initial configuration and satisfy the great majority of experimental tertiary contact restraints. These results further validate CHARMM protein/lipid force fields and simulation protocols on Anton. Separately, dimer conformations are generated using replica exchange in conjunction with an implicit solvent and lipid representation. The implicit model requires further improvement, and this study investigates whether lengthy all-atom molecular dynamics simulations can alleviate the shortcomings of the initial conditions. The simulations correct many of the deficiencies. For example excessive helix twisting is eliminated over a period of hundreds of nanoseconds. The helix tilt, crossing angles and dimer contacts approximate those of the NMR derived structure, although the detailed contact surface remains off-set for one of two helices in both systems. Hence, even microsecond simulations are not long enough for extensive helix rotations. The alternate structures can be rationalized with reference to interaction motifs and may represent still sought after receptor states that are important in ErbB1/B2 and EphA1 signaling. PMID:23042146

  8. Generalized Born Models of Macromolecular Solvation Effects

    NASA Astrophysics Data System (ADS)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  9. Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring: Inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines.

    PubMed

    Hylsová, Michaela; Carbain, Benoit; Fanfrlík, Jindřich; Musilová, Lenka; Haldar, Susanta; Köprülüoğlu, Cemal; Ajani, Haresh; Brahmkshatriya, Pathik S; Jorda, Radek; Kryštof, Vladimír; Hobza, Pavel; Echalier, Aude; Paruch, Kamil; Lepšík, Martin

    2017-01-27

    We present comprehensive testing of solvent representation in quantum mechanics (QM)-based scoring of protein-ligand affinities. To this aim, we prepared 21 new inhibitors of cyclin-dependent kinase 2 (CDK2) with the pyrazolo[1,5-a]pyrimidine core, whose activities spanned three orders of magnitude. The crystal structure of a potent inhibitor bound to the active CDK2/cyclin A complex revealed that the biphenyl substituent at position 5 of the pyrazolo[1,5-a]pyrimidine scaffold was located in a previously unexplored pocket and that six water molecules resided in the active site. Using molecular dynamics, protein-ligand interactions and active-site water H-bond networks as well as thermodynamics were probed. Thereafter, all the inhibitors were scored by the QM approach utilizing the COSMO implicit solvent model. Such a standard treatment failed to produce a correlation with the experiment (R 2  = 0.49). However, the addition of the active-site waters resulted in significant improvement (R 2  = 0.68). The activities of the compounds could thus be interpreted by taking into account their specific noncovalent interactions with CDK2 and the active-site waters. In summary, using a combination of several experimental and theoretical approaches we demonstrate that the inclusion of explicit solvent effects enhance QM/COSMO scoring to produce a reliable structure-activity relationship with physical insights. More generally, this approach is envisioned to contribute to increased accuracy of the computational design of novel inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. A Coarse-Grained Protein Model in a Water-like Solvent

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Kumar, Sanat K.; Buldyrev, Sergey V.; Debenedetti, Pablo G.; Rossky, Peter J.; Stanley, H. Eugene

    2013-05-01

    Simulations employing an explicit atom description of proteins in solvent can be computationally expensive. On the other hand, coarse-grained protein models in implicit solvent miss essential features of the hydrophobic effect, especially its temperature dependence, and have limited ability to capture the kinetics of protein folding. We propose a free space two-letter protein (``H-P'') model in a simple, but qualitatively accurate description for water, the Jagla model, which coarse-grains water into an isotropically interacting sphere. Using Monte Carlo simulations, we design protein-like sequences that can undergo a collapse, exposing the ``Jagla-philic'' monomers to the solvent, while maintaining a ``hydrophobic'' core. This protein-like model manifests heat and cold denaturation in a manner that is reminiscent of proteins. While this protein-like model lacks the details that would introduce secondary structure formation, we believe that these ideas represent a first step in developing a useful, but computationally expedient, means of modeling proteins.

  11. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    PubMed

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.

  12. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

    NASA Astrophysics Data System (ADS)

    Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2014-02-01

    Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

  13. Modeling the temperature-dependent peptide vibrational spectra based on implicit-solvent model and enhance sampling technique

    NASA Astrophysics Data System (ADS)

    Tianmin, Wu; Tianjun, Wang; Xian, Chen; Bin, Fang; Ruiting, Zhang; Wei, Zhuang

    2016-01-01

    We herein review our studies on simulating the thermal unfolding Fourier transform infrared and two-dimensional infrared spectra of peptides. The peptide-water configuration ensembles, required forspectrum modeling, aregenerated at a series of temperatures using the GBOBC implicit solvent model and the integrated tempering sampling technique. The fluctuating vibrational Hamiltonians of the amide I vibrational band are constructed using the Frenkel exciton model. The signals are calculated using nonlinear exciton propagation. The simulated spectral features such as the intensity and ellipticity are consistent with the experimental observations. Comparing the signals for two beta-hairpin polypeptides with similar structures suggests that this technique is sensitive to peptide folding landscapes. Project supported by the National Natural Science Foundation of China (Grant No. 21203178), the National Natural Science Foundation of China (Grant No. 21373201), the National Natural Science Foundation of China (Grant No. 21433014), the Science and Technological Ministry of China (Grant No. 2011YQ09000505), and “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB10040304 and XDB100202002).

  14. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation

    PubMed Central

    Botello-Smith, Wesley M.; Luo, Ray

    2016-01-01

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966

  15. Toward accurate prediction of pKa values for internal protein residues: the importance of conformational relaxation and desolvation energy.

    PubMed

    Wallace, Jason A; Wang, Yuhang; Shi, Chuanyin; Pastoor, Kevin J; Nguyen, Bao-Linh; Xia, Kai; Shen, Jana K

    2011-12-01

    Proton uptake or release controls many important biological processes, such as energy transduction, virus replication, and catalysis. Accurate pK(a) prediction informs about proton pathways, thereby revealing detailed acid-base mechanisms. Physics-based methods in the framework of molecular dynamics simulations not only offer pK(a) predictions but also inform about the physical origins of pK(a) shifts and provide details of ionization-induced conformational relaxation and large-scale transitions. One such method is the recently developed continuous constant pH molecular dynamics (CPHMD) method, which has been shown to be an accurate and robust pK(a) prediction tool for naturally occurring titratable residues. To further examine the accuracy and limitations of CPHMD, we blindly predicted the pK(a) values for 87 titratable residues introduced in various hydrophobic regions of staphylococcal nuclease and variants. The predictions gave a root-mean-square deviation of 1.69 pK units from experiment, and there were only two pK(a)'s with errors greater than 3.5 pK units. Analysis of the conformational fluctuation of titrating side-chains in the context of the errors of calculated pK(a) values indicate that explicit treatment of conformational flexibility and the associated dielectric relaxation gives CPHMD a distinct advantage. Analysis of the sources of errors suggests that more accurate pK(a) predictions can be obtained for the most deeply buried residues by improving the accuracy in calculating desolvation energies. Furthermore, it is found that the generalized Born implicit-solvent model underlying the current CPHMD implementation slightly distorts the local conformational environment such that the inclusion of an explicit-solvent representation may offer improvement of accuracy. Copyright © 2011 Wiley-Liss, Inc.

  16. Flory-type theories of polymer chains under different external stimuli

    NASA Astrophysics Data System (ADS)

    Budkov, Yu A.; Kiselev, M. G.

    2018-01-01

    In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.

  17. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.

    PubMed

    Li, B O; Liu, Yuan

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

  18. Testing the nature of reaction coordinate describing interaction of H2 with carbonyl carbon, activated by Lewis acid complexation, and the Lewis basic solvent: A Born-Oppenheimer molecular dynamics study with explicit solvent

    NASA Astrophysics Data System (ADS)

    Heshmat, Mojgan; Privalov, Timofei

    2017-09-01

    Using Born-Oppenheimer molecular dynamics (BOMD), we explore the nature of interactions between H2 and the activated carbonyl carbon, C(carbonyl), of the acetone-B(C6F5)3 adduct surrounded by an explicit solvent (1,4-dioxane). BOMD simulations at finite (non-zero) temperature with an explicit solvent produced long-lasting instances of significant vibrational perturbation of the H—H bond and H2-polarization at C(carbonyl). As far as the characteristics of H2 are concerned, the dynamical transient state approximates the transition-state of the heterolytic H2-cleavage. The culprit is the concerted interactions of H2 with C(carbonyl) and a number of Lewis basic solvent molecules—i.e., the concerted C(carbonyl)⋯H2⋯solvent interactions. On one hand, the results presented herein complement the mechanistic insight gained from our recent transition-state calculations, reported separately from this article. But on the other hand, we now indicate that an idea of the sufficiency of just one simple reaction coordinate in solution-phase reactions can be too simplistic and misleading. This article goes in the footsteps of the rapidly strengthening approach of investigating molecular interactions in large molecular systems via "computational experimentation" employing, primarily, ab initio molecular dynamics describing reactants-interaction without constraints of the preordained reaction coordinate and/or foreknowledge of the sampling order parameters.

  19. FT-IR study and solvent-implicit and explicit effect on stepwise tautomerism of Guanylurea: M06-2X as a case of study.

    PubMed

    Karimzadeh, Morteza; Manouchehri, Neda; Saberi, Dariush; Niknam, Khodabakhsh

    2018-06-15

    All 66 conformers of guanylurea were optimized and frequency calculations were performed at M06-2X/6-311++G(d,p) level of theory. Theses conformers were categorized into five tautomers, and the most stable conformer of each tautomer were found. Geometrical parameters indicated that these tautomers have almost planar structure. Complete stepwise tautomerism were studied through both intramolecular proton transfer routs and internal rotations. Results indicated that the proton transfer routs involving four-membered heterocyclic structures were rate-determining steps. Also, intramolecular proton movement having six-membered transition state structures had very low energy barrier comparable to the transition states of internal rotation routs. Differentiation of studied tautomers could easily be done through their FT-IR spectra in the range of 3200 to 3900cm -1 by comparing absorption bands and intensity of peaks. Solvent-implicit effects on the stability of tautomers were also studied through re-optimization and frequency calculation in four solvents. Water, DMSO, acetone and toluene had stabilization effect on all considered tautomers, but the order of stabilization effect was as follows: water>DMSO>acetone>toluene. Finally, solvent-explicit, base-explicit and acid-explicit effect were also studied by taking place of studied tautomer nearside of acid, base or solvent and optimization of them. Frequency calculation for proton movement by contribution of explicit effect showed that formic acid had a very strong effect on proton transfer from tautomer A1 to tautomer D8 by lowering the energy barrier from 42.57 to 0.8kcal/mol. In addition, ammonia-explicit effect was found to lower the barrier from 42.57 to 22.46kcal/mol, but this effect is lower than that of water and methanol-explicit effect. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Differential geometry based solvation model. III. Quantum formulation

    PubMed Central

    Chen, Zhan; Wei, Guo-Wei

    2011-01-01

    Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067

  1. Computational insights into the photocyclization of diclofenac in solution: effects of halogen and hydrogen bonding.

    PubMed

    Bani-Yaseen, Abdulilah Dawoud

    2016-08-21

    The effects of noncovalent interactions, namely halogen and hydrogen bonding, on the photochemical conversion of the photosensitizing drug diclofenac (DCF) in solution were investigated computationally. Both explicit and implicit solvent effects were qualitatively and quantitatively assessed employing the DFT/6-31+G(d) and SQM(PM7) levels of theory. Full geometry optimizations were performed in solution for the reactant DCF, hypothesized radical-based intermediates, and the main product at both levels of theories. Notably, in good agreement with previous experimental results concerning the intermolecular halogen bonding of DCF, the SQM(PM7) method revealed different values for d(ClO, Å) and ∠(C-ClO, °) for the two chlorine-substituents of DCF, with values of 2.63 Å/162° and 3.13 Å/142° for the trans and cis orientations, respectively. Employing the DFT/6-31+G(d) method with implicit solvent effects was not conclusive; however, explicit solvent effects confirmed the key contribution of hydrogen and halogen bonding in stabilizing/destabilizing the reactant and hypothesized intermediates. Interestingly, the obtained results revealed that a protic solvent such as water can increase the rate of photocyclization of DCF not only through hydrogen bonding effects, but also through halogen bonding. Furthermore, the atomic charges of atoms majorly involved in the photocyclization of DCF were calculated using different methods, namely Mulliken, Hirshfeld, and natural bond orbital (NBO). The obtained results revealed that in all cases there is a notable nonequivalency in the noncovalent intermolecular interactions of the two chlorine substituents of DCF and the radical intermediates with the solvent, which in turn may account for the discrepancy of their reactivity in different media. These computational results provide insight into the importance of halogen and hydrogen bonding throughout the progression of the photochemical conversion of DCF in solution.

  2. The effect of macromolecular crowding on the electrostatic component of barnase-barstar binding: a computational, implicit solvent-based study.

    PubMed

    Qi, Helena W; Nakka, Priyanka; Chen, Connie; Radhakrishnan, Mala L

    2014-01-01

    Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder-protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein-protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase-barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered "effective" solvent dielectric to account for crowding, although the "best" effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses.

  3. The Effect of Macromolecular Crowding on the Electrostatic Component of Barnase–Barstar Binding: A Computational, Implicit Solvent-Based Study

    PubMed Central

    Qi, Helena W.; Nakka, Priyanka; Chen, Connie; Radhakrishnan, Mala L.

    2014-01-01

    Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder–protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein–protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase–barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered “effective” solvent dielectric to account for crowding, although the “best” effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses. PMID:24915485

  4. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2014-07-17

    We have examined the effects of including explicit, near-probe solvent molecules in a continuum electrostatics strategy using the linear Poisson-Boltzmann equation with the Adaptive Poisson-Boltzmann Solver (APBS) to calculate electric fields at the midpoint of a nitrile bond both at the surface of a monomeric protein and when docked at a protein-protein interface. Results were compared to experimental vibrational absorption energy measurements of the nitrile oscillator. We examined three methods for selecting explicit water molecules: (1) all water molecules within 5 Å of the nitrile nitrogen; (2) the water molecule closest to the nitrile nitrogen; and (3) any single water molecule hydrogen-bonding to the nitrile. The correlation between absolute field strengths with experimental absorption energies were calculated and it was observed that method 1 was only an improvement for the monomer calculations, while methods 2 and 3 were not significantly different from the purely implicit solvent calculations for all protein systems examined. Upon taking the difference in calculated electrostatic fields and comparing to the difference in absorption frequencies, we typically observed an increase in experimental correlation for all methods, with method 1 showing the largest gain, likely due to the improved absolute monomer correlations using that method. These results suggest that, unlike with quantum mechanical methods, when calculating absolute fields using entirely classical models, implicit solvent is typically sufficient and additional work to identify hydrogen-bonding or nearest waters does not significantly impact the results. Although we observed that a sphere of solvent near the field of interest improved results for relative field calculations, it should not be consider a panacea for all situations.

  5. Solvent effect in implicit/explicit model on FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra, linear, second- and third-nonlinear optical parameters of 2-(trifluoromethyl)benzoic acid: Experimental and computational study

    NASA Astrophysics Data System (ADS)

    Avcı, Davut; Altürk, Sümeyye; Tamer, Ömer; Kuşbazoğlu, Mustafa; Atalay, Yusuf

    2017-09-01

    FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra for 2-(trifluoromethyl)benzoic acid (2-TFMBA) were recorded. DFT//B3LYP/6-31++G(d,p) calculations were used to determine the optimized molecular geometry, vibrational frequencies, 1H, 13C and 19F GIAO-NMR chemical shifts of 2-TFMBA. The detailed assignments of vibrational frequencies were carried out on the basis of potential energy distribution (PED) by using VEDA program. TD-DFT/B3LYP/6-31++G(d,p) calculations with the PCM (polarizable continuum model) in ethanol and DMSO solvents based on implicit/explicit model and gas phase in the excited state were employed to investigate UV-vis absorption and fluorescence emission wavelengths. The UV-vis and emission spectra were given in ethanol and DMSO solvents, and the major contributions to the electronic transitions were obtained. In addition, the NLO parameters (β, γ and χ(3)) and frontier molecular orbital energies of 2-TFMBA were calculated by using B3LYP/6-31++G(d,p) level. The NLO parameters of 2-TFMBA were compared with that of para-Nitroaniline (pNA) and urea which are the typical NLO materials. The refractive index (n) is calculated by using the Lorentz-Lorenz equation to observe polarization behavior of 2-TFMBA in DMSO and ethanol solvents. In order to investigate intramolecular and hydrogen bonding interactions, NBO calculations were also performed by the same level. To sum up, considering the well-known biological role, photochemical properties of 2-TFMBA were discussed.

  6. Modeling the antisymmetric and symmetric stretching vibrational modes of aqueous carboxylate anions

    NASA Astrophysics Data System (ADS)

    Sutton, Catherine C. R.; Franks, George V.; da Silva, Gabriel

    2015-01-01

    The infrared spectra of six aqueous carboxylate anions have been calculated at the M05-2X/cc-pVTZ level of theory with the SMD solvent model, and validated against experimental data from the literature over the region of 1700 cm-1 to 1250 cm-1; this region corresponds to the stretching modes of the carboxylate group, and is often interrogated when probing bonding of carboxylates to other species and surfaces. The anions studied here were formate, acetate, oxalate, succinate, glutarate and citrate. For the lowest energy conformer of each anion, the carboxylate moiety antisymmetric stretching peak was predicted with a mean signed error of only 4 cm-1 using the SMD solvent model, while the symmetric peak was slightly overestimated. Performing calculations in vacuum and scaling was found to generally over-predict the antisymmetric vibrational frequencies and under predict the symmetric peak. Different conformers of the same anion were found to have only slightly different spectra in the studied region and the inclusion of explicit water molecules was not found to significantly change the calculated spectra when the implicit solvent model is used. Overall, the use of density functional theory in conjunction with an implicit solvent model was found to result in infra-red spectra that are the best reproduction of the features found experimentally for the aqueous carboxylate ions in the important 1700 cm-1 to 1250 cm-1 region. The development of validated model chemistries for simulating the stretching modes of aqueous carboxylate ions will be valuable for future studies that investigate how carboxylate anions complex with multivalent metal cations and related species in solution.

  7. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lin, Yuchun; Baumketner, Andrij; Deng, Shaozhong; Xu, Zhenli; Jacobs, Donald; Cai, Wei

    2009-10-01

    In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.

  8. Probing the free energy landscape of the FBP28WW domain using multiple techniques.

    PubMed

    Periole, Xavier; Allen, Lucy R; Tamiola, Kamil; Mark, Alan E; Paci, Emanuele

    2009-05-01

    The free-energy landscape of a small protein, the FBP 28 WW domain, has been explored using molecular dynamics (MD) simulations with alternative descriptions of the molecule. The molecular models used range from coarse-grained to all-atom with either an implicit or explicit treatment of the solvent. Sampling of conformation space was performed using both conventional and temperature-replica exchange MD simulations. Experimental chemical shifts and NOEs were used to validate the simulations, and experimental phi values both for validation and as restraints. This combination of different approaches has provided insight into the free energy landscape and barriers encountered by the protein during folding and enabled the characterization of native, denatured and transition states which are compatible with the available experimental data. All the molecular models used stabilize well defined native and denatured basins; however, the degree of agreement with the available experimental data varies. While the most detailed, explicit solvent model predicts the data reasonably accurately, it does not fold despite a simulation time 10 times that of the experimental folding time. The less detailed models performed poorly relative to the explicit solvent model: an implicit solvent model stabilizes a ground state which differs from the experimental native state, and a structure-based model underestimates the size of the barrier between the two states. The use of experimental phi values both as restraints, and to extract structures from unfolding simulations, result in conformations which, although not necessarily true transition states, appear to share the geometrical characteristics of transition state structures. In addition to characterizing the native, transition and denatured states of this particular system in this work, the advantages and limitations of using varying levels of representation are discussed. 2008 Wiley Periodicals, Inc.

  9. Tunable, mixed-resolution modeling using library-based Monte Carlo and graphics processing units

    PubMed Central

    Mamonov, Artem B.; Lettieri, Steven; Ding, Ying; Sarver, Jessica L.; Palli, Rohith; Cunningham, Timothy F.; Saxena, Sunil; Zuckerman, Daniel M.

    2012-01-01

    Building on our recently introduced library-based Monte Carlo (LBMC) approach, we describe a flexible protocol for mixed coarse-grained (CG)/all-atom (AA) simulation of proteins and ligands. In the present implementation of LBMC, protein side chain configurations are pre-calculated and stored in libraries, while bonded interactions along the backbone are treated explicitly. Because the AA side chain coordinates are maintained at minimal run-time cost, arbitrary sites and interaction terms can be turned on to create mixed-resolution models. For example, an AA region of interest such as a binding site can be coupled to a CG model for the rest of the protein. We have additionally developed a hybrid implementation of the generalized Born/surface area (GBSA) implicit solvent model suitable for mixed-resolution models, which in turn was ported to a graphics processing unit (GPU) for faster calculation. The new software was applied to study two systems: (i) the behavior of spin labels on the B1 domain of protein G (GB1) and (ii) docking of randomly initialized estradiol configurations to the ligand binding domain of the estrogen receptor (ERα). The performance of the GPU version of the code was also benchmarked in a number of additional systems. PMID:23162384

  10. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.

  11. A rapid solvent accessible surface area estimator for coarse grained molecular simulations.

    PubMed

    Wei, Shuai; Brooks, Charles L; Frank, Aaron T

    2017-06-05

    The rapid and accurate calculation of solvent accessible surface area (SASA) is extremely useful in the energetic analysis of biomolecules. For example, SASA models can be used to estimate the transfer free energy associated with biophysical processes, and when combined with coarse-grained simulations, can be particularly useful for accounting for solvation effects within the framework of implicit solvent models. In such cases, a fast and accurate, residue-wise SASA predictor is highly desirable. Here, we develop a predictive model that estimates SASAs based on Cα-only protein structures. Through an extensive comparison between this method and a comparable method, POPS-R, we demonstrate that our new method, Protein-C α Solvent Accessibilities or PCASA, shows better performance, especially for unfolded conformations of proteins. We anticipate that this model will be quite useful in the efficient inclusion of SASA-based solvent free energy estimations in coarse-grained protein folding simulations. PCASA is made freely available to the academic community at https://github.com/atfrank/PCASA. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Molecular dynamics simulations of β2-microglobulin interaction with hydrophobic surfaces.

    PubMed

    Dongmo Foumthuim, Cedrix J; Corazza, Alessandra; Esposito, Gennaro; Fogolari, Federico

    2017-11-21

    Hydrophobic surfaces are known to adsorb and unfold proteins, a process that has been studied only for a few proteins. Here we address the interaction of β2-microglobulin, a paradigmatic protein for the study of amyloidogenesis, with hydrophobic surfaces. A system with 27 copies of the protein surrounded by a model cubic hydrophobic box is studied by implicit solvent molecular dynamics simulations. Most proteins adsorb on the walls of the box without major distortions in local geometry, whereas free molecules maintain proper structures and fluctuations as observed in explicit solvent molecular dynamics simulations. The major conclusions from the simulations are as follows: (i) the adopted implicit solvent model is adequate to describe protein dynamics and thermodynamics; (ii) adsorption occurs readily and is irreversible on the simulated timescale; (iii) the regions most involved in molecular encounters and stable interactions with the walls are the same as those that are important in protein-protein and protein-nanoparticle interactions; (iv) unfolding following adsorption occurs at regions found to be flexible by both experiments and simulations; (v) thermodynamic analysis suggests a very large contribution from van der Waals interactions, whereas unfavorable electrostatic interactions are not found to contribute much to adsorption energy. Surfaces with different degrees of hydrophobicity may occur in vivo. Our simulations show that adsorption is a fast and irreversible process which is accompanied by partial unfolding. The results and the thermodynamic analysis presented here are consistent with and rationalize previous experimental work.

  13. [Supercomputer investigation of the protein-ligand system low-energy minima].

    PubMed

    Oferkin, I V; Sulimov, A V; Katkova, E V; Kutov, D K; Grigoriev, F V; Kondakova, O A; Sulimov, V B

    2015-01-01

    The accuracy of the protein-ligand binding energy calculations and ligand positioning is strongly influenced by the choice of the docking target function. This work demonstrates the evaluation of the five different target functions used in docking: functions based on MMFF94 force field and functions based on PM7 quantum-chemical method accounting or without accounting the implicit solvent model (PCM, COSMO or SGB). For these purposes the ligand positions corresponding to the minima of the target function and the experimentally known ligand positions in the protein active site (crystal ligand positions) were compared. Each function was examined on the same test-set of 16 protein-ligand complexes. The new parallelized docking program FLM based on Monte Carlo search algorithm was developed to perform the comprehensive low-energy minima search and to calculate the protein-ligand binding energy. This study demonstrates that the docking target function based on the MMFF94 force field can be used to detect the crystal or near crystal positions of the ligand by the finding the low-energy local minima spectrum of the target function. The importance of solvent accounting in the docking process for the accurate ligand positioning is also shown. The accuracy of the ligand positioning as well as the correlation between the calculated and experimentally determined protein-ligand binding energies are improved when the MMFF94 force field is substituted by the new PM7 method with implicit solvent accounting.

  14. Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Mishra, Pankaj

    2017-05-01

    We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.

  15. Sampling the multiple folding mechanisms of Trp-cage in explicit solvent

    PubMed Central

    Juraszek, J.; Bolhuis, P. G.

    2006-01-01

    We investigate the kinetic pathways of folding and unfolding of the designed miniprotein Trp- cage in explicit solvent. Straightforward molecular dynamics and replica exchange methods both have severe convergence problems, whereas transition path sampling allows us to sample unbiased dynamical pathways between folded and unfolded states and leads to deeper understanding of the mechanisms of (un)folding. In contrast to previous predictions employing an implicit solvent, we find that Trp-cage folds primarily (80% of the paths) via a pathway forming the tertiary contacts and the salt bridge, before helix formation. The remaining 20% of the paths occur in the opposite order, by first forming the helix. The transition states of the rate-limiting steps are solvated native-like structures. Water expulsion is found to be the last step upon folding for each route. Committor analysis suggests that the dynamics of the solvent is not part of the reaction coordinate. Nevertheless, during the transition, specific water molecules are strongly bound and can play a structural role in the folding. PMID:17035504

  16. Uncovering Implicit Assumptions: A Large-Scale Study on Students' Mental Models of Diffusion

    ERIC Educational Resources Information Center

    Stains, Marilyne; Sevian, Hannah

    2015-01-01

    Students' mental models of diffusion in a gas phase solution were studied through the use of the Structure and Motion of Matter (SAMM) survey. This survey permits identification of categories of ways students think about the structure of the gaseous solute and solvent, the origin of motion of gas particles, and trajectories of solute particles in…

  17. Functionally relevant protein motions: Extracting basin-specific collective coordinates from molecular dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Pan, Patricia Wang; Dickson, Russell J.; Gordon, Heather L.; Rothstein, Stuart M.; Tanaka, Shigenori

    2005-01-01

    Functionally relevant motion of proteins has been associated with a number of atoms moving in a concerted fashion along so-called "collective coordinates." We present an approach to extract collective coordinates from conformations obtained from molecular dynamics simulations. The power of this technique for differentiating local structural fuctuations between classes of conformers obtained by clustering is illustrated by analyzing nanosecond-long trajectories for the response regulator protein Spo0F of Bacillus subtilis, generated both in vacuo and using an implicit-solvent representation. Conformational clustering is performed using automated histogram filtering of the inter-Cα distances. Orthogonal (varimax) rotation of the vectors obtained by principal component analysis of these interresidue distances for the members of individual clusters is key to the interpretation of collective coordinates dominating each conformational class. The rotated loadings plots isolate significant variation in interresidue distances, and these are associated with entire mobile secondary structure elements. From this we infer concerted motions of these structural elements. For the Spo0F simulations employing an implicit-solvent representation, collective coordinates obtained in this fashion are consistent with the location of the protein's known active sites and experimentally determined mobile regions.

  18. "Martinizing" the Variational Implicit Solvent Method (VISM): Solvation Free Energy for Coarse-Grained Proteins.

    PubMed

    Ricci, Clarisse G; Li, Bo; Cheng, Li-Tien; Dzubiella, Joachim; McCammon, J Andrew

    2017-07-13

    Solvation is a fundamental driving force in many biological processes including biomolecular recognition and self-assembly, not to mention protein folding, dynamics, and function. The variational implicit solvent method (VISM) is a theoretical tool currently developed and optimized to estimate solvation free energies for systems of very complex topology, such as biomolecules. VISM's theoretical framework makes it unique because it couples hydrophobic, van der Waals, and electrostatic interactions as a functional of the solvation interface. By minimizing this functional, VISM produces the solvation interface as an output of the theory. In this work, we push VISM to larger scale applications by combining it with coarse-grained solute Hamiltonians adapted from the MARTINI framework, a well-established mesoscale force field for modeling large-scale biomolecule assemblies. We show how MARTINI-VISM ( M VISM) compares with atomistic VISM ( A VISM) for a small set of proteins differing in size, shape, and charge distribution. We also demonstrate M VISM's suitability to study the solvation properties of an interesting encounter complex, barnase-barstar. The promising results suggest that coarse-graining the protein with the MARTINI force field is indeed a valuable step to broaden VISM's and MARTINI's applications in the near future.

  19. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach.

    PubMed

    Guo, Zuojun; Li, Bo; Cheng, Li-Tien; Zhou, Shenggao; McCammon, J Andrew; Che, Jianwei

    2015-02-10

    Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 515 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e, complexes with experimental pKd values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.

  20. A semi-implicit augmented IIM for Navier–Stokes equations with open, traction, or free boundary conditions

    PubMed Central

    Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray

    2016-01-01

    In this paper, a new Navier–Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier–Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented. PMID:27087702

  1. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.

    PubMed

    Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray

    2015-08-15

    In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier-Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented.

  2. Parental occupational exposure to solvents and heavy metals and risk of developing testicular germ cell tumors in sons (NORD-TEST Denmark).

    PubMed

    Olsson, Ann; Togawa, Kayo; Schüz, Joachim; Le Cornet, Charlotte; Fervers, Beatrice; Oksbjerg Dalton, Susanne; Pukkala, Eero; Feychting, Maria; Skakkebæk, Niels Erik; Hansen, Johnni

    2018-06-07

    Objective The present study aims to assess if parental occupational exposure to solvents or heavy metals is associated with risk of testicular germ cell tumors (TGCT) in sons in Denmark. Methods The NORD-TEST Denmark included 3421 cases diagnosed with TGCT at ages 14-49 years in Denmark between 1981 and 2014. Controls (N=14 024) selected from the central population registry were matched to cases on birth year. The Danish Supplementary Pension Fund provided parental occupational information. A job-exposure matrix was used to assign exposures, and conditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI). Results The overall analyses showed no significant associations except for paternal exposure to a sub-group of "heavy metal(s) and solvent(s)" (OR 1.50, 95% CI 1.01-2.24). Most fathers in this category had worked in wood related jobs and were assigned exposure to chromium VI and toluene. Other sub-group analyses suggested that maternal exposure to aromatic hydrocarbon were associated with TGCT risk, in sons born in 1970-1979, and to heavy metals (chromium, iron and nickel) in sons born in 1980-1998. Conclusion NORD-TEST Denmark provides no strong support for an association between parental exposures to solvents or heavy metals and TGCT in sons, and only weak support for an association between paternal exposure to chromium and toluene and TGCT risk in sons.

  3. KECSA-Movable Type Implicit Solvation Model (KMTISM)

    PubMed Central

    2015-01-01

    Computation of the solvation free energy for chemical and biological processes has long been of significant interest. The key challenges to effective solvation modeling center on the choice of potential function and configurational sampling. Herein, an energy sampling approach termed the “Movable Type” (MT) method, and a statistical energy function for solvation modeling, “Knowledge-based and Empirical Combined Scoring Algorithm” (KECSA) are developed and utilized to create an implicit solvation model: KECSA-Movable Type Implicit Solvation Model (KMTISM) suitable for the study of chemical and biological systems. KMTISM is an implicit solvation model, but the MT method performs energy sampling at the atom pairwise level. For a specific molecular system, the MT method collects energies from prebuilt databases for the requisite atom pairs at all relevant distance ranges, which by its very construction encodes all possible molecular configurations simultaneously. Unlike traditional statistical energy functions, KECSA converts structural statistical information into categorized atom pairwise interaction energies as a function of the radial distance instead of a mean force energy function. Within the implicit solvent model approximation, aqueous solvation free energies are then obtained from the NVT ensemble partition function generated by the MT method. Validation is performed against several subsets selected from the Minnesota Solvation Database v2012. Results are compared with several solvation free energy calculation methods, including a one-to-one comparison against two commonly used classical implicit solvation models: MM-GBSA and MM-PBSA. Comparison against a quantum mechanics based polarizable continuum model is also discussed (Cramer and Truhlar’s Solvation Model 12). PMID:25691832

  4. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  5. Predicting solvatochromic shifts and colours of a solvated organic dye: The example of nile red

    NASA Astrophysics Data System (ADS)

    Zuehlsdorff, T. J.; Haynes, P. D.; Payne, M. C.; Hine, N. D. M.

    2017-03-01

    The solvatochromic shift, as well as the change in colour of the simple organic dye nile red, is studied in two polar and two non-polar solvents in the context of large-scale time-dependent density-functional theory (TDDFT) calculations treating large parts of the solvent environment from first principles. We show that an explicit solvent representation is vital to resolve absorption peak shifts between nile red in n-hexane and toluene, as well as acetone and ethanol. The origin of the failure of implicit solvent models for these solvents is identified as being due to the strong solute-solvent interactions in form of π-stacking and hydrogen bonding in the case of toluene and ethanol. We furthermore demonstrate that the failures of the computationally inexpensive Perdew-Burke-Ernzerhof (PBE) functional in describing some features of the excited state potential energy surface of the S1 state of nile red can be corrected for in a straightforward fashion, relying only on a small number of calculations making use of more sophisticated range-separated hybrid functionals. The resulting solvatochromic shifts and predicted colours are in excellent agreement with experiment, showing the computational approach outlined in this work to yield very robust predictions of optical properties of dyes in solution.

  6. Solvent effects on the properties of hyperbranched polythiophenes.

    PubMed

    Torras, Juan; Zanuy, David; Aradilla, David; Alemán, Carlos

    2016-09-21

    The structural and electronic properties of all-thiophene dendrimers and dendrons in solution have been evaluated using very different theoretical approaches based on quantum mechanical (QM) and hybrid QM/molecular mechanics (MM) methodologies: (i) calculations on minimum energy conformations using an implicit solvation model in combination with density functional theory (DFT) or time-dependent DFT (TD-DFT) methods; (ii) hybrid QM/MM calculations, in which the solute and solvent molecules are represented at the DFT level as point charges, respectively, on snapshots extracted from classical molecular dynamics (MD) simulations using explicit solvent molecules, and (iii) QM/MM-MD trajectories in which the solute is described at the DFT or TD-DFT level and the explicit solvent molecules are represented using classical force-fields. Calculations have been performed in dichloromethane, tetrahydrofuran and dimethylformamide. A comparison of the results obtained using the different approaches with the available experimental data indicates that the incorporation of effects associated with both the conformational dynamics of the dendrimer and the explicit solvent molecules is strictly necessary to satisfactorily reproduce the properties of the investigated systems. Accordingly, QM/MM-MD simulations are able to capture such effects providing a reliable description of electronic properties-conformational flexibility relationships in all-Th dendrimers.

  7. Water Dynamics at Protein-Protein Interfaces: Molecular Dynamics Study of Virus-Host Receptor Complexes.

    PubMed

    Dutta, Priyanka; Botlani, Mohsen; Varma, Sameer

    2014-12-26

    The dynamical properties of water at protein-water interfaces are unlike those in the bulk. Here we utilize molecular dynamics simulations to study water dynamics in interstitial regions between two proteins. We consider two natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2 and the other in which the same G protein binds to ephrin B3. While the two complexes are structurally similar, the two ephrins share only a modest sequence identity of ∼50%. X-ray crystallography also suggests that these interfaces are fairly extensive and contain exceptionally large amounts of waters. We find that while the interstitial waters tend to occupy crystallographic sites, almost all waters exhibit residence times of less than hundred picoseconds in the interstitial region. We also find that while the differences in the sequence of the two ephrins result in quantitative differences in the dynamics of interstitial waters, the trends in the shifts with respect to bulk values are similar. Despite the high wetness of the protein-protein interfaces, the dynamics of interstitial waters are considerably slower compared to the bulk-the interstitial waters diffuse an order of magnitude slower and have 2-3 fold longer hydrogen bond lifetimes and 2-1000 fold slower dipole relaxation rates. To understand the role of interstitial waters, we examine how implicit solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G conformational density. Ephrin-induced shifts in the G conformational density are critical to the allosteric activation of another viral protein that mediates fusion. We find that in comparison with the explicit solvent model, the implicit solvent model predicts a more compact G-B2 interface, presumably because of the absence of discrete waters at the G-B2 interface. Simultaneously, we find that the two models yield strikingly different induced changes in the G conformational density, even for those residues whose conformational densities in the apo state are unaffected by the treatment of the bulk solvent. Together, these results show that the explicit treatment of interstitial water molecules is necessary for a proper description of allosteric transitions.

  8. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

    PubMed

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C

    2014-07-24

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  9. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.

    2014-06-25

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less

  10. Overview of the SAMPL5 host–guest challenge: Are we doing better?

    PubMed Central

    Yin, Jian; Henriksen, Niel M.; Slochower, David R.; Shirts, Michael R.; Chiu, Michael W.; Mobley, David L.; Gilson, Michael K.

    2016-01-01

    The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein–ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host–guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host–guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host–guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future improvements. PMID:27658802

  11. Overview of the SAMPL5 host-guest challenge: Are we doing better?

    PubMed

    Yin, Jian; Henriksen, Niel M; Slochower, David R; Shirts, Michael R; Chiu, Michael W; Mobley, David L; Gilson, Michael K

    2017-01-01

    The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein-ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host-guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host-guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host-guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future improvements.

  12. “Martinizing” the Variational Implicit Solvent Method (VISM): Solvation Free Energy for Coarse-Grained Proteins

    PubMed Central

    2017-01-01

    Solvation is a fundamental driving force in many biological processes including biomolecular recognition and self-assembly, not to mention protein folding, dynamics, and function. The variational implicit solvent method (VISM) is a theoretical tool currently developed and optimized to estimate solvation free energies for systems of very complex topology, such as biomolecules. VISM’s theoretical framework makes it unique because it couples hydrophobic, van der Waals, and electrostatic interactions as a functional of the solvation interface. By minimizing this functional, VISM produces the solvation interface as an output of the theory. In this work, we push VISM to larger scale applications by combining it with coarse-grained solute Hamiltonians adapted from the MARTINI framework, a well-established mesoscale force field for modeling large-scale biomolecule assemblies. We show how MARTINI-VISM (MVISM) compares with atomistic VISM (AVISM) for a small set of proteins differing in size, shape, and charge distribution. We also demonstrate MVISM’s suitability to study the solvation properties of an interesting encounter complex, barnase–barstar. The promising results suggest that coarse-graining the protein with the MARTINI force field is indeed a valuable step to broaden VISM’s and MARTINI’s applications in the near future. PMID:28613904

  13. Dielectric Boundary Force in Molecular Solvation with the Poisson–Boltzmann Free Energy: A Shape Derivative Approach

    PubMed Central

    Li, Bo; Cheng, Xiaoliang; Zhang, Zhengfang

    2013-01-01

    In an implicit-solvent description of molecular solvation, the electrostatic free energy is given through the electrostatic potential. This potential solves a boundary-value problem of the Poisson–Boltzmann equation in which the dielectric coefficient changes across the solute-solvent interface—the dielectric boundary. The dielectric boundary force acting on such a boundary is the negative first variation of the electrostatic free energy with respect to the location change of the boundary. In this work, the concept of shape derivative is used to define such variations and formulas of the dielectric boundary force are derived. It is shown that such a force is always in the direction toward the charged solute molecules. PMID:24058212

  14. Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubie D.

    2005-01-01

    Comparative tests have been performed to evaluate the corrosion-prevention capabilities of an experimental paint of the type described in Water-Borne, Silicone-Based, Primerless Paints, NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 30. To recapitulate: these paints contain relatively small amounts of volatile organic solvents and were developed as substitutes for traditional anticorrosion paints that contain large amounts of such solvents. An additional desirable feature of these paints is that they can be applied without need for prior application of primers to ensure adhesion. The test specimens included panels of cold-rolled steel, stainless steel 316, and aluminum 2024-T3. Some panels of each of these alloys were left bare and some were coated with the experimental water-borne, silicone-based, primerless paint. In addition, some panels of aluminum 2024-T3 and some panels of a fourth alloy (stainless steel 304) were coated with a commercial solvent-borne paint containing aluminum and zinc flakes in a nitrile rubber matrix. In the tests, the specimens were immersed in an aerated 3.5-weight-percent aqueous solution of NaCl for 168 hours. At intervals of 24 hours, the specimens were characterized by electrochemical impedance spectroscopy (EIS) and measurements of corrosion potentials. The specimens were also observed visually. As indicated by photographs of specimens taken after the 168-hour immersion (see figure), the experimental primerless silicone paint was effective in preventing corrosion of stainless steel 316, but failed to protect aluminum 2024-T3 and cold-rolled steel. The degree of failure was greater in the case of the cold-rolled steel. On the basis of visual observations, EIS, and corrosion- potential measurements, it was concluded that the commercial aluminum and zinc-filled nitrile rubber coating affords superior corrosion protection to aluminum 2024-T3 and is somewhat less effective in protecting stainless steel 304.

  15. Differential geometry based solvation model I: Eulerian formulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-11-01

    This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the solvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By optimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second-order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature.

  16. Differential geometry based solvation model I: Eulerian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the salvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By minimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature. PMID:20938489

  17. The Role of Histone Tails in the Nucleosome: A Computational Study

    PubMed Central

    Erler, Jochen; Zhang, Ruihan; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.; Langowski, Jörg

    2014-01-01

    Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins. PMID:25517156

  18. Proposed Test of Relative Phase as Hidden Variable in Quantum Mechanics

    DTIC Science & Technology

    2012-01-01

    implicitly due to its ubiquity in quantum theory , but searches for dependence of measurement outcome on other parameters have been lacking. For a two -state...implemen- tation for the specific case of an atomic two -state system with laser-induced fluores- cence for measurement. Keywords Quantum measurement...Measurement postulate · Born rule 1 Introduction 1.1 Problems with Quantum Measurement Quantum theory prescribes probabilities for outcomes of measurements

  19. Modelling short pulse, high intensity laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Evans, R. G.

    2006-06-01

    Modelling the interaction of ultra-intense laser pulses with solid targets is made difficult through the large range of length and time scales involved in the transport of relativistic electrons. An implicit hybrid PIC-fluid model using the commercial code LSP (LSP is marketed by MRC (Albuquerque), New Mexico, USA) reveals a variety of complex phenomena which seem to be borne out in experiments and some existing theories.

  20. Accelerating Molecular Dynamic Simulation on Graphics Processing Units

    PubMed Central

    Friedrichs, Mark S.; Eastman, Peter; Vaidyanathan, Vishal; Houston, Mike; Legrand, Scott; Beberg, Adam L.; Ensign, Daniel L.; Bruns, Christopher M.; Pande, Vijay S.

    2009-01-01

    We describe a complete implementation of all-atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it can be more than 700 times faster than a conventional implementation running on a single CPU core. PMID:19191337

  1. The Generalized Born solvation model: What is it?

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey

    2004-03-01

    Implicit solvation models provide, for many applications, an effective way of describing the electrostatic effects of aqueous solvation. Here we outline the main approximations behind the popular Generalized Born solvation model. We show how its accuracy, relative to the Poisson-Boltzmann treatment, can be significantly improved in a computationally inexpensive manner to make the model useful in the studies of large-scale conformational transitions at the atomic level. The improved model is tested in a molecular dynamics simulation of folding of a 46-residue (three helix bundle) protein. Starting from an extended structure at 450K, the protein folds to the lowest energy conformation within 6 ns of simulation time, and the predicted structure differs from the native one by 2.4 A (backbone RMSD).

  2. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes

    PubMed Central

    Sikder, Md. Kabir Uddin; Stone, Kyle A.; Kumar, P. B. Sunil; Laradji, Mohamed

    2014-01-01

    We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells. PMID:25106608

  3. Accurate representation of B-DNA double helical structure with implicit solvent and counterions.

    PubMed Central

    Wang, Lihua; Hingerty, Brian E; Srinivasan, A R; Olson, Wilma K; Broyde, Suse

    2002-01-01

    High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands. PMID:12080128

  4. Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model.

    PubMed

    Das, Debananda; Koh, Yasuhiro; Tojo, Yasushi; Ghosh, Arun K; Mitsuya, Hiroaki

    2009-12-01

    Reliable and robust prediction of the binding affinity for drug molecules continues to be a daunting challenge. We simulated the binding interactions and free energy of binding of nine protease inhibitors (PIs) with wild-type and various mutant proteases by performing GBSA simulations in which each PI's partial charge was determined by quantum mechanics (QM) and the partial charge accounts for the polarization induced by the protease environment. We employed a hybrid solvation model that retains selected explicit water molecules in the protein with surface-generalized Born (SGB) implicit solvent. We examined the correlation of the free energy with the antiviral potency of PIs with regard to amino acid substitutions in protease. The GBSA free energy thus simulated showed strong correlations (r > 0.75) with antiviral IC(50) values of PIs when amino acid substitutions were present in the protease active site. We also simulated the binding free energy of PIs with P2-bis-tetrahydrofuranylurethane (bis-THF) or related cores, utilizing a bis-THF-containing protease crystal structure as a template. The free energy showed a strong correlation (r = 0.93) with experimentally determined anti-HIV-1 potency. The present data suggest that the presence of selected explicit water in protein and protein polarization-induced quantum charges for the inhibitor, compared to lack of explicit water and a static force-field-based charge model, can serve as an improved lead optimization tool and warrants further exploration.

  5. Suboptimal care and maternal mortality among foreign-born women in Sweden: maternal death audit with application of the 'migration three delays' model.

    PubMed

    Esscher, Annika; Binder-Finnema, Pauline; Bødker, Birgit; Högberg, Ulf; Mulic-Lutvica, Ajlana; Essén, Birgitta

    2014-04-12

    Several European countries report differences in risk of maternal mortality between immigrants from low- and middle-income countries and host country women. The present study identified suboptimal factors related to care-seeking, accessibility, and quality of care for maternal deaths that occurred in Sweden from 1988-2010. A subset of maternal death records (n = 75) among foreign-born women from low- and middle-income countries and Swedish-born women were audited using structured implicit review. One case of foreign-born maternal death was matched with two native born Swedish cases of maternal death. An assessment protocol was developed that applied both the 'migration three delays' framework and a modified version of the Confidential Enquiry from the United Kingdom. The main outcomes were major and minor suboptimal factors associated with maternal death in this high-income, low-maternal mortality context. Major and minor suboptimal factors were associated with a majority of maternal deaths and significantly more often to foreign-born women (p = 0.01). The main delays to care-seeking were non-compliance among foreign-born women and communication barriers, such as incongruent language and suboptimal interpreter system or usage. Inadequate care occurred more often among the foreign-born (p = 0.04), whereas delays in consultation/referral and miscommunication between health care providers where equally common between the two groups. Suboptimal care factors, major and minor, were present in more than 2/3 of maternal deaths in this high-income setting. Those related to migration were associated to miscommunication, lack of professional interpreters, and limited knowledge about rare diseases and pregnancy complications. Increased insight into a migration perspective is advocated for maternity clinicians who provide care to foreign-born women.

  6. Research notes : pavement markings using waterborne paint and Visibeads in Region 2.

    DOT National Transportation Integrated Search

    1995-01-01

    In order to address the problems associated with solvent-borne patins, ODOT Region 2 staff bought sufficient waterborne paint to place approximately 760 linear miles of stripes. This enabled the Region staff to evaluate state-of-the-art materials and...

  7. Conformational energy landscape of the acyl pocket loop in acetylcholinesterase: a Monte Carlo-generalized Born model study.

    PubMed

    Carlacci, Louis; Millard, Charles B; Olson, Mark A

    2004-10-01

    The X-ray crystal structure of the reaction product of acetylcholinesterase (AChE) with the inhibitor diisopropylphosphorofluoridate (DFP) showed significant structural displacement in a loop segment of residues 287-290. To understand this conformational selection, a Monte Carlo (MC) simulation study was performed of the energy landscape for the loop segment. A computational strategy was applied by using a combined simulated annealing and room temperature Metropolis sampling approach with solvent polarization modeled by a generalized Born (GB) approximation. Results from thermal annealing reveal a landscape topology of broader basin opening and greater distribution of energies for the displaced loop conformation, while the ensemble average of conformations at 298 K favored a shift in populations toward the native by a free-energy difference in good agreement with the estimated experimental value. Residue motions along a reaction profile of loop conformational reorganization are proposed where Arg-289 is critical in determining electrostatic effects of solvent interaction versus Coulombic charging.

  8. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water

    PubMed Central

    Wu, Xiongwu; Brooks, Bernard R.

    2015-01-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245

  9. A Virtual Mixture Approach to the Study of Multistate Equilibrium: Application to Constant pH Simulation in Explicit Water.

    PubMed

    Wu, Xiongwu; Brooks, Bernard R

    2015-10-01

    Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.

  10. 40 CFR 60.435 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 60.435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... of any affected facility using solvent-borne ink systems shall determine the VOC content of the raw inks and related coatings used at the affected facility by: (1) Analysis using Method 24A of routine...

  11. 40 CFR 60.435 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 60.435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... of any affected facility using solvent-borne ink systems shall determine the VOC content of the raw inks and related coatings used at the affected facility by: (1) Analysis using Method 24A of routine...

  12. Bottom-up view of water network-mediated CO2 reduction using cryogenic cluster ion spectroscopy and direct dynamics simulations.

    PubMed

    Breen, Kristin J; DeBlase, Andrew F; Guasco, Timothy L; Voora, Vamsee K; Jordan, Kenneth D; Nagata, Takashi; Johnson, Mark A

    2012-01-26

    The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO(2)·(H(2)O)(6)(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.

  13. Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges.

    PubMed

    Lara, A; Riquelme, M; Vöhringer-Martinez, E

    2018-05-11

    Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  14. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-05-01

    Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, bothmore » COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.« less

  15. Anomalous Protein-Protein Interactions in Multivalent Salt Solution.

    PubMed

    Pasquier, Coralie; Vazdar, Mario; Forsman, Jan; Jungwirth, Pavel; Lund, Mikael

    2017-04-13

    The stability of aqueous protein solutions is strongly affected by multivalent ions, which induce ion-ion correlations beyond the scope of classical mean-field theory. Using all-atom molecular dynamics (MD) and coarse grained Monte Carlo (MC) simulations, we investigate the interaction between a pair of protein molecules in 3:1 electrolyte solution. In agreement with available experimental findings of "reentrant protein condensation", we observe an anomalous trend in the protein-protein potential of mean force with increasing electrolyte concentration in the order: (i) double-layer repulsion, (ii) ion-ion correlation attraction, (iii) overcharge repulsion, and in excess of 1:1 salt, (iv) non Coulombic attraction. To efficiently sample configurational space we explore hybrid continuum solvent models, applicable to many-protein systems, where weakly coupled ions are treated implicitly, while strongly coupled ones are treated explicitly. Good agreement is found with the primitive model of electrolytes, as well as with atomic models of protein and solvent.

  16. Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections.

    PubMed

    Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-06-05

    Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently.

  17. A coarse-grained DNA model for the prediction of current signals in DNA translocation experiments

    NASA Astrophysics Data System (ADS)

    Weik, Florian; Kesselheim, Stefan; Holm, Christian

    2016-11-01

    We present an implicit solvent coarse-grained double-stranded DNA (dsDNA) model confined to an infinite cylindrical pore that reproduces the experimentally observed current modulations of a KaCl solution at various concentrations. Our model extends previous coarse-grained and mean-field approaches by incorporating a position dependent friction term on the ions, which Kesselheim et al. [Phys. Rev. Lett. 112, 018101 (2014)] identified as an essential ingredient to correctly reproduce the experimental data of Smeets et al. [Nano Lett. 6, 89 (2006)]. Our approach reduces the computational effort by orders of magnitude compared with all-atom simulations and serves as a promising starting point for modeling the entire translocation process of dsDNA. We achieve a consistent description of the system's electrokinetics by using explicitly parameterized ions, a friction term between the DNA beads and the ions, and a lattice-Boltzmann model for the solvent.

  18. The origin of consistent protein structure refinement from structural averaging.

    PubMed

    Park, Hahnbeom; DiMaio, Frank; Baker, David

    2015-06-02

    Recent studies have shown that explicit solvent molecular dynamics (MD) simulation followed by structural averaging can consistently improve protein structure models. We find that improvement upon averaging is not limited to explicit water MD simulation, as consistent improvements are also observed for more efficient implicit solvent MD or Monte Carlo minimization simulations. To determine the origin of these improvements, we examine the changes in model accuracy brought about by averaging at the individual residue level. We find that the improvement in model quality from averaging results from the superposition of two effects: a dampening of deviations from the correct structure in the least well modeled regions, and a reinforcement of consistent movements towards the correct structure in better modeled regions. These observations are consistent with an energy landscape model in which the magnitude of the energy gradient toward the native structure decreases with increasing distance from the native state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. 40 CFR 60.435 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of any affected facility using solvent-borne ink systems shall determine the VOC content of the raw inks and related coatings used at the affected facility by: (1) Analysis using Method 24A of routine weekly samples of raw ink and related coatings in each respective storage tank; or (2) Analysis using...

  20. 40 CFR 60.435 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of any affected facility using solvent-borne ink systems shall determine the VOC content of the raw inks and related coatings used at the affected facility by: (1) Analysis using Method 24A of routine weekly samples of raw ink and related coatings in each respective storage tank; or (2) Analysis using...

  1. 40 CFR 60.435 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of any affected facility using solvent-borne ink systems shall determine the VOC content of the raw inks and related coatings used at the affected facility by: (1) Analysis using Method 24A of routine weekly samples of raw ink and related coatings in each respective storage tank; or (2) Analysis using...

  2. Suboptimal care and maternal mortality among foreign-born women in Sweden: maternal death audit with application of the ‘migration three delays’ model

    PubMed Central

    2014-01-01

    Background Several European countries report differences in risk of maternal mortality between immigrants from low- and middle-income countries and host country women. The present study identified suboptimal factors related to care-seeking, accessibility, and quality of care for maternal deaths that occurred in Sweden from 1988–2010. Methods A subset of maternal death records (n = 75) among foreign-born women from low- and middle-income countries and Swedish-born women were audited using structured implicit review. One case of foreign-born maternal death was matched with two native born Swedish cases of maternal death. An assessment protocol was developed that applied both the ‘migration three delays’ framework and a modified version of the Confidential Enquiry from the United Kingdom. The main outcomes were major and minor suboptimal factors associated with maternal death in this high-income, low-maternal mortality context. Results Major and minor suboptimal factors were associated with a majority of maternal deaths and significantly more often to foreign-born women (p = 0.01). The main delays to care-seeking were non-compliance among foreign-born women and communication barriers, such as incongruent language and suboptimal interpreter system or usage. Inadequate care occurred more often among the foreign-born (p = 0.04), whereas delays in consultation/referral and miscommunication between health care providers where equally common between the two groups. Conclusions Suboptimal care factors, major and minor, were present in more than 2/3 of maternal deaths in this high-income setting. Those related to migration were associated to miscommunication, lack of professional interpreters, and limited knowledge about rare diseases and pregnancy complications. Increased insight into a migration perspective is advocated for maternity clinicians who provide care to foreign-born women. PMID:24725307

  3. Corrosion Thermodynamics of Magnesium and Alloys from First Principles as a Function of Solvation

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Williams, Kristen; Andzelm, Jan

    Thermodynamics of corrosion processes occurring on magnesium surfaces, such as hydrogen evolution and water dissociation, have been examined with density functional theory (DFT) to evaluate the effect of impurities and dilute alloying additions. The modeling of corrosion thermodynamics requires examination of species in a variety of chemical and electronic states in order to accurately represent the complex electrochemical corrosion process. In this study, DFT calculations for magnesium corrosion thermodynamics were performed with two DFT codes (VASP and DMol3), with multiple exchange-correlation functionals for chemical accuracy, as well as with various levels of implicit and explicit solvation for surfaces and solvated ions. The accuracy of the first principles calculations has been validated against Pourbaix diagrams constructed from solid, gas and solvated charged ion calculations. For aqueous corrosion, it is shown that a well parameterized implicit solvent is capable of accurately representing all but the first coordinating layer of explicit water for charged ions.

  4. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiskó, Mónika; Boda, Dezső, E-mail: boda@almos.vein.hu

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependencemore » of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.« less

  5. Toward the accurate first-principles prediction of ionization equilibria in proteins.

    PubMed

    Khandogin, Jana; Brooks, Charles L

    2006-08-08

    The calculation of pK(a) values for ionizable sites in proteins has been traditionally based on numerical solutions of the Poisson-Boltzmann equation carried out using a high-resolution protein structure. In this paper, we present a method based on continuous constant pH molecular dynamics (CPHMD) simulations, which allows the first-principles description of protein ionization equilibria. Our method utilizes an improved generalized Born implicit solvent model with an approximate Debye-Hückel screening function to account for salt effects and the replica-exchange (REX) protocol for enhanced conformational and protonation state sampling. The accuracy and robustness of the present method are demonstrated by 1 ns REX-CPHMD titration simulations of 10 proteins, which exhibit anomalously large pK(a) shifts for the carboxylate and histidine side chains. The experimental pK(a) values of these proteins are reliably reproduced with a root-mean-square error ranging from 0.6 unit for proteins containing few buried ionizable side chains to 1.0 unit or slightly higher for proteins containing ionizable side chains deeply buried in the core and experiencing strong charge-charge interactions. This unprecedented level of agreement with experimental benchmarks for the de novo calculation of pK(a) values suggests that the CPHMD method is maturing into a practical tool for the quantitative prediction of protein ionization equilibria, and this, in turn, opens a door to atomistic simulations of a wide variety of pH-coupled conformational phenomena in biological macromolecules such as protein folding or misfolding, aggregation, ligand binding, membrane interaction, and catalysis.

  6. Solvent dielectric effect and side chain mutation on the structural stability of Burkholderia cepacia lipase active site: a quantum mechanical/molecular mechanics study.

    PubMed

    Tahan, A; Monajjemi, M

    2011-12-01

    Quantum mechanical and molecular dynamics methods were used to analyze the structure and stability of neutral and zwitterionic configurations of the extracted active site sequence from a Burkholderia cepacia lipase, histidyl-seryl-glutamin (His86-Ser87-Gln88) and its mutated form, histidyl-cysteyl-glutamin (His86-Cys87-Gln88) in vacuum and different solvents. The effects of solvent dielectric constant, explicit and implicit water molecules and side chain mutation on the structure and stability of this sequence in both neutral and zwitterionic forms are represented. The quantum mechanics computations represent that the relative stability of zwitterionic and neutral configurations depends on the solvent structure and its dielectric constant. Therefore, in vacuum and the considered non-polar solvents, the neutral form of the interested sequences is more stable than the zwitterionic form, while their zwitterionic form is more stable than the neutral form in the aqueous solution and the investigated polar solvents in most cases. However, on the potential energy surfaces calculated, there is a barrier to proton transfer from the positively charged ammonium group to the negatively charged carboxylat group or from the ammonium group to the adjacent carbonyl oxygen and or from side chain oxygen and sulfur to negatively charged carboxylat group. Molecular dynamics simulations (MD) were also performed by using periodic boundary conditions for the zwitterionic configuration of the hydrated molecules in a box of water molecules. The obtained results demonstrated that the presence of explicit water molecules provides the more compact structures of the studied molecules. These simulations also indicated that side chain mutation and replacement of sulfur with oxygen leads to reduction of molecular flexibility and packing.

  7. Multiply Reduced Oligofluorenes: Their Nature and Pairing with THF-Solvated Sodium Ions

    DOE PAGES

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet; ...

    2016-07-01

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  9. Molecular simulations of self-assembly processes of amphiphiles in dilute solutions: the challenge for quantitative modelling

    NASA Astrophysics Data System (ADS)

    Jusufi, Arben

    2013-11-01

    We report on two recent developments in molecular simulations of self-assembly processes of amphiphilic solutions. We focus on the determination of micelle formation of ionic surfactants which exhibit the archetype of self-assembling compounds in solution. The first approach is centred on the challenge in predicting micellisation properties through explicit solvent molecular dynamics simulations. Even with a coarse-grained (CG) approach and the use of highly optimised software packages run on graphics processing unit hardware, it remains in many cases computationally infeasible to directly extract the critical micelle concentration (cmc). However, combined with a recently presented theoretical mean-field model this task becomes resolved. An alternative approach to study self-assembly is through implicit solvent modelling of the surfactants. Here we review some latest results and present new ones regarding capabilities of such a modelling approach in determining the cmc, and the aggregate structures in the dilute regime, that is currently not accessible through explicit solvent simulations, neither through atomistic nor through CG approaches. A special focus is put on surfactant concentration effects and surfactant correlations quantified by scattering intensities that are compared to recently published small-angle X-ray scattering data.

  10. Protecting wood decks from biodegradation and weathering : evaluation of deck finish systems

    Treesearch

    J. J. Morrell; P. F. Schneider; R. Sam Williams

    2001-01-01

    Mildew resistance, water repellency, and overall finish appearance were evaluated for 32 deck finishes on western redcedar (Thuja plicata D. Donn.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) after 12, 21, and 39 months of outdoor exposure in western Oregon. The finishes were either solvent-borne or waterborne; were ei- ther clear, tinted, or lightly...

  11. Determination of the critical micelle concentration in simulations of surfactant systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in bothmore » the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)« less

  12. Hydrophobic potential of mean force as a solvation function for protein structure prediction.

    PubMed

    Lin, Matthew S; Fawzi, Nicolas Lux; Head-Gordon, Teresa

    2007-06-01

    We have developed a solvation function that combines a Generalized Born model for polarization of protein charge by the high dielectric solvent, with a hydrophobic potential of mean force (HPMF) as a model for hydrophobic interaction, to aid in the discrimination of native structures from other misfolded states in protein structure prediction. We find that our energy function outperforms other reported scoring functions in terms of correct native ranking for 91% of proteins and low Z scores for a variety of decoy sets, including the challenging Rosetta decoys. This work shows that the stabilizing effect of hydrophobic exposure to aqueous solvent that defines the HPMF hydration physics is an apparent improvement over solvent-accessible surface area models that penalize hydrophobic exposure. Decoys generated by thermal sampling around the native-state basin reveal a potentially important role for side-chain entropy in the future development of even more accurate free energy surfaces.

  13. Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model.

    PubMed

    Turan, Başak; Selçuki, Cenk

    2014-09-01

    Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.

  14. Parametrization of Backbone Flexibility in a Coarse-Grained Force Field for Proteins (COFFDROP) Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of All Possible Two-Residue Peptides.

    PubMed

    Frembgen-Kesner, Tamara; Andrews, Casey T; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A; Jain, Aakash; Olayiwola, Oluwatoni J; Weishaar, Mitch R; Elcock, Adrian H

    2015-05-12

    Recently, we reported the parametrization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral, and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral, and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downward in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multidomain proteins connected by flexible linkers.

  15. Multiprobe Spectroscopic Inverstigation of Molecular-level Behavior within Aqueous 1-Butyl-3-methylimidazolium Tetrafluoroborate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Abhra; Ali, Maroof; Baker, Gary A

    2009-01-01

    In this work, an array of molecular-level solvent featuressincluding solute-solvent/solvent-solvent interactions, dipolarity, heterogeneity, dynamics, probe accessibility, and diffusionswere investigated across the entire composition of ambient mixtures containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and pH 7.0 phosphate buffer, based on results assembled for nine different molecular probes utilized in a range of spectroscopic modes. These studies uncovered interesting and unusual solvatochromic probe behavior within this benchmark mixture. Solvatochromic absorbance probessa watersoluble betaine dye (betaine dye 33), N,N-diethyl-4-nitroaniline, and 4-nitroanilineswere employed to determine ET (a blend of dipolarity/polarizability and hydrogen bond donor contributions) and the Kamlet-Taft indices * (dipolarity/polarizability), R (hydrogenmore » bond donor acidity), and (hydrogen bond acceptor basicity) characterizing the [bmim][BF4] + phosphate buffer system. These parameters each showed a marked deviation from ideality, suggesting selective solvation of the individual probe solutes by [bmim][BF4]. Similar conclusions were derived from the responses of the fluorescent polarity-sensitive probes pyrene and pyrene-1-carboxaldehyde. Importantly, the fluorescent microfluidity probe 1,3-bis(1-pyrenyl)propane senses a microviscosity within the mixture that significantly exceeds expectations derived from simple interpolation of the behavior in the neat solvents. On the basis of results from this probe, a correlation between microviscosity and bulk viscosity was established; pronounced solvent-solvent hydrogen-bonding interactions were implicit in this behavior. The greatest deviation from ideal additive behavior for the probes studied herein was consistently observed to occur in the buffer-rich regime. Nitromethane-based fluorescence quenching of pyrene within the [bmim][BF4] + phosphate buffer system showed unusual compliance with a sphere-of-action quenching model, a further manifestation of the microheterogeneity of the system. Fluorescence correlation spectroscopic results for both small (BODIPY FL) and macromolecular (Texas Red-10 kDa dextran conjugate) diffusional probes provide additional evidence in support of microphase segregation inherent to aqueous [bmim][BF4].« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Siqin; Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon; Sheong, Fu Kit

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achievemore » this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute.« less

  17. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules.

    PubMed

    Cao, Siqin; Sheong, Fu Kit; Huang, Xuhui

    2015-08-07

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute.

  18. Comparisons of interlaboratory swellometer testing of two water-repellent preservative formulations for millwork

    Treesearch

    Elmer L. Schmidt; Timothy P. Murphy; Charles N. Cheeks; Alan S. Ross; T. S. (Eugene) Chiu; R. Sam Williams

    2002-01-01

    Water-repellency of preservative formulations used in the millwork industry has long been evaluated by measurement of the dimensional changes in wood treated and then submerged in water according to guidelines published by the millwork industry. Perceptions that this swellometer test was highly variable led to a round-robin test of one solvent-borne and one waterborne...

  19. Structure and Dynamics of Solvent Landscapes in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Leite, Vitor B. Pereira

    The dynamics of solvent polarization plays a major role in the control of charge transfer reactions. The success of Marcus theory describing the solvent influence via a single collective quadratic polarization coordinate has been remarkable. Onuchic and Wolynes have recently proposed (J. Chem Phys 98 (3) 2218, 1993) a simple model demonstrating how a many-dimensional-complex model composed by several dipole moments (representing solvent molecules or polar groups in proteins) can be reduced under the appropriate limits into the Marcus Model. This work presents a dynamical study of the same model, which is characterized by two parameters, an average dipole-dipole interaction as a term associated with the potential energy landscape roughness. It is shown why the effective potential, obtained using a thermodynamic approach, is appropriate for the dynamics of the system. At high temperatures, the system exhibits effective diffusive one-dimensional dynamics, where the Born-Marcus limit is recovered. At low temperatures, a glassy phase appears with a slow non-self-averaging dynamics. At intermediate temperatures, the concept of equivalent diffusion paths and polarization dependence effects are discussed. This approach is extended to treat more realistic solvent models. Real solvents are discussed in terms of simple parameters described above, and an analysis of how different regimes affect the rate of charge transfer is presented. Finally, these ideas are correlated to analogous problems in other areas.

  20. Modeling ultrafast solvated electronic dynamics using time-dependent density functional theory and polarizable continuum model.

    PubMed

    Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong

    2012-03-01

    A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society

  1. Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes

    PubMed Central

    2015-01-01

    The reliability of free energy simulations (FES) is limited by two factors: (a) the need for correct sampling and (b) the accuracy of the computational method employed. Classical methods (e.g., force fields) are typically used for FES and present a myriad of challenges, with parametrization being a principle one. On the other hand, parameter-free quantum mechanical (QM) methods tend to be too computationally expensive for adequate sampling. One widely used approach is a combination of methods, where the free energy difference between the two end states is computed by, e.g., molecular mechanics (MM), and the end states are corrected by more accurate methods, such as QM or hybrid QM/MM techniques. Here we report two new approaches that significantly improve the aforementioned scheme; with a focus on how to compute corrections between, e.g., the MM and the more accurate QM calculations. First, a molecular dynamics trajectory that properly samples relevant conformational degrees of freedom is generated. Next, potential energies of each trajectory frame are generated with a QM or QM/MM Hamiltonian. Free energy differences are then calculated based on the QM or QM/MM energies using either a non-Boltzmann Bennett approach (QM-NBB) or non-Boltzmann free energy perturbation (NB-FEP). Both approaches are applied to calculate relative and absolute solvation free energies in explicit and implicit solvent environments. Solvation free energy differences (relative and absolute) between ethane and methanol in explicit solvent are used as the initial test case for QM-NBB. Next, implicit solvent methods are employed in conjunction with both QM-NBB and NB-FEP to compute absolute solvation free energies for 21 compounds. These compounds range from small molecules such as ethane and methanol to fairly large, flexible solutes, such as triacetyl glycerol. Several technical aspects were investigated. Ultimately some best practices are suggested for improving methods that seek to connect MM to QM (or QM/MM) levels of theory in FES. PMID:24803863

  2. Multiscale Free Energy Simulations: An Efficient Method for Connecting Classical MD Simulations to QM or QM/MM Free Energies Using Non-Boltzmann Bennett Reweighting Schemes.

    PubMed

    König, Gerhard; Hudson, Phillip S; Boresch, Stefan; Woodcock, H Lee

    2014-04-08

    THE RELIABILITY OF FREE ENERGY SIMULATIONS (FES) IS LIMITED BY TWO FACTORS: (a) the need for correct sampling and (b) the accuracy of the computational method employed. Classical methods (e.g., force fields) are typically used for FES and present a myriad of challenges, with parametrization being a principle one. On the other hand, parameter-free quantum mechanical (QM) methods tend to be too computationally expensive for adequate sampling. One widely used approach is a combination of methods, where the free energy difference between the two end states is computed by, e.g., molecular mechanics (MM), and the end states are corrected by more accurate methods, such as QM or hybrid QM/MM techniques. Here we report two new approaches that significantly improve the aforementioned scheme; with a focus on how to compute corrections between, e.g., the MM and the more accurate QM calculations. First, a molecular dynamics trajectory that properly samples relevant conformational degrees of freedom is generated. Next, potential energies of each trajectory frame are generated with a QM or QM/MM Hamiltonian. Free energy differences are then calculated based on the QM or QM/MM energies using either a non-Boltzmann Bennett approach (QM-NBB) or non-Boltzmann free energy perturbation (NB-FEP). Both approaches are applied to calculate relative and absolute solvation free energies in explicit and implicit solvent environments. Solvation free energy differences (relative and absolute) between ethane and methanol in explicit solvent are used as the initial test case for QM-NBB. Next, implicit solvent methods are employed in conjunction with both QM-NBB and NB-FEP to compute absolute solvation free energies for 21 compounds. These compounds range from small molecules such as ethane and methanol to fairly large, flexible solutes, such as triacetyl glycerol. Several technical aspects were investigated. Ultimately some best practices are suggested for improving methods that seek to connect MM to QM (or QM/MM) levels of theory in FES.

  3. Ab initio calculation of the deprotonation constants of an atomistically defined nanometer-sized, aluminium hydroxide oligomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wander, Matthew C. F.; Shuford, Kevin L.; Rustad, James R.

    Aluminium possesses significant and diverse chemistry. Numerous compounds have been defined, and the elucidation of their chemistry is of significant geochemical interest. In this paper, a brucite-like, eight-aluminium aqueous cluster is modelled with density functional theory to identify its primary site of deprotonation and the associated pK(a) constant using both explicit (a full first solvent shell) and implicit solvent. Two methods for calculating the pK(a) are compared. We found that a bond density approach is better than a direct energy calculation for ions with large charge and high symmetry. The terminal aluminium atoms have equatorial ligated waters that in solventmore » have one long O-H bond. This site is more reactive than any of the other protons on the particle. Insights into the experimental crystal structure and Bader's Atoms in Molecules density analysis are presented as routes to reduce the computational time required for the identification of protonation sites.« less

  4. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    PubMed

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-09

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

  5. Simulating the control of molecular reactions via modulated light fields: from gas phase to solution

    NASA Astrophysics Data System (ADS)

    Thallmair, Sebastian; Keefer, Daniel; Rott, Florian; de Vivie-Riedle, Regina

    2017-04-01

    Over the past few years quantum control has proven to be very successful in steering molecular processes. By combining theory with experiment, even highly complex control aims were realized in the gas phase. In this topical review, we illustrate the past achievements on several examples in the molecular context. The next step for the quantum control of chemical processes is to translate the fruitful interplay between theory and experiment to the condensed phase and thus to the regime where chemical synthesis can be supported. On the theory side, increased efforts to include solvent effects in quantum control simulations were made recently. We discuss two major concepts, namely an implicit description of the environment via the density matrix algorithm and an explicit inclusion of solvent molecules. By application to chemical reactions, both concepts conclude that despite environmental perturbations leading to more complex control tasks, efficient quantum control in the condensed phase is still feasible.

  6. Computational Studies of Solubilities of LiO 2 and Li 2O 2 in Aprotic Solvents

    DOE PAGES

    Cheng, Lei; Redfern, Paul; Lau, Kah Chun; ...

    2017-08-12

    Knowledge of the solubilities of Li 2O 2 and LiO 2 in aprotic solvents is important for insight into the discharge and charge processes of Li-O 2 batteries, but these quantities are not well known. In this contribution, the solvation free energies of molecular LiO 2 and Li 2O 2 in various organic solvents were calculated using various explicit and implicit solvent models, as well as ab initio molecular dynamics (AIMD) methods. Best estimates for the solvation energies from these calculations along with calculated lattice energies of Li 2O 2 and LiO 2 were used to determine the solubility ofmore » bulk LiO 2 and Li 2O 2. The computed solubility of LiO 2 (1.8 × 10 -2 M) is about 15 orders higher than that of Li 2O 2 (2.0 × 10 -17 M) due to a much less negative lattice energy of bulk LiO 2 compared to that of Li 2O 2. The difference in solubilities between LiO 2 and Li 2O 2 likely will affect the nucleation and growth mechanisms and resulting morphologies of the products formed during battery discharge, influencing the performance of the battery cell. In conclusion, the calculated LiO 2 and Li 2O 2 solubilities provide important information for fundamental studies of discharge and charge chemistries in Li-O 2 batteries.« less

  7. Computational Studies of Solubilities of LiO 2 and Li 2O 2 in Aprotic Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Redfern, Paul; Lau, Kah Chun

    Knowledge of the solubilities of Li 2O 2 and LiO 2 in aprotic solvents is important for insight into the discharge and charge processes of Li-O 2 batteries, but these quantities are not well known. In this contribution, the solvation free energies of molecular LiO 2 and Li 2O 2 in various organic solvents were calculated using various explicit and implicit solvent models, as well as ab initio molecular dynamics (AIMD) methods. Best estimates for the solvation energies from these calculations along with calculated lattice energies of Li 2O 2 and LiO 2 were used to determine the solubility ofmore » bulk LiO 2 and Li 2O 2. The computed solubility of LiO 2 (1.8 × 10 -2 M) is about 15 orders higher than that of Li 2O 2 (2.0 × 10 -17 M) due to a much less negative lattice energy of bulk LiO 2 compared to that of Li 2O 2. The difference in solubilities between LiO 2 and Li 2O 2 likely will affect the nucleation and growth mechanisms and resulting morphologies of the products formed during battery discharge, influencing the performance of the battery cell. In conclusion, the calculated LiO 2 and Li 2O 2 solubilities provide important information for fundamental studies of discharge and charge chemistries in Li-O 2 batteries.« less

  8. Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiu; Lei, Huan; Gao, Peiyuan

    Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a method for quantifying this uncertainty in solvation energies using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many moremore » types of atomic charges; therefore, construction of surrogate models for the charge parameter space required compressed sensing combined with an iterative rotation method to enhance problem sparsity. We present results for the uncertainty in small molecule solvation energies based on these approaches. Additionally, we explore the correlation between uncertainties due to radii and charges which motivates the need for future work in uncertainty quantification methods for high-dimensional parameter spaces.« less

  9. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    NASA Astrophysics Data System (ADS)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  10. Parameterization of backbone flexibility in a coarse-grained force field for proteins (COFFDROP) derived from all-atom explicit-solvent molecular dynamics simulations of all possible two-residue peptides

    PubMed Central

    Frembgen-Kesner, Tamara; Andrews, Casey T.; Li, Shuxiang; Ngo, Nguyet Anh; Shubert, Scott A.; Jain, Aakash; Olayiwola, Oluwatoni; Weishaar, Mitch R.; Elcock, Adrian H.

    2015-01-01

    Recently, we reported the parameterization of a set of coarse-grained (CG) nonbonded potential functions, derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acid pairs, and designed for use in (implicit-solvent) Brownian dynamics (BD) simulations of proteins; this force field was named COFFDROP (COarse-grained Force Field for Dynamic Representations Of Proteins). Here, we describe the extension of COFFDROP to include bonded backbone terms derived from fitting to results of explicit-solvent MD simulations of all possible two-residue peptides containing the 20 standard amino acids, with histidine modeled in both its protonated and neutral forms. The iterative Boltzmann inversion (IBI) method was used to optimize new CG potential functions for backbone-related terms by attempting to reproduce angle, dihedral and distance probability distributions generated by the MD simulations. In a simple test of the transferability of the extended force field, the angle, dihedral and distance probability distributions obtained from BD simulations of 56 three-residue peptides were compared to results from corresponding explicit-solvent MD simulations. In a more challenging test of the COFFDROP force field, it was used to simulate eight intrinsically disordered proteins and was shown to quite accurately reproduce the experimental hydrodynamic radii (Rhydro), provided that the favorable nonbonded interactions of the force field were uniformly scaled downwards in magnitude. Overall, the results indicate that the COFFDROP force field is likely to find use in modeling the conformational behavior of intrinsically disordered proteins and multi-domain proteins connected by flexible linkers. PMID:26574429

  11. CHARMM-GUI 10 Years for Biomolecular Modeling and Simulation

    PubMed Central

    Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S.; Beaven, Andrew H.; Lee, Kyu Il; Rui, Huan; Roux, Benoît; MacKerell, Alexander D.; Klauda, Jeffrey B.; Qi, Yifei

    2017-01-01

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the molecular details of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. PMID:27862047

  12. CHARMM-GUI 10 years for biomolecular modeling and simulation.

    PubMed

    Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S; Beaven, Andrew H; Lee, Kyu Il; Rui, Huan; Park, Soohyung; Lee, Hui Sun; Roux, Benoît; MacKerell, Alexander D; Klauda, Jeffrey B; Qi, Yifei; Im, Wonpil

    2017-06-05

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Characterization of Tape Adhesion to Chemical Agent Resistant Coatings

    DTIC Science & Technology

    2015-01-01

    use by OEM’s and depots. More specifically, each tape was tested on water dispersible and solvent borne polyurethane topcoats in the two most common...andGenerally, systems formulated to be water dispersible produced films that were slightly hydrophilic (water contact angle < 90°) whereas systems...8). Table 8: Average water contact angle of various CARC systems. advancing contact angle of water (degrees) waterborne polyurethane

  14. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies.

    PubMed

    Bardhan, Jaydeep P; Jungwirth, Pavel; Makowski, Lee

    2012-09-28

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular "linear response" model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution).

  15. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies

    PubMed Central

    Bardhan, Jaydeep P.; Jungwirth, Pavel; Makowski, Lee

    2012-01-01

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular “linear response” model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution). PMID:23020318

  16. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst

    DOE PAGES

    van Driel, Tim B.; Kjær, Kasper S.; Hartsock, Robert W.; ...

    2016-11-28

    The interactions between the reactive excited state of molecular photocatalysts and surrounding solvent dictate reaction mechanisms and pathways, but are not readily accessible to conventional optical spectroscopic techniques. Here we report an investigation of the structural and solvation dynamics following excitation of a model photocatalytic molecular system [Ir 2(dimen) 4] 2+, where dimen is para-diisocyanomenthane. The time-dependent structural changes in this model photocatalyst, as well as the changes in the solvation shell structure, have been measured with ultrafast diffuse X-ray scattering and simulated with Born-Oppenheimer Molecular Dynamics. Both methods provide direct access to the solute–solvent pair distribution function, enabling themore » solvation dynamics around the catalytically active iridium sites to be robustly characterized. Our results provide evidence for the coordination of the iridium atoms by the acetonitrile solvent and demonstrate the viability of using diffuse X-ray scattering at free-electron laser sources for studying the dynamics of photocatalysis.« less

  17. Ion-mediated interactions in suspensions of oppositely charged nanoparticles

    NASA Astrophysics Data System (ADS)

    Dahirel, Vincent; Hansen, Jean Pierre

    2009-08-01

    The structure of oppositely charged spherical nanoparticles (polyions), dispersed in ionic solutions with continuous solvent (primitive model), is investigated by Monte Carlo (MC) simulations, within explicit and implicit microion representations, over a range of polyion valences and densities, and microion concentrations. Systems with explicit microions are explored by semigrand canonical MC simulations, and allow density-dependent effective polyion pair potentials vαβeff(r ) to be extracted from measured partial pair distribution functions. Implicit microion MC simulations are based on pair potentials of mean force vαβ(2)(r ) computed by explicit microion simulations of two charged polyions, in the low density limit. In the vicinity of the liquid-gas separation expected for oppositely charged polyions, the implicit microion representation leads to an instability against density fluctuations for polyion valences |Z| significantly below those at which the instability sets in within the exact explicit microion representation. Far from this instability region, the vαβ(2)(r ) are found to be fairly close to but consistently more repulsive than the effective pair potentials vαβeff(r ). This is corroborated by additional calculations of three-body forces between polyion triplets, which are repulsive when one polyion is of opposite charge to the other two. The explicit microion MC data were exploited to determine the ratio of salt concentrations c and co within the dispersion and the reservoir (Donnan effect). c /co is found to first increase before finally decreasing as a function of the polyion packing fraction.

  18. Developmental toxicity of prenatal exposure to toluene.

    PubMed

    Bowen, Scott E; Hannigan, John H

    2006-01-01

    Organic solvents have become ubiquitous in our environment and are essential for industry. Many women of reproductive age are increasingly exposed to solvents such as toluene in occupational settings (ie, long-term, low-concentration exposures) or through inhalant abuse (eg, episodic, binge exposures to high concentrations). The risk for teratogenic outcome is much less with low to moderate occupational solvent exposure compared with the greater potential for adverse pregnancy outcomes, developmental delays, and neurobehavioral problems in children born to women exposed to high concentrations of abused organic solvents such as toluene, 1,1,1-trichloroethane, xylenes, and nitrous oxide. Yet the teratogenic effects of abuse patterns of exposure to toluene and other inhalants remain understudied. We briefly review how animal models can aid substantially in clarifying the developmental risk of exposure to solvents for adverse biobehavioral outcomes following abuse patterns of use and in the absence of associated health problems and co-drug abuse (eg, alcohol). Our studies also begin to establish the importance of dose (concentration) and critical perinatal periods of exposure to specific outcomes. The present results with our clinically relevant animal model of repeated, brief, high-concentration binge prenatal toluene exposure demonstrate the dose-dependent effect of toluene on prenatal development, early postnatal maturation, spontaneous exploration, and amphetamine-induced locomotor activity. The results imply that abuse patterns of toluene exposure may be more deleterious than typical occupational exposure on fetal development and suggest that animal models are effective in studying the mechanisms and risk factors of organic solvent teratogenicity.

  19. Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions.

    PubMed

    Slavchov, Radomir I; Ivanov, Tzanko I

    2014-02-21

    A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the field ∇E in an isotropic fluid is derived: Q = αQ(∇E - U∇·E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)(1/2) = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.

  20. What colour does that feel? Tactile--visual mapping and the development of cross-modality.

    PubMed

    Ludwig, Vera U; Simner, Julia

    2013-04-01

    Humans share implicit preferences for cross-modal mappings (e.g., low pitch sounds are preferentially paired with darker colours). Individuals with synaesthesia experience cross-modal mappings to a conscious degree (e.g., they may see colours when they hear sounds). The neonatal synaesthesia hypothesis claims that all humans may be born with this explicit cross-modal perception, which dies out in most people through childhood, leaving only implicit associations in the average adult. Although there is evidence for decreasing cross-modality throughout early infancy, it is unclear whether this decline continues to take place throughout childhood and adolescence. This large-scale study had two goals. First, we aimed to establish whether human non-synaesthetes systematically map tactile and visual dimensions - a combination that has rarely been studied. Second, we asked whether tactile-visual associations may be more pronounced in younger compared to older participants. 210 participants between the ages of 5-74 years assigned colours to tactile stimuli. Smoothness, softness and roundness of stimuli positively correlated with luminance of the chosen colour; and smoothness and softness also positively correlated with chroma. Moreover, tactile sensations were associated with specific colours (e.g., softness with pink). There were no age differences for luminance effects. Chroma effects, however, were found exclusively in children and adolescents. Our findings are consistent with the neonatal synaesthesia hypothesis which suggests that all humans are born with strong cross-modal perception which is pruned away or inhibited throughout development. Moreover, the findings suggest that a decline of some forms of cross-modality may take place over a much longer time span than previously assumed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Absolute binding free energies between T4 lysozyme and 141 small molecules: calculations based on multiple rigid receptor configurations

    PubMed Central

    Xie, Bing; Nguyen, Trung Hai; Minh, David D. L.

    2017-01-01

    We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical binding free energy calculations with a flexible receptor, binding free energies were estimated for a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to previously reported free energy calculations. PMID:28430432

  2. Phase transition in conjugated oligomers suspended in chloroform

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj

    2015-08-01

    Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.

  3. Residue length and solvation model dependency of elastinlike polypeptides

    NASA Astrophysics Data System (ADS)

    Bilsel, Mustafa; Arkin, Handan

    2010-05-01

    We have performed exhaustive multicanonical Monte Carlo simulations of elastinlike polypeptides with a chain including amino acids (valine-proline-glycine-valine-glycine)n or in short (VPGVG)n , where n changes from 1 to 4, in order to investigate the thermodynamic and structural properties. To predict the characteristic secondary structure motifs of the molecules, Ramachandran plots were prepared and analyzed as well. In these studies, we utilized a realistic model where the interactions between all types of atoms were taken into account. Effects of solvation were also simulated by using an implicit-solvent model with two commonly used solvation parameter sets and compared with the vacuum case.

  4. Molecular dynamics simulation study of the role of evenly spaced poly(ethylene oxide) tethers on the aggregation of C60 fullerenes in water.

    PubMed

    Bedrov, Dmitry; Smith, Grant D; Li, Liwei

    2005-06-07

    The aggregation behavior of C60 fullerenes and C60 fullerenes with six symmetrically tethered poly(ethylene oxide) oligomers [(PEO)-6-C60] in aqueous solutions has been studied using implicit solvent molecular dynamics simulations. Our simulations reveal that while the attraction between two (PEO)-6-C60 fullerenes in aqueous solution is stronger and longer range than that between two bare C60 fullerenes, the (PEO)-6-C60 fullerenes do not phase-separate in water but rather aggregate in chain-like clusters at concentrations where unmodified fullerenes completely phase-separate.

  5. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  6. 120 DEG C Cure, Durable, Corrosion Protection Powder Coatings for Temperature Sensitive Substrates

    DTIC Science & Technology

    2005-01-28

    Extrudate was passed through water-cooled pinch-rolls and collected onto a stainless steel belt; from exit of the extruder, approximately 60 sec... stainless steel belt; from exit of the extruder, approximately 60 sec. was required to reach ambient temperature. Production scale processing at...inherently free from volatile organic compounds, chromates, and hazardous air pollutants. Relative to the incumbent solvent-borne urethane paint

  7. A strategy for reducing gross errors in the generalized Born models of implicit solvation

    PubMed Central

    Onufriev, Alexey V.; Sigalov, Grigori

    2011-01-01

    The “canonical” generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔGel of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2kBT relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones. PMID:21528947

  8. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    PubMed

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  9. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  10. DFT Virtual Screening Identifies Rhodium–Amidinate Complexes As Potential Homogeneous Catalysts for Methane-to-Methanol Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Ross; Nielsen, Robert J.; Goddard, William A.

    2014-11-11

    In the search for new organometallic catalysts for low-temperature selective conversion of CH4 to CH3OH, we apply quantum mechanical virtual screening to select the optimum combination of ligand and solvent on rhodium to achieve low barriers for CH4 activation and functionalization to recommend for experimental validation. Here, we considered Rh because its lower electronegativity compared with Pt and Pd may allow it to avoid poisoning by coordinating media. We report quantum mechanical predictions (including implicit and explicit solvation) of the mechanisms for RhIII(NN) and RhIII(NNF) complexes [where (NN) = bis(N-phenyl)benzylamidinate and (NNF) = bis(N-pentafluorophenyl)pentafluorobenzylamidinate] to catalytically activate and functionalize methanemore » using trifluoroacetic acid (TFAH) or water as a solvent. In particular, we designed the (NNF) ligand as a more electrophilic analogue to the (NN) ligand, and our results predict the lowest transition state barrier (ΔG‡ = 27.6 kcal/mol) for methane activation in TFAH from a pool of four different classes of ligands. To close the catalytic cycle, the functionalization of methylrhodium intermediates was also investigated, involving carbon–oxygen bond formation via SN2 attack by solvent, or SR2 attack by a vanadium oxo. Activation barriers for the functionalization of methylrhodium intermediates via nucleophilic attack are lower when the solvent is water, but CH4 activation barriers are higher. In addition, we have found a correlation between CH4 activation barriers and rhodium–methyl bond energies that allow us to predict the activation transition state energies for future ligands, as well.« less

  11. Adjoint-Based Uncertainty Quantification with MCNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifried, Jeffrey E.

    2011-09-01

    This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence inmore » the simulation is acquired.« less

  12. Risk of liver cancer and exposure to organic solvents and gasoline vapors among Finnish workers.

    PubMed

    Lindbohm, Marja-Liisa; Sallmén, Markku; Kyyrönen, Pentti; Kauppinen, Timo; Pukkala, Eero

    2009-06-15

    We investigated the association between exposure to various groups of solvents and gasoline vapors and liver cancer. A cohort of economically active Finns born between 1906 and 1945 was followed up during the period 1971-1995. The incident cases of primary liver cancer (n = 2474) were identified in a record linkage with the Finnish Cancer Registry. Occupations from the 1970 census were converted to exposures using a job-exposure matrix. Cumulative exposure was calculated as the product of estimated prevalence, level and duration of exposure, and we used Poisson regression to calculate the relative risks (RR). Among the occupations entailing exposure to organic solvents, an elevated liver cancer incidence was observed in male printers, and varnishers and lacquerers. Among men, the risk was increased in the highest exposure category of aromatic hydrocarbons [RR 1.77, 95% confidence interval (CI) 1.30-2.40], aliphatic/alicyclic hydrocarbons (RR 1.47, 95% CI 0.99-2.18), chlorinated hydrocarbons (RR 2.65, 95% CI 1.38-5.11) and "other solvents" (RR 2.14, 95% CI 1.23-3.71). Among women, the risk was increased for the group "other solvents" that includes mainly alcohols, ketones, esters and glycol ethers (RR 2.73, 95% CI 1.21-6.16). Our finding of an increased risk among workers exposed to chlorinated hydrocarbons is in line with several earlier studies on trichloroethylene. The results also suggest a link between exposure to other types of solvents and the risk of liver cancer. The possibility that alcohol consumption contributes to the observed risks cannot be totally excluded. Copyright 2008 UICC.

  13. CHARMM: The Biomolecular Simulation Program

    PubMed Central

    Brooks, B.R.; Brooks, C.L.; MacKerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M.

    2009-01-01

    CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. In addition, the CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This paper provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM paper in 1983. PMID:19444816

  14. Solvent-accessible surface area: How well can be applied to hot-spot detection?

    PubMed

    Martins, João M; Ramos, Rui M; Pimenta, António C; Moreira, Irina S

    2014-03-01

    A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA-based features for their ability to correlate and differentiate hot- and null-spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot- and null-spots, while presenting low correlations. Residue standardization such as rel SASAi or rel/res SASAi , improved the features as a tool to predict ΔΔGbinding values. A new method using support machine learning algorithms was developed: SBHD (Sasa-Based Hot-spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set. Copyright © 2013 Wiley Periodicals, Inc.

  15. Modulation of phase transition of thermosensitive liposomes with leucine zipper-structured lipopeptides.

    PubMed

    Xu, Xiejun; Xiao, Xingqing; Wang, Yiming; Xu, Shouhong; Liu, Honglai

    2018-06-13

    Targeted therapy for cancer requires thermosensitive components in drug carriers for controlled drug release against viral cells. The conformational transition characteristic of leucine zipper-structured lipopeptides is utilized in our lab to modulate the phase transition temperature of liposomes, thus achieving temperature-responsive control. In this study, we computationally examined the conformational transition behaviors of leucine zipper-structured lipopeptides that were modified at the N-terminus by distinct functional groups. The conformational transition temperatures of these lipopeptides were determined by structural analysis of the implicit-solvent replica exchange molecular dynamics simulation trajectories using the dihedral angle principal component analysis and the dictionary of protein secondary structure method. Our calculations revealed that the computed transition temperatures of the lipopeptides are in good agreement with the experimental measurements. The effect of hydrogen bonds on the conformational stability of the lipopeptide dimers was examined in conventional explicit-solvent molecular dynamics simulations. A quantitative correlation of the degree of structural dissociation of the dimers and their binding strength is well described by an exponential fit of the binding free energies to the conformation transition temperatures of the lipopeptides.

  16. ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions

    PubMed Central

    Vitalis, Andreas; Pappu, Rohit V.

    2009-01-01

    A new implicit solvation model for use in Monte Carlo simulations of polypeptides is introduced. The model is termed ABSINTH for self-Assembly of Biomolecules Studied by an Implicit, Novel, and Tunable Hamiltonian. It is designed primarily for simulating conformational equilibria and oligomerization reactions of intrinsically disordered proteins in aqueous solutions. The paradigm for ABSINTH is conceptually similar to the EEF1 model of Lazaridis and Karplus (Proteins: Struct. Func. Genet., 1999, 35: 133-152). In ABSINTH, the transfer of a polypeptide solute from the gas phase into a continuum solvent is the sum of a direct mean field interaction (DMFI), and a term to model the screening of polar interactions. Polypeptide solutes are decomposed into a set of distinct solvation groups. The DMFI is a sum of contributions from each of the solvation groups, which are analogs of model compounds. Continuum-mediated screening of electrostatic interactions is achieved using a framework similar to the one used for the DMFI. Promising results are shown for a set of test cases. These include the calculation of NMR coupling constants for short peptides, the assessment of the thermal stability of two small proteins, reversible folding of both an alpha-helix and a beta-hairpin forming peptide, and the polymeric properties of intrinsically disordered polyglutamine peptides of varying lengths. The tests reveal that the computational expense for simulations with the ABSINTH implicit solvation model increase by a factor that is in the range of 2.5-5.0 with respect to gas-phase calculations. PMID:18506808

  17. Dynamical discrete/continuum linear response shells theory of solvation: convergence test for NH4+ and OH- ions in water solution using DFT and DFTB methods.

    PubMed

    de Lima, Guilherme Ferreira; Duarte, Hélio Anderson; Pliego, Josefredo R

    2010-12-09

    A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models. Molecular dynamics calculations coupled with SCC-DFTB method are used to generate the configurations of the solute in a box with 64 water molecules, while the interaction energies are calculated at the DFT level. We have tested the convergence of the method using a variable number of explicit water molecules and it was found that even a small number of waters (as low as 14) are able to produce converged values. Our results also point out that the Born model, often used for long-range correction, is not reliable and our method should be applied for more accurate calculations.

  18. Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Bora, Nilutpal Sharma; Pathak, Manash Pratim; Mandal, Santa; Junejo, Julfikar Ali; Chattopadhyay, Pronobesh

    2017-10-01

    Compromised stability of pharmaceutical formulations loaded with volatiles is a serious problem associated with devices designed to deliver volatile compounds. The present study has been focused to evaluate the stability potential of matrix-type polymeric patches composed of volatile ethyl anthranilate for prophylaxis against vector-borne diseases. Ethyl anthranilate-loaded matrix-type polymeric patches were fabricated by solvent evaporation method on an impermeable backing membrane and attached to temporary release liners. Stability testing of the polymeric patches was performed as per the International Conference on Harmonization (ICH) guidelines for 6 months under accelerated conditions. In addition, the quantification of residual solvents was also performed as per the ICH guidelines. After conducting the stability studies for 6 months, the optimized patches showed the best possible results with respect to uniformity of drug content, physical appearance, and other analytical parameters. Furthermore, the amount of residual solvent was found well below the accepted limit. Thus, the present report outlined the analytical parameters to be evaluated to ensure the stability of a certain devices consisting of volatile compounds. Copyright © 2016. Published by Elsevier B.V.

  19. Complexation of nicotinic acid with first generation poly(amidoamine) dendrimers: A microscopic view from density functional theory

    NASA Astrophysics Data System (ADS)

    Badalkhani-Khamseh, Farideh; Bahrami, Aidin; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-09-01

    This study explains some electronic and structural parameters of niacin (NA) encapsulation into PAMAM-G1 dendrimer using DFT calculations. Optimized structural geometries, interaction energies, NMR, NBO, and AIM analyses, in accordance with experiment, revealed that the stability of G1@NA complex can be attributed to the five intermolecular hydrogen bonds formed between the functional groups of G1 and NA. Because of nearing to the experimental results, all the calculations repeated again using a self-consistent reaction field (SCRF) and the polarizable continuum model (PCM) to address the implicit solvent effects and the obtained results were in line with the calculations in gas phase.

  20. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids.

    PubMed

    Andrews, Casey T; Elcock, Adrian H

    2014-11-11

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions-which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)-quantitatively reproduced all of the "target" MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic ( PLoS Comput. Biol. 2014 , 5 , e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP's nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins.

  1. COFFDROP: A Coarse-Grained Nonbonded Force Field for Proteins Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of Amino Acids

    PubMed Central

    2015-01-01

    We describe the derivation of a set of bonded and nonbonded coarse-grained (CG) potential functions for use in implicit-solvent Brownian dynamics (BD) simulations of proteins derived from all-atom explicit-solvent molecular dynamics (MD) simulations of amino acids. Bonded potential functions were derived from 1 μs MD simulations of each of the 20 canonical amino acids, with histidine modeled in both its protonated and neutral forms; nonbonded potential functions were derived from 1 μs MD simulations of every possible pairing of the amino acids (231 different systems). The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential functions—which we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)—quantitatively reproduced all of the “target” MD distributions. In a first test of the force field, it was used to predict the clustering behavior of concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by Petrov and Zagrovic (PLoS Comput. Biol.2014, 5, e1003638). The anomalously strong intermolecular interactions seen in the MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP’s nonbonded parameters, however, produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially useful for modeling unfolded or intrinsically disordered proteins. PMID:25400526

  2. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers.

    PubMed

    Cooper, Christopher D; Bardhan, Jaydeep P; Barba, L A

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known apbs finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the apbs solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is in the order of 1-2% error, when running on one gpu card (nvidia Tesla C2075), compared with apbs running on six Intel Xeon cpu cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using gpus via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  3. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Bardhan, Jaydeep P.; Barba, L. A.

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known APBS finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the APBS solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is on the order of 1-2% error, when running on one GPU card (NVIDIA Tesla C2075), compared with APBS running on six Intel Xeon CPU cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using GPUs via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  4. Comparison of RESP and IPolQ-Mod Partial Charges for Solvation Free Energy Calculations of Various Solute/Solvent Pairs.

    PubMed

    Mecklenfeld, Andreas; Raabe, Gabriele

    2017-12-12

    The calculation of solvation free energies ΔG solv by molecular simulations is of great interest as they are linked to other physical properties such as relative solubility, partition coefficient, and activity coefficient. However, shortcomings in molecular models can lead to ΔG solv deviations from experimental data. Various studies have demonstrated the impact of partial charges on free energy results. Consequently, calculation methods for partial charges aimed at more accurate ΔG solv predictions are the subject of various studies in the literature. Here we compare two methods to derive partial charges for the general AMBER force field (GAFF), i.e. the default RESP as well as the physically motivated IPolQ-Mod method that implicitly accounts for polarization costs. We study 29 solutes which include characteristic functional groups of drug-like molecules, and 12 diverse solvents were examined. In total, we consider 107 solute/solvent pairs including two water models TIP3P and TIP4P/2005. Comparison with experimental results yields better agreement for TIP3P, regardless of the partial charge scheme. The overall performance of GAFF/RESP and GAFF/IPolQ-Mod is similar, though specific shortcomings in the description of ΔG solv for both RESP and IPolQ-Mod can be identified. However, the high correlation between free energies obtained with GAFF/RESP and GAFF/IPolQ-Mod demonstrates the compatibility between the modified charges and remaining GAFF parameters.

  5. Reconciling the understanding of 'hydrophobicity' with physics-based models of proteins.

    PubMed

    Harris, Robert C; Pettitt, B Montgomery

    2016-03-02

    The idea that a 'hydrophobic energy' drives protein folding, aggregation, and binding by favoring the sequestration of bulky residues from water into the protein interior is widespread. The solvation free energies (ΔGsolv) of small nonpolar solutes increase with surface area (A), and the free energies of creating macroscopic cavities in water increase linearly with A. These observations seem to imply that there is a hydrophobic component (ΔGhyd) of ΔGsolv that increases linearly with A, and this assumption is widely used in implicit solvent models. However, some explicit-solvent molecular dynamics studies appear to contradict these ideas. For example, one definition (ΔG(LJ)) of ΔGhyd is that it is the free energy of turning on the Lennard-Jones (LJ) interactions between the solute and solvent. However, ΔG(LJ) decreases with A for alanine and glycine peptides. Here we argue that these apparent contradictions can be reconciled by defining ΔGhyd to be a near hard core insertion energy (ΔGrep), as in the partitioning proposed by Weeks, Chandler, and Andersen. However, recent results have shown that ΔGrep is not a simple function of geometric properties of the molecule, such as A and the molecular volume, and that the free energy of turning on the attractive part of the LJ potential cannot be computed from first-order perturbation theory for proteins. The theories that have been developed from these assumptions to predict ΔGhyd are therefore inadequate for proteins.

  6. Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes.

    PubMed

    Chen, Fu; Sun, Huiyong; Wang, Junmei; Zhu, Feng; Liu, Hui; Wang, Zhe; Lei, Tailong; Li, Youyong; Hou, Tingjun

    2018-06-21

    Molecular docking provides a computationally efficient way to predict the atomic structural details of protein-RNA interactions (PRI), but accurate prediction of the three-dimensional structures and binding affinities for PRI is still notoriously difficult, partly due to the unreliability of the existing scoring functions for PRI. MM/PBSA and MM/GBSA are more theoretically rigorous than most scoring functions for protein-RNA docking, but their prediction performance for protein-RNA systems remains unclear. Here, we systemically evaluated the capability of MM/PBSA and MM/GBSA to predict the binding affinities and recognize the near-native binding structures for protein-RNA systems with different solvent models and interior dielectric constants (ϵ in ). For predicting the binding affinities, the predictions given by MM/GBSA based on the minimized structures in explicit solvent and the GBGBn1 model with ϵ in = 2 yielded the highest correlation with the experimental data. Moreover, the MM/GBSA calculations based on the minimized structures in implicit solvent and the GBGBn1 model distinguished the near-native binding structures within the top 10 decoys for 118 out of the 149 protein-RNA systems (79.2%). This performance is better than all docking scoring functions studied here. Therefore, the MM/GBSA rescoring is an efficient way to improve the prediction capability of scoring functions for protein-RNA systems. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Alkyl hydrogen atom abstraction reactions of the CN radical with ethanol

    NASA Astrophysics Data System (ADS)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2018-04-01

    We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the Hβ and Hα reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications. We have carried out the dynamics in water and chloroform, which are solvents of contrasting polarity. We have computed the potential of mean force for both abstractions in each of the solvents. They are found to have a small and early barrier along the reaction coordinate with a large energy release. Analyzing the solvent structure around the reaction system, we have found two solvents to have little effect on either reaction. Simulating the dynamics from the transition state, we also study the fate of the energies in the HCN vibrational modes. The HCN molecule is born vibrationally hot in the CH stretch in both reactions and additionally in the HCN bends for the Hα abstraction reaction. In the early stage of the dynamics, we find that the CN stretch mode gains energy at the expense of the energy in CH stretch mode.

  8. [Chemistry for sustainable construction: 20 years of progress].

    PubMed

    Leoni, R

    2012-01-01

    Sustainable development is based on three pillars, economic, social and environmental development. Sustainable products can be developed only by companies that grow on these pillars, but in building sustainability is often identified only with the reduction of dangerous synthetic substances. From this point of view, the efforts of the construction chemicals industry have focused on reducing emissions, dust and volatile organic compounds (VOCs), replacing, if technically possible, the most dangerous components, such as formaldehyde, phthalates, and chlorinated or aromatic solvents, and developing water-borne products with very low VOC emissions. Differences in the definition of VOC and in the methods of measurement of emissions, however, make it difficult to choose the safest product and grows in the construction industry the need to reference trusted standards and product certifications to guarantee users. At present, products labeled "bio", "eco" or "solvent free" do not necessarily mean safe products.

  9. Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced Tg.

    PubMed

    Gustini, Liliana; Lavilla, Cristina; de Ilarduya, Antxon Martínez; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-10-10

    Sugar-based polyesters derived from sorbitol and isohexides were obtained via solvent-free enzymatic catalysis. Pendant hydroxyl groups, coming from the sorbitol units, were present along the polyester backbone, whereas the two isohexides, namely, isomannide and isoidide dimethyl ester monomers, were selected to introduce rigidity into the polyester chains. The feasibility of incorporating isomannide as a diol compared to the isoidide dimethyl ester as acyl-donor via lipase-catalyzed polycondensation was investigated. The presence of bicyclic units resulted in enhanced T g with respect to the parent sorbitol-containing polyester lacking isohexides. The different capability of the two isohexides to boost the thermal properties confirmed the more flexible character provided by the isoidide diester derivative. Solvent-borne coatings were prepared by cross-linking the sugar-based polyester polyols with polyisocyanates. The increased rigidity of the obtained sugar-based polyester polyols led to an enhancement in hardness of the resulting coatings.

  10. Ab initio folding of mixed-fold FSD-EY protein using formula-based polarizable hydrogen bond (PHB) charge model

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Lazim, Raudah; Mun Yip, Yew

    2017-09-01

    We conducted an all-atom ab initio folding of FSD-EY, a protein with a ββα configuration using non-polarizable (AMBER) and polarizable force fields (PHB designed by Gao et al.) in implicit solvent. The effect of reducing the polarization effect integrated into the force field by the PHB model, termed the PHB0.7 was also examined in the folding of FSD-EY. This model incorporates into the force field 70% of the original polarization effect to minimize the likelihood of over-stabilizing the backbone hydrogen bonds. Precise folding of the β-sheet of FSD-EY was further achieved by relaxing the REMD structure obtained in explicit water.

  11. A test of AMBER force fields in predicting the secondary structure of α-helical and β-hairpin peptides

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Zhang, Chaomin; Wang, Xianwei; Zhu, Tong

    2017-07-01

    We tested the ability of some current AMBER force fields, namely, AMBER03, AMBER99SB, AMBER99SB-ildn, AMBER99SB-nmr, AMBER12SB, AMBER14SB, and AMBER14ipq, with implicit solvent model in reproducing the folding behavior of two peptides by REMD simulations. AMBER99SB-nmr force field provides the most reliable performance. After a novel polarized hydrogen bond charge model is considered, the α-helix successfully folded to its native state, while the further folding of the β-hairpin is not observed. This study strongly suggests that polarization effect and correct torsional term are important to investigate dynamic and conformational properties of peptides with different secondary structures.

  12. Sampling of Protein Folding Transitions: Multicanonical Versus Replica Exchange Molecular Dynamics.

    PubMed

    Jiang, Ping; Yaşar, Fatih; Hansmann, Ulrich H E

    2013-08-13

    We compare the efficiency of multicanonical and replica exchange molecular dynamics for the sampling of folding/unfolding events in simulations of proteins with end-to-end β -sheet. In Go-model simulations of the 75-residue MNK6, we observe improvement factors of 30 in the number of folding/unfolding events of multicanonical molecular dynamics over replica exchange molecular dynamics. As an application, we use this enhanced sampling to study the folding landscape of the 36-residue DS119 with an all-atom physical force field and implicit solvent. Here, we find that the rate-limiting step is the formation of the central helix that then provides a scaffold for the parallel β -sheet formed by the two chain ends.

  13. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  14. Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent

    NASA Astrophysics Data System (ADS)

    Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu

    2011-10-01

    A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into "alpha helix" and "beta sheet" structures. The 5-residue polyalanine displays a substantial increase in the "beta strand" fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling.

  15. Impacts of hydroxylation on the photophysics of chalcones: insights into the relation between the chemical composition and the electronic structure.

    PubMed

    Kalchevski, Dobromir A; Petrov, Vesselin; Tadjer, Alia; Nenov, Artur

    2018-03-28

    A combined theoretical/experimental study of the photoreactivity of two flavylium-derived chalcones, 2,4,4'-trihydroxychalcone and 2,4'-dihydroxychalcone, at the multiconfigurational wavefunction level of theory (CASSCF//CASPT2) in vacuo and in an implicit solvent (water, treated as a polarisable continuum) and by means of linear absorption spectroscopy is presented. The photosensitivity of flavium salts is expressed in the ability of their chalcone form to undergo a cis-trans isomerisation which has found application in logical networks. Despite a considerable amount of experimental data documenting the dependence of the isomerisation on solvent, pH and temperature, the knowledge of how chalcones process energy under various conditions at the molecular level is still scarce. On the example of 2,4,4'-trihydroxychalcone we unravel the complex excited state deactivation mechanism in vacuo involving ultrafast decay through conical intersections, formation of twisted intramolecular charge transfer species, intramolecular proton transfer and inter system crossings. Furthermore, we rationalise the observed discrepancies in the linear absorption spectra of 2,4,4'-trihydroxychalcone and 2,4'-dihydroxychalcone, thereby establishing a link between the functionalisation pattern and the observed spectral properties.

  16. Efficient minimization of multipole electrostatic potentials in torsion space

    PubMed Central

    Bodmer, Nicholas K.

    2018-01-01

    The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom. PMID:29641557

  17. Surface hydrophobic modification of polyurethanes by diaryl carbene chemistry: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Yang, Pengfei; Wang, Yongqing; Lu, Ling; Yu, Xi; Liu, Lian

    2018-03-01

    Dodecyl diaryl diazomethane was firstly synthesized from 4,4-dihydroxybenzophenone and 1-bromododecane by a series of reaction steps. Then water-borne polyurethane films with different amount of DMPA were prepared, as well as a type of solvent-borne polyurethane film for comparison. Finally, all these polyurethane films were modified by dodecyl diaryl diazomethane. The dodecyl diaryl carbene was generated from dodecyl diaryl diazomethane by strong solar light, which was very convenient to insert into the Xsbnd H bonds (X = C, N) on the surface of polyurethane films. The contact angle test was used to characterize these films and depict the surface property. DSC analysis and tensile test were used to investigate the physical properties of polyurethane films before and after modification. It was suggested that the hydrophobic modification protocol with carbene insertion was very useful and convenient to prepare water-proof coatings outdoors under direct solar-light exposure.

  18. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method.

    PubMed

    Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-12

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment analysis suggests that because essential conformational events are mainly driven by the compensating fluctuations of essential solute-solvent and solute-solute interactions, commonly employed "predictive" sampling methods are unlikely to be effective on this seemingly "simple" system. The gOST development presented in this paper illustrates how to employ the OSS scheme for physics-based sampling method designs.

  19. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    PubMed

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  20. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate.

    PubMed

    Heshmat, Mojgan; Privalov, Timofei

    2017-07-06

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Empirical Estimation of Local Dielectric Constants: Toward Atomistic Design of Collagen Mimetic Peptides

    PubMed Central

    Pike, Douglas H.; Nanda, Vikas

    2017-01-01

    One of the key challenges in modeling protein energetics is the treatment of solvent interactions. This is particularly important in the case of peptides, where much of the molecule is highly exposed to solvent due to its small size. In this study, we develop an empirical method for estimating the local dielectric constant based on an additive model of atomic polarizabilities. Calculated values match reported apparent dielectric constants for a series of Staphylococcus aureus nuclease mutants. Calculated constants are used to determine screening effects on Coulombic interactions and to determine solvation contributions based on a modified Generalized Born model. These terms are incorporated into the protein modeling platform protCAD, and benchmarked on a data set of collagen mimetic peptides for which experimentally determined stabilities are available. Computing local dielectric constants using atomistic protein models and the assumption of additive atomic polarizabilities is a rapid and potentially useful method for improving electrostatics and solvation calculations that can be applied in the computational design of peptides. PMID:25784456

  2. Thermodynamic perspective on the dock-lock growth mechanism of amyloid fibrils.

    PubMed

    O'Brien, Edward P; Okamoto, Yuko; Straub, John E; Brooks, Bernard R; Thirumalai, D

    2009-10-29

    The mechanism of addition of a soluble unstructured monomer to a preformed ordered amyloid fibril is a complex process. On the basis of the kinetics of monomer disassociation of Abeta(1-40) from the amyloid fibril, it has been suggested that deposition is a multistep process involving a rapid reversible association of the unstructured monomer to the fibril surface (docking) followed by a slower conformational rearrangement leading to the incorporation onto the underlying fibril lattice (locking). By exploiting the vast time scale separation between the dock and lock processes and using molecular dynamics simulation of deposition of the disordered peptide fragment (35)MVGGVV(40) from the Abeta peptide onto the fibril with known crystal structure, we provide a thermodynamic basis for the dock-lock mechanism of fibril growth. Free energy profiles, computed using implicit solvent model and enhanced sampling methods with the distance (delta(C)) between the center of mass of the peptide and the fibril surface as the order parameter, show three distinct basins of attraction. When delta(C) is large, the monomer is compact and unstructured and the favorable interactions with the fibril results in stretching of the peptide at delta(C) approximately 13 A. As delta(C) is further decreased, the peptide docks onto the fibril surface with a structure that is determined by a balance between intrapeptide and peptide fibril interactions. At delta(C) approximately 4 A, a value that is commensurate with the spacing between beta-strands in the fibril, the monomer expands and locks onto the fibril. Using simulations with implicit solvent model and all atom molecular dynamics in explicit water, we show that the locked monomer, which interacts with the underlying fibril, undergoes substantial conformational fluctuations and is not stable. The cosolutes urea and TMAO destabilize the unbound phase and stabilize the docked phase. Interestingly, small crowding particles enhance the stability of the fibril-bound monomer only marginally. We predict that the experimentally measurable critical monomer concentration, C(R), at which the soluble unbound monomer is in equilibrium with the ordered fibril, increases sharply as temperature is increased under all solution conditions.

  3. Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less

  4. Interplay of Electrostatics and Hydrophobic Effects in the Metamorphic Protein Human Lymphotactin.

    PubMed

    Korkmaz, Elif Nihal; Volkman, Brian F; Cui, Qiang

    2015-07-30

    The human lymphotactin (hLtn) is a protein that features two native states both of which are physiologically relevant: it is a monomer (hLtn10) at 10 °C with 200 mM salt and a dimer (hLtn40) at 40 °C and without salt. Here we focus on the networks of electrostatic and hydrophobic interactions that display substantial changes upon the conversion from hLtn10 to hLtn40 since they are expected to modulate the relative stability of the two folds. In addition to the Arg 23-Arg 43 interaction discussed in previous work, we find several other like-charge pairs that are likely important to the stability of hLtn10. Free energy perturbation calculations are carried out to explicitly evaluate the contribution of the Arg 23-Arg 43 interaction to the hLtn10 stability. hLtn40 features a larger number of salt bridges, and a set of hydrophobic residues undergo major changes in the solvent accessible surface area between hLtn10 and hLtn40, pointing to their importance to the relative stability of the two folds. We also discuss the use of explicit and implicit solvent simulations for characterizing the conformational ensembles under different solution conditions.

  5. Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides

    DOE PAGES

    None, None

    2016-03-22

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less

  6. Gay-Berne and electrostatic multipole based coarse-grain potential in implicit solvent

    PubMed Central

    Wu, Johnny; Zhen, Xia; Shen, Hujun; Li, Guohui; Ren, Pengyu

    2011-01-01

    A general, transferable coarse-grain (CG) framework based on the Gay-Berne potential and electrostatic point multipole expansion is presented for polypeptide simulations. The solvent effect is described by the Generalized Kirkwood theory. The CG model is calibrated using the results of all-atom simulations of model compounds in solution. Instead of matching the overall effective forces produced by atomic models, the fundamental intermolecular forces such as electrostatic, repulsion-dispersion, and solvation are represented explicitly at a CG level. We demonstrate that the CG alanine dipeptide model is able to reproduce quantitatively the conformational energy of all-atom force fields in both gas and solution phases, including the electrostatic and solvation components. Replica exchange molecular dynamics and microsecond dynamic simulations of polyalanine of 5 and 12 residues reveal that the CG polyalanines fold into “alpha helix” and “beta sheet” structures. The 5-residue polyalanine displays a substantial increase in the “beta strand” fraction relative to the 12-residue polyalanine. The detailed conformational distribution is compared with those reported from recent all-atom simulations and experiments. The results suggest that the new coarse-graining approach presented in this study has the potential to offer both accuracy and efficiency for biomolecular modeling. PMID:22029338

  7. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-01

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ɛ(r) is close to one everywhere inside the protein. The Gaussian widths σi of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σi. A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.

  8. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    PubMed

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by comparison with so-called generalized Born methods. A follow-up paper describes how the method enables Hamiltonian, efficient, and accurate MM molecular dynamics simulations of proteins in dielectric solvent continua.

  9. Estimating emissions from adhesives and sealants uses and manufacturing for environmental risk assessments.

    PubMed

    Tolls, Johannes; Gómez, Divina; Guhl, Walter; Funk, Torsten; Seger, Erich; Wind, Thorsten

    2016-01-01

    Regulation (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) requires that environmental exposure assessments be performed for all uses of dangerous substances that are marketed in the European Union in quantities above 10 tons per year. The quantification of emissions to the environment is a key step in this process. This publication describes the derivation of release factors and gives guidance for estimating use rates for quantifying the emissions from the manufacturing and application of adhesives and sealants. Release factors available for coatings and paints are read across to adhesives or sealants based on similarities between these 2 product groups with regard to chemical composition and to processing during manufacturing and application. The granular emission scenarios in these documents are mapped to the broad emission scenarios for adhesives or sealants. According to the mapping, the worst-case release factors for coatings or paints are identified and assigned to the adhesives or sealants scenarios. The resulting 10 specific environmental release categories (SPERCs) for adhesives and sealants are defined by differentiating between solvent and nonsolvent ingredients and between water-borne and solvent-borne or solvent-free products. These cover the vast majority of the production processes and uses and are more realistic than the 5 relevant emission estimation defaults provided in the REACH guidance. They are accompanied with adhesive or sealant consumption rates in the EU and with guidance for estimating conservative substance use rates at a generic level. The approach of combining conservative SPERC release factors with conservative estimates of substance rates is likely to yield emission estimates that tend to overpredict actual releases. Because this qualifies the approach for use in lower-tier environmental exposure assessment, the Association of the European Adhesive & Sealant Industry (FEICA) SPERCs are available in several exposure assessment tools that are used under REACH. Given the limited regional variation in the manufacturing and use processes of adhesives and sealants, the SPERCs may be applicable for emission estimation not only in the EU but also in other regions. © 2015 SETAC.

  10. Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission.

    PubMed

    Roche, Benjamin; Guégan, Jean-François; Bousquet, François

    2008-10-15

    Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems. Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment. Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.

  11. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE PAGES

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; ...

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  12. Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations

    DOE PAGES

    Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...

    2015-04-13

    A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less

  13. Evidence that implicit assumptions of ‘no evolution’ of disease vectors in changing environments can be violated on a rapid timescale

    PubMed Central

    Egizi, Andrea; Fefferman, Nina H.; Fonseca, Dina M.

    2015-01-01

    Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. PMID:25688024

  14. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.

  15. Performance of solvent-borne intumescent fire protective coating with Palm oil clinker as novel bio-filler on steel

    NASA Astrophysics Data System (ADS)

    Mustapa, S. A. S.; Ramli Sulong, N. H.

    2017-06-01

    This research deals with contribution of hybrid fillers with palm oil clinker (POC) as a novel bio-filler in solvent-borne intumescent fire protective coating for steel. The hybrid fillers with POC were mixed in appropriate amount of additives and acrylic binder to produce the intumescent coatings. The intumescent coatings were characterized by using Bunsen burner test, surface spread of flame, thermogravimetric analysis, field emission scanning electron microscopy, static immersion and Instron micro tester equipment. Specimen with POC as a single filler has significantly enhanced the fire protection performances of the intumescent coating due to the high thermal stability of POC, where less than 10% of temperature different when compared to specimens with hybrid fillers. From the flame spread classification, class 1 is the best classification while Class 4 is the worst and considered high risk. All specimens was classified as class 1 since the final spread of flame was less than 165 mm. For hybrid fillers composition, specimen consist of POC/Al(OH)3/TiO2 has significantly improved the water resistance of the coating due to the low solubility of Al(OH)3 in water, while specimen contain of Mg(OH)2 had higher mechanical strength due to the strong bonding between the metal surface and acrylic binder/Mg(OH)2 filler. It was found that coating with the incorporation of all hybrid fillers gives excellent fire protection performance with good thermal stability, water resistance and mechanical properties. It can be concluded that, the selection of appropriate composition of fillers and binder in intumescent coating was highly influence the intumescent coating performance.

  16. Inactivation of Zika virus by solvent/detergent treatment of human plasma and other plasma-derived products and pasteurization of human serum albumin.

    PubMed

    Kühnel, Denis; Müller, Sebastian; Pichotta, Alexander; Radomski, Kai Uwe; Volk, Andreas; Schmidt, Torben

    2017-03-01

    In 2016 the World Health Organization declared the mosquito-borne Zika virus (ZIKV) a "public health emergency of international concern." ZIKV is a blood-borne pathogen, which therefore causes concerns regarding the safety of human plasma-derived products due to potential contamination of the blood supply. This study investigated the effectiveness of viral inactivation steps used during the routine manufacturing of various plasma-derived products to reduce ZIKV infectivity. Human plasma and intermediates from the production of various plasma-derived products were spiked with ZIKV and subjected to virus inactivation using the identical techniques (either solvent/detergent [S/D] treatment or pasteurization) and conditions used for the actual production of the respective products. Samples were taken and the viral loads measured before and after inactivation. After S/D treatment of spiked intermediates of the plasma-derived products Octaplas(LG), Octagam, and Octanate, the viral loads were below the limit of detection in all cases. The mean log reduction factor (LRF) was at least 6.78 log for Octaplas(LG), at least 7.00 log for Octagam, and at least 6.18 log for Octanate after 60, 240, and 480 minutes of S/D treatment, respectively. For 25% human serum albumin (HSA), the mean LRF for ZIKV was at least 7.48 log after pasteurization at 60°C for 120 minutes. These results demonstrate that the commonly used virus inactivation processes utilized during the production of human plasma and plasma-derived products, namely, S/D treatment or pasteurization, are effective for inactivation of ZIKV. © 2016 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  17. Unstable density distribution associated with equatorial plasma bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kherani, E. A., E-mail: esfhan.kherani@inpe.br; Meneses, F. Carlos de; Bharuthram, R.

    2016-04-15

    In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion growsmore » to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.« less

  18. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order Fuzzy-Border continuum solvation model

    PubMed Central

    Sharma, Ity; Kaminski, George A.

    2012-01-01

    We have computed pKa values for eleven substituted phenol compounds using the continuum Fuzzy-Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within ca. 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed-position grid points. Second, it employs either second- or first-order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of employing the first-order technique. This approximation places the presented methodology between the Generalized Born and Poisson-Boltzmann continuum solvation models with respect to their accuracy of reproducing the many-body effects in modeling a continuum solvent. PMID:22815192

  19. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    PubMed Central

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  20. Advanced dielectric continuum model of preferential solvation

    NASA Astrophysics Data System (ADS)

    Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail

    2009-01-01

    A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.

  1. NMR structure of biosynthetic engineered human insulin monomer B31(Lys)-B32(Arg) in water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer.

    PubMed

    Bocian, Wojciech; Borowicz, Piotr; Mikołajczyk, Jerzy; Sitkowski, Jerzy; Tarnowska, Anna; Bednarek, Elzbieta; Głabski, Tadeusz; Tejchman-Małecka, Bozena; Bogiel, Monika; Kozerski, Lech

    2008-10-01

    A solution NMR-derived structure of a new long -acting, B31(Lys)-B32(Arg) (LysArg), engineered human insulin monomer, in H(2)O/CD(3)CN, 65/35 vol %, pH 3.6, is presented and compared with the available X-ray structure of a monomer that forms part of a hexamer (Smith, et al., Acta Crystallogr D 2003, 59, 474) and with NMR structure of human insulin in the same solvent (Bocian, et al., J Biomol NMR 2008, 40, 55-64). Detailed analysis using PFGSE NMR (Pulsed Field Gradient Spin Echo NMR) in dilution experiments and CSI analysis prove that the structure is monomeric in the concentration range 0.1-3 mM. The presence of long-range interstrand NOEs in a studied structure, relevant to the distances found in the crystal structure of the monomer, provides the evidence for conservation of the tertiary structure. Therefore the results suggest that this solvent system is a suitable medium for studying the native conformation of the protein, especially in situations (as found for insulins) in which extensive aggregation renders structure elucidations in water difficult or impossible. Starting from the structures calculated by the program CYANA, two different molecular dynamics (MD) simulated annealing refinement protocols were applied, either using the program AMBER in vacuum (AMBER_VC), or including a generalized Born solvent model (AMBER_GB). Here we present another independent evidence to the one presented recently by us (Bocian et al., J Biomol NMR 2008, 40, 55-64), that in water/acetonitrile solvent detailed structural and dynamic information can be obtained for important proteins that are naturally present as oligomers under native conditions. (c) 2008 Wiley Periodicals, Inc.

  2. Simulation Studies of LCST-like Phase Transitions in Elastin-like Polypeptides (ELPs) and Conjugates of ELP with Rigid Macromolecules

    NASA Astrophysics Data System (ADS)

    Condon, Joshua; Martin, Tyler; Jayaraman, Arthi

    We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.

  3. Propensities of peptides containing the Asn-Gly segment to form β-turn and β-hairpin structures.

    PubMed

    Kang, Young Kee; Yoo, In Kee

    2016-09-01

    The propensities of peptides that contain the Asn-Gly segment to form β-turn and β-hairpin structures were explored using the density functional methods and the implicit solvation model in CH2 Cl2 and water. The populations of preferred β-turn structures varied depending on the sequence and solvent polarity. In solution, β-hairpin structures with βI' turn motifs were most preferred for the heptapeptides containing the Asn-Gly segment regardless of the sequence of the strands. These preferences in solution are consistent with the corresponding X-ray structures. The sequence, H-bond strengths, solvent polarity, and conformational flexibility appeared to interact to determine the preferred β-hairpin structure of each heptapeptide, although the β-turn segments played a role in promoting the formation of β-hairpin structures and the β-hairpin propensity varied. In the heptapeptides containing the Asn-Gly segment, the β-hairpin formation was enthalpically favored and entropically disfavored at 25°C in water. The calculated results for β-turns and β-hairpins containing the Asn-Gly segment imply that these structural preferences may be useful for the design of bioactive macrocyclic peptides containing β-hairpin mimics and the design of binding epitopes for protein-protein and protein-nucleic acid recognitions. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 653-664, 2016. © 2016 Wiley Periodicals, Inc.

  4. Low concentrations of ethanol but not of dimethyl sulfoxide (DMSO) impair reciprocal retinal signal transduction.

    PubMed

    Siapich, Siarhei A; Akhtar, Isha; Hescheler, Jürgen; Schneider, Toni; Lüke, Matthias

    2015-10-01

    The model of the isolated and superfused retina provides the opportunity to test drugs and toxins. Some chemicals have to be applied using low concentrations of organic solvents as carriers. Recently, E-/R-type (Cav2.3) and T-type (Cav3.2) voltage-gated Ca(2+) channels were identified as participating in reciprocal inhibitory retinal signaling. Their participation is apparent, when low concentrations of NiCl2 (15 μM) are applied during superfusion leading to an increase of the ERG b-wave amplitude, which is explained by a reduction of amacrine GABA-release onto bipolar neurons. During these investigations, differences were observed for the solvent carrier used. Recording of the transretinal receptor potentials from the isolated bovine retina. The pretreatment of bovine retina with 0.01 % (v/v) dimethylsulfoxide did not impair the NiCl2-mediated increase of the b-wave amplitude, which was 1.31-fold ± 0.03 of initial value (n = 4). However, pretreatment of the retina with the same concentration of ethanol impaired reciprocal signaling (0.96-fold ± 0.05, n = 4). Further, the implicit time of the b-wave was increased, suggesting that ethanol itself but not DMSO may antagonize GABA-receptors. Ethanol itself but not DMSO may block GABA receptors and cause an amplitude increase by itself, so that reciprocal signaling is impaired.

  5. Treatment of geometric singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Yu, Sining; Geng, Weihua; Wei, G. W.

    2007-06-01

    Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.

  6. Accurate, robust and reliable calculations of Poisson-Boltzmann binding energies

    PubMed Central

    Nguyen, Duc D.; Wang, Bao

    2017-01-01

    Poisson-Boltzmann (PB) model is one of the most popular implicit solvent models in biophysical modeling and computation. The ability of providing accurate and reliable PB estimation of electrostatic solvation free energy, ΔGel, and binding free energy, ΔΔGel, is important to computational biophysics and biochemistry. In this work, we investigate the grid dependence of our PB solver (MIBPB) with SESs for estimating both electrostatic solvation free energies and electrostatic binding free energies. It is found that the relative absolute error of ΔGel obtained at the grid spacing of 1.0 Å compared to ΔGel at 0.2 Å averaged over 153 molecules is less than 0.2%. Our results indicate that the use of grid spacing 0.6 Å ensures accuracy and reliability in ΔΔGel calculation. In fact, the grid spacing of 1.1 Å appears to deliver adequate accuracy for high throughput screening. PMID:28211071

  7. Modeling the Hydration Layer around Proteins: Applications to Small- and Wide-Angle X-Ray Scattering

    PubMed Central

    Virtanen, Jouko Juhani; Makowski, Lee; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Small-/wide-angle x-ray scattering (SWAXS) experiments can aid in determining the structures of proteins and protein complexes, but success requires accurate computational treatment of solvation. We compare two methods by which to calculate SWAXS patterns. The first approach uses all-atom explicit-solvent molecular dynamics (MD) simulations. The second, far less computationally expensive method involves prediction of the hydration density around a protein using our new HyPred solvation model, which is applied without the need for additional MD simulations. The SWAXS patterns obtained from the HyPred model compare well to both experimental data and the patterns predicted by the MD simulations. Both approaches exhibit advantages over existing methods for analyzing SWAXS data. The close correspondence between calculated and observed SWAXS patterns provides strong experimental support for the description of hydration implicit in the HyPred model. PMID:22004761

  8. Methods for Monte Carlo simulations of biomacromolecules

    PubMed Central

    Vitalis, Andreas; Pappu, Rohit V.

    2010-01-01

    The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies. PMID:20428473

  9. Free energy of solvated salt bridges: a simulation and experimental study.

    PubMed

    White, Andrew D; Keefe, Andrew J; Ella-Menye, Jean-Rene; Nowinski, Ann K; Shao, Qing; Pfaendtner, Jim; Jiang, Shaoyi

    2013-06-20

    Charged amino acids are the most common on surfaces of proteins and understanding the interactions between these charged amino acids, salt bridging, is crucial for understanding protein-protein interactions. Previous simulations have been limited to implicit solvent or fixed binding geometry due to the sampling required for converged free energies. Using well-tempered metadynamics, we have calculated salt bridge free energy surfaces in water and confirmed the results with NMR experiments. The simulations give binding free energies, quantitative ranking of salt bridging strength, and insights into the hydration of the salt bridges. The arginine-aspartate salt bridge was found to be the weakest and arginine-glutamate the strongest, showing that arginine can discriminate between aspartate and glutamate, whereas the salt bridges with lysine are indistinguishable in their free energy. The salt bridging hydration is found to be complementary to salt bridge orientation with arginine having specific orientations.

  10. Computational investigation of the conformational profile of the four stereomers of Ac-L-Pro-c3Phe-NHMe (c3Phe= 2,3-methanophenylalanine).

    PubMed

    Rodriguez, Alejandro; Canto, Josep; Corcho, Francesc J; Perez, Juan J

    2009-01-01

    The present report regards a computational study aimed at assessing the conformational profile of the four stereoisomers of the peptide Ace-Pro-c3Phe-NMe, previously reported to exhibit beta-turn structures in dichloromethane with different type I/type II beta-turn profiles. Molecular systems were represented at the molecular mechanics level using the parm96 parameterization of the AMBER force field. Calculations were carried out in dichloromethane using an implicit solvent approach. Characterization of the conformational features of the peptide analogs was carried out using simulated annealing (SA), molecular dynamics (MD) and replica exchange molecular dynamics (REMD). Present results show that MD calculations do not provide a reasonable sampling after 300 ns. In contrast, both SA and REMD provide similar results and agree well with experimental observations. Copyright 2009 Wiley Periodicals, Inc.

  11. Machine Learning Estimates of Natural Product Conformational Energies

    PubMed Central

    Rupp, Matthias; Bauer, Matthias R.; Wilcken, Rainer; Lange, Andreas; Reutlinger, Michael; Boeckler, Frank M.; Schneider, Gisbert

    2014-01-01

    Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures. PMID:24453952

  12. Non-steroidal anti-inflammatory drug naproxen destabilizes Aβ amyloid fibrils: A molecular dynamics investigation

    PubMed Central

    Takeda, Takako; Kumar, Rashmi; Raman, E. Prabhu; Klimov, Dmitri K.

    2010-01-01

    Using implicit solvent model and replica exchange molecular dynamics we examine the propensity of non-steroidal anti-inflammatory drug, naproxen, to interfere with Aβ fibril growth. We also compare the anti-aggregation propensity of naproxen with that of ibuprofen. Naproxen anti-aggregation effect is influenced by two factors. Similar to ibuprofen, naproxen destabilizes binding of incoming Aβ peptides to the fibril due to direct competition between the ligands and the peptides for the same binding location on the fibril surface (the edge). However, in contrast to ibuprofen naproxen binding also alters the conformational ensemble of Aβ monomers by promoting β-structure. The second factor weakens naproxen anti-aggregation effect. These findings appear to explain the experimental observations, according to which naproxen binds to Aβ fibril with higher affinity than ibuprofen, yet produces weaker anti-aggregation action. PMID:20979356

  13. Folding and stability of helical bundle proteins from coarse-grained models.

    PubMed

    Kapoor, Abhijeet; Travesset, Alex

    2013-07-01

    We develop a coarse-grained model where solvent is considered implicitly, electrostatics are included as short-range interactions, and side-chains are coarse-grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side-chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics. Copyright © 2013 Wiley Periodicals, Inc.

  14. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    NASA Astrophysics Data System (ADS)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding. Electronic supplementary information (ESI) is available: Fluorescence spectra, ITC, CD spectra and other data as described in the text. See DOI: 10.1039/c4nr01544d

  15. Quantifying the mechanism of phosphate monoester hydrolysis in aqueous solution by evaluating the relevant ab initio QM/MM free-energy surfaces.

    PubMed

    Plotnikov, Nikolay V; Prasad, B Ram; Chakrabarty, Suman; Chu, Zhen T; Warshel, Arieh

    2013-10-24

    Understanding the nature of the free-energy surfaces for phosphate hydrolysis is a prerequisite for understanding the corresponding key chemical reactions in biology. Here, the challenge has been to move to careful ab initio QM/MM (QM(ai)/MM) free-energy calculations, where obtaining converging results is very demanding and computationally expensive. This work describes such calculations, focusing on the free-energy surface for the hydrolysis of phosphate monoesters, paying special attention to the comparison between the one water (1W) and two water (2W) paths for the proton-transfer (PT) step. This issue has been explored before by energy minimization with implicit solvent models and by nonsystematic QM/MM energy minimization, as well as by nonsystematic free-energy mapping. However, no study has provided the needed reliable 2D (3D) surfaces that are necessary for reaching concrete conclusions. Here we report a systematic evaluation of the 2D (3D) free-energy maps for several relevant systems, comparing the results of QM(ai)/MM and QM(ai)/implicit solvent surfaces, and provide an advanced description of the relevant energetics. It is found that the 1W path for the hydrolysis of the methyl diphosphate (MDP) trianion is 6-9 kcal/mol higher than that the 2W path. This difference becomes slightly larger in the presence of the Mg(2+) ion because this ion reduces the pKa of the conjugated acid form of the phosphate oxygen that accepts the proton. Interestingly, the BLYP approach (which has been used extensively in some studies) gives a much smaller difference between the 1W and 2W activation barriers. At any rate, it is worth pointing out that the 2W transition state for the PT is not much higher that the common plateau that serves as the starting point of both the 1W and 2W PT paths. Thus, the calculated catalytic effects of proteins based on the 2W PT mechanistic model are not expected to be different from the catalytic effects predicted using the 1W PT mechanistic model, which was calibrated on the observed barrier in solution and in which the TS charge distribution was similar to the that of the plateau (as was done in all of our previous EVB studies).

  16. Doctors and Vampires in Sub-Saharan Africa: Ethical Challenges in Clinical Trial Research

    PubMed Central

    Peeters Grietens, Koen; Ribera, Joan Muela; Erhart, Annette; Hoibak, Sarah; Ravinetto, Raffaella M.; Gryseels, Charlotte; Dierickx, Susan; O'Neill, Sarah; Muela, Susanna Hausmann; D'Alessandro, Umberto

    2014-01-01

    Collecting blood samples from individuals recruited into clinical research projects in sub-Saharan Africa can be challenging. Strikingly, one of the reasons for participant reticence is the occurrence of local rumors surrounding “blood stealing” or “blood selling.” Such fears can potentially have dire effects on the success of research projects—for example, high dropout rates that would invalidate the trial's results—and have ethical implications related to cultural sensitivity and informed consent. Though commonly considered as a manifestation of the local population's ignorance, these rumors represent a social diagnosis and a logical attempt to make sense of sickness and health. Born from historical antecedents, they reflect implicit contemporary structural inequalities and the social distance between communities and public health institutions. We aim at illustrating the underlying logic governing patients' fear and argue that the management of these beliefs should become an intrinsic component of clinical research. PMID:24821846

  17. Psychological reality of cross-media artistic styles.

    PubMed

    Hasenfus, N; Martindale, C; Birnbaum, D

    1983-12-01

    The sensitivity of artistically naive people to cross-media styles (baroque, neoclassic, and romantic) and to period styles (works composed by artists born during the same epoch) in four media (painting, poetry, music, and architecture) was assessed. In two studies, adult subjects tended spontaneously to sort stimuli according to both cross-media styles and period styles. In a third study, nursery school children were shown to be able to sort pictures of paintings and architectural facades on the basis of cross-media styles. Other experiments using rating scales again demonstrated that artistically naive adults are sensitive to both cross-media styles and period styles even when they are not implicitly urged to disregard medium. These and other studies using rating scales suggested that the bases for discrimination of both cross-media styles and period styles are the dimensions of realistic versus unrealistic and of overall arousal potential.

  18. Measuring implicit attitudes: A positive framing bias flaw in the Implicit Relational Assessment Procedure (IRAP).

    PubMed

    O'Shea, Brian; Watson, Derrick G; Brown, Gordon D A

    2016-02-01

    How can implicit attitudes best be measured? The Implicit Relational Assessment Procedure (IRAP), unlike the Implicit Association Test (IAT), claims to measure absolute, not just relative, implicit attitudes. In the IRAP, participants make congruent (Fat Person-Active: false; Fat Person-Unhealthy: true) or incongruent (Fat Person-Active: true; Fat Person-Unhealthy: false) responses in different blocks of trials. IRAP experiments have reported positive or neutral implicit attitudes (e.g., neutral attitudes toward fat people) in cases in which negative attitudes are normally found on explicit or other implicit measures. It was hypothesized that these results might reflect a positive framing bias (PFB) that occurs when participants complete the IRAP. Implicit attitudes toward categories with varying prior associations (nonwords, social systems, flowers and insects, thin and fat people) were measured. Three conditions (standard, positive framing, and negative framing) were used to measure whether framing influenced estimates of implicit attitudes. It was found that IRAP scores were influenced by how the task was framed to the participants, that the framing effect was modulated by the strength of prior stimulus associations, and that a default PFB led to an overestimation of positive implicit attitudes when measured by the IRAP. Overall, the findings question the validity of the IRAP as a tool for the measurement of absolute implicit attitudes. A new tool (Simple Implicit Procedure:SIP) for measuring absolute, not just relative, implicit attitudes is proposed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Gifted Students' Implicit Beliefs about Intelligence and Giftedness

    ERIC Educational Resources Information Center

    Makel, Matthew C.; Snyder, Kate E.; Thomas, Chandler; Malone, Patrick S.; Putallaz, Martha

    2015-01-01

    Growing attention is being paid to individuals' implicit beliefs about the nature of intelligence. However, implicit beliefs about giftedness are currently underexamined. In the current study, we examined academically gifted adolescents' implicit beliefs about both intelligence and giftedness. Overall, participants' implicit beliefs about…

  20. Implicit and explicit self-esteem in currently depressed individuals with and without suicidal ideation.

    PubMed

    Franck, Erik; De Raedt, Rudi; Dereu, Mieke; Van den Abbeele, Dirk

    2007-03-01

    In the present study, we have further explored implicit self-esteem in currently depressed individuals. Since suicidal ideation is associated with lower self-esteem in depressed individuals, we measured both implicit and explicit self-esteem in a population of currently depressed (CD) individuals, with and without suicidal ideation (SI), and in a group of non-depressed controls (ND). The results indicate that only CD individuals with SI show a discrepancy between their implicit and explicit self-esteem: that is, they exhibit high implicit and low explicit self-esteem. CD individuals without SI exhibit both low implicit and low explicit self-esteem; and ND controls exhibit both normal implicit and normal explicit self-esteem. These results provide new insights in the study of implicit self-esteem and the combination of implicit and explicit self-esteem in depression.

  1. I like myself but I don't know why: enhancing implicit self-esteem by subliminal evaluative conditioning.

    PubMed

    Dijksterhuis, Ap

    2004-02-01

    On the basis of a conceptualization of implicit self-esteem as the implicit attitude toward the self, it was predicted that implicit self-esteem could be enhanced by subliminal evaluative conditioning. In 5 experiments, participants were repeatedly presented with trials in which the word I was paired with positive trait terms. Relative to control conditions, this procedure enhanced implicit self-esteem. The effects generalized across 3 measures of implicit self-esteem (Experiments 1-3). Furthermore, evaluative conditioning enhanced implicit self-esteem among people with low-temporal implicit self-esteem and among people with high-temporal implicit self-esteem (Experiment 4). In addition, it was shown that conditioning enhanced self-esteem to such an extent that it made participants insensitive to negative intelligence feedback (Experiments 5a and 5b). Various implications are discussed.

  2. Implicit cognitive aggression among young male prisoners: Association with dispositional and current aggression.

    PubMed

    Ireland, Jane L; Adams, Christine

    2015-01-01

    The current study explores associations between implicit and explicit aggression in young adult male prisoners, seeking to apply the Reflection-Impulsive Model and indicate parity with elements of the General Aggression Model and social cognition. Implicit cognitive aggressive processing is not an area that has been examined among prisoners. Two hundred and sixty two prisoners completed an implicit cognitive aggression measure (Puzzle Test) and explicit aggression measures, covering current behaviour (DIPC-R) and aggression disposition (AQ). It was predicted that dispositional aggression would be predicted by implicit cognitive aggression, and that implicit cognitive aggression would predict current engagement in aggressive behaviour. It was also predicted that more impulsive implicit cognitive processing would associate with aggressive behaviour whereas cognitively effortful implicit cognitive processing would not. Implicit aggressive cognitive processing was associated with increased dispositional aggression but not current reports of aggressive behaviour. Impulsive implicit cognitive processing of an aggressive nature predicted increased dispositional aggression whereas more cognitively effortful implicit cognitive aggression did not. The article concludes by outlining the importance of accounting for implicit cognitive processing among prisoners and the need to separate such processing into facets (i.e. impulsive vs. cognitively effortful). Implications for future research and practice in this novel area of study are indicated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A Framework for Integrating Implicit Bias Recognition Into Health Professions Education.

    PubMed

    Sukhera, Javeed; Watling, Chris

    2018-01-01

    Existing literature on implicit bias is fragmented and comes from a variety of fields like cognitive psychology, business ethics, and higher education, but implicit-bias-informed educational approaches have been underexplored in health professions education and are difficult to evaluate using existing tools. Despite increasing attention to implicit bias recognition and management in health professions education, many programs struggle to meaningfully integrate these topics into curricula. The authors propose a six-point actionable framework for integrating implicit bias recognition and management into health professions education that draws on the work of previous researchers and includes practical tools to guide curriculum developers. The six key features of this framework are creating a safe and nonthreatening learning context, increasing knowledge about the science of implicit bias, emphasizing how implicit bias influences behaviors and patient outcomes, increasing self-awareness of existing implicit biases, improving conscious efforts to overcome implicit bias, and enhancing awareness of how implicit bias influences others. Important considerations for designing implicit-bias-informed curricula-such as individual and contextual variables, as well as formal and informal cultural influences-are discussed. The authors also outline assessment and evaluation approaches that consider outcomes at individual, organizational, community, and societal levels. The proposed framework may facilitate future research and exploration regarding the use of implicit bias in health professions education.

  4. A decade of studying implicit racial/ethnic bias in healthcare providers using the implicit association test.

    PubMed

    Maina, Ivy W; Belton, Tanisha D; Ginzberg, Sara; Singh, Ajit; Johnson, Tiffani J

    2018-02-01

    Disparities in the care and outcomes of US racial/ethnic minorities are well documented. Research suggests that provider bias plays a role in these disparities. The implicit association test enables measurement of implicit bias via tests of automatic associations between concepts. Hundreds of studies have examined implicit bias in various settings, but relatively few have been conducted in healthcare. The aim of this systematic review is to synthesize the current knowledge on the role of implicit bias in healthcare disparities. A comprehensive literature search of several databases between May 2015 and September 2016 identified 37 qualifying studies. Of these, 31 found evidence of pro-White or light-skin/anti-Black, Hispanic, American Indian or dark-skin bias among a variety of HCPs across multiple levels of training and disciplines. Fourteen studies examined the association between implicit bias and healthcare outcomes using clinical vignettes or simulated patients. Eight found no statistically significant association between implicit bias and patient care while six studies found that higher implicit bias was associated with disparities in treatment recommendations, expectations of therapeutic bonds, pain management, and empathy. All seven studies that examined the impact of implicit provider bias on real-world patient-provider interaction found that providers with stronger implicit bias demonstrated poorer patient-provider communication. Two studies examined the effect of implicit bias on real-world clinical outcomes. One found an association and the other did not. Two studies tested interventions aimed at reducing bias, but only one found a post-intervention reduction in implicit bias. This review reveals a need for more research exploring implicit bias in real-world patient care, potential modifiers and confounders of the effect of implicit bias on care, and strategies aimed at reducing implicit bias and improving patient-provider communication. Future studies have the opportunity to build on this current body of research, and in doing so will enable us to achieve equity in healthcare and outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Unconscious Motivation. Part I: Implicit Attitudes toward L2 Speakers

    ERIC Educational Resources Information Center

    Al-Hoorie, Ali H.

    2016-01-01

    This paper reports the first investigation in the second language acquisition field assessing learners' implicit attitudes using the Implicit Association Test, a computerized reaction-time measure. Examination of the explicit and implicit attitudes of Arab learners of English (N = 365) showed that, particularly for males, implicit attitudes toward…

  6. Are implicit self-esteem measures valid for assessing individual and cultural differences?

    PubMed

    Falk, Carl F; Heine, Steven J; Takemura, Kosuke; Zhang, Cathy X J; Hsu, Chih-Wei

    2015-02-01

    Our research utilized two popular theoretical conceptualizations of implicit self-esteem: 1) implicit self-esteem as a global automatic reaction to the self; and 2) implicit self-esteem as a context/domain specific construct. Under this framework, we present an extensive search for implicit self-esteem measure validity among different cultural groups (Study 1) and under several experimental manipulations (Study 2). In Study 1, Euro-Canadians (N = 107), Asian-Canadians (N = 187), and Japanese (N = 112) completed a battery of implicit self-esteem, explicit self-esteem, and criterion measures. Included implicit self-esteem measures were either popular or provided methodological improvements upon older methods. Criterion measures were sampled from previous research on implicit self-esteem and included self-report and independent ratings. In Study 2, Americans (N = 582) completed a shorter battery of these same types of measures under either a control condition, an explicit prime meant to activate the self-concept in a particular context, or prime meant to activate self-competence related implicit attitudes. Across both studies, explicit self-esteem measures far outperformed implicit self-esteem measures in all cultural groups and under all experimental manipulations. Implicit self-esteem measures are not valid for individual or cross-cultural comparisons. We speculate that individuals may not form implicit associations with the self as an attitudinal object. © 2013 Wiley Periodicals, Inc.

  7. Implicit self-esteem decreases in adolescence: a cross-sectional study.

    PubMed

    Cai, Huajian; Wu, Mingzheng; Luo, Yu L L; Yang, Jing

    2014-01-01

    Implicit self-esteem has remained an active research topic in both the areas of implicit social cognition and self-esteem in recent decades. The purpose of this study is to explore the development of implicit self-esteem in adolescents. A total of 599 adolescents from junior and senior high schools in East China participated in the study. They ranged in age from 11 to 18 years with a mean age of 14.10 (SD = 2.16). The degree of implicit self-esteem was assessed using the Implicit Association Test (IAT) with the improved D score as the index. Participants also completed the Rosenberg Self-Esteem Scale (α = 0.77). For all surveyed ages, implicit self-esteem was positively biased, all ts>8.59, all ps<0.001. The simple correlation between implicit self-esteem and age was significant, r =  -.25, p = 1. 10(-10). A regression with implicit self-esteem as the criterion variable, and age, gender, and age × gender interaction as predictors further revealed the significant negative linear relationship between age and implicit self-esteem, β = -0.19, t = -3.20, p = 0.001. However, explicit self-esteem manifested a reverse "U" shape throughout adolescence. Implicit self-esteem in adolescence manifests a declining trend with increasing age, suggesting that it is sensitive to developmental or age-related changes. This finding enriches our understanding of the development of implicit social cognition.

  8. Using Implicit Measures to Highlight Science Teachers' Implicit Theories of Intelligence

    ERIC Educational Resources Information Center

    Mascret, Nicolas; Roussel, Peggy; Cury, François

    2015-01-01

    Using an innovative method, a Single-Target Implicit Association Test (ST-IAT) was created to explore the implicit theories of intelligence among science and liberal arts teachers and their relationships with their gender. The results showed that for science teachers--especially for male teachers--there was a negative implicit association between…

  9. The Roles of Implicit Understanding of Engineering Ethics in Student Teams' Discussion.

    PubMed

    Lee, Eun Ah; Grohman, Magdalena; Gans, Nicholas R; Tacca, Marco; Brown, Matthew J

    2017-12-01

    Following previous work that shows engineering students possess different levels of understanding of ethics-implicit and explicit-this study focuses on how students' implicit understanding of engineering ethics influences their team discussion process, in cases where there is significant divergence between their explicit and implicit understanding. We observed student teams during group discussions of the ethical issues involved in their engineering design projects. Through the micro-scale discourse analysis based on cognitive ethnography, we found two possible ways in which implicit understanding influenced the discussion. In one case, implicit understanding played the role of intuitive ethics-an intuitive judgment followed by reasoning. In the other case, implicit understanding played the role of ethical insight, emotionally guiding the direction of the discussion. In either case, however, implicit understanding did not have a strong influence, and the conclusion of the discussion reflected students' explicit understanding. Because students' implicit understanding represented broader social implication of engineering design in both cases, we suggest to take account of students' relevant implicit understanding in engineering education, to help students become more socially responsible engineers.

  10. Assessment of implicit health attitudes: a multitrait-multimethod approach and a comparison between patients with hypochondriasis and patients with anxiety disorders.

    PubMed

    Weck, Florian; Höfling, Volkmar

    2015-01-01

    Two adaptations of the Implicit Association Task were used to assess implicit anxiety (IAT-Anxiety) and implicit health attitudes (IAT-Hypochondriasis) in patients with hypochondriasis (n = 58) and anxiety patients (n = 71). Explicit anxieties and health attitudes were assessed using questionnaires. The analysis of several multitrait-multimethod models indicated that the low correlation between explicit and implicit measures of health attitudes is due to the substantial methodological differences between the IAT and the self-report questionnaire. Patients with hypochondriasis displayed significantly more dysfunctional explicit and implicit health attitudes than anxiety patients, but no differences were found regarding explicit and implicit anxieties. The study demonstrates the specificity of explicit and implicit dysfunctional health attitudes among patients with hypochondriasis.

  11. Can implicit appraisal concepts produce emotion-specific effects? A focus on unfairness and anger.

    PubMed

    Tong, Eddie M W; Tan, Deborah H; Tan, Yan Lin

    2013-06-01

    This research examined whether the non-conscious activation of an implicit appraisal concept could affect responses associated with the corresponding emotion as predicted by appraisal theories. Explicit and implicit emotional responses were examined. We focused on implicit unfairness and its effect on anger. The results show that subliminal activation of implicit unfairness affected implicit anger responses (anger facial expression and latency responses to anger words) but not explicit anger feelings (i.e., reported anger). The non-conscious effect of implicit unfairness was specific to anger, as no effect on sadness, fear, and guilt was found. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The Intergenerational Transmission of Implicit and Explicit Attitudes Toward Smoking

    PubMed Central

    Sherman, Steven J.; Chassin, Laurie; Presson, Clark; Seo, Dong-Chul; Macy, Jonathan T.

    2009-01-01

    This study examined the intergenerational transmission of implicit and explicit attitudes toward smoking, as well as the role of these attitudes in adolescents’ smoking initiation. There was evidence of intergenerational transmission of implicit attitudes. Mothers who had more positive implicit attitudes had children with more positive implicit attitudes. In turn, these positive implicit attitudes of adolescents predicted their smoking initiation 18-months later. Moreover, these effects were obtained above and beyond the effects of explicit attitudes. These findings provide the first evidence that the intergenerational transmission of implicit cognition may play a role in the intergenerational transmission of an addictive behavior. PMID:20126293

  13. On the nature of implicit soul beliefs: when the past weighs more than the present.

    PubMed

    Anglin, Stephanie M

    2015-06-01

    Intuitive childhood beliefs in dualism may lay the foundation for implicit soul and afterlife beliefs, which may diverge from explicit beliefs formed later in adulthood. Brief Implicit Association Tests were developed to investigate the relation of implicit soul and afterlife beliefs to childhood and current beliefs. Early but not current beliefs covaried with implicit beliefs. Results demonstrated greater discrepancies in current than in childhood soul and afterlife beliefs among religious groups, and no differences in implicit beliefs. These findings suggest that implicit soul and afterlife beliefs diverge from current self-reported beliefs, stemming instead from childhood beliefs. © 2014 The British Psychological Society.

  14. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.

  15. Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective.

    PubMed

    Koch, Markus; Saphiannikova, Marina; Santer, Svetlana; Guskova, Olga

    2017-09-21

    This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light.

  16. The histone H3 N-terminal tail: a computational analysis of the free energy landscape and kinetics.

    PubMed

    Zheng, Yuqing; Cui, Qiang

    2015-05-28

    Histone tails are the short peptide protrusions outside of the nucleosome core particle and they play a critical role in regulating chromatin dynamics and gene activity. A histone H3 N-terminal tail, like other histone tails, can be covalently modified on different residues to activate or repress gene expression. Previous studies have indicated that, despite its intrinsically disordered nature, the histone H3 N-terminal tail has regions of notable secondary structural propensities. To further understand the structure-dynamics-function relationship in this system, we have carried out 75.6 μs long implicit solvent simulations and 29.3 μs long explicit solvent simulations. The extensive samplings allow us to better characterize not only the underlying free energy landscape but also kinetic properties through Markov state models (MSM). Dihedral principal component analysis (dPCA) and locally scaled diffusion map (LSDMap) analysis yield consistent results that indicate an overall flat free energy surface with several shallow basins that correspond to conformations with a high α-helical propensity in two regions of the peptide. Kinetic information extracted from Markov state models reveals rapid transitions between different metastable states with mean first passage times spanning from several hundreds of nanoseconds to hundreds of microseconds. These findings shed light on how the dynamical nature of the histone H3 N-terminal tail is related to its function. The complementary nature of dPCA, LSDMap and MSM for the analysis of biomolecules is also discussed.

  17. Changes of Explicit and Implicit Stigma in Medical Students during Psychiatric Clerkship.

    PubMed

    Wang, Peng-Wei; Ko, Chih-Hung; Chen, Cheng-Sheng; Yang, Yi-Hsin Connine; Lin, Huang-Chi; Cheng, Cheng-Chung; Tsang, Hin-Yeung; Wu, Ching-Kuan; Yen, Cheng-Fang

    2016-04-01

    This study examines the differences in explicit and implicit stigma between medical and non-medical undergraduate students at baseline; the changes of explicit and implicit stigma in medical undergraduate and non-medical undergraduate students after a 1-month psychiatric clerkship and 1-month follow-up period; and the differences in the changes of explicit and implicit stigma between medical and non-medical undergraduate students. Seventy-two medical undergraduate students and 64 non-medical undergraduate students were enrolled. All participants were interviewed at intake and after 1 month. The Taiwanese version of the Stigma Assessment Scale and the Implicit Association Test were used to measure the participants' explicit and implicit stigma. Neither explicit nor implicit stigma differed between two groups at baseline. The medical, but not the non-medical, undergraduate students had a significant decrease in explicit stigma during the 1-month period of follow-up. Neither the medical nor the non-medical undergraduate students exhibited a significant change in implicit stigma during the one-month of follow-up, however. There was an interactive effect between group and time on explicit stigma but not on implicit stigma. Explicit but not implicit stigma toward mental illness decreased in the medical undergraduate students after a psychiatric clerkship. Further study is needed to examine how to improve implicit stigma toward mental illness.

  18. Intact implicit learning in autism spectrum conditions.

    PubMed

    Brown, Jamie; Aczel, Balazs; Jiménez, Luis; Kaufman, Scott Barry; Grant, Kate Plaisted

    2010-09-01

    Individuals with autism spectrum condition (ASC) have diagnostic impairments in skills that are associated with an implicit acquisition; however, it is not clear whether ASC individuals show specific implicit learning deficits. We compared ASC and typically developing (TD) individuals matched for IQ on five learning tasks: four implicit learning tasks--contextual cueing, serial reaction time, artificial grammar learning, and probabilistic classification learning tasks--that used procedures expressly designed to minimize the use of explicit strategies, and one comparison explicit learning task, paired associates learning. We found implicit learning to be intact in ASC. Beyond no evidence of differences, there was evidence of statistical equivalence between the groups on all the implicit learning tasks. This was not a consequence of compensation by explicit learning ability or IQ. Furthermore, there was no evidence to relate implicit learning to ASC symptomatology. We conclude that implicit mechanisms are preserved in ASC and propose that it is disruption by other atypical processes that impact negatively on the development of skills associated with an implicit acquisition.

  19. The Relationship of Explicit-Implicit Evaluative Discrepancy to Exercise Dropout in Middle-Aged Adults.

    PubMed

    Berry, Tanya R; Rodgers, Wendy M; Divine, Alison; Hall, Craig

    2018-06-19

    Discrepancies between automatically activated associations (i.e., implicit evaluations) and explicit evaluations of motives (measured with a questionnaire) could lead to greater information processing to resolve discrepancies or self-regulatory failures that may affect behavior. This research examined the relationship of health and appearance exercise-related explicit-implicit evaluative discrepancies, the interaction between implicit and explicit evaluations, and the combined value of explicit and implicit evaluations (i.e., the summed scores) to dropout from a yearlong exercise program. Participants (N = 253) completed implicit health and appearance measures and explicit health and appearance motives at baseline, prior to starting the exercise program. The sum of implicit and explicit appearance measures was positively related to weeks in the program, and discrepancy between the implicit and explicit health measures was negatively related to length of time in the program. Implicit exercise evaluations and their relationships to oft-cited motives such as appearance and health may inform exercise dropout.

  20. Implicit Self-Esteem Decreases in Adolescence: A Cross-Sectional Study

    PubMed Central

    Cai, Huajian; Wu, Mingzheng; Luo, Yu L. L.; Yang, Jing

    2014-01-01

    Implicit self-esteem has remained an active research topic in both the areas of implicit social cognition and self-esteem in recent decades. The purpose of this study is to explore the development of implicit self-esteem in adolescents. A total of 599 adolescents from junior and senior high schools in East China participated in the study. They ranged in age from 11 to 18 years with a mean age of 14.10 (SD = 2.16). The degree of implicit self-esteem was assessed using the Implicit Association Test (IAT) with the improved D score as the index. Participants also completed the Rosenberg Self-Esteem Scale (α = 0.77). For all surveyed ages, implicit self-esteem was positively biased, all ts>8.59, all ps<0.001. The simple correlation between implicit self-esteem and age was significant, r = −.25, p = 1.0×10−10. A regression with implicit self-esteem as the criterion variable, and age, gender, and age × gender interaction as predictors further revealed the significant negative linear relationship between age and implicit self-esteem, β = −0.19, t = −3.20, p = 0.001. However, explicit self-esteem manifested a reverse “U” shape throughout adolescence. Implicit self-esteem in adolescence manifests a declining trend with increasing age, suggesting that it is sensitive to developmental or age-related changes. This finding enriches our understanding of the development of implicit social cognition. PMID:24587169

  1. Towards an explicit account of implicit learning.

    PubMed

    Forkstam, Christian; Petersson, Karl Magnus

    2005-08-01

    The human brain supports acquisition mechanisms that can extract structural regularities implicitly from experience without the induction of an explicit model. Reber defined the process by which an individual comes to respond appropriately to the statistical structure of the input ensemble as implicit learning. He argued that the capacity to generalize to new input is based on the acquisition of abstract representations that reflect underlying structural regularities in the acquisition input. We focus this review of the implicit learning literature on studies published during 2004 and 2005. We will not review studies of repetition priming ('implicit memory'). Instead we focus on two commonly used experimental paradigms: the serial reaction time task and artificial grammar learning. Previous comprehensive reviews can be found in Seger's 1994 article and the Handbook of Implicit Learning. Emerging themes include the interaction between implicit and explicit processes, the role of the medial temporal lobe, developmental aspects of implicit learning, age-dependence, the role of sleep and consolidation. The attempts to characterize the interaction between implicit and explicit learning are promising although not well understood. The same can be said about the role of sleep and consolidation. Despite the fact that lesion studies have relatively consistently suggested that the medial temporal lobe memory system is not necessary for implicit learning, a number of functional magnetic resonance studies have reported medial temporal lobe activation in implicit learning. This issue merits further research. Finally, the clinical relevance of implicit learning remains to be determined.

  2. Novel recombinant insulin analogue with flexible C-terminus in B chain. NMR structure of biosynthetic engineered A22G-B31K-B32R human insulin monomer in water/acetonitrile solution.

    PubMed

    Borowicz, Piotr; Bocian, Wojciech; Sitkowski, Jerzy; Bednarek, Elżbieta; Mikiewicz-Syguła, Diana; Błażej-Sosnowska, Sylwia; Bogiel, Monika; Rusek, Dorota; Kurzynoga, Dariusz; Kozerski, Lech

    2011-11-01

    A tertiary structure of recombinant A22(G)-B31(K)-B32(R)-human insulin monomer (insulin GKR) has been characterized by (1)H, (13)C NMR at natural isotopic abundance using NOESY, TOCSY, (1)H/(13)C-GHSQC, and (1)H/(13)C-GHSQC-TOCSY spectra. Translational diffusion studies indicate the monomer structure in water/acetonitrile (65/35vol.%). CSI analysis confirms existence of secondary structure motifs present in human insulin standard (HIS). Both techniques allow to establish that in this solvent recombinant insulin GKR exists as a monomer. Starting from structures calculated by the program CYANA, two different refinement protocols used molecular dynamics simulated annealing with the program AMBER; in vacuum (AMBER_VC), and including a generalized Born solvent model (AMBER_GB). From these calculations an ensemble of 20 structures of lowest energy was chosen which represents the tertiary structure of studied insulin. Here we present novel insulin with added A22(G) amino acid which interacts with β-turn environment resulting in high flexibility of B chain C-terminus. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Distinguishing the affective and cognitive bases of implicit attitudes to improve prediction of food choices.

    PubMed

    Trendel, Olivier; Werle, Carolina O C

    2016-09-01

    Eating behaviors largely result from automatic processes. Yet, in existing research, automatic or implicit attitudes toward food often fail to predict eating behaviors. Applying findings in cognitive neuroscience research, we propose and find that a central reason why implicit attitudes toward food are not good predictors of eating behaviors is that implicit attitudes are driven by two distinct constructs that often have diverging evaluative consequences: the automatic affective reactions to food (e.g., tastiness; the affective basis of implicit attitudes) and the automatic cognitive reactions to food (e.g., healthiness; the cognitive basis of implicit attitudes). More importantly, we find that the affective and cognitive bases of implicit attitudes directly and uniquely influence actual food choices under different conditions. While the affective basis of implicit attitude is the main driver of food choices, it is the only driver when cognitive resources during choice are limited. The cognitive basis of implicit attitudes uniquely influences food choices when cognitive resources during choice are plentiful but only for participants low in impulsivity. Researchers interested in automatic processes in eating behaviors could thus benefit by distinguishing between the affective and cognitive bases of implicit attitudes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Using implicit association tests for the assessment of implicit personality self-concepts of extraversion and neuroticism in schizophrenia.

    PubMed

    Suslow, Thomas; Lindner, Christian; Kugel, Harald; Egloff, Boris; Schmukle, Stefan C

    2014-08-30

    There is evidence from research based on self-report personality measures that schizophrenia patients tend to be lower in extraversion and higher in neuroticism than healthy individuals. Self-report personality measures assess aspects of the explicit self-concept. The Implicit Association Test (IAT) has been developed to assess aspects of implicit cognition such as implicit attitudes and implicit personality traits. The present study was conducted to investigate the applicability and reliability of the IAT in schizophrenia patients and test whether they differ from healthy individuals on implicitly measured extraversion and neuroticism. The IAT and the NEO-FFI were administered as implicit and explicit measures of extraversion and neuroticism to 34 schizophrenia patients and 45 healthy subjects. For all IAT scores satisfactory to good reliabilities were observed in the patient sample. In both study groups, IAT scores were not related to NEO-FFI scores. Schizophrenia patients were lower in implicit and explicit extraversion and higher in implicit and explicit neuroticism than healthy individuals. Our data show that the IAT can be reliably applied to schizophrenia patients and suggest that they differ from healthy individuals not only in their conscious representation but also in their implicit representation of the self with regard to neuroticism and extraversion-related characteristics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Implicit Associations and Explicit Expectancies toward Cannabis in Heavy Cannabis Users and Controls

    PubMed Central

    Beraha, Esther M.; Cousijn, Janna; Hermanides, Elisa; Goudriaan, Anna E.; Wiers, Reinout W.

    2013-01-01

    Cognitive biases, including implicit memory associations are thought to play an important role in the development of addictive behaviors. The aim of the present study was to investigate implicit affective memory associations in heavy cannabis users. Implicit positive-arousal, sedation, and negative associations toward cannabis were measured with three Single Category Implicit Association Tests (SC-IAT’s) and compared between 59 heavy cannabis users and 89 controls. Moreover, we investigated the relationship between these implicit affective associations and explicit expectancies, subjective craving, cannabis use, and cannabis related problems. Results show that heavy cannabis users had stronger implicit positive-arousal associations but weaker implicit negative associations toward cannabis compared to controls. Moreover, heavy cannabis users had stronger sedation but weaker negative explicit expectancies toward cannabis compared to controls. Within heavy cannabis users, more cannabis use was associated with stronger implicit negative associations whereas more cannabis use related problems was associated with stronger explicit negative expectancies, decreasing the overall difference on negative associations between cannabis users and controls. No other associations were observed between implicit associations, explicit expectancies, measures of cannabis use, cannabis use related problems, or subjective craving. These findings indicate that, in contrast to other substances of abuse like alcohol and tobacco, the relationship between implicit associations and cannabis use appears to be weak in heavy cannabis users. PMID:23801968

  6. Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice.

    PubMed

    Cunningham, William A; Nezlek, John B; Banaji, Mahzarin R

    2004-10-01

    Two studies investigated relationships among individual differences in implicit and explicit prejudice, right-wing ideology, and rigidity in thinking. The first study examined these relationships focusing on White Americans' prejudice toward Black Americans. The second study provided the first test of implicit ethnocentrism and its relationship to explicit ethnocentrism by studying the relationship between attitudes toward five social groups. Factor analyses found support for both implicit and explicit ethnocentrism. In both studies, mean explicit attitudes toward out groups were positive, whereas implicit attitudes were negative, suggesting that implicit and explicit prejudices are distinct; however, in both studies, implicit and explicit attitudes were related (r = .37, .47). Latent variable modeling indicates a simple structure within this ethnocentric system, with variables organized in order of specificity. These results lead to the conclusion that (a) implicit ethnocentrism exists and (b) it is related to and distinct from explicit ethnocentrism.

  7. Gambling and Sport: Implicit Association and Explicit Intention Among Underage Youth.

    PubMed

    Li, En; Langham, Erika; Browne, Matthew; Rockloff, Matthew; Thorne, Hannah

    2018-03-23

    This study examined whether an implicit association existed between gambling and sport among underage youth in Australia, and whether this implicit association could shape their explicit intention to gamble. A sample of 14-17 year old Australian participants completed two phases of tasks, including an implicit association test based online experiment, and a post-experiment online survey. The results supported the existence of an implicit association between gambling and sport among the participants. This implicit association became stronger when they saw sport-relevant (vs. sport-irrelevant) gambling logos, or gambling-relevant (vs. gambling-irrelevant) sport names. In addition, this implicit association was positively related to the amount of sport viewing, but only among those participants who had more favorable gambling attitudes. Lastly, gambling attitudes and advertising knowledge, rather than the implicit association, turned out to be significant predictors of the explicit intention to gamble.

  8. Hooked on a feeling: affective anti-smoking messages are more effective than cognitive messages at changing implicit evaluations of smoking

    PubMed Central

    Smith, Colin Tucker; De Houwer, Jan

    2015-01-01

    Because implicit evaluations are thought to underlie many aspects of behavior, researchers have started looking for ways to change them. We examine whether and when persuasive messages alter strongly held implicit evaluations of smoking. In smokers, an affective anti-smoking message led to more negative implicit evaluations on four different implicit measures as compared to a cognitive anti-smoking message which seemed to backfire. Additional analyses suggested that the observed effects were mediated by the feelings and emotions raised by the messages. In non-smokers, both the affective and cognitive message engendered slightly more negative implicit evaluations. We conclude that persuasive messages change implicit evaluations in a way that depends on properties of the message and of the participant. Thus, our data open new avenues for research directed at tailoring persuasive messages to change implicit evaluations. PMID:26557099

  9. Hooked on a feeling: affective anti-smoking messages are more effective than cognitive messages at changing implicit evaluations of smoking.

    PubMed

    Smith, Colin Tucker; De Houwer, Jan

    2015-01-01

    Because implicit evaluations are thought to underlie many aspects of behavior, researchers have started looking for ways to change them. We examine whether and when persuasive messages alter strongly held implicit evaluations of smoking. In smokers, an affective anti-smoking message led to more negative implicit evaluations on four different implicit measures as compared to a cognitive anti-smoking message which seemed to backfire. Additional analyses suggested that the observed effects were mediated by the feelings and emotions raised by the messages. In non-smokers, both the affective and cognitive message engendered slightly more negative implicit evaluations. We conclude that persuasive messages change implicit evaluations in a way that depends on properties of the message and of the participant. Thus, our data open new avenues for research directed at tailoring persuasive messages to change implicit evaluations.

  10. Adults' implicit associations to infant positive and negative acoustic cues: Moderation by empathy and gender.

    PubMed

    Senese, Vincenzo Paolo; Venuti, Paola; Giordano, Francesca; Napolitano, Maria; Esposito, Gianluca; Bornstein, Marc H

    2017-09-01

    In this study a novel auditory version of the Single Category Implicit Association Test (SC-IAT-A) was developed to investigate (a) the valence of adults' associations to infant cries and laughs, (b) moderation of implicit associations by gender and empathy, and (c) the robustness of implicit associations controlling for auditory sensitivity. Eighty adults (50% females) were administered two SC-IAT-As, the Empathy Quotient, and the Weinstein Noise Sensitivity Scale. Adults showed positive implicit associations to infant laugh and negative ones to infant cry; only the implicit associations with the infant laugh were negatively related to empathy scores, and no gender differences were observed. Finally, implicit associations to infant cry were affected by noise sensitivity. The SC-IAT-A is useful to evaluate the valence of implicit reactions to infant auditory cues and could provide fresh insights into understanding processes that regulate the quality of adult-infant relationships.

  11. Self-Regulation and Implicit Attitudes Toward Physical Activity Influence Exercise Behavior.

    PubMed

    Padin, Avelina C; Emery, Charles F; Vasey, Michael; Kiecolt-Glaser, Janice K

    2017-08-01

    Dual-process models of health behavior posit that implicit and explicit attitudes independently drive healthy behaviors. Prior evidence indicates that implicit attitudes may be related to weekly physical activity (PA) levels, but the extent to which self-regulation attenuates this link remains unknown. This study examined the associations between implicit attitudes and self-reported PA during leisure time among 150 highly active young adults and evaluated the extent to which effortful control (one aspect of self-regulation) moderated this relationship. Results indicated that implicit attitudes toward exercise were unrelated to average workout length among individuals with higher effortful control. However, those with lower effortful control and more negative implicit attitudes reported shorter average exercise sessions compared with those with more positive attitudes. Implicit and explicit attitudes were unrelated to total weekly PA. A combination of poorer self-regulation and negative implicit attitudes may leave individuals vulnerable to mental and physical health consequences of low PA.

  12. Using the Implicit Association Test and the Implicit Relational Assessment Procedure to Measure Attitudes toward Meat and Vegetables in Vegetarians and Meat-Eaters

    ERIC Educational Resources Information Center

    Barnes-Holmes, Dermot; Murtagh, Louise; Barnes-Holmes, Yvonne; Stewart, Ian

    2010-01-01

    The current study aimed to assess the implicit attitudes of vegetarians and non-vegetarians towards meat and vegetables, using the Implicit Association Test (IAT) and the Implicit Relational Assessment Procedure (IRAP). Both measures involved asking participants to respond, under time pressure, to pictures of meat or vegetables as either positive…

  13. I trust it, but I don't know why: effects of implicit attitudes toward automation on trust in an automated system.

    PubMed

    Merritt, Stephanie M; Heimbaugh, Heather; LaChapell, Jennifer; Lee, Deborah

    2013-06-01

    This study is the first to examine the influence of implicit attitudes toward automation on users' trust in automation. Past empirical work has examined explicit (conscious) influences on user level of trust in automation but has not yet measured implicit influences. We examine concurrent effects of explicit propensity to trust machines and implicit attitudes toward automation on trust in an automated system. We examine differential impacts of each under varying automation performance conditions (clearly good, ambiguous, clearly poor). Participants completed both a self-report measure of propensity to trust and an Implicit Association Test measuring implicit attitude toward automation, then performed an X-ray screening task. Automation performance was manipulated within-subjects by varying the number and obviousness of errors. Explicit propensity to trust and implicit attitude toward automation did not significantly correlate. When the automation's performance was ambiguous, implicit attitude significantly affected automation trust, and its relationship with propensity to trust was additive: Increments in either were related to increases in trust. When errors were obvious, a significant interaction between the implicit and explicit measures was found, with those high in both having higher trust. Implicit attitudes have important implications for automation trust. Users may not be able to accurately report why they experience a given level of trust. To understand why users trust or fail to trust automation, measurements of implicit and explicit predictors may be necessary. Furthermore, implicit attitude toward automation might be used as a lever to effectively calibrate trust.

  14. Using the Implicit Association Test to Assess Children's Implicit Attitudes toward Smoking.

    PubMed

    Andrews, Judy A; Hampson, Sarah E; Greenwald, Anthony G; Gordon, Judith; Widdop, Chris

    2010-09-01

    The development and psychometric properties of an Implicit Association Test (IAT) measuring implicit attitude toward smoking among fifth grade children were described. The IAT with "sweets" as the contrast category resulted in higher correlations with explicit attitudes than did the IAT with "healthy foods" as the contrast category. Children with family members who smoked (versus non-smoking) and children who were high in sensation seeking (versus low) had a significantly more favorable implicit attitude toward smoking. Further, implicit attitudes became less favorable after engaging in tobacco prevention activities targeting risk perceptions of addiction. Results support the reliability and validity of this version of the IAT and illustrate its usefulness in assessing young children's implicit attitude toward smoking.

  15. Using the Implicit Association Test to Assess Children's Implicit Attitudes toward Smoking

    PubMed Central

    Andrews, Judy A.; Hampson, Sarah E.; Greenwald, Anthony G.; Gordon, Judith; Widdop, Chris

    2009-01-01

    The development and psychometric properties of an Implicit Association Test (IAT) measuring implicit attitude toward smoking among fifth grade children were described. The IAT with “sweets” as the contrast category resulted in higher correlations with explicit attitudes than did the IAT with “healthy foods” as the contrast category. Children with family members who smoked (versus non-smoking) and children who were high in sensation seeking (versus low) had a significantly more favorable implicit attitude toward smoking. Further, implicit attitudes became less favorable after engaging in tobacco prevention activities targeting risk perceptions of addiction. Results support the reliability and validity of this version of the IAT and illustrate its usefulness in assessing young children's implicit attitude toward smoking. PMID:21566676

  16. Power effects on implicit prejudice and stereotyping: The role of intergroup face processing.

    PubMed

    Schmid, Petra C; Amodio, David M

    2017-04-01

    Power is thought to increase discrimination toward subordinate groups, yet its effect on different forms of implicit bias remains unclear. We tested whether power enhances implicit racial stereotyping, in addition to implicit prejudice (i.e., evaluative associations), and examined the effect of power on the automatic processing of faces during implicit tasks. Study 1 showed that manipulated high power increased both forms of implicit bias, relative to low power. Using a neural index of visual face processing (the N170 component of the ERP), Study 2 revealed that power affected the encoding of White ingroup vs. Black outgroup faces. Whereas high power increased the relative processing of outgroup faces during evaluative judgments in the prejudice task, it decreased the relative processing of outgroup faces during stereotype trait judgments. An indirect effect of power on implicit prejudice through enhanced processing of outgroup versus ingroup faces suggested a potential link between face processing and implicit bias. Together, these findings demonstrate that power can affect implicit prejudice and stereotyping as well as early processing of racial ingroup and outgroup faces.

  17. Implicit Attitudes toward the Self Over Time in Chinese Undergraduates

    PubMed Central

    Yang, Qing; Zhao, Yufang; Guan, Lili; Huang, Xiting

    2017-01-01

    Although the explicit attitudes of Chinese people toward the self over time are known (i.e., past = present < future), little is known about their implicit attitudes. Two studies were conducted to measure the implicit subjective temporal trajectory (STT) of Chinese undergraduates. Study 1 used a Go/No-go association task to measure participants’ implicit attitudes toward their past, present, and future selves. The obtained implicit STT was different from the explicit pattern found in former research. It showed that the future self was viewed to be identical to the present self and participants implicitly evaluated their present self as better than the past self. Since this comparison of the past and present selves suggested a cultural difference, we aimed to replicate this finding in Study 2. Using an implicit association test, we again found that the present self was more easily associated with positive valence than the past self. Overall, both studies reveal an implicitly inclining-flat STT (i.e., past < present = future) for Chinese undergraduates. Implications of this difference in explicit-implicit measures and the cultural differences of temporal self appraisals are discussed. PMID:29163291

  18. Implicit Motives and Men’s Perceived Constraint in Fatherhood

    PubMed Central

    Ruppen, Jessica; Waldvogel, Patricia; Ehlert, Ulrike

    2016-01-01

    Research shows that implicit motives influence social relationships. However, little is known about their role in fatherhood and, particularly, how men experience their paternal role. Therefore, this study examined the association of implicit motives and fathers’ perceived constraint due to fatherhood. Furthermore, we explored their relation to fathers’ life satisfaction. Participants were fathers with biological children (N = 276). They were asked to write picture stories, which were then coded for implicit affiliation and power motives. Perceived constraint and life satisfaction were assessed on a visual analog scale. A higher implicit need for affiliation was significantly associated with lower perceived constraint, whereas the implicit need for power had the opposite effect. Perceived constraint had a negative influence on life satisfaction. Structural equation modeling revealed significant indirect effects of implicit affiliation and power motives on life satisfaction mediated by perceived constraint. Our findings indicate that men with a higher implicit need for affiliation experience less constraint due to fatherhood, resulting in higher life satisfaction. The implicit need for power, however, results in more perceived constraint and is related to decreased life satisfaction. PMID:27933023

  19. Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K

    2007-07-07

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.

  20. Health Care Providers’ Implicit and Explicit Attitudes Toward Lesbian Women and Gay Men

    PubMed Central

    Riskind, Rachel G.; Nosek, Brian A.

    2015-01-01

    Objectives. We examined providers’ implicit and explicit attitudes toward lesbian and gay people by provider gender, sexual identity, and race/ethnicity. Methods. We examined attitudes toward heterosexual people versus lesbian and gay people in Implicit Association Test takers: 2338 medical doctors, 5379 nurses, 8531 mental health providers, 2735 other treatment providers, and 214 110 nonproviders in the United States and internationally between May 2006 and December 2012. We characterized the sample with descriptive statistics and calculated Cohen d, a standardized effect size measure, with 95% confidence intervals. Results. Among heterosexual providers, implicit preferences always favored heterosexual people over lesbian and gay people. Implicit preferences for heterosexual women were weaker than implicit preferences for heterosexual men. Heterosexual nurses held the strongest implicit preference for heterosexual men over gay men (Cohen d = 1.30; 95% confidence interval = 1.28, 1.32 among female nurses; Cohen d = 1.38; 95% confidence interval = 1.32, 1.44 among male nurses). Among all groups, explicit preferences for heterosexual versus lesbian and gay people were weaker than implicit preferences. Conclusions. Implicit preferences for heterosexual people versus lesbian and gay people are pervasive among heterosexual health care providers. Future research should investigate how implicit sexual prejudice affects care. PMID:26180976

  1. Implicit attitudes towards homosexuality: reliability, validity, and controllability of the IAT.

    PubMed

    Banse, R; Seise, J; Zerbes, N

    2001-01-01

    Two experiments were conducted to investigate the psychometric properties of an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) that was adapted to measure implicit attitudes towards homosexuality. In a first experiment, the validity of the Homosexuality-IAT was tested using a known group approach. Implicit and explicit attitudes were assessed in heterosexual and homosexual men and women (N = 101). The results provided compelling evidence for the convergent and discriminant validity of the Homosexuality-IAT as a measure of implicit attitudes. No evidence was found for two alternative explanations of IAT effects (familiarity with stimulus material and stereotype knowledge). The internal consistency of IAT scores was satisfactory (alpha s > .80), but retest correlations were lower. In a second experiment (N = 79) it was shown that uninformed participants were able to fake positive explicit but not implicit attitudes. Discrepancies between implicit and explicit attitudes towards homosexuality could be partially accounted for by individual differences in the motivation to control prejudiced behavior, thus providing independent evidence for the validity of the implicit attitude measure. Neither explicit nor implicit attitudes could be changed by persuasive messages. The results of both experiments are interpreted as evidence for a single construct account of implicit and explicit attitudes towards homosexuality.

  2. Effects of brief mindful acceptance induction on implicit dysfunctional attitudes and concordance between implicit and explicit dysfunctional attitudes.

    PubMed

    Keng, Shian-Ling; Seah, Stanley T H; Tong, Eddie M W; Smoski, Moria

    2016-08-01

    Mindfulness-based interventions have been shown to be effective in alleviating depressive symptoms. While much work has examined the effects of mindfulness training on subjective symptoms and experiences, and less is known regarding whether mindfulness training may alter relatively uncontrollable cognitive processes associated with depressed mood, particularly implicit dysfunctional attitudes. The present study examined the effects of a brief mindful acceptance induction on implicit dysfunctional attitudes and degree of concordance between implicit and explicit dysfunctional attitudes in the context of sad mood. A total of 79 adult participants with elevated depressive symptoms underwent an autobiographical mood induction procedure before being randomly assigned to mindful acceptance or thought wandering inductions. Results showed that the effect of mindful acceptance on implicit dysfunctional attitude was significantly moderated by trait mindfulness. Participants high on trait mindfulness demonstrated significant improvements in implicit dysfunctional attitudes following the mindful acceptance induction. Those low on trait mindfulness demonstrated significantly worse implicit dysfunctional attitudes following the induction. Significantly greater levels of concordance between implicit and explicit dysfunctional attitudes were observed in the mindful acceptance condition versus the thought wandering condition. The findings highlight changes in implicit dysfunctional attitudes and improvements in self-concordance as two potential mechanisms underlying the effects of mindfulness-based interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Protocols for Molecular Dynamics Simulations of RNA Nanostructures.

    PubMed

    Kim, Taejin; Kasprzak, Wojciech K; Shapiro, Bruce A

    2017-01-01

    Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.

  4. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  5. Accurate pKa calculation of the conjugate acids of alkanolamines, alkaloids and nucleotide bases by quantum chemical methods.

    PubMed

    Gangarapu, Satesh; Marcelis, Antonius T M; Zuilhof, Han

    2013-04-02

    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum model (CPCM) and universal solvation models (SMD, SM8). G3, SCS-MP2 and M11-L methods coupled with SMD and SM8 solvation models perform well for alkanolamines with mean unsigned errors below 0.20 pKa units, in all cases. Extending this method to the pKa calculation of 35 nitrogen-containing compounds spanning 12 pKa units showed an excellent correlation between experimental and computational pKa values of these 35 amines with the computationally low-cost SM8/M11-L density functional approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Naproxen Interferes with the Assembly of Aβ Oligomers Implicated in Alzheimer's Disease

    PubMed Central

    Kim, Seongwon; Chang, Wenling E.; Kumar, Rashmi; Klimov, Dmitri K.

    2011-01-01

    Experimental and epidemiological studies have shown that the nonsteroidal antiinflammatory drug naproxen may be useful in the treatment of Alzheimer's disease. To investigate the interactions of naproxen with Aβ dimers, which are the smallest cytotoxic aggregated Aβ peptide species, we use united atom implicit solvent model and exhaustive replica exchange molecular dynamics. We show that naproxen ligands bind to Aβ dimer and penetrate its volume interfering with the interpeptide interactions. As a result naproxen induces a destabilizing effect on Aβ dimer. By comparing the free-energy landscapes of naproxen interactions with Aβ dimers and fibrils, we conclude that this ligand has stronger antiaggregation potential against Aβ fibrils rather than against dimers. The analysis of naproxen binding energetics shows that the location of ligand binding sites in Aβ dimer is dictated by the Aβ amino acid sequence. Comparison of the in silico findings with experimental observations reveals potential limitations of naproxen as an effective therapeutic agent in the treatment of Alzheimer's disease. PMID:21504739

  7. Probing energetics of Abeta fibril elongation by molecular dynamics simulations.

    PubMed

    Takeda, Takako; Klimov, Dmitri K

    2009-06-03

    Using replica exchange molecular dynamics simulations and an all-atom implicit solvent model, we probed the energetics of Abeta(10-40) fibril growth. The analysis of the interactions between incoming Abeta peptides and the fibril led us to two conclusions. First, considerable variations in fibril binding propensities are observed along the Abeta sequence. The peptides in the fibril and those binding to its edge interact primarily through their N-termini. Therefore, the mutations affecting the Abeta positions 10-23 are expected to have the largest impact on fibril elongation compared with those occurring in the C-terminus and turn. Second, we performed weak perturbations of the binding free energy landscape by scanning partial deletions of side-chain interactions at various Abeta sequence positions. The results imply that strong side-chain interactions--in particular, hydrophobic contacts--impede fibril growth by favoring disordered docking of incoming peptides. Therefore, fibril elongation may be promoted by moderate reduction of Abeta hydrophobicity. The comparison with available experimental data is presented.

  8. Discriminating trpzip2 and trpzip4 peptides’ folding landscape using the two-dimensional infrared spectroscopy: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tianmin; Zhang, Ruiting; Li, Huanhuan

    2014-02-07

    We analyzed, based on the theoretical spectroscopic modeling, how the differences in the folding landscapes of two β-hairpin peptides trpzip2 and trpzip4 are reflected in their thermal unfolding infrared measurements. The isotope-edited equilibrium FTIR and two dimensional infrared spectra of the two peptides were calculated, using the nonlinear exciton propagation method, at a series of temperatures. The spectra calculations were based on the configuration distributions generated using the GB{sup OBC} implicit solvent MD simulation and the integrated tempering sampling technique. Conformational analysis revealed the different local thermal stabilities for these two peptides, which suggested the different folding landscapes. Our studymore » further suggested that the ellipticities of the isotope peaks in the coherent IR signals are more sensitive to these local stability differences compared with other spectral features such as the peak intensities. Our technique can thus be combined with the relevant experimental measurements to achieve a better understanding of the peptide folding behaviors.« less

  9. Transnational surrogacy: Canada's contradictions.

    PubMed

    Lozanski, Kristin

    2015-01-01

    Transnational commercial surrogacy represents a form of medical tourism undertaken by intended parents who seek to hire women in other countries, increasingly often in the global South, as surrogates. While much of the scholarly literature focuses on the conditions of surrogacy within host countries, such as India, there has been limited analysis of transnational surrogacy focused upon origin countries. In this article, I build upon the scholarship that explores the impact of host country structures on transnational surrogacy, with special attention to the significance of Canadian citizenship policy through analysis of legislation and policy vis-à-vis transnational commercial surrogacy. The Canadian case demonstrates clear contradictions between the legislation and policy that is enacted domestically to prohibit commercial surrogacy within Canada and legislation and policy that implicitly sanctions commercial surrogacy through the straightforward provision of citizenship for children born of such arrangements abroad. The ethical underpinnings of Canada's domestic prohibition of commercial surrogacy, which is presumed to exploit women and children and to impede gender equality, are violated in Canada's bureaucratic willingness to accept children born of transnational commercial surrogacy as citizens. Thus, the ethical discourses apply only to Canadian citizens within Canadian geography. The failure of the Canadian government to hold Canadian citizens who participate in transnational commercial surrogacy to the normative imperatives that prohibit the practice within the country, or to undertake a more nuanced, and necessarily controversial, discussion of commercial surrogacy reinforces transnational disparities in terms of whose bodies may be commodified as a measure of gendered inequality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.

    2018-04-01

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  11. Characterizing Implicit Mental Health Associations across Clinical Domains

    PubMed Central

    Werntz, Alexandra J.; Steinman, Shari A.; Glenn, Jeffrey J.; Nock, Matthew K.; Teachman, Bethany A.

    2016-01-01

    Background and objectives Implicit associations are relatively uncontrollable associations between concepts in memory. The current investigation focuses on implicit associations in four mental health domains (alcohol use, anxiety, depression, and eating disorders) and how these implicit associations: a) relate to explicit associations and b) self-reported clinical symptoms within the same domains, and c) vary based on demographic characteristics (age, gender, race, ethnicity, and education). Methods Participants (volunteers over age 18 to a research website) completed implicit association (Implicit Association Tests), explicit association (self+psychopathology or attitudes toward food, using semantic differential items), and symptom measures at the Project Implicit Mental Health website tied to: alcohol use (N=12,387), anxiety (N=21,304), depression (N=24,126), or eating disorders (N=10,115). Results Within each domain, implicit associations showed small to moderate associations with explicit associations and symptoms, and predicted self-reported symptoms beyond explicit associations. In general, implicit association strength varied little by race and ethnicity, but showed small ties to age, gender, and education. Limitations This research was conducted on a public research and education website, where participants could take more than one of the studies. Conclusions Among a large and diverse sample, implicit associations in the four domains are congruent with explicit associations and self-reported symptoms, and also add to our prediction of self-reported symptoms over and above explicit associations, pointing to the potential future clinical utility and validity of using implicit association measures with diverse populations. PMID:26962979

  12. Defensive function of persecutory delusion and discrepancy between explicit and implicit self-esteem in schizophrenia: study using the Brief Implicit Association Test

    PubMed Central

    Nakamura, Mitsuo; Hayakawa, Tomomi; Okamura, Aiko; Kohigashi, Mutsumi; Fukui, Kenji; Narumoto, Jin

    2015-01-01

    Background If delusions serve as a defense mechanism in schizophrenia patients with paranoia, then they should show normal or high explicit self-esteem and low implicit self-esteem. However, the results of previous studies are inconsistent. One possible explanation for this inconsistency is that there are two types of paranoia, “bad me” (self-blaming) paranoia and “poor me” (non-self-blaming) paranoia. We thus examined implicit and explicit self-esteem and self-blaming tendency in patients with schizophrenia and schizoaffective disorder. We hypothesized that patients with paranoia would show lower implicit self-esteem and only those with non-self-blaming paranoia would experience a discrepancy between explicit and implicit self-esteem. Methods Participants consisted of patients with schizophrenia and schizoaffective disorder recruited from a day hospital (N=71). Participants were assessed for psychotic symptoms, using the Brief Psychiatric Rating Scale (BPRS), and self-blaming tendency, using the brief COPE. We also assessed explicit self-esteem, using the Rosenberg Self-Esteem Scale (RSES), implicit self-esteem, using Brief Implicit Association Test (BIAT), and discrepancy between explicit and implicit self-esteem. Results Contrary to our hypothesis, implicit self-esteem in paranoia and nonparanoia showed no statistical difference. As expected, only patients with non-self-blaming paranoia experienced a discrepancy between explicit and implicit self-esteem; other groups showed no such discrepancy. Conclusion These results suggest that persecutory delusion plays a defensive role in non-self-blaming paranoia. PMID:25565849

  13. Characterizing implicit mental health associations across clinical domains.

    PubMed

    Werntz, Alexandra J; Steinman, Shari A; Glenn, Jeffrey J; Nock, Matthew K; Teachman, Bethany A

    2016-09-01

    Implicit associations are relatively uncontrollable associations between concepts in memory. The current investigation focuses on implicit associations in four mental health domains (alcohol use, anxiety, depression, and eating disorders) and how these implicit associations: a) relate to explicit associations and b) self-reported clinical symptoms within the same domains, and c) vary based on demographic characteristics (age, gender, race, ethnicity, and education). Participants (volunteers over age 18 to a research website) completed implicit association (Implicit Association Tests), explicit association (self + psychopathology or attitudes toward food, using semantic differential items), and symptom measures at the Project Implicit Mental Health website tied to: alcohol use (N = 12,387), anxiety (N = 21,304), depression (N = 24,126), or eating disorders (N = 10,115). Within each domain, implicit associations showed small to moderate associations with explicit associations and symptoms, and predicted self-reported symptoms beyond explicit associations. In general, implicit association strength varied little by race and ethnicity, but showed small ties to age, gender, and education. This research was conducted on a public research and education website, where participants could take more than one of the studies. Among a large and diverse sample, implicit associations in the four domains are congruent with explicit associations and self-reported symptoms, and also add to our prediction of self-reported symptoms over and above explicit associations, pointing to the potential future clinical utility and validity of using implicit association measures with diverse populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Not explicit but implicit memory is influenced by individual perception style

    PubMed Central

    Tsushima, Yoshiaki

    2018-01-01

    Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style. PMID:29370212

  15. Not explicit but implicit memory is influenced by individual perception style.

    PubMed

    Hine, Kyoko; Tsushima, Yoshiaki

    2018-01-01

    Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style.

  16. [Effects of an implicit internal working model on attachment in information processing assessed using Go/No-Go Association Task].

    PubMed

    Fujii, Tsutomu; Uebuchi, Hisashi; Yamada, Kotono; Saito, Masahiro; Ito, Eriko; Tonegawa, Akiko; Uebuchi, Marie

    2015-06-01

    The purposes of the present study were (a) to use both a relational-anxiety Go/No-Go Association Task (GNAT) and an avoidance-of-intimacy GNAT in order to assess an implicit Internal Working Model (IWM) of attachment; (b) to verify the effects of both measured implicit relational anxiety and implicit avoidance of intimacy on information processing. The implicit IWM measured by GNAT differed from the explicit IWM measured by questionnaires in terms of the effects on information processing. In particular, in subliminal priming tasks involving with others, implicit avoidance of intimacy predicted accelerated response times with negative stimulus words about attachment. Moreover, after subliminally priming stimulus words about self, implicit relational anxiety predicted delayed response times with negative stimulus words about attachment.

  17. Changes of explicitly and implicitly measured self-esteem in the treatment of major depression: evidence for implicit self-esteem compensation.

    PubMed

    Wegener, Ingo; Geiser, Franziska; Alfter, Susanne; Mierke, Jan; Imbierowicz, Katrin; Kleiman, Alexandra; Koch, Anne Sarah; Conrad, Rupert

    2015-04-01

    Self-esteem has been claimed to be an important factor in the development and maintenance of depression. Whereas explicit self-esteem is usually reduced in depressed individuals, studies on implicitly measured self-esteem in depression exhibit a more heterogeneous pattern of results, and the role of implicit self-esteem in depression is still ambiguous. Previous research on implicit self-esteem compensation (ISEC) revealed that implicit self-esteem can mirror processes of self-esteem compensation under conditions that threaten self-esteem. We assume that depressed individuals experience a permanent threat to their selves resulting in enduring processes of ISEC. We hypothesize that ISEC as measured by implicit self-esteem will decrease when individuals recover from depression. 45 patients with major depression received an integrative in-patient treatment in the Psychosomatic University Hospital Bonn, Germany. Depression was measured by the depression score of the Hospital Anxiety and Depression Scale (HADS-D). Self-esteem was assessed explicitly using the Rosenberg Self-Esteem Scale (RSES) and implicitly by the Implicit Association Test (IAT) and the Name Letter Test (NLT). As expected for a successful treatment of depression, depression scores declined during the eight weeks of treatment and explicit self-esteem rose. In line with our hypothesis, both measures of implicit self-esteem decreased, indicating reduced processes of ISEC. It still remains unclear, under which conditions there is an overlap of measures of implicit and explicit self-esteem. The results lend support to the concept of ISEC and demonstrate the relevance of implicit self-esteem and self-esteem compensation for the understanding of depression. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems.

    PubMed

    Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W

    2012-09-01

    Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Medical School Experiences Associated with Change in Implicit Racial Bias Among 3547 Students: A Medical Student CHANGES Study Report.

    PubMed

    van Ryn, Michelle; Hardeman, Rachel; Phelan, Sean M; Burgess, Diana J; Dovidio, John F; Herrin, Jeph; Burke, Sara E; Nelson, David B; Perry, Sylvia; Yeazel, Mark; Przedworski, Julia M

    2015-12-01

    Physician implicit (unconscious, automatic) bias has been shown to contribute to racial disparities in medical care. The impact of medical education on implicit racial bias is unknown. To examine the association between change in student implicit racial bias towards African Americans and student reports on their experiences with 1) formal curricula related to disparities in health and health care, cultural competence, and/or minority health; 2) informal curricula including racial climate and role model behavior; and 3) the amount and favorability of interracial contact during school. Prospective observational study involving Web-based questionnaires administered during first (2010) and last (2014) semesters of medical school. A total of 3547 students from a stratified random sample of 49 U.S. medical schools. Change in implicit racial attitudes as assessed by the Black-White Implicit Association Test administered during the first semester and again during the last semester of medical school. In multivariable modeling, having completed the Black-White Implicit Association Test during medical school remained a statistically significant predictor of decreased implicit racial bias (-5.34, p ≤ 0.001: mixed effects regression with random intercept across schools). Students' self-assessed skills regarding providing care to African American patients had a borderline association with decreased implicit racial bias (-2.18, p = 0.056). Having heard negative comments from attending physicians or residents about African American patients (3.17, p = 0.026) and having had unfavorable vs. very favorable contact with African American physicians (18.79, p = 0.003) were statistically significant predictors of increased implicit racial bias. Medical school experiences in all three domains were independently associated with change in student implicit racial attitudes. These findings are notable given that even small differences in implicit racial attitudes have been shown to affect behavior and that implicit attitudes are developed over a long period of repeated exposure and are difficult to change.

  20. Implicit Learning as an Ability

    ERIC Educational Resources Information Center

    Kaufman, Scott Barry; DeYoung, Caroline G.; Gray, Jeremy R.; Jimenez, Luis; Brown, Jamie; Mackintosh, Nicholas

    2010-01-01

    The ability to automatically and implicitly detect complex and noisy regularities in the environment is a fundamental aspect of human cognition. Despite considerable interest in implicit processes, few researchers have conceptualized implicit learning as an ability with meaningful individual differences. Instead, various researchers (e.g., Reber,…

  1. Implicit attitudes, emotions, and helping intentions of mental health workers toward their clients.

    PubMed

    Brener, Loren; Rose, Grenville; von Hippel, Courtney; Wilson, Hannah

    2013-06-01

    The attitudes of mental health care workers toward their clients may influence the quality of care they provide. There is growing recognition of the role of implicit attitudes in behavior toward people with stigmatized illnesses, such as mental illness, and of the need to measure these separately from explicit attitudes. Seventy-four mental health workers completed implicit and explicit measure of attitudes toward people with mental illness. The participants were also asked about their intention to help people with mental illness and their emotional reactions toward people with a mental illness. The findings show that the implicit attitudes of the health workers toward clients with a mental illness are somewhat negative despite the fact that their explicit attitudes are somewhat positive. Although both implicit and explicit attitudes predicted negative emotions, only implicit attitudes were related to helping intentions. This study highlights the association between implicit attitudes and behavioral intentions and confirms the importance of addressing implicit attitudes in mental health research.

  2. Cultural variation in implicit independence: An extension of Kitayama et al. ().

    PubMed

    Park, Jiyoung; Uchida, Yukiko; Kitayama, Shinobu

    2016-08-01

    Previous research shows that European Americans are consistently more independent (or less interdependent) than Japanese when implicit indices are used to assess independence (vs. interdependence). The present work extended this evidence by including a novel implicit association test (IAT), as an index of implicit attitude towards independence and interdependence. Consistent with the previous findings, as compared to Japanese, Americans were significantly higher in multiple indices of implicit independence (vs. interdependence) including personal (vs. social) self-definition, experience of disengaging (vs. engaging) emotions and personal (vs. social) form of happiness. Furthermore, as compared to Japanese, Americans had a significantly more positive implicit attitude towards independence assessed with the IAT. As also observed in the previous research, explicit measures showed inconsistent cross-cultural patterns. Lastly, we observed little statistical within-culture coherence among the implicit measures of independence (vs. interdependence), consistent with a view that the implicit indices capture alternative ways for individuals to achieve the cultural mandate of independence or interdependence. © 2015 International Union of Psychological Science.

  3. Implicit motives, explicit traits, and task and contextual performance at work.

    PubMed

    Lang, Jonas W B; Zettler, Ingo; Ewen, Christian; Hülsheger, Ute R

    2012-11-01

    Personality psychologists have long argued that explicit traits (as measured by questionnaires) channel the expression of implicit motives (as measured by coding imaginative verbal behavior) such that both interact in the prediction of relevant life outcome variables. In the present research, we apply these ideas in the context of industrial and organizational psychology and propose that 2 explicit traits work as channels for the expression of 3 core implicit motives in task and contextual job performance (extraversion for implicit affiliation and implicit power; explicit achievement for implicit achievement). As a test of these theoretical ideas, we report a study in which employees (N = 241) filled out a questionnaire booklet and worked on an improved modern implicit motive measure, the operant motive test. Their supervisors rated their task and contextual performance. Results support 4 of the 6 theoretical predictions and show that interactions between implicit motives and explicit traits increase the explained criterion variance in both task and contextual performance. (c) 2012 APA, all rights reserved.

  4. Implicit and explicit attitudes towards conventional and complementary and alternative medicine treatments: Introduction of an Implicit Association Test.

    PubMed

    Green, James A; Hohmann, Cynthia; Lister, Kelsi; Albertyn, Riani; Bradshaw, Renee; Johnson, Christine

    2016-06-01

    This study examined associations between anticipated future health behaviour and participants' attitudes. Three Implicit Association Tests were developed to assess safety, efficacy and overall attitude. They were used to examine preference associations between conventional versus complementary and alternative medicine among 186 participants. A structural equation model suggested only a single implicit association, rather than three separate domains. However, this single implicit association predicted additional variance in anticipated future use of complementary and alternative medicine beyond explicit. Implicit measures should give further insight into motivation for complementary and alternative medicine use. © The Author(s) 2014.

  5. Implicit cognitive processes in psychopathology: an introduction.

    PubMed

    Wiers, Reinout W; Teachman, Bethany A; De Houwer, Jan

    2007-06-01

    Implicit or automatic processes are important in understanding the etiology and maintenance of psychopathological problems. In order to study implicit processes in psychopathology, measures are needed that are valid and reliable when applied to clinical problems. One of the main topics in this special issue concerns the development and validation of new or modified implicit tests in different domains of psychopathology. The other main topic concerns the prediction of clinical outcomes and new ways to directly influence implicit processes in psychopathology. We summarize the contributions to this special issue and discuss how they further our knowledge of implicit processes in psychopathology and how to measure them.

  6. Examining the Presence, Consequences, and Reduction of Implicit Bias in Health Care: A Narrative Review

    PubMed Central

    Zestcott, Colin A.; Blair, Irene V.; Stone, Jeff

    2016-01-01

    Recent evidence suggests that one possible cause of disparities in health outcomes for stigmatized groups is the implicit biases held by health care providers. In response, several health care organizations have called for, and developed, new training in implicit bias for their providers. This review examines current evidence on the role that provider implicit bias may play in health disparities, and whether training in implicit bias can effectively reduce the biases that providers exhibit. Directions for future research on the presence and consequences of provider implicit bias, and best practices for training to reduce such bias, will be discussed. PMID:27547105

  7. Implicit and explicit preferences for physical attractiveness in a romantic partner: a double dissociation in predictive validity.

    PubMed

    Eastwick, Paul W; Eagly, Alice H; Finkel, Eli J; Johnson, Sarah E

    2011-11-01

    Five studies develop and examine the predictive validity of an implicit measure of the preference for physical attractiveness in a romantic partner. Three hypotheses were generally supported. First, 2 variants of the go/no-go association task revealed that participants, on average, demonstrate an implicit preference (i.e., a positive spontaneous affective reaction) for physical attractiveness in a romantic partner. Second, these implicit measures were not redundant with a traditional explicit measure: The correlation between these constructs was .00 on average, and the implicit measures revealed no reliable sex differences, unlike the explicit measure. Third, explicit and implicit measures exhibited a double dissociation in predictive validity. Specifically, explicit preferences predicted the extent to which attractiveness was associated with participants' romantic interest in opposite-sex photographs but not their romantic interest in real-life opposite-sex speed-daters or confederates. Implicit preferences showed the opposite pattern. This research extends prior work on implicit processes in romantic relationships and offers the first demonstration that any measure of a preference for a particular characteristic in a romantic partner (an implicit measure of physical attractiveness, in this case) predicts individuals' evaluation of live potential romantic partners.

  8. Implicit Statistical Learning and Language Skills in Bilingual Children

    ERIC Educational Resources Information Center

    Yim, Dongsun; Rudoy, John

    2013-01-01

    Purpose: Implicit statistical learning in 2 nonlinguistic domains (visual and auditory) was used to investigate (a) whether linguistic experience influences the underlying learning mechanism and (b) whether there are modality constraints in predicting implicit statistical learning with age and language skills. Method: Implicit statistical learning…

  9. Implicit affectivity in patients with borderline personality disorder.

    PubMed

    Dukalski, Bibiana; Quirin, Markus; Kersting, Anette; Suslow, Thomas; Donges, Uta-Susan

    2017-01-01

    It has been argued that borderline personality disorder (BPD) is related to an enhanced affective reactivity. According to findings from research based on self-report, individuals with BPD develop and feel more negative and less positive affect than healthy individuals. Implicit affectivity, which can be measured using indirect assessment methods, relates to processes of the impulsive, intuitive system. In the present study, implicit and explicit affectivity was examined in patients suffering from BPD compared to healthy persons. Thirty-five women with BPD and 35 healthy women participated in the study. Implicit affectivity was assessed using the Implicit Positive and Negative Affect Test (IPANAT). Measures of explicit state and trait affectivity were also administered. BPD women had lower explicit positive state and trait affect scores and higher negative state and trait affect scores than healthy women. They had also lower implicit positive affect but they did not differ from healthy women regarding implicit negative affect. Total number of comorbid disorders was correlated with both implicit positive and implicit negative affect. According to our data, BPD patients exhibit reduced implicit positive affect as well as reduced explicit positive affect compared to healthy persons. According to our IPANAT data, BPD patients are characterized by a normal disposition to develop negative affective reactions which is in line with a number of findings from psycho-physiological research on BPD. Self-reports of negative affectivity in BPD could be biased by negative distortion.

  10. Context Effects of Alcohol Availability at Home: Implicit Alcohol Associations and the Prediction of Adolescents' Drinking Behavior.

    PubMed

    Peeters, Margot; Koning, Ina; Monshouwer, Karin; Vollebergh, Wilma A M; Wiers, Reinout W

    2016-09-01

    Recent studies suggest that the predictive effect of implicit alcohol associations is context dependent. Findings indicate that implicit associations are more easily retrieved in an alcohol-associated setting or context (e.g., bar) compared with a neutral setting. In line with this reasoning, we hypothesized that alcohol availability at home might moderate the relationship between implicit alcohol associations and future drinking behavior of adolescents. Participants were 262 at-risk adolescents (235 boys, 27 girls, adolescents with externalizing behavioral problems) with a mean age of 14.11 years (SD = 0.86, age range: 12-16 years) at baseline. Adolescents completed a questionnaire and a modified version of the Implicit Association Test (i.e., Single Category Implicit Association Test; SC-IAT). Stronger implicit alcohol associations predicted increase in frequency of alcohol use, only in adolescents who indicated that alcohol was available at home. No moderating effects were found for increase in quantity of alcohol use and problematic alcohol use, suggesting that implicit alcohol associations particularly influence the decision of whether to drink in adolescence. The findings illustrate that the availability of alcohol in the home setting influences adolescents' implicit alcohol associations and consequently affects the frequency of alcohol use. In this way, alcohol availability at home may be an important contextual factor to consider when examining the effect of implicit alcohol associations on the future drinking behavior of adolescents.

  11. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors.

    PubMed

    Forrest, Lauren N; Smith, April R; Fussner, Lauren M; Dodd, Dorian R; Clerkin, Elise M

    2016-01-01

    "Fast" (i.e., implicit) processing is relatively automatic; "slow" (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence.

  12. Dissociation between implicit and explicit expectancies of cannabis use in adolescence.

    PubMed

    Schmits, Emilie; Maurage, Pierre; Thirion, Romain; Quertemont, Etienne

    2015-12-30

    Cannabis is one of the most commonly drugs used by teenagers. Expectancies about its effects play a crucial role in cannabis consumption. Various tools have been used to assess expectancies, mainly self-report questionnaires measuring explicit expectancies, but implicit measures based on experimental tasks have also been developed, measuring implicit expectancies. The aim of this study was to simultaneously assess implicit/explicit expectancies related to cannabis among adolescent users and non-users. 130 teenagers attending school (55 girls) were enrolled (Age: M=16.40 years); 43.84% had never used cannabis ("non-users") and 56.16% had used cannabis ("users"). They completed self-report questionnaires evaluating cannabis use, cannabis-related problems, effect expectancies (explicit expectancies), alcohol use, social and trait anxiety, depression, as well as three Implicit Association Tests (IAT) assessing implicit expectancies. Adolescents manifested more implicit affective associations (relaxation, excitation, negative) than neutral ones regarding cannabis. These were not related to explicit expectancies. Cannabis users reported more implicit relaxation expectancies and less negative explicit expectancies than non-users. The frequency of use and related problems were positively associated with the explicit expectancies regarding relaxation and enhancement, and were negatively associated with negative explicit expectancies and negative implicit expectancies. Findings indicate that implicit and explicit expectancies play different roles in cannabis use by adolescents. The implications for experimentation and prevention are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors

    PubMed Central

    Forrest, Lauren N.; Smith, April R.; Fussner, Lauren M.; Dodd, Dorian R.; Clerkin, Elise M.

    2015-01-01

    Objectives ”Fast” (i.e., implicit) processing is relatively automatic; “slow” (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. Design We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Method Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Results Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Conclusion Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence. PMID:26195916

  14. Decisions among the Undecided: Implicit Attitudes Predict Future Voting Behavior of Undecided Voters

    PubMed Central

    Lundberg, Kristjen B.; Payne, B. Keith

    2014-01-01

    Implicit attitudes have been suggested as a key to unlock the hidden preferences of undecided voters. Past research, however, offered mixed support for this hypothesis. The present research used a large nationally representative sample and a longitudinal design to examine the predictive utility of implicit and explicit attitude measures in the 2008 U.S. presidential election. In our analyses, explicit attitudes toward candidates predicted voting better for decided than undecided voters, but implicit candidate attitudes were predictive of voting for both decided and undecided voters. Extending our examination to implicit and explicit racial attitudes, we found the same pattern. Taken together, these results provide convergent evidence that implicit attitudes predict voting about as well for undecided as for decided voters. We also assessed a novel explanation for these effects by evaluating whether implicit attitudes may predict the choices of undecided voters, in part, because they are neglected when people introspect about their confidence. Consistent with this idea, we found that the extremity of explicit but not implicit attitudes was associated with greater confidence. These analyses shed new light on the utility of implicit measures in predicting future behavior among individuals who feel undecided. Considering the prior studies together with this new evidence, the data seem to be consistent that implicit attitudes may be successful in predicting the behavior of undecided voters. PMID:24489666

  15. Implicit Racial/Ethnic Bias Among Health Care Professionals and Its Influence on Health Care Outcomes: A Systematic Review.

    PubMed

    Hall, William J; Chapman, Mimi V; Lee, Kent M; Merino, Yesenia M; Thomas, Tainayah W; Payne, B Keith; Eng, Eugenia; Day, Steven H; Coyne-Beasley, Tamera

    2015-12-01

    In the United States, people of color face disparities in access to health care, the quality of care received, and health outcomes. The attitudes and behaviors of health care providers have been identified as one of many factors that contribute to health disparities. Implicit attitudes are thoughts and feelings that often exist outside of conscious awareness, and thus are difficult to consciously acknowledge and control. These attitudes are often automatically activated and can influence human behavior without conscious volition. We investigated the extent to which implicit racial/ethnic bias exists among health care professionals and examined the relationships between health care professionals' implicit attitudes about racial/ethnic groups and health care outcomes. To identify relevant studies, we searched 10 computerized bibliographic databases and used a reference harvesting technique. We assessed eligibility using double independent screening based on a priori inclusion criteria. We included studies if they sampled existing health care providers or those in training to become health care providers, measured and reported results on implicit racial/ethnic bias, and were written in English. We included a total of 15 studies for review and then subjected them to double independent data extraction. Information extracted included the citation, purpose of the study, use of theory, study design, study site and location, sampling strategy, response rate, sample size and characteristics, measurement of relevant variables, analyses performed, and results and findings. We summarized study design characteristics, and categorized and then synthesized substantive findings. Almost all studies used cross-sectional designs, convenience sampling, US participants, and the Implicit Association Test to assess implicit bias. Low to moderate levels of implicit racial/ethnic bias were found among health care professionals in all but 1 study. These implicit bias scores are similar to those in the general population. Levels of implicit bias against Black, Hispanic/Latino/Latina, and dark-skinned people were relatively similar across these groups. Although some associations between implicit bias and health care outcomes were nonsignificant, results also showed that implicit bias was significantly related to patient-provider interactions, treatment decisions, treatment adherence, and patient health outcomes. Implicit attitudes were more often significantly related to patient-provider interactions and health outcomes than treatment processes. Most health care providers appear to have implicit bias in terms of positive attitudes toward Whites and negative attitudes toward people of color. Future studies need to employ more rigorous methods to examine the relationships between implicit bias and health care outcomes. Interventions targeting implicit attitudes among health care professionals are needed because implicit bias may contribute to health disparities for people of color.

  16. Implicit Racial/Ethnic Bias Among Health Care Professionals and Its Influence on Health Care Outcomes: A Systematic Review

    PubMed Central

    Hall, William J.; Lee, Kent M.; Merino, Yesenia M.; Thomas, Tainayah W.; Payne, B. Keith; Eng, Eugenia; Day, Steven H.; Coyne-Beasley, Tamera

    2015-01-01

    Background. In the United States, people of color face disparities in access to health care, the quality of care received, and health outcomes. The attitudes and behaviors of health care providers have been identified as one of many factors that contribute to health disparities. Implicit attitudes are thoughts and feelings that often exist outside of conscious awareness, and thus are difficult to consciously acknowledge and control. These attitudes are often automatically activated and can influence human behavior without conscious volition. Objectives. We investigated the extent to which implicit racial/ethnic bias exists among health care professionals and examined the relationships between health care professionals’ implicit attitudes about racial/ethnic groups and health care outcomes. Search Methods. To identify relevant studies, we searched 10 computerized bibliographic databases and used a reference harvesting technique. Selection Criteria. We assessed eligibility using double independent screening based on a priori inclusion criteria. We included studies if they sampled existing health care providers or those in training to become health care providers, measured and reported results on implicit racial/ethnic bias, and were written in English. Data Collection and Analysis. We included a total of 15 studies for review and then subjected them to double independent data extraction. Information extracted included the citation, purpose of the study, use of theory, study design, study site and location, sampling strategy, response rate, sample size and characteristics, measurement of relevant variables, analyses performed, and results and findings. We summarized study design characteristics, and categorized and then synthesized substantive findings. Main Results. Almost all studies used cross-sectional designs, convenience sampling, US participants, and the Implicit Association Test to assess implicit bias. Low to moderate levels of implicit racial/ethnic bias were found among health care professionals in all but 1 study. These implicit bias scores are similar to those in the general population. Levels of implicit bias against Black, Hispanic/Latino/Latina, and dark-skinned people were relatively similar across these groups. Although some associations between implicit bias and health care outcomes were nonsignificant, results also showed that implicit bias was significantly related to patient–provider interactions, treatment decisions, treatment adherence, and patient health outcomes. Implicit attitudes were more often significantly related to patient–provider interactions and health outcomes than treatment processes. Conclusions. Most health care providers appear to have implicit bias in terms of positive attitudes toward Whites and negative attitudes toward people of color. Future studies need to employ more rigorous methods to examine the relationships between implicit bias and health care outcomes. Interventions targeting implicit attitudes among health care professionals are needed because implicit bias may contribute to health disparities for people of color. PMID:26469668

  17. Racial Categorization Predicts Implicit Racial Bias in Preschool Children.

    PubMed

    Setoh, Peipei; Lee, Kristy J J; Zhang, Lijun; Qian, Miao K; Quinn, Paul C; Heyman, Gail D; Lee, Kang

    2017-06-12

    This research investigated the relation between racial categorization and implicit racial bias in majority and minority children. Chinese and Indian 3- to 7-year-olds from Singapore (N = 158) categorized Chinese and Indian faces by race and had their implicit and explicit racial biases measured. Majority Chinese children, but not minority Indian children, showed implicit bias favoring own race. Regardless of ethnicity, children's racial categorization performance correlated positively with implicit racial bias. Also, Chinese children, but not Indian children, displayed explicit bias favoring own race. Furthermore, children's explicit bias was unrelated to racial categorization performance and implicit bias. The findings support a perceptual-social linkage in the emergence of implicit racial bias and have implications for designing programs to promote interracial harmony. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  18. Implicit Bias and Mental Health Professionals: Priorities and Directions for Research.

    PubMed

    Merino, Yesenia; Adams, Leslie; Hall, William J

    2018-06-01

    This Open Forum explores the role of implicit bias along the mental health care continuum, which may contribute to mental health disparities among vulnerable populations. Emerging research shows that implicit bias is prevalent among service providers. These negative or stigmatizing attitudes toward population groups are held at a subconscious level and are automatically activated during practitioner-client encounters. The authors provide examples of how implicit bias may impede access to care, clinical screening and diagnosis, treatment processes, and crisis response. They also discuss how implicit attitudes may manifest at the intersection between mental health and criminal justice institutions. Finally, they discuss the need for more research on the impact of implicit bias on health practices throughout the mental health system, including the development of interventions to address implicit bias among mental health professionals.

  19. A comparison of physician implicit racial bias towards adults versus children

    PubMed Central

    Johnson, Tiffani J.; Winger, Daniel G.; Hickey, Robert W.; Switzer, Galen E.; Miller, Elizabeth; Nguyen, Margaret B.; Saladino, Richard A.; Hausmann, Leslie R. M.

    2016-01-01

    Background and Objectives The general population and most physicians have implicit racial bias against black adults. Pediatricians also have implicit bias against black adults, albeit less than other specialties. There is no published research on the implicit racial attitudes of pediatricians or other physicians towards children. Our objectives were to compare implicit racial bias towards adults versus children among resident physicians working in a pediatric emergency department (ED), and to assess whether bias varied by specialty (pediatrics, emergency medicine, or other), gender, race, age, and year of training. Methods We measured implicit racial bias of residents before a pediatric ED shift using the Adult and Child Race Implicit Association Tests (IATs). Generalized linear models compared Adult and Child IAT scores and determined the association of participant demographics with Adult and Child IAT scores. Results Among 91 residents, we found moderate pro-white/anti-black bias on both the Adult (M=0.49, SD=0.34) and Child Race IAT (M=0.55, SD=0.37). There was no significant difference between Adult and Child Race IAT scores (difference=0.06, p=0.15). Implicit bias was not associated with resident demographic characteristics, including specialty. Conclusions This is the first study demonstrating that resident physicians have implicit racial bias against black children, similar to levels of bias against black adults. Bias in our study did not vary by resident demographic characteristics, including specialty, suggesting that pediatric residents are as susceptible as other physicians to implicit bias. Future studies are needed to explore how physicians’ implicit attitudes towards parents and children may impact inequities in pediatric healthcare. PMID:27620844

  20. Examining the Implicit Relational Assessment Procedure: Four Preliminary Studies

    ERIC Educational Resources Information Center

    Drake, Chad E.; Kellum, Karen Kate; Wilson, Kelly G.; Luoma, Jason B.; Weinstein, Jonathan H.; Adams, Catherine H.

    2010-01-01

    The Implicit Relational Assessment Procedure (IRAP) is a relatively new measure of implicit cognition that tests cognition as relational behavior instead of an associative activity and thus may provide a more specific measure of cognitive repertoires, including those for social biases, than better known implicit measures such as the Implicit…

  1. Explicit versus Implicit Stereotypes: "What Biases Do I Really Hold?"

    ERIC Educational Resources Information Center

    Morgan, Melanie

    2008-01-01

    This article presents an activity in which students explore the impact of implicit stereotypes in everyday interactions while examining issues of attitudinal measurement. Social cognitions that underlie stereotypes often operate implicitly and even unconsciously. Consequently, these implicit attitudes have the potential to affect the way people…

  2. Implicit Referential Meaning with Reference to English Arabic Translation

    ERIC Educational Resources Information Center

    Al-Zughoul, Basem

    2014-01-01

    The purpose of this study is to investigate how English implicit referential meaning is translated into Arabic by analyzing sentences containing implicit referential meanings found in the novel "Harry Potter and the Prisoner of Azkaban". The analysis shows that the translation of English implicit referential meaning into Arabic can be…

  3. Chinese Undergraduates' Explicit and Implicit Attitudes toward Persons with Disabilities

    ERIC Educational Resources Information Center

    Chen, Shuang; Ma, Li; Zhang, Jian-Xin

    2011-01-01

    The present study is aimed at examining implicit and explicit attitudes toward persons with disabilities among Chinese college students. The "Implicit Association Test" was used to measure their implicit attitudes, whereas their explicit attitudes toward persons with disabilities were measured by using a scale of three items.…

  4. A classical molecular dynamics investigation of the free energy and structure of short polyproline conformers

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Babin, Volodymyr; Roland, Christopher; Sagui, Celeste

    2010-09-01

    Folded polyproline peptides can exist as either left-(PPII) or right-handed (PPI) helices, depending on their environment. In this work, we have characterized the conformations and the free energy landscapes of Ace-(Pro)n-Nme, n =2,3,…,9, and 13 peptides both in vacuo and in an implicit solvent environment. In order to enhance the sampling provided by regular molecular dynamics simulations, we have used the recently developed adaptively biased molecular dynamics method—which provides an accurate description of the free energy landscapes in terms of a set of relevant collective variables—combined with Hamiltonian and temperature replica exchange molecular dynamics methods. The collective variables, which are chosen so as to reflect the stable structures and the "slow modes" of the polyproline system, were based primarily on properties of length and of the cis/trans isomerization associated with the prolyl bonds. Results indicate that the space of peptide structures is characterized not just by pure PPII and PPI structures, but rather by a broad distribution of stable minima with similar free energies. These results are in agreement with recent experimental work. In addition, we have used steered molecular dynamics methods in order to quantitatively estimate the free energy difference of PPI and PPII for peptides of the length n =2,…,5 in vacuo and implicit water and qualitatively investigate transition pathways and mechanisms for the PPII to PPI transitions. A zipper-like mechanism, starting from either the center of the peptide or the amidated end, appear to be the most likely mechanisms for the PPII→PPI transition for the longer peptides.

  5. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model

    NASA Astrophysics Data System (ADS)

    Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben

    2011-10-01

    Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.

  6. NUEN-618 Class Project: Actually Implicit Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, R. M.; Brunner, T. A.

    2017-12-14

    This research describes a new method for the solution of the thermal radiative transfer (TRT) equations that is implicit in time which will be called Actually Implicit Monte Carlo (AIMC). This section aims to introduce the TRT equations, as well as the current workhorse method which is known as Implicit Monte Carlo (IMC). As the name of the method proposed here indicates, IMC is a misnomer in that it is only semi-implicit, which will be shown in this section as well.

  7. Doctors and vampires in sub-Saharan Africa: ethical challenges in clinical trial research.

    PubMed

    Grietens, Koen Peeters; Ribera, Joan Muela; Erhart, Annette; Hoibak, Sarah; Ravinetto, Raffaella M; Gryseels, Charlotte; Dierickx, Susan; O'Neill, Sarah; Muela, Susanna Hausmann; D'Alessandro, Umberto

    2014-08-01

    Collecting blood samples from individuals recruited into clinical research projects in sub-Saharan Africa can be challenging. Strikingly, one of the reasons for participant reticence is the occurrence of local rumors surrounding "blood stealing" or "blood selling." Such fears can potentially have dire effects on the success of research projects--for example, high dropout rates that would invalidate the trial's results--and have ethical implications related to cultural sensitivity and informed consent. Though commonly considered as a manifestation of the local population's ignorance, these rumors represent a social diagnosis and a logical attempt to make sense of sickness and health. Born from historical antecedents, they reflect implicit contemporary structural inequalities and the social distance between communities and public health institutions. We aim at illustrating the underlying logic governing patients' fear and argue that the management of these beliefs should become an intrinsic component of clinical research. © The American Society of Tropical Medicine and Hygiene.

  8. Implicit social cognition: From measures to mechanisms

    PubMed Central

    Nosek, Brian A.; Hawkins, Carlee Beth; Frazier, Rebecca S.

    2011-01-01

    Most of human cognition occurs outside of conscious awareness or conscious control. Some of these implicit processes influence social perception, judgment and action. The last fifteen years of research in implicit social cognition can be characterized as the Age of Measurement because of a proliferation of measurement methods and research evidence demonstrating their practical value for predicting human behavior. Implicit measures assess constructs that are distinct, but related, to self-report assessments, and predict variation in behavior that is not accounted for by those explicit measures. The present state of knowledge provides a foundation for the next age of implicit social cognition – clarification of the mechanisms underlying implicit measurement and how the measured constructs influence behavior. PMID:21376657

  9. Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests

    NASA Astrophysics Data System (ADS)

    Toth, G.; Keppens, R.; Botchev, M. A.

    1998-04-01

    We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing methods to solve systems of conservation laws with optional source terms. The main advantage of implicit solution strategies over explicit time integration is that the restrictive constraint on the allowed time step can be (partially) eliminated, thus the computational cost is reduced. The test problems cover one and two dimensional, steady state and time accurate computations, and the solutions contain discontinuities. For each test, we confront explicit with implicit solution strategies.

  10. Implicit memory. Retention without remembering.

    PubMed

    Roediger, H L

    1990-09-01

    Explicit measures of human memory, such as recall or recognition, reflect conscious recollection of the past. Implicit tests of retention measure transfer (or priming) from past experience on tasks that do not require conscious recollection of recent experiences for their performance. The article reviews research on the relation between explicit and implicit memory. The evidence points to substantial differences between standard explicit and implicit tests, because many variables create dissociations between these tests. For example, although pictures are remembered better than words on explicit tests, words produce more priming than do pictures on several implicit tests. These dissociations may implicate different memory systems that subserve distinct memorial functions, but the present argument is that many dissociations can be understood by appealing to general principles that apply to both explicit and implicit tests. Phenomena studied under the rubric of implicit memory may have important implications in many other fields, including social cognition, problem solving, and cognitive development.

  11. Terror management theory and self-esteem revisited: the roles of implicit and explicit self-esteem in mortality salience effects.

    PubMed

    Schmeichel, Brandon J; Gailliot, Matthew T; Filardo, Emily-Ana; McGregor, Ian; Gitter, Seth; Baumeister, Roy F

    2009-05-01

    Three studies tested the roles of implicit and/or explicit self-esteem in reactions to mortality salience. In Study 1, writing about death versus a control topic increased worldview defense among participants low in implicit self-esteem but not among those high in implicit self-esteem. In Study 2, a manipulation to boost implicit self-esteem reduced the effect of mortality salience on worldview defense. In Study 3, mortality salience increased the endorsement of positive personality descriptions but only among participants with the combination of low implicit and high explicit self-esteem. These findings indicate that high implicit self-esteem confers resilience against the psychological threat of death, and therefore the findings provide direct support for a fundamental tenet of terror management theory regarding the anxiety-buffering role of self-esteem. Copyright (c) 2009 APA, all rights reserved.

  12. Moderators of Implicit-Explicit Exercise Cognition Concordance.

    PubMed

    Berry, Tanya R; Rodgers, Wendy M; Markland, David; Hall, Craig R

    2016-12-01

    Investigating implicit-explicit concordance can aid in understanding underlying mechanisms and possible intervention effects. This research examined the concordance between implicit associations of exercise with health or appearance and related explicit motives. Variables considered as possible moderators were behavioral regulations, explicit attitudes, and social desirability. Participants (N = 454) completed measures of implicit associations of exercise with health and appearance and questionnaire measures of health and appearance motives, attitudes, social desirability, and behavioral regulations. Attitudes significantly moderated the relationship between implicit associations of exercise with health and health motives. Identified regulations significantly moderated implicit-explicit concordance with respect to associations with appearance. These results suggest that implicit and explicit exercise-related cognitions are not necessarily independent and their relationship to each other may be moderated by attitudes or some forms of behavioral regulation. Future research that takes a dual-processing approach to exercise behavior should consider potential theoretical moderators of concordance.

  13. How Explicit and Implicit Test Instructions in an Implicit Learning Task Affect Performance

    PubMed Central

    Witt, Arnaud; Puspitawati, Ira; Vinter, Annie

    2013-01-01

    Typically developing children aged 5 to 8 years were exposed to artificial grammar learning. Following an implicit exposure phase, half of the participants received neutral instructions at test while the other half received instructions making a direct, explicit reference to the training phase. We first aimed to assess whether implicit learning operated in the two test conditions. We then evaluated the differential impact of age on learning performances as a function of test instructions. The results showed that performance did not vary as a function of age in the implicit instructions condition, while age effects emerged when explicit instructions were employed at test. However, performance was affected differently by age and the instructions given at test, depending on whether the implicit learning of short or long units was assessed. These results suggest that the claim that the implicit learning process is independent of age needs to be revised. PMID:23326409

  14. Do Implicit Attitudes Predict Actual Voting Behavior Particularly for Undecided Voters?

    PubMed Central

    Friese, Malte; Smith, Colin Tucker; Plischke, Thomas; Bluemke, Matthias; Nosek, Brian A.

    2012-01-01

    The prediction of voting behavior of undecided voters poses a challenge to psychologists and pollsters. Recently, researchers argued that implicit attitudes would predict voting behavior particularly for undecided voters whereas explicit attitudes would predict voting behavior particularly for decided voters. We tested this assumption in two studies in two countries with distinct political systems in the context of real political elections. Results revealed that (a) explicit attitudes predicted voting behavior better than implicit attitudes for both decided and undecided voters, and (b) implicit attitudes predicted voting behavior better for decided than undecided voters. We propose that greater elaboration of attitudes produces stronger convergence between implicit and explicit attitudes resulting in better predictive validity of both, and less incremental validity of implicit over explicit attitudes for the prediction of voting behavior. However, greater incremental predictive validity of implicit over explicit attitudes may be associated with less elaboration. PMID:22952898

  15. The Implicit Relational Assessment Procedure (IRAP) as a Measure of Spider Fear

    ERIC Educational Resources Information Center

    Nicholson, Emma; Barnes-Holmes, Dermot

    2012-01-01

    A greater understanding of implicit cognition can provide important information regarding the etiology and maintenance of psychological disorders. The current study sought to determine the utility of the Implicit Relational Assessment Procedure (IRAP) as a measure of implicit aversive bias toward spiders in two groups of known variation, high fear…

  16. Implicit and Explicit Memory for Affective Passages in Temporal Lobectomy Patients

    ERIC Educational Resources Information Center

    Burton, Leslie A.; Rabin, Laura; Vardy, Susan Bernstein; Frohlich, Jonathan; Porter, Gwinne Wyatt; Dimitri, Diana; Cofer, Lucas; Labar, Douglas

    2008-01-01

    Eighteen temporal lobectomy patients (9 left, LTL; 9 right, RTL) were administered four verbal tasks, an Affective Implicit Task, a Neutral Implicit Task, an Affective Explicit Task, and a Neutral Explicit Task. For the Affective and Neutral Implicit Tasks, participants were timed while reading aloud passages with affective or neutral content,…

  17. The Pivotal Role of Effort Beliefs in Mediating Implicit Theories of Intelligence and Achievement Goals and Academic Motivations

    ERIC Educational Resources Information Center

    Tempelaar, Dirk T.; Rienties, Bart; Giesbers, Bas; Gijselaers, Wim H.

    2015-01-01

    Empirical studies into meaning systems surrounding implicit theories of intelligence typically entail two stringent assumptions: that different implicit theories and different effort beliefs represent opposite poles on a single scale, and that implicit theories directly impact the constructs as achievement goals and academic motivations. Through…

  18. Friendships Influence Hispanic Students' Implicit Attitudes toward White Non-Hispanics Relative to African Americans

    ERIC Educational Resources Information Center

    Aberson, Christopher L.; Porter, Michael K.; Gaffney, Amber M.

    2008-01-01

    This study examined the role of Hispanic students' friendships with White non-Hispanics (n-Hs) and African Americans (AAs) in predicting implicit and explicit prejudices toward these groups. Participants (N = 73) completed implicit and explicit attitude measures and a friendship questionnaire. Friendships were associated with implicit attitudes…

  19. Do College Instructors Have Implicit Bias toward Latino-Accented English Speakers?

    ERIC Educational Resources Information Center

    Na, Eunkyung

    2016-01-01

    The purpose of this study was to examine the implicit attitudes of college-level instructors toward Latino-accented English and the effects of gender, teaching experience, home language, race/ethnicity, and rank on those attitudes. The auditory Implicit Association Test (IAT) was used to measure the implicit accent preferences. Participants (N =…

  20. The Effects of Mindfulness versus Thought Suppression on Implicit and Explicit Measures of Experiential Avoidance

    ERIC Educational Resources Information Center

    Hooper, Nic; Villatte, Matthieu; Neofotistou, Evi; McHugh, Louise

    2010-01-01

    The current study aimed to provide an implicit measure of experiential avoidance (EA). Fifty undergraduate participants were exposed to an implicit (Implicit Relational Assessment Procedure: IRAP) and an explicit (Acceptance and Action Questionnaire II: AAQ II) measure of EA. Subsequently participant's response latencies on viewing a negatively…

  1. Explicit and Implicit Stigma of Mental Illness as Predictors of the Recovery Attitudes of Assertive Community Treatment Practitioners.

    PubMed

    Stull, Laura G; McConnell, Haley; McGrew, John; Salyers, Michelle P

    2017-01-01

    While explicit negative stereotypes of mental illness are well established as barriers to recovery, implicit attitudes also may negatively impact outcomes. The current study is unique in its focus on both explicit and implicit stigma as predictors of recovery attitudes of mental health practitioners. Assertive Community Treatment practitioners (n = 154) from 55 teams completed online measures of stigma, recovery attitudes, and an Implicit Association Test (IAT). Three of four explicit stigma variables (perceptions of blameworthiness, helplessness, and dangerousness) and all three implicit stigma variables were associated with lower recovery attitudes. In a multivariate, hierarchical model, however, implicit stigma did not explain additional variance in recovery attitudes. In the overall model, perceptions of dangerousness and implicitly associating mental illness with "bad" were significant individual predictors of lower recovery attitudes. The current study demonstrates a need for interventions to lower explicit stigma, particularly perceptions of dangerousness, to increase mental health providers' expectations for recovery. The extent to which implicit and explicit stigma differentially predict outcomes, including recovery attitudes, needs further research.

  2. How "implicit" are implicit color effects in memory?

    PubMed

    Zimmer, Hubert D; Steiner, Astrid; Ecker, Ullrich K H

    2002-01-01

    Processing colored pictures of objects results in a preference to choose the former color for a specific object in a subsequent color choice test (Wippich & Mecklenbräuker, 1998). We tested whether this implicit memory effect is independent of performances in episodic color recollection (recognition). In the study phase of Experiment 1, the color of line drawings was either named or its appropriateness was judged. We found only weak implicit memory effects for categorical color information. In Experiment 2, silhouettes were colored by subjects during the study phase. Performances in both the implicit and the explicit test were good. Selections of "old" colors in the implicit test, though, were almost completely confined to items for which the color was also remembered explicitly. In Experiment 3, we applied the opposition technique in order to check whether we could find any implicit effects regarding items for which no explicit color recollection was possible. This was not the case. We therefore draw the conclusion that implicit color preference effects are not independent of explicit recollection, and that they are probably based on the same episodic memory traces that are used in explicit tests.

  3. The moderating role of implicit alcohol-related cognitions in hazardous alcohol use

    PubMed Central

    Cavanagh, Lucia; Obasi, Ezemenari M.

    2015-01-01

    The present study applied the Go/No-Go Association Test (GNAT; Nosek & Banaji, 2001) to measure alcohol-related implicit cognitions. Additionally, it assessed the role of implicit cognitions as a potential moderator in the relationship between explicit predictors of alcohol use and hazardous drinking behavior. University undergraduate students (N = 214) completed self-report questionnaires assessing reasons for drinking and reported alcohol use. Participants also completed two GNATs assessing implicit-alcohol-related cognitions associated with attitude (good-bad) and perceived safety (safe-dangerous). As expected, participants held implicit appraisals of alcohol as ‘‘bad’’ and ‘‘dangerous’’ in the context of nonalcoholic drinks, and as ‘‘good’’ and ‘‘safe’’ in the context of licit and illicit drugs. Implicit alcohol-related cognitions moderated the relationship between drinking to cope with negative affect and hazardous drinking and drinking due to cues or craving and hazardous drinking. These findings highlight the multidimensional nature of implicit cognitions and the role of negative implicit alcohol-related associations in moderating relationships between explicit processes and subsequent alcohol use behaviors. PMID:26989352

  4. Controlled and implicit processes in evaluative conditioning on implicit and explicit attitudes toward alcohol and intentions to drink.

    PubMed

    Zerhouni, Oulmann; Bègue, Laurent; Comiran, Francisco; Wiers, Reinout W

    2018-01-01

    Since implicit attitudes (i.e. evaluations occurring outside of complete awareness) are highly predictive of alcohol consumption, we tested an evaluative learning procedure based on repeated pairing to a critical stimulus (i.e. alcohol, the CS) with a valenced stimulus (the US) in order to modify implicit attitudes (i.e. evaluative conditioning; EC). We hypothesized that manipulating the learning context to bolster implicit affect misattribution should strengthen EC effects on implicit attitudes toward alcohol, while encouraging deliberate processing of CS-US pairs, should strengthen EC effects on explicit attitudes. In our study (n=114 students) we manipulated whether CS-US pairs were presented simultaneously or sequentially. Recollective memory was estimated with a Process Dissociation Procedure. Both implicit and explicit attitudes were assessed immediately after the procedure. Behavioral intentions were measured directly after and one week after the EC-procedure. We found that EC with sequential presentation had a stronger impact on implicit and explicit measures and on purchase intentions immediately after the procedure and one week after. The present findings provide new evidence that (i) EC is an effective way to change implicit attitudes toward alcohol and (ii) evidence that EC may be better described by propositional rather than dual process accounts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Implicit Weight Bias in Children Age 9 to 11 Years.

    PubMed

    Skinner, Asheley Cockrell; Payne, Keith; Perrin, Andrew J; Panter, Abigail T; Howard, Janna B; Bardone-Cone, Anna; Bulik, Cynthia M; Steiner, Michael J; Perrin, Eliana M

    2017-07-01

    Assess implicit weight bias in children 9 to 11 years old. Implicit weight bias was measured in children ages 9 to 11 ( N = 114) by using the Affect Misattribution Procedure. Participants were shown a test image of a child for 350 milliseconds followed by a meaningless fractal (200 milliseconds), and then they were asked to rate the fractal image as "good" or "bad." We used 9 image pairs matched on age, race, sex, and activity but differing by weight of the child. Implicit bias was the difference between positive ratings for fractals preceded by an image of a healthy-weight child and positive ratings for fractals preceded by an image of an overweight child. On average, 64% of abstract fractals shown after pictures of healthy-weight children were rated as "good," compared with 59% of those shown after pictures of overweight children, reflecting an overall implicit bias rate of 5.4% against overweight children ( P < .001). Healthy-weight participants showed greater implicit bias than over- and underweight participants (7.9%, 1.4%, and 0.3% respectively; P = .049). Implicit bias toward overweight individuals is evident in children aged 9 to 11 years with a magnitude of implicit bias (5.4%) similar to that in studies of implicit racial bias among adults. Copyright © 2017 by the American Academy of Pediatrics.

  6. The influence of linguistic and cognitive factors on the time course of verb-based implicit causality.

    PubMed

    Koornneef, Arnout; Dotlačil, Jakub; van den Broek, Paul; Sanders, Ted

    2016-01-01

    In three eye-tracking experiments the influence of the Dutch causal connective "want" (because) and the working memory capacity of readers on the usage of verb-based implicit causality was examined. Experiments 1 and 2 showed that although a causal connective is not required to activate implicit causality information during reading, effects of implicit causality surfaced more rapidly and were more pronounced when a connective was present in the discourse than when it was absent. In addition, Experiment 3 revealed that-in contrast to previous claims-the activation of implicit causality is not a resource-consuming mental operation. Moreover, readers with higher and lower working memory capacities behaved differently in a dual-task situation. Higher span readers were more likely to use implicit causality when they had all their working memory resources at their disposal. Lower span readers showed the opposite pattern as they were more likely to use the implicit causality cue in the case of an additional working memory load. The results emphasize that both linguistic and cognitive factors mediate the impact of implicit causality on text comprehension. The implications of these results are discussed in terms of the ongoing controversies in the literature-that is, the focusing-integration debate and the debates on the source of implicit causality.

  7. Implicit and explicit weight bias in a national sample of 4,732 medical students: the medical student CHANGES study.

    PubMed

    Phelan, Sean M; Dovidio, John F; Puhl, Rebecca M; Burgess, Diana J; Nelson, David B; Yeazel, Mark W; Hardeman, Rachel; Perry, Sylvia; van Ryn, Michelle

    2014-04-01

    To examine the magnitude of explicit and implicit weight biases compared to biases against other groups; and identify student factors predicting bias in a large national sample of medical students. A web-based survey was completed by 4,732 1st year medical students from 49 medical schools as part of a longitudinal study of medical education. The survey included a validated measure of implicit weight bias, the implicit association test, and 2 measures of explicit bias: a feeling thermometer and the anti-fat attitudes test. A majority of students exhibited implicit (74%) and explicit (67%) weight bias. Implicit weight bias scores were comparable to reported bias against racial minorities. Explicit attitudes were more negative toward obese people than toward racial minorities, gays, lesbians, and poor people. In multivariate regression models, implicit and explicit weight bias was predicted by lower BMI, male sex, and non-Black race. Either implicit or explicit bias was also predicted by age, SES, country of birth, and specialty choice. Implicit and explicit weight bias is common among 1st year medical students, and varies across student factors. Future research should assess implications of biases and test interventions to reduce their impact. Copyright © 2013 The Obesity Society.

  8. Assessment of implicit sexual associations in non-incarcerated pedophiles.

    PubMed

    van Leeuwen, Matthijs L; van Baaren, Rick B; Chakhssi, Farid; Loonen, Marijke G M; Lippman, Maarten; Dijksterhuis, Ap

    2013-11-01

    Offences committed by pedophiles are crimes that evoke serious public concern and outrage. Although recent research using implicit measures has shown promise in detecting deviant sexual associations, the discriminatory and predictive quality of implicit tasks has not yet surpassed traditional assessment methods such as questionnaires and phallometry. The current research extended previous findings by examining whether a combination of two implicit tasks, the Implicit Association Task (IAT) and the Picture Association Task (PAT), was capable of differentiating pedophiles from non-pedophiles, and whether the PAT, which allows separate analysis for male, female, boy and girl stimulus categories, was more sensitive to specific sexual associations in pedophiles than the IAT. A total of 20 male self-reported pedophiles (10 offender and 10 non-offenders) and 20 male self-reported heterosexual controls completed the two implicit measures. Results indicated that the combination of both tasks produced the strongest results to date in detecting implicit pedophilic preferences (AUC = .97). Additionally, the PAT showed promise in decomposing the sexual associations in pedophiles. Interestingly, as there was an equal distribution of offenders and non-offenders in the pedophile group, it was possible to test for implicit association differences between these groups. This comparison showed no clear link between having these implicit sexual associations and actual offending.

  9. Implicit and explicit self-esteem as concurrent predictors of suicidal ideation, depressive symptoms, and loneliness.

    PubMed

    Creemers, Daan H M; Scholte, Ron H J; Engels, Rutger C M E; Prinstein, Mitchell J; Wiers, Reinout W

    2012-03-01

    The aim of the present study was to examine whether explicit and implicit self-esteem, the interaction between these two constructs, and their discrepancy are associated with depressive symptoms, suicidal ideation, and loneliness. Participants were 95 young female adults (M = 21.2 years, SD = 1.88) enrolled in higher education. We administered the Name Letter Task to measure implicit self-esteem, and the Rosenberg self-esteem scale to assess explicit self-esteem. The results indicated that explicit but not implicit self-esteem was negatively associated with depressive symptoms, suicidal ideation, and loneliness. The interaction of implicit and explicit self-esteem was associated with suicidal ideation, indicating that participants with high implicit self-esteem combined with a low explicit self-esteem showed more suicidal ideation. Furthermore, the size of the discrepancy between implicit and explicit self-esteem was positively associated with depressive symptoms, suicidal ideation, and loneliness. In addition, results showed that the direction of the discrepancy is an important: damaged self-esteem (high implicit self-esteem combined with low explicit self-esteem) was consistently associated with increased levels of depressive symptoms, suicidal ideation, and loneliness, while defensive or fragile self-esteem (high explicit and low implicit self-esteem) was not. Together, these findings provide new insights into the relationship of implicit and explicit self-esteem with depressive symptoms, suicidal ideation, and loneliness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. "Whether I like it or not, it's important": Implicit importance of means predicts self-regulatory persistence and success.

    PubMed

    Critcher, Clayton R; Ferguson, Melissa J

    2016-06-01

    To effectively self-regulate, people must persevere on tasks that they deem important, regardless of whether those tasks are enjoyable. Building on past work that has noted the fundamental role of implicit cognition in guiding effective self-regulation, the present paper tests whether an implicit association between goal means and importance predicts self-regulatory persistence and success. Implicit importance predicted markers of effective self-regulation-better grades, more studying and exercise, and stronger standardized testing performance-over and above, and often better than, explicit beliefs about the importance of that self-regulation, as well as implicit evaluations of those means. In particular, those for whom tasks were fairly taxing to complete (i.e., those for whom this self-regulation required effortful self-control) were those who most benefitted from the implicit association between means and importance. Moreover, when participants were reminded of recent self-regulatory failure that they believed could be overcome through hard work, implicit importance toward the means increased as if to prepare them to achieve self-regulatory persistence. A final study sought to reconcile the present findings with previous work showing the key role that implicit evaluations play in effective self-regulation. We reasoned that means are important precisely because they are associated with valued end-states. Consistent with this account, implicit evaluations of end-states predicted the implicit importance of means, which in turn predicted effective self-regulation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Effects of pretesting implicit self-determined motivation on behavioral engagement: evidence for the mere measurement effect at the implicit level.

    PubMed

    Keatley, David A; Clarke, David D; Ferguson, Eamonn; Hagger, Martin S

    2014-01-01

    Research into individuals' intended behavior and performance has traditionally adopted explicitly measured, self-report constructs, and outcomes. More recently, research has shown that completing explicit self-report measures of constructs may effect subsequent behavior, termed the "mere measurement" effect. The aim of the present experiment was to investigate whether implicit measures of motivation showed a similar mere measurement effect on subsequent behavior. It may be the case that measuring the implicit systems affects subsequent implicit interventions (e.g., priming), observable on subsequent behavior. Priming manipulations were also given to participants in order to investigate the interaction between measurement and priming of motivation. Initially, a 2 [implicit association test (IAT: present vs. absent) ×2 (Prime: autonomous vs. absent) and a 2 (IAT: present vs. absent) × 2 (Prime: controlled vs. absent)] between participants designs were conducted, these were them combined into a 2 (IAT: present vs. absent) ×3 (Prime: autonomous vs. controlled vs. absent) between participants design, with attempts at a novel task taken as the outcome measure. Implicit measure completion significantly decreased behavioral engagement. Priming autonomous motivation significantly facilitated, and controlled motivation significantly inhibited performance. Finally, there was a significant implicit measurement × priming interaction, such that priming autonomous motivation only improved performance in the absence of the implicit measure. Overall, this research provides an insight into the effects of implicit measurement and priming of motivation and the combined effect of completing both tasks on behavior.

  12. A specific implicit sequence learning deficit as an underlying cause of dyslexia? Investigating the role of attention in implicit learning tasks.

    PubMed

    Staels, Eva; Van den Broeck, Wim

    2017-05-01

    Recently, a general implicit sequence learning deficit was proposed as an underlying cause of dyslexia. This new hypothesis was investigated in the present study by including a number of methodological improvements, for example, the inclusion of appropriate control conditions. The second goal of the study was to explore the role of attentional functioning in implicit and explicit learning tasks. In a 2 × 2 within-subjects design 4 tasks were administered in 30 dyslexic and 38 control children: an implicit and explicit serial reaction time (RT) task and an implicit and explicit contextual cueing task. Attentional functioning was also administered. The entire learning curves of all tasks were analyzed using latent growth curve modeling in order to compare performances between groups and to examine the role of attentional functioning on the learning curves. The amount of implicit learning was similar for both groups. However, the dyslexic group showed slower RTs throughout the entire task. This group difference reduced and became nonsignificant after controlling for attentional functioning. Both implicit learning tasks, but none of the explicit learning tasks, were significantly affected by attentional functioning. Dyslexic children do not suffer from a specific implicit sequence learning deficit. The slower RTs of the dyslexic children throughout the entire implicit sequence learning process are caused by their comorbid attention problems and overall slowness. A key finding of the present study is that, in contrast to what was assumed for a long time, implicit learning relies on attentional resources, perhaps even more than explicit learning does. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. The Effects of Oncologist Implicit Racial Bias in Racially Discordant Oncology Interactions

    PubMed Central

    Dovidio, John F.; Gonzalez, Richard; Albrecht, Terrance L.; Chapman, Robert; Foster, Tanina; Harper, Felicity W.K.; Hagiwara, Nao; Hamel, Lauren M.; Shields, Anthony F.; Gadgeel, Shirish; Simon, Michael S.; Griggs, Jennifer J.; Eggly, Susan

    2016-01-01

    Purpose Health providers’ implicit racial bias negatively affects communication and patient reactions to many medical interactions. However, its effects on racially discordant oncology interactions are largely unknown. Thus, we examined whether oncologist implicit racial bias has similar effects in oncology interactions. We further investigated whether oncologist implicit bias negatively affects patients’ perceptions of recommended treatments (i.e., degree of confidence, expected difficulty). We predicted oncologist implicit bias would negatively affect communication, patient reactions to interactions, and, indirectly, patient perceptions of recommended treatments. Methods Participants were 18 non-black medical oncologists and 112 black patients. Oncologists completed an implicit racial bias measure several weeks before video-recorded treatment discussions with new patients. Observers rated oncologist communication and recorded interaction length of time and amount of time oncologists and patients spoke. Following interactions, patients answered questions about oncologists’ patient-centeredness and difficulty remembering contents of the interaction, distress, trust, and treatment perceptions. Results As predicted, oncologists higher in implicit racial bias had shorter interactions, and patients and observers rated these oncologists’ communication as less patient-centered and supportive. Higher implicit bias also was associated with more patient difficulty remembering contents of the interaction. In addition, oncologist implicit bias indirectly predicted less patient confidence in recommended treatments, and greater perceived difficulty completing them, through its impact on oncologists’ communication (as rated by both patients and observers). Conclusion Oncologist implicit racial bias is negatively associated with oncologist communication, patients’ reactions to racially discordant oncology interactions, and patient perceptions of recommended treatments. These perceptions could subsequently directly affect patient-treatment decisions. Thus, implicit racial bias is a likely source of racial treatment disparities and must be addressed in oncology training and practice. PMID:27325865

  14. Comparison of Physician Implicit Racial Bias Toward Adults Versus Children.

    PubMed

    Johnson, Tiffani J; Winger, Daniel G; Hickey, Robert W; Switzer, Galen E; Miller, Elizabeth; Nguyen, Margaret B; Saladino, Richard A; Hausmann, Leslie R M

    2017-03-01

    The general population and most physicians have implicit racial bias against black adults. Pediatricians also have implicit bias against black adults, albeit less than other specialties. There is no published research on the implicit racial attitudes of pediatricians or other physicians toward children. Our objectives were to compare implicit racial bias toward adults versus children among resident physicians working in a pediatric emergency department, and to assess whether bias varied by specialty (pediatrics, emergency medicine, or other), gender, race, age, and year of training. We measured implicit racial bias of residents before a pediatric emergency department shift using the Adult and Child Race Implicit Association Tests (IATs). Generalized linear models compared Adult and Child IAT scores and determined the association of participant demographics with Adult and Child IAT scores. Among 91 residents, we found moderate pro-white/anti-black bias on both the Adult (mean = 0.49, standard deviation = 0.34) and Child Race IAT (mean = 0.55, standard deviation = 0.37). There was no significant difference between Adult and Child Race IAT scores (difference = 0.06, P = .15). Implicit bias was not associated with resident demographic characteristics, including specialty. This is the first study demonstrating that resident physicians have implicit racial bias against black children, similar to levels of bias against black adults. Bias in our study did not vary by resident demographic characteristics, including specialty, suggesting that pediatric residents are as susceptible as other physicians to implicit bias. Future studies are needed to explore how physicians' implicit attitudes toward parents and children may impact inequities in pediatric health care. Copyright © 2016 Academic Pediatric Association. All rights reserved.

  15. The Effects of Oncologist Implicit Racial Bias in Racially Discordant Oncology Interactions.

    PubMed

    Penner, Louis A; Dovidio, John F; Gonzalez, Richard; Albrecht, Terrance L; Chapman, Robert; Foster, Tanina; Harper, Felicity W K; Hagiwara, Nao; Hamel, Lauren M; Shields, Anthony F; Gadgeel, Shirish; Simon, Michael S; Griggs, Jennifer J; Eggly, Susan

    2016-08-20

    Health providers' implicit racial bias negatively affects communication and patient reactions to many medical interactions. However, its effects on racially discordant oncology interactions are largely unknown. Thus, we examined whether oncologist implicit racial bias has similar effects in oncology interactions. We further investigated whether oncologist implicit bias negatively affects patients' perceptions of recommended treatments (i.e., degree of confidence, expected difficulty). We predicted oncologist implicit bias would negatively affect communication, patient reactions to interactions, and, indirectly, patient perceptions of recommended treatments. Participants were 18 non-black medical oncologists and 112 black patients. Oncologists completed an implicit racial bias measure several weeks before video-recorded treatment discussions with new patients. Observers rated oncologist communication and recorded interaction length of time and amount of time oncologists and patients spoke. Following interactions, patients answered questions about oncologists' patient-centeredness and difficulty remembering contents of the interaction, distress, trust, and treatment perceptions. As predicted, oncologists higher in implicit racial bias had shorter interactions, and patients and observers rated these oncologists' communication as less patient-centered and supportive. Higher implicit bias also was associated with more patient difficulty remembering contents of the interaction. In addition, oncologist implicit bias indirectly predicted less patient confidence in recommended treatments, and greater perceived difficulty completing them, through its impact on oncologists' communication (as rated by both patients and observers). Oncologist implicit racial bias is negatively associated with oncologist communication, patients' reactions to racially discordant oncology interactions, and patient perceptions of recommended treatments. These perceptions could subsequently directly affect patient-treatment decisions. Thus, implicit racial bias is a likely source of racial treatment disparities and must be addressed in oncology training and practice. © 2016 by American Society of Clinical Oncology.

  16. Face puzzle—two new video-based tasks for measuring explicit and implicit aspects of facial emotion recognition

    PubMed Central

    Kliemann, Dorit; Rosenblau, Gabriela; Bölte, Sven; Heekeren, Hauke R.; Dziobek, Isabel

    2013-01-01

    Recognizing others' emotional states is crucial for effective social interaction. While most facial emotion recognition tasks use explicit prompts that trigger consciously controlled processing, emotional faces are almost exclusively processed implicitly in real life. Recent attempts in social cognition suggest a dual process perspective, whereby explicit and implicit processes largely operate independently. However, due to differences in methodology the direct comparison of implicit and explicit social cognition has remained a challenge. Here, we introduce a new tool to comparably measure implicit and explicit processing aspects comprising basic and complex emotions in facial expressions. We developed two video-based tasks with similar answer formats to assess performance in respective facial emotion recognition processes: Face Puzzle, implicit and explicit. To assess the tasks' sensitivity to atypical social cognition and to infer interrelationship patterns between explicit and implicit processes in typical and atypical development, we included healthy adults (NT, n = 24) and adults with autism spectrum disorder (ASD, n = 24). Item analyses yielded good reliability of the new tasks. Group-specific results indicated sensitivity to subtle social impairments in high-functioning ASD. Correlation analyses with established implicit and explicit socio-cognitive measures were further in favor of the tasks' external validity. Between group comparisons provide first hints of differential relations between implicit and explicit aspects of facial emotion recognition processes in healthy compared to ASD participants. In addition, an increased magnitude of between group differences in the implicit task was found for a speed-accuracy composite measure. The new Face Puzzle tool thus provides two new tasks to separately assess explicit and implicit social functioning, for instance, to measure subtle impairments as well as potential improvements due to social cognitive interventions. PMID:23805122

  17. Unconscious Race and Class Biases among Registered Nurses: Vignette-Based Study Using Implicit Association Testing.

    PubMed

    Haider, Adil H; Schneider, Eric B; Sriram, N; Scott, Valerie K; Swoboda, Sandra M; Zogg, Cheryl K; Dhiman, Nitasha; Haut, Elliott R; Efron, David T; Pronovost, Peter J; Freischlag, Julie A; Lipsett, Pamela A; Cornwell, Edward E; MacKenzie, Ellen J; Cooper, Lisa A

    2015-06-01

    Implicit bias is an unconscious preference for a specific social group that can have adverse consequences for patient care. Acute care clinical vignettes were used to examine whether implicit race or class biases among registered nurses (RNs) impacted patient-management decisions. In a prospective study conducted among surgical RNs at the Johns Hopkins Hospital, participants were presented 8 multi-stage clinical vignettes in which patients' race or social class were randomly altered. Registered nurses were administered implicit association tests (IATs) for social class and race. Ordered logistic regression was then used to examine associations among treatment differences, race, or social class, and RN's IAT scores. Spearman's rank coefficients comparing RN's implicit (IAT) and explicit (stated) preferences were also investigated. Two hundred and forty-five RNs participated. The majority were female (n=217 [88.5%]) and white (n=203 [82.9%]). Most reported that they had no explicit race or class preferences (n=174 [71.0%] and n=108 [44.1%], respectively). However, only 36 nurses (14.7%) demonstrated no implicit race preference as measured by race IAT, and only 16 nurses (6.53%) displayed no implicit class preference on the class IAT. Implicit association tests scores did not statistically correlate with vignette-based clinical decision making. Spearman's rank coefficients comparing implicit (IAT) and explicit preferences also demonstrated no statistically significant correlation (r=-0.06; p=0.340 and r=-0.06; p=0.342, respectively). The majority of RNs displayed implicit preferences toward white race and upper social class patients on IAT assessment. However, unlike published data on physicians, implicit biases among RNs did not correlate with clinical decision making. Copyright © 2015 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Co-occurrence of social anxiety and depression symptoms in adolescence: differential links with implicit and explicit self-esteem?

    PubMed

    de Jong, P J; Sportel, B E; de Hullu, E; Nauta, M H

    2012-03-01

    Social anxiety and depression often co-occur. As low self-esteem has been identified as a risk factor for both types of symptoms, it may help to explain their co-morbidity. Current dual process models of psychopathology differentiate between explicit and implicit self-esteem. Explicit self-esteem would reflect deliberate self-evaluative processes whereas implicit self-esteem would reflect simple associations in memory. Previous research suggests that low explicit self-esteem is involved in both social anxiety and depression whereas low implicit self-esteem is only involved in social anxiety. We tested whether the association between symptoms of social phobia and depression can indeed be explained by low explicit self-esteem, whereas low implicit self-esteem is only involved in social anxiety. Adolescents during the first stage of secondary education (n=1806) completed the Revised Child Anxiety and Depression Scale (RCADS) to measure symptoms of social anxiety and depression, the Rosenberg Self-Esteem Scale (RSES) to index explicit self-esteem and the Implicit Association Test (IAT) to measure implicit self-esteem. There was a strong association between symptoms of depression and social anxiety that could be largely explained by participants' explicit self-esteem. Only for girls did implicit self-esteem and the interaction between implicit and explicit self-esteem show small cumulative predictive validity for social anxiety, indicating that the association between low implicit self-esteem and social anxiety was most evident for girls with relatively low explicit self-esteem. Implicit self-esteem showed no significant predictive validity for depressive symptoms. The findings support the view that both shared and differential self-evaluative processes are involved in depression and social anxiety.

  19. Attitudes towards individuals with disabilities as measured by the implicit association test: a literature review.

    PubMed

    Wilson, Michelle Clare; Scior, Katrina

    2014-02-01

    Research investigating attitudes towards individuals with disabilities has largely focused on self-reported explicit attitudes. Given that factors such as social desirability may influence explicit attitudes, researchers have developed tools which instead assess less consciously controllable implicit attitudes. Considering research on implicit attitudes thus seems pertinent. A review of studies measuring implicit attitudes towards individuals with physical disabilities (visual, motor or hearing) or intellectual disabilities via the Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) was carried out. Systematic searches of PsycINFO, CINAHL, EMBASE, ERIC, MEDLINE, PUBMED, Scopus and Web of Science databases identified relevant articles published between January 2000 and September 2012. Seventeen articles (reporting on 18 studies that employed the IAT) were identified. These investigated implicit attitudes towards individuals with; physical disabilities (N=13), intellectual disabilities (N=3), both physical and intellectual disabilities (N=1), and 'unspecified disabilities' (N=1). Across all studies, moderate to strong negative implicit attitudes were found and there was little to no association between explicit and implicit attitudes. Individuals' beliefs about the controllability of their future, sensitivity to the concept of disease, and contact with individuals with disabilities appear to be associated with implicit attitudes. A consistent pattern of moderate to strong negative implicit attitudes towards individuals with disabilities was evident. These studies provide a starting point, but methodological issues related to sampling and the employed IATs limit the generalizability of these results. Further research investigating implicit attitudes towards specific disability types, with a wider subject pool are necessary as well as further investigation of factors that contribute to these attitudes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Implicit Social Cognitive Processes Underlying Victim Self and Identity: Evidence With College-Aged Adults.

    PubMed

    Sachs, Nicole M; Veysey, Bonita M; Rivera, Luis M

    2017-11-01

    Past research on victimization has relied predominantly on individuals' awareness of and willingness to self-report a victimization experience and its effect on self and identity processes. The present research adopts theoretical and methodological innovations in implicit social cognition research to provide a new perspective on how a violent victimization experience might influence identity processes outside of conscious awareness. Our main goal was to test whether individuals who have victimization experience implicitly associate the self with victims (implicit victim identity) and their stereotypes (implicit victim self-stereotyping), and the relation of these associations to explicit victim identity and self-stereotyping. Two pretests with undergraduate student participants ( Ns = 122 and 72) identified victim-related word stimuli for two Single Category Implicit Association Test (SC-IAT) measures of implicit victim identity and self-stereotyping. In Pretest Study A, participants read crime vignettes and listed words that described a victim, then in Pretest Study B, participants rated these words on victim relatedness and valence. The Main Study recruited undergraduate student participants ( N = 101) who completed the SC-IATs, self-report measures of explicit victim identity and self-stereotyping, and victimization experiences. Three of our five hypotheses were supported. Individuals with past victimization experience exhibited strong explicit victim identity and self-stereotyping, but not implicit victim identity and self-stereotyping, relative to those with no victimization experience. Explicit and implicit victim identity and self-stereotyping were unrelated. Finally, among individuals with victimization experience, a strong implicit victim identity was associated with strong implicit victim self-stereotyping. This research has implications for understanding the processes underlying revictimization and for preventing further victimization.

  1. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.

  2. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941

  3. Implicit and explicit self-esteem discrepancies in people with psychogenic nonepileptic seizures.

    PubMed

    Dimaro, Lian V; Roberts, Nicole A; Moghaddam, Nima G; Dawson, David L; Brown, Ian; Reuber, Markus

    2015-05-01

    Self-esteem (SE), or one's sense of competence and worth, is reduced in many mental and physical disorders. Low SE is associated with perceived stigma and disability and poor treatment outcomes. The present study examined implicit and explicit SE (automatic and deliberate views about the self) in people with epilepsy and people with psychogenic nonepileptic seizures (PNESs). Discrepancies between implicit SE and explicit SE have been found to correlate with psychological distress in disorders often associated with PNESs but are relatively unexplored in PNESs. We hypothesized that, compared with epilepsy, PNESs would be associated with lower self-reported SE and greater discrepancies between implicit SE and explicit SE. Thirty adults with PNESs, 25 adults with epilepsy, and 31 controls without a history of seizures were asked to complete the Rosenberg Self-esteem Scale as a measure of explicit SE and an Implicit Relational Assessment Procedure as a measure of implicit SE. The State-Trait Anxiety Inventory and Patient Health Questionnaire-15 (a somatic symptom inventory) were also administered. We found significant group differences in explicit (p<0.001) but not implicit SE. Patients with PNESs reported lower SE than the other groups. No group differences were found in implicit SE. Implicit-explicit SE discrepancies were larger in the group with PNESs than in the other groups (p<0.001). Higher frequency of PNESs (but not epileptic seizures) was associated with lower explicit SE (rs=-.83, p<0.01) and greater SE discrepancies (i.e., lower explicit relative to implicit SE; rs=.65, p<0.01). These relationships remained significant when controlling for anxiety and somatization. Patients with PNESs had lower explicit SE than those with epilepsy or healthy controls. In keeping with our expectations, there were greater discrepancies between implicit SE and explicit SE among patients with PNESs than in the other groups. Our results, including the strong relationship between PNES frequency, anxiety, and explicit-implicit SE discrepancies, support the interpretation that PNESs serve to reduce cognitive dissonance, perhaps protecting patients' implicit SE. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  4. Treatment of charge singularities in implicit solvent models.

    PubMed

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-21

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2 A for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  5. Allosteric effects of gold nanoparticles on human serum albumin.

    PubMed

    Shao, Qing; Hall, Carol K

    2017-01-07

    The ability of nanoparticles to alter protein structure and dynamics plays an important role in their medical and biological applications. We investigate allosteric effects of gold nanoparticles on human serum albumin protein using molecular simulations. The extent to which bound nanoparticles influence the structure and dynamics of residues distant from the binding site is analyzed. The root mean square deviation, root mean square fluctuation and variation in the secondary structure of individual residues on a human serum albumin protein are calculated for four protein-gold nanoparticle binding complexes. The complexes are identified in a brute-force search process using an implicit-solvent coarse-grained model for proteins and nanoparticles. They are then converted to atomic resolution and their structural and dynamic properties are investigated using explicit-solvent atomistic molecular dynamics simulations. The results show that even though the albumin protein remains in a folded structure, the presence of a gold nanoparticle can cause more than 50% of the residues to decrease their flexibility significantly, and approximately 10% of the residues to change their secondary structure. These affected residues are distributed on the whole protein, even on regions that are distant from the nanoparticle. We analyze the changes in structure and flexibility of amino acid residues on a variety of binding sites on albumin and confirm that nanoparticles could allosterically affect the ability of albumin to bind fatty acids, thyroxin and metals. Our simulations suggest that allosteric effects must be considered when designing and deploying nanoparticles in medical and biological applications that depend on protein-nanoparticle interactions.

  6. Free energy component analysis for drug design: a case study of HIV-1 protease-inhibitor binding.

    PubMed

    Kalra, P; Reddy, T V; Jayaram, B

    2001-12-06

    A theoretically rigorous and computationally tractable methodology for the prediction of the free energies of binding of protein-ligand complexes is presented. The method formulated involves developing molecular dynamics trajectories of the enzyme, the inhibitor, and the complex, followed by a free energy component analysis that conveys information on the physicochemical forces driving the protein-ligand complex formation and enables an elucidation of drug design principles for a given receptor from a thermodynamic perspective. The complexes of HIV-1 protease with two peptidomimetic inhibitors were taken as illustrative cases. Four-nanosecond-level all-atom molecular dynamics simulations using explicit solvent without any restraints were carried out on the protease-inhibitor complexes and the free proteases, and the trajectories were analyzed via a thermodynamic cycle to calculate the binding free energies. The computed free energies were seen to be in good accord with the reported data. It was noted that the net van der Waals and hydrophobic contributions were favorable to binding while the net electrostatics, entropies, and adaptation expense were unfavorable in these protease-inhibitor complexes. The hydrogen bond between the CH2OH group of the inhibitor at the scissile position and the catalytic aspartate was found to be favorable to binding. Various implicit solvent models were also considered and their shortcomings discussed. In addition, some plausible modifications to the inhibitor residues were attempted, which led to better binding affinities. The generality of the method and the transferability of the protocol with essentially no changes to any other protein-ligand system are emphasized.

  7. The shape of the electronic circular dichroism spectrum of (2,6-dimethylphenyl)(phenyl)methanol: interplay between conformational equilibria and vibronic effects.

    PubMed

    Padula, Daniele; Cerezo, Javier; Pescitelli, Gennaro; Santoro, Fabrizio

    2017-12-13

    Comparison between chiroptical spectra and theoretical predictions is the method of choice for the assignment of the absolute configuration of chiral compounds in solution. Here we report the case of an apparently simple biarylcarbinol, whose electronic circular dichroism (ECD) in the 1 L b region exhibits a peculiar alternation of negative and positive bands. Adopting Density Functional Theory, and describing solvent effects with implicit methods, we found three stable conformers in ethanol, each of them with two close lying states corresponding to similar local 1 L b excitations on the two phenyls. We computed the corresponding vibronic ECD spectra in harmonic approximation, including Duschinsky mixings as well as both Franck Condon (FC) and Herzberg Teller (HT) effects. Exploiting a recently developed mixed quantum/classical method, we further investigated the contribution of the vibronic spectra of out-of-equilibrium structures along the interconversion path connecting the different conformers. In this way, we achieved a reasonable agreement with experiment and attributed the alternating signs of the bands to the existence of different conformers. The remaining discrepancies with experiment indicate that specific solute-solvent interactions modulate the relative conformers' stabilities, calling for new methods able to combine Molecular Dynamics explorations and vibronic calculations. Moreover, the poor performance of HT approaches and the existence of two closely-lying states suggest the necessity of an improved fully-nonadiabatic vibronic approach. These findings demonstrate that even for such a simple system as the biarylcarbinol investigated here, a full reproduction of the fine details of the ECD spectrum requires the development of new improved methods.

  8. Treatment of charge singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Geng, Weihua; Yu, Sining; Wei, Guowei

    2007-09-01

    This paper presents a novel method for solving the Poisson-Boltzmann (PB) equation based on a rigorous treatment of geometric singularities of the dielectric interface and a Green's function formulation of charge singularities. Geometric singularities, such as cusps and self-intersecting surfaces, in the dielectric interfaces are bottleneck in developing highly accurate PB solvers. Based on an advanced mathematical technique, the matched interface and boundary (MIB) method, we have recently developed a PB solver by rigorously enforcing the flux continuity conditions at the solvent-molecule interface where geometric singularities may occur. The resulting PB solver, denoted as MIBPB-II, is able to deliver second order accuracy for the molecular surfaces of proteins. However, when the mesh size approaches half of the van der Waals radius, the MIBPB-II cannot maintain its accuracy because the grid points that carry the interface information overlap with those that carry distributed singular charges. In the present Green's function formalism, the charge singularities are transformed into interface flux jump conditions, which are treated on an equal footing as the geometric singularities in our MIB framework. The resulting method, denoted as MIBPB-III, is able to provide highly accurate electrostatic potentials at a mesh as coarse as 1.2Å for proteins. Consequently, at a given level of accuracy, the MIBPB-III is about three times faster than the APBS, a recent multigrid PB solver. The MIBPB-III has been extensively validated by using analytically solvable problems, molecular surfaces of polyatomic systems, and 24 proteins. It provides reliable benchmark numerical solutions for the PB equation.

  9. Effect of sequence and stereochemistry reversal on p53 peptide mimicry.

    PubMed

    Atzori, Alessio; Baker, Audrey E; Chiu, Mark; Bryce, Richard A; Bonnet, Pascal

    2013-01-01

    Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29) using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29) result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids) and side-chain orientation (for reversed sequences). A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.

  10. Long Dynamics Simulations of Proteins Using Atomistic Force Fields and a Continuum Representation of Solvent Effects: Calculation of Structural and Dynamic Properties

    PubMed Central

    Li, Xianfeng; Hassan, Sergio A.; Mehler, Ernest L.

    2006-01-01

    Long dynamics simulations were carried out on the B1 immunoglobulin-binding domain of streptococcal protein G (ProtG) and bovine pancreatic trypsin inhibitor (BPTI) using atomistic descriptions of the proteins and a continuum representation of solvent effects. To mimic frictional and random collision effects, Langevin dynamics (LD) were used. The main goal of the calculations was to explore the stability of tens-of-nanosecond trajectories as generated by this molecular mechanics approximation and to analyze in detail structural and dynamical properties. Conformational fluctuations, order parameters, cross correlation matrices, residue solvent accessibilities, pKa values of titratable groups, and hydrogen-bonding (HB) patterns were calculated from all of the trajectories and compared with available experimental data. The simulations comprised over 40 ns per trajectory for ProtG and over 30 ns per trajectory for BPTI. For comparison, explicit water molecular dynamics simulations (EW/MD) of 3 ns and 4 ns, respectively, were also carried out. Two continuum simulations were performed on each protein using the CHARMM program, one with the all-atom PAR22 representation of the protein force field (here referred to as PAR22/LD simulations) and the other with the modifications introduced by the recently developed CMAP potential (CMAP/LD simulations). The explicit solvent simulations were performed with PAR22 only. Solvent effects are described by a continuum model based on screened Coulomb potentials (SCP) reported earlier, i.e., the SCP-based implicit solvent model (SCP–ISM). For ProtG, both the PAR22/LD and the CMAP/LD 40-ns trajectories were stable, yielding Cα root mean square deviations (RMSD) of about 1.0 and 0.8 Å respectively along the entire simulation time, compared to 0.8 Å for the EW/MD simulation. For BPTI, only the CMAP/LD trajectory was stable for the entire 30-ns simulation, with a Cα RMSD of ≈ 1.4 Å, while the PAR22/LD trajectory became unstable early in the simulation, reaching a Cα RMSD of about 2.7 Å and remaining at this value until the end of the simulation; the Cα RMSD of the EW/MD simulation was about 1.5 Å. The source of the instabilities of the BPTI trajectories in the PAR22/LD simulations was explored by an analysis of the backbone torsion angles. To further validate the findings from this analysis of BPTI, a 35-ns SCP–ISM simulation of Ubiquitin (Ubq) was carried out. For this protein, the CMAP/LD simulation was stable for the entire simulation time (Cα RMSD of ≈1.0 Å), while the PAR22/LD trajectory showed a trend similar to that in BPTI, reaching a Cα RMSD of ≈1.5 Å at 7 ns. All the calculated properties were found to be in agreement with the corresponding experimental values, although local deviations were also observed. HB patterns were also well reproduced by all the continuum solvent simulations with the exception of solvent-exposed side chain–side chain (sc–sc) HB in ProtG, where several of the HB interactions observed in the crystal structure and in the EW/MD simulation were lost. The overall analysis reported in this work suggests that the combination of an atomistic representation of a protein with a CMAP/CHARMM force field and a continuum representation of solvent effects such as the SCP–ISM provides a good description of structural and dynamic properties obtained from long computer simulations. Although the SCP–ISM simulations (CMAP/LD) reported here were shown to be stable and the properties well reproduced, further refinement is needed to attain a level of accuracy suitable for more challenging biological applications, particularly the study of protein–protein interactions. PMID:15959866

  11. Mainstream Teachers' Implicit Beliefs about English Language Learners: An Implicit Association Test Study of Teacher Beliefs

    ERIC Educational Resources Information Center

    Harrison, Jamie; Lakin, Joni

    2018-01-01

    Teacher attitudes toward inclusion of English Learners (ELs) in the mainstream classroom have primarily focused on explicit beliefs as accessed through observation, case studies, and self-report surveys. The authors explore implicit mainstream teacher beliefs about ELs using the newly created Implicit Association Test-EL, with correlations to…

  12. A Review of Experimental Studies of Explicit and Implicit Bias among Counselors

    ERIC Educational Resources Information Center

    Boysen, Guy A.

    2009-01-01

    Bias is a central concept in multicultural competency, but counseling research has largely ignored implicit bias. A review of bias research in counseling indicates that increased focus on implicit bias is warranted because counselors tend not to report explicit bias and have implicit bias that diverges from their self-reported attitudes. (Contains…

  13. The Implicit Relational Assessment Procedure (IRAP) as a Measure of Implicit Relative Preferences: A First Study

    ERIC Educational Resources Information Center

    Power, Patricia; Barnes-Holmes, Dermot; Barnes-Holmes, Yvonne; Stewart, Ian

    2009-01-01

    The Implicit Relational Assessment Procedure (IRAP) was designed to examine implicit beliefs or attitudes. In Experiment 1, response latencies obtained from Irish participants on the IRAP showed a strong preference for Irish over Scottish and American over African. In contrast, responses to explicit Likert measures diverged from the IRAP…

  14. Corrective Feedback and Second Language Acquisition: Differential Contributions of Implicit and Explicit Knowledge

    ERIC Educational Resources Information Center

    Ebadi, Mandana Rohollahzadeh; Saad, Mohd Rashid Mohd; Abedalaziz, Nabil

    2014-01-01

    The issue of error correction remains controversial in recent years due to the different positions of interface toward implicit and explicit knowledge of ESL learners. This study looks at the impacts of implicit corrective feedback in the form of recast on implicit and explicit knowledge of adult ESL learners. In an experimental study,…

  15. From American City to Japanese Village: A Cross-Cultural Investigation of Implicit Race Attitudes

    ERIC Educational Resources Information Center

    Dunham, Yarrow; Baron, Andrew Scott; Banaji, Mahzarin R.

    2006-01-01

    This study examined the development of implicit race attitudes in American and Japanese children and adults. Implicit ingroup bias was present early in both populations, and remained stable at each age tested (age 6, 10, and adult). Similarity in magnitude and developmental course across these 2 populations suggests that implicit intergroup bias…

  16. Using the implicit relational assessment procedure to compare implicit pro-thin/anti-fat attitudes of patients with anorexia nervosa and non-clinical controls.

    PubMed

    Parling, Thomas; Cernvall, Martin; Stewart, Ian; Barnes-Holmes, Dermot; Ghaderi, Ata

    2012-01-01

    Implicit pro-thin/anti-fat attitudes were investigated among a mixed group of patients with full and sub-threshold Anorexia Nervosa (n = 17), and a matched-age control group (n = 17). The Implicit Relational Assessment Procedure (IRAP) was employed to measure implicit pro-thin and anti-fat attitudes towards Self and Others in addition to "striving for thinness" and "avoidance of fatness." The clinical group showed an implicit pro-fat attitude towards Others and stronger anti-fat attitudes towards Self and avoidance of fatness compared with controls. The findings are discussed in relation to the over-evaluation of weight and shape in the clinical group.

  17. The time course of explicit and implicit categorization.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A

    2015-10-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization.

  18. The nature of declarative and nondeclarative knowledge for implicit and explicit learning.

    PubMed

    Kirkhart, M W

    2001-10-01

    Using traditional implicit and explicit artificial-grammar learning tasks, the author investigated the similarities and differences between the acquisition of declarative knowledge under implicit and explicit learning conditions and the functions of the declarative knowledge during testing. Results suggested that declarative knowledge was not predictive of or required for implicit learning but was related to consistency in implicit learning performance. In contrast, declarative knowledge was predictive of and required for explicit learning and was related to consistency in performance. For explicit learning, the declarative knowledge functioned as a guide for other behavior. In contrast, for implicit learning, the declarative knowledge did not serve as a guide for behavior but was instead a post hoc description of the most commonly seen stimuli.

  19. Implicit Kalman filtering

    NASA Technical Reports Server (NTRS)

    Skliar, M.; Ramirez, W. F.

    1997-01-01

    For an implicitly defined discrete system, a new algorithm for Kalman filtering is developed and an efficient numerical implementation scheme is proposed. Unlike the traditional explicit approach, the implicit filter can be readily applied to ill-conditioned systems and allows for generalization to descriptor systems. The implementation of the implicit filter depends on the solution of the congruence matrix equation (A1)(Px)(AT1) = Py. We develop a general iterative method for the solution of this equation, and prove necessary and sufficient conditions for convergence. It is shown that when the system matrices of an implicit system are sparse, the implicit Kalman filter requires significantly less computer time and storage to implement as compared to the traditional explicit Kalman filter. Simulation results are presented to illustrate and substantiate the theoretical developments.

  20. Macro-level implicit HIV prejudice and the health of community residents with HIV.

    PubMed

    Miller, Carol T; Varni, Susan E; Solomon, Sondra E; DeSarno, Michael J; Bunn, Janice Y

    2016-08-01

    This study examined how community levels of implicit HIV prejudice are associated with the psychological and physical well-being of people with HIV living in those same communities. It also examined whether community motivation to control prejudice and/or explicit HIV prejudice moderates the relationship of implicit prejudice and well-being. Participants were 206 people with HIV living in 42 different communities in New England who completed measures that assessed psychological distress, thriving, and physical well-being. Telephone surveys of 347 residents of these same communities (selected via random digit dialing) were used to assess community explicit HIV prejudice and motivation to control HIV prejudice. These community residents then completed an online measure of implicit prejudice toward people with HIV, the Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998). Multilevel analyses showed that higher community implicit HIV prejudice was associated with greater psychological distress among residents with HIV living in that community. The physical well-being of participants with HIV was negatively related to community implicit HIV prejudice in communities in which residents were unmotivated to control HIV prejudice or had high levels of explicit HIV prejudice. These findings indicate that implicit prejudice of residents of real-world communities may create an environment that may impair the well-being of stigmatized people. Implicit prejudice can therefore be considered an element of macro-level or structural stigma. The discussion considered the possible role of implicit HIV prejudice on a community's social capital as a pathway by which it compromises the well-being of residents with HIV. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Macro-level Implicit HIV Prejudice and the Health of Community Residents with HIV

    PubMed Central

    Miller, Carol T.; Varni, Susan E.; Solomon, Sondra E.; DeSarno, Michael J.; Bunn, Janice Y.

    2016-01-01

    Objectives This study examined how community levels of implicit HIV prejudice are associated with the psychological and physical well-being of people with HIV living in those same communities. It also examined whether community motivation to control prejudice and/or explicit HIV prejudice moderates the relationship of implicit prejudice and well-being. Methods Participants were 206 people with HIV living in 42 different communities in New England who completed measures that assessed psychological distress, thriving, and physical well-being. Telephone surveys of 347 residents of these same communities (selected via random digit dialing) were used to assess community explicit HIV prejudice and motivation to control HIV prejudice. These community residents then completed an on-line measure of implicit prejudice toward people with HIV, the Implicit Association Test (IAT, Greenwald et al., 1998). Results Multilevel analyses showed that higher community implicit HIV prejudice was associated with greater psychological distress among residents with HIV living in that community. The physical well-being of participants with HIV was negatively related to community implicit HIV prejudice in communities in which residents were unmotivated to control HIV prejudice or had high levels of explicit HIV prejudice. Conclusions These findings indicate that implicit prejudice of residents of real-world communities may create an environment that may impair the well-being of stigmatized people. Implicit prejudice can therefore be considered an element of macro-level or structural stigma. The discussion considered the possible role of implicit HIV prejudice on a community’s social capital as one pathway by which it compromises the well-being of residents with HIV. PMID:27505199

  2. Discrepancies between explicit and implicit self-esteem and their relationship to symptoms of depression and mania.

    PubMed

    Pavlickova, Hana; Turnbull, Oliver H; Bentall, Richard P

    2014-09-01

    Self-esteem is a key feature of bipolar symptomatology. However, so far no study has examined the interaction between explicit and implicit self-esteem in individuals vulnerable to bipolar disorder. Cross-sectional design was employed. Thirty children of parents with bipolar disorder and 30 offspring of control parents completed Hamilton Rating Scale for Depression, the Bech-Rafaelson Mania Scale, the Self-esteem Rating Scale and the Implicit Association Test. No differences between groups were revealed in levels of explicit or implicit self-esteem. However, bipolar offspring showed increased levels of symptoms of depression and mania. Furthermore, depressive symptoms were associated with low explicit self-esteem, whilst symptoms of mania were associated with low implicit self-esteem. When self-esteem discrepancies were examined, damaged self-esteem (i.e., low explicit but high implicit self-esteem) was associated with depression, whilst no associations between mania and self-esteem discrepancies were found. Not only explicit, but also implicit self-esteem, and the interactions between the two are of relevance in bipolar symptoms. Clinical implications and future research directions are discussed. Explicit as well as implicit SE, and particularly their relationship, are relevant for mental health. Fluctuations in implicit SE may serve as an early indicator for risk of bipolarity. Psychotherapeutic approaches may be more suitable for one kind of SE challenge than the other. © 2013 The British Psychological Society.

  3. Implicit Racial Biases in Preschool Children and Adults from Asia and Africa

    ERIC Educational Resources Information Center

    Qian, Miao K.; Heyman, Gail D.; Quinn, Paul C.; Messi, Francoise A.; Fu, Genyue; Lee, Kang

    2016-01-01

    This research used an Implicit Racial Bias Test to investigate implicit racial biases among 3- to 5-year-olds and adult participants in China (N = 213) and Cameroon (N = 257). In both cultures, participants displayed high levels of racial biases that remained stable between 3 and 5 years of age. Unlike adults, young children's implicit racial…

  4. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  5. The Implicit Relational Assessment Procedure as a Measure of Implicit Depression and the Role of Psychological Flexibility

    ERIC Educational Resources Information Center

    Hussey, Ian; Barnes-Holmes, Dermot

    2012-01-01

    A broad implicit measure of depressive emotional reactions was created by mapping the content of the depression scale from the Depression Anxiety and Stress Scale (DASS) on to the Implicit Relational Assessment Procedure (IRAP). Participants were asked to relate pairings of antecedents and emotional reactions that followed the formula "When X…

  6. What We "Say" and What We "Think" about Female Managers: Explicit versus Implicit Associations of Women with Success

    ERIC Educational Resources Information Center

    Latu, Ioana M.; Stewart, Tracie L.; Myers, Ashley C.; Lisco, Claire G.; Estes, Sarah Beth; Donahue, Dana K.

    2011-01-01

    In two studies, we investigated implicit gender stereotypes of successful managers. Using an adaptation of the Implicit Association Test (IAT) named the Successful Manager IAT (SM-IAT) in Study 1, we found that male participants were more likely to implicitly associate men with successful manager traits and women with unsuccessful manager traits…

  7. Investigating the predictive validity of implicit and explicit measures of motivation on condom use, physical activity and healthy eating.

    PubMed

    Keatley, David; Clarke, David D; Hagger, Martin S

    2012-01-01

    The literature on health-related behaviours and motivation is replete with research involving explicit processes and their relations with intentions and behaviour. Recently, interest has been focused on the impact of implicit processes and measures on health-related behaviours. Dual-systems models have been proposed to provide a framework for understanding the effects of explicit or deliberative and implicit or impulsive processes on health behaviours. Informed by a dual-systems approach and self-determination theory, the aim of this study was to test the effects of implicit and explicit motivation on three health-related behaviours in a sample of undergraduate students (N = 162). Implicit motives were hypothesised to predict behaviour independent of intentions while explicit motives would be mediated by intentions. Regression analyses indicated that implicit motivation predicted physical activity behaviour only. Across all behaviours, intention mediated the effects of explicit motivational variables from self-determination theory. This study provides limited support for dual-systems models and the role of implicit motivation in the prediction of health-related behaviour. Suggestions for future research into the role of implicit processes in motivation are outlined.

  8. Implicit negotiation beliefs and performance: experimental and longitudinal evidence.

    PubMed

    Kray, Laura J; Haselhuhn, Michael P

    2007-07-01

    The authors argue that implicit negotiation beliefs, which speak to the expected malleability of negotiating ability, affect performance in dyadic negotiations. They expected negotiators who believe negotiating attributes are malleable (incremental theorists) to outperform negotiators who believe negotiating attributes are fixed (entity theorists). In Study 1, they gathered evidence of convergent and discriminant validity for the implicit negotiation belief construct. In Study 2, they examined the impact of implicit beliefs on the achievement goals that negotiators pursue. In Study 3, they explored the causal role of implicit beliefs on negotiation performance by manipulating negotiators' implicit beliefs within dyads. They also identified perceived ability as a moderator of the link between implicit negotiation beliefs and performance. In Study 4, they measured negotiators' beliefs in a classroom setting and examined how these beliefs affected negotiation performance and overall performance in the course 15 weeks later. Across all performance measures, incremental theorists outperformed entity theorists. Consistent with the authors' hypotheses, incremental theorists captured more of the bargaining surplus and were more integrative than their entity theorist counterparts, suggesting implicit theories are important determinants of how negotiators perform. Implications and future directions are discussed. Copyright 2007 APA, all rights reserved.

  9. Adult age differences in perceptually based, but not conceptually based implicit tests of memory.

    PubMed

    Small, B J; Hultsch, D F; Masson, M E

    1995-05-01

    Implicit tests of memory assess the influence of recent experience without requiring awareness of remembering. Evidence concerning age differences on implicit tests of memory suggests small age differences in favor of younger adults. However, the majority of research examining this issue has relied upon perceptually based implicit tests. Recently, a second type of implicit test, one that relies upon conceptually based processes, has been identified. The pattern of age differences on this second type of implicit test is less clear. In the present study, we examined the pattern of age differences on one conceptually based (fact completion) and one perceptually based (stem completion) implicit test of memory, as well as two explicit tests of memory (fact and word recall). Tasks were administered to 403 adults from three age groups (19-34 years, 58-73 years, 74-89 years). Significant age differences in favor of the young were found on stem completion but not fact completion. Age differences were present for both word and fast recall. Correlational analyses examining the relationship of memory performance to other cognitive variables indicated that the implicit tests were supported by different components than the explicit tests, as well as being different from each other.

  10. Implicit and Explicit Associations with Erotic Stimuli in Women with and Without Sexual Problems.

    PubMed

    van Lankveld, Jacques J D M; Bandell, Myrthe; Bastin-Hurek, Eva; van Beurden, Myra; Araz, Suzan

    2018-02-20

    Conceptual models of sexual functioning have suggested a major role for implicit cognitive processing in sexual functioning. The present study aimed to investigate implicit and explicit cognition in sexual functioning in women. Gynecological patients with (N = 38) and without self-reported sexual problems (N = 41) were compared. Participants performed two Single-Target Implicit Association Tests (ST-IAT), measuring the implicit association of visual erotic stimuli with attributes representing, respectively, valence and motivation. Participants also rated the erotic pictures that were shown in the ST-IATs on the dimensions of valence, attractiveness, and sexual excitement, to assess their explicit associations with these erotic stimuli. Participants completed the Female Sexual Functioning Index and the Female Sexual Distress Scale for continuous measures of sexual functioning, and the Hospital Anxiety and Depression Scale to assess depressive symptoms. Compared to nonsymptomatic women, women with sexual problems were found to show more negative implicit associations of erotic stimuli with wanting (implicit sexual motivation). Across both groups, stronger implicit associations of erotic stimuli with wanting predicted higher level of sexual functioning. More positive explicit ratings of erotic stimuli predicted lower level of sexual distress across both groups.

  11. Investigating the predictive validity of implicit and explicit measures of motivation in problem-solving behavioural tasks.

    PubMed

    Keatley, David; Clarke, David D; Hagger, Martin S

    2013-09-01

    Research into the effects of individuals'autonomous motivation on behaviour has traditionally adopted explicit measures and self-reported outcome assessment. Recently, there has been increased interest in the effects of implicit motivational processes underlying behaviour from a self-determination theory (SDT) perspective. The aim of the present research was to provide support for the predictive validity of an implicit measure of autonomous motivation on behavioural persistence on two objectively measurable tasks. SDT and a dual-systems model were adopted as frameworks to explain the unique effects offered by explicit and implicit autonomous motivational constructs on behavioural persistence. In both studies, implicit autonomous motivation significantly predicted unique variance in time spent on each task. Several explicit measures of autonomous motivation also significantly predicted persistence. Results provide support for the proposed model and the inclusion of implicit measures in research on motivated behaviour. In addition, implicit measures of autonomous motivation appear to be better suited to explaining variance in behaviours that are more spontaneous or unplanned. Future implications for research examining implicit motivation from dual-systems models and SDT approaches are outlined. © 2012 The British Psychological Society.

  12. Automatic affective-motivational regulation processes underlying supportive dyadic coping: the role of increased implicit positive attitudes toward communal goals in response to a stressed relationship partner.

    PubMed

    Koranyi, Nicolas; Hilpert, Peter; Job, Veronika; Bodenmann, Guy

    2017-09-01

    We examined the implicit affective mechanisms underlying provision of support in intimate dyads. Specifically, we hypothesized that in individuals with high relationship satisfaction, the perception that one's partner is stressed leads to increased implicit positive attitudes toward communal goals. In turn, this change in implicit attitudes facilitates supportive behavior. In two studies, we induced partner stress by instructing participants to either recall a situation where their partner was highly stressed (Study 1; N = 47 university students) or imagine a specific stressful event (excessive workload; Study 2; N = 85 university students). Subsequently, implicit attitudes toward communal goals were assessed with an Implicit Association Test. In both studies, we found that among participants with high relationship satisfaction partner stress increases preferences for communal goals. In addition, implicit preferences for communal goals predicted stronger inclinations to engage in supportive dyadic coping (Study 2). The current findings provide important insights into the implicit cognitive-affective mechanics of dyadic coping. Moreover, they can explain how people manage to avoid experiencing motivational conflicts between partner-oriented and self-oriented goals in situations characterized by high partner stress.

  13. Examining Implicit Attitudes towards Exercisers with a Physical Disability

    PubMed Central

    Dionne, Cassandra D.; Gainforth, Heather L.; O'Malley, Deborah A.; Latimer-Cheung, Amy E.

    2013-01-01

    Background. Using measures of explicit attitudes, physical activity status has been established as a factor that reduces the stigma able-bodied people hold towards people with physical disabilities. This phenomenon is called the exerciser stereotype. However, whether the exerciser stereotype exists when using measures of implicit attitudes remains unknown. Objective. The aims of this study were to evaluate the prevalence of negative implicit attitudes towards people with physical disabilities and determine whether implicit attitudes towards people with physical disabilities were influenced by the exerciser stereotype. Methods. One hundred able-bodied participants (82 females, 18 males) completed two implicit association tests (IATs): the Disability-Attitudes IAT and the Disability-Activity IAT. The Disability-Attitudes IAT measured implicit attitudes towards people who were not disabled relative to disabled; the Disability-Activity IAT measured attitudes towards people with a physical disability who were active relative to inactive. Results. Results revealed that 83.8% of participants had negative implicit attitudes towards people with a disability. Participants held more positive attitudes towards active versus inactive people with a physical disability. Conclusions. The study findings indicate that the exerciser stereotype exists implicitly and may undermine negative attitudes towards people with physical disabilities. PMID:23710142

  14. Cross-cultural evidence that the nonverbal expression of pride is an automatic status signal.

    PubMed

    Tracy, Jessica L; Shariff, Azim F; Zhao, Wanying; Henrich, Joseph

    2013-02-01

    To test whether the pride expression is an implicit, reliably developing signal of high social status in humans, the authors conducted a series of experiments that measured implicit and explicit cognitive associations between pride displays and high-status concepts in two culturally disparate populations--North American undergraduates and Fijian villagers living in a traditional, small-scale society. In both groups, pride displays produced strong implicit associations with high status, despite Fijian social norms discouraging overt displays of pride. Also in both groups, implicit and explicit associations between emotion expressions and status were dissociated; despite the cross-cultural implicit association between pride displays and high status, happy displays were, cross-culturally, the more powerful status indicator at an explicit level, and among Fijians, happy and pride displays were equally strongly implicitly associated with status. Finally, a cultural difference emerged: Fijians viewed happy displays as more deserving of high status than did North Americans, both implicitly and explicitly. Together, these findings suggest that the display and recognition of pride may be part of a suite of adaptations for negotiating status relationships, but that the high-status message of pride is largely communicated through implicit cognitive processes. 2013 APA, all rights reserved

  15. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  16. Implicit but not explicit self-esteem predicts future depressive symptomatology.

    PubMed

    Franck, Erik; De Raedt, Rudi; De Houwer, Jan

    2007-10-01

    To date, research on the predictive validity of implicit self-esteem for depressive relapse is very sparse. In the present study, we assessed implicit self-esteem using the Name Letter Preference Task and explicit self-esteem using the Rosenberg self-esteem scale in a group of currently depressed patients, formerly depressed individuals, and never depressed controls. In addition, we examined the predictive validity of explicit, implicit, and the interaction of explicit and implicit self-esteem in predicting future symptoms of depression in formerly depressed individuals and never depressed controls. The results showed that currently depressed individuals reported a lower explicit self-esteem as compared to formerly depressed individuals and never depressed controls. In line with previous research, all groups showed a positive implicit self-esteem not different from each other. Furthermore, after controlling for initial depressive symptomatology, implicit but not explicit self-esteem significantly predicted depressive symptoms at six months follow-up. Although implicit self-esteem assessed with the Name Letter Preference Test was not different between formerly depressed individuals and never depressed controls, the findings suggest it is an interesting variable in the study of vulnerability for depression relapse.

  17. Using behavior-analytic implicit tests to assess sexual interests among normal and sex-offender populations

    PubMed Central

    Roche, Bryan; O’Reilly, Anthony; Gavin, Amanda; Ruiz, Maria R.; Arancibia, Gabriela

    2012-01-01

    Background The development of implicit tests for measuring biases and behavioral predispositions is a recent development within psychology. While such tests are usually researched within a social-cognitive paradigm, behavioral researchers have also begun to view these tests as potential tests of conditioning histories, including in the sexual domain. Objective The objective of this paper is to illustrate the utility of a behavioral approach to implicit testing and means by which implicit tests can be built to the standards of behavioral psychologists. Design Research findings illustrating the short history of implicit testing within the experimental analysis of behavior are reviewed. Relevant parallel and overlapping research findings from the field of social cognition and on the Implicit Association Test are also outlined. Results New preliminary data obtained with both normal and sex offender populations are described in order to illustrate how behavior-analytically conceived implicit tests may have potential as investigative tools for assessing histories of sexual arousal conditioning and derived stimulus associations. Conclusion It is concluded that popular implicit tests are likely sensitive to conditioned and derived stimulus associations in the history of the test-taker rather than ‘unconscious cognitions’, per se. PMID:24693346

  18. Framing (implicitly) matters: the role of religion in attitudes toward immigrants and Muslims in Denmark.

    PubMed

    Anderson, Joel; Antalíková, Radka

    2014-12-01

    Denmark is currently experiencing the highest immigration rate in its modern history. Population surveys indicate that negative public attitudes toward immigrants actually stem from attitudes toward their (perceived) Islamic affiliation. We used a framing paradigm to investigate the explicit and implicit attitudes of Christian and Atheist Danes toward targets framed as Muslims or as immigrants. The results showed that explicit and implicit attitudes were more negative when the target was framed as a Muslim, rather than as an immigrant. Interestingly, implicit attitudes were qualified by the participants' religion. Specifically, analyses revealed that Christians demonstrated more negative implicit attitudes toward immigrants than Muslims. Conversely, Atheists demonstrated more negative implicit attitudes toward Muslims than Atheists. These results suggest a complex relationship between religion, and implicit and explicit prejudice. Both the religious affiliation of the perceiver and the perceived religious affiliation of the target are key factors in social perception. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  19. How implicit motives and everyday self-regulatory abilities shape cardiovascular risk in youth.

    PubMed

    Ewart, Craig K; Elder, Gavin J; Smyth, Joshua M

    2012-06-01

    Tested hypotheses from social action theory that (a) implicit and explicit measures of agonistic (social control) motives and transcendence (self-control) motives differentially predict cardiovascular risk; and (b) implicit motives interact with everyday self-regulation behaviors to magnify risk. Implicit/explicit agonistic/transcendence motives were assessed in a multi-ethnic sample of 64 high school students with the Social Competence Interview (SCI). Everyday self-regulation was assessed with teacher ratings of internalizing, externalizing, and self-control behaviors. Ambulatory blood pressure and daily activities were measured over 48 h. Study hypotheses were supported: implicit goals predicted blood pressure levels but explicit self-reported coping goals did not; self-regulation indices did not predict blood pressure directly but interacted with implicit agonistic/transcendence motives to identify individuals at greatest risk (all p ≤ 0.05). Assessment of implicit motives by SCI, and everyday self-regulation by teachers may improve identification of youth at risk for cardiovascular disease.

  20. Stability of and Changes in Implicit Motives. A Narrative Review of Empirical Studies

    PubMed Central

    Denzinger, Ferdinand; Brandstätter, Veronika

    2018-01-01

    Although growing research indicates that certain personality traits change over the lifespan, implicit motives are often deemed to be rather stable personality characteristics. Researchers have been interested in implicit motives for several decades, but our understanding of how these dispositions change still lacks clarity. This article gives an overview and a discussion of the current evidence for the stability of and the changes in implicit motives. After elaborating on the theoretical background of the motive construct and its measurement, we present an overview of studies that have investigated the trainability of implicit motives and their dispositional stability and changes using cross-sectional and longitudinal methods. Although the results are inconclusive concerning the direction of change, the reviewed studies suggest that implicit motives adapt to life circumstances much like other personality traits. This review sets out to contribute to a better understanding of the functioning of implicit motives and to present a roadmap for further research. PMID:29887818

  1. Identification as Gifted and Implicit Beliefs About Intelligence: An Examination of Potential Moderators

    PubMed Central

    Snyder, Kate E.; Barger, Michael M.; Wormington, Stephanie V.; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    The current study investigated whether the developmental timing of a student’s identification as gifted (i.e., when a student is first identified) was associated with later implicit beliefs about intelligence, and whether this relation is moderated by academic ability. A sample of 1,743 high-ability college students reported on whether and when they had been identified as gifted, academic ability (SAT scores), and implicit beliefs of intelligence. Timing of identification was unrelated to implicit beliefs; academic ability was the only significant predictor. Higher ability students who had been previously identified as gifted at any point in time reported implicit beliefs more toward entity beliefs than relatively lower ability students who had also been identified; however, this effect was quite small. Implicit beliefs did not vary by ability level for nonidentified students. These findings suggest that identification as gifted at any age modestly (but not necessarily meaningfully) relates to implicit beliefs for high-ability students. PMID:25729466

  2. White and Black American Children’s Implicit Intergroup Bias

    PubMed Central

    Newheiser, Anna-Kaisa; Olson, Kristina R.

    2011-01-01

    Despite a decline in explicit prejudice, adults and children from majority groups (e.g., White Americans) often express bias implicitly, as assessed by the Implicit Association Test. In contrast, minority-group (e.g., Black American) adults on average show no bias on the IAT. In the present research, representing the first empirical investigation of whether Black children’s IAT responses parallel those of Black adults, we examined implicit bias in 7–11-year-old White and Black American children. Replicating previous findings with adults, whereas White children showed a robust ingroup bias, Black children showed no bias. Additionally, we investigated the role of valuing status in the development of implicit bias. For Black children, explicit preference for high status predicted implicit outgroup bias: Black children who explicitly expressed high preference for rich (vs. poor) people showed an implicit preference for Whites comparable in magnitude to White children’s ingroup bias. Implications for research on intergroup bias are discussed. PMID:22184478

  3. Motivated independence? Implicit party identity predicts political judgments among self-proclaimed Independents.

    PubMed

    Hawkins, Carlee Beth; Nosek, Brian A

    2012-11-01

    Reporting an Independent political identity does not guarantee the absence of partisanship. Independents demonstrated considerable variability in relative identification with Republicans versus Democrats as measured by an Implicit Association Test (IAT; M = 0.10, SD = 0.47). To test whether this variation predicted political judgment, participants read a newspaper article describing two competing welfare (Study 1) or special education (Study 2) policies. The authors manipulated which policy was proposed by which party. Among self-proclaimed Independents, those who were implicitly Democratic preferred the liberal welfare plan, and those who were implicitly Republican preferred the conservative welfare plan. Regardless of the policy details, these implicit partisans preferred the policy proposed by "their" party, and this effect occurred more strongly for implicit than explicit plan preference. The authors suggest that implicitly partisan Independents may consciously override some partisan influence when making explicit political judgments, and Independents may identify as such to appear objective even when they are not.

  4. Mirrors, masks, and motivation: implicit and explicit self-focused attention influence effort-related cardiovascular reactivity.

    PubMed

    Silvia, Paul J

    2012-07-01

    Using motivational intensity theory as a framework, three experiments examined how implicit self-focus (manipulated with masked first-name priming) and explicit self-focus (manipulated with a large mirror) influence effort-related cardiovascular activity, particularly systolic blood pressure reactivity. Theories of self-focused attention suggest that both implicit and explicit self-focus bring about self-evaluation and thus make meeting a goal more important. For a "do your best" task of unfixed difficulty, implicit and explicit self-focus both increased effort (Experiment 1) compared to a control condition. For a task that varied in difficulty, implicit and explicit self-focus promoted more effort as the task became increasingly hard (Experiments 2 and 3). Taken together, the findings suggest that implicit and explicit self-processes share a similar motivational architecture. The discussion explores the value of integrating motivational intensity theory with self-awareness theory and considers the emerging interest in implicit aspects of effort regulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The Role of Generalized Explicit and Implicit Guilt and Shame in Interpersonal Traumatization and Posttraumatic Stress Disorder.

    PubMed

    Bockers, Estelle; Roepke, Stefan; Michael, Lars; Renneberg, Babette; Knaevelsrud, Christine

    2016-02-01

    Posttraumatic stress disorder (PTSD) and interpersonal traumatization are frequently associated with trauma-related guilt and shame. However, research on generalized guilt and shame in PTSD is lacking. The aim of this study was to investigate generalized explicit and implicit guilt and shame in interpersonal traumatization and PTSD. Interpersonally traumatized women either with PTSD (n = 28) or without PTSD (n = 32) and 32 nontraumatized women completed the Test of Self-Conscious Affect-3 and the Implicit Association Test to measure explicit and implicit guilt and shame. Explicit guilt and shame were significantly higher in women with PTSD than in traumatized women without PTSD. Traumatized women without PTSD showed significantly higher levels of explicit guilt and shame than nontraumatized women did. PTSD was associated with implicit guilt but not implicit shame. In addition to trauma-related guilt and shame, generalized explicit guilt and shame and implicit guilt seem to play a crucial role in PTSD.

  6. Neural Manifestations of Implicit Self-Esteem: An ERP Study

    PubMed Central

    Wu, Lili; Cai, Huajian; Gu, Ruolei; Luo, Yu L. L.; Zhang, Jianxin; Yang, Jing; Shi, Yuanyuan; Ding, Lei

    2014-01-01

    Behavioral research has established that humans implicitly tend to hold a positive view toward themselves. In this study, we employed the event-related potential (ERP) technique to explore neural manifestations of positive implicit self-esteem using the Go/Nogo association task (GNAT). Participants generated a response (Go) or withheld a response (Nogo) to self or others words and good or bad attributes. Behavioral data showed that participants responded faster to the self paired with good than the self paired with bad, whereas the opposite proved true for others, reflecting the positive nature of implicit self-esteem. ERP results showed an augmented N200 over the frontal areas in Nogo responses relative to Go responses. Moreover, the positive implicit self-positivity bias delayed the onset time of the N200 wave difference between Nogo and Go trials, suggesting that positive implicit self-esteem is manifested on neural activity about 270 ms after the presentation of self-relevant stimuli. These findings provide neural evidence for the positivity and automaticity of implicit self-esteem. PMID:25006966

  7. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    PubMed

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  8. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations

    NASA Astrophysics Data System (ADS)

    Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf

    2016-09-01

    We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.

  9. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.

    PubMed

    Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf

    2016-09-01

    We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.

  10. Qualitative assessment of ultra-fast non-Grotthuss proton dynamics in S1 excited state of liquid H2O from ab initio time-dependent density functional theory★

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2017-11-01

    We study qualitatively ultra-fast proton transfer (PT) in the first singlet (S1) state of liquid water (absorption onset) through excited-state dynamics by means of time-dependent density functional theory and ab initio Born-Oppenheimer molecular dynamics. We find that after the initial excitation, a PT occurs in S1 in form of a rapid jump to a neighboring water molecule, on which the proton either may rest for a relatively long period of time (as a consequence of possible defect in the hydrogen bond network) followed by back and forth hops to its neighboring water molecule or from which it further moves to the next water molecule accompanied by back and forth movements. In this way, the proton may become delocalized over a long water wire branch, followed again by back and forth jumps or short localization on a water molecule for some femtoseconds. As a result, the mechanism of PT in S1 is in most cases highly non-Grotthuss-like, delayed and discrete. Furthermore, upon PT an excess charge is ejected to the solvent trap, the so-called solvated electron. The spatial extent of the ejected solvated electron is mainly localized within one solvent shell with overlappings on the nearest neighbor water molecules and delocalizing (diffuse) tails extending beyond the first solvent sphere. During the entire ultra-short excited-state dynamics the remaining OH radical from the initially excited water molecule exhibits an extremely low mobility and is non-reactive. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80329-7.

  11. The single category implicit association test as a measure of implicit social cognition.

    PubMed

    Karpinski, Andrew; Steinman, Ross B

    2006-07-01

    The Single Category Implicit Association Test (SC-IAT) is a modification of the Implicit Association Test that measures the strength of evaluative associations with a single attitude object. Across 3 different attitude domains--soda brand preferences, self-esteem, and racial attitudes--the authors found evidence that the SC-IAT is internally consistent and makes unique contributions in the ability to understand implicit social cognition. In a 4th study, the authors investigated the susceptibility of the SC-IAT to faking or self-presentational concerns. Once participants with high error rates were removed, no significant self-presentation effect was observed. These results provide initial evidence for the reliability and validity of the SC-IAT as an individual difference measure of implicit social cognition. Copyright 2006 APA, all rights reserved.

  12. Implicit associations with popularity in early adolescence: an approach-avoidance analysis.

    PubMed

    Lansu, Tessa A M; Cillessen, Antonius H N; Karremans, Johan C

    2012-01-01

    This study examined 241 early adolescents' implicit and explicit associations with popularity. The peer status and gender of both the targets and the perceivers were considered. Explicit associations with popularity were assessed with sociometric methods. Implicit associations with popularity were assessed with an approach-avoidance task (AAT). Explicit evaluations of popularity were positive, but implicit associations were negative: Avoidance reactions to popular peers were faster than approach reactions. Interactions with the status of the perceiver indicated that unpopular participants had stronger negative implicit reactions to popular girls than did popular participants. This study demonstrated a negative reaction to popularity that cannot be revealed with explicit methods. The study of implicit processes with methods such as the AAT is a new and important direction for peer relations research.

  13. Implicit spiritual assessment: an alternative approach for assessing client spirituality.

    PubMed

    Hodge, David R

    2013-07-01

    To provide optimal services, a spiritual assessment is often administered to understand the intersection between clients' spirituality and service provision. Traditional assessment approaches, however, may be ineffective with clients who are uncomfortable with spiritual language or who are otherwise hesitant to discuss spirituality overtly. This article orients readers to an implicit spiritual assessment, an alternative approach that may be more valid with such clients. The process of administering an implicit assessment is discussed, sample questions are provided to help operationalize this approach, and suggestions are offered to integrate an implicit assessment with more traditional assessment approaches. By using terminology that is implicitly spiritual in nature, an implicit assessment enables practitioners to identify and operationalize dimensions of clients' experience that may be critical to effective service provision but would otherwise be overlooked.

  14. The Time Course of Explicit and Implicit Categorization

    PubMed Central

    Zakrzewski, Alexandria C.; Herberger, Eric; Boomer, Joseph; Roeder, Jessica; Ashby, F. Gregory; Church, Barbara A.

    2015-01-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization. PMID:26025556

  15. Implicit measures: A normative analysis and review.

    PubMed

    De Houwer, Jan; Teige-Mocigemba, Sarah; Spruyt, Adriaan; Moors, Agnes

    2009-05-01

    Implicit measures can be defined as outcomes of measurement procedures that are caused in an automatic manner by psychological attributes. To establish that a measurement outcome is an implicit measure, one should examine (a) whether the outcome is causally produced by the psychological attribute it was designed to measure, (b) the nature of the processes by which the attribute causes the outcome, and (c) whether these processes operate automatically. This normative analysis provides a heuristic framework for organizing past and future research on implicit measures. The authors illustrate the heuristic function of their framework by using it to review past research on the 2 implicit measures that are currently most popular: effects in implicit association tests and affective priming tasks. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  16. Implicit alcohol attitudes predict drinking behaviour over and above intentions and willingness in young adults but willingness is more important in adolescents: Implications for the Prototype Willingness Model.

    PubMed

    Davies, Emma L; Paltoglou, Aspasia E; Foxcroft, David R

    2017-05-01

    Dual process models, such as the Prototype Willingness Model (PWM), propose to account for both intentional and reactive drinking behaviour. Current methods of measuring constructs in the PWM rely on self-report, thus require a level of conscious deliberation. Implicit measures of attitudes may overcome this limitation and contribute to our understanding of how prototypes and willingness influence alcohol consumption in young people. This study aimed to explore whether implicit alcohol attitudes were related to PWM constructs and whether they would add to the prediction of risky drinking. The study involved a cross-sectional design. The sample included 501 participants from the United Kingdom (M age 18.92; range 11-51; 63% female); 230 school pupils and 271 university students. Participants completed explicit measures of alcohol prototype perceptions, willingness, drunkenness, harms, and intentions. They also completed an implicit measure of alcohol attitudes, using the Implicit Association Test. Implicit alcohol attitudes were only weakly related to the explicit measures. When looking at the whole sample, implicit alcohol attitudes did not add to the prediction of willingness over and above prototype perceptions. However, for university students implicit attitudes added to the prediction of behaviour, over and above intentions and willingness. For school pupils, willingness was a stronger predictor of behaviour than intentions or implicit attitudes. Adding implicit measures to the PWM may contribute to our understanding of the development of alcohol behaviours in young people. Further research could explore how implicit attitudes develop alongside the shift from reactive to planned behaviour. Statement of contribution What is already known on this subject? Young people's drinking tends to occur in social situations and is driven in part by social reactions within these contexts. The Prototype Willingness Model (PWM) attempts to explain such reactive behaviour as the result of social comparison to risk prototypes, which influence willingness to drink, and subsequent behaviour. Evidence also suggests that risky drinking in young people may be influenced by implicit attitudes towards alcohol, which develop with repeated exposure to alcohol over time. One criticism of the PWM is that prototypes and willingness are usually measured using explicit measures which may not adequately capture young people's spontaneous evaluations of prototypes, or their propensity to act without forethought in a social context. What does this study add? This study is novel in exploring the addition of implicit alcohol attitudes to the social reaction pathway in the model in order to understand more about these reactive constructs. Implicit alcohol attitudes added to the prediction of behaviour, over and above intentions and willingness for university students. For school pupils, willingness was a stronger predictor of behaviour than intentions or implicit attitudes. Findings suggest that adding implicit alcohol attitudes into the PWM might be able to explain the shift from reactive to intentional drinking behaviours with age and experience. © 2016 The British Psychological Society.

  17. Comparative functional neuroanatomy between implicit and explicit memory tasks under negative emotional condition in schizophrenia.

    PubMed

    Song, Xiao-Li; Kim, Gwang-Won; Moon, Chung-Man; Jeong, Gwang-Woo

    To evaluate the brain activation patterns in response to negative emotion during implicit and explicit memory in patients with schizophrenia. Fourteen patients with schizophrenia and 14 healthy controls were included in this study. The 3.0T fMRI was obtained while the subjects performed the implicit and explicit retrievals with unpleasant words. The different predominant brain activation areas were observed during the implicit retrieval and explicit with unpleasant words. The differential neural mechanisms between implicit and explicit memory tasks associated with negative emotional processing in schizophrenia. Copyright © 2017. Published by Elsevier Inc.

  18. Implicit bias in healthcare professionals: a systematic review.

    PubMed

    FitzGerald, Chloë; Hurst, Samia

    2017-03-01

    Implicit biases involve associations outside conscious awareness that lead to a negative evaluation of a person on the basis of irrelevant characteristics such as race or gender. This review examines the evidence that healthcare professionals display implicit biases towards patients. PubMed, PsychINFO, PsychARTICLE and CINAHL were searched for peer-reviewed articles published between 1st March 2003 and 31st March 2013. Two reviewers assessed the eligibility of the identified papers based on precise content and quality criteria. The references of eligible papers were examined to identify further eligible studies. Forty two articles were identified as eligible. Seventeen used an implicit measure (Implicit Association Test in fifteen and subliminal priming in two), to test the biases of healthcare professionals. Twenty five articles employed a between-subjects design, using vignettes to examine the influence of patient characteristics on healthcare professionals' attitudes, diagnoses, and treatment decisions. The second method was included although it does not isolate implicit attitudes because it is recognised by psychologists who specialise in implicit cognition as a way of detecting the possible presence of implicit bias. Twenty seven studies examined racial/ethnic biases; ten other biases were investigated, including gender, age and weight. Thirty five articles found evidence of implicit bias in healthcare professionals; all the studies that investigated correlations found a significant positive relationship between level of implicit bias and lower quality of care. The evidence indicates that healthcare professionals exhibit the same levels of implicit bias as the wider population. The interactions between multiple patient characteristics and between healthcare professional and patient characteristics reveal the complexity of the phenomenon of implicit bias and its influence on clinician-patient interaction. The most convincing studies from our review are those that combine the IAT and a method measuring the quality of treatment in the actual world. Correlational evidence indicates that biases are likely to influence diagnosis and treatment decisions and levels of care in some circumstances and need to be further investigated. Our review also indicates that there may sometimes be a gap between the norm of impartiality and the extent to which it is embraced by healthcare professionals for some of the tested characteristics. Our findings highlight the need for the healthcare profession to address the role of implicit biases in disparities in healthcare. More research in actual care settings and a greater homogeneity in methods employed to test implicit biases in healthcare is needed.

  19. A View of the Neural Representation of Second Language Syntax through Artificial Language Learning under Implicit Contexts of Exposure

    ERIC Educational Resources Information Center

    Morgan-Short, Kara; Deng, ZhiZhou; Brill-Schuetz, Katherine A.; Faretta- Stutenberg, Mandy; Wong, Patrick C. M.; Wong, Francis C. K.

    2015-01-01

    The current study aims to make an initial neuroimaging contribution to central implicit-explicit issues in second language (L2) acquisition by considering how implicit and explicit contexts mediate the neural representation of L2. Focusing on implicit contexts, the study employs a longitudinal design to examine the neural representation of L2…

  20. Creating an Implicit Measure of Cognition More Suited to Applied Research: A Test of the Mixed Trial-Implicit Relational Assessment Procedure (MT-IRAP)

    ERIC Educational Resources Information Center

    Levin, Michael E.; Hayes, Steven C.; Waltz, Thomas

    2010-01-01

    The Implicit Relational Assessment Procedure (IRAP) is a promising tool for measuring implicit cognitions in applied research. However, the need for training and block effects can limit its capacity to assess effects with individual stimuli and participants, both of which are important for applied research. We developed a modified IRAP, the Mixed…

  1. Measures of Implicit and Explicit Attitudes toward Mainstream and BDSM Sexual Terms Using the IRAP and Questionnaire with BDSM/Fetish and Student Participants

    ERIC Educational Resources Information Center

    Stockwell, Fawna M. J.; Walker, Diana J.; Eshleman, John W.

    2010-01-01

    The Implicit Relational Assessment Procedure (IRAP) examines implicit attitudes through the measurement of response latencies. In this study, the IRAP was used to assess implicit attitudes toward "mainstream" sexual terms (e.g., Kissing) and "BDSM" terms (e.g., Bondage) among individuals reporting BDSM interests and among students who did not…

  2. Is Implicit Motor Learning Preserved after Stroke? A Systematic Review with Meta-Analysis

    PubMed Central

    Kal, E.; Winters, M.; van der Kamp, J.; Houdijk, H.; Groet, E.; van Bennekom, C.; Scherder, E.

    2016-01-01

    Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients’ automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved post-stroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts. PMID:27992442

  3. Suicide and Self-Injury-Related Implicit Cognition: A Large-Scale Examination and Replication

    PubMed Central

    Glenn, Jeffrey J.; Werntz, Alexandra J.; Slama, S. J. Katarina; Steinman, Shari A.; Teachman, Bethany A.; Nock, Matthew K.

    2016-01-01

    Suicide and self-injury are difficult to predict because at-risk individuals are often unable or unwilling to report their intentions. Therefore, tools to reliably assess risk without reliance on self-report are critically needed. Prior research suggests that people who engage in suicidal and nonsuicidal self-injury often implicitly (i.e., outside conscious control) associate themselves with self-harm and death, indicating that self-harm-related implicit cognition may serve as a useful behavioral marker for suicide risk. However, earlier studies left several critical questions about the robustness, sensitivity, and specificity of self-harm-related implicit associations unaddressed. We recruited a large sample of participants (N=7,015) via a public web-based platform called Project Implicit Mental Health to test several hypotheses about self-harm-related implicit associations using the Implicit Association Test (IAT). Participants were randomly assigned to complete one of three self-harm IATs (Self + Cutting using picture stimuli, Self + Suicide using word stimuli, Self + Death using word stimuli). Results replicated prior studies demonstrating that self-harm-related implicit associations were stronger among individuals with (vs. without) a history of suicide attempt and nonsuicidal self-injury. Results also suggested that self-harm-related implicit associations are robust (based on internal replication), are sensitive to recency and severity of self-harm history (e.g., stronger associations for more recent and more lethal prior suicide attempts), and correlate with specific types of self-harm behaviors. These findings clarify the nature of self-harm-related implicit cognition and highlight the IAT's potential to track current risk for specific types of self-harm in ways that more fixed risk factors cannot. PMID:27991808

  4. Change in explicit and implicit motivation toward physical activity and sedentary behavior in pulmonary rehabilitation and associations with postrehabilitation behaviors.

    PubMed

    Chevance, Guillaume; Héraud, Nelly; Varray, Alain; Boiché, Julie

    2017-05-01

    The aim of this study was twofold: (a) to determine whether Theory of Planned Behavior (TPB) variables and implicit attitudes toward physical activity and sedentary behavior would change during a 5-week pulmonary rehabilitation (PR) program, and (b) to investigate the relationships between behavioral intentions, implicit attitudes, physical activity, and sedentary behavior in postrehabilitation. Out of 142 patients with respiratory disease included in this study, 119 completed 2 questionnaires measuring TPB variables with regard to physical activity and sedentary behavior, and an Implicit Association Test (IAT) measuring implicit attitudes toward physical activity in contrast to sedentary behavior. The TPB questionnaires and the IAT were administered at the beginning (Time 1) and the end of the program (Time 2). Six months after the program (Time 3), 62 patients provided self-reported measures of their recreational physical activity and screen-based, leisure-time sedentary behavior. Over the course of pulmonary rehabilitation, perceived behavioral control and intentions toward physical activity increased, as did social norms and perceived behavioral control toward sedentary behavior; implicit attitudes were also more positive toward physical activity. Implicit attitudes at the end of PR (Time 2) were significantly associated with postrehabilitation physical activity (Time 3). TPB variables toward physical activity and sedentary behavior as well as implicit attitudes were enhanced during PR. At 6 months, implicit attitudes were significantly associated with physical activity. These results suggest that motivation, particularly implicit attitudes, should be targeted in future behavioral interventions in order to optimize the effects of rehabilitation on physical activity maintenance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Implicit Learning in Science: Activating and Suppressing Scientific Intuitions to Enhance Conceptual Change

    NASA Astrophysics Data System (ADS)

    Wang, Jeremy Yi-Ming

    This dissertation examines the thesis that implicit learning plays a role in learning about scientific phenomena, and subsequently, in conceptual change. Decades of research in learning science demonstrate that a primary challenge of science education is overcoming prior, naive knowledge of natural phenomena in order to gain scientific understanding. Until recently, a key assumption of this research has been that to develop scientific understanding, learners must abandon their prior scientific intuitions and replace them with scientific concepts. However, a growing body of research shows that scientific intuitions persist, even among science experts. This suggests that naive intuitions are suppressed, not supplanted, as learners gain scientific understanding. The current study examines two potential roles of implicit learning processes in the development of scientific knowledge. First, implicit learning is a source of cognitive structures that impede science learning. Second, tasks that engage implicit learning processes can be employed to activate and suppress prior intuitions, enhancing the likelihood that scientific concepts are adopted and applied. This second proposal is tested in two experiments that measure training-induced changes in intuitive and conceptual knowledge related to sinking and floating objects in water. In Experiment 1, an implicit learning task was developed to examine whether implicit learning can induce changes in performance on near and far transfer tasks. The results of this experiment provide evidence that implicit learning tasks activate and suppress scientific intuitions. Experiment 2 examined the effects of combining implicit learning with traditional, direct instruction to enhance explicit learning of science concepts. This experiment demonstrates that sequencing implicit learning task before and after direct instruction has different effects on intuitive and conceptual knowledge. Together, these results suggest a novel approach for enhancing learning for conceptual change in science education.

  6. Patients with Parkinson's disease learn to control complex systems-an indication for intact implicit cognitive skill learning.

    PubMed

    Witt, Karsten; Daniels, Christine; Daniel, Victoria; Schmitt-Eliassen, Julia; Volkmann, Jens; Deuschl, Günther

    2006-01-01

    Implicit memory and learning mechanisms are composed of multiple processes and systems. Previous studies demonstrated a basal ganglia involvement in purely cognitive tasks that form stimulus response habits by reinforcement learning such as implicit classification learning. We will test the basal ganglia influence on two cognitive implicit tasks previously described by Berry and Broadbent, the sugar production task and the personal interaction task. Furthermore, we will investigate the relationship between certain aspects of an executive dysfunction and implicit learning. To this end, we have tested 22 Parkinsonian patients and 22 age-matched controls on two implicit cognitive tasks, in which participants learned to control a complex system. They interacted with the system by choosing an input value and obtaining an output that was related in a complex manner to the input. The objective was to reach and maintain a specific target value across trials (dynamic system learning). The two tasks followed the same underlying complex rule but had different surface appearances. Subsequently, participants performed an executive test battery including the Stroop test, verbal fluency and the Wisconsin card sorting test (WCST). The results demonstrate intact implicit learning in patients, despite an executive dysfunction in the Parkinsonian group. They lead to the conclusion that the basal ganglia system affected in Parkinson's disease does not contribute to the implicit acquisition of a new cognitive skill. Furthermore, the Parkinsonian patients were able to reach a specific goal in an implicit learning context despite impaired goal directed behaviour in the WCST, a classic test of executive functions. These results demonstrate a functional independence of implicit cognitive skill learning and certain aspects of executive functions.

  7. Implicit timing activates the left inferior parietal cortex.

    PubMed

    Wiener, Martin; Turkeltaub, Peter E; Coslett, H Branch

    2010-11-01

    Coull and Nobre (2008) suggested that tasks that employ temporal cues might be divided on the basis of whether these cues are explicitly or implicitly processed. Furthermore, they suggested that implicit timing preferentially engages the left cerebral hemisphere. We tested this hypothesis by conducting a quantitative meta-analysis of eleven neuroimaging studies of implicit timing using the activation-likelihood estimation (ALE) algorithm (Turkeltaub, Eden, Jones, & Zeffiro, 2002). Our analysis revealed a single but robust cluster of activation-likelihood in the left inferior parietal cortex (supramarginal gyrus). This result is in accord with the hypothesis that the left hemisphere subserves implicit timing mechanisms. Furthermore, in conjunction with a previously reported meta-analysis of explicit timing tasks, our data support the claim that implicit and explicit timing are supported by at least partially distinct neural structures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Effects of reducing attentional resources on implicit and explicit memory after severe traumatic brain injury.

    PubMed

    Watt, S; Shores, E A; Kinoshita, S

    1999-07-01

    Implicit and explicit memory were examined in individuals with severe traumatic brain injury (TBI) under conditions of full and divided attention. Participants included 12 individuals with severe TBI and 12 matched controls. In Experiment 1, participants carried out an implicit test of word-stem completion and an explicit test of cued recall. Results demonstrated that TBI participants exhibited impaired explicit memory but preserved implicit memory. In Experiment 2, a significant reduction in the explicit memory performance of both TBI and control participants, as well as a significant decrease in the implicit memory performance of TBI participants, was achieved by reducing attentional resources at encoding. These results indicated that performance on an implicit task of word-stem completion may require the availability of additional attentional resources that are not preserved after severe TBI.

  9. False memories, but not false beliefs, affect implicit attitudes for food preferences.

    PubMed

    Howe, David; Anderson, Rachel J; Dewhurst, Stephen A

    2017-09-01

    Previous studies have found that false memories and false beliefs of childhood experiences can have attitudinal consequences. Previous studies have, however, focused exclusively on explicit attitude measures without exploring whether implicit attitudes are similarly affected. Using a false feedback/imagination inflation paradigm, false memories and beliefs of enjoying a certain food as a child were elicited in participants, and their effects were assessed using both explicit attitude measures (self-report questionnaires) and implicit measures (a Single-Target Implicit Association Test). Positive changes in explicit attitudes were observed both in participants with false memories and participants with false beliefs. In contrast, only participants with false memories exhibited more positive implicit attitudes. The findings are discussed in terms of theories of explicit and implicit attitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE PAGES

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; ...

    2018-04-17

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  11. Explicit Not Implicit Preferences Predict Conservation Intentions for Endangered Species and Biomes.

    PubMed

    Echeverri, Alejandra; Callahan, Megan M; Chan, Kai M A; Satterfield, Terre; Zhao, Jiaying

    2017-01-01

    Conservation of biodiversity is determined in part by human preferences. Preferences relevant to conservation have been examined largely via explicit measures (e.g., a self-reported degree of liking), with implicit measures (e.g., preconscious, automatic evaluations) receiving relatively less attention. This is the case despite psychological evidence from other contexts that implicit preferences are more informative of behavior. Thus, the type of measure that predicts conservation intentions for biodiversity is unknown. We conducted three studies to examine conservation intentions in light of people's explicit and implicit preferences toward four endangered species (sea otter, American badger, caribou, yellow-breasted chat) and four biomes (forest, ocean, grassland, tundra). In Study 1 (n = 55), we found that people implicitly preferred caribou most, but explicitly preferred sea otter most, with a significant multiple regression where participants' explicit preferences dictated their stated intended donations for conservation of each species. In Study 2 (n = 57) we found that people implicitly and explicitly preferred forest and ocean over grassland and tundra. Explicit rather than implicit preferences predicted the intended donation for conservation of the ocean biome. Study 3 involved a broader online sample of participants (n = 463) and also found that explicit preferences dictated the intended donations for conservation of biomes and species. Our findings reveal discrepancies between implicit and explicit preferences toward species, but not toward biomes. Importantly, the results demonstrate that explicit rather than implicit preferences predict conservation intentions for biodiversity. The current findings have several implications for conservation and the communication of biodiversity initiatives.

  12. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  13. Background-Error Correlation Model Based on the Implicit Solution of a Diffusion Equation

    DTIC Science & Technology

    2010-01-01

    1 Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation Matthew J. Carrier* and Hans Ngodock...4. TITLE AND SUBTITLE Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation 5a. CONTRACT NUMBER 5b. GRANT...2001), which sought to model error correlations based on the explicit solution of a generalized diffusion equation. The implicit solution is

  14. Components of Implicit Stigma against Mental Illness among Chinese Students

    PubMed Central

    Wang, Xiaogang; Huang, Xiting; Jackson, Todd; Chen, Ruijun

    2012-01-01

    Although some research has examined negative automatic aspects of attitudes toward mental illness via relatively indirect measures among Western samples, it is unclear whether negative attitudes can be automatically activated in individuals from non-Western countries. This study attempted to validate results from Western samples with Chinese college students. We first examined the three-component model of implicit stigma (negative cognition, negative affect, and discriminatory tendencies) toward mental illness with the Single Category Implicit Association Test (SC-IAT). We also explored the relationship between explicit and implicit stigma among 56 Chinese university college students. In the three separate SC-IATs and the combined SC-IAT, automatic associations between mental illness and negative descriptors were stronger relative to those with positive descriptors and the implicit effect of cognitive and affective SC-IATs were significant. Explicit and implicit measures of stigma toward mental illness were unrelated. In our sample, women's overall attitudes toward mental illness were more negative than men's were, but no gender differences were found for explicit measures. These findings suggested that implicit stigma toward mental illness exists in Chinese students, and provide some support for the three-component model of implicit stigma toward mental illness. Future studies that focus on automatic components of stigmatization and stigma-reduction in China are warranted. PMID:23029366

  15. Implicit and Explicit Associations with Erotic Stimuli in Sexually Functional and Dysfunctional Men.

    PubMed

    van Lankveld, Jacques; Odekerken, Ingrid; Kok-Verhoeven, Lydia; van Hooren, Susan; de Vries, Peter; van den Hout, Anja; Verboon, Peter

    2015-08-01

    Although conceptual models of sexual functioning have suggested a major role for implicit cognitive processing in sexual functioning, this has thus far, only been investigated in women. The aim of this study was to investigate the role of implicit cognition in sexual functioning in men. Men with (N = 29) and without sexual dysfunction (N = 31) were compared. Participants performed two single-target implicit association tests (ST-IAT), measuring the implicit association of visual erotic stimuli with attributes representing, respectively, valence ('liking') and motivation ('wanting'). Participants also rated the erotic pictures that were shown in the ST-IAT on the dimensions of valence, attractiveness, and sexual excitement to assess their explicit associations with these erotic stimuli. Participants completed the International Index of Erectile Functioning for a continuous measure of sexual functioning. Unexpectedly, compared with sexually functional men, sexually dysfunctional men were found to show stronger implicit associations of erotic stimuli with positive valence than with negative valence. Level of sexual functioning, however, was not predicted by explicit nor implicit associations. Level of sexual distress was predicted by explicit valence ratings, with positive ratings predicting higher levels of sexual distress. Men with and without sexual dysfunction differed significantly with regard to implicit liking. Research recommendations and implications are discussed. © 2015 International Society for Sexual Medicine.

  16. Habit Doesn’t Make the Predictions Stronger: Implicit Alcohol Associations and Habitualness Predict Drinking Uniquely

    PubMed Central

    Lindgren, Kristen P.; Neighbors, Clayton; Teachman, Bethany A.; Gasser, Melissa L.; Kaysen, Debra; Norris, Jeanette; Wiers, Reinout W.

    2015-01-01

    Introduction As research on implicit (in the sense of fast/reflexive/impulsive) alcohol associations and alcohol advances, there is increasing emphasis on understanding the circumstances under which implicit alcohol associations predict drinking. In this study, we investigated habitualness of drinking (i.e., the extent to which drinking is automatic or occurs without thinking) as a moderator of the relations between several measures of implicit alcohol associations and key drinking outcomes. Method A sample of 506 participants (57% female) completed web-based measures of implicit alcohol associations (drinking identity, alcohol approach, and alcohol excitement), along with indicators of habitualness, and typical alcohol consumption, alcohol problems, and risk of alcohol use disorders. Results As expected, implicit alcohol associations, especially drinking identity, were positively associated with, and predicted unique variance in, drinking outcomes. Further, habitualness emerged as a consistent, positive predictor of drinking outcomes. Contrary to expectations, habitualness rarely moderated the relation between implicit alcohol associations and drinking outcomes. Conclusions Although moderation was rarely observed, findings indicated that even mild levels of habitualness are risky. Findings also continue to support implicit alcohol associations, particularly drinking identity, as a risk factor for hazardous drinking. Collectively, this suggests the importance of targeting both in prevention and intervention efforts. PMID:25665917

  17. Implicit versus explicit attitude to doping: Which better predicts athletes' vigilance towards unintentional doping?

    PubMed

    Chan, Derwin King Chung; Keatley, David A; Tang, Tracy C W; Dimmock, James A; Hagger, Martin S

    2018-03-01

    This preliminary study examined whether implicit doping attitude, explicit doping attitude, or both, predicted athletes' vigilance towards unintentional doping. A cross-sectional correlational design. Australian athletes (N=143;M age =18.13, SD=4.63) completed measures of implicit doping attitude (brief single-category implicit association test), explicit doping attitude (Performance Enhancement Attitude Scale), avoidance of unintentional doping (Self-Reported Treatment Adherence Scale), and behavioural vigilance task of unintentional doping (reading the ingredients of an unfamiliar food product). Positive implicit doping attitude and explicit doping attitude were negatively related to athletes' likelihood of reading the ingredients table of an unfamiliar food product, and positively related to athletes' vigilance towards unintentional doping. Neither attitude measures predicted avoidance of unintentional doping. Overall, the magnitude of associations by implicit doping attitude appeared to be stronger than that of explicit doping attitude. Athletes with positive implicit and explicit doping attitudes were less likely to read the ingredients table of an unknown food product, but were more likely to be aware of the possible presence of banned substances in a certain food product. Implicit doping attitude appeared to explain athletes' behavioural response to the avoidance of unintentional doping beyond variance explained by explicit doping attitude. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Implicit associations in cybersex addiction: Adaption of an Implicit Association Test with pornographic pictures.

    PubMed

    Snagowski, Jan; Wegmann, Elisa; Pekal, Jaro; Laier, Christian; Brand, Matthias

    2015-10-01

    Recent studies show similarities between cybersex addiction and substance dependencies and argue to classify cybersex addiction as a behavioral addiction. In substance dependency, implicit associations are known to play a crucial role, and such implicit associations have not been studied in cybersex addiction, so far. In this experimental study, 128 heterosexual male participants completed an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) modified with pornographic pictures. Further, problematic sexual behavior, sensitivity towards sexual excitation, tendencies towards cybersex addiction, and subjective craving due to watching pornographic pictures were assessed. Results show positive relationships between implicit associations of pornographic pictures with positive emotions and tendencies towards cybersex addiction, problematic sexual behavior, sensitivity towards sexual excitation as well as subjective craving. Moreover, a moderated regression analysis revealed that individuals who reported high subjective craving and showed positive implicit associations of pornographic pictures with positive emotions, particularly tended towards cybersex addiction. The findings suggest a potential role of positive implicit associations with pornographic pictures in the development and maintenance of cybersex addiction. Moreover, the results of the current study are comparable to findings from substance dependency research and emphasize analogies between cybersex addiction and substance dependencies or other behavioral addictions. Copyright © 2015. Published by Elsevier Ltd.

  19. Awareness of Implicit Attitudes

    PubMed Central

    Hahn, Adam; Judd, Charles M.; Hirsh, Holen K.; Blair, Irene V.

    2013-01-01

    Research on implicit attitudes has raised questions about how well people know their own attitudes. Most research on this question has focused on the correspondence between measures of implicit attitudes and measures of explicit attitudes, with low correspondence interpreted as showing that people have little awareness of their implicit attitudes. We took a different approach and directly asked participants to predict their results on upcoming IAT measures of implicit attitudes toward five different social groups. We found that participants were surprisingly accurate in their predictions. Across four studies, predictions were accurate regardless of whether implicit attitudes were described as true attitudes or culturally learned associations (Studies 1 and 2), regardless of whether predictions were made as specific response patterns (Study 1) or as conceptual responses (Studies 2–4), and regardless of how much experience or explanation participants received before making their predictions (Study 4). Study 3 further suggested that participants’ predictions reflected unique insight into their own implicit responses, beyond intuitions about how people in general might respond. Prediction accuracy occurred despite generally low correspondence between implicit and explicit measures of attitudes, as found in prior research. All together, the research findings cast doubt on the belief that attitudes or evaluations measured by the IAT necessarily reflect unconscious attitudes. PMID:24294868

  20. New Insights into the Electroreduction of Ethylene Sulfite as Electrolyte Additive for Facilitating Solid Electrolyte Interphase of Lithium Ion Battery

    PubMed Central

    Sun, Youmin; Wang, Yixuan

    2017-01-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIB) the supermolecular clusters [(ES)Li+(PC)m](PC)n (m=1–2; n=0, 6, and 9) were used to investigate the electroreductive decompositions of the electrolyte additive, ethylene sulfite (ES), as well as the solvent, propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has lower energy barrier than those of paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or the reduction potential dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A>C>D, which further signifies the importance of the concerted new path in facilitating the SEI. The hybrid models, the supermolecular cluster augmented by polarized continuum model, PCM-[(ES)Li+(PC)2](PC)n (n=0,6, and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li+ in [(ES)Li+(PC)2](PC)n (n=6, and 9) partially compensates the overestimation of solvent effects arising from the PCM model for the naked (ES)Li+(PC)2, and the theoretical reduction potential with PCM-[(ES)Li+(PC)2](PC)6 (1.90–1.93V) agrees very well with the experimental one (1.8–2.0V). PMID:28220165

Top