Science.gov

Sample records for borna disease virus

  1. Novel Borna Virus in Psittacine Birds with Proventricular Dilatation Disease

    PubMed Central

    Honkavuori, Kirsi S.; Shivaprasad, H.L.; Williams, Brent L.; Quan, Phenix-Lan; Hornig, Mady; Street, Craig; Palacios, Gustavo; Hutchison, Stephen K.; Franca, Monique; Egholm, Michael; Lipkin, W. Ian

    2008-01-01

    Pyrosequencing of cDNA from brains of parrots with proventricular dilatation disease (PDD), an unexplained fatal inflammatory central, autonomic, and peripheral nervous system disease, showed 2 strains of a novel Borna virus. Real-time PCR confirmed virus presence in brain, proventriculus, and adrenal gland of 3 birds with PDD but not in 4 unaffected birds. PMID:19046511

  2. Borna disease virus infection in animals and humans.

    PubMed Central

    Richt, J. A.; Pfeuffer, I.; Christ, M.; Frese, K.; Bechter, K.; Herzog, S.

    1997-01-01

    The geographic distribution and host range of Borna disease (BD), a fatal neurologic disease of horses and sheep, are larger than previously thought. The etiologic agent, Borna disease virus (BDV), has been identified as an enveloped nonsegmented negative-strand RNA virus with unique properties of replication. Data indicate a high degree of genetic stability of BDV in its natural host, the horse. Studies in the Lewis rat have shown that BDV replication does not directly influence vital functions; rather, the disease is caused by a virus-induced T-cell mediated immune reaction. Because antibodies reactive with BDV have been found in the sera of patients with neuropsychiatric disorders, this review examines the possible link between BDV and such disorders. Seroepidemiologic and cerebrospinal fluid investigations of psychiatric patients suggest a causal role of BDV infection in human psychiatric disorders. In diagnostically unselected psychiatric patients, the distribution of psychiatric disorders was found to be similar in BDV seropositive and seronegative patients. In addition, BDV-seropositive neurologic patients became ill with lymphocytic meningoencephalitis. In contrast to others, we found no evidence is reported for BDV RNA, BDV antigens, or infectious B DV in peripheral blood cells of psychiatric patients. PMID:9284379

  3. Detection of Serum Antibodies to Borna Disease Virus in Patients with Psychiatric Disorders

    NASA Astrophysics Data System (ADS)

    Rott, R.; Herzog, S.; Fleischer, B.; Winokur, A.; Amsterdam, J.; Dyson, W.; Koprowski, H.

    1985-05-01

    Borna disease virus causes a rare meningoencephalitis in horses and sheep and has been shown to produce behavioral effects in some species. The possibility that the Borna virus is associated with mental disorders in humans was evaluated by examining serum samples from 979 psychiatric patients and 200 normal volunteers for the presence of Borna virus-specific antibodies. Antibodies were detected by the indirect immunofluorescence focus assay. Antibodies to the virus were demonstrated in 16 of the patients but none of the normal volunteers. The patients with the positive serum samples were characterized by having histories of affective disorders, particularly of a cyclic nature. Further studies are needed to define the possible involvement of Borna virus in human psychiatric disturbances.

  4. Wild birds as a possible natural reservoir of Borna disease virus.

    PubMed Central

    Berg, M.; Johansson, M.; Montell, H.; Berg, A. L.

    2001-01-01

    The natural reservoir of Borna disease virus (BDV) is unknown. In this paper, we show that mallards (Anas platyrhyncos) and jackdaws (Corvus monedula) can be subclinically infected carriers of this virus. From faecal samples collected at a bird pond, we were able to amplify fragments of the BDV p24 and p40 genes. Following cloning and sequencing, a phylogenetic analysis revealed that these birds carry strains of BDV closely related to but distinct from the reference strains BDV V and He/80. To our knowledge, this is the first confirmed finding of BDV in wild birds. PMID:11561971

  5. Detection of Borna Disease Virus (BDV) in Patients with First Episode of Schizophrenia

    PubMed Central

    Soltani, Hasan; Mohammadzadeh, Serwa; Makvandi, Manoochehr; Pakseresht, Siroos; Samarbaf-Zadeh, Alireza

    2016-01-01

    Objective: Schizophrenia is a complex widespread neuropsychiatric disorder. This illness encompasses a complex debilitating mental disorder causing illusion, delusion, disturbed relationship, low motivation and decline of emotion. Viral infection of the brain including Borna Disease Virus (BDV) may play a role in transient or permanent neurological and behavioral abnormalities. This role of Borna virus has not been resolved outright yet, and based on published papers investigation examining the role of this virus in schizophrenia is in progress worldwide. Method: In this study, Nested Reverse Transcription–Polymerase Chain Reaction (Nested RT-PCR) was used for detection of BDV Ribonucleic Acid (RNA) in Peripheral Blood Mononuclear Cells (PBMCs) of a group of patients experiencing the first episode of schizophrenia. The results were compared with a normal group. Results: In our study, no BDV-positive was found in PBMCs of the case group. Out of 40 participants of control group one was positive for P24 gene of BDV. This result are similar to several published papers about this topic. Conclusion: An etiological relationship between Bornavirus and schizophrenia was not found in this study. More investigations are warranted to illustrate the probable relationship between bornavirus infection and schizophrenia. PMID:28050187

  6. Detection of Borna Disease Virus (BDV) in Patients with First Episode of Schizophrenia.

    PubMed

    Soltani, Hasan; Mohammadzadeh, Serwa; Makvandi, Manoochehr; Pakseresht, Siroos; Samarbaf-Zadeh, Alireza

    2016-10-01

    Objective: Schizophrenia is a complex widespread neuropsychiatric disorder. This illness encompasses a complex debilitating mental disorder causing illusion, delusion, disturbed relationship, low motivation and decline of emotion. Viral infection of the brain including Borna Disease Virus (BDV) may play a role in transient or permanent neurological and behavioral abnormalities. This role of Borna virus has not been resolved outright yet, and based on published papers investigation examining the role of this virus in schizophrenia is in progress worldwide. Method: In this study, Nested Reverse Transcription-Polymerase Chain Reaction (Nested RT-PCR) was used for detection of BDV Ribonucleic Acid (RNA) in Peripheral Blood Mononuclear Cells (PBMCs) of a group of patients experiencing the first episode of schizophrenia. The results were compared with a normal group. Results: In our study, no BDV-positive was found in PBMCs of the case group. Out of 40 participants of control group one was positive for P24 gene of BDV. This result are similar to several published papers about this topic. Conclusion: An etiological relationship between Bornavirus and schizophrenia was not found in this study. More investigations are warranted to illustrate the probable relationship between bornavirus infection and schizophrenia.

  7. Borna Disease Virus Phosphoprotein Impairs the Developmental Program Controlling Neurogenesis and Reduces Human GABAergic Neurogenesis

    PubMed Central

    Scordel, Chloé; Szelechowski, Marion; Poulet, Aurélie; Richardson, Jennifer; Benchoua, Alexandra; Gonzalez-Dunia, Daniel; Eloit, Marc; Coulpier, Muriel

    2015-01-01

    It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult. PMID:25923687

  8. Borna disease virus nucleoprotein inhibits type I interferon induction through the interferon regulatory factor 7 pathway

    SciTech Connect

    Song, Wuqi; Kao, Wenping; Zhai, Aixia; Qian, Jun; Li, Yujun; Zhang, Qingmeng; Zhao, Hong; Hu, Yunlong; Li, Hui; Zhang, Fengmin

    2013-09-06

    Highlights: •IRF7 nuclear localisation was inhibited by BDV persistently infected. •BDV N protein resistant to IFN induction both in BDV infected OL cell and N protein plasmid transfected OL cell. •BDV N protein is related to the inhibition of IRF7 nuclear localisation. -- Abstract: The expression of type I interferon (IFN) is one of the most potent innate defences against viral infection in higher vertebrates. Borna disease virus (BDV) establishes persistent, noncytolytic infections in animals and in cultured cells. Early studies have shown that the BDV phosphoprotein can inhibit the activation of type I IFN through the TBK1–IRF3 pathway. The function of the BDV nucleoprotein in the inhibition of IFN activity is not yet clear. In this study, we demonstrated IRF7 activation and increased IFN-α/β expression in a BDV-persistently infected human oligodendroglia cell line following RNA interference-mediated BDV nucleoprotein silencing. Furthermore, we showed that BDV nucleoprotein prevented the nuclear localisation of IRF7 and inhibited endogenous IFN induction by poly(I:C), coxsackie virus B3 and IFN-β. Our findings provide evidence for a previously undescribed mechanism by which the BDV nucleoprotein inhibits type I IFN expression by interfering with the IRF7 pathway.

  9. Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection.

    PubMed

    Sauder, C; de la Torre, J C

    1999-04-01

    Borna disease virus (BDV) causes central nervous system (CNS) disease in several vertebrate species, which is frequently accompanied by behavioral abnormalities. In the adult rat, intracerebral (i.c.) BDV infection leads to immunomediated meningoencephalitis. In contrast, i.c. infection of neonates causes a persistent infection in the absence of overt signs of brain inflammation. These rats (designated PTI-NB) display distinct behavioral and neurodevelopmental abnormalities. However, the molecular mechanisms for these virally induced CNS disturbances are unknown. Cytokines play an important role in CNS function, both under normal physiological and pathological conditions. Astrocytes and microglia are the primary resident cells of the central nervous system with the capacity to produce cytokines. Strong reactive astrocytosis is observed in the PTI-NB rat brain. We have used a ribonuclease protection assay to investigate the mRNA expression levels of proinflammatory cytokines in different brain regions of PTI-NB and control rats. We show here evidence of a chronic upregulation of proinflammatory cytokines interleukin-6, tumor necrosis factor alpha, interleukins-1alpha, and -1beta in the hippocampus and cerebellum of the PTI-NB rat brain. These brain regions exhibited only a very mild and transient immune infiltration. In contrast, in addition to reactive astrocytes, a strong and sustained microgliosis was observed in the PTI-NB rat brains. Our data suggest that CNS resident cells, namely astrocytes and microglia, are the major source of cytokine expression in the PTI-NB rat brain. The possible implications of these findings are discussed.

  10. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    SciTech Connect

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang; and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  11. Borna Disease Virus Phosphoprotein Represses p53-Mediated Transcriptional Activity by Interference with HMGB1

    PubMed Central

    Zhang, Guoqi; Kobayashi, Takeshi; Kamitani, Wataru; Komoto, Satoshi; Yamashita, Makiko; Baba, Satoko; Yanai, Hideyuki; Ikuta, Kazuyoshi; Tomonaga, Keizo

    2003-01-01

    Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, it was demonstrated that a 24-kDa phosphoprotein (P) of BDV directly binds to a multifunctional protein, amphoterin-HMGB1, and inhibits its function in cultured neural cells (W. Kamitani, Y. Shoya, T. Kobayashi, M. Watanabe, B. J. Lee, G. Zhang, K. Tomonaga, and K. Ikuta, J. Virol. 75:8742-8751, 2001). This observation suggested that expression of BDV P may cause deleterious effects in cellular functions by interference with HMGB1. In this study, we further investigated the significance of the binding between P and HMGB1. We demonstrated that P directly binds to the A-box domain on HMGB1, which is also responsible for interaction with a tumor suppression factor, p53. Recent works have demonstrated that binding between HMGB1 and p53 enhances p53-mediated transcriptional activity. Thus, we examined whether BDV P affects the transcriptional activity of p53 by interference with HMGB1. Mammalian two-hybrid analysis revealed that p53 and P competitively interfere with the binding of each protein to HMGB1 in a p53-deficient cell line, NCI-H1299. In addition, P was able to significantly decrease p53-mediated transcriptional activation of the cyclin G promoter. Furthermore, we showed that activation of p21waf1 expression was repressed in cyclosporine-treated BDV-infected cells, as well as p53-transduced NCI-H1299 cells. These results suggested that BDV P may be a unique inhibitor of p53 activity via binding to HMGB1. PMID:14581561

  12. The diagnosis of proventricular dilatation disease: use of a Western blot assay to detect antibodies against avian Borna virus.

    PubMed

    Villanueva, Itamar; Gray, Patricia; Mirhosseini, Negin; Payne, Susan; Hoppes, Sharman; Honkavuori, Kirsi S; Briese, Thomas; Turner, Debra; Tizard, Ian

    2010-07-14

    Avian Borna virus (ABV) has recently been shown to be the causal agent of proventricular dilatation disease (PDD) a lethal neurologic disease of captive psittacines and other birds. An immunoblot assay was used to detect the presence of antibodies against avian Borna virus in the serum of affected birds. A lysate from ABV-infected duck embryo fibroblasts served as a source of antigen. The assay was used to test for the presence of antibodies to ABV in 117 birds. Thirty of these birds had biopsy or necropsy-confirmed proventricular dilatation disease (PDD), while the remaining 87 birds were apparently healthy or were suffering from diseases other than PDD. Sera from 27 of the 30 PDD cases (90%) contained antibodies to ABV. Seventy-three (84%) of the apparently "healthy" birds were seronegative. Additionally, sera from seven macaws and one parrot trapped in the Peruvian Amazon were seronegative. Positive sera recognized the bornaviral nucleoprotein (N-protein). While the presence of antibodies to ABV largely corresponded with the development of clinical PDD, 14 apparently healthy normal birds possessed detectable antibodies to ABV. The existence of a carrier state was confirmed when 13 of 15 apparently healthy cockatiels were shown by PCR to have detectable ABV RNA in their feces. Western blot assays may be of significant assistance in diagnosing proventricular dilatation disease. Many apparently healthy birds may however be seronegative while, at the same time, shedding ABV in their feces.

  13. The bicolored white-toothed shrew Crocidura leucodon (HERMANN 1780) is an indigenous host of mammalian Borna disease virus.

    PubMed

    Dürrwald, Ralf; Kolodziejek, Jolanta; Weissenböck, Herbert; Nowotny, Norbert

    2014-01-01

    Borna disease (BD) is a sporadic neurologic disease of horses and sheep caused by mammalian Borna disease virus (BDV). Its unique epidemiological features include: limited occurrence in certain endemic regions of central Europe, yearly varying disease peaks, and a seasonal pattern with higher disease frequencies in spring and a disease nadir in autumn. It is most probably not directly transmitted between horses and sheep. All these features led to the assumption that an indigenous virus reservoir of BDV other than horses and sheep may exist. The search for such a reservoir had been unsuccessful until a few years ago five BDV-infected shrews were found in a BD-endemic area in Switzerland. So far, these data lacked further confirmation. We therefore initiated a study in shrews in endemic areas of Germany. Within five years 107 shrews of five different species were collected. BDV infections were identified in 14 individuals of the species bicolored white-toothed shrew (Crocidura leucodon, HERMANN 1780), all originating from BD-endemic territories. Immunohistological analysis showed widespread distribution of BDV antigen both in the nervous system and in epithelial and mesenchymal tissues without pathological alterations. Large amounts of virus, demonstrated by presence of viral antigen in epithelial cells of the oral cavity and in keratinocytes of the skin, may be a source of infection for natural and spill-over hosts. Genetic analyses reflected a close relationship of the BDV sequences obtained from the shrews with the regional BDV cluster. At one location a high percentage of BDV-positive shrews was identified in four consecutive years, which points towards a self-sustaining infection cycle in bicolored white-toothed shrews. Analyses of behavioral and population features of this shrew species revealed that the bicolored white-toothed shrew may indeed play an important role as an indigenous host of BDV.

  14. Sero-epidemiological analysis of vertical transmission relative risk of Borna disease virus infection in dairy herds

    PubMed Central

    ANDO, Tatsuya; TAKINO, Tadashi; MAKITA, Kohei; TAJIMA, Motoshi; KOIWA, Masateru; HAGIWARA, Katsuro

    2016-01-01

    Borna disease virus (BDV) is a virus that causes a neurological disease in domestic animals, including a variety of animal species in Japan. Few studies have examined the mode of transmission of this virus in cattle, and the exact mechanisms underlying the transmission of the virus need to be elucidated. This study aimed to examine the contribution of vertical transmission of the virus, which occurs when the virus is transmitted from the mother to offspring during gestation or birth. We used an epidemiological approach. The relative risk (RR) was calculated for cattle born to BDV sero-positive cows from farms with a higher within-herd prevalence of BDV (56.8%). We tested the sera of 1,122 dairy cattle from 24 dairy herds in Hokkaido Prefecture, Japan, for BDV infection using the ELISA and western blotting method. The overall level of BDV sero-prevalence was 22.1%. Seroprevalence was significantly higher in closed-breeding herds that do not have buying in cows (39.7%) than in farms that restock cattle by buying in cows (4.4%, P<0.01). The overall RR of BDV vertical transmission from infected mothers to their daughters was 1.86 (95% confidence interval (CI): 1.54–2.56). Our results show that vertical transmission contributes significantly to BDV transmission in the farms tested in this study. PMID:27498995

  15. Borna disease virus accelerates inflammation and disease associated with transgenic expression of interleukin-12 in the central nervous system.

    PubMed

    Freude, Susanna; Hausmann, Jürgen; Hofer, Markus; Pham-Mitchell, Ngan; Campbell, Iain L; Staeheli, Peter; Pagenstecher, Axel

    2002-12-01

    Targeted expression of biologically active interleukin-12 (IL-12) in astrocytes of the central nervous system (CNS) results in spontaneous neuroimmunological disease of aged mice. Borna disease virus (BDV) can readily multiply in the mouse CNS but does not trigger disease in most strains. Here we show that a large percentage of IL-12 transgenic mice developed severe ataxia within 5 to 10 weeks after infection with BDV. By contrast, no disease developed in mock-infected IL-12 transgenic and wild-type mice until 4 months of age. Neurological symptoms were rare in infected wild-type animals, and if they occurred, these were milder and appeared later. Histological analyses showed that the cerebellum of infected IL-12 transgenic mice, which is the brain region with strongest transgene expression, contained large numbers of CD4(+) and CD8(+) T cells as well as lower numbers of B cells, whereas other parts of the CNS showed only mild infiltration by lymphocytes. The cerebellum of diseased mice further showed severe astrogliosis, calcifications and signs of neurodegeneration. BDV antigen and nucleic acids were present in lower amounts in the inflamed cerebellum of infected transgenic mice than in the noninflamed cerebellum of infected wild-type littermates, suggesting that IL-12 or IL-12-induced cytokines exhibited antiviral activity. We propose that BDV infection accelerates the frequency by which immune cells such as lymphocytes and NK cells enter the CNS and then respond to IL-12 present in the local milieu causing disease. Our results illustrate that infection of the CNS with a virus that is benign in certain hosts can be harmful in such normally disease-resistant hosts if the tissue is unfavorably preconditioned by proinflammatory cytokines.

  16. Crystal structure of the Borna disease virus matrix protein (BDV-M) reveals ssRNA binding properties

    PubMed Central

    Neumann, Piotr; Lieber, Diana; Meyer, Sylke; Dautel, Philipp; Kerth, Andreas; Kraus, Ina; Garten, Wolfgang; Stubbs, Milton T.

    2009-01-01

    Borna disease virus (BDV) is a neurotropic enveloped RNA virus that causes a noncytolytic, persistent infection of the central nervous system in mammals. BDV belongs to the order Mononegavirales, which also includes the negative-strand RNA viruses (NSVs) Ebola, Marburg, vesicular stomatitis, rabies, mumps, and measles. BDV-M, the matrix protein (M-protein) of BDV, is the smallest M-protein (16.2 kDa) among the NSVs. M-proteins play a critical role in virus assembly and budding, mediating the interaction between the viral capsid, envelope, and glycoprotein spikes, and are as such responsible for the structural stability and individual form of virus particles. Here, we report the 3D structure of BDV-M, a full-length M-protein structure from a nonsegmented RNA NSV. The BDV-M monomer exhibits structural similarity to the N-terminal domain of the Ebola M-protein (VP40), while the surface charge of the tetramer provides clues to the membrane association of BDV-M. Additional electron density in the crystal reveals the presence of bound nucleic acid, interpreted as cytidine-5′-monophosphate. The heterologously expressed BDV-M copurifies with and protects ssRNA oligonucleotides of a median length of 16 nt taken up from the expression host. The results presented here show that BDV-M would be able to bind RNA and lipid membranes simultaneously, expanding the repertoire of M-protein functionalities. PMID:19237566

  17. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome.

    PubMed

    Fujino, Kan; Horie, Masayuki; Honda, Tomoyuki; Merriman, Dana K; Tomonaga, Keizo

    2014-09-09

    Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.

  18. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome

    PubMed Central

    Fujino, Kan; Horie, Masayuki; Honda, Tomoyuki; Merriman, Dana K.; Tomonaga, Keizo

    2014-01-01

    Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called “endogenous bornavirus-like elements” (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo. PMID:25157155

  19. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels

    SciTech Connect

    Liu, Xia; Liu, Siwen; Bode, Liv; Liu, Chengyu; Zhang, Liang; Wang, Xiao; Li, Dan; Lei, Yang; Peng, Xiaojun; Cheng, Zhongyi; and others

    2015-11-15

    Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteins and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.

  20. Evidence for natural Borna disease virus infection in healthy domestic animals in three areas of western China.

    PubMed

    Zhang, Liang; Wang, Xiao; Zhan, Qunling; Wang, Zhenhai; Xu, Mingming; Zhu, Dan; He, Feng; Liu, Xia; Huang, Rongzhong; Li, Dan; Lei, Yang; Xie, Peng

    2014-08-01

    Borna disease virus (BDV) is a non-cytolytic, neurotropic RNA virus that can infect many vertebrate species, including humans. To date, BDV infection has been reported in a range of animal species across a broad global geographic distribution. However, a systematic epidemiological survey of BDV infection in domesticated animals in China has yet to be performed. In current study, BDV RNA and antibodies in 2353 blood samples from apparently healthy animals of eight species (horse, donkey, dog, pig, rabbit, cattle, goat, sheep) from three areas in western China (Xinjiang province, Chongqing municipality, and Ningxia province) were assayed using reverse transcription qPCR (RT-qPCR) and ELISA assay. Brain tissue samples from a portion of the BDV RNA- and/or antibody-positive animals were subjected to RT-qPCR and western blotting. As a result, varying prevalence of BDV antibodies and/or RNA was demonstrated in various animal species from three areas, ranging from 4.4 % to 20.0 %. Detection of BDV RNA and/or antibodies in Chongqing pigs (9.2 %) provided the first known evidence of BDV infection in this species. Not all brain tissue samples from animals whose blood was BDV RNA and/or antibody positive contained BDV RNA and protein. This study provides evidence that BDV infection among healthy domestic animal species is more widespread in western China than previously believed.

  1. Borna disease virus-induced neuronal degeneration dependent on host genetic background and prevented by soluble factors.

    PubMed

    Wu, Yuan-Ju; Schulz, Herbert; Lin, Chia-Ching; Saar, Kathrin; Patone, Giannino; Fischer, Heike; Hübner, Norbert; Heimrich, Bernd; Schwemmle, Martin

    2013-01-29

    Infection of newborn rats with Borne disease virus (BDV) results in selective degeneration of granule cell neurons of the dentate gyrus (DG). To study cellular countermechanisms that might prevent this pathology, we screened for rat strains resistant to this BDV-induced neuronal degeneration. To this end, we infected hippocampal slice cultures of different rat strains with BDV and analyzed for the preservation of the DG. Whereas infected cultures of five rat strains, including Lewis (LEW) rats, exhibited a disrupted DG cytoarchitecture, slices of three other rat strains, including Sprague-Dawley (SD), were unaffected. However, efficiency of viral replication was comparable in susceptible and resistant cultures. Moreover, these rat strain-dependent differences in vulnerability were replicated in vivo in neonatally infected LEW and SD rats. Intriguingly, conditioned media from uninfected cultures of both LEW and SD rats could prevent BDV-induced DG damage in infected LEW hippocampal cultures, whereas infection with BDV suppressed the availability of these factors from LEW but not in SD hippocampal cultures. To gain further insights into the genetic basis for this rat strain-dependent susceptibility, we analyzed DG granule cell survival in BDV-infected cultures of hippocampal neurons derived from the F1 and F2 offspring of the crossing of SD and LEW rats. Genome-wide association analysis revealed one resistance locus on chromosome (chr) 6q16 in SD rats and, surprisingly, a locus on chr3q21-23 that was associated with susceptibility. Thus, BDV-induced neuronal degeneration is dependent on the host genetic background and is prevented by soluble protective factors in the disease-resistant SD rat strain.

  2. Ebola Virus Disease

    MedlinePlus

    ... Fact files Questions & answers Features Multimedia Contacts Ebola virus disease Fact sheet Updated January 2016 Key facts ... survivors of Ebola virus disease Symptoms of Ebola virus disease The incubation period, that is, the time ...

  3. [Ebola virus disease].

    PubMed

    Nazimek, Katarzyna; Bociaga-Jasik, Monika; Bryniarski, Krzysztof; Gałas, Aleksander; Garlicki, Aleksander; Gawda, Anna; Gawlik, Grzegorz; Gil, Krzysztof; Kosz-Vnenchak, Magdalena; Mrozek-Budzyn, Dorota; Olszanecki, Rafał; Piatek, Anna; Zawilińska, Barbara; Marcinkiewicz, Janusz

    2014-01-01

    Ebola is one of the most virulent zoonotic RNA viruses causing in humans haemorrhagic fever with fatality ratio reaching 90%. During the outbreak of 2014 the number of deaths exceeded 8.000. The "imported" cases reported in Western Europe and USA highlighted the extreme risk of Ebola virus spreading outside the African countries. Thus, haemorrhagic fever outbreak is an international epidemiological problem, also due to the lack of approved prevention and therapeutic strategies. The editorial review article briefly summarizes current knowledge on Ebola virus disease epidemiology, etiology, pathogenesis, clinical presentation, diagnosis as well as possible prevention and treatment.

  4. Viruses and Virus Diseases of Rubus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubus species are propagated vegetatively and are subject to infection by viruses during development, propagation and fruit production stages. Reports of initial detection and symptoms of more than 30 viruses, virus-like diseases and phytoplasmas affecting Rubus spp. have been reviewed more than 20 ...

  5. Ebola (Ebola Virus Disease): Treatment

    MedlinePlus

    ... CDC Cancel Submit Search The CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is not ... visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014-2016 West ...

  6. Ebola (Ebola Virus Disease): Diagnosis

    MedlinePlus

    ... CDC Cancel Submit Search The CDC Ebola (Ebola Virus Disease) Note: Javascript is disabled or is not ... visit this page: About CDC.gov . Ebola (Ebola Virus Disease) About Ebola Questions & Answers 2014-2016 West ...

  7. Virus diseases of fish

    USGS Publications Warehouse

    Watson, Stanley W.

    1954-01-01

    The degenerative or non-neoplastic diseases of possible virus origin give the fish-culturist the most concern because of the severe mortalities resulting from infection. Epizootics of this nature have been reported in carp (Cyprinus carpio) and rainbow trout (Salmo gairdneri) in Europe, in acara (Geophagus brasiliensis) in South America, in kokanee, (Oncorhynchus nerka kennerlyi) and in sockeye salmon (Oncorhynchus nerka nerka) in the State of Washington. It has been demonstrated that each epizootic was caused by an infectious filterable agent, probably a virus.

  8. Nairobi sheep disease virus/Ganjam virus.

    PubMed

    M D, Baron; B, Holzer

    2015-08-01

    Nairobi sheep disease virus (NSDV) is a tick-borne virus which causes a severe disease in sheep and goats, and has been responsible for several outbreaks of disease in East Africa. The virus is also found in the Indian subcontinent, where it is known as Ganjam virus. The virus only spreads through the feeding of competent infected ticks, and is therefore limited in its geographic distribution by the distribution of those ticks, Rhipicephalus appendiculata in Africa and Haemaphysalis intermedia in India. Animals bred in endemic areas do not normally develop disease, and the impact is therefore primarily on animals being moved for trade or breeding purposes. The disease caused by NSDV has similarities to several other ruminant diseases, and laboratory diagnosis is necessary for confirmation. There are published methods for diagnosis based on polymerase chain reaction, for virus growth in cell culture and for other simple diagnostic tests, though none has been commercialised. There is no established vaccine against NSDV, although cell-culture attenuated strains have been developed which show promise and could be put into field trials if it were deemed necessary. The virus is closely related to Crimean-Congo haemorrhagic fever virus, and studies on NSDV may therefore be useful in understanding this important human pathogen.

  9. Ebola Virus Disease

    PubMed Central

    Kourtis, Athena P.; Appelgren, Kristie; Chevalier, Michelle S.; McElroy, Anita

    2015-01-01

    Ebola virus is one of the most deadly pathogens known to infect humans. The current Ebola outbreak in West Africa is unprecedented in magnitude and duration and, as of November 30, 2014, shows no signs of abating. For the first time, cases of Ebola virus disease have been diagnosed in the US, originating from patients who traveled during the incubation period. The outbreak has generated worldwide concern. It is clear that U.S. physicians need to be aware of this disease, know when to consider Ebola and how to care for the patient as well as protect themselves. Children comprise a small percentage of all cases globally, likely because of their lower risk of exposure given social and cultural practices. Limited evidence is available on pediatric disease course and prognosis. In this article, we present an overview of the pathogen, its epidemiology and transmission, clinical and laboratory manifestations, treatment and infection control procedures, with an emphasis on what is known about Ebola virus disease in the pediatric population. PMID:25831417

  10. [Ebola virus disease: Update].

    PubMed

    de la Calle-Prieto, Fernando; Arsuaga-Vicente, Marta; Mora-Rillo, Marta; Arnalich-Fernandez, Francisco; Arribas, Jose Ramon

    2016-01-01

    The first known Ebola outbreak occurred in 1976. Since then, 24 limited outbreaks had been reported in Central Africa, but never affecting more than 425 persons. The current outbreak in Western Africa is the largest in history with 28,220 reported cases and 11,291 deaths. The magnitude of the epidemic has caused worldwide alarm. For the first time, evacuated patients were treated outside Africa, and secondary cases have occurred in Spain and the United States. Since the start of the current epidemic, our knowledge about the epidemiology, clinical picture, laboratory findings, and virology of Ebola virus disease has considerably expanded. For the first time, experimental treatment has been tried, and there have been spectacular advances in vaccine development. A review is presented of these advances in the knowledge of Ebola virus disease.

  11. Avian influenza virus and Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  12. Blueberry (Vaccinium corymbosum)-Virus Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At least six viruses have been found in highbush blueberry plantings in the Pacific Northwest: Blueberry mosaic virus, Blueberry red ringspot virus, Blueberry scorch virus, Blueberry shock virus, Tobacco ringspot virus, and Tomato ringspot virus. Six other virus and virus-like diseases of highbush b...

  13. Ebola (Ebola Virus Disease)

    MedlinePlus

    ... to Introduce a Vaccine against Ebola Ebola Virus Ecology and Transmission About Ebola Signs and Symptoms Symptoms ... Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus Ecology Graphic Language: English Español Français File ...

  14. Ebola virus disease: radiology preparedness.

    PubMed

    Bluemke, David A; Meltzer, Carolyn C

    2015-02-01

    At present, there is a major emphasis on Ebola virus disease (EVD) preparedness training at medical facilities throughout the United States. Failure to have proper EVD procedures in place was cited as a major reason for infection of medical personnel in the United States. Medical imaging does not provide diagnosis of EVD, but patient assessment in the emergency department and treatment isolation care unit is likely to require imaging services. The purpose of this article is to present an overview of relevant aspects of EVD disease and preparedness relevant to the radiologic community.

  15. Treatment of ebola virus disease.

    PubMed

    Kilgore, Paul E; Grabenstein, John D; Salim, Abdulbaset M; Rybak, Michael

    2015-01-01

    In March 2014, the largest Ebola outbreak in history exploded across West Africa. As of November 14, 2014, the World Health Organization has reported a total of 21,296 Ebola virus disease (EVD) cases, including 13,427 laboratory-confirmed EVD cases reported from the three most affected countries (Guinea, Liberia, and Sierra Leone). As the outbreak of EVD has spread, clinical disease severity and national EVD case-fatality rates have remained high (21.2-60.8%). Prior to 2013, several EVD outbreaks were controlled by using routine public health interventions; however, the widespread nature of the current EVD outbreak as well as cultural practices in the affected countries have challenged even the most active case identification efforts. In addition, although treatment centers provide supportive care, no effective therapeutic agents are available for EVD-endemic countries. The ongoing EVD outbreak has stimulated investigation of several different therapeutic strategies that target specific viral structures and mechanisms of Ebola viruses. Six to eight putative pharmacotherapies or immunologically based treatments have demonstrated promising results in animal studies. In addition, agents composed of small interfering RNAs targeting specific proteins of Ebola viruses, traditional hyperimmune globulin isolated from Ebola animal models, monoclonal antibodies, and morpholino oligomers (small molecules used to block viral gene expression). A number of EVD therapeutic agents are now entering accelerated human trials in EVD-endemic countries. The goal of therapeutic agent development includes postexposure prevention and EVD cure. As knowledge of Ebola virus virology and pathogenesis grows, it is likely that new therapeutic tools will be developed. Deployment of novel Ebola therapies will require unprecedented cooperation as well as investment to ensure that therapeutic tools become available to populations at greatest risk for EVD and its complications. In this article, we

  16. Marek’s disease virus genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) is one of the most oncogenic herpesviruses known and induces a rapid onset T-cell lymphoma and demyelinating disease in chickens. It represents the first of three neoplastic diseases (including hepatocellular carcinoma: hepatitis B virus; and cervical carcinoma: human pap...

  17. Blackberry (Rubus spp.)-Virus Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many viruses have been found in blackberries in the Pacific Northwest. Blackberry calico virus (a carlavirus) is universally present in older commercial 'Thornless Loganberry' fields. Similar calico diseases occur in field-run 'Marion', 'Chehalem', 'Olallie', and 'Waldo' blackberries. Other virus di...

  18. Bovine viral diarrhea virus: biotypes and disease.

    PubMed Central

    Deregt, D; Loewen, K G

    1995-01-01

    Bovine viral diarrhea virus continues to produce significant economic losses for the cattle industry and challenges investigators with the complexity of diseases it produces and the mechanisms by which it causes disease. This paper updates and attempts to clarify information regarding the roles of noncytopathic and cytopathic bovine viral diarrhea viruses in persistent infections and mucosal disease. It also covers, in brief, what is known of the new diseases: thrombocytopenia and hemorrhagic disease, and a disease resembling mucosal disease that is apparently caused solely by noncytopathic virus. Although a good understanding of the roles of the 2 biotypes in the production of persistent infections and the precipitation of mucosal disease has been obtained, there are still unanswered questions regarding the origin of cytopathic viruses and the mechanism by which they cause pathological changes in cells. It is apparent, however, that cytopathic bovine viral diarrhea viruses arise by mutation of noncytopathic viruses, and it is known that p80 is the marker protein for cytopathic viruses. The previous distinction between mild bovine viral diarrhea and fatal mucosal disease has been eroded with the emergence of new virulent bovine viral diarrhea viruses. The new diseases pose a threat to the cattle industry and present a new challenge for investigators. Index Veterinarius (1984-1994) and Medline (1985-1994) databases and personal files updated since 1987 from BIOSIS Previews and Biosciences Information Services were used to search the literature. Images Figure 1. PMID:7648541

  19. [Epidemiological characteristics of Zika virus disease].

    PubMed

    Li, Jiandong; Li, Dexin

    2016-03-01

    Zika virus disease is an emerging mosquito-borne acute infectious disease caused by Zika virus, so far there have been no available vaccine or specific treatment. Currently, the outbreaks of Zika virus disease mainly occurs in the Americas, but the regional distribution of the disease is in rapid expansion, 34 countries and territories have reported autochthonous transmission of the virus. The illness is usually mild with very rarely death, but increased reports of birth defects and neurologic disorders in the areas affected by Zika virus has caused extensive concern worldwide. In China, the competent vectors for Zika virus are widely distributed, imported viraemic cases may become a source of local transmission of the virus. However, Zika virus disease is preventable, the spread of virus could be stopped when the effective prevention measures are taken. This paper summarizes the retrieval results from Medline database and the information from the reports of the governments of countries affected or health organizations about the epidemiological characteristics of Zika virus disease.

  20. Endogenous non-retroviral RNA virus elements in mammalian genomes.

    PubMed

    Horie, Masayuki; Honda, Tomoyuki; Suzuki, Yoshiyuki; Kobayashi, Yuki; Daito, Takuji; Oshida, Tatsuo; Ikuta, Kazuyoshi; Jern, Patric; Gojobori, Takashi; Coffin, John M; Tomonaga, Keizo

    2010-01-07

    Retroviruses are the only group of viruses known to have left a fossil record, in the form of endogenous proviruses, and approximately 8% of the human genome is made up of these elements. Although many other viruses, including non-retroviral RNA viruses, are known to generate DNA forms of their own genomes during replication, none has been found as DNA in the germline of animals. Bornaviruses, a genus of non-segmented, negative-sense RNA virus, are unique among RNA viruses in that they establish persistent infection in the cell nucleus. Here we show that elements homologous to the nucleoprotein (N) gene of bornavirus exist in the genomes of several mammalian species, including humans, non-human primates, rodents and elephants. These sequences have been designated endogenous Borna-like N (EBLN) elements. Some of the primate EBLNs contain an intact open reading frame (ORF) and are expressed as mRNA. Phylogenetic analyses showed that EBLNs seem to have been generated by different insertional events in each specific animal family. Furthermore, the EBLN of a ground squirrel was formed by a recent integration event, whereas those in primates must have been formed more than 40 million years ago. We also show that the N mRNA of a current mammalian bornavirus, Borna disease virus (BDV), can form EBLN-like elements in the genomes of persistently infected cultured cells. Our results provide the first evidence for endogenization of non-retroviral virus-derived elements in mammalian genomes and give novel insights not only into generation of endogenous elements, but also into a role of bornavirus as a source of genetic novelty in its host.

  1. Control of virus diseases in soybeans.

    PubMed

    Hill, John H; Whitham, Steven A

    2014-01-01

    Soybean, one of the world's most important sources of animal feed and vegetable oil, can be infected by numerous viruses. However, only a small number of the viruses that can potentially infect soybean are considered as major economic problems to soybean production. Therefore, we consider management options available to control diseases caused by eight viruses that cause, or have the potential to cause, significant economic loss to producers. We summarize management tactics in use and suggest direction for the future. Clearly, the most important tactic is disease resistance. Several resistance genes are available for three of the eight viruses discussed. Other options include use of virus-free seed and avoidance of alternative virus hosts when planting. Attempts at arthropod vector control have generally not provided consistent disease management. In the future, disease management will be considerably enhanced by knowledge of the interaction between soybean and viral proteins. Identification of genes required for soybean defense may represent key regulatory hubs that will enhance or broaden the spectrum of basal resistance to viruses. It may be possible to create new recessive or dominant negative alleles of host proteins that do not support viral functions but perform normal cellular function. The future approach to virus control based on gene editing or exploiting allelic diversity points to necessary research into soybean-virus interactions. This will help to generate the knowledge needed for rational design of durable resistance that will maximize global production.

  2. Persistent RNA virus infections: do PAMPS drive chronic disease?

    PubMed

    McCarthy, Mary K; Morrison, Thomas E

    2017-02-16

    Chronic disease associated with persistent RNA virus infections represents a key public health concern. While human immunodeficiency virus-1 and hepatitis C virus are perhaps the most well-known examples of persistent RNA viruses that cause chronic disease, evidence suggests that many other RNA viruses, including re-emerging viruses such as chikungunya virus, Ebola virus and Zika virus, establish persistent infections. The mechanisms by which RNA viruses drive chronic disease are poorly understood. Here, we discuss how the persistence of viral RNA may drive chronic disease manifestations via the activation of RNA sensing pathways.

  3. Tobacco against Ebola virus disease.

    PubMed

    Budzianowski, Jaromir

    2015-01-01

    The Ebola virus disease (EVD), formerly known as a hemorrhagic fever and discovered in 1976, is dangerous, highly infectious disease with very high mortality. There are no licensed therapeutics against EVD, although a range of medicines and therapies are currently being evaluated. During the 2014 Ebola outbreak, an experimental drug named ZMapp was administered on an emergency basis to seven patients of which five were recovered. Currently, since February 2015, ZMapp is tested in clinical trials. ZMapp is a mixture (named a cocktail) of three chimaeric monoclonal antibodies (mAbs) of IgG class, which bind to three different epitopes on Ebola surface glycoprotein (GP). ZMapp was created by systematic selection of antibodies from two other three-component cocktails--MB-003 and ZMab the components of which were produced by rapid transient expression method in tobacco species of Australian origin--Nicotiana benthamiana. The ZMapp antibodies of pharmaceutical grade are manufactured in green-house grown N.benthamiana according to the cGMP (current Good Manufacturing Practice), using RAMP platform (Rapid Antibody Manufacturing Platform) and MagnICON system, which utilizes transient expression by magnifection method using viral vectors delivered to plant tissue by a bacterium--Agrobacterium tumefaciens. The applied glycosylation mutant of N.benthamiana (delta XTFT) synthesizes human-like, biantennary N-glycans, with terminal N-acetylglucoseamine and without typical of plants, immunogenic sugar epitopes-beta1,2-linked xylose and alpha1,3-linked fucose. Due to an absence of fucose on N-glycans attached to the Fc domains, the plant-produced anti-Ebola mAbs elicited significantly stronger antibody-dependent cellular cytotoxicity (ADCC) than the analogous anti-Ebola mAbs with fucosylated (alpha1,6-linked fucose) N-glycans produced in a mammalian CHO cell line--the basic expression system for the industrial production of recombinant therapeutical glycoproteins. As far as a

  4. Cassava virus diseases: biology, epidemiology, and management.

    PubMed

    Legg, James P; Lava Kumar, P; Makeshkumar, T; Tripathi, Leena; Ferguson, Morag; Kanju, Edward; Ntawuruhunga, Pheneas; Cuellar, Wilmer

    2015-01-01

    Cassava (Manihot esculenta Crantz.) is the most important vegetatively propagated food staple in Africa and a prominent industrial crop in Latin America and Asia. Its vegetative propagation through stem cuttings has many advantages, but deleteriously it means that pathogens are passed from one generation to the next and can easily accumulate, threatening cassava production. Cassava-growing continents are characterized by specific suites of viruses that affect cassava and pose particular threats. Of major concern, causing large and increasing economic impact in Africa and Asia are the cassava mosaic geminiviruses that cause cassava mosaic disease in Africa and Asia and cassava brown streak viruses causing cassava brown streak disease in Africa. Latin America, the center of origin and domestication of the crop, hosts a diverse set of virus species, of which the most economically important give rise to cassava frog skin disease syndrome. Here, we review current knowledge on the biology, epidemiology, and control of the most economically important groups of viruses in relation to both farming and cultural practices. Components of virus control strategies examined include: diagnostics and surveillance, prevention and control of infection using phytosanitation, and control of disease through the breeding and promotion of varieties that inhibit virus replication and/or movement. We highlight areas that need further research attention and conclude by examining the likely future global outlook for virus disease management in cassava.

  5. Ebola virus disease and the veterinary perspective.

    PubMed

    Gumusova, Semra; Sunbul, Mustafa; Leblebicioglu, Hakan

    2015-05-28

    Ebola virus disease (EVD) is a potentially fatal haemorrhagic disease of humans. The last and most serious outbreak of Ebola virus (EBOV) started in December 2013 in West Africa and also affected other continents. Animals such as fruit bats and non-human primates are potential sources of EBOV. This review highlights the clinical features of EVD in humans and animals and addresses the public health implications of EVD outbreaks from the veterinary perspective.

  6. Viruses and virus diseases of marine mammals.

    PubMed

    Smith, A W; Skilling, D E

    1979-11-01

    Poxvirus and several serotypes of calicivirus cause recognizable disease in marine mammals. Pox lesions in pinnipeds are raised and proliferative and are seen most frequently after confinement in captivity. In cetaceans, a poxvirus is associated with a much more benign and chronic lesion called a "tattoo." Numerous caliciviruses of differing antigenic types have been isolated from vesicular lesions and aborted fetuses of northern fur seals and California sea lions as well as from clinically normal and orphaned northern elephant seal pups. An adenovirus has been isolated from a sei whale and an enterovirus has been isolated from a gray whale.

  7. Ebola (Ebola Virus Disease): Transmission

    MedlinePlus

    ... Healthcare Professionals Addressing Ebola Virus Infection Concerns in K-12 Schools Public Health Resources U.S. Healthcare Workers and ... Field Training: Healthcare Workers Going to Africa Continuing Education Toolkit Managing Patient Flow During Triage, Isolation, and ...

  8. Ebola (Ebola Virus Disease): Prevention

    MedlinePlus

    ... Healthcare Professionals Addressing Ebola Virus Infection Concerns in K-12 Schools Public Health Resources U.S. Healthcare Workers and ... Field Training: Healthcare Workers Going to Africa Continuing Education Toolkit Managing Patient Flow During Triage, Isolation, and ...

  9. Control of sweet potato virus diseases.

    PubMed

    Loebenstein, Gad

    2015-01-01

    Sweet potato (Ipomoea batatas) is ranked seventh in global food crop production and is the third most important root crop after potato and cassava. Sweet potatoes are vegetative propagated from vines, root slips (sprouts), or tubers. Therefore, virus diseases can be a major constrain, reducing yields markedly, often more than 50%. The main viruses worldwide are Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV). Effects on yields by SPFMV or SPCSV alone are minor, or but in complex infection by the two or other viruses yield losses of 50%. The orthodox way of controlling viruses in vegetative propagated crops is by supplying the growers with virus-tested planting material. High-yielding plants are tested for freedom of viruses by PCR, serology, and grafting to sweet potato virus indicator plants. After this, meristem tips are taken from those plants that reacted negative. The meristems were grown into plants which were kept under insect-proof conditions and away from other sweet potato material for distribution to farmers after another cycle of reproduction.

  10. Foot-and-mouth disease virus L peptidase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV), equine rhinitis A virus (ERAV) and bovine rhinitis B virus (BRBV) comprise the genus Aphthovirus of the Picornaviridae family. Seven genera within this family, Aphthoviruses, Cardioviruses, Erboviruses (ERBV), Kobuviruses, Senecaviruses, Sapeloviruses, and Tescho...

  11. In vivo Expression of Inducible Nitric Oxide Synthase in Experimentally Induced Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Koprowski, Hilary; Zheng, Yong Mu; Heber-Katz, Ellen; Fraser, Nigel; Rorke, Lucy; Fu, Zhen Fang; Hanlon, Cathleen; Dietzschold, Bernhard

    1993-04-01

    The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.

  12. Human immunodeficiency virus, herpes virus infections, and pulmonary vascular disease

    PubMed Central

    Flores, Sonia C.; Almodovar, Sharilyn

    2013-01-01

    The following state-of-the-art seminar was delivered as part of the Aspen Lung Conference on Pulmonary Hypertension and Vascular Diseases held in Aspen, Colorado in June 2012. This paper will summarize the lecture and present results from a nonhuman primate model of infection with Simian (Human) Immunodeficiency Virus - nef chimeric virions as well as the idea that polymorphisms in the HIV-1 nef gene may be driving the immune response that results in exuberant inflammation and aberrant endothelial cell (EC) function. We will present data gathered from primary HIV nef isolates where we tested the biological consequences of these polymorphisms and how their presence in human populations may predict patients at risk for developing this disease. In this article, we also discuss how a dysregulated immune system, in conjunction with a viral infection, could contribute to pulmonary arterial hypertension (PAH). Both autoimmune diseases and some viruses are associated with defects in the immune system, primarily in the function of regulatory T cells. These T-cell defects may be a common pathway in the formation of plexiform lesions. Regardless of the route by which viruses may lead to PAH, it is important to recognize their role in this rare disease. PMID:23662195

  13. Coinfecting viruses as determinants of HIV disease.

    PubMed

    Lisco, Andrea; Vanpouille, Christophe; Margolis, Leonid

    2009-02-01

    The human body constitutes a balanced ecosystem of its own cells together with various microbes ("host-microbe ecosystem"). The transmission of HIV-1 and the progression of HIV disease in such an ecosystem are accompanied by de novo infection by other microbes or by activation of microbes that were present in the host in homeostatic equilibrium before HIV-1 infection. In recent years, data have accumulated on the interactions of these coinfecting microbes-viruses in particular-with HIV. Coinfecting viruses generate negative and positive signals that suppress or upregulate HIV-1. We suggest that the signals generated by these viruses may largely affect HIV transmission, pathogenesis, and evolution. The study of the mechanisms of HIV interaction with coinfecting viruses may indicate strategies to suppress positive signals, enhance negative signals, and lead to the development of new and original anti-HIV therapies.

  14. Newcastle Disease Virus and Other Avian Paramyxoviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are currently 11 recognized serotypes of avian paramyxovirus. Type 1 is the most important for poultry and includes Newcastle disease virus (NDV), which is a form of avian paramyxovirus type 1 (APMV-1) that is highly virulent for chickens and turkeys. NDV is considered to be one of the mos...

  15. Ebola virus disease in nonendemic countries.

    PubMed

    Wong, Samson Sai-Yin; Wong, Sally Cheuk-Ying

    2015-05-01

    The 2014 West African outbreak of Ebola virus disease was unprecedented in its scale and has resulted in transmissions outside endemic countries. Clinicians in nonendemic countries will most likely face the disease in returning travelers, either among healthcare workers, expatriates, or visiting friends and relatives. Clinical suspicion for the disease must be heightened for travelers or contacts presenting with compatible clinical syndromes, and strict infection control measures must be promptly implemented to minimize the risk of secondary transmission within healthcare settings or in the community. We present a concise review on human filoviral disease with an emphasis on issues that are pertinent to clinicians practicing in nonendemic countries.

  16. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... for vaccine production. All serials shall be prepared from the first through the fifth passage...

  17. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... for vaccine production. All serials shall be prepared from the first through the fifth passage...

  18. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease...

  19. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... for vaccine production. All serials shall be prepared from the first through the fifth passage...

  20. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease...

  1. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... for vaccine production. All serials shall be prepared from the first through the fifth passage...

  2. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease...

  3. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease...

  4. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Newcastle Disease Vaccine, Killed Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease...

  5. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Bursal Disease Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine... for vaccine production. All serials shall be prepared from the first through the fifth passage...

  6. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  7. Ebola Virus Disease: A Review of Its Past and Present.

    PubMed

    Murray, Michael J

    2015-09-01

    Ebola virus, the virus responsible for Ebola virus disease, has spawned several epidemics during the past 38 years. In 2014, an Ebola epidemic spread from Africa to other continents, becoming a pandemic. The virus's relatively unique structure, its infectivity and lethality, the difficulty in stopping its spread, and the lack of an effective treatment captured the world's attention. This article provides a brief review of the known history of Ebola virus disease, its etiology, epidemiology, and pathophysiology and a review of the limited information on managing patients with Ebola virus disease.

  8. An overview of Ebola virus disease

    PubMed Central

    Kadanali, Ayten; Karagoz, Gul

    2015-01-01

    Ebola virus disease (EVD), formerly known as Ebola hemorrhagic fever, is a severe, often fatal illness in humans. Ebola virus (EBOV) is transmitted through contact with blood or body fluids of a person who contracted or died from EVD, contaminated objects like needles and infected animals or bush meat. EVD has an incubation period of 2 to 21 days, and the infection has an acute onset without any carrier status. Currently, there is no standard treatment for EVD, so it is important to avoid infection or further spreading of the virus. Although historically the mortality of this infection exceeded 80%, modern medicine and public health measures have been able to lower this figure and reduce the impact of EBOV on individuals and communities. Its treatment involves early, aggressive supportive care with rehydration. Clinicians should consider the possibility of EVD in persons with travel or exposure history with the incubation period presenting constitutional symptoms in order to promptly identify diseased patients, and prevent further spreading of the disease. PMID:28058346

  9. Overview of Ebola virus disease in 2014.

    PubMed

    Tseng, Chih-Peng; Chan, Yu-Jiun

    2015-01-01

    In late December 2013, a deadly infectious epidemic, Ebola virus disease (EVD), emerged from West Africa and resulted in a formidable outbreak in areas including Guinea, Liberia, Sierra Leone and Nigeria. EVD is a zoonotic disease with a high mortality rate. Person-to-person transmission occurs through blood or body fluid exposure, which can jeopardize first-line healthcare workers if there is a lack of stringent infection control or no proper personal protective equipment available. Currently, there is no standard treatment for EVD. To promptly identify patients and prevent further spreading, physicians should be aware of travel or contact history for patients with constitutional symptoms.

  10. Newcastle disease virus as a vaccine vector for infectious laryngotracheitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective, safe, and incapable of reverting to virulence are characteristics desirable for infectious laryngotracheitis virus (ILTV) vaccines. Recombinant Newcastle disease virus (NDV) expressing foreign antigens of avian and mammalian pathogens have been demonstrated to elicit protective immunity....

  11. Ebola virus disease: preparedness in Japan.

    PubMed

    Ashino, Yugo; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2015-02-01

    The current outbreak of Ebola virus disease (EVD) is due to a lack of resources, untrained medical personnel, and the specific contact-mediated type of infection of this virus. In Japan's history, education and mass vaccination of the native Ainu people successfully eradicated epidemics of smallpox. Even though a zoonotic virus is hard to control, appropriate precautions and personal protection, as well as anti-symptomatic treatment, will control the outbreak of EVD. Ebola virus utilizes the antibody-dependent enhancement of infection to seed the cells of various organs. The pathogenesis of EVD is due to the cytokine storm of pro-inflammatory cytokines and the lack of antiviral interferon-α2. Matricellular proteins of galectin-9 and osteopontin might also be involved in the edema and abnormality of the coagulation system in EVD. Anti-fibrinolytic treatment will be effective. In the era of globalization, interviews of travelers with fever within 3 weeks of departure from the affected areas will be necessary. Not only the hospitals designated for specific biohazards but every hospital should be aware of the biology of biohazards and establish measures to protect both patients and the community.

  12. Immunoglobulin classes of Aleutian disease virus antibody.

    PubMed Central

    Porter, D D; Porter, H G; Suffin, S C; Larsen, A E

    1984-01-01

    Aleutian disease virus (ADV) persistently infects mink and causes marked hypergammaglobulinemia. Immunoglobulin class-specific antisera were used to define the total immunoglobulin of each class by radial immunodiffusion and the immunoglobulin class of ADV-specific antibody by immunofluorescence in experimentally and naturally infected mink. Electrophoretic gamma globulin closely reflects the immunoglobulin G (IgG) level in mink, and the majority of the increased immunoglobulin and ADV antibody in infected mink is IgG. IgM becomes elevated within 6 days after infection, reaches peak levels by 15 to 18 days, and returns to normal by 60 days after infection. The first ADV antibody demonstrable is IgM, and most mink have virus-specific IgM antibody for at least 85 days postinfection. Serum IgA levels in normal mink are not normally distributed, and ADV infection causes a marked elevation of IgA. Low levels of ADV-specific IgA antibody can be shown throughout the course of infection. Failure of large amounts of virus-specific IgG antibody to inhibit the reaction of virus-specific IgM and IgA antibodies suggests that the various classes of antibodies are directed against spatially different antigenic determinants. The IgM and IgA were shown not to be rheumatoid factors. PMID:6319283

  13. Transmission of ebola virus disease: an overview.

    PubMed

    Rewar, Suresh; Mirdha, Dashrath

    2014-01-01

    Ebola is a viral illness of which the initial symptoms can include a sudden fever, intense weakness, muscle pain and a sore throat, according to the World Health Organization (WHO). Airborne transmission of Ebola virus has been hypothesized but not demonstrated in humans. Ebola is not spread through the air or by water, or in general, by food. However, in Africa, Ebola may be spread as a result of handling bushmeat (wild animals hunted for food) and contact with infected bats. The disease infects humans through close contact with infected animals, including chimpanzees, fruit bats, and forest antelope. Ebola virus can be transmitted by direct contact with blood, bodily fluids, or skin of patients with or who died of Ebola virus disease. As of late October 2014, the World Health Organization reported 13,567 suspected cases and 4922 deaths, although the agency believes that this substantially understates the magnitude of the outbreak. Experimental vaccines and treatments for Ebola are under development, but they have not yet been fully tested for safety or effectiveness.

  14. Dobrava-Belgrade virus: phylogeny, epidemiology, disease.

    PubMed

    Papa, Anna

    2012-08-01

    Dobrava-Belgrade virus (DOBV) is an Old World hantavirus that causes hemorrhagic fever with renal syndrome in humans. With a case fatality rate up to 12%, DOBV infection is the most life-threatening hantavirus disease in Europe. The virus was initially identified in the Balkans, but the discovery of new endemic foci have expanded its recognized geographic range. The recent description of novel genetic variants with different degrees of pathogenicity have complicated its taxonomic analysis. The original rodent host of DOBV is Apodemus flavicollis, however additional Apodemus species, such Apodemus agrarius and Apodemus ponticus, have been found to serve as hosts of the various DOBV genotypes. The complex evolution and genetic diversity of the virus are still under investigation. The present review aims to provide an update on the phylogeny of DOBV and the epidemiology of infection in rodents and humans; to describe the clinical characteristics of the disease; to present current knowledge about laboratory diagnosis, treatment and prevention; discuss the current state of the art in antiviral drug and vaccine development.

  15. Identification of lymphoproliferative disease virus in wild turkeys (Meleagris gallopavo) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viral-associated lymphoproliferative neoplasia in domestic poultry is caused by infection with a herpesvirus (Marek’s disease virus) or three species of retroviruses [Reticuloendotheliosis virus (REV), Avian leukosis/sarcoma virus, lymphoproliferative disease virus (LPDV)]. Previously, retroviral n...

  16. Experimental risk assessment of recombinant Newcastle disease virus vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant Newcastle disease viruses (NDV) used as live vaccines were assessed for: 1) the potential for recombinant NDV-vectored vaccines (rNDV) containing the Avian Influenza virus (AIV) H5 gene to recombine with low pathogenicity H5, H6 and H9 AIV strains, and originate a virus with increased vi...

  17. A Novel Virus Causes Scale Drop Disease in Lates calcarifer

    PubMed Central

    de Groof, Ad; Guelen, Lars; Deijs, Martin; van der Wal, Yorick; Miyata, Masato; Ng, Kah Sing; van Grinsven, Lotte; Simmelink, Bartjan; Biermann, Yvonne; Grisez, Luc; van Lent, Jan; de Ronde, Anthony; Chang, Siow Foong; Schrier, Carla; van der Hoek, Lia

    2015-01-01

    From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer) kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch’s postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease. PMID:26252390

  18. A Novel Virus Causes Scale Drop Disease in Lates calcarifer.

    PubMed

    de Groof, Ad; Guelen, Lars; Deijs, Martin; van der Wal, Yorick; Miyata, Masato; Ng, Kah Sing; van Grinsven, Lotte; Simmelink, Bartjan; Biermann, Yvonne; Grisez, Luc; van Lent, Jan; de Ronde, Anthony; Chang, Siow Foong; Schrier, Carla; van der Hoek, Lia

    2015-08-01

    From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer) kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch's postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease.

  19. Zika Virus Disease in Colombia - Preliminary Report.

    PubMed

    Pacheco, Oscar; Beltrán, Mauricio; Nelson, Christina A; Valencia, Diana; Tolosa, Natalia; Farr, Sherry L; Padilla, Ana V; Tong, Van T; Cuevas, Esther L; Espinosa-Bode, Andrés; Pardo, Lissethe; Rico, Angélica; Reefhuis, Jennita; González, Maritza; Mercado, Marcela; Chaparro, Pablo; Martínez Duran, Mancel; Rao, Carol Y; Muñoz, María M; Powers, Ann M; Cuéllar, Claudia; Helfand, Rita; Huguett, Claudia; Jamieson, Denise J; Honein, Margaret A; Ospina Martínez, Martha L

    2016-06-15

    Background Colombia began official surveillance for Zika virus disease (ZVD) in August 2015. In October 2015, an outbreak of ZVD was declared after laboratory-confirmed disease was identified in nine patients. Methods Using the national population-based surveillance system, we assessed patients with clinical symptoms of ZVD from August 9, 2015, to April 2, 2016. Laboratory test results and pregnancy outcomes were evaluated for a subgroup of pregnant women. Concurrently, we investigated reports of microcephaly for evidence of congenital ZVD. Results By April 2, 2016, there were 65,726 cases of ZVD reported in Colombia, of which 2485 (4%) were confirmed by means of reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay. The overall reported incidence of ZVD among female patients was twice that in male patients. A total of 11,944 pregnant women with ZVD were reported in Colombia, with 1484 (12%) of these cases confirmed on RT-PCR assay. In a subgroup of 1850 pregnant women, more than 90% of women who were reportedly infected during the third trimester had given birth, and no infants with apparent abnormalities, including microcephaly, have been identified. A majority of the women who contracted ZVD in the first or second trimester were still pregnant at the time of this report. Among the cases of microcephaly investigated from January 2016 through April 2016, four patients had laboratory evidence of congenital ZVD; all were born to asymptomatic mothers who were not included in the ZVD surveillance system. Conclusions Preliminary surveillance data in Colombia suggest that maternal infection with the Zika virus during the third trimester of pregnancy is not linked to structural abnormalities in the fetus. However, the monitoring of the effect of ZVD on pregnant women in Colombia is ongoing. (Funded by Colombian Instituto Nacional de Salud and the Centers for Disease Control and Prevention.).

  20. Research update: Avian Disease and Oncology Laboratory avian tumor viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics and Immunogenetics Use of genomics to identify QTL, genes, and proteins associated with resistance to Marek’s disease. Marek’s disease (MD), a lymphoproliferative disease caused by the highly oncogenic herpesvirus Marek's disease virus (MDV), continues to be a major disease concern to the p...

  1. Characterization of Aleutian disease virus as a parvovirus.

    PubMed Central

    Bloom, M E; Race, R E; Wolfinbarger, J B

    1980-01-01

    We characterized a strain of Aleutian disease virus adapted to growth in Crandall feline kidney cells at 31.8 degrees C. When purified from infected cells, Aleutian disease virus had a density in CsCl of 1.42 to 1.44 g/ml and was 24 to 26 nm in diameter. [3H]thymidine could be incorporated into the viral genome, and the viral DNA was then studied. In alkaline sucrose gradients, Aleutian disease virus DNA was a single species that cosedimented at 15.5S with single-stranded DNA from adeno-associated virus. When the DNA was analyzed on neutral sucrose gradients, a single species was again observed, which sedimented at 21S and was clearly distinct from 16S duplex adeno-associated virus DNA. A similar result was obtained even after incubation under annealing conditions, implying that the bulk of Aleutian disease virus virions contained a single non-complementary strand with a molecular weight of about 1.4 X 10(6). In addition, two major virus-associated polypeptides with molecular weights of 89,100 and 77,600 were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of virus purified from infected cultures labeled with [35S]methionine. These data suggest that Aleutian disease virus is a nondefective parvovirus. Images PMID:6252342

  2. DNA viruses associated with diseases of marine and anadromous fish

    NASA Astrophysics Data System (ADS)

    Hetrick, F. M.

    1984-03-01

    The association of DNA-containing viruses with diseases of marine and anadromous fish is reviewed. One section of the review describes those diseases with a proven viral etiology. Available information on the physical, chemical, and biological properties of the viruses is included. Another section deals with those diseases where a viral etiology is suspected but not established. The primary evidence associating viruses with many of these diseases is the observation of virus particles in electron micrographs of thin sections of tissue samples from diseased fish. Finally, the possible role of pollutants, and other stress factors, in predisposing fish to viral infection is discussed as are the problems associated with studying diseases of wild fish populations.

  3. Newcastle disease virus detection and differentiation from avian influenza.

    PubMed

    Miller, Patti J; Torchetti, Mia Kim

    2014-01-01

    Newcastle disease (ND) is a contagious and often fatal disease that affects over 250 bird species worldwide, and is caused by infection with virulent strains of avian paramyxovirus-1 (APMV-1) of the family Paramyxoviridae, genus Avulavirus. Infections of poultry with virulent strains of APMV-1 (Newcastle disease virus) are reportable to the World Organization for Animal Health (OIE). Vaccination of poultry species is a key measure in the control of ND. Other APMV-1 viruses of low virulence, which are not used as vaccines, are also often isolated from wild bird species. The APMV-1 virus, like avian influenza virus (AIV), is a hemagglutinating virus (HA) and able to agglutinate chicken red blood cells (RBC). Because the clinical presentation of ND can be difficult to distinguish from disease caused by AIV, techniques for differential diagnosis are essential, as well as the ability to detect mixed infections. When an HA positive virus is detected from virus isolation, additional assays can be performed to determine which virus is present. Both antigenic and molecular methods are necessary as some virulent ND viruses from cormorants in the USA after 2002 have lost their ability to hemagglutinate chicken RBC and molecular methods are needed for identification.

  4. Preparedness for Zika Virus Disease - New York City, 2016.

    PubMed

    Madad, Syra S; Masci, Joseph; Cagliuso, Nicholas V; Allen, Machelle

    2016-10-28

    The rapid spread of Zika virus across the World Health Organization's Region of the Americas has had a direct effect on the U.S. health care delivery system. Hospitals in New York City (NYC) have been implementing prevention and response efforts consistent with CDC guidance. As of September 21, 2016, a total of 715 cases of laboratory-confirmed Zika virus disease had been diagnosed in New York state among travelers who returned from affected areas, their sexual contacts, or infants infected in utero. This represents the highest number of reported cases in any state to date, and underscores the importance of health care systems preparing to care for patients with possible Zika virus disease (1). Building upon a framework that was established in 2014 to screen patients for possible exposure to Ebola virus disease (Ebola), NYC Health + Hospitals,* the largest municipal health care delivery system in the United States, implemented a Zika Preparedness and Response Action Plan(†) (Zika Action Plan) to address the threat from Zika and ensure appropriate patient care. The plan developed by NYC Health + Hospitals includes universal travel screening, signage depicting areas with active Zika virus transmission, clinical and epidemiologic evaluation for possible Zika virus exposure, diagnostic testing for Zika virus infection and linking of infected patients to appropriate specialists, and education on Zika virus disease and preventive measures (e.g., avoiding travel to areas with active Zika virus transmission).

  5. Research update: Avian Disease and Oncology Laboratory avian tumor viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics and Immunogenetics Marek’s disease (MD), a lymphoproliferative disease caused by the highly oncogenic herpesvirus Marek's disease virus (MDV), continues to be a major disease concern to the poultry industry. The fear of MD is further enhanced by unpredictable vaccine breaks that result in ...

  6. Marek's disease virus induced transient paralysis--a closer look

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s Disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly cell-associated alpha herpesvirus, Marek’s disease virus (MDV). Clinical signs of MD include depression, crippling, weight loss, and transient paralysis (TP). TP is a disease of the central nervous system...

  7. [Hepatitis C virus in rheumatic diseases].

    PubMed

    Jendro, M C; Hülsemann, J L; Zeidler, H

    1997-10-01

    HCV-infection is an important infectious disease in rheumatology. It is the cause of mixed cryoglobulinemia and other rheumatic manifestations develop frequently during HCV-infection. These comprise: Sicca-syndrome, thromboembolic events associated with anti-cardiolipin antibodies and fibromyalgia. Also associated with HCV-infection is a non-erosive polyarthritis. This synovitis often fulfills the ACR-criteria for rheumatoid arthritis, but the disease course is different with frequent remissions and non-erosive joint involvement. The following autoantibodies are associated with HCV-infection: Cryoglobulins, rheumatoid factor, antinuclear antibodies (ANA), antismooth muscle antibodies (SMA), anti-phospholipid-antibodies and anti-thyroid-antibodies. In HCV-associated sicca-syndrom, antibodies against Ro (SSA) and La (SSB) are not detected. The course of HCV-infection is often occult, without elevation of liver enzymes. We summarize the clinical and serological signs and symptoms when HCV-infection should be suspected and when HCV-testing should be performed in a rheumatological setting. The identification of HCV-infection in rheumatic patients is important to minimize the risk of aggravating hepatitis by prescription of hepatotoxic drugs and because of the availability of alpha-interferon as a potential virus eradicating agent.

  8. Potential role of viruses in white plague coral disease.

    PubMed

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.

  9. Ganjam virus/Nairobi sheep disease virus induces a pro-inflammatory response in infected sheep.

    PubMed

    Bin Tarif, Abid; Lasecka, Lidia; Holzer, Barbara; Baron, Michael D

    2012-10-19

    Partly due to climate change, and partly due to changes of human habitat occupation, the impact of tick-borne viruses is increasing. Nairobi sheep disease virus (NSDV) and Ganjam virus (GV) are two names for the same virus, which causes disease in sheep and goats and is currently known to be circulating in India and East Africa. The virus is transmitted by ixodid ticks and causes a severe hemorrhagic disease. We have developed a real-time PCR assay for the virus genome and validated it in a pilot study of the pathogenicity induced by two different isolates of NSDV/GV. One isolate was highly adapted to tissue culture, grew in most cell lines tested, and was essentially apathogenic in sheep. The second isolate appeared to be poorly adapted to cell culture and retained pathogenicity in sheep. The real-time PCR assay for virus easily detected 4 copies or less of the viral genome, and allowed a quantitative measure of the virus in whole blood. Measurement of the changes in cytokine mRNAs showed similar changes to those observed in humans infected by the closely related virus Crimean Congo hemorrhagic fever virus.

  10. Newcastle Disease Strain F. Virus — A Review

    PubMed Central

    Lancaster, J. E.

    1962-01-01

    Strain F Newcastle disease virus is a virus of low virulence originally reported by Asplin (1952) in England. Since that date, the use of this virus as an immunizing agent in the form of a live vaccine, has been studied. As a result, Strain F Newcastle disease vaccine has been used in national and experimental control programs in several countries in Europe, Africa and Asia. The published literature is reviewed under the following headings: properties, viability, clinical effects of vaccination, duration of immunity and a simultaneous Newcastle disease fowl pox vaccination. This review includes 24 reports published outside North America. PMID:17649410

  11. Human Immunodeficiency Virus and Liver Disease Forum 2010: Conference Proceedings

    PubMed Central

    Sherman, Kenneth E.; Thomas, David L.; Chung, Raymond T.

    2013-01-01

    Liver disease continues to represent a critical mediator of morbidity and mortality in those with human immunodeficiency virus (HIV) infection. The frequent presence and overlap of concomitant injurious processes, including hepatitis C virus and hepatitis B virus infections, hepatoxicity associated with antiretroviral therapeutic agents, alcohol, and other toxins, in the setting of immunosuppression lead to rapid fibrotic progression and early development of end-stage liver disease. This conference summary describes the proceedings of a state-of-the-art gathering of international experts designed to highlight the status of current research in epidemiology, natural history, pathogenesis, and treatment of HIV and liver disease. PMID:21898501

  12. West nile virus disease and other arboviral diseases - United States, 2011.

    PubMed

    2012-07-13

    Arthropodborne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. Symptomatic infections most often manifest as a systemic febrile illness and, less commonly, as neuroinvasive disease (e.g., meningitis, encephalitis, or acute flaccid paralysis). West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States. However, several other arboviruses also cause seasonal outbreaks and sporadic cases. In 2011, CDC received reports of 871 cases of nationally notifiable arboviral diseases (excluding dengue); etiological agents included WNV (712 cases), La Crosse virus (LACV) (130), Powassan virus (POWV) (16), St. Louis encephalitis virus (SLEV) (six), Eastern equine encephalitis virus (EEEV) (four), and Jamestown Canyon virus (JCV) (three). Of these, 624 (72%) were classified as neuroinvasive disease, for a national incidence of 0.20 per 100,000 population. WNV and other arboviruses continue to cause focal outbreaks and severe illness in substantial numbers of persons in the United States.

  13. Rapid diagnosis of plant virus diseases by transmission electron microscopy.

    PubMed

    Zechmann, Bernd; Zellnig, Günther

    2009-12-01

    A clear and rapid diagnosis of plant virus diseases is of great importance for agriculture and scientific experiments in plant phytopathology. Even though negative staining and transmission electron microscopy (TEM) are often used for detection and identification of viral particles and provide rapid and reliable results, it is necessary to examine ultrastructural changes induced by viruses for clear identification of the disease. With conventional sample preparation for TEM it can take several days to obtain ultrastructural results and it is therefore not suitable for rapid diagnosis of virus diseases of plants. The use of microwave irradiation can reduce the time for sample preparation for TEM investigations. Two model virus-plant systems [Nicotiana tabacum plants infected with Tobacco mosaic virus (TMV), Cucurbita pepo plants infected with Zucchini yellow mosaic virus (ZYMV)] demonstrate that it is possible to diagnose ultrastructural alterations induced by viruses in less than half a day by using microwave irradiation for preparation of samples. Negative staining of the sap of plants infected with TMV and ZYMV and the examination of ultrastructure and size were also carried out during sample preparation thus permitting diagnosis of the viral agent by TEM in a few hours. These methods will contribute towards a rapid and clear identification of virus diseases of plants and will be useful for diagnostic purposes in agriculture and in plant phytopathology.

  14. Control of virus diseases of citrus.

    PubMed

    Lee, Richard F

    2015-01-01

    Citrus is thought to have originated in Southeast Asia and horticulturally desirable clonal selections have been clonally cultivated for hundreds of years. While some citrus species have nucellar embryony, most cultivation of citrus has been by clonal propagation to ensure that propagated plants have the same traits as the parent selection. Clonal propagation also avoids juvenility, and the propagated plants produce fruit sooner. Because of the clonal propagation of citrus, citrus has accumulated a large number of viruses; many of these viruses are asymptomatic until a susceptible rootstock and/or scion is encountered. The viruses reported to occur in citrus will be summarized in this review. Methods of therapy to clean selected clones from viruses will be reviewed; the use of quarantine, clean stock, and certification programs for control of citrus viruses and other strategies to control insect spread citrus viruses, such as mild strain cross-protection and the use of pest management areas will be discussed.

  15. Investigation of Marek's disease virus from chickens in central Ethiopia.

    PubMed

    Demeke, Berhan; Jenberie, Shiferaw; Tesfaye, Biruk; Ayelet, Gelagay; Yami, Martha; Lamien, Charles Euloge; Gelaye, Esayas

    2017-02-01

    Marek's disease (MD) is a lymphoproliferative and neuropathic disease of domestic chickens and less commonly, turkeys and quails, caused by a highly contagious, cell-associated, oncogenic herpesvirus. In Ethiopia, MD is believed to be introduced with importation of exotic and crossbred to improve the poultry production and has been reported to be a potential threat to the poultry sector both in backyard and commercial farming systems. This study was aimed at isolation and molecular analysis of MD virus isolates circulating in chicken population in the central part of Ethiopia where commercial farms are populated. From September 2013 to January 2014, clinical and post-mortem examination were conducted on diseased chickens suspected of MD virus infection. Representative spleen and feather follicle samples were collected following sterile procedure, and infectious virus isolation was performed using primary chicken fibroblast cell culture. Cell culture inoculated with suspension of pathological samples developed characteristic MD virus cytopathic effect of rounding of the cells and small plaques. Further analysis of the virus was conducted by conventional PCR amplifying the ICP4 gene fragment from eleven tissue samples using MD virus specific primers. PCR products were further sequenced and analyzed. Nucleotide sequence similarity search of the local isolates resulted a high degree of sequence similarity with Gallid Herpes virus type 2 strain (Marek's disease virus type 1, JN034558). To our knowledge, the present study is the first report conducted on virus isolation and molecular characterization of MD virus isolates circulated in Ethiopia. Eleven ICP4-like gene fragment (318 bp) sequences generated in the present study were uploaded in the public database (KU842366-76). Further research on virus isolation, genetic characterization, and infection dynamics is recommended targeting chickens of all age groups reared in different agro-ecological zones under different

  16. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known about the interaction between these two viruses when simultaneously co-infecting the same host, especially in areas of the world where both viruses are...

  17. Insertion of a Reticuloendotheliosis virus LTR into the Marek's disease virus genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) had previously been co-cultivated in culture with Reticuloendotheliosis virus (REV). During co-cultivation, a long terminal repeat (LTR) from REV was inserted into the MDV genome. The resulting MDV, designated RM1, was attenuated but still induced severe thymic and bursal...

  18. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different genotypes of avian paramyxovirus serotype-1 virus (APMV-1) circulate in many parts of the world. Traditionally, Newcastle disease virus (NDV) is recognized as having two major divisions represented by class I and class II, with class II being further divided into eighteen genotypes. Alth...

  19. The affect of infectious bursal disease virus on avian influenza virus vaccine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunosuppressive viruses are known to affect vaccinal immunity, however the impact of virally induced immunosuppression on avian influenza vaccine efficacy has not been quantified. In order to determine the effect of exposure to infectious bursal disease virus (IBDV) on vaccinal immunity to highly ...

  20. Virus mutations and their impact on vaccination against infectious bursal disease (Gumboro disease).

    PubMed

    Boudaoud, A; Mamache, B; Tombari, W; Ghram, A

    2016-12-01

    Infectious bursal disease (also known as Gumboro disease) is an immunosuppressive viral disease specific to chickens. In spite of all the information amassed on the antigenic and immunological characteristics of the virus, the disease has not yet been brought fully under control. It is still prevalent in properly vaccinated flocks carrying specific antibodies at levels normally high enough to prevent the disease. Common causes apart, failure of vaccination against infectious bursal disease is associated mainly with early vaccination in flocks of unknown immune status and with the evolution of viruses circulating in the field, leading to antigenic drift and a sharp rise in pathogenicity. Various highly sensitive molecular techniques have clarified the viral determinants of antigenicity and pathogenicity of the infectious bursal disease virus. However, these markers are not universally recognised and tend to be considered as evolutionary markers. Antigenic variants of the infectious bursal disease virus possess modified neutralising epitopes that allow them to evade the action of maternally-derived or vaccine-induced antibodies. Autogenous or multivalent vaccines are required to control antigenic variants in areas where classical and variant virus strains coexist. Pathotypic variants (very virulent viruses) remain antigenically related to classical viruses. The difficulty in controlling pathotypic variants is linked to the difficulty of eliciting an early immune response, because of the risk of the vaccine virus being neutralised by maternal antibodies. Mathematical calculation of the optimal vaccination time and the use of vaccines resistant to maternally-derived antibodies have improved the control of very virulent viruses.

  1. Viruses and disease: emerging concepts for prevention, diagnosis and treatment.

    PubMed

    Herrington, C S; Coates, P J; Duprex, W P

    2015-01-01

    Viruses cause a wide range of human diseases, ranging from acute self-resolving conditions to acute fatal diseases. Effects that arise long after the primary infection can also increase the propensity for chronic conditions or lead to the development of cancer. Recent advances in the fields of virology and pathology have been fundamental in improving our understanding of viral pathogenesis, in providing improved vaccination strategies and in developing newer, more effective treatments for patients worldwide. The reviews assembled here focus on the interface between virology and pathology and encompass aspects of both the clinical pathology of viral disease and the underlying disease mechanisms. Articles on emerging diseases caused by Ebola virus, Marburg virus, coronaviruses such as SARS and MERS, Nipah virus and noroviruses are followed by reviews of enteroviruses, HIV infection, measles, mumps, human respiratory syncytial virus (RSV), influenza, cytomegalovirus (CMV) and varicella zoster virus (VZV). The issue concludes with a series of articles reviewing the relationship between viruses and cancer, including the role played by Epstein-Barr virus (EBV) in the pathogenesis of lymphoma and carcinoma; how human papillomaviruses (HPVs) are involved in the development of skin cancer; the involvement of hepatitis B virus infection in hepatocellular carcinoma; and the mechanisms by which Kaposi's sarcoma-associated herpesvirus (KSHV) leads to Kaposi's sarcoma. We hope that this collection of articles will be of interest to a wide range of scientists and clinicians at a time when there is a renaissance in the appreciation of the power of pathology as virologists dissect the processes of disease.

  2. A hematopoietic virus disease of rainbow trout and sockeye salmon

    USGS Publications Warehouse

    Amend, Donald F.; Yasutake, William T.; Mead, Robert W.

    1969-01-01

    A previously undescribed virus disease epizootic of hatchery rainbow trout (Salmo gairdneri) in British Columbia, Canada is presented. In the same locality, a similar virus disease was experienced among hatchery sockeye salmon (Oncorhynchus nerka). Typical symptoms included flashing, fecal casts, hemorrhagic areas at the base of fins, and petechial hemorrhages on the visceral fat and membranes in the abdominal cavity. Histopathologic changes were typified by extensive degeneration and necrosis in the hematopoietic tissues of the kidney and spleen. A virus was isolated from both species of fish on tissue culture and the viruses showed cross-infectivity. Based upon the pathological changes in the hematopoietic tissue and the demonstration of a vital infection, a tentative descriptive name was designated Infectious Hematopoietic Necrosis. The isolated viruses were distinctly different from the infectious pancreatic necrosis or viral hemorrhagic septicemia viruses of trout, but did show similarities to the Oregon sockeye and Sacramento River chinook viruses. Positive identification awaits further tests. The significance of these observations is the reporting of a new viral disease of rainbow trout and the extension of the geographic range of sockeye salmon viruses.

  3. Studies on entry and egress of poliomyelitic infection. VI. Centrifugal spread of the virus into peripheral nerve with notes on its possible implications.

    PubMed

    FABER, H K; SILVERBERG, R J; DONG, L

    1953-03-01

    We have demonstrated a progressive centrifugal migration of poliomyelitis virus from the CNS into various peripheral ganglia and into peripheral nerves, including their distal portions. This phenomenon appears to be a regular occurrence in experimental animals, and is similar to that found in two other neurotropic infections, rabies and Borna disease. Viremia appears to be secondary to primary neural infection. The presence of virus in the lumen of the alimentary tract appears to be secondary to primary neural infection and not to viremia, and to be associated with the centrifugal spread of virus in peripheral nerves. The presence of virus in "extraneural" tissues is not per se referable to infection of their constituent cells but rather to infection of their supplying nerves or, in some instances, to their content of virus-bearing blood. The finding of virus in the vagus nerve may throw light on some of the electrocardiographic changes noted in certain cases of human poliomyelitis. The presence of virus in peripheral nerves may throw light on the etiology of the most frequent clinical manifestations of human poliomyelitis, localized pain and tenderness.

  4. Control of virus diseases of berry crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus control in berry crops starts with the development of plants free of targeted pathogens, usually viruses, viroids, phytoplasmas and systemic bacteria, through a combination of testing and therapy. These then become the top tier plants in certification programs and are the source from which all...

  5. [Zika Virus and Zika Viral Disease].

    PubMed

    Zhang, Shuo; Li, Dexin

    2016-01-01

    Since Zika virus (ZIKV) has firstly been isolated in 1947, Uganda, outbreaks of Zika fever have been reported in many areas such as in Africa, Southeast Asia and America. Imported cases in China also have been reported. Zika virus belongs to the family Flaviviridae, genus Flavivirus, and include Africa subtype and Asia subtype. It is a mosquito-borne virus primarily transmitted by Aedes aegypti mosquitoes. Sexual transmission, Blood transmission and mother-to-fetus transmission were also reported. Zika virus can go though blood-brain barrier and infect central nervous system. Symptoms are generally mild and self-limited, but recent evidence suggests a possible association between maternal Zika virus infection and adverse fetal outcomes, such as congenital microcephaly, as well as a possible association with Guillain-Barré syndrome. Laboratorial Diagnosis includes nucleic acid detection, Serological test, and isolation of virus. Currently, no vaccine or medication exists to prevent or treat Zika virus infection. Preventive measures against Zika virus infection should be taken through prevention of mosquito bites and surveillance in epidemic area.

  6. West nile virus and other arboviral diseases - United States, 2013.

    PubMed

    Lindsey, Nicole P; Lehman, Jennifer A; Staples, J Erin; Fischer, Marc

    2014-06-20

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States. However, several other arboviruses also cause sporadic cases and seasonal outbreaks of neuroinvasive disease (i.e., meningitis, encephalitis, and acute flaccid paralysis). This report summarizes surveillance data reported to CDC in 2013 for WNV and other nationally notifiable arboviruses, excluding dengue. Forty-seven states and the District of Columbia reported 2,469 cases of WNV disease. Of these, 1,267 (51%) were classified as WNV neuroinvasive disease, for a national incidence of 0.40 per 100,000 population. After WNV, the next most commonly reported cause of arboviral disease was La Crosse virus (LACV) (85 cases), followed by Jamestown Canyon virus (JCV), Powassan virus (POWV), and eastern equine encephalitis virus (EEEV) (eight). WNV and other arboviruses continue to cause serious illness in substantial numbers of persons annually. Maintaining surveillance remains important to help direct and promote prevention activities.

  7. Analysis of Newcastle disease virus quasispecies and factors affecting the emergence of virulent virus.

    PubMed

    Kattenbelt, Jacqueline A; Stevens, Matthew P; Selleck, Paul W; Gould, Allan R

    2010-10-01

    Genome sequence analysis of a number of avirulent field isolates of Newcastle disease virus revealed the presence of viruses (within their quasispecies) that contained virulent F0 sequences. Detection of these virulent sequences below the ~1% level, using standard cloning and sequence analysis, proved difficult, and thus a more sensitive reverse-transcription real-time PCR procedure was developed to detect both virulent and avirulent NDV F0 sequences. Reverse-transcription real-time PCR analysis of the quasispecies of a number of Newcastle disease virus field isolates, revealed variable ratios (approximately 1:4-1:4,000) of virulent to avirulent viral F0 sequences. Since the ratios of these sequences generally remained constant in the quasispecies population during replication, factors that could affect the balance of virulent to avirulent sequences during viral infection of birds were investigated. It was shown both in vitro and in vivo that virulent virus present in the quasispecies did not emerge from the "avirulent background" unless a direct selection pressure was placed on the quasispecies, either by growth conditions or by transient immunosuppression. The effect of a prior infection of the host by infectious bronchitis virus or infectious bursal disease virus on the subsequent emergence of virulent Newcastle disease virus was examined.

  8. Evolutionary dynamics of Newcastle disease virus

    SciTech Connect

    Miller, Patti J.; Kim, L. Mia; Ip, Hon S.; Afonso, Claudio L.

    2009-08-15

    A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution.

  9. Ebola (Ebola Virus Disease): Signs and Symptoms

    MedlinePlus

    ... Healthcare Professionals Addressing Ebola Virus Infection Concerns in K-12 Schools Public Health Resources U.S. Healthcare Workers and ... Field Training: Healthcare Workers Going to Africa Continuing Education Toolkit Managing Patient Flow During Triage, Isolation, and ...

  10. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  11. Virus like particle-based vaccines against emerging infectious disease viruses.

    PubMed

    Liu, Jinliang; Dai, Shiyu; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2016-08-01

    Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families.

  12. Control of pome and stone fruit virus diseases.

    PubMed

    Barba, Marina; Ilardi, Vincenza; Pasquini, Graziella

    2015-01-01

    Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The

  13. Bovine Viral Diarrhea Virus-Associated Disease in Feedlot Cattle.

    PubMed

    Larson, Robert L

    2015-11-01

    Bovine viral diarrhea virus (BVDv) is associated with bovine respiratory disease complex and other diseases of feedlot cattle. Although occasionally a primary pathogen, BVDv's impact on cattle health is through the immunosuppressive effects of the virus and its synergism with other pathogens. The simple presence or absence of BVDv does not result in consistent health outcomes because BVDv is only one of many risk factors that contribute to disease syndromes. Current interventions have limitations and the optimum strategy for their uses to limit the health, production, and economic costs associated with BVDv have to be carefully considered for optimum cost-effectiveness.

  14. Oral lesions associated with human immunodeficiency virus disease.

    PubMed

    Patton, Lauren L

    2013-10-01

    Human immunodeficiency virus (HIV)-associated oral disease among people living with HIV infection includes oral candidiasis, oral hairy leukoplakia, Kaposi sarcoma, oral warts, herpes simplex virus ulcers, major aphthous ulcers or ulcers not otherwise specified, HIV salivary gland disease, and atypical gingival and periodontal diseases. Diagnosis of some oral lesions is based on clinical appearance and behavior, whereas others require biopsy, culture, or imaging for definitive diagnosis. Management strategies including pharmacologic and nonpharmacologic approaches are discussed in this article. Dentists also need to be cognizant of the potential oral side effects of HIV antiretroviral medications.

  15. Blackberry Yellow Vein Disease is Caused by Multiple Virus Complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blackberry yellow vein disease, with symptoms of vein clearing, yellow mottling, ringspots and plant decline has been observed in blackberry in the southeastern United States since about 2000. At least six viruses have been identified by cloning and sequencing of double-stranded RNA from diseased p...

  16. Newcastle disease virus from domestic mink, China, 2014.

    PubMed

    Zhao, Panpan; Sun, Lingshuang; Sun, Xiao; Li, Siwen; Zhang, Wen; Pulscher, Laura A; Chai, Hongliang; Xing, Mingwei

    2017-01-01

    Newcastle disease virus (NDV) is a pathogen that most often infects poultry species. In investigating a 2014 outbreak of encephalitis and death among farmed mink (Mustela vison), we found pathological and later experimental evidence that NDV can infect and cause severe encephalitic and pneumonic disease in these animals. Our findings confirm the host range of NDV.

  17. The evolution of newcastle disease virus of low virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease viruses (NDVs) are also known as avian paramyxoviruses of serotype-1 (APMV-1). All NDVs (or APMV-1) are in one serotype and, by definition, antibodies produced from an exposure to any NDV will neutralize any other NDV. However, not all NDV (or APMV-1) cause Newcastle disease (ND)...

  18. Variant rabbit hemorrhagic disease virus in young rabbits, Spain.

    PubMed

    Dalton, Kevin P; Nicieza, Inés; Balseiro, Ana; Muguerza, María A; Rosell, Joan M; Casais, Rosa; Álvarez, Ángel L; Parra, Francisco

    2012-12-01

    Outbreaks of rabbit hemorrhagic disease have occurred recently in young rabbits on farms on the Iberian Peninsula where rabbits were previously vaccinated. Investigation identified a rabbit hemorrhagic disease virus variant genetically related to apathogenic rabbit caliciviruses. Improved antivirus strategies are needed to slow the spread of this pathogen.

  19. Molecular basis for the thermostability of Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermostable Newcastle disease virus (NDV) vaccines have been used widely to protect village chickens against Newcastle disease, due to their decreased dependence on cold chain for transport and storage. However, the genetic basis underlying the NDV thermostability is poorly understood. In this stud...

  20. Immune responses of poultry to newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are cont...

  1. Neutralising antibodies to lumpy skin disease virus in African wildlife.

    PubMed

    Hedger, R S; Hamblin, C

    1983-01-01

    A total of 3445 sera from 44 different wild species collected between 1963 and 1982 in 11 African countries south of the Sahara, were examined for neutralising antibodies to Lumpy Skin Diseases (LSD) Virus (prototype Neethling). Antibodies were demonstrated in six species but were of low prevalence. It was concluded from the generally negative results, that wildlife in Africa probably does not play a very important part in he perpetuation and spread of LSD Virus.

  2. Foot-and-mouth disease virus modulates cellular vimentin for virus survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Apthovirus within the Picornaviridae family. During infection with FMDV, several host cell membrane rearrangements occur to form sites of viral replication. The largest viral protein in the replication complex,...

  3. Vaccination of hens decreases virus contamination in eggs after challenge with the virulent Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease is an important infectious disease of poultry causing economic losses worldwide. The control is routinely performed by vaccination, however vaccinated birds can shed virus, creating a barrier for trade exports. To determine if vaccination could mitigate these negative outcomes, h...

  4. Avian Bornavirus Associated with Fatal Disease in Psittacine Birds▿

    PubMed Central

    Staeheli, Peter; Rinder, Monika; Kaspers, Bernd

    2010-01-01

    Thanks to new technologies which enable rapid and unbiased screening for viral nucleic acids in clinical specimens, an impressive number of previously unknown viruses have recently been discovered. Two research groups independently identified a novel negative-strand RNA virus, now designated avian bornavirus (ABV), in parrots with proventricular dilatation disease (PDD), a severe lymphoplasmacytic ganglioneuritis of the gastrointestinal tract of psittacine birds that is frequently accompanied by encephalomyelitis. Since its discovery, ABV has been detected worldwide in many captive parrots and in one canary with PDD. ABV induced a PDD-like disease in experimentally infected cockatiels, strongly suggesting that ABV is highly pathogenic in psittacine birds. Until the discovery of ABV, the Bornaviridae family consisted of a single species, classical Borna disease virus (BDV), which is the causative agent of a progressive neurological disorder that affects primarily horses, sheep, and some other farm animals in central Europe. Although ABV and BDV share many biological features, there exist several interesting differences, which are discussed in this review. PMID:20219910

  5. Evolutionary dynamics of Newcastle disease virus

    USGS Publications Warehouse

    Miller, P.J.; Kim, L.M.; Ip, H.S.; Afonso, C.L.

    2009-01-01

    A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution. ?? 2009 Elsevier Inc.

  6. Pollen Transmitted Diseases, Raspberry bushy dwarf virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry bushy dwarf virus (RBDV) occurs naturally worldwide in many Rubus species and cultivars. In North America, it naturally infects many red raspberry, black raspberry, blackberry and blackberry-raspberry hybrid cultivars. RBDV also occurs in wild R. idaeus L. var. strigosus, R. occidentali., ...

  7. Introduction and history of foot-and-mouth disease virus.

    PubMed

    Mahy, B W J

    2005-01-01

    Foot-and-mouth disease (FMD) has been recognized as a significant epidemic disease threatening the cattle industry since the sixteenth century, and in the late nineteenth century it was shown by Loeffler and Frosch to be caused by a submicroscopic, filterable transmissible agent, smaller than any known bacteria. The agent causing FMD was thus the first virus of vertebrates to be discovered, soon after the discovery of tobacco mosaic virus of plants. It was not until 1920 that a convenient animal model for the study of FMD virus was established by Waldmann and Pape, using guinea-pigs, and with the later development of in vitro cell culture systems for the virus, the chemical and physical properties of FMD virus were elucidated during the remainder of the twentieth century, culminating in 1989 with a complete description of the three-dimensional structure of the virion. FMD virus is classified as a species in the Aphthovirus genus of the family Picornaviridae. The virus is acid labile, and the genome RNA contains a characteristic tract of polyC located about 360 nucleotides from the 5' terminus. Seven main serotypes exist throughout the world, as well as numerous subtypes. The World Reference Laboratory for FMD is located at Pirbright, Surrey, UK and undertakes surveillance of FMD epidemics by serotyping as well as by genotyping isolates of the virus. A major epidemic of FMD occurred in the UK in 2001 and was caused by a virulent strain of FMD virus with origins in Asia. The advantages and some disadvantages of controlling FMD outbreaks by vaccination are discussed.

  8. Advances in vaccine research against economically important viral diseases of food animals: Infectious bursal disease virus.

    PubMed

    Jackwood, Daral J

    2016-11-22

    Numerous reviews have been published on infectious bursal disease (IBD) and infectious bursal disease virus (IBDV). Many high quality vaccines are commercially available for the control of IBD that, when used correctly, provide solid protection against infection and disease caused by IBDV. Viruses are not static however; they continue to evolve and vaccines need to keep pace with them. The evolution of IBDV has resulted in very virulent strains and new antigenic types of the virus. This review will discuss some of the limitations associated with existing vaccines, potential solutions to these problems and advances in new vaccines for the control of IBD.

  9. Histopathological observation of lymphocystis disease and lymphocystis disease virus (LCDV) detection in cultured diseased Sebastes schlegeli

    NASA Astrophysics Data System (ADS)

    Sheng, Xiuzhen; Zhan, Wenbin; Xu, Songjuan; Cheng, Shunfeng

    2007-10-01

    Lymphocystis nodules occurring in the cultured sting fish Sebastes schlegeli were observed under light and electron microscope. Lymphocystis disease virus (LCDV) in the tissues of diseased fish was detected with indirect immunofluorescence test (IFAT). Results showed that lymphocystis cells had overly irregular nuclei, basophilic intracytoplasmic inclusion bodies with virions budding from the surface, and hyaline capsules outside the cell membrane. Numerous virus particles about 200 nm in diameter scattered in the cytoplasm, electron-dense particles 70 80 nm in diameter filled in perinuclear cisterna, and membrane-enveloped particles with electron-dense core of 70 80 nm appeared around cellular nucleus. IFAT using monoclonal antibody against LCDV from Paralichthys olivaceus revealed that specific green fluorescence was present in the cytoplasm of lymphocystis cells, epithelium of stomach, gill lamellae, and muscular fibers under epidermis of S. schlegeli, just as that in the cytoplasm of lymphocystis cells of P. olivaceus, suggesting the presence of LCDV in these tissues.

  10. Immune responses and disease enhancement during respiratory syncytial virus infection.

    PubMed

    Openshaw, Peter J M; Tregoning, John S

    2005-07-01

    Respiratory syncytial virus (RSV) is one of the commonest and most troublesome viruses of infancy. It causes most cases of bronchiolitis, which is associated with wheezing in later childhood. In primary infection, the peak of disease typically coincides with the development of specific T- and B-cell responses, which seem, in large part, to be responsible for disease. Animal models clearly show that a range of immune responses can enhance disease severity, particularly after vaccination with formalin-inactivated RSV. Prior immune sensitization leads to exuberant chemokine production, an excessive cellular influx, and an overabundance of cytokines during RSV challenge. Under different circumstances, specific mediators and T-cell subsets and antibody-antigen immune complex deposition are incriminated as major factors in disease. Animal models of immune enhancement permit a deep understanding of the role of specific immune responses in RSV disease, assist in vaccine design, and indicate which immunomodulatory therapy might be beneficial to children with bronchiolitis.

  11. A Mouse Model of Chronic West Nile Virus Disease

    PubMed Central

    Graham, Jessica B.; Swarts, Jessica L.; Wilkins, Courtney; Thomas, Sunil; Green, Richard; Sekine, Aimee; Voss, Kathleen M.; Mooney, Michael; Choonoo, Gabrielle; Miller, Darla R.; Pardo Manuel de Villena, Fernando; Gale, Michael

    2016-01-01

    Infection with West Nile virus (WNV) leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013)F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans. PMID:27806117

  12. Ebolavirus Vaccines: Progress in the Fight Against Ebola Virus Disease.

    PubMed

    Wu, Xiao-Xin; Yao, Hang-Ping; Wu, Nan-Ping; Gao, Hai-Nv; Wu, Hai-Bo; Jin, Chang-Zhong; Lu, Xiang-Yun; Xie, Tian-Shen; Li, Lan-Juan

    2015-01-01

    Ebolaviruses are highly infectious pathogens that cause lethal Ebola virus disease (EVD) in humans and non-human primates (NHPs). Due to their high pathogenicity and transmissibility, as well as the potential to be misused as a bioterrorism agent, ebolaviruses would threaten the health of global populations if not controlled. In this review, we describe the origin and structure of ebolaviruses and the development of vaccines from the beginning of the 1980s, including conventional ebolavirus vaccines, DNA vaccines, Ebola virus-like particles (VLPs), vaccinia virus-based vaccines, Venezuelan equine encephalitis virus (VEEV)-like replicon particles, Kunjin virus-based vaccine, recombinant Zaire Ebolavirusx2206;VP30, recombinant cytomegalovirus (CMV)-based vaccines, recombinant rabies virus (RABV)-based vaccines, recombinant paramyxovirus-based vaccines, adenovirus-based vaccines and vesicular stomatitis virus (VSV)-based vaccines. No licensed vaccine or specific treatment is currently available to counteract ebolavirus infection, although DNA plasmids and several viral vector approaches have been evaluated as promising vaccine platforms. These vaccine candidates have been confirmed to be successful in protecting NHPs against lethal infection. Moreover, these vaccine candidates were successfully advanced to clinical trials. The present review provides an update of the current research on Ebola vaccines, with the aim of providing an overview on current prospects in the fight against EVD.

  13. Evidence of intrauterine transmission of lumpy skin disease virus.

    PubMed

    Rouby, Sherin; Aboulsoud, Emad

    2016-03-01

    The current study describes the clinical, histopathological, molecular and serological diagnosis of lumpy skin disease (LSD) in a premature 1-day old calf that has been delivered from a cow that exhibited signs of LSD during the seventh month of pregnancy. The calf showed generalized skin lesions accompanied with signs of immaturity and died 36 h after birth. Postmortem and histopathological examinations revealed the involvement of multiple tissues. The presence of Neethling virus DNA in tissues was confirmed by polymerase chain reaction (PCR) and gene sequencing. Results of ELISA and serum neutralization test (SNT) confirmed that the calf had developed precolostral serum antibodies to LSD virus indicating in utero virus transmission. All tested sera collected from animals located in the same area were serologically positive, indicating exposure to LSD virus.

  14. Complete nucleotide sequence of a virus associated with rusty mottle disease of sweet cherry (Prunus avium).

    PubMed

    Villamor, D V; Druffel, K L; Eastwell, K C

    2013-08-01

    Cherry rusty mottle is a disease of sweet cherries first described in 1940 in western North America. Because of the graft-transmissible nature of the disease, a viral nature of the disease was assumed. Here, the complete genomic nucleotide sequences of virus isolates from two trees expressing cherry rusty mottle disease symptoms are characterized; the virus is designated cherry rusty mottle associated virus (CRMaV). The biological and molecular characteristics of this virus in comparison to those of cherry necrotic rusty mottle virus (CNRMV) and cherry green ring mottle virus (CGRMV) are described. CRMaV was subsequently detected in additional sweet cherry trees expressing symptoms of cherry rusty mottle disease.

  15. Long-term expression of miRNA for RNA interference using a novel vector system based on a negative-strand RNA virus

    PubMed Central

    Honda, Tomoyuki; Yamamoto, Yusuke; Daito, Takuji; Matsumoto, Yusuke; Makino, Akiko; Tomonaga, Keizo

    2016-01-01

    RNA interference (RNAi) has emerged as a promising technique for gene therapy. However, the safe and long-term expression of small RNA molecules is a major concern for the application of RNAi therapies in vivo. Borna disease virus (BDV), a non-segmented, negative-strand RNA virus, establishes a persistent infection without obvious cytopathic effects. Unique among animal non-retroviral RNA viruses, BDV persistently establishes a long-lasting persistent infection in the nucleus. These features make BDV ideal for RNA virus vector persistently expressing small RNAs. Here, we demonstrated that the recombinant BDV (rBDV) containing the miR-155 precursor, rBDV-miR-155, persistently expressed miR-155 and efficiently silenced its target gene. The stem region of the miR-155 precursor in rBDV-miR-155 was replaceable by any miRNA sequences of interest and that such rBDVs efficiently silence the expression of target genes. Collectively, BDV vector would be a novel RNA virus vector enabling the long-term expression of miRNAs for RNAi therapies. PMID:27189575

  16. Not so fast on recombination analysis of Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regarding the letter published in the Journal of Virology Vol. 82 No. 13 p. 6782 indicating that “powerful evidence” of recombination is a call for caution in the use of Newcastle Disease Virus (NDV) based vaccines, I would like to suggest that evidence for recombination is still weak. The authors ...

  17. Vaccination of chickens decreased Newcastle disease virus contamination in eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease is an important health issue of poultry causing major economic losses and inhibits trade worldwide. Vaccination is used as a control measure, but it is unknown whether vaccination will prevent virus contamination of eggs. In this study, hens were sham-vaccinated or received one or ...

  18. Characterization and phylogenic analysis of Mexican Newcastle disease virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease virus (NDV) was isolated in Mexico for the first time in 1946 and the last report of a field outbreak caused by a highly virulent strain dates from year 2000, when 13.6 million birds were slaughtered and 93 farms quarantined. Mean Death Time test resulted in velogenic classificati...

  19. Experimental characterization of West African Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four West African strains and one South African strain of virulent Newcastle disease virus (NDV) were characterized through a two-phase experiment. Strains investigated were Burkina Faso/2415-580/2008, Nigeria/228-7/2006, Niger/1377/2006, and Goose/South Africa/08100426/2008. Phylogenetic analysis s...

  20. Expressing foreign genes by Newcastle disease virus for cancer therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An interesting aspect of Newcastle disease virus (NDV) is the ability to selectively replicate in tumor cells. Recently, using reverse genetics technology to enhance the oncolytic properties and therapeutic potential of NDV for tumor therapy has become popular in immunocompetent carcinoma tumor mod...

  1. A Virus-like disease of chinook salmon

    USGS Publications Warehouse

    Ross, A.J.; Pelnar, J.; Rucker, R.R.

    1960-01-01

    Consideration is given to a recurring disease of early feeding chinook salmon fingerlings at the Coleman, California, Federal Fish Cultural Station. The infection becomes manifest in the early spring months at low water temperatures and abates as the water temperature rises. Bacteriological studies have failed to yield the presence of a disease agent, either by cultural or staining procedures. The disease has been successfully transmitted from infected fish to healthy fish by the injection of bacteria-free filtrates prepared from diseased fish tissue. The causative agent is therefore believed to be a virus-like entity.

  2. The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease

    PubMed Central

    Sá Antunes, Tathiana Ferreira; Amaral, Raquel J. Vionette; Ventura, José Aires; Godinho, Marcio Tadeu; Amaral, Josiane G.; Souza, Flávia O.; Zerbini, Poliane Alfenas; Zerbini, Francisco Murilo

    2016-01-01

    Papaya sticky disease, or “meleira”, is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2. PMID:27166626

  3. The dsRNA Virus Papaya Meleira Virus and an ssRNA Virus Are Associated with Papaya Sticky Disease.

    PubMed

    Sá Antunes, Tathiana Ferreira; Amaral, Raquel J Vionette; Ventura, José Aires; Godinho, Marcio Tadeu; Amaral, Josiane G; Souza, Flávia O; Zerbini, Poliane Alfenas; Zerbini, Francisco Murilo; Fernandes, Patricia Machado Bueno

    2016-01-01

    Papaya sticky disease, or "meleira", is one of the major diseases of papaya in Brazil and Mexico, capable of causing complete crop loss. The causal agent of sticky disease was identified as an isometric virus with a double stranded RNA (dsRNA) genome, named papaya meleira virus (PMeV). In the present study, PMeV dsRNA and a second RNA band of approximately 4.5 kb, both isolated from latex of papaya plants with severe symptoms of sticky disease, were deep-sequenced. The nearly complete sequence obtained for PMeV dsRNA is 8,814 nucleotides long and contains two putative ORFs; the predicted ORF1 and ORF2 display similarity to capsid proteins and RdRp's, respectively, from mycoviruses tentatively classified in the family Totiviridae. The sequence obtained for the second RNA is 4,515 nucleotides long and contains two putative ORFs. The predicted ORFs 1 and 2 display 48% and 73% sequence identity, respectively, with the corresponding proteins of papaya virus Q, an umbravirus recently described infecting papaya in Ecuador. Viral purification in a sucrose gradient allowed separation of particles containing each RNA. Mass spectrometry analysis indicated that both PMeV and the second RNA virus (named papaya meleira virus 2, PMeV2) were encapsidated in particles formed by the protein encoded by PMeV ORF1. The presence of both PMeV and PMeV2 was confirmed in field plants showing typical symptoms of sticky disease. Interestingly, PMeV was detected alone in asymptomatic plants. Together, our results indicate that sticky disease is associated with double infection by PMeV and PMeV2.

  4. Updates on Treatment of Ebola Virus Disease

    PubMed Central

    Krishnasamy, Lakshmi; Saikumar, Chitralekha

    2015-01-01

    Ebola viral disease is one of the major threats world wide. But the treatment option is merely supportive and symptomatic therapy. Vaccination and drug therapies are still under trial. This article throws light into the various emerging treatment options for the Ebola viral disease. PMID:28223886

  5. Bovine respiratory disease model based on dual infections with infection with bovine viral diarrhea virus and bovine corona virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine respiratory disease complex (BRDC) is the leading cause of economic loss in the U.S. cattle industry. BRDC likely results from simultaneous or sequential infections with multiple pathogens including both viruses and bacteria. Bovine viral diarrhea virus (BVDV) and bovine corona virus (BoCV...

  6. Immune responses of poultry to Newcastle disease virus.

    PubMed

    Kapczynski, Darrell R; Afonso, Claudio L; Miller, Patti J

    2013-11-01

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are contained in one serotype and are also known as avian paramyxovirus serotype-1 (APMV-1). They are pleomorphic in shape and are single-stranded, non-segmented, negative sense RNA viruses. The virus has been reported to infect most orders of birds and thus has a wide host range. Isolates are characterized by virulence in chickens and the presence of basic amino acids at the fusion protein cleavage site. Low virulent NDV typically produce subclinical disease with some morbidity, whereas virulent isolates can result in rapid, high mortality of birds. Virulent NDV are listed pathogens that require immediate notification to the Office of International Epizootics and outbreaks typically result in trade embargos. Protection against NDV is through the use of vaccines generated with low virulent NDV strains. Immunity is derived from neutralizing antibodies formed against the viral hemagglutinin and fusion glycoproteins, which are responsible for attachment and spread of the virus. However, new techniques and technologies have also allowed for more in depth analysis of the innate and cell-mediated immunity of poultry to NDV. Gene profiling experiments have led to the discovery of novel host genes modulated immediately after infection. Differences in virus virulence alter host gene response patterns have been demonstrated. Furthermore, the timing and contributions of cell-mediated immune responses appear to decrease disease and transmission potential. In view of recent reports of vaccine failure from many countries on the ability of classical NDV vaccines to stop spread of disease, renewed interest in a more complete understanding of the global immune response of poultry to NDV will be

  7. Respiratory viruses in acute exacerbations of chronic obstructive pulmonary disease

    PubMed Central

    Koul, Parvaiz A; Mir, Hyder; Akram, Shabir; Potdar, Varsha; Chadha, Mandeep S

    2017-01-01

    Objective: Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) cause significant morbidity, mortality, and an inexorable decline of lung function. Data from developed countries have shown viruses to be important causes of AECOPD, but data from developing countries like India are scant. We set out to determine the contribution of viruses in the causation of hospitalized patients with AECOPD. Methods: Twin nasopharyngeal/oropharyngeal swabs collected from 233 patients admitted with an acute AECOPD and tested for respiratory viruses including respiratory syncytial virus A and B, parainfluenza were (PIV) 1, 2, 3, and 4, human metapneumovirus (hMPV) A and B, influenza A and B, enterovirus, corona NL65, OC43, and 229E viruses, adenovirus 2 and 4, rhinovirus, and bocavirus, by duplex real time reverse-transcription polymerase chain reaction (qRT-PCR) using CDC approved primers and probes. Samples positive for influenza A were subtyped for A/H1N1pdm09 and A/H3N2 whereas influenza B samples were subtyped into B/Yamagata and B/Victoria subtypes, using primers and probes recommended by CDC, USA. Results: Respiratory viruses were detected in 46 (19.7%) cases, influenza A/H3N2 and rhinoviruses being the most common viruses detected. More than one virus was isolated in four cases consisting of hMPV-B + adeno-2 + Inf-B; rhino + H3N2, PIV-1 + rhino; and PIV-1+ hMPV-B in one case each. Ancillary supportive therapeutic measures included bronchodilators, antibiotics, steroids, and ventilation (noninvasive in 42 and invasive in 4). Antiviral therapy was instituted in influenza-positive patients. Three patients with A/H3N2 infection died during hospitalization. Conclusions: We conclude that respiratory viruses are important contributors to AECOPD in India. Our data calls for prompt investigation during an exacerbation for viruses to obviate inappropriate antibiotic use and institute antiviral therapy in viral disease amenable to antiviral therapy. Appropriate

  8. Biology and disease associations of Epstein-Barr virus.

    PubMed Central

    Crawford, D H

    2001-01-01

    Epstein-Barr virus (EBV) is a human herpesvirus which infects almost all of the world's population subclinically during childhood and thereafter remains in the body for life. The virus colonizes antibody-producing (B) cells, which, as relatively long-lived resting cells, are an ideal site for long-term residence. Here EBV evades recognition and destruction by cytotoxic T cells. EBV is passed to naive hosts in saliva, but how the virus gains access to this route of transmission is not entirely clear. EBV carries a set of latent genes that, when expressed in resting B cells, induce cell proliferation and thereby increase the chances of successful virus colonization of the B-cell system during primary infection and the establishment of persistence. However, if this cell proliferation is not controlled, or if it is accompanied by additional genetic events within the infected cell, it can lead to malignancy. Thus EBV acts as a step in the evolution of an ever-increasing list of malignancies which are broadly of lymphoid or epithelial cell origin. In some of these, such as B-lymphoproliferative disease in the immunocompromised host, the role of the virus is central and well defined; in others, such as Burkitt's lymphoma, essential cofactors have been identified which act in concert with EBV in the evolution of the malignant clone. However, in several diseases in which the presence of EBV has more recently been discovered, the role of the virus is unclear. This review describes recent views on the EBV life cycle and its interlinks with normal B-cell biology, and discusses how this interrelationship may be upset and result in EBV-associated disease. PMID:11313005

  9. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases.

    PubMed

    Pastula, Daniel M; Smith, Daniel E; Beckham, J David; Tyler, Kenneth L

    2016-06-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas.

  10. Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases

    PubMed Central

    Smith, Daniel E.; Beckham, J. David; Tyler, Kenneth L.

    2016-01-01

    Arthropod-borne viruses, or arboviruses, are viruses that are transmitted through the bites of mosquitoes, ticks, or sandflies. There are numerous arboviruses throughout the world capable of causing human disease spanning different viral families and genera. Recently, Jamestown Canyon, Powassan, chikungunya, and Zika viruses have emerged as increasingly important arboviruses that can cause human disease in North America. Unfortunately, there are currently no proven disease-modifying therapies for these arboviral diseases, so treatment is largely supportive. Given there are also no commercially available vaccines for these four arboviral infections, prevention is the key. To prevent mosquito or tick bites that might result in one of these arboviral diseases, people should wear long-sleeved shirts and pants while outside if feasible, apply insect repellant when going outdoors, using window screens or air conditioning to keep mosquitoes outside, and perform tick checks after being in wooded or brushy outdoor areas. PMID:26903031

  11. Hot topics in the prevention of respiratory syncytial virus disease.

    PubMed

    Habibi, Maximillian S; Patel, Sanjay; Openshaw, Peter

    2011-03-01

    The 7th International Respiratory Syncytial Virus Symposium took place in Hotel Blijdorp, Rotterdam, The Netherlands. The series has been running since 1996; this meeting took place after a 3-year gap, and was attended by approximately 200 clinicians, scientists and industry representatives from all over the world. The conference covered all aspects of respiratory syncytial virus disease, including virology, cell biology, pathogenesis, clinical presentation, diagnosis, immunology, vaccines, antivirals and other therapeutic approaches. Reviews by invited keynote speakers were accompanied by oral and poster presentations, with ample opportunity for discussion of unpublished work. This article summarizes a small selection of hot topics from the meeting, focused on pathogenesis, therapeutics and vaccine development.

  12. Ebola virus disease - pathogenesis, clinical presentation and management.

    PubMed

    Bociaga-Jasik, Monika; Piatek, Anna; Garlicki, Aleksander

    2014-01-01

    On March 2014 the WHO notified the outbreak of Ebola virus disease (EVD) in Guinea, and infection quickly spread to another West African countries including Sierra Leone, Liberia and Nigeria. Current outbreak is the largest in the history, since discovery of the virus in 1976. Imported cases and infection among healthcare workers in Europe and United States have elucidated necessity of better education of medical staff. Clinicians must be familiar with clinical picture of EVD, differential diagnosis and therapeutic approach, as rapid diagnosis and prompt introduction of supportive therapy can have a significant impact on the survival.

  13. Update: Ebola virus disease outbreak--West Africa, October 2014.

    PubMed

    2014-10-31

    CDC is assisting ministries of health and working with other organizations to control and end the ongoing outbreak of Ebola virus disease (Ebola) in West Africa. The updated data in this report were compiled from situation reports from the Guinea Interministerial Committee for Response Against the Ebola Virus and the World Health Organization, the Liberia Ministry of Health and Social Welfare, and the Sierra Leone Ministry of Health and Sanitation. Total case counts include all suspected, probable, and confirmed cases as defined by each country. These data reflect reported cases, which make up an unknown proportion of all actual cases and reporting delays that vary from country to country.

  14. Animal models of human respiratory syncytial virus disease.

    PubMed

    Bem, Reinout A; Domachowske, Joseph B; Rosenberg, Helene F

    2011-08-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research.

  15. Viruses and Salivary Gland Disease (SGD)

    PubMed Central

    Jeffers, L.; Webster-Cyriaque, J.Y.

    2011-01-01

    Viral infections are often associated with salivary gland pathology. Here we review the pathogenesis of HIV-associated salivary gland disease (HIV-SGD), a hallmark of diffuse infiltrative lymphocytosis syndrome. We investigate the presence and contributions of viral diseases to the pathogenesis of salivary gland diseases, particularly HIV-SGD. We have detected BK viral shedding in the saliva of HIV-SGD patients consistent with viral infection and replication, suggesting a role for oral transmission. For further investigation of BKV pathogenesis in salivary glands, an in vitro model of BKV infection is described. Submandibular (HSG) and parotid (HSY) gland salivary cell lines were capable of permissive BKV infection, as determined by BKV gene expression and replication. Analysis of these data collectively suggests the potential for a BKV oral route of transmission and salivary gland pathogenesis within HIV-SGD. PMID:21441486

  16. Human papilloma virus and cervical preinvasive disease

    PubMed Central

    Bari, M; Iancu, G; Popa, F

    2009-01-01

    Cervical cancer lesions represent a major threat to the health of the women worldwide. Human Papillomavirus (HPV) is responsible for 99.7% of cervical cancer cases, the infectious etiology giving the possibility of preventing cervical cancer by vaccination. The most aggressive HPV types are 16 and 18, which cause about 70% of cases of invasive cancer. The vaccination is recommended to the girls aged 11–12. The diagnosis and the treatment of cervical preinvasive disease allow the doctor to prevent the development of the invasive disease. PMID:20108750

  17. Foot and mouth disease virus non structural protein 2C interacts with Beclin1 modulating virus replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease (FMD), is an Apthovirus within the Picornaviridae family. Replication of the virus occurs in association with replication complexes that are formed by host cell membrane rearrangements. The largest viral protein in th...

  18. [Zika virus infection or the future of infectious diseases].

    PubMed

    Valerio Sallent, Lluís; Roure Díez, Sílvia; Fernández Rivas, Gema

    2016-10-07

    Zika virus belongs to the Flaviridae, an extended phylogenetic family containing dengue or yellow fever, viruses whose shared main vector are Aedes aegypti mosquitoes. The virus originally came from Central African simian reservoirs and, from there, expanded rapidly across the Pacific to South America. The disease is an example of exantematic fever usually mild. Mortality is very low and mainly limited to secondary Guillain-Barré or fetal microcephaly cases. Diagnostic confirmation requires a RT-PCR in blood up to the 5th day from the onset or in urine up to the 10-14th day. Specific IgM are identifiable from the 5th symptomatic day. Clinically, a suspected case should comply with: a) a journey to epidemic areas; b) a clinically compatible appearance with fever and skin rash, and c) a generally normal blood count/basic biochemistry. There is some evidence that causally relates Zika virus infection with fetal microcephaly. While waiting for definitive data, all pregnant women coming from Central or South America should be tested for Zika virus.

  19. Unique human immune signature of Ebola virus disease in Guinea.

    PubMed

    Ruibal, Paula; Oestereich, Lisa; Lüdtke, Anja; Becker-Ziaja, Beate; Wozniak, David M; Kerber, Romy; Korva, Miša; Cabeza-Cabrerizo, Mar; Bore, Joseph A; Koundouno, Fara Raymond; Duraffour, Sophie; Weller, Romy; Thorenz, Anja; Cimini, Eleonora; Viola, Domenico; Agrati, Chiara; Repits, Johanna; Afrough, Babak; Cowley, Lauren A; Ngabo, Didier; Hinzmann, Julia; Mertens, Marc; Vitoriano, Inês; Logue, Christopher H; Boettcher, Jan Peter; Pallasch, Elisa; Sachse, Andreas; Bah, Amadou; Nitzsche, Katja; Kuisma, Eeva; Michel, Janine; Holm, Tobias; Zekeng, Elsa-Gayle; García-Dorival, Isabel; Wölfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Strecker, Thomas; Di Caro, Antonino; Avšič-Županc, Tatjana; Kurth, Andreas; Meschi, Silvia; Mély, Stephane; Newman, Edmund; Bocquin, Anne; Kis, Zoltan; Kelterbaum, Anne; Molkenthin, Peter; Carletti, Fabrizio; Portmann, Jasmine; Wolff, Svenja; Castilletti, Concetta; Schudt, Gordian; Fizet, Alexandra; Ottowell, Lisa J; Herker, Eva; Jacobs, Thomas; Kretschmer, Birte; Severi, Ettore; Ouedraogo, Nobila; Lago, Mar; Negredo, Anabel; Franco, Leticia; Anda, Pedro; Schmiedel, Stefan; Kreuels, Benno; Wichmann, Dominic; Addo, Marylyn M; Lohse, Ansgar W; De Clerck, Hilde; Nanclares, Carolina; Jonckheere, Sylvie; Van Herp, Michel; Sprecher, Armand; Xiaojiang, Gao; Carrington, Mary; Miranda, Osvaldo; Castro, Carlos M; Gabriel, Martin; Drury, Patrick; Formenty, Pierre; Diallo, Boubacar; Koivogui, Lamine; Magassouba, N'Faly; Carroll, Miles W; Günther, Stephan; Muñoz-Fontela, César

    2016-05-05

    Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology.

  20. Emerging virus diseases: can we ever expect the unexpected?

    PubMed Central

    Howard, Colin R; Fletcher, Nicola F

    2012-01-01

    Emerging virus diseases are a major threat to human and veterinary public health. With new examples occurring approximately one each year, the majority are viruses originating from an animal host. Of the many factors responsible, changes to local ecosystems that perturb the balance between pathogen and principal host species is one of the major drivers, together with increasing urbanization of mankind and changes in human behavior. Many emerging viruses have RNA genomes and as such are capable of rapid mutation and selection of new variants in the face of environmental changes in host numbers and available target species. This review summarizes recent work on aspects of virus emergence and the current understanding of the molecular and immunological basis whereby viruses may cross between species and become established in new ecological niches. Emergence is hard to predict, although mathematical modeling and spatial epidemiology have done much to improve the prediction of where emergence may occur. However, much needs to be done to ensure adequate surveillance is maintained of animal species known to present the greatest risk thus increasing general alertness among physicians, veterinarians and those responsible for formulating public health policy. PMID:26038413

  1. Feline immunodeficiency virus clade C mucosal transmission and disease courses.

    PubMed

    Obert, L A; Hoover, E A

    2000-05-01

    The transmissibility and pathogenicity of a clade C feline immunodeficiency virus (FIV-C) was examined via the oral-nasal, vaginal, or rectal mucosa. FIV-C was transmissible by all three mucosal routes. Vaginal transmission was most efficient (100%), oral exposure resulted in a 80% infection rate, and rectal transmission was least effective (44%). In contrast to previous intravenous passage studies, a broader range of host-virus relationships was observed after mucosal exposure. Three categories of FIV-C infection were defined: (1) rapidly progressive infection marked by high virus burdens and rapid CD4+ cell depletion (43% of vaginally exposed animals); (2) conventional (typical) infection featuring slowly progressive CD4+ cell decline (61% of all exposed animals); and (3) regressive (transient) infection marked by low and then barely detectable virus burdens and no CD4+ cell alterations (22% of rectally inoculated cats). These disease courses appear to have parallels in mucosal HIV and SIV infections, emphasizing the importance of the virus-mucosa interface in lentiviral pathogenesis.

  2. Epstein–Barr Virus: Diseases Linked to Infection and Transformation

    PubMed Central

    Jha, Hem C.; Pei, Yonggang; Robertson, Erle S.

    2016-01-01

    Epstein–Barr virus (EBV) was first discovered in 1964, and was the first known human tumor virus now shown to be associated with a vast number of human diseases. Numerous studies have been conducted to understand infection, propagation, and transformation in various cell types linked to human diseases. However, a comprehensive lens through which virus infection, reactivation and transformation of infected host cells can be visualized is yet to be formally established and will need much further investigation. Several human cell types infected by EBV have been linked to associated diseases. However, whether these are a direct result of EBV infection or indirectly due to contributions by additional infectious agents will need to be fully investigated. Therefore, a thorough examination of infection, reactivation, and cell transformation induced by EBV will provide a more detailed view of its contributions that drive pathogenesis. This undoubtedly expand our knowledge of the biology of EBV infection and the signaling activities of targeted cellular factors dysregulated on infection. Furthermore, these insights may lead to identification of therapeutic targets and agents for clinical interventions. Here, we review the spectrum of EBV-associated diseases, the role of the encoded latent antigens, and the switch to latency or lytic replication which occurs in EBV infected cells. Furthermore, we describe the cellular processes and critical factors which contribute to cell transformation. We also describe the fate of B-cells and epithelial cells after EBV infection and the expected consequences which contribute to establishment of viral-associated pathologies. PMID:27826287

  3. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    PubMed Central

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  4. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease

    PubMed Central

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P.

    2016-01-01

    ABSTRACT Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales. To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such

  5. Ebola Virus Disease: Essential Public Health Principles for Clinicians

    PubMed Central

    Koenig, Kristi L.; Majestic, Cassondra; Burns, Michael J.

    2014-01-01

    Ebola Virus Disease (EVD) has become a public health emergency of international concern. The World Health Organization and Centers for Disease Control and Prevention have developed guidance to educate and inform healthcare workers and travelers worldwide. Symptoms of EVD include abrupt onset of fever, myalgias, and headache in the early phase, followed by vomiting, diarrhea and possible progression to hemorrhagic rash, life-threatening bleeding, and multi-organ failure in the later phase. The disease is not transmitted via airborne spread like influenza, but rather from person-to-person, or animal to person, via direct contact with bodily fluids or blood. It is crucial that emergency physicians be educated on disease presentation and how to generate a timely and accurate differential diagnosis that includes exotic diseases in the appropriate patient population. A patient should be evaluated for EVD when both suggestive symptoms, including unexplained hemorrhage, AND risk factors within 3 weeks prior, such as travel to an endemic area, direct handling of animals from outbreak areas, or ingestion of fruit or other uncooked foods contaminated with bat feces containing the virus are present. There are experimental therapies for treatment of EVD virus; however the mainstay of therapy is supportive care. Emergency department personnel on the frontlines must be prepared to rapidly identify and isolate febrile travelers if indicated. All healthcare workers involved in care of EVD patients should wear personal protective equipment. Despite the intense media focus on EVD rather than other threats, emergency physicians must master and follow essential public health principles for management of all infectious diseases. This includes not only identification and treatment of individuals, but also protection of healthcare workers and prevention of spread, keeping in mind the possibility of other more common disease processes. PMID:25493109

  6. Ebola Virus Disease: essential public health principles for clinicians.

    PubMed

    Koenig, Kristi L; Majestic, Cassondra; Burns, Michael J

    2014-11-01

    Ebola Virus Disease (EVD) has become a public health emergency of international concern. The World Health Organization and Centers for Disease Control and Prevention have developed guidance to educate and inform healthcare workers and travelers worldwide. Symptoms of EVD include abrupt onset of fever, myalgias, and headache in the early phase, followed by vomiting, diarrhea and possible progression to hemorrhagic rash, life-threatening bleeding, and multi-organ failure in the later phase. The disease is not transmitted via airborne spread like influenza, but rather from person-to-person, or animal to person, via direct contact with bodily fluids or blood. It is crucial that emergency physicians be educated on disease presentation and how to generate a timely and accurate differential diagnosis that includes exotic diseases in the appropriate patient population. A patient should be evaluated for EVD when both suggestive symptoms, including unexplained hemorrhage, AND risk factors within 3 weeks prior, such as travel to an endemic area, direct handling of animals from outbreak areas, or ingestion of fruit or other uncooked foods contaminated with bat feces containing the virus are present. There are experimental therapies for treatment of EVD virus; however the mainstay of therapy is supportive care. Emergency department personnel on the frontlines must be prepared to rapidly identify and isolate febrile travelers if indicated. All healthcare workers involved in care of EVD patients should wear personal protective equipment. Despite the intense media focus on EVD rather than other threats, emergency physicians must master and follow essential public health principles for management of all infectious diseases. This includes not only identification and treatment of individuals, but also protection of healthcare workers and prevention of spread, keeping in mind the possibility of other more common disease processes.

  7. Immunogenicity of Newcastle disease virus vectors expressing Norwalk virus capsid protein in the presence or absence of VP2 protein.

    PubMed

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y; Samal, Siba K

    2015-10-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirus-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans.

  8. Immunogenicity of Newcastle Disease Virus Vectors Expressing Norwalk Virus Capsid Protein in the Presence or Absence of VP2 Protein

    PubMed Central

    Kim, Shin-Hee; Chen, Shun; Jiang, Xi; Green, Kim Y.; Samal, Siba K.

    2015-01-01

    Noroviruses are the most common cause of acute gastroenteritis in humans. Development of an effective vaccine is required for reducing their outbreaks. In order to develop a GI norovirus vaccine, Newcastle disease virus vectors, rLaSota and modified rBC, were used to express VP1 protein of Norwalk virus. Co-expression of VP1 and VP2 proteins by Newcastle disease virus vectors resulted in enhanced expression of Norwalk virus VP1 protein and self-assembly of VP1 protein into virus-like particles. Furthermore, the Norwalk virus-specific IgG response induced in mice by Newcastle disease virus vectors was similar to that induced by baculovirs-expressed virus-like particles in mice. However, the modified rBC vector in the presence of VP2 protein induced significantly higher levels of cellular and mucosal immune responses than those induced by baculovirus-expressed VLPs. These results indicate that Newcastle disease virus has great potential for developing a live Norwalk virus vaccine by inducing humoral, cellular and mucosal immune responses in humans. PMID:26099695

  9. Ebola Virus Disease, Democratic Republic of the Congo, 2014

    PubMed Central

    Nanclares, Carolina; Kapetshi, Jimmy; Lionetto, Fanshen; de la Rosa, Olimpia; Tamfun, Jean-Jacques Muyembe; Alia, Miriam; Kobinger, Gary

    2016-01-01

    During July–November 2014, the Democratic Republic of the Congo underwent its seventh Ebola virus disease (EVD) outbreak. The etiologic agent was Zaire Ebola virus; 66 cases were reported (overall case-fatality rate 74.2%). Through a retrospective observational study of confirmed EVD in 25 patients admitted to either of 2 Ebola treatment centers, we described clinical features and investigated correlates associated with death. Clinical features were mainly generic. At admission, 76% of patients had >1 gastrointestinal symptom and 28% >1 hemorrhagic symptom. The case-fatality rate in this group was 48% and was higher for female patients (67%). Cox regression analysis correlated death with initial low cycle threshold, indicating high viral load. Cycle threshold was a robust predictor of death, as were fever, hiccups, diarrhea, dyspnea, dehydration, disorientation, hematemesis, bloody feces during hospitalization, and anorexia in recent medical history. Differences from other outbreaks could suggest guidance for optimizing clinical management and disease control. PMID:27533284

  10. Ebola Virus Disease in Children, Sierra Leone, 2014–2015

    PubMed Central

    Naveed, Asad; Wing, Kevin; Gbessay, Musa; Ross, J.C.G.; Checchi, Francesco; Youkee, Daniel; Jalloh, Mohammed Boie; Baion, David; Mustapha, Ayeshatu; Jah, Hawanatu; Lako, Sandra; Oza, Shefali; Boufkhed, Sabah; Feury, Reynold; Bielicki, Julia A.; Gibb, Diana M.; Klein, Nigel; Sahr, Foday; Yeung, Shunmay

    2016-01-01

    Little is known about potentially modifiable factors in Ebola virus disease in children. We undertook a retrospective cohort study of children <13 years old admitted to 11 Ebola holding units in the Western Area, Sierra Leone, during 2014–2015 to identify factors affecting outcome. Primary outcome was death or discharge after transfer to Ebola treatment centers. All 309 Ebola virus–positive children 2 days–12 years old were included; outcomes were available for 282 (91%). Case-fatality was 57%, and 55% of deaths occurred in Ebola holding units. Blood test results showed hypoglycemia and hepatic/renal dysfunction. Death occurred swiftly (median 3 days after admission) and was associated with younger age and diarrhea. Despite triangulation of information from multiple sources, data availability was limited, and we identified no modifiable factors substantially affecting death. In future Ebola virus disease epidemics, robust, rapid data collection is vital to determine effectiveness of interventions for children. PMID:27649367

  11. Herd immunity to Newcastle disease virus in poultry by vaccination.

    PubMed

    van Boven, Michiel; Bouma, Annemarie; Fabri, Teun H F; Katsma, Elly; Hartog, Leo; Koch, Guus

    2008-02-01

    Newcastle disease is an economically important disease of poultry for which vaccination is applied as a preventive measure in many countries. Nevertheless, outbreaks have been reported in vaccinated populations. This suggests that either the vaccination coverage level is too low or that vaccination does not provide perfect immunity, allowing the virus to spread in partially vaccinated populations. Here we study the requirements of an epidemiologically effective vaccination program against Newcastle disease in poultry, based on data from experimental transmission studies. The transmission studies indicate that vaccinated birds with low or undetectable antibody titres may be protected against disease and mortality but that infection and transmission may still occur. In fact, our quantitative analyses show that Newcastle disease virus is highly transmissible in poultry with low antibody titres. As a consequence, herd immunity can only be achieved if a high proportion of birds (>85%) have a high antibody titre (log(2) haemagglutination inhibition titre > or =3) after vaccination. We discuss the implications for the control of Newcastle disease in poultry by vaccination.

  12. A new reportable disease is born: Taiwan Centers for Disease Control's response to emerging Zika virus infection.

    PubMed

    Huang, Angela Song-En; Shu, Pei-Yun; Yang, Chin-Hui

    2016-04-01

    Zika virus infection, usually a mild disease transmitted through the bite of Aedes mosquitos, has been reported to be possibly associated with microcephaly and neurologic complications. Taiwan's first imported case of Zika virus infection was found through fever screening at airport entry in January 2016. No virus was isolated from patient's blood taken during acute illness; however, PCR products showed that the virus was of Asian lineage closely related to virus from Cambodia. To prevent Zika virus from spreading in Taiwan, the Taiwan Centers for Disease Control has strengthened efforts in quarantine and surveillance, increased Zika virus infection diagnostic capacity, implemented healthcare system preparedness plans, and enhanced vector control program through community mobilization and education. Besides the first imported case, no additional cases of Zika virus infection have been identified. Furthermore, no significant increase in the number of microcephaly or Guillain- Barré Syndrome has been observed in Taiwan. To date, there have been no autochthonous transmissions of Zika virus infection.

  13. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    PubMed

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  14. The Pathogenesis of Ebola Virus Disease.

    PubMed

    Baseler, Laura; Chertow, Daniel S; Johnson, Karl M; Feldmann, Heinz; Morens, David M

    2017-01-24

    For almost 50 years, ebolaviruses and related filoviruses have been repeatedly reemerging across the vast equatorial belt of the African continent to cause epidemics of highly fatal hemorrhagic fever. The 2013-2015 West African epidemic, by far the most geographically extensive, most fatal, and longest lasting epidemic in Ebola's history, presented an enormous international public health challenge, but it also provided insights into Ebola's pathogenesis and natural history, clinical expression, treatment, prevention, and control. Growing understanding of ebolavirus pathogenetic mechanisms and important new clinical observations of the disease course provide fresh clues about prevention and treatment approaches. Although viral cytopathology and immune-mediated cell damage in ebolavirus disease often result in severe compromise of multiple organs, tissue repair and organ function recovery can be expected if patients receive supportive care with fluids and electrolytes; maintenance of oxygenation and tissue perfusion; and respiratory, renal, and cardiovascular support. Major challenges for managing future Ebola epidemics include establishment of early and aggressive epidemic control and earlier and better patient care and treatment in remote, resource-poor areas where Ebola typically reemerges. In addition, it will be important to further develop Ebola vaccines and to adopt policies for their use in epidemic and pre-epidemic situations.

  15. The Merits of Malaria Diagnostics during an Ebola Virus Disease Outbreak

    PubMed Central

    de Wit, Emmie; Falzarano, Darryl; Onyango, Clayton; Rosenke, Kyle; Marzi, Andrea; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J.; Prescott, Joseph B.; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L.; Feldmann, Friederike; Williamson, Brandi; Nyenswah, Tolbert G.; Grolla, Allen; Strong, James E.; Kobinger, Gary; Stroeher, Ute; Rayfield, Mark; Bolay, Fatorma K.; Zoon, Kathryn C.; Stassijns, Jorgen; Tampellini, Livia; de Smet, Martin; Nichol, Stuart T.; Fields, Barry; Sprecher, Armand; Feldmann, Heinz; Massaquoi, Moses

    2016-01-01

    Malaria is a major public health concern in the countries affected by the Ebola virus disease epidemic in West Africa. We determined the feasibility of using molecular malaria diagnostics during an Ebola virus disease outbreak and report the incidence of Plasmodium spp. parasitemia in persons with suspected Ebola virus infection. PMID:26814608

  16. Uveitis and Systemic Inflammatory Markers in Convalescent Phase of Ebola Virus Disease.

    PubMed

    Chancellor, John R; Padmanabhan, Sriranjani P; Greenough, Thomas C; Sacra, Richard; Ellison, Richard T; Madoff, Lawrence C; Droms, Rebecca J; Hinkle, David M; Asdourian, George K; Finberg, Robert W; Stroher, Ute; Uyeki, Timothy M; Cerón, Olga M

    2016-02-01

    We report a case of probable Zaire Ebola virus-related ophthalmologic complications in a physician from the United States who contracted Ebola virus disease in Liberia. Uveitis, immune activation, and nonspecific increase in antibody titers developed during convalescence. This case highlights immune phenomena that could complicate management of Ebola virus disease-related uveitis during convalescence.

  17. The Merits of Malaria Diagnostics during an Ebola Virus Disease Outbreak.

    PubMed

    de Wit, Emmie; Falzarano, Darryl; Onyango, Clayton; Rosenke, Kyle; Marzi, Andrea; Ochieng, Melvin; Juma, Bonventure; Fischer, Robert J; Prescott, Joseph B; Safronetz, David; Omballa, Victor; Owuor, Collins; Hoenen, Thomas; Groseth, Allison; van Doremalen, Neeltje; Zemtsova, Galina; Self, Joshua; Bushmaker, Trenton; McNally, Kristin; Rowe, Thomas; Emery, Shannon L; Feldmann, Friederike; Williamson, Brandi; Nyenswah, Tolbert G; Grolla, Allen; Strong, James E; Kobinger, Gary; Stroeher, Ute; Rayfield, Mark; Bolay, Fatorma K; Zoon, Kathryn C; Stassijns, Jorgen; Tampellini, Livia; de Smet, Martin; Nichol, Stuart T; Fields, Barry; Sprecher, Armand; Feldmann, Heinz; Massaquoi, Moses; Munster, Vincent J

    2016-02-01

    Malaria is a major public health concern in the countries affected by the Ebola virus disease epidemic in West Africa. We determined the feasibility of using molecular malaria diagnostics during an Ebola virus disease outbreak and report the incidence of Plasmodium spp. parasitemia in persons with suspected Ebola virus infection.

  18. Pathogenicity evaluation of different Newcastle disease virus chimeras in 4-week-old chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection with a virulent strain of Newcastle disease virus is considered one of the most important threats to the poultry industry worldwide. The causative virus, Newcastle disease virus, belongs to the Paramyxoviridae family, genus Avulavirus, and its genome encodes for 6 structural proteins: nu...

  19. Rainbow Trout Sleeping Disease Virus Is an Atypical Alphavirus

    PubMed Central

    Villoing, Stéphane; Béarzotti, Monique; Chilmonczyk, Stefan; Castric, Jeannette; Brémont, Michel

    2000-01-01

    Sleeping disease (SD) is currently a matter of concern for salmonid fish farmers in most parts of the world. A viral etiology of SD has recently been suspected, since virus-like particles have been observed in infected rainbow trout cells. In salmonid-derived cell lines, the maximal rate of virus production was observed at 10°C, while little virus was produced at 14°C. Through biochemical, physicochemical, and morphological studies, SD virus (SDV) was shown to be an enveloped virus of roughly 60 nm in diameter. The genome consists of 12 kb of RNA, with the appearance of a 26S subgenomic RNA during the time course of SDV replication. The screening of a random-primed cDNA library constructed from the genomic RNA of semipurified virions facilitated the identification of a specific SDV cDNA clone having an open reading frame related to the alphavirus E2 glycoproteins. To extend the comparison between SDV structural proteins and the alphavirus protein counterparts, the nucleotide sequence of the total 4.1-kb subgenomic RNA has been determined. The 26S RNA encodes a 1,324-amino-acid polyprotein exhibiting typical alphavirus structural protein organization. SDV structural proteins showed several remarkable features compared to other alphaviruses: (i) unusually large individual proteins, (ii) very low homology (ranging from 30 to 34%) (iii) an unglycosylated E3 protein, and (iv) and E1 fusion domain sharing mutations implicated in the pH threshold. Although phylogenetically related to the Semliki Forest virus group of alphaviruses, SDV should be considered an atypical member, able to naturally replicate in lower vertebrates. PMID:10590104

  20. Complete genome and clinicopathological characterization of a virulent Newcastle disease virus isolate from South America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND) is one of the most important diseases of poultry, negatively affecting trade and poultry production worldwide. The disease is caused by Newcastle disease virus (NDV) or avian paramyxovirus type-1 (APMV-1), a negative sense single-stranded RNA virus of the genus Avulavirus, fam...

  1. A virus disease of sockeye salmon: Interim report

    USGS Publications Warehouse

    Watson, S.W.; Guenther, R.W.; Rucker, R.R.

    1954-01-01

    Since 1951 a disease, usually occurring in late spring or early summer, has caused severe losses in 3- to 12-month-old fingerling sockeye salmon in hatcheries in the State of Washington. The disease is characterized by an explosive outbreak, mortality usually 80 percent or greater, and a residual spinal deformity in a small percentage of the surviving fish, and its specificity for the one species of salmon, Oncorhynchus nerka. (The anadromous strain of this species is commonly known as sockeye, blueback, or red salmon, while the fresh-water strain is called kokanee or silver trout.) The etiological agent is believed to be a virus.

  2. Hemagglutination by psittacine beak and feather disease virus and use of hemagglutination inhibition for detection of antibodies against the virus.

    PubMed

    Ritchie, B W; Niagro, F D; Latimer, K S; Steffens, W L; Pesti, D; Lukert, P D

    1991-11-01

    Conditions for psittacine beak and feather disease (PBFD) virus hemagglutination and hemagglutination-inhibition (HI) test reactions are defined. The PBFD virus was found to hemagglutinate cockatoo and some guinea pig erythrocytes. The HI test was used to assay serum antibody titer in birds with active PBFD virus infections and in others that had been exposed to diseased birds. On the basis of HI antibody titers in psittacine birds that had been exposed to PBFD virus, but remained clinically normal, we suggest that some birds exposed to the virus are able to mount an effective immune response. Birds with active PBFD virus infections had lower antibody values than did birds that had been exposed to the virus, but remained clinically normal. On the basis of these findings, the ability to develop a suitable HI antibody response may be crucial in determining the disease status of susceptible birds exposed to the PBFD virus. If HI antibodies are found to have neutralizing activity, then the fact that a high HI titer was induced in birds inoculated with purified PBFD virus might suggest that an immunization program would be effective in preventing PBFD virus infections.

  3. Reduced Risk of Disease During Postsecondary Dengue Virus Infections

    PubMed Central

    Olkowski, Sandra; Forshey, Brett M.; Morrison, Amy C.; Rocha, Claudio; Vilcarromero, Stalin; Halsey, Eric S.; Kochel, Tadeusz J.; Scott, Thomas W.; Stoddard, Steven T.

    2013-01-01

    Background. Antibodies induced by infection with any 1 of 4 dengue virus (DENV) serotypes (DENV-1–4) may influence the clinical outcome of subsequent heterologous infections. To quantify potential cross-protective effects, we estimated disease risk as a function of DENV infection, using data from longitudinal studies performed from September 2006 through February 2011 in Iquitos, Peru, during periods of DENV-3 and DENV-4 transmission. Methods. DENV infections before and during the study period were determined by analysis of serial serum samples with virus neutralization tests. Third and fourth infections were classified as postsecondary infections. Dengue fever cases were detected by door-to-door surveillance for acute febrile illness. Results. Among susceptible participants, 39% (420/1077) and 53% (1595/2997) seroconverted to DENV-3 and DENV-4, respectively. Disease was detected in 7% of DENV-3 infections and 10% of DENV-4 infections. Disease during postsecondary infections was reduced by 93% for DENV-3 and 64% for DENV-4, compared with primary and secondary infections. Despite lower disease rates, postsecondary infections constituted a significant proportion of apparent infections (14% [for DENV-3 infections], 45% [for DENV-4 infections]). Conclusions. Preexisting heterotypic antibodies markedly reduced but did not eliminate the risk of disease in this study population. These results improve understanding of how preinfection history can be associated with dengue outcomes and DENV transmission dynamics. PMID:23776195

  4. Porites white patch syndrome: associated viruses and disease physiology

    NASA Astrophysics Data System (ADS)

    Lawrence, S. A.; Davy, J. E.; Wilson, W. H.; Hoegh-Guldberg, O.; Davy, S. K.

    2015-03-01

    In recent decades, coral reefs worldwide have undergone significant changes in response to various environmental and anthropogenic impacts. Among the numerous causes of reef degradation, coral disease is one factor that is to a large extent still poorly understood. Here, we characterize the physiology of white patch syndrome (WPS), a disease affecting poritid corals on the Great Barrier Reef. WPS manifests as small, generally discrete patches of tissue discolouration. Physiological analysis revealed that chlorophyll a content was significantly lower in lesions than in healthy tissues, while host protein content remained constant, suggesting that host tissue is not affected by WPS. This was confirmed by transmission electron microscope (TEM) examination, which showed intact host tissue within lesions. TEM also revealed that Symbiodinium cells are lost from the host gastrodermis with no apparent harm caused to the surrounding host tissue. Also present in the electron micrographs were numerous virus-like particles (VLPs), in both coral and Symbiodinium cells. Small (<50 nm diameter) icosahedral VLPs were significantly more abundant in coral tissue taken from diseased colonies, and there was an apparent, but not statistically significant, increase in abundance of filamentous VLPs in Symbiodinium cells from diseased colonies. There was no apparent increase in prokaryotic or eukaryotic microbial abundance in diseased colonies. Taken together, these results suggest that viruses infecting the coral and/or its resident Symbiodinium cells may be the causative agents of WPS.

  5. Advances in plant virus evolution: Translating evolutionary insights into better disease management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Revolutionary theoretical concepts derived from experimental evolution have reached the realm of plant viruses, and their empirical demonstration is opening new avenues for disease management. From a populational standpoint, plant viruses and viroids constitute dynamic spectra of variants. The frequ...

  6. West Nile virus and other arboviral diseases--United States, 2012.

    PubMed

    2013-06-28

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States. However, several other arboviruses also cause sporadic cases and seasonal outbreaks of neuroinvasive disease (e.g., meningitis, encephalitis, and acute flaccid paralysis). In 2012, CDC received reports of 5,780 nationally notifiable arboviral disease cases (excluding dengue). A large multistate outbreak of WNV disease accounted for 5,674 (98%) of reported cases, the highest number reported since 2003. Other reported etiologies included Eastern equine encephalitis virus (EEEV), Powassan virus (POWV), St. Louis encephalitis virus (SLEV), and California serogroup viruses such as La Crosse virus (LACV) and Jamestown Canyon virus (JCV). Arboviruses continue to cause serious illness in substantial numbers of persons in the United States. Maintaining surveillance remains important to identify outbreaks and guide prevention efforts.

  7. Molecular evolution of American field strains of bluetongue and epizootic hemorrhagic disease viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent Orbivirus events in the Americas have been investigated using whole genome amplification and sequencing followed by phylogenetic analysis. These studies utilized an unbiased amplification protocol that allows the whole bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) geno...

  8. Common Virus May Be Linked to Heart Disease, Diabetes in Some Women

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_163761.html Common Virus May Be Linked to Heart Disease, Diabetes in ... THURSDAY, Feb. 23, 2017 (HealthDay News) -- A common virus may make some women more susceptible to both ...

  9. The influence of host genetics on Marek's disease virus evolution.

    PubMed

    Hunt, Henry D; Dunn, John R

    2013-06-01

    Since the first report of a polyneuritis in chickens by Joseph Marek in 1907, the clinical nature of the disease has changed. Over the last five decades, the pathogenicity of the Marek's disease virus (MDV) has continued to evolve from the relatively mild strains observed in the 1960s to the more severe strains labeled very virulent plus currently observed in today's outbreaks. To understand the influence of host genetics, specifically the major histocompatibility complex (MHC), on virus evolution, a bacterial artificial chromosome-derived MDV (Md5B40BAC) was passed in vivo through resistant (MHC-B21) and susceptible (MHC-B13) Line 0 chickens. Criteria for selecting virus isolates for in vivo passage were based on virus replication in white blood cells 21 days after challenge and evaluation of MD pathology at necropsy. In the MHC-B13-susceptible line the Md5B40BAC virulence consistently increased from 18% Marek's disease (MD) after in vivo passage 1 (B13-IVP1 Md5B40BAC) to 94% MD after B13-IVP5 Md5B40BAC challenge. In the MHC-B21-resistant line MD virulence fluctuated from 28% at B21-IVP1 Md5B40BAC to a high of 65% in B21-IVP2 Md5B40BAC back to a low of 23% in B21-IVP5 Md5B40BAC-challenged chicks. Although the B21-IVP5 Md5B40BAC isolates were relatively mild in the MHC-B21 chicken line (56% MDV), they were highly virulent in the MHC-B13 line (100% MDV). From this series of experiments it would appear that MDV evolution toward greater virulence occurs in both susceptible and resistant MHC haplotypes, but the resulting increase in pathogenicity is constrained by the resistant MHC haplotype.

  10. Unique human immune signature of Ebola virus disease in Guinea

    PubMed Central

    Ruibal, Paula; Oestereich, Lisa; Lüdtke, Anja; Becker-Ziaja, Beate; Wozniak, David M.; Kerber, Romy; Korva, Miša; Cabeza-Cabrerizo, Mar; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Weller, Romy; Thorenz, Anja; Cimini, Eleonora; Viola, Domenico; Agrati, Chiara; Repits, Johanna; Afrough, Babak; Cowley, Lauren A; Ngabo, Didier; Hinzmann, Julia; Mertens, Marc; Vitoriano, Inês; Logue, Christopher H.; Boettcher, Jan Peter; Pallasch, Elisa; Sachse, Andreas; Bah, Amadou; Nitzsche, Katja; Kuisma, Eeva; Michel, Janine; Holm, Tobias; Zekeng, Elsa-Gayle; García-Dorival, Isabel; Wölfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Strecker, Thomas; Di Caro, Antonino; Avšič-Županc, Tatjana; Kurth, Andreas; Meschi, Silvia; Mély, Stephane; Newman, Edmund; Bocquin, Anne; Kis, Zoltan; Kelterbaum, Anne; Molkenthin, Peter; Carletti, Fabrizio; Portmann, Jasmine; Wolff, Svenja; Castilletti, Concetta; Schudt, Gordian; Fizet, Alexandra; Ottowell, Lisa J.; Herker, Eva; Jacobs, Thomas; Kretschmer, Birte; Severi, Ettore; Ouedraogo, Nobila; Lago, Mar; Negredo, Anabel; Franco, Leticia; Anda, Pedro; Schmiedel, Stefan; Kreuels, Benno; Wichmann, Dominic; Addo, Marylyn M.; Lohse, Ansgar W.; De Clerck, Hilde; Nanclares, Carolina; Jonckheere, Sylvie; Van Herp, Michel; Sprecher, Armand; Xiaojiang, Gao; Carrington, Mary; Miranda, Osvaldo; Castro, Carlos M.; Gabriel, Martin; Drury, Patrick; Formenty, Pierre; Diallo, Boubacar; Koivogui, Lamine; Magassouba, N’Faly; Carroll, Miles W.; Günther, Stephan; Muñoz-Fontela, César

    2016-01-01

    Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD1. In particular, very little is known about human immune responses to Ebola virus (EBOV)2,3. Here, we have for the first time evaluated the physiology of the human T cell immune response in EVD patients at the time of admission at the Ebola Treatment Center (ETC) in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we have identified an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by high percentage of CD4 and CD8 T cells expressing the inhibitory molecules cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death-1 (PD-1), which was correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation despite comparable overall T cell activation. Concommittant with virus clearance, survivors mounted a robust EBOV-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology. PMID:27147028

  11. Newcastle disease virus: current status and our understanding.

    PubMed

    Ganar, Ketan; Das, Moushumee; Sinha, Sugandha; Kumar, Sachin

    2014-05-12

    Newcastle disease (ND) is one of the highly pathogenic viral diseases of avian species. ND is economically significant because of the huge mortality and morbidity associated with it. The disease is endemic in many third world countries where agriculture serves as the primary source of national income. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and is well characterized member among the avian paramyxovirus serotypes. In recent years, NDV has lured the virologists not only because of its pathogenic potential, but also for its oncolytic activity and its use as a vaccine vector for both humans and animals. The NDV based recombinant vaccine offers a pertinent choice for the construction of live attenuated vaccine due to its modular nature of transcription, minimum recombination frequency, and lack of DNA phase during replication. Our current understanding about the NDV biology is expanding rapidly because of the availability of modern molecular biology tools and high-throughput complete genome sequencing.

  12. An evolutionary insight into Newcastle disease viruses isolated in Antarctica.

    PubMed

    Soñora, Martin; Moreno, Pilar; Echeverría, Natalia; Fischer, Sabrina; Comas, Victoria; Fajardo, Alvaro; Cristina, Juan

    2015-08-01

    The disease caused by Newcastle disease virus (NDV) is a severe threat to the poultry industry worldwide. Recently, NDV has been isolated in the Antarctic region. Detailed studies on the mode of evolution of NDV strains isolated worldwide are relevant for our understanding of the evolutionary history of NDV. For this reason, we have performed Bayesian coalescent analysis of NDV strains isolated in Antarctica to study evolutionary rates, population dynamics, and patterns of evolution. Analysis of F protein cleavage-site sequences of NDV isolates from Antarctica suggested that these strains are lentogenic. Strains isolated in Antarctica and genotype I reference strain Ulster/67 diverged from ancestors that existed around 1958. The time of the most recent common ancestor (MRCA) was established to be around 1883 for all class II viruses. A mean rate of evolution of 1.78 × 10(-3) substitutions per site per year (s/s/y) was obtained for the F gene sequences of NDV strains examined in this study. A Bayesian skyline plot indicated a decline in NDV population size in the last 25 years. The results are discussed in terms of the possible role of Antarctica in emerging or re-emerging viruses and the evolution of NDV populations worldwide.

  13. Analysis of the dengue disease model with two virus strains

    NASA Astrophysics Data System (ADS)

    Adi-Kusumo, F.; Aini, A. N.; Ridwan, M.

    2014-02-01

    Dengue fever (DF) and dengue haemorrhagic fever (DHF) are the disease caused by the dengue virus which is transmitted to the human by infected female mosquitoes. The disease is endemic in more than 100 countries over the world. Dengue virus has four distinct serotypes which are closely related to each other antigenically. A person who infected by the dengue virus will never be infected again by the same serotype, but he looses immunity from the three other serotypes. Infection with one serotype does not provide cross-protective immunity against to others. Here we assume that there are two serotypes exist in the population. Someone who has recovered from one serotype become susceptible to the other serotype and can be reinfected. In this paper we analyze the model of dengue fever with two infections from the different serotype by linear analysis. Then we study the effect of vaccination to the model. In numerical simulation, we use Runge-Kutta order 4 to integrate the solution of the system.

  14. Respiratory syncytial virus: virology, reverse genetics, and pathogenesis of disease.

    PubMed

    Collins, Peter L; Fearns, Rachel; Graham, Barney S

    2013-01-01

    Human respiratory syncytial virus (RSV) is an enveloped, nonsegmented negative-strand RNA virus of family Paramyxoviridae. RSV is the most complex member of the family in terms of the number of genes and proteins. It is also relatively divergent and distinct from the prototype members of the family. In the past 30 years, we have seen a tremendous increase in our understanding of the molecular biology of RSV based on a succession of advances involving molecular cloning, reverse genetics, and detailed studies of protein function and structure. Much remains to be learned. RSV disease is complex and variable, and the host and viral factors that determine tropism and disease are poorly understood. RSV is notable for a historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for enhanced disease in RSV naïve recipients. Live vaccine candidates have been shown to be free of this complication. However, development of subunit or other protein-based vaccines for pediatric use is hampered by the possibility of enhanced disease and the difficulty of reliably demonstrating its absence in preclinical studies.

  15. Selective isolation of Avian influenza virus (AIV) from cloacal samples containing AIV and Newcastle disease virus.

    PubMed

    El Zowalaty, Mohamed E; Chander, Yogesh; Redig, Patrick T; Abd El Latif, Hemmat K; El Sayed, Mona A; Goyal, Sagar M

    2011-03-01

    Avian influenza viruses (AIVs) are important zoonotic pathogens whose natural reservoir is waterfowl. In addition to AIV, waterfowl are often coinfected with other viruses, such as the paramyxoviruses, of which Newcastle disease virus (NDV) is of particular importance because of the highly virulent nature of certain strains of this virus for domestic poultry. In routine surveillance of waterfowl for AIV, a number of cloacal samples were encountered that were positive for AIV by real-time reverse transcription polymerase chain reaction (RT-PCR), but did not yield AIV by inoculation in embryonated chicken eggs. On further testing, these samples were also positive for NDV by conventional RT-PCR. It was hypothesized that if both NDV and AIV are present in a sample, the former may overgrow AIV yielding false-negative AIV results. Such samples were treated with chicken anti-NDV polyclonal antiserum and then inoculated in embryonated chicken eggs. Several samples were found to be positive for different subtypes of AIV, indicating that, in the presence of mixed infection with NDV and AIV, it is imperative to remove the influence of NDV, so a true picture of AIV prevalence emerges. An additional benefit is that information on the circulation of NDV in these birds sheds light on their epidemiologic and ecologic significance.

  16. Mapping the zoonotic niche of Ebola virus disease in Africa.

    PubMed

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz U G; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-09-08

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976-2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past.

  17. Extracorporeal virus elimination for the treatment of severe Ebola virus disease--first experience with lectin affinity plasmapheresis.

    PubMed

    Büttner, Stefan; Koch, Benjamin; Dolnik, Olga; Eickmann, Markus; Freiwald, Tilo; Rudolf, Sarah; Engel, Jürgen; Becker, Stephan; Ronco, Claudio; Geiger, Helmut

    2014-01-01

    Therapeutic options for Ebola virus disease (EVD) are currently limited to (1) best supportive care, and (2) evolving virus-specific therapies, resulting from decades of analyzing one of the world's deadliest diseases. Supportive care ranges from oral or intravenous rehydration therapy and anti-emetics in developing countries to much more extensive life-support interventions in resource-rich countries. Current EVD-specific therapies attempt to either interfere with the earliest steps of viral replication or to elicit a strong immune response against the virus. An entirely new approach is the extracorporeal elimination of viruses and viral glycoproteins by lectin affinity plasmapheresis. Herein, we report for the first time the successful and safe use of lectin affinity plasmapheresis in a patient with severe Ebola virus disease.

  18. Detection and differentiation of Newcastle disease virus and influenza virus by using duplex real-time PCR.

    PubMed

    Nidzworski, Dawid; Wasilewska, Edyta; Smietanka, Krzysztof; Szewczyk, Bogusław; Minta, Zenon

    2013-01-01

    Newcastle disease virus (NDV), member of the Paramyxoviridae family and avian influenza virus (AIV), member of the Orthomyxoviridae family, are two main avian pathogens causing serious economic problems in poultry health. Both are enveloped, single-stranded, negative-sense RNA viruses and cause similar symptoms, ranging from sub-clinical infections to severe diseases, including decrease in egg production, acute respiratory syndrome, and high mortality. Similar symptoms hinder the differentiation of infection with the two viruses by standard veterinary procedures like clinical examination or necropsy. To overcome this problem, we have developed a new duplex real-time PCR assay for the detection and differentiation of these two viruses. Eighteen NDV strains, fourteen AIV strains, and twelve other (negative control) strains viruses were isolated from allantoic fluids of specific pathogen-free (SPF), embryonated eggs. Four-weeks-old SPF chickens were co-infected with both viruses (NDV - LaSota and AIV - H7N1). Swabs from cloaca and trachea were collected and examined. The results obtained in this study show that by using duplex real-time PCR, it was possible to detect and distinguish both viruses within less than three hours and with high sensitivity, even in case a bird was co-infected. Additionally, the results show the applicability of the real-time PCR assay in laboratory practice for the identification and differentiation of Newcastle disease and influenza A viruses in birds.

  19. Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review

    PubMed Central

    2012-01-01

    Rabbit haemorrhagic disease virus (RHDV) is a calicivirus of the genus Lagovirus that causes rabbit haemorrhagic disease (RHD) in adult European rabbits (Oryctolagus cuniculus). First described in China in 1984, the virus rapidly spread worldwide and is nowadays considered as endemic in several countries. In Australia and New Zealand where rabbits are pests, RHDV was purposely introduced for rabbit biocontrol. Factors that may have precipitated RHD emergence remain unclear, but non-pathogenic strains seem to pre-date the appearance of the pathogenic strains suggesting a key role for the comprehension of the virus origins. All pathogenic strains are classified within one single serotype, but two subtypes are recognised, RHDV and RHDVa. RHD causes high mortality in both domestic and wild adult animals, with individuals succumbing between 48-72 h post-infection. No other species has been reported to be fatally susceptible to RHD. The disease is characterised by acute necrotising hepatitis, but haemorrhages may also be found in other organs, in particular the lungs, heart, and kidneys due to disseminated intravascular coagulation. Resistance to the disease might be explained in part by genetically determined absence or weak expression of attachment factors, but humoral immunity is also important. Disease control in rabbitries relies mainly on vaccination and biosecurity measures. Such measures are difficult to be implemented in wild populations. More recent research has indicated that RHDV might be used as a molecular tool for therapeutic applications. Although the study of RHDV and RHD has been hampered by the lack of an appropriate cell culture system for the virus, several aspects of the replication, epizootology, epidemiology and evolution have been disclosed. This review provides a broad coverage and description of the current knowledge on the disease and the virus. PMID:22325049

  20. Wild Birds in Romania Are More Exposed to West Nile Virus Than to Newcastle Disease Virus.

    PubMed

    Paştiu, Anamaria Ioana; Pap, Péter László; Vágási, Csongor István; Niculae, Mihaela; Páll, Emőke; Domşa, Cristian; Brudaşcă, Florinel Ghe; Spînu, Marina

    2016-03-01

    The aim of this study was to evaluate the seroprevalence of West Nile virus (WNV) and Newcastle disease virus (NDV) in wild and domestic birds from Romania. During 2011-2014, 159 plasma samples from wild birds assigned to 11 orders, 27 families, and 61 species and from 21 domestic birds (Gallus gallus domesticus, Anas platyrhynchos domesticus) were collected. The sera were assayed by two commercial competitive enzyme-linked immunosorbent assay (cELISA) kits for antibodies against WNV and NDV. We found a high prevalence of WNV antibodies in both domestic (19.1%) and wild (32.1%) birds captured after the human epidemic in 2010. Moreover, the presence of anti-NDV antibodies among wild birds from Romania (5.4%) was confirmed serologically for the first time, as far as we are aware. Our findings provide evidence that wild birds, especially resident ones are involved in local West Nile and Newcastle disease enzootic and epizootic cycles. These may allow virus maintenance and spread and also enhance the chance of new outbreaks.

  1. Bioinformatics and molecular analysis of the evolutionary relationship between bovine rhinitis A viruses and foot-and-mouth disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine rhinitis viruses (BRV) cause mild respiratory disease of cattle. In this study, a near full length genome sequence of a virus named RS3X, formerly classified as bovine rhinovirus type 1, isolated from infected cattle from the United Kingdom in the 1960s, was obtained and analyzed. Phylogeneti...

  2. Further Studies of a Molecular Clone of Marek's Disease Virus with an Insert of Long Terminal Repeat of Reticuloendotheliosis Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we have reported on the development and pathogenicity of a bacterial artificial chromosome (BAC) clone of Marek’s disease (MD) virus (MDV) with an insert of long terminal repeat (LTR) of reticuloendotheliosis virus (REV). In the current study, we examined whether the REV LTR was retained b...

  3. Pathogenicity of a Molecular Clone of Marek's Disease Virus with an Insert of Long Terminal Repeat of Reticuloendotheliosis Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we have inserted reticuloendotheliosis virus (REV) long terminal repeat (LTR) sequences into strain Md5 of Marek’s disease (MD) virus (MDV) using rMd5 bacterial artificial chromosome (BAC). The rMd5 BAC with REV LTR insert was passed in duck-embryo fibroblast for 40 passages. Chickens of A...

  4. Ebola virus disease in Africa: epidemiology and nosocomial transmission.

    PubMed

    Shears, P; O'Dempsey, T J D

    2015-05-01

    The 2014 Ebola outbreak in West Africa, primarily affecting Guinea, Sierra Leone, and Liberia, has exceeded all previous Ebola outbreaks in the number of cases and in international response. There have been 20 significant outbreaks of Ebola virus disease in Sub-Saharan Africa prior to the 2014 outbreak, the largest being that in Uganda in 2000, with 425 cases and a mortality of 53%. Since the first outbreaks in Sudan and Zaire in 1976, transmission within health facilities has been of major concern, affecting healthcare workers and acting as amplifiers of spread into the community. The lack of resources for infection control and personal protective equipment are the main reasons for nosocomial transmission. Local strategies to improve infection control, and a greater understanding of local community views on the disease, have helped to bring outbreaks under control. Recommendations from previous outbreaks include improved disease surveillance to enable more rapid health responses, the wider availability of personal protective equipment, and greater international preparedness.

  5. Genetic and antigenic variation of shedding viruses from vaccinated chickens after challenge with virulent Newcastle disease virus.

    PubMed

    Choi, Kang-Seuk; Kye, Soo-jeong; Kim, Ji-Ye; Lee, Hee-Soo

    2013-06-01

    Newcastle disease virus (NDV) isolation was attempted from La Sota-vaccinated or unvaccinated chickens exposed to the virulent NDV variant E347Kmt. Shedding viruses were purified by plaque assay and then were sequenced for HN and F genes. The amino acid sequences of the F gene of all shedding viruses were identical to the sequence of the challenge virus. However, amino acid substitution occurred at four positions (70, 347, 466, and 517) in the HN protein among shedding viruses from vaccinated and challenged chickens but not from unvaccinated and challenged chickens. Amino acid substitution occurred more frequently at position 347 (K to G or V) in the HN protein compared with the other positions. There was minor antigenic variation between some of mutant viruses shed and challenge virus. However, none of mutant viruses had a significantly lower antigenic R value with La Sota virus compared with challenge virus E347Kmt. Our findings indicate that vaccinal immunity might facilitate an evolutional event through antigenic selection, genetic mutation among virulent virus populations shed from vaccinated flocks, or both.

  6. Marek's Disease Virus-Induced Immunosuppression: Array Analysis of Chicken Immune Response Gene Expression Profiling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of chickens induced by a highly cell-associated oncogenic alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latency infection within CD4+ T cells. Host-virus interaction, immune responses to...

  7. Laboratory Assays for Epstein-Barr Virus-Related Disease

    PubMed Central

    Gulley, Margaret L.; Tang, Weihua

    2008-01-01

    Epstein-Barr virus (EBV) infects various cell types in a wide spectrum of benign and malignant diseases. Laboratory tests for EBV have improved and are increasingly used in diagnosis, prognosis, prediction, and prevention of diseases ranging from infectious mononucleosis to selected subtypes of lymphoma, sarcoma, and carcinoma. Indeed, the presence of EBV is among the most effective tumor markers supporting clinical management of cancer patients. In biopsies, localization of EBER transcripts by in situ hybridization remains the gold standard for identifying latent infection. Other RNA- and protein-based assays detect lytic viral replication and can distinguish carcinoma-derived from lymphocyte-derived EBV in saliva or nasopharyngeal brushings. Analysis of blood using EBV viral load and serology reflects disease status and risk of progression. This review summarizes prior research in the context of basic virologic principles to provide a rational strategy for applying and interpreting EBV tests in various clinical settings. Such assays have been incorporated into standard clinical practice in selected settings such as diagnosis of primary infection and management of patients with immune dysfunction or nasopharyngeal carcinoma. As novel therapies are developed that target virus-infected cells or overcome the adverse effects of infection, laboratory testing becomes even more critical for determining when intervention is appropriate and the extent to which it has succeeded. PMID:18556771

  8. Brief History and Characterization of Enhanced Respiratory Syncytial Virus Disease

    PubMed Central

    Acosta, Patricio L.; Caballero, Mauricio T.

    2015-01-01

    In 1967, infants and toddlers immunized with a formalin-inactivated vaccine against respiratory syncytial virus (RSV) experienced an enhanced form of RSV disease characterized by high fever, bronchopneumonia, and wheezing when they became infected with wild-type virus in the community. Hospitalizations were frequent, and two immunized toddlers died upon infection with wild-type RSV. The enhanced disease was initially characterized as a “peribronchiolar monocytic infiltration with some excess in eosinophils.” Decades of research defined enhanced RSV disease (ERD) as the result of immunization with antigens not processed in the cytoplasm, resulting in a nonprotective antibody response and CD4+ T helper priming in the absence of cytotoxic T lymphocytes. This response to vaccination led to a pathogenic Th2 memory response with eosinophil and immune complex deposition in the lungs after RSV infection. In recent years, the field of RSV experienced significant changes. Numerous vaccine candidates with novel designs and formulations are approaching clinical trials, defying our previous understanding of favorable parameters for ERD. This review provides a succinct analysis of these parameters and explores criteria for assessing the risk of ERD in new vaccine candidates. PMID:26677198

  9. The mouse model of respiratory syncytial virus disease.

    PubMed

    Openshaw, Peter J

    2013-01-01

    The laboratory mouse is the species of choice for most immunological studies, ranging from simple vaccine testing to the intricate dissection of fundamental immunopathogenic mechanisms. Although not fully mouse adapted, some strains of respiratory syncytial virus (RSV) replicate in the murine respiratory tract and induce specific T and B cell responses. Passive transfer of neutralising antibody is protective and assist in viral clearance. In addition, many of RSV's complex behaviours are recapitulated in the mouse (including enhancement of disease by vaccination and delayed effects of neonatal infection). However, human studies remain essential to confirm or refute predictions from animal models.

  10. Ebola virus disease outbreak - West Africa, September 2014.

    PubMed

    2014-10-03

    CDC is assisting ministries of health and working with other organizations to control and end the ongoing outbreak of Ebola virus disease (Ebola) in West Africa. The updated data in this report were compiled from ministry of health situation reports and World Health Organization (WHO) sources. Total case counts include all suspected, probable, and confirmed cases as defined by each country. These data reflect reported cases, which make up an unknown proportion of all actual cases. The data also reflect reporting delays that might vary from country to country.

  11. Subcellular distribution of swine vesicular disease virus proteins and alterations induced in infected cells: A comparative study with foot-and-mouth disease virus and vesicular stomatitis virus

    SciTech Connect

    Martin-Acebes, Miguel A.; Gonzalez-Magaldi, Monica; Rosas, Maria F.; Borrego, Belen; Brocchi, Emiliana; Armas-Portela, Rosario; Sobrino, Francisco

    2008-05-10

    The intracellular distribution of swine vesicular disease virus (SVDV) proteins and the induced reorganization of endomembranes in IBRS-2 cells were analyzed. Fluorescence to new SVDV capsids appeared first upon infection, concentrated in perinuclear circular structures and colocalized to dsRNA. As in foot-and-mouth disease virus (FMDV)-infected cells, a vesicular pattern was predominantly found in later stages of SVDV capsid morphogenesis that colocalized with those of non-structural proteins 2C, 2BC and 3A. These results suggest that assembly of capsid proteins is associated to the replication complex. Confocal microscopy showed a decreased fluorescence to ER markers (calreticulin and protein disulfide isomerase), and disorganization of cis-Golgi gp74 and trans-Golgi caveolin-1 markers in SVDV- and FMDV-, but not in vesicular stomatitis virus (VSV)-infected cells. Electron microscopy of SVDV-infected cells at an early stage of infection revealed fragmented ER cisternae with expanded lumen and accumulation of large Golgi vesicles, suggesting alterations of vesicle traffic through Golgi compartments. At this early stage, FMDV induced different patterns of ER fragmentation and Golgi alterations. At later stages of SVDV cytopathology, cells showed a completely vacuolated cytoplasm containing vesicles of different sizes. Cell treatment with brefeldin A, which disrupts the Golgi complex, reduced SVDV ({approx} 5 log) and VSV ({approx} 4 log) titers, but did not affect FMDV growth. Thus, three viruses, which share target tissues and clinical signs in natural hosts, induce different intracellular effects in cultured cells.

  12. Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis.

    PubMed Central

    Riviere, Y; Oldstone, M B

    1986-01-01

    Reassortant viruses of different strains of lymphocytic choriomeningitis viruses cause lethal disease after inoculation into neonatal BALB/c WEHI mice, but, in contrast, parental strains or reciprocal reassortants do not cause lethal disease. The disease is characterized by inhibition of growth and death. The pathogenic mechanism is the induction of interferon combined with higher virus titers and subsequent liver necrosis. The generation of lethal reassortants from nonlethal parent viruses likely has implications for understanding the outbreaks of unanticipated virulent disease within a viral family. Images PMID:2426464

  13. Seminal transmission of lumpy skin disease virus in heifers.

    PubMed

    Annandale, C H; Holm, D E; Ebersohn, K; Venter, E H

    2014-10-01

    It is known that lumpy skin disease virus (LSDV) can be shed in bull semen following infection and also that artificial insemination (AI) poses a biosecurity risk. However, it is not known whether the use of LSDV infected semen in AI poses a biosecurity risk. The aim of this study was to investigate whether LSDV, transmitted through semen, can infect cows and their embryos. Two controlled trials were performed simultaneously. Eleven young beef heifers, naïve to LSDV, were synchronized using an OvSynch protocol and inseminated on Day 0 with fresh semen spiked with a field strain of LSDV on day 0. Six of the heifers were superovulated on Day 1 using pregnant mare serum gonadotropin, and embryos were flushed from these heifers on Day 6. Blood and serum samples were collected from Day 4 until Day 27 to determine the presence of LSDV by PCR and virus isolation, and the presence of antibodies against LSDV by SNT. The first clinical signs of LSD were noticed on Day 10, followed by severe generalized LSD in three heifers and mild LSD in two more heifers. Two heifers were humanely euthanized due to severe unresponsive stranguria. LSDV was detected by PCR, virus isolation or electron microscopy in blood, embryos and organs of experimentally infected animals; and eight heifers had seroconverted by Day 27. Two control animals were not affected. This is the first report of experimental seminal transmission of LSDV in cattle.

  14. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens

    PubMed Central

    Carrasco, Adriano de Oliveira Torres; Seki, Meire Christina; Benevenute, Jyan Lucas; Ikeda, Priscila; Pinto, Aramis Augusto

    2016-01-01

    This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia) and chickens (Gallus gallus) in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota), developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti) and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil. PMID:26887250

  15. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens.

    PubMed

    Carrasco, Adriano de Oliveira Torres; Seki, Meire Christina; Benevenute, Jyan Lucas; Ikeda, Priscila; Pinto, Aramis Augusto

    2016-01-01

    This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia) and chickens (Gallus gallus) in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota), developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti) and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil.

  16. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  17. The growth and persistence of foot-and-mouth disease virus in the bovine mammary gland

    PubMed Central

    Burrows, R.; Mann, J. A.; Greig, A.; Chapman, W. G.; Goodridge, D.

    1971-01-01

    In animals exposed to foot-and-mouth disease virus by indirect contact, virus was recovered from the blood, milk, pharynx, vagina and rectum for variable periods of time before clinical disease was apparent. Virus instilled into the mammary gland multiplied rapidly and virus concentrations greater than 107 p.f.u./ml. were recorded within 8-32 hr., depending on the virus strain and dose inoculated. Virus multiplication was accompanied by clinical signs of mastitis but the classical signs of foot-and-mouth disease did not appear for 52-117 hr. Dissemination of virus from the mammary gland occurred within 4-24 hr. and in some animals samples taken from the pharynx, mouth, nose and vagina contained virus for periods up to 97 hr. before the appearance of vesicular lesions. Virus production in the udder declined with the appearance of virus neutralizing activity in the blood and the milk but persisted in some animals for periods of 3-7 weeks. The ability of foot-and-mouth disease virus to persist in mammary tissue was confirmed by the demonstration of virus multiplication in the udders of immune animals. PMID:4326249

  18. Mechanisms of foot-and-mouth disease virus tropism inferred from differential tissue gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-Mouth Disease virus (FMDV) has a characteristic tropism in terms of primary, secondary, and persistent infection and vesicular lesion sites. The virus targets specific tissues for primary replication. From these tissues, the virus spreads via the blood stream to a few preferred secondary in...

  19. Therapeutic potential of oncolytic Newcastle disease virus: a critical review

    PubMed Central

    Tayeb, Shay; Zakay-Rones, Zichria; Panet, Amos

    2015-01-01

    Newcastle disease virus (NDV) features a natural preference for replication in many tumor cells compared with normal cells. The observed antitumor effect of NDV appears to be a result of both selective killing of tumor cells and induction of immune responses. Genetic manipulations to change viral tropism and arming the virus with genes encoding for cytokines improved the oncolytic capacity of NDV. Several intracellular proteins in tumor cells, including antiapoptotic proteins (Livin) and oncogenic proteins (H-Ras), are relevant for the oncolytic activity of NDV. Defects in the interferon system, found in some tumor cells, also contribute to the oncolytic selectivity of NDV. Notwithstanding, NDV displays effective oncolytic activity in many tumor types, despite having intact interferon signaling. Taken together, several cellular systems appear to dictate the selective oncolytic activity of NDV. Some barriers, such as neutralizing antibodies elicited during NDV treatment and the extracellular matrix in tumor tissue appear to interfere with spread of NDV and reduce oncolysis. To further understand the oncolytic activity of NDV, we compared two NDV strains, ie, an attenuated virus (NDV-HUJ) and a pathogenic virus (NDV-MTH-68/H). Significant differences in amino acid sequence were noted in several viral proteins, including the fusion precursor (F0) glycoprotein, an important determinant of replication and pathogenicity. However, no difference in the oncolytic activity of the two strains was noted using human tumor tissues maintained as organ cultures or in mouse tumor models. To optimize virotherapy in clinical trials, we describe here a unique organ culture methodology, using a biopsy taken from a patient’s tumor before treatment for ex vivo infection with NDV to determine the oncolytic potential on an individual basis. In conclusion, oncolytic NDV is an excellent candidate for cancer therapy, but more knowledge is needed to ensure success in clinical trials. PMID

  20. Newcastle disease virus selectively kills human tumor cells.

    PubMed

    Reichard, K W; Lorence, R M; Cascino, C J; Peeples, M E; Walter, R J; Fernando, M B; Reyes, H M; Greager, J A

    1992-05-01

    Newcastle disease virus (NDV), strain 73-T, has previously been shown to be cytolytic to mouse tumor cells. In this study, we have evaluated the ability of NDV to replicate in and kill human tumor cells in culture and in athymic mice. Plaque assays were used to determine the cytolytic activity of NDV on six human tumor cell lines, fibrosarcoma (HT1080), osteosarcoma (KHOS), cervical carcinoma (KB8-5-11), bladder carcinoma (HCV29T), neuroblastoma (IMR32), and Wilm's tumor (G104), and on nine different normal human fibroblast lines. NDV formed plaques on all tumor cells tested as well as on chick embryo cells (CEC), the native host for NDV. Plaques did not form on any of the normal fibroblast lines. To detect NDV replication, virus yield assays were performed which measured virus particles in infected cell culture supernatants. Virus yield increased 10,000-fold within 24 hr in tumor and CEC supernatants. Titers remained near zero in normal fibroblast supernatants. In vivo tumoricidal activity was evaluated in athymic nude Balb-c mice by subcutaneous injection of 9 x 10(6) tumor cells followed by intralesional injection of either live or heat-killed NDV (1.0 x 10(6) plaque forming units [PFU]), or medium. After live NDV treatment, tumor regression occurred in 10 out of 11 mice bearing KB8-5-11 tumors, 8 out of 8 with HT-1080 tumors, and 6 out of 7 with IMR-32 tumors. After treatment with heat-killed NDV no regression occurred (P less than 0.01, Fisher's exact test). Nontumor-bearing mice injected with 1.0 x 10(8) PFU of NDV remained healthy. These results indicate that NDV efficiently and selectively replicates in and kills tumor cells, but not normal cells, and that intralesional NDV causes complete tumor regression in athymic mice with a high therapeutic index.

  1. European brown hare syndrome virus: relationship to rabbit hemorrhagic disease virus and other caliciviruses.

    PubMed Central

    Wirblich, C; Meyers, G; Ohlinger, V F; Capucci, L; Eskens, U; Haas, B; Thiel, H J

    1994-01-01

    Monoclonal antibodies directed against the capsid protein of rabbit hemorrhagic disease virus (RHDV) were used to identify field cases of European brown hare syndrome (EBHS) and to distinguish between RHDV and the virus responsible for EBHS. Western blot (immunoblot) analysis of liver extract of an EBHS virus (EBHSV)-infected hare revealed a single major capsid protein species of approximately 60 kDa that shared epitopes with the capsid protein of RHDV. RNA isolated from the liver of an EBHSV-infected hare contained two viral RNA species of 7.5 and 2.2 kb that comigrated with the genomic and subgenomic RNAs of RHDV and were recognized by labeled RHDV cDNA in Northern (RNA) hybridizations. The nucleotide sequence of the 3' 2.8 kb of the EBHSV genome was determined from four overlapping cDNA clones. Sequence analysis revealed an open reading frame that contains part of the putative RNA polymerase gene and the complete capsid protein gene. This particular genome organization is shared by RHDV but not by other known caliciviruses. The deduced amino acid sequence of the capsid protein of EBHSV was compared with the capsid protein sequences of RDDV and other caliciviruses. The amino acid sequence comparisons revealed that EBHSV is closely related to RHDV and distantly related to other caliciviruses. On the basis of their genome organization, it is suggested that caliciviruses be divided into three groups. Images PMID:7518531

  2. Experimental Treatment of Ebola Virus Disease with Brincidofovir

    PubMed Central

    Dunning, Jake; Kennedy, Stephen B.; Antierens, Annick; Whitehead, John; Ciglenecki, Iza; Carson, Gail; Kanapathipillai, Rupa; Castle, Lyndsey; Howell-Jones, Rebecca; Pardinaz-Solis, Raul; Grove, Jennifer; Scott, Janet; Lang, Trudie; Olliaro, Piero; Horby, Peter W.

    2016-01-01

    Background The nucleotide analogue brincidofovir was developed to prevent and treat infections caused by double-stranded DNA viruses. Based on in vitro data suggesting an antiviral effect against Ebola virus, brincidofovir was included in the World Health Organisation list of agents that should be prioritised for clinical evaluation in patients with Ebola virus disease (EVD) during the West African epidemic. Methods and Findings In this single-arm phase 2 trial conducted in Liberia, patients with laboratory-confirmed EVD (two months of age or older, enrolment bodyweight ≥50 kg) received oral brincidofovir 200 mg as a loading dose on day 0, followed by 100 mg brincidofovir on days 3, 7, 10, and 14. Bodyweight-adjusted dosing was used for patients weighing <50 kg at enrolment. The primary outcome was survival at Day 14 after the first dose of brincidofovir. Four patients were enrolled between 01 January 2015 and 31 January 2015. The trial was stopped following the decision by the manufacturer to terminate their program of development of brincidofovir for EVD. No Serious Adverse Reactions or Suspected Unexpected Serious Adverse Reactions were identified. All enrolled subjects died of an illness consistent with EVD. Conclusions Due to the small sample size it was not possible to determine the efficacy of brincidofovir for the treatment of EVD. The premature termination of the trial highlights the need to establish better practices for preclinical in-vitro and animal screening of therapeutics for potentially emerging epidemic infectious diseases prior to their use in patients. Trial Registration Pan African Clinical Trials Registry PACTR201411000939962 PMID:27611077

  3. Self Antigen Prognostic for Human Immunodeficiency Virus Disease Progression

    PubMed Central

    Bristow, Cynthia L.; Patel, Hirenkumar; Arnold, Roland R.

    2001-01-01

    We have recently found that an extracellular protein, α1 proteinase inhibitor (α1PI; α1 antitrypsin), is required for in vitro human immunodeficiency virus (HIV) infectivity outcome. We show here in a study of HIV-seropositive patients that decreased viral load is significantly correlated with decreased circulating α1PI. In the asymptomatic category of HIV disease, 100% of patients manifest deficient levels of active α1PI, a condition known to lead to degenerative lung diseases and a dramatically reduced life span. Further, HIV-associated α1PI deficiency is correlated with circulating anti-α1PI immunoglobulin G. These results suggest that preventing HIV-associated α1PI deficiency may provide a strategic target for preventing HIV-associated pathophysiology. PMID:11527807

  4. Being Ready to Treat Ebola Virus Disease Patients

    PubMed Central

    Brett-Major, David M.; Jacob, Shevin T.; Jacquerioz, Frederique A.; Risi, George F.; Fischer, William A.; Kato, Yasuyuki; Houlihan, Catherine F.; Crozier, Ian; Bosa, Henry Kyobe; Lawler, James V.; Adachi, Takuya; Hurley, Sara K.; Berry, Louise E.; Carlson, John C.; Button, Thomas. C.; McLellan, Susan L.; Shea, Barbara J.; Kuniyoshi, Gary G.; Ferri, Mauricio; Murthy, Srinivas G.; Petrosillo, Nicola; Lamontagne, Francois; Porembka, David T.; Schieffelin, John S.; Rubinson, Lewis; O'Dempsey, Tim; Donovan, Suzanne M.; Bausch, Daniel G.; Fowler, Robert A.; Fletcher, Thomas E.

    2015-01-01

    As the outbreak of Ebola virus disease (EVD) in West Africa continues, clinical preparedness is needed in countries at risk for EVD (e.g., United States) and more fully equipped and supported clinical teams in those countries with epidemic spread of EVD in Africa. Clinical staff must approach the patient with a very deliberate focus on providing effective care while assuring personal safety. To do this, both individual health care providers and health systems must improve EVD care. Although formal guidance toward these goals exists from the World Health Organization, Medecin Sans Frontières, the Centers for Disease Control and Prevention, and other groups, some of the most critical lessons come from personal experience. In this narrative, clinicians deployed by the World Health Organization into a wide range of clinical settings in West Africa distill key, practical considerations for working safely and effectively with patients with EVD. PMID:25510724

  5. Animal models of disease shed light on Nipah virus pathogenesis and transmission

    PubMed Central

    de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. PMID:25229234

  6. Rapid pathotyping of Newcastle Disease Virus by pyrosequencing.

    PubMed

    De Battisti, Cristian; Salomoni, Angela; Ormelli, Silvia; Monne, Isabella; Capua, Ilaria; Cattoli, Giovanni

    2013-03-01

    Newcastle Disease Virus (NDV) is the only member of serotype 1 avian paramyxoviruses (APMV-1) that causes respiratory and neurological disease in chickens and other species of birds and can cause severe economic losses in the poultry sector. Due to the relevant variability of the genome and the pathogenicity of NDV isolates, their detection in a specimen is not sufficient to provide and confirm an exact diagnosis, and so the assessment of virus pathotype is required. To diagnose rapidly and pathotype NDV directly in clinical specimens, a method based on RT-PCR and pyrosequencing analysis has been developed and is reported in the present study. A pair of degenerated primers was designed to amplify a portion of the fusion (F) gene responsible for virulence and used to test 315 specimens collected from 2006 to 2011. The subsequent pyrosequencing reaction identified a 30-bp region encompassing the cleavage site. A total of 213 out of 315 samples were pyrosequenced and results were compared and confirmed by the Sanger sequencing procedure, which is traditionally performed for NDV pathotyping. The pyrosequencing reaction provided high quality results in real time and proved to be more rapid and cost-efficient than the classical sequencing procedure, indicating it as a possible valid alternative to the currently used diagnostic assays for NDV.

  7. Herpesviruses and Newcastle disease viruses in white storks (Ciconia ciconia).

    PubMed

    Kaleta, E F; Kummerfeld, N

    1983-01-01

    Three herpesviruses were isolated from white storks (Ciconia ciconia). All isolates reacted in cross-neutralisation tests with homologous antisera and with sera prepared against a herpesvirus from a black stork (Ciconia nigra). These data indicate serologic relatedness of the herpesviruses from both stork species. Antisera prepared against herpesviruses from the domestic chicken (viruses of Marek's disease and infectious laryngotracheitis), turkey, duck and pigeon as well as from the blue-fronted amazon (Amazona aestiva), prairie falcon (Falco mexicanus), eagle owl (Bubo bubo), Lake Victoria cormorant (Phalacrocorax melanoleucos), bobwhite quail (Colinus virginianus) and desmoiselle crane (Anthropoides virgo) did not react with the stork herpesviruses. Neutralising antibodies against stork herpesvirus were detected in the majority of 72 blood samples from white and black storks. In addition, three Newcastle disease viruses (NDV) could be isolated from white storks. One isolate was highly virulent the two others were avirulent for the chicken. Haemagglutination inhibition tests have shown that some storks have antibodies against Paramyxovirus- (PMV)-1 (NDV), PMV-2 and PMV-3. No antibodies could be detected in stork sera against PMV-4, -6 and -7.

  8. Intracellular processing of the Newcastle disease virus fusion glycoprotein

    SciTech Connect

    Morrison, T.; Ward, L.J.; Semerjian, A.

    1985-03-01

    The fusion glycoprotein (Fo) of Newcastle disease virus is cleaved at an intracellular site into F1 and F2. This result was confirmed by comparing the transit time of the fusion protein to the cell surface with the time course of cleavage of Fo. The time required for cleavage of half of the pulse-labeled Fo protein is ca. 40 min faster than the half time of the transit of the fusion protein to the cell surface. To determine the cell compartment in which cleavage occurs, use was made of inhibitors which block glycoprotein migration at specific points and posttranslational modifications known to occur in specific cell membranes. Cleavage of Fo is inhibited by carbonyl cyanide m-chlorophenylhydrazone; thus, cleavage does not occur in the rough endoplasmic reticulum. Monensin blocks the incorporation of Newcastle disease virus glycoproteins into virions and blocks the cleavage of the fusion glycoprotein. However, Fo cannot be radioactively labeled with (/sup 3/H) fucose, whereas F1 is readily labeled. These results argue that cleavage occurs in the trans Golgi membranes or in a cell compartment occupied by glycoproteins quite soon after their transit through the trans Golgi membranes. The implications of the results presented for the transit times of the fusion protein between subcellular organelles are discussed.

  9. A study on pathogens of Chinese prawn ( Penaeus Chinensis) virus diseases

    NASA Astrophysics Data System (ADS)

    Sun, Xiu-Qin; Zhang, Jin-Xing

    1995-09-01

    This pathogenic study shows that the viral diseases of Chinese prawns ( Penaeus chinensis, O'sbeck) is due to three kinds of viruses: epithelium envelope baculovirus of Penaeus chinensis (EEBV-PC, detected by the authors in 1993), infections hypodermal and hematopoietic necrosis virus, and hepatopancreatic parvo-like virus, and that the first two viruses seem to be the main pathogens of the epidemic in the northern regions in 1993.

  10. The survival of foot-and-mouth disease virus in open air conditions.

    PubMed Central

    Donaldson, A. I.; Ferris, N. P.

    1975-01-01

    The influence of the Open Air Factor (OAF) and daylight on the survival of foot-and-mouth disease (FMD) virus held as captured aerosols on spider microthreads has been investigated. Virus inactivation due to OAF was slight. Similarly, the effect of daylight on the survival of virus was not marked. The results are discussed in relation to the airborne spread of FMD virus in nature. PMID:168250

  11. Biology, etiology, and control of virus diseases of banana and plantain.

    PubMed

    Kumar, P Lava; Selvarajan, Ramasamy; Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Hanna, Rachid

    2015-01-01

    Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review.

  12. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses.

    PubMed

    Miller, Patti J; Afonso, Claudio L; El Attrache, John; Dorsey, Kristi M; Courtney, Sean C; Guo, Zijing; Kapczynski, Darrell R

    2013-12-01

    Different genotypes of avian paramyxovirus serotype-1 virus (APMV-1) circulate in many parts of the world. Traditionally, Newcastle disease virus (NDV) is recognized as having two major divisions represented by classes I and II, with class II being further divided into sixteen genotypes. Although all NDV are members of APMV-1 and are of one serotype, antigenic and genetic diversity is observed between the different genotypes. Reports of vaccine failure from many countries and reports by our lab on the reduced ability of classical vaccines to significantly decrease viral replication and shedding have created renewed interest in developing vaccines formulated with genotypes homologous to the virulent NDV (vNDV) circulating in the field. We assessed how the amount and specificity of humoral antibodies induced by inactivated vaccines affected viral replication, clinical protection and evaluated how non-homologous (heterologous) antibody levels induced by live NDV vaccines relate to transmission of vNDV. In an experimental setting, all inactivated NDV vaccines protected birds from morbidity and mortality, but higher and more specific levels of antibodies were required to significantly decrease viral replication. It was possible to significantly decrease viral replication and shedding with high levels of antibodies and those levels could be more easily reached with vaccines formulated with NDV of the same genotype as the challenge viruses. However, when the levels of heterologous antibodies were sufficiently high, it was possible to prevent transmission. As the level of humoral antibodies increase in vaccinated birds, the number of infected birds and the amount of vNDV shed decreased. Thus, in an experimental setting the effective levels of humoral antibodies could be increased by (1) increasing the homology of the vaccine to the challenge virus, or (2) allowing optimal time for the development of the immune response.

  13. Heartland Virus

    MedlinePlus

    ... Vector-Borne Diseases (DVBD) NCEZID Share Compartir Heartland virus On this Page What is Heartland virus? How ... Do I Need to Know? What is Heartland virus? Heartland virus belongs to a family of viruses ...

  14. Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

    PubMed Central

    Pagán, Israel; González-Jara, Pablo; Moreno-Letelier, Alejandra; Rodelo-Urrego, Manuel; Fraile, Aurora; Piñero, Daniel; García-Arenal, Fernando

    2012-01-01

    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species. PMID:22792068

  15. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system.

    PubMed

    Pagán, Israel; González-Jara, Pablo; Moreno-Letelier, Alejandra; Rodelo-Urrego, Manuel; Fraile, Aurora; Piñero, Daniel; García-Arenal, Fernando

    2012-01-01

    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.

  16. Gene Technology for Papaya Ringspot Virus Disease Management

    PubMed Central

    Azad, Md. Abul Kalam; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research. PMID:24757435

  17. Gene technology for papaya ringspot virus disease management.

    PubMed

    Azad, Md Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.

  18. Cardiovascular disease associated with human immunodeficiency virus: a review.

    PubMed

    Costa, Luísa Amado; Almeida, Ana G

    2015-01-01

    The cardiovascular manifestations of human immunodeficiency virus (HIV) infection have changed significantly following the introduction of highly active antiretroviral therapy (HAART) regimens. On one hand, HAART has altered the course of HIV disease, with longer survival of HIV-infected patients, and cardiovascular complications of HIV infection such as myocarditis have been reduced. On the other hand, HAART is associated with an increase in the prevalence of both peripheral and coronary arterial disease. As longevity increases in HIV-infected individuals, long-term effects, such as cardiovascular disease, are emerging as leading health issues in this population. In the present review article, we discuss HIV-associated cardiovascular disease, focusing on epidemiology, etiopathogenesis, diagnosis, prognosis, management and therapy. Cardiovascular involvement in treatment-naive patients is still important in situations such as non-adherence to treatment, late initiation of treatment, and/or limited access to HAART in developing countries. We therefore describe the cardiovascular consequences in treatment-naive patients and the potential effect of antiretroviral treatment on their regression, as well as the metabolic and cardiovascular implications of HAART regimens in HIV-infected individuals.

  19. Identification of new sub-genotypes of virulent Newcastle disease virus with potential panzootic features

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strains of virulent Newcastle disease virus (NDV) with epizootic characteristics are rapidly spreading through Asia and the Middle East causing outbreaks of Newcastle disease (ND). Significant illness and mortality in vaccinated poultry caused by highly related viruses of new sub-genotypes within ge...

  20. Host responses are induced in feathers of chickens infected with Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control measures are effective in curtailing Marek’s disease virus (MDV) infection and replication in the feather follicle epithelium (FFE). Therefore, vaccinated birds, which subsequently become infected with MDV, shed the virulent virus although they remain protected against disease. The present...

  1. Molecular evolution of epizootic hemorrhagic disease viruses in North America based on historical isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epizootic hemorrhagic disease virus (EHDV) is an orbivirus of the Reoviridae family that has significant impact on wild and captive white-tailed deer. Although closely related to bluetongue virus (BTV) that can cause disease in sheep and cattle, North American EHDV historically has not been associat...

  2. Genetic characterization of epizootic hemorrhagic disease virus strains isolated from cattle in Israel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epizootic hemorrhagic disease virus (EHDV), an Orbivirus not previously reported in Israel, was isolated from Israeli cattle during a “bluetongue like” disease outbreak in 2006. To ascertain the origin of this new virus, three isolates from the outbreak were fully sequenced and compared with availab...

  3. Resurgence of Ebola Virus Disease in Guinea Linked to a Survivor With Virus Persistence in Seminal Fluid for More Than 500 Days

    PubMed Central

    Diallo, Boubacar; Sissoko, Daouda; Loman, Nicholas J.; Bah, Hadja Aïssatou; Bah, Hawa; Worrell, Mary Claire; Conde, lya Saidou; Sacko, Ramata; Mesfin, Samuel; Loua, Angelo; Kalonda, Jacques Katomba; Erondu, Ngozi A.; Dahl, Benjamin A.; Handrick, Susann; Goodfellow, Ian; Meredith, Luke W.; Cotten, Matthew; Jah, Umaru; Guetiya Wadoum, Raoul Emeric; Rollin, Pierre; Magassouba, N'Faly; Malvy, Denis; Anglaret, Xavier; Carroll, Miles W.; Aylward, Raymond Bruce; Djingarey, Mamoudou Harouna; Diarra, Abdoulaye; Formenty, Pierre; Keïta, Sakoba; Günther, Stephan; Rambaut, Andrew; Duraffour, Sophie

    2016-01-01

    We report on an Ebola virus disease (EVD) survivor who showed Ebola virus in seminal fluid 531 days after onset of disease. The persisting virus was sexually transmitted in February 2016, about 470 days after onset of symptoms, and caused a new cluster of EVD in Guinea and Liberia. PMID:27585800

  4. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections with Avian influenza viruses (AIV) of low and high pathogenicity (LP and HP), and Newcastle disease virus (NDV) are commonly reported in domestic ducks in parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the ...

  5. Serological status for Chlamydophila psittaci, Newcastle disease virus, avian polyoma virus, and Pacheco disease virus in scarlet macaws (Ara macao) kept in captivity in Costa Rica.

    PubMed

    Herrera, I; Khan, S R; Kaleta, E F; Müller, H; Dolz, G; Neumann, U

    2001-12-01

    From 1998 to 1999, a total of 128 blood samples were collected from scarlet macaws (Ara macao), kept in captivity in 11 different aviaries located in six provinces of Costa Rica. The sera were examined for antibodies directed against Chlamydophila psittaci, Newcastle disease virus (NDV), avian polyoma virus (APV), and Pacheco disease virus (PDV). Testing by enzyme-linked immunosorbent assay (ELISA), showed 16 (12.39%) of the samples (n = 129) exhibited antibodies directed against C. psittaci. Employing haemagglutination inhibition tests for NDV antibodies, all of the samples were found to be negative. The prevalence of antibodies specific for APV was tested with a blocking ELISA and serum neutralization tests (SNT) and 12 of 128 samples (9.37%) were found to be positive with both tests. In SNT, two out of 128 samples (1.56%) were positive for PDV. This is the first description of the serological status in scarlet macaws in captivity in Costa Rica. The study demonstrates the absence of NDV antibodies in the birds investigated on one hand, but also indicates a health hazard for numerous avian species due to the risk of infections with C. psittaci, APV or PDV.

  6. Projecting Month of Birth for At-Risk Infants after Zika Virus Disease Outbreaks

    PubMed Central

    Gilboa, Suzanne M.; Johansson, Michael A.; Valencia, Diana; Simeone, Regina M.; Hills, Susan L.; Polen, Kara; Jamieson, Denise J.; Petersen, Lyle R.; Honein, Margaret A.

    2016-01-01

    The marked increase in infants born with microcephaly in Brazil after a 2015 outbreak of Zika virus (Zika virus) disease suggests an association between maternal Zika virus infection and congenital microcephaly. To project the timing of delivery of infants born to mothers infected during early pregnancy in 1 city in Bahia State, Brazil, we incorporated data on reported Zika virus disease cases and microcephaly cases into a graphical schematic of weekly birth cohorts. We projected that these births would occur through February 2016. Applying similar projections to a hypothetical location at which Zika virus transmission started in November, we projected that full-term infants at risk for Zika virus infection would be born during April–September 2016. We also developed a modifiable spreadsheet tool that public health officials and researchers can use for their countries to plan for deliveries of infants to women who were infected with Zika virus during different pregnancy trimesters. PMID:27088494

  7. Projecting Month of Birth for At-Risk Infants after Zika Virus Disease Outbreaks.

    PubMed

    Reefhuis, Jennita; Gilboa, Suzanne M; Johansson, Michael A; Valencia, Diana; Simeone, Regina M; Hills, Susan L; Polen, Kara; Jamieson, Denise J; Petersen, Lyle R; Honein, Margaret A

    2016-05-01

    The marked increase in infants born with microcephaly in Brazil after a 2015 outbreak of Zika virus (Zika virus) disease suggests an association between maternal Zika virus infection and congenital microcephaly. To project the timing of delivery of infants born to mothers infected during early pregnancy in 1 city in Bahia State, Brazil, we incorporated data on reported Zika virus disease cases and microcephaly cases into a graphical schematic of weekly birth cohorts. We projected that these births would occur through February 2016. Applying similar projections to a hypothetical location at which Zika virus transmission started in November, we projected that full-term infants at risk for Zika virus infection would be born during April-September 2016. We also developed a modifiable spreadsheet tool that public health officials and researchers can use for their countries to plan for deliveries of infants to women who were infected with Zika virus during different pregnancy trimesters.

  8. Humanized Mouse Model of Ebola Virus Disease Mimics the Immune Responses in Human Disease.

    PubMed

    Bird, Brian H; Spengler, Jessica R; Chakrabarti, Ayan K; Khristova, Marina L; Sealy, Tara K; Coleman-McCray, JoAnn D; Martin, Brock E; Dodd, Kimberly A; Goldsmith, Cynthia S; Sanders, Jeanine; Zaki, Sherif R; Nichol, Stuart T; Spiropoulou, Christina F

    2016-03-01

    Animal models recapitulating human Ebola virus disease (EVD) are critical for insights into virus pathogenesis. Ebola virus (EBOV) isolates derived directly from human specimens do not, without adaptation, cause disease in immunocompetent adult rodents. Here, we describe EVD in mice engrafted with human immune cells (hu-BLT). hu-BLT mice developed EVD following wild-type EBOV infection. Infection with high-dose EBOV resulted in rapid, lethal EVD with high viral loads, alterations in key human antiviral immune cytokines and chemokines, and severe histopathologic findings similar to those shown in the limited human postmortem data available. A dose- and donor-dependent clinical course was observed in hu-BLT mice infected with lower doses of either Mayinga (1976) or Makona (2014) isolates derived from human EBOV cases. Engraftment of the human cellular immune system appeared to be essential for the observed virulence, as nonengrafted mice did not support productive EBOV replication or develop lethal disease. hu-BLT mice offer a unique model for investigating the human immune response in EVD and an alternative animal model for EVD pathogenesis studies and therapeutic screening.

  9. Mapping the zoonotic niche of Ebola virus disease in Africa

    PubMed Central

    Pigott, David M; Golding, Nick; Mylne, Adrian; Huang, Zhi; Henry, Andrew J; Weiss, Daniel J; Brady, Oliver J; Kraemer, Moritz UG; Smith, David L; Moyes, Catherine L; Bhatt, Samir; Gething, Peter W; Horby, Peter W; Bogoch, Isaac I; Brownstein, John S; Mekaru, Sumiko R; Tatem, Andrew J; Khan, Kamran; Hay, Simon I

    2014-01-01

    Ebola virus disease (EVD) is a complex zoonosis that is highly virulent in humans. The largest recorded outbreak of EVD is ongoing in West Africa, outside of its previously reported and predicted niche. We assembled location data on all recorded zoonotic transmission to humans and Ebola virus infection in bats and primates (1976–2014). Using species distribution models, these occurrence data were paired with environmental covariates to predict a zoonotic transmission niche covering 22 countries across Central and West Africa. Vegetation, elevation, temperature, evapotranspiration, and suspected reservoir bat distributions define this relationship. At-risk areas are inhabited by 22 million people; however, the rarity of human outbreaks emphasises the very low probability of transmission to humans. Increasing population sizes and international connectivity by air since the first detection of EVD in 1976 suggest that the dynamics of human-to-human secondary transmission in contemporary outbreaks will be very different to those of the past. DOI: http://dx.doi.org/10.7554/eLife.04395.001 PMID:25201877

  10. Naturally occurring reassortant infectious bursal disease virus in northern China.

    PubMed

    Lu, Zhen; Zhang, Lizhou; Wang, Nian; Chen, Yuming; Gao, Li; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Li, Kai; Qi, Xiaole; Wang, Xiaomei

    2015-05-04

    Infectious bursal disease virus (IBDV) is a bi-segmented, double-stranded RNA virus that belongs to the genus Avibirnavirus of the family of Birnavirideae. The co-evolution of genome segments is a major evolutionary feature for IBDV. However, in recent years, some strains exhibited markedly different genetic relationships for segments A and B. In this study, we firstly isolated a new type of reassortment IBDV strain named IBD13HeB01 from northern China. The full-length genomes of segments A and B were cloned and identified. Sequence analysis revealed that IBD13HeB01 was a segment-reassortment strain, whose segment A was derived from very virulent strain and segment B from attenuated IBDV. In addition, the virulence of IBD13HeB01 strain was evaluated using SPF chickens. This study is not only beneficial for further understanding of the viral evolution but also suggests the potential risk of application of the live vaccines of IBDV.

  11. Multidistrict Outbreak of Marburg Virus Disease-Uganda, 2012.

    PubMed

    Knust, Barbara; Schafer, Ilana J; Wamala, Joseph; Nyakarahuka, Luke; Okot, Charles; Shoemaker, Trevor; Dodd, Kimberly; Gibbons, Aridth; Balinandi, Stephen; Tumusiime, Alex; Campbell, Shelley; Newman, Edmund; Lasry, Estrella; DeClerck, Hilde; Boum, Yap; Makumbi, Issa; Bosa, Henry Kyobe; Mbonye, Anthony; Aceng, Jane Ruth; Nichol, Stuart T; Ströher, Ute; Rollin, Pierre E

    2015-10-01

    In October 2012, a cluster of illnesses and deaths was reported in Uganda and was confirmed to be an outbreak of Marburg virus disease (MVD). Patients meeting the case criteria were interviewed using a standard investigation form, and blood specimens were tested for evidence of acute or recent Marburg virus infection by reverse transcription-polymerase chain reaction (RT-PCR) and antibody enzyme-linked immunosorbent assay. The total count of confirmed and probable MVD cases was 26, of which 15 (58%) were fatal. Four of 15 laboratory-confirmed cases (27%) were fatal. Case patients were located in 4 different districts in Uganda, although all chains of transmission originated in Ibanda District, and the earliest case detected had an onset in July 2012. No zoonotic exposures were identified. Symptoms significantly associated with being a MVD case included hiccups, anorexia, fatigue, vomiting, sore throat, and difficulty swallowing. Contact with a case patient and attending a funeral were also significantly associated with being a case. Average RT-PCR cycle threshold values for fatal cases during the acute phase of illness were significantly lower than those for nonfatal cases. Following the institution of contact tracing, active case surveillance, care of patients with isolation precautions, community mobilization, and rapid diagnostic testing, the outbreak was successfully contained 14 days after its initial detection.

  12. Association of torque teno virus (TTV) and torque teno mini virus (TTMV) with liver disease among patients coinfected with human immunodeficiency virus and hepatitis C virus.

    PubMed

    García-Álvarez, M; Berenguer, J; Alvarez, E; Guzmán-Fulgencio, M; Cosín, J; Miralles, P; Catalán, P; López, J C; Rodríguez, J Ma; Micheloud, D; Muñoz-Fernández, Ma A; Resino, S

    2013-02-01

    Torque teno virus (TTV) and torque teno mini virus (TTMV) have been potentially related to liver diseases. The aim of the study was to quantify TTV and TTMV in human immunodeficiency virus (HIV)/hepatitis C virus (HCV)-coinfected patients to study the relationship between the TTV and TTMV viral loads and the severity of liver disease. We carried out a cross-sectional study in 245 patients coinfected with HIV and HCV (HIV/HCV-group), 114 patients monoinfected with HIV (HIV-group), and 100 healthy blood donors (Control-group). Plasma samples were tested for TTV and TTMV by quantitative real-time polymerase chain reaction (PCR). The prevalences of TTV and TTMV infections in the HIV/HCV-group and the HIV-group were significantly higher than the Control-group (p < 0.05). Furthermore, TTV and TTMV coinfections were found in 92.2 % (226/245) in the HIV/HCV-group, 84.2 % (96/114) in the HIV-group, and 63 % (63/100 %) in the Control-group (p ≤ 0.05). HIV/HCV-coinfected patients with HIV viral load ≥50 copies/mL and patients with severe activity grade had the highest viral loads of TTV and TTMV (p ≤ 0.05). HIV/HCV-coinfected patients with high TTV load (>2.78 log copies/μL) had increased odds of having advanced fibrosis or severe necroinflammatory activity grade in the liver biopsy. Moreover, HIV/HCV-coinfected patients with high TTMV load (>1.88 log copies/μL) had decreased odds of having no/minimal fibrosis and no/mild activity grade, and increased odds of having a high fibrosis progression rate. In conclusion, TTV and TTMV might play a role in the development of liver disease in immunodeficiency patients, such as the patients coinfected with HIV and HCV.

  13.  Association between hepatitis B virus and chronic kidney disease: a systematic review and meta-analysis.

    PubMed

    Fabrizi, Fabrizio; Donato, Francesca M; Messa, Piergiorgio

     Background. Hepatitis B virus infection and chronic kidney disease are prevalent and remain a major public health problem worldwide. It remains unclear how infection with hepatitis B virus impacts on the development and progression of chronic kidney disease.

  14. Cloned Defective Interfering Influenza RNA and a Possible Pan-Specific Treatment of Respiratory Virus Diseases.

    PubMed

    Dimmock, Nigel J; Easton, Andrew J

    2015-07-08

    Defective interfering (DI) genomes are characterised by their ability to interfere with the replication of the virus from which they were derived, and other genetically compatible viruses. DI genomes are synthesized by nearly all known viruses and represent a vast natural reservoir of antivirals that can potentially be exploited for use in the clinic. This review describes the application of DI virus to protect from virus-associated diseases in vivo using as an example a highly active cloned influenza A DI genome and virus that protects broadly in preclinical trials against different subtypes of influenza A and against non-influenza A respiratory viruses. This influenza A-derived DI genome protects by two totally different mechanisms: molecular interference with influenza A replication and by stimulating innate immunity that acts against non-influenza A viruses. The review considers what is needed to develop DI genomes to the point of entry into clinical trials.

  15. Chronic Fatigue Syndrome (CFS): Causes

    MedlinePlus

    ... which cause borna disease , an infectious neurological syndrome Mycoplasma, a cause of atypical pneumonia Ross River virus, ... patients and in persons with related disorders like fibromyalgia. Cortisol suppresses inflammation and cellular immune activation, and ...

  16. Experimental Aujeszky's disease in pigs: excretion, survival and transmission of the virus.

    PubMed

    Donaldson, A I; Wardley, R C; Martin, S; Ferris, N P

    1983-11-19

    Airborne Aujeszky's disease virus was recovered from looseboxes containing groups of pigs infected with virus strains from England, Northern Ireland and Denmark from days 1 to 7 after infection. Pigs sampled individually excreted most airborne virus on days 2 and 3 after infection. On a 24 hour basis the maximum amount of airborne virus excreted per pig was log10 5.3 TCID50. Subclinical infection was transmitted from a clinically affected group of pigs to a seronegative group held in separate looseboxes when air was drawn through ducting connecting one box with the other. Tissues taken from pigs killed at varying times after infection showed that the main sites of virus replication were in the head and neck region. Aujeszky's disease virus was detected for up to 40 days in a range of tissues taken from pigs at the acute stage of disease and stored at -20 degrees C.

  17. Rehabilitation in adults with human immunodeficiency virus-related diseases.

    PubMed

    O'Dell, M W; Dillon, M E

    1992-06-01

    The acquired immunodeficiency syndrome is a fatal disorder of cell-mediated immunity caused by the human immunodeficiency virus (HIV). As many as one million Americans infected with HIV can expect improved survival with more advanced treatment approaches. Complications of HIV infection occur in the brain, spinal cord, muscle, nerve, joints and other organ systems, which lead to extensive impairments. As survival increases, rehabilitation professionals can anticipate a greater number of referrals for the assessment and management of physical disability in persons with HIV infection. This article reviews HIV-related disease, impairment, disability and handicap pertinent to rehabilitation medicine. An agenda for future research is also proposed. Current knowledge and models or rehabilitation care can be applied to HIV-related physical disability in an effort to improve overall quality of life.

  18. Mapping the zoonotic niche of Marburg virus disease in Africa

    PubMed Central

    Pigott, David M.; Golding, Nick; Mylne, Adrian; Huang, Zhi; Weiss, Daniel J.; Brady, Oliver J.; Kraemer, Moritz U. G.; Hay, Simon I.

    2015-01-01

    Background Marburg virus disease (MVD) describes a viral haemorrhagic fever responsible for a number of outbreaks across eastern and southern Africa. It is a zoonotic disease, with the Egyptian rousette (Rousettus aegyptiacus) identified as a reservoir host. Infection is suspected to result from contact between this reservoir and human populations, with occasional secondary human-to-human transmission. Methods Index cases of previous human outbreaks were identified and reports of infection in animals recorded. These data were modelled within a species distribution modelling framework in order to generate a probabilistic surface of zoonotic transmission potential of MVD across sub-Saharan Africa. Results Areas suitable for zoonotic transmission of MVD are predicted in 27 countries inhabited by 105 million people. Regions are suggested for exploratory surveys to better characterise the geographical distribution of the disease, as well as for directing efforts to communicate the risk of practices enhancing zoonotic contact. Conclusions These maps can inform future contingency and preparedness strategies for MVD control, especially where secondary transmission is a risk. Coupling this risk map with patient travel histories could be used to guide the differential diagnosis of highly transmissible pathogens, enabling more rapid response to outbreaks of haemorrhagic fever. PMID:25820266

  19. Serum Biochemistry of Lumpy Skin Disease Virus-Infected Cattle

    PubMed Central

    Avci, Oğuzhan; Doğan, Müge; İnce, Ömer Barış

    2016-01-01

    Lumpy skin disease is an economically important poxvirus disease of cattle. Vaccination is the main method of control but sporadic outbreaks have been reported in Turkey. This study was carried out to determine the changes in serum biochemical values of cattle naturally infected with lumpy skin disease virus (LSDV). For this study, blood samples in EDTA, serum samples, and nodular skin lesions were obtained from clinically infected animals (n = 15) whereas blood samples in EDTA and serum samples were collected from healthy animals (n = 15). A quantitative real-time PCR method was used to detect Capripoxvirus (CaPV) DNA in clinical samples. A real-time PCR high-resolution melt assay was performed to genotype CaPVs. Serum cardiac, hepatic, and renal damage markers and lipid metabolism products were measured by autoanalyzer. LSDV nucleic acid was detected in all samples which were obtained from clinically infected cattle. The results of serum biochemical analysis showed that aspartate aminotransferase, alkaline phosphatase, total protein, and creatinine concentrations were markedly increased in serum from infected animals. However, there were no significant differences in the other biochemical parameters evaluated. The results of the current study suggest that liver and kidney failures occur during LSDV infection. These findings may help in developing effective treatment strategies in LSDV infection. PMID:27294125

  20. Implications of Ebola virus disease on wildlife conservation in Nigeria

    PubMed Central

    Egbetade, Adeniyi Olugbenga; Sonibare, Adekayode Olanrewaju; Meseko, Clement Adebajo; Jayeola, Omotola Abiola; Otesile, Ebenezer Babatunde

    2015-01-01

    The recent Ebola Virus Disease outbreak in some West African countries spanning from late 2013 and currently on as of 13th March, 2015 is the most widespread and fatal with human mortality that has surpassed all previous outbreaks. The outbreak has had its toll on conservation of endangered species. This portends danger for the wild fauna of the country if proactive measures are not taken to prepare grounds for evidence- based assertions concerning the involvement of wild species. To this end, there is an urgent need for sweeping census of reserves, national parks and wetlands. As well as the creation of a system involving reportage by sectors like the industries (extractive and construction) including persons and organisations involved with wildlife related activities. This documentation of die offs and unusual events to collaborating institutions, will help in monitoring trends which hitherto would have gone unnoticed. The importance of bats and primates in agriculture and public health via consumption of vermin insects and seed dispersal cannot be over-emphasized. There is the need for caution on the tendencies to destroy indicator species which could be silent pointers to emerging or remerging health and environmental issues. Wildlife resources are still reliably useful and caution is advised in the use of blanket destructive policies like fumigation of caves, indiscriminate culling and poisoned baits to destroy supposedly Ebola Disease Virus wildlife reservoirs. This paper highlights the immediate conservation problems and likely future implications of Ebola saga in Nigeria. It tries to identify the gaps in wildlife researches and makes recommendations for probable workable conservation strategies. PMID:26740844

  1. Longitudinal study of viruses associated with canine infectious respiratory disease.

    PubMed

    Erles, Kerstin; Dubovi, Edward J; Brooks, Harriet W; Brownlie, Joe

    2004-10-01

    In this investigation a population of dogs at a rehoming center was monitored over a period of 2 years. Despite regular vaccination of incoming dogs against distemper, canine adenovirus type 2 (CAV-2), and canine parainfluenza virus (CPIV), respiratory disease was endemic. Tissue samples from the respiratory tract as well as paired serum samples were collected for analysis. The development of PCR assays for the detection of CPIV, canine adenovirus types 1 and 2, and canine herpesvirus (CHV) is described. Surprisingly, canine adenovirus was not detected in samples from this population, whereas 19.4% of tracheal and 10.4% of lung samples were positive for CPIV and 12.8% of tracheal and 9.6% of lung samples were positive for CHV. As reported previously, a novel canine respiratory coronavirus (CRCoV) was detected in this population (K. Erles, C. Toomey, H. W. Brooks, and J. Brownlie, Virology 310:216-223, 2003). Infections with CRCoV occurred mostly during the first week of a dog's stay at the kennel, whereas CPIV and CHV were detected at later time points. Furthermore, the evaluation of an enzyme-linked immunosorbent assay for detection of antibodies to CPIV and an immunofluorescence assay for detection of antibodies to CHV is described. This study shows that CPIV is present at kennels despite vaccination. In addition, other agents such as CHV and CRCoV may play a role in the pathogenesis of canine respiratory disease, whereas CAV-2 and canine distemper virus were not present in this population, indicating that their prevalence in the United Kingdom is low due to widespread vaccination of dogs.

  2. Implications of Ebola virus disease on wildlife conservation in Nigeria.

    PubMed

    Egbetade, Adeniyi Olugbenga; Sonibare, Adekayode Olanrewaju; Meseko, Clement Adebajo; Jayeola, Omotola Abiola; Otesile, Ebenezer Babatunde

    2015-01-01

    The recent Ebola Virus Disease outbreak in some West African countries spanning from late 2013 and currently on as of 13th March, 2015 is the most widespread and fatal with human mortality that has surpassed all previous outbreaks. The outbreak has had its toll on conservation of endangered species. This portends danger for the wild fauna of the country if proactive measures are not taken to prepare grounds for evidence-based assertions concerning the involvement of wild species. To this end, there is an urgent need for sweeping census of reserves, national parks and wetlands. As well as the creation of a system involving reportage by sectors like the industries (extractive and construction) including persons and organisations involved with wildlife related activities. This documentation of die offs and unusual events to collaborating institutions, will help in monitoring trends which hitherto would have gone unnoticed. The importance of bats and primates in agriculture and public health via consumption of vermin insects and seed dispersal cannot be over-emphasized. There is the need for caution on the tendencies to destroy indicator species which could be silent pointers to emerging or re-emerging health and environmental issues. Wildlife resources are still reliably useful and caution is advised in the use of blanket destructive policies like fumigation of caves, indiscriminate culling and poisoned baits to destroy supposedly Ebola Disease Virus wildlife reservoirs. This paper highlights the immediate conservation problems and likely future implications of Ebola saga in Nigeria. It tries to identify the gaps in wildlife researches and makes recommendations for probable workable conservation strategies.

  3. Longitudinal Study of Viruses Associated with Canine Infectious Respiratory Disease

    PubMed Central

    Erles, Kerstin; Dubovi, Edward J.; Brooks, Harriet W.; Brownlie, Joe

    2004-01-01

    In this investigation a population of dogs at a rehoming center was monitored over a period of 2 years. Despite regular vaccination of incoming dogs against distemper, canine adenovirus type 2 (CAV-2), and canine parainfluenza virus (CPIV), respiratory disease was endemic. Tissue samples from the respiratory tract as well as paired serum samples were collected for analysis. The development of PCR assays for the detection of CPIV, canine adenovirus types 1 and 2, and canine herpesvirus (CHV) is described. Surprisingly, canine adenovirus was not detected in samples from this population, whereas 19.4% of tracheal and 10.4% of lung samples were positive for CPIV and 12.8% of tracheal and 9.6% of lung samples were positive for CHV. As reported previously, a novel canine respiratory coronavirus (CRCoV) was detected in this population (K. Erles, C. Toomey, H. W. Brooks, and J. Brownlie, Virology 310:216-223, 2003). Infections with CRCoV occurred mostly during the first week of a dog's stay at the kennel, whereas CPIV and CHV were detected at later time points. Furthermore, the evaluation of an enzyme-linked immunosorbent assay for detection of antibodies to CPIV and an immunofluorescence assay for detection of antibodies to CHV is described. This study shows that CPIV is present at kennels despite vaccination. In addition, other agents such as CHV and CRCoV may play a role in the pathogenesis of canine respiratory disease, whereas CAV-2 and canine distemper virus were not present in this population, indicating that their prevalence in the United Kingdom is low due to widespread vaccination of dogs. PMID:15472304

  4. Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence

    PubMed Central

    Maree, Francois; de Klerk-Lorist, Lin-Mari; Gubbins, Simon; Zhang, Fuquan; Seago, Julian; Pérez-Martín, Eva; Reid, Liz; Scott, Katherine; van Schalkwyk, Louis; Bengis, Roy; Juleff, Nicholas

    2016-01-01

    ABSTRACT Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly

  5. Ebola virus disease surveillance and response preparedness in northern Ghana

    PubMed Central

    Adokiya, Martin N.; Awoonor-Williams, John K.

    2016-01-01

    Background The recent Ebola virus disease (EVD) outbreak has been described as unprecedented in terms of morbidity, mortality, and geographical extension. It also revealed many weaknesses and inadequacies for disease surveillance and response systems in Africa due to underqualified staff, cultural beliefs, and lack of trust for the formal health care sector. In 2014, Ghana had high risk of importation of EVD cases. Objective The objective of this study was to assess the EVD surveillance and response system in northern Ghana. Design This was an observational study conducted among 47 health workers (district directors, medical, disease control, and laboratory officers) in all 13 districts of the Upper East Region representing public, mission, and private health services. A semi-structured questionnaire with focus on core and support functions (e.g. detection, confirmation) was administered to the informants. Their responses were recorded according to specific themes. In addition, 34 weekly Integrated Disease Surveillance and Response reports (August 2014 to March 2015) were collated from each district. Results In 2014 and 2015, a total of 10 suspected Ebola cases were clinically diagnosed from four districts. Out of the suspected cases, eight died and the cause of death was unexplained. All the 10 suspected cases were reported, none was confirmed. The informants had knowledge on EVD surveillance and data reporting. However, there were gaps such as delayed reporting, low quality protective equipment (e.g. gloves, aprons), inadequate staff, and lack of laboratory capacity. The majority (38/47) of the respondents were not satisfied with EVD surveillance system and response preparedness due to lack of infrared thermometers, ineffective screening, and lack of isolation centres. Conclusion EVD surveillance and response preparedness is insufficient and the epidemic is a wake-up call for early detection and response preparedness. Ebola surveillance remains a neglected public

  6. Role Bending: Complex Relationships Between Viruses, Hosts, and Vectors Related to Citrus Leprosis, an Emerging Disease.

    PubMed

    Roy, Avijit; Hartung, John S; Schneider, William L; Shao, Jonathan; Leon, Guillermo; Melzer, Michael J; Beard, Jennifer J; Otero-Colina, Gabriel; Bauchan, Gary R; Ochoa, Ronald; Brlansky, Ronald H

    2015-07-01

    Citrus leprosis complex is an emerging disease in the Americas, associated with two unrelated taxa of viruses distributed in South, Central, and North America. The cytoplasmic viruses are Citrus leprosis virus C (CiLV-C), Citrus leprosis virus C2 (CiLV-C2), and Hibiscus green spot virus 2, and the nuclear viruses are Citrus leprosis virus N (CiLV-N) and Citrus necrotic spot virus. These viruses cause local lesion infections in all known hosts, with no natural systemic host identified to date. All leprosis viruses were believed to be transmitted by one species of mite, Brevipalpus phoenicis. However, mites collected from CiLV-C and CiLV-N infected citrus groves in Mexico were identified as B. yothersi and B. californicus sensu lato, respectively, and only B. yothersi was detected from CiLV-C2 and CiLV-N mixed infections in the Orinoco regions of Colombia. Phylogenetic analysis of the helicase, RNA-dependent RNA polymerase 2 domains and p24 gene amino acid sequences of cytoplasmic leprosis viruses showed a close relationship with recently deposited mosquito-borne negevirus sequences. Here, we present evidence that both cytoplasmic and nuclear viruses seem to replicate in viruliferous Brevipalpus species. The possible replication in the mite vector and the close relationship with mosquito borne negeviruses are consistent with the concept that members of the genus Cilevirus and Higrevirus originated in mites and citrus may play the role of mite virus vector.

  7. Unusual resistance to ionizing radiation of the viruses of kuru, Creutzfeldt-Jakob disease, and scrapie.

    PubMed

    Gibbs, C J; Gajdusek, D C; Latarjet, R

    1978-12-01

    The titers of several preparations of kuru. Creutzfeldt-Jacob disease, and scrapie viruses were reduced by only 1/10th or less by high doses of gamma radiation of 50 kGy and by only 1/10th-1/1000th or less for 200 kGy. This unusual radiation resistance of the two human viruses further links them with the scrapie virus and suggests that the genetic information of all three viruses is considerably smaller than that of any other known viruses of mammals.

  8. Unusual resistance to ionizing radiation of the viruses of kuru, Creutzfeldt-Jakob disease, and scrapie.

    PubMed Central

    Gibbs, C J; Gajdusek, D C; Latarjet, R

    1978-01-01

    The titers of several preparations of kuru. Creutzfeldt-Jacob disease, and scrapie viruses were reduced by only 1/10th or less by high doses of gamma radiation of 50 kGy and by only 1/10th-1/1000th or less for 200 kGy. This unusual radiation resistance of the two human viruses further links them with the scrapie virus and suggests that the genetic information of all three viruses is considerably smaller than that of any other known viruses of mammals. PMID:104301

  9. Recombinant capripoxvirus expressing the hemagglutinin protein gene of rinderpest virus: protection of cattle against rinderpest and lumpy skin disease viruses.

    PubMed

    Romero, C H; Barrett, T; Chamberlain, R W; Kitching, R P; Fleming, M; Black, D N

    1994-10-01

    A cDNA clone containing the complete coding sequence of the hemagglutinin (H) protein gene of the RBOK vaccine strain of rinderpest virus, under the control of the vaccinia late promoter p11, was inserted by homologous recombination into the thymidine kinase gene of the KS-1 strain of capripoxvirus. The recombinant virus produced authentic H protein as judged by its electrophoretic mobility, transport to the cell surface of infected lamb testis cells, and reactivity with monoclonal antibodies specific for the H protein of rinderpest virus. The recombinant virus induced significant levels of rinderpest virus neutralizing antibodies in vaccinated cattle and protected them from clinical rinderpest after challenge with a lethal dose of a highly virulent heterologous strain of the virus. Protection was achieved using vaccine doses lower than those used with a similar recombinant expressing the fusion protein gene of rinderpest. The parental KS-1 virus is widely used as a vaccine against capripox viruses and so the rinderpest recombinant acts as a dual vaccine to protect cattle against both rinderpest and lumpy skin disease.

  10. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  11. [Role of hepatitis A and E viruses in the development of autoimmune diseases].

    PubMed

    Iakimchuk, K S; Malinnikova, E Iu; Poleshchuk, V F; Mikhaĭlov, M I

    2011-01-01

    The mechanisms of development of autoimmune diseases may be associated with a complex of genetic, immune, hormonal, and infectious factors. Autoimmune diseases include a wide range of systemic and organ-specific diseases, including autoimmune hepatitis (AIH). It is currently assumed that the pathogenesis of AIH is due to compromised immune regulation in the presence of an exogenous triggering factor. Exogenous factors, such as viruses, may be triggers of AIH. There may be different ways of initiating an autoimmune response by viruses, which includes nonspecific T-lymphocyte activation and molecular mimicry. There is much evidence supporting the initiating role of hepatitis viruses in the development of AIH and other autoimmune diseases. The development of AIH symptoms during hepatitis A and E virus infections has been described elsewhere. The creation of animal models of viral hepatitis is required to confirm the hypothesis that the viruses trigger the development of AIH and other autoimmune manifestations.

  12. Role of virus-encoded microRNAs in Avian viral diseases.

    PubMed

    Yao, Yongxiu; Nair, Venugopal

    2014-03-21

    With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA) pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek's disease virus-1 (26 miRNAs), avirulent Marek's disease virus-2 (36 miRNAs), herpesvirus of turkeys (28 miRNAs), infectious laryngotracheitis virus (10 miRNAs), duck enteritis virus (33 miRNAs) and avian leukosis virus (2 miRNAs). Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek's disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR) miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.

  13. Identification and Genomic Characterization of a New Virus (Tymoviridae Family) Associated with Citrus Sudden Death Disease

    PubMed Central

    Maccheroni, Walter; Alegria, Marcos C.; Greggio, Christian C.; Piazza, João Paulo; Kamla, Rachel F.; Zacharias, Paula R. A.; Bar-Joseph, Moshe; Kitajima, Elliot W.; Assumpção, Laura C.; Camarotte, Giovana; Cardozo, Jussara; Casagrande, Elaine C.; Ferrari, Fernanda; Franco, Sulamita F.; Giachetto, Poliana F.; Girasol, Alessandra; Jordão, Hamilton; Silva, Vitor H. A.; Souza, Leonardo C. A.; Aguilar-Vildoso, Carlos I.; Zanca, Almir S.; Arruda, Paulo; Kitajima, João Paulo; Reinach, Fernando C.; Ferro, Jesus A.; da Silva, Ana C. R.

    2005-01-01

    Citrus sudden death (CSD) is a new disease that has killed approximately 1 million orange trees in Brazil. Here we report the identification of a new virus associated with the disease. RNAs isolated from CSD-affected and nonaffected trees were used to construct cDNA libraries. A set of viral sequences present exclusively in libraries of CSD-affected trees was used to obtain the complete genome sequence of the new virus. Phylogenetic analysis revealed that this virus is a new member of the genus Marafivirus. Antibodies raised against the putative viral coat proteins allowed detection of viral antigens of expected sizes in affected plants. Electron microscopy of purified virus confirmed the presence of typical isometric Marafivirus particles. The screening of 773 affected and nonaffected citrus trees for the presence of the virus showed a 99.7% correlation between disease symptoms and the presence of the virus. We also detected the virus in aphids feeding on affected trees. These results suggest that this virus is likely to be the causative agent of CSD. The virus was named Citrus sudden death-associated virus. PMID:15709023

  14. Effects of chicken anemia virus and infectious bursal disease virus in commercial chickens.

    PubMed

    Toro, H; van Santen, V L; Hoerr, F J; Breedlove, C

    2009-03-01

    The effects of chicken anemia virus (CAV) and infectious bursal disease virus (IBDV) coinfection in commercial layer-type and meat-type (broiler) chickens with specific maternal immunity were evaluated. In addition, the broiler progeny used had been vaccinated in ovo against IBDV. Layer chickens were inoculated intramuscularly on day 3 of age with CAV and orally on day 7 of age with an IBDV standard strain (APHIS). Broiler chickens were exposed to CAV and/or an IBDV variant strain (AL2) via the drinking water on days 3 and 14 of age. Following CAV and IBDV inoculation neither mortality nor overt clinical disease was observed in any layer or broiler group. In spite of maternal immunity against both IBDV and CAV, mean hematocrits of all layer groups inoculated with CAV (CAV, CAV + APHIS) were lower than uninfected chickens. IBDV APHIS alone or in combination with CAV did not affect the layer weight gain. However, on day 30 of age and concomitantly with maternal antibody decay, bursa lymphocyte depletion became evident in CAV + APHIS-infected layer chickens. These birds (CAV + APHIS) also seroconverted to IBDV on day 35 of age. CAV persisted at low levels in the layer chickens throughout the experimental period in CAV- and CAV+APHIS-infected chickens. Similarly, infected broiler chickens did not show changes in weight gain. Compared to CAV-infected or uninfected controls, CAV+AL2- and AL2-infected broiler chickens showed significant lymphocyte depletion in the bursa as assessed both by bursal indices and histomorphometry. Broilers also seroconverted to IBDV after day 30 of age confirming that bursal lymphocyte depletion was due to IBDV resuming replication. Thymus histomorphometry revealed significant lymphocyte depletion in all infected broiler groups at 30 days of age, but only in CAV+AL2-infected broiler chickens at 41 days of age, suggesting that IBDV infection delayed repopulation of the thymus.

  15. Incidence of Alpha-Herpes virus induced ocular disease in Suriname.

    PubMed

    Adhin, Malti R; Grunberg, Meritha G; Labadie-Bracho, Mergiory; Pawiroredjo, Jerrel

    2012-12-01

    Herpes simplex virus (HSV) infection of the corneal stroma is the most prominent cause of scar formation impairing visual acuity and HSV keratitis is the leading cause of corneal opacity throughout the world. Suriname lacked test systems for microbial causes of ocular disease, therefore a polymerase chain reaction-based Herpes virus assay was introduced, enabling prompt recognition, and timely treatment, preventing progressive eye damage. The incidence and epidemiology of Herpes simplex virus type 1 (HSV-1), type 2 (HSV-2), and varicella zoster virus (VZV) in ocular disease in Suriname was assessed. In a cross-sectional prospective study, ocular swabs were collected from 91 patients with a presumptive α-Herpes virus ocular infection attending the Academic Hospital between November 2008 and August 2010 and were tested by a PCR-based α-Herpes virus assay. Alpha-Herpes virus ophthalmic infections were caused predominantly by HSV-1 with a prevalence of 31%. The prevalences of VZV, HSV-2, and a mixed HSV-1/HSV-2 infection were 4%, 3%, and 2%, respectively. The first reported annual incidence of herpetic induced ocular disease in Suriname was estimated at 11.4 per 100,000 person-years (95% CI, 4.8-18.1). No clear age, ethnic or gender dependent difference in incidence was observed. The information obtained on α-Herpes virus positive ocular infections and the distribution of subtypes provided the first insight in the South American situation of α-Herpes virus induced ocular disease.

  16. Pathological and phylogenetic characterization of Newcastle disease viruses from Israel and Pakistan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND) is a devastating disease of poultry worldwide caused by virulent strains of Newcastle disease virus (NDV). New strains of NDV frequently emerge, creating challenges for disease control. Since 2012, NDV strains of new genotype VIIi have been reported in Israel and Pakistan, b...

  17. Transcriptome variation in response to Marek’s disease virus acute infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is an economically significant chicken disease that affects the poultry industry worldwide with estimated annual cost of $2 billion [Morrow and Fehler, 2004]. The disease is caused by the highly oncogenic Marek’s disease virus (MDV), an alphaherpesvirus that induces T-cell lymph...

  18. High Rates of Detection of Respiratory Viruses in Tonsillar Tissues from Children with Chronic Adenotonsillar Disease

    PubMed Central

    Proenca-Modena, Jose Luiz; Pereira Valera, Fabiana Cardoso; Jacob, Marcos Gerhardinger; Buzatto, Guilherme Pietrucci; Saturno, Tamara Honorato; Lopes, Lucia; Souza, Jamila Mendonça; Paula, Flavia Escremim; Silva, Maria Lucia; Carenzi, Lucas Rodrigues; Tamashiro, Edwin

    2012-01-01

    Chronic tonsillar diseases are an important health problem, leading to large numbers of surgical procedures worldwide. Little is known about pathogenesis of these diseases. In order to investigate the role of respiratory viruses in chronic adenotonsillar diseases, we developed a cross-sectional study to determine the rates of viral detections of common respiratory viruses detected by TaqMan real time PCR (qPCR) in nasopharyngeal secretions, tonsillar tissues and peripheral blood from 121 children with chronic tonsillar diseases, without symptoms of acute respiratory infections. At least one respiratory virus was detected in 97.5% of patients. The viral co-infection rate was 69.5%. The most frequently detected viruses were human adenovirus in 47.1%, human enterovirus in 40.5%, human rhinovirus in 38%, human bocavirus in 29.8%, human metapneumovirus in 17.4% and human respiratory syncytial virus in 15.7%. Results of qPCR varied widely between sample sites: human adenovirus, human bocavirus and human enterovirus were predominantly detected in tissues, while human rhinovirus was more frequently detected in secretions. Rates of virus detection were remarkably high in tonsil tissues: over 85% in adenoids and close to 70% in palatine tonsils. In addition, overall virus detection rates were higher in more hypertrophic than in smaller adenoids (p = 0.05), and in the particular case of human enteroviruses, they were detected more frequently (p = 0.05) in larger palatine tonsils than in smaller ones. While persistence/latency of DNA viruses in tonsillar tissues has been documented, such is not the case of RNA viruses. Respiratory viruses are highly prevalent in adenoids and palatine tonsils of patients with chronic tonsillar diseases, and persistence of these viruses in tonsils may stimulate chronic inflammation and play a role in the pathogenesis of these diseases. PMID:22870291

  19. Molecular characterization of infectious bursal disease viruses from Pakistan.

    PubMed

    Shabbir, Muhammad Zubair; Ali, Muhammad; Abbas, Muhammad; Chaudhry, Umer Naveed; Zia-Ur-Rehman; Munir, Muhammad

    2016-07-01

    Since the first report of infectious bursal disease in Pakistan in 1987, outbreaks have been common even in vaccinated flocks. Despite appropriate administration of vaccines, concerns arise if the circulating strains are different from the ones used in the vaccine. Here, we sequenced the hypervariable region (HVR) of the VP2 gene of circulating strains of infectious bursal disease virus (IBDV) originating from outbreaks (n = 4) in broiler flocks in Pakistan. Nucleotide sequencing followed by phylogeny and deduced amino acid sequence analysis showed the circulating strains to be very virulent (vv) and identified characteristic residues at position 222 (A), 242 (I), 256 (I), 294 (I) and 299 (S). In addition, a substitution at positions 221 (Q→H) was found to be exclusive to Pakistani strains in our analysis, although a larger dataset is required to confirm this finding. Compared to vaccine strains that are commonly used in Pakistan, substitution mutations were found at key amino acid positions in VP2 that may be responsible for potential changes in neutralization epitopes and vaccine failure.

  20. [Virus diseases in patients returning from the tropics].

    PubMed

    Hufert, F T; Schmitz, H

    1994-08-01

    The high density of populations and insufficient sanitary conditions increases the risk to acquire viral diseases in tropical areas. This holds true for ubiquitous as well as for regional viral infections. Hepatitis and AIDS are found worldwide, but play a dominant role in tropical areas. Classical tropical viral infections are zoonoses. They are primarily infections of nonhuman vertebrates (e.g. rodents) and of arthropod vectors and can be transmitted to man. According to the clinical outcome these viral infections can be divided into three groups: influenza-like disease with arthralgia, encephalitis and hemorrhagic fevers. The majority of infections belong to the first group, followed by encephalitis cases. Viral hemorrhagic fevers are rare in visitors of tropical areas. Antibody detection is the method of choice in the diagnosis of tropical viral infections. In special situations (e.g. Lassa fever) the direct detection of the virus by PCR can be helpful. Tests for the detection of arboviruses, filoviruses and arenaviruses are only performed at a few centers worldwide.

  1. Progressive multifocal leukoencephalopathy and other forms of JC virus disease.

    PubMed

    Brew, Bruce J; Davies, Nicholas W S; Cinque, Paola; Clifford, David B; Nath, Avindra

    2010-12-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the brain caused by the JC virus (JCV). PML usually occurs via reactivation of JCV when an immune system becomes compromised. A diagnosis of PML is normally made on the basis of distinguishing neurological features at presentation, characteristic brain MRI changes and the presence of JCV DNA in cerebrospinal fluid. PML has a 3 month mortality rate of 20-50%, so prompt intervention is essential. Currently, reconstitution of the immune system affords the best prognosis for this condition. When PML is first suspected, and where possible, immunosuppressant or immunomodulatory therapy should be suspended or reduced. If PML is associated with a protein therapy that has a long half-life the use of plasma exchange to accelerate the removal of the drug from the circulation may aid the restoration of immune system function. Rapid improvements in immune function, however, might lead to transient worsening of the disease. In this Review, we critically appraise the controversies surrounding JCV infection, and provide practical management guidelines for PML.

  2. Alcoholic liver disease and hepatitis C virus infection

    PubMed Central

    Novo-Veleiro, Ignacio; Alvela-Suárez, Lucía; Chamorro, Antonio-Javier; González-Sarmiento, Rogelio; Laso, Francisco-Javier; Marcos, Miguel

    2016-01-01

    Alcohol consumption and hepatitis C virus (HCV) infection have a synergic hepatotoxic effect, and the coexistence of these factors increases the risk of advanced liver disease. The main mechanisms of this effect are increased viral replication and altered immune response, although genetic predisposition may also play an important role. Traditionally, HCV prevalence has been considered to be higher (up to 50%) in alcoholic patients than in the general population. However, the presence of advanced alcoholic liver disease (ALD) or intravenous drug use (IDU) may have confounded the results of previous studies, and the real prevalence of HCV infection in alcoholic patients without ALD or prior IDU has been shown to be lower. Due to the toxic combined effect of HCV and alcohol, patients with HCV infection should be screened for excessive ethanol intake. Patients starting treatment for HCV infection should be specifically advised to stop or reduce alcohol consumption because of its potential impact on treatment efficacy and adherence and may benefit from additional support during antiviral therapy. This recommendation might be extended to all currently recommended drugs for HCV treatment. Patients with alcohol dependence and HCV infection, can be treated with acamprosate, nalmefene, topiramate, and disulfiram, although baclofen is the only drug specifically tested for this purpose in patients with ALD and/or HCV infection. PMID:26819510

  3. Hepatitis B virus infection in patients with rheumatic diseases.

    PubMed Central

    Permin, H; Aldershvile, J; Nielsen, J O

    1982-01-01

    Two hundred and thirty-nine patients with different rheumatic diseases were investigated for serological markers of hepatitis B virus (HBV) infection. An increased prevalence of anti-HBs was found in patients with systemic lupus erythematosus. The total prevalence of HBV markers in patients with polymyalgia rheumatica, temporal arteritis, juvenile and adult rheumatoid arthritis (RA) and systemic sclerosis was not significantly different from age-matched controls. Remarkably, 6 patients were HBsAg-positive of whom 3 had RA (4%). Two patients with RA were "healthy' HBsAg carriers. The third patient had circulating HBeAg as well and had shown progression from acute hepatitis to cirrhosis during the time of observation. Three of 18 patients with polyarteritis nodosa were HBsAg- and HBeAg-positive, and all 3 were young men. Clinical improvement was seen in one of these patients and was associated with seroconversion from HBeAg to anti-HBe. Our data do not support the theory that HBV is an aetiological factor in rheumatic diseases except in some cases of polyarteritis nodosa. PMID:6127059

  4. Hepatitis C virus infection in Argentina: Burden of chronic disease

    PubMed Central

    Ridruejo, Ezequiel; Bessone, Fernando; Daruich, Jorge R; Estes, Chris; Gadano, Adrián C; Razavi, Homie; Villamil, Federico G; Silva, Marcelo O

    2016-01-01

    AIM: To estimate the progression of the hepatitis C virus (HCV) epidemic and measure the burden of HCV-related morbidity and mortality. METHODS: Age- and gender-defined cohorts were used to follow the viremic population in Argentina and estimate HCV incidence, prevalence, hepatic complications, and mortality. The relative impact of two scenarios on HCV-related outcomes was assessed: (1) increased sustained virologic response (SVR); and (2) increased SVR and treatment. RESULTS: Under scenario 1, SVR raised to 85%-95% in 2016. Compared to the base case scenario, there was a 0.3% reduction in prevalent cases and liver-related deaths by 2030. Given low treatment rates, cases of hepatocellular carcinoma and decompensated cirrhosis decreased < 1%, in contrast to the base case in 2030. Under scenario 2, the same increases in SVR were modeled, with gradual increases in the annual diagnosed and treated populations. This scenario decreased prevalent infections 45%, liver-related deaths 55%, liver cancer cases 60%, and decompensated cirrhosis 55%, as compared to the base case by 2030. CONCLUSION: In Argentina, cases of end stage liver disease and liver-related deaths due to HCV are still growing, while its prevalence is decreasing. Increasing in SVR rates is not enough, and increasing in the number of patients diagnosed and candidates for treatment is needed to reduce the HCV disease burden. Based on this scenario, strategies to increase diagnosis and treatment uptake must be developed to reduce HCV burden in Argentina. PMID:27239258

  5. Factors associated with West Nile virus disease fatalities in horses.

    PubMed

    Epp, Tasha; Waldner, Cheryl; West, Keith; Townsend, Hugh

    2007-11-01

    In 2003, the occurrence and location of horses with clinical signs of West Nile virus infection were identified in the southern portion of Saskatchewan with the help of veterinarians, owners, and the regional laboratory. A total of 133 clinical cases were reported between July 30 and September 19, 2003; however, postseason surveillance suggests that the number of cases was underestimated. The case fatality rate was 43.8% (95% CI 35.2, 52.4). Factors associated with fatality in clinical cases included sex, week of onset of clinical signs, and coat color. Reported clinical cases clustered within regional health authority districts, suggesting regional differences in geographic factors, potentially including climate and mosquito control, that could contribute to the risk of disease. However, most of the variation in the risk of fatality in clinical cases is explained at the individual level rather than the Regional Health Authority level, which suggests the outcome of clinical disease is primarily determined by characteristics of, or management factors affecting, the individual horse.

  6. Tropical food legumes: virus diseases of economic importance and their control.

    PubMed

    Hema, Masarapu; Sreenivasulu, Pothur; Patil, Basavaprabhu L; Kumar, P Lava; Reddy, Dodla V R

    2014-01-01

    Diverse array of food legume crops (Fabaceae: Papilionoideae) have been adopted worldwide for their protein-rich seed. Choice of legumes and their importance vary in different parts of the world. The economically important legumes are severely affected by a range of virus diseases causing significant economic losses due to reduction in grain production, poor quality seed, and costs incurred in phytosanitation and disease control. The majority of the viruses infecting legumes are vectored by insects, and several of them are also seed transmitted, thus assuming importance in the quarantine and in the epidemiology. This review is focused on the economically important viruses of soybean, groundnut, common bean, cowpea, pigeonpea, mungbean, urdbean, chickpea, pea, faba bean, and lentil and begomovirus diseases of three minor tropical food legumes (hyacinth bean, horse gram, and lima bean). Aspects included are geographic distribution, impact on crop growth and yields, virus characteristics, diagnosis of causal viruses, disease epidemiology, and options for control. Effectiveness of selection and planting with virus-free seed, phytosanitation, manipulation of crop cultural and agronomic practices, control of virus vectors and host plant resistance, and potential of transgenic resistance for legume virus disease control are discussed.

  7. Identification of a New Cotton Disease Caused by an Atypical Cotton Leafroll Dwarf Virus in Argentina.

    PubMed

    Agrofoglio, Yamila C; Delfosse, Verónica C; Casse, María F; Hopp, Horacio E; Kresic, Iván Bonacic; Distéfano, Ana J

    2017-03-01

    An outbreak of a new disease occurred in cotton (Gossypium hirsutum) fields in northwest Argentina starting in the 2009-10 growing season and is still spreading steadily. The characteristic symptoms of the disease included slight leaf rolling and a bushy phenotype in the upper part of the plant. In this study, we determined the complete nucleotide sequences of two independent virus genomes isolated from cotton blue disease (CBD)-resistant and -susceptible cotton varieties. This virus genome comprised 5,866 nucleotides with an organization similar to that of the genus Polerovirus and was closely related to cotton leafroll dwarf virus, with protein identity ranging from 88 to 98%. The virus was subsequently transmitted to a CBD-resistant cotton variety using Aphis gossypii and symptoms were successfully reproduced. To study the persistence of the virus, we analyzed symptomatic plants from CBD-resistant varieties from different cotton-growing fields between 2013 and 2015 and showed the presence of the same virus strain. In addition, a constructed full-length infectious cDNA clone from the virus caused disease symptoms in systemic leaves of CBD-resistant cotton plants. Altogether, the new leafroll disease in CBD-resistant cotton plants is caused by an atypical cotton leafroll dwarf virus.

  8. A Multiplex Real-time Reverse Transcription Polymerase Chain Reaction Assay for Detection and Differentiation of Bluetongue Virus and Epizootic Hemorrhagic Disease Virus Serogroups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bluetongue virus (BTV) causes disease in domestic and wild ruminants resulting in significant economic loss. The closely related Epizootic hemorrhagic diseases virus (EHDV) has been associated with bluetongue-like disease in cattle. Although US EHDV strains have not been experimentally proven to cau...

  9. Susceptibility of primary chicken intestinal epithelial cells for low pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus.

    PubMed

    Kaiser, Annette; Willer, Thomas; Sid, Hicham; Petersen, Henning; Baumgärtner, Wolfgang; Steinberg, Pablo; Rautenschlein, Silke

    2016-10-02

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) share a high tropism for the avian respiratory epithelium and may cause severe clinical disease associated with high mortality. Both viruses have different pathotypes, which may lead to differences in the severity of the disease. Respiratory epithelial cells were shown to be the primary target cells for infection and replication. Nevertheless, intestinal epithelial cells (IECs) were also suggested as target cells for both viruses in avian species. Most studies on AIV and NDV focused on the respiratory tract, while information regarding the virus-host interaction at the intestinal epithelial cell interface is lacking. We established a primary chicken IEC culture model. Primary chicken embryo fibroblast cultures (CEFs) were used for comparison. IECs and CEFs were infected with a low infectious dose (LID; multiplicity of infection, MOI, of 0.01) or high infectious dose (HID, MOI of 1), of low pathogenic AIV (LPAIV) H9N2 or velogenic viscerotropic NDV (vvNDV) Herts 33/56. Virus replication, mRNA expression pattern of the type I and type III interferon (IFN) and related genes IFIT5 (interferon-induced protein with tetratricopeptide repeats 5) and ISG12 (interferon stimulated gene 12) were investigated at four, 16, and 24h post infection (hpi). The results suggest high susceptibility of primary chicken IECs for these AIV and NDV strains. Replication rates and expression pattern of IFNs as well as related genes differed between the infecting viruses as well as cell culture systems. Both viruses induced an IFN λ-increase of more than 30-fold in IECs, while IFN-α and IFN-β mRNA expression was either downregulated or only slightly increased with up to 10fold changes for the latter at 24h post LPAIV-infection. These results suggest a possible role of IFN λ in the control of viruses at the gut epithelial surface. LPAIV induced upregulation of IFIT5 as well as ISG12 expression in a dose and time dependent manner

  10. Chronic infection with hepatitis and herpes viruses in patients with Sjogren's disease.

    PubMed

    Yakimchuk, K S

    2002-01-01

    The prevalence of hepatitis B, C, E, and G viruses, Epstein-Barr virus, and type 6 herpesvirus was studied in Russian and Norwegian patients with Sjogren's disease. The incidence of HBV, HCV, HEV, and HGV markers in Russian patients was higher than in donors. The incidence of serological markers of Epstein-Barr and type 6 herpesvirus was virtually the same in the patients with Sjogren's disease and donors. Epstein-Barr virus DNA was less frequently detected in patients with Sjogren's disease than in donors, as was shown by blood and salivary DNA testing.

  11. Social Vulnerability and Ebola Virus Disease in Rural Liberia.

    PubMed

    Stanturf, John A; Goodrick, Scott L; Warren, Melvin L; Charnley, Susan; Stegall, Christie M

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate change, and the cascading effects of disease epidemics such as EVD. However, the spatial distribution of vulnerable rural populations and the individual stressors contributing to their vulnerability are unknown. We developed a Social Vulnerability Classification using census indicators and mapped it at the district scale for Liberia. According to the Classification, we estimate that districts having the highest social vulnerability lie in the north and west of Liberia in Lofa, Bong, Grand Cape Mount, and Bomi Counties. Three of these counties together with the capital Monrovia and surrounding Montserrado and Margibi counties experienced the highest levels of EVD infections in Liberia. Vulnerability has multiple dimensions and a classification developed from multiple variables provides a more holistic view of vulnerability than single indicators such as food insecurity or scarcity of health care facilities. Few rural Liberians are food secure and many cannot reach a medical clinic in <80 minutes. Our results illustrate how census and household survey data, when displayed spatially at a sub-county level, may help highlight the location of the most vulnerable households and populations. Our results can be used to identify vulnerability hotspots where development strategies and allocation of resources to address the underlying causes of vulnerability in Liberia may be warranted. We demonstrate how social vulnerability index approaches can be applied in the context of disease outbreaks, and our methods are relevant elsewhere.

  12. Social Vulnerability and Ebola Virus Disease in Rural Liberia

    PubMed Central

    2015-01-01

    The Ebola virus disease (EVD) epidemic that has stricken thousands of people in the three West African countries of Liberia, Sierra Leone, and Guinea highlights the lack of adaptive capacity in post-conflict countries. The scarcity of health services in particular renders these populations vulnerable to multiple interacting stressors including food insecurity, climate change, and the cascading effects of disease epidemics such as EVD. However, the spatial distribution of vulnerable rural populations and the individual stressors contributing to their vulnerability are unknown. We developed a Social Vulnerability Classification using census indicators and mapped it at the district scale for Liberia. According to the Classification, we estimate that districts having the highest social vulnerability lie in the north and west of Liberia in Lofa, Bong, Grand Cape Mount, and Bomi Counties. Three of these counties together with the capital Monrovia and surrounding Montserrado and Margibi counties experienced the highest levels of EVD infections in Liberia. Vulnerability has multiple dimensions and a classification developed from multiple variables provides a more holistic view of vulnerability than single indicators such as food insecurity or scarcity of health care facilities. Few rural Liberians are food secure and many cannot reach a medical clinic in <80 minutes. Our results illustrate how census and household survey data, when displayed spatially at a sub-county level, may help highlight the location of the most vulnerable households and populations. Our results can be used to identify vulnerability hotspots where development strategies and allocation of resources to address the underlying causes of vulnerability in Liberia may be warranted. We demonstrate how social vulnerability index approaches can be applied in the context of disease outbreaks, and our methods are relevant elsewhere. PMID:26325519

  13. Simultaneous detection and differentiation of Newcastle disease and avian influenza viruses using oligonucleotide microarrays.

    PubMed

    Wang, Lih-Chiann; Pan, Chu-Hsiang; Severinghaus, Lucia Liu; Liu, Lu-Yuan; Chen, Chi-Tsong; Pu, Chang-En; Huang, Dean; Lir, Jihn-Tsair; Chin, Shih-Chien; Cheng, Ming-Chu; Lee, Shu-Hwae; Wang, Ching-Ho

    2008-03-18

    Newcastle disease (ND) and avian influenza (AI) are two of the most important zoonotic viral diseases of birds throughout the world. These two viruses often have a great impact upon the poultry industry. Both viruses are associated with transmission from wild to domestic birds, and often display similar signs that need to be differentiated. A rapid surveillance among wild and domestic birds is important for early disease detection and intervention, and is the basis for what measures should be taken. The surveillance, thus, should be able to differentiate the diseases and provide a detailed analysis of the virus strains. Here, we described a fast, simultaneous and inexpensive approach to the detection of Newcastle disease virus (NDV) and avian influenza virus (AIV) using oligonucleotide microarrays. The NDV pathotypes and the AIV haemagglutinin subtypes H5 and H7 were determined at the same time. Different probes on a microarray targeting the same gene were implemented in order to encompass the diversified virus strains or provide multiple confirmations of the genotype. This ensures good sensitivity and specificity among divergent viruses. Twenty-four virus isolates and twenty-four various combinations of the viruses were tested in this study. All viruses were successfully detected and typed. The hybridization results on microarrays were clearly identified with the naked eyes, with no further imaging equipment needed. The results demonstrate that the detection and typing of multiple viruses can be performed simultaneously and easily using oligonucleotide microarrays. The proposed method may provide potential for rapid surveillance and differential diagnosis of these two important zoonoses in both wild and domestic birds.

  14. Association of Bovine Viral Diarrhea Virus with Multiple Viral Infections in Bovine Respiratory Disease Outbreaks

    PubMed Central

    Richer, Lisette; Marois, Paul; Lamontagne, Lucie

    1988-01-01

    We investigated eleven outbreaks of naturally occurring bovine respiratory diseases in calves and adult animals in the St-Hyacinthe area of Quebec. Specific antibodies to bovine herpesvirus-1, bovine viral diarrhea virus, respiratory syncytial virus, parainfluenza type 3 virus, reovirus type 3, and serotypes 1 to 7 of bovine adenovirus were found in paired sera from diseased animals. Several bovine viruses with respiratory tropism were involved concomitantly in herds during an outbreak of bovine respiratory disease. In addition, concomitant fourfold rises of antibody titers were frequently observed to two or more viral agents in seroconverted calves (61%) or adult animals (38%). Bovine viral diarrhea virus was found to be the most frequent viral agent associated with multiple viral infection in calves only (92%). PMID:17423116

  15. Epstein Barr virus-associated lymphoproliferative diseases: the virus as a therapeutic target

    PubMed Central

    Tse, Eric; Kwong, Yok-Lam

    2015-01-01

    Epstein Barr virus (EBV)-associated lymphoproliferative diseases (LPDs) express all EBV latent antigens (type III latency) in immunodeficient patients and limited antigens (type I and II latencies) in immunocompetent patients. Post-transplantation lymphoproliferative disease (PTLD) is the prototype exhibiting type III EBV latency. Although EBV antigens are highly immunogenic, PTLD cell proliferation remains unchecked because of the underlying immunosuppression. The restoration of anti-EBV immunity by EBV-specific T cells of either autologous or allogeneic origin has been shown to be safe and effective in PTLDs. Cellular therapy can be improved by establishing a bank of human leukocyte antigen-characterized allogeneic EBV-specific T cells. In EBV+ LPDs exhibiting type I and II latencies, the use of EBV-specific T cells is more limited, although the safety and efficacy of this therapy have also been demonstrated. The therapeutic role of EBV-specific T cells in EBV+ LPDs needs to be critically reappraised with the advent of monoclonal antibodies and other targeted therapy. Another strategy involves the use of epigenetic approaches to induce EBV to undergo lytic proliferation when expression of the viral thymidine kinase renders host tumor cells susceptible to the cytotoxic effects of ganciclovir. Finally, the prophylactic use of antiviral drugs to prevent EBV reactivation may decrease the occurrence of EBV+ LPDs. PMID:25613733

  16. Detection and characterization of viruses as field and vaccine strains in feedlot cattle with bovine respiratory disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated viruses in bovine respiratory disease (BRD) cases in feedlots, including bovine herpesvirus-1 (BoHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronaviruses (BoCV) and parainfluenza-3 virus (PI3V). Nasal swabs were collected fro...

  17. Bioinformatics and Molecular Analysis of the Evolutionary Relationship between Bovine Rhinitis A Viruses and Foot-And-Mouth Disease Virus.

    PubMed

    Rai, Devendra K; Lawrence, Paul; Pauszek, Steve J; Piccone, Maria E; Knowles, Nick J; Rieder, Elizabeth

    2015-01-01

    Bovine rhinitis viruses (BRVs) cause mild respiratory disease of cattle. In this study, a near full-length genome sequence of a virus named RS3X (formerly classified as bovine rhinovirus type 1), isolated from infected cattle from the UK in the 1960s, was obtained and analyzed. Compared to other closely related Aphthoviruses, major differences were detected in the leader protease (L(pro)), P1, 2B, and 3A proteins. Phylogenetic analysis revealed that RS3X was a member of the species bovine rhinitis A virus (BRAV). Using different codon-based and branch-site selection models for Aphthoviruses, including BRAV RS3X and foot-and-mouth disease virus, we observed no clear evidence for genomic regions undergoing positive selection. However, within each of the BRV species, multiple sites under positive selection were detected. The results also suggest that the probability (determined by Recombination Detection Program) for recombination events between BRVs and other Aphthoviruses, including foot-and-mouth disease virus was not significant. In contrast, within BRVs, the probability of recombination increases. The data reported here provide genetic information to assist in the identification of diagnostic signatures and research tools for BRAV.

  18. Immunogenicity of a recombinant lumpy skin disease virus (neethling vaccine strain) expressing the rabies virus glycoprotein in cattle.

    PubMed

    Aspden, Kate; van Dijk, Alberdina A; Bingham, John; Cox, Dermot; Passmore, Jo-Ann; Williamson, Anna-Lise

    2002-06-21

    Rabies virus (RV) readily infects cattle and causes a fatal neurological disease. A stable vaccine, which does not require the maintenance of a cold chain and that is administered once to elicit lifelong immunity to rabies would be advantageous. The present study describes the construction of a live recombinant lumpy skin disease virus (LSDV) vaccine, expressing the glycoprotein of rabies virus (RG) and assessment of its ability to generate a humoral and cellular immune response against rabies virus in cattle. Cattle inoculated with the recombinant virus (rLSDV-RG) developed humoral immunity that was demonstrated in ELISA and neutralisation assays to RV. High titres of up to 1513IU/ml of RV neutralising antibodies were induced. In addition, peripheral blood mononuclear cells from rLSDV-RG-immunised animals demonstrated the ability to proliferate in response to stimulation with inactivated RV, whereas the animal vaccinated with wild type LSDV did not. This recombinant vaccine candidate thus has the potential to be used in ruminants as a cost-effective vaccine against both lumpy skin disease (LSD) and rabies.

  19. Bioinformatics and Molecular Analysis of the Evolutionary Relationship between Bovine Rhinitis A Viruses and Foot-And-Mouth Disease Virus

    PubMed Central

    Rai, Devendra K.; Lawrence, Paul; Pauszek, Steve J.; Piccone, Maria E.; Knowles, Nick J.; Rieder, Elizabeth

    2015-01-01

    Bovine rhinitis viruses (BRVs) cause mild respiratory disease of cattle. In this study, a near full-length genome sequence of a virus named RS3X (formerly classified as bovine rhinovirus type 1), isolated from infected cattle from the UK in the 1960s, was obtained and analyzed. Compared to other closely related Aphthoviruses, major differences were detected in the leader protease (Lpro), P1, 2B, and 3A proteins. Phylogenetic analysis revealed that RS3X was a member of the species bovine rhinitis A virus (BRAV). Using different codon-based and branch-site selection models for Aphthoviruses, including BRAV RS3X and foot-and-mouth disease virus, we observed no clear evidence for genomic regions undergoing positive selection. However, within each of the BRV species, multiple sites under positive selection were detected. The results also suggest that the probability (determined by Recombination Detection Program) for recombination events between BRVs and other Aphthoviruses, including foot-and-mouth disease virus was not significant. In contrast, within BRVs, the probability of recombination increases. The data reported here provide genetic information to assist in the identification of diagnostic signatures and research tools for BRAV. PMID:27081310

  20. Control of plant virus diseases in cool-season grain legume crops.

    PubMed

    Makkouk, Khaled M; Kumari, Safaa G; van Leur, Joop A G; Jones, Roger A C

    2014-01-01

    Cool-season grain legume crops become infected with a wide range of viruses, many of which cause serious diseases and major yield losses. This review starts by discussing which viruses are important in the principal cool-season grain legume crops in different parts of the world, the losses they cause and their economic impacts in relation to control. It then describes the main types of control measures available: host resistance, phytosanitary measures, cultural measures, chemical control, and biological control. Examples are provided of successful deployment of the different types of measures to control virus epidemics in cool-season grain legume crops. Next it emphasizes the need for integrated approaches to control because single control measures used alone rarely suffice to adequately reduce virus-induced yield losses in these crops. Development of effective integrated disease management (IDM) strategies depends on an interdisciplinary team approach to (i) understand the ecological and climatic factors which lead to damaging virus epidemics and (ii) evaluate the effectiveness of individual control measures. In addition to using virus-resistant cultivars, other IDM components include sowing virus-tested seed stocks, selecting cultivars with low seed transmission rates, using diverse phytosanitary or cultural practices that minimize the virus source or reduce its spread, and using selective pesticides in an environmentally responsible way. The review finishes by briefly discussing the implications of climate change in increasing problems associated with control and the opportunities to control virus diseases more effectively through new technologies.

  1. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys.

    PubMed

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Spackman, Erica; Kapczynski, Darrell R; Swayne, David E; Shepherd, Eric; Smith, Diane; Zsak, Aniko; Pantin-Jackwood, Mary

    2014-01-06

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.

  2. [Several issues on the epidemiology of Zika virus disease].

    PubMed

    Lu, Guiyang; Su, Yingying; Wang, Ning

    2016-04-01

    Zika virus belongs to Aedes mosquito-borne flavivirus. In response to the current cluster of congenital malformations (microcephaly) and other neurological complications (Guillain-Barré Syndrome) that could be linked to Zika virus infection, WHO declares that Zika virus is of global public health importance. Data sources were from peer review articles and WHO documents. The sources of Zika virus infection would include patients, people with asymptomatic infections and primates. The infectious period of Zika virus remains unclear. However, according to the period that RNA of Zika virus can be positively detected in blood, saliva, urine or semen, we can presume that the communicable period may last for 2 months or even longer. Zika virus is primarily transmitted to humans by infected Aedes spp. mosquitoes. Presumptive vertical, blood or sexual routes of transmission have been reported. More evidence indicated the existence of a cause-effect relationship between Zika virus infection and congenital microcephaly/Guillain-Barre syndrome. Strategies include successful control the amount of mosquitoes and minimize the contacts between mosquitoes and human beings could effectively prevent the Zika virus transmission. Other preventive measures as cutting off vertical, blood or sexual routes of transmission should also be adopted. The epidemiology of Zika virus remains uncertain which calls for further research.

  3. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease

    PubMed Central

    2013-01-01

    Background Nipah virus (NiV) is a highly pathogenic zoonotic agent in the family Paramyxoviridae that is maintained in nature by bats. Outbreaks have occurred in Malaysia, Singapore, India, and Bangladesh and have been associated with 40 to 75% case fatality rates. There are currently no vaccines or postexposure treatments licensed for combating human NiV infection. Methods and results Four groups of ferrets received a single vaccination with different recombinant vesicular stomatitis virus vectors expressing: Group 1, control with no glycoprotein; Group 2, the NiV fusion protein (F); Group 3, the NiV attachment protein (G); and Group 4, a combination of the NiV F and G proteins. Animals were challenged intranasally with NiV 28 days after vaccination. Control ferrets in Group 1 showed characteristic clinical signs of NiV disease including respiratory distress, neurological disorders, viral load in blood and tissues, and gross lesions and antigen in target tissues; all animals in this group succumbed to infection by day 8. Importantly, all specifically vaccinated ferrets in Groups 2-4 showed no evidence of clinical illness and survived challenged. All animals in these groups developed anti-NiV F and/or G IgG and neutralizing antibody titers. While NiV RNA was detected in blood at day 6 post challenge in animals from Groups 2-4, the levels were orders of magnitude lower than animals from control Group 1. Conclusions These data show protective efficacy against NiV in a relevant model of human infection. Further development of this technology has the potential to yield effective single injection vaccines for NiV infection. PMID:24330654

  4. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs.

    PubMed

    Lohse, Louise; Jackson, Terry; Bøtner, Anette; Belsham, Graham J

    2012-05-24

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus.In the present study we compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K B64 virus and the two chimeric viruses are identical to each other except for the capsid coding region.Animals exposed to O1K B64 did not exhibit signs of disease, while pigs exposed to each of the other viruses showed typical clinical signs of foot-and-mouth disease (FMD). All pigs infected with the O1K/O-UKG chimera or the field strain (O-UKG/34/2001) developed fulminant disease. Furthermore, 3 of 4 in-contact pigs exposed to the O1K/O-UKG virus died in the acute phase of infection, likely from myocardial infection. However, in the group exposed to the O1K/A-TUR chimeric virus, only 1 pig showed symptoms of disease within the time frame of the experiment (10 days). All pigs that developed clinical disease showed a high level of viral RNA in serum and infected pigs that survived the acute phase of infection developed a serotype specific antibody response. It is concluded that the capsid coding sequences are determinants of FMDV pathogenicity in pigs.

  5. Effect of genotype specific live recombinant Newcastle disease vaccines on virus shedding after challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All Newcastle disease viruses (NDVs) are part of a single serotype; however, current vaccine strains display between 15 and 18% amino acid differences at the F and HN protein compared with current virulent viruses. Previous studies have shown that increased amino acid similarity between NDV vaccine...

  6. Immune mechanisms associated with enhanced influenza A virus disease versus cross-protection in vaccinated pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccine associated enhanced respiratory disease (VAERD) has been described in pigs vaccinated with whole-inactivated influenza virus (WIV) following infection with heterologous influenza A virus (IAV). WIV vaccination elicits production of cross-reactive, non-neutralizing antibody to the challenge I...

  7. Evolutionary changes affecting rapid identification of 2008 Newcastle disease viruses isolated from double-crested cormorants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An outbreak of virulent Newcastle Disease Virus (NDV) in wild double-breasted cormorants (Phalacrocorax auritus) occurred in North America in the summer of 2008. All ten viruses isolated from cormorants were positively identified by the USDA validated real-time reverse transcriptase polymerase chai...

  8. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we ...

  9. Evaluation of virus resistant rootstocks to manage watermelon vine decline and diseases caused by other potyviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon vine decline caused by Squash vein yellowing virus (SqVYV) is an emerging disease that has caused severe losses to Florida watermelon growers in recent years. Papaya ringspot virus type W (PRSV-W) is one of several watermelon-infecting potyviruses long present in the southeastern U.S. L...

  10. Molecular cloning of the Aleutian disease virus genome: expression of Aleutian disease virus antigens by a recombinant plasmid.

    PubMed Central

    Mayer, L W; Aasted, B; Garon, C F; Bloom, M E

    1983-01-01

    Three nonoverlapping segments representing approximately 80% of the 4.8-kilobase pair Aleutian disease virus (ADV-G) duplex genome were molecularly cloned into either bacteriophage M13mp9 (M13bm2 = 0.07 to 0.15 map unit; M13bm1 = 0.15 to 0.54 map unit) or plasmid pUC8 (pBM1 = 0.54 to 0.88 map units). In addition the 0.54- to 0.88-map unit segment of a Danish isolate of ADV (DK ADV) was also cloned into pUC8 (pBM2). The recombinant plasmids pBM1 and pBM2 induced expression of several polypeptides in Escherichia coli JM103 that were specifically recognized by sera from mink infected with ADV. The same three proteins with approximate molecular weights of 55,000, 34,000, and 27,000 were detected both by immune blotting and by immunoprecipitation of [35S]methionine-labeled JM103 (pBM1). None of these proteins were recognized in JM103 or JM103 (pUC8), nor were they detected by sera from normal mink. Purified pBM1 and pBM2 DNA appeared identical in size by gel analysis and contour length measurement, and electron microscopic heteroduplex mapping revealed no visible areas of heterology. However, restriction endonuclease mapping showed that pBM2 was different from pBM1, indicating that this segment of the ADV genome was similar but not identical for two strains of ADV (ADV-G and DK ADV). Furthermore, when cloned DNA from ADV-G was labeled with [32P]dCTP by nick translation, DNA relatedness to several field strains of ADV (Utah I, Pullman, and DK), but not to mink enteritis virus or cellular DNA, was shown by Southern blot hybridization. Images PMID:6313959

  11. Isolation of pseudorabies (Aujeszky's disease) virus from a Florida panther.

    PubMed

    Glass, C M; McLean, R G; Katz, J B; Maehr, D S; Cropp, C B; Kirk, L J; McKeirnan, A J; Evermann, J F

    1994-04-01

    Pseudorabies virus was isolated in cell culture from the brain tissue of a 3.5-year-old male Florida panther (Felis concolor coryi). The virus was not isolated from other tissues collected at necropsy. Based upon a nested polymerase chain reaction (PCR), the virus was determined to have the classical wild-type virulent genotype, glycoprotein I+ (gI+) and thymidine kinase+ (TK+).

  12. Animal Models of Respiratory Syncytial Virus Infection and Disease

    PubMed Central

    Sacco, Randy E.; Durbin, Russell K.; Durbin, Joan E.

    2015-01-01

    The study of human respiratory syncytial virus pathogenesis and immunity has been hampered by its exquisite host specificity, and the difficulties encountered in adapting this virus to a murine host. The reasons for this obstacle are not well understood, but appear to reflect, at least in part, the inability of the virus to block the interferon response in any but the human host. This review addresses some of the issues encountered in mouse models of respiratory syncytial virus infection, and describes the advantages and disadvantages of alternative model systems. PMID:26176495

  13. Animal models of respiratory syncytial virus infection and disease.

    PubMed

    Sacco, Randy E; Durbin, Russell K; Durbin, Joan E

    2015-08-01

    The study of human respiratory syncytial virus pathogenesis and immunity has been hampered by its exquisite host specificity, and the difficulties encountered in adapting this virus to a murine host. The reasons for this obstacle are not well understood, but appear to reflect, at least in part, the inability of the virus to block the interferon response in any but the human host. This review addresses some of the issues encountered in mouse models of respiratory syncytial virus infection, and describes the advantages and disadvantages of alternative model systems.

  14. Characterization of a chimeric foot-and-mouth disease virus bearing bovine rhinitis B virus leader proteinase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent study has shown that bovine rhinovirus type 2 (BRV2), a new member of the Aphthovirus genus, shares many motifs and sequence similarities with foot-and-mouth disease virus (FMDV). Despite low sequence conservation (36percent amino acid identity) and N- and C-terminus folding differences,...

  15. Use of Oral Fluids for Detection of Virus and Antibodies in Pigs Infected with Swine Vesicular Disease Virus.

    PubMed

    Senthilkumaran, C; Bittner, H; Ambagala, A; Lung, O; Babiuk, S; Yang, M; Zimmerman, J; Giménez-Lirola, L G; Nfon, C

    2016-09-15

    The use of swine oral fluid (OF) for the detection of nucleic acids and antibodies is gaining significant popularity. Assays have been developed for this purpose for endemic and foreign animal diseases of swine. Here, we report the use of OF for the detection of virus and antibodies in pigs experimentally infected with swine vesicular disease virus (SVDV), a virus that causes a disease clinically indistinguishable from the economically devastating foot-and-mouth disease. Viral genome was detected in OF by real-time reverse transcription polymerase chain reaction (RRT-PCR) from 1 day post-infection (DPI) to 21 DPI. Virus isolation from OF was also successful at 1-5 DPI. An adapted competitive ELISA based on the monoclonal antibodies 5B7 detected antibodies to SVDV in OF starting at DPI 6. Additionally, using isotype-specific indirect ELISAs, SVDV-specific IgM and IgA were evaluated in OF. IgM response started at DPI 6, peaking at DPI 7 or 14 and declining sharply at DPI 21, while IgA response started at DPI 7, peaked at DPI 14 and remained high until the end of the experiment. These results confirm the potential use of OF for SVD surveillance using both established and partially validated assays in this study.

  16. Venezuelan Equine Encephalitis Virus replicon particles can induce rapid protection against Foot-and-Mouth Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that swine pretreated with a replication-defective human adenovirus vector (Ad5) containing the porcine type I interferon gene (poIFN-alpha/Beta) are sterilely protected when challenged one day later with Foot-and-Mouth Disease Virus (FMDV), but the dose required is relativ...

  17. Local variability in respiratory syncytial virus disease severity

    PubMed Central

    Brandenburg, A.; Jeannet, P.; Steensel-Moll, H.; Ott, A.; Rothbarth, P.; Wunderli, W.; Suter, S.; Neijens, H.; Osterhaus, A.; Siegrist, C.

    1997-01-01

    

 Respiratory syncytial virus (RSV) lower respiratory tract infections are considered to be a serious disease in centres such as the Sophia Children's Hospital (Rotterdam, the Netherlands), but as more benign infections in others such as the Geneva Children's Hospital (Switzerland). To assess the clinical severity of RSV infections at the two sites, 151 infants primarily admitted with a virologically confirmed RSV infection were studied prospectively (1994-5) and retrospectively (1993-4) (55 infants in Geneva and 96 in Rotterdam). Parameters of RSV morbidity which were more severe in Rotterdam during the two winter seasons were apnoea (1.8 v 23.9%), the rate of admission to the intensive care unit (3.6 v 28.1%), mechanical ventilation (0 v 7.3%), and length of stay in hospital (6.8 v 9.1 days). In Geneva higher respiratory rates (59.2 v 51.2), more wheezing (65.5 v 28.8%), and more retractions (81.8 v 63.3%) were recorded. Fewer infants younger than 4 months (54.9 v 68.7%), but more breast fed infants (94.1 v 38.5%), were admitted in Geneva, although the morbidity parameters remained different after correction for these two variables in multivariate analyses. Thus unidentified local factors influence the pattern and severity of RSV infection and may affect the results of multicentre prophylactic and therapeutic studies.

 PMID:9487963

  18. Ebola Virus Disease--Sierra Leone and Guinea, August 2015.

    PubMed

    Hersey, Sara; Martel, Lise D; Jambai, Amara; Keita, Sakoba; Yoti, Zabulon; Meyer, Erika; Seeman, Sara; Bennett, Sarah; Ratto, Jeffrey; Morgan, Oliver; Akyeampong, Mame Afua; Sainvil, Schabbethai; Worrell, Mary Claire; Fitter, David; Arnold, Kathryn E

    2015-09-11

    The Ebola virus disease (Ebola) outbreak in West Africa began in late 2013 in Guinea (1) and spread unchecked during early 2014. By mid-2014, it had become the first Ebola epidemic ever documented. Transmission was occurring in multiple districts of Guinea, Liberia, and Sierra Leone, and for the first time, in capital cities (2). On August 8, 2014, the World Health Organization (WHO) declared the outbreak to be a Public Health Emergency of International Concern (3). Ministries of Health, with assistance from multinational collaborators, have reduced Ebola transmission, and the number of cases is now declining. While Liberia has not reported a case since July 12, 2015, transmission has continued in Guinea and Sierra Leone, although the numbers of cases reported are at the lowest point in a year. In August 2015, Guinea and Sierra Leone reported 10 and four confirmed cases, respectively, compared with a peak of 526 (Guinea) and 1,997 (Sierra Leone) in November 2014. This report details the current situation in Guinea and Sierra Leone, outlines strategies to interrupt transmission, and highlights the need to maintain public health response capacity and vigilance for new cases at this critical time to end the outbreak.

  19. Construction and applications of rabbit hemorrhagic disease virus replicon.

    PubMed

    Wang, Binbin; Zhe, Mingjia; Chen, Zongyan; Li, Chuanfeng; Meng, Chunchun; Zhang, Miaotao; Liu, Guangqing

    2013-01-01

    The study of rabbit hemorrhagic disease virus (RHDV) has long been hindered by the absence of an in vitro culture system. In this study, using RHDV as a model, a series of DNA-based reporter replicons were constructed in which the firefly luciferase (Fluc) gene was fused in-frame with the open reading frame of the replicon. In this construct, the Fluc gene was inserted where the coding region of viral structural protein was deleted and was under the control of a minimal cytomegalovirus (CMV) immediate-early promoter. Fluc activity analysis showed that these reporter replicons replicate efficiently in mammalian cells. On the basis of the replicon, 5'non-coding regions (5'NCR) and genome-linked protein (VPg) were deleted, and the effect on the expression of replicon was analyzed. The results showed that the expression level of Fluc was reduced in the absence of 5'NCR and VPg, suggesting that the 5'NCR and VPg may play an important role in replication and/or translation of RHDV. To further verify the speculation, we also constructed a replication deficient mutant (pRHDV-luc/Δ3D), and the impact of 5'NCR and VPg deletion on viral translation efficiency was analyzed, our results indicated that both VPg and 5'NCR were involved in RHDV translation.

  20. Ebola Virus Disease in Health Care Workers--Guinea, 2014.

    PubMed

    Grinnell, Margaret; Dixon, Meredith G; Patton, Monica; Fitter, David; Bilivogui, Pépé; Johnson, Candice; Dotson, Ellen; Diallo, Boubacar; Rodier, Guenael; Raghunathan, Pratima

    2015-10-02

    An outbreak of Ebola virus disease (Ebola) began in Guinea in December 2013 and has continued through September 2015. Health care workers (HCWs) in West Africa are at high risk for Ebola infection owing to lack of appropriate triage procedures, insufficient equipment, and inadequate infection control practices. To characterize recent epidemiology of Ebola infections among HCWs in Guinea, national Viral Hemorrhagic Fever (VHF) surveillance data were analyzed for HCW cases reported during January 1–December 31, 2014. During 2014, a total of 162 (7.9%) of 2,210 laboratory-confirmed or probable Ebola cases among Guinean adults aged ≥15 years occurred among HCWs, resulting in an incidence of Ebola infection among HCWs 42.2 times higher than among non-HCWs. The disproportionate burden of Ebola infection among HCWs taxes an already stressed health infrastructure, underscoring the need for increased understanding of transmission among HCWs and improved infection prevention and control measures to prevent Ebola infection among HCWs.

  1. Epstein-Barr Virus Association with Peptic Ulcer Disease

    PubMed Central

    Cárdenas-Mondragón, María G.; Torres, Javier; Flores-Luna, Lourdes; Carreón-Talavera, Ricardo; Camorlinga-Ponce, Margarita; Fuentes-Pananá, Ezequiel M.

    2015-01-01

    Background. Helicobacter pylori (HP) infection and nonsteroidal anti-inflammatory drugs (NSAID) use are considered the main risk to develop peptic ulcer disease (PUD). However, PUD also occurs in the absence of HP infection and/or NSAID use. Recently, we have found evidence that Epstein-Barr virus (EBV) reactivation increases the risk to develop premalignant and malignant gastric lesions. Objective. To study a possible association between EBV and PUD. Methods. Antibodies against an EBV reactivation antigen, HP, and the HP virulence factor CagA were measured in sera from 207 Mexican subjects, controls (healthy individuals, n = 129), and PUD patients (n = 78, 58 duodenal and 20 gastric ulcers). Statistical associations were estimated. Results. Duodenal PUD was significantly associated with high anti-EBV IgG titers (p = 0.022, OR = 2.5), while anti-EBV IgA was positively associated with gastric PUD (p = 0.002, OR = 10.1). Conclusions. Our study suggests that EBV reactivation in gastric and duodenal epithelium increases the risk to develop PUD. PMID:26199856

  2. Production and characterization of monoclonal antibodies to budgerigar fledgling disease virus major capsid protein VP

    NASA Technical Reports Server (NTRS)

    Fattaey, A.; Lenz, L.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Eleven hybridoma cell lines producing monoclonal antibodies (MAbs) against intact budgerigar fledgling disease (BFD) virions were produced and characterized. These antibodies were selected for their ability to react with BFD virions in an enzyme-linked immunosorbent assay. Each of these antibodies was reactive in the immunofluorescent detection of BFD virus-infected cells. These antibodies immunoprecipitated intact virions and specifically recognized the major capsid protein, VP1, of the dissociated virion. The MAbs were found to preferentially recognize native BFD virus capsid protein when compared with denatured virus protein. These MAbs were capable of detecting BFD virus protein in chicken embryonated cell-culture lysates by dot-blot analysis.

  3. Associations between exposure to viruses and bovine respiratory disease in Australian feedlot cattle.

    PubMed

    Hay, K E; Barnes, T S; Morton, J M; Gravel, J L; Commins, M A; Horwood, P F; Ambrose, R C; Clements, A C A; Mahony, T J

    2016-05-01

    Bovine respiratory disease (BRD) is the most important cause of clinical disease and death in feedlot cattle. Respiratory viral infections are key components in predisposing cattle to the development of this disease. To quantify the contribution of four viruses commonly associated with BRD, a case-control study was conducted nested within the National Bovine Respiratory Disease Initiative project population in Australian feedlot cattle. Effects of exposure to Bovine viral diarrhoea virus 1 (BVDV-1), Bovine herpesvirus 1 (BoHV-1), Bovine respiratory syncytial virus (BRSV) and Bovine parainfluenza virus 3 (BPIV-3), and to combinations of these viruses, were investigated. Based on weighted seroprevalences at induction (when animals were enrolled and initial samples collected), the percentages of the project population estimated to be seropositive were 24% for BoHV-1, 69% for BVDV-1, 89% for BRSV and 91% for BPIV-3. For each of the four viruses, seropositivity at induction was associated with reduced risk of BRD (OR: 0.6-0.9), and seroincrease from induction to second blood sampling (35-60 days after induction) was associated with increased risk of BRD (OR: 1.3-1.5). Compared to animals that were seropositive for all four viruses at induction, animals were at progressively increased risk with increasing number of viruses for which they were seronegative; those seronegative for all four viruses were at greatest risk (OR: 2.4). Animals that seroincreased for one or more viruses from induction to second blood sampling were at increased risk (OR: 1.4-2.1) of BRD compared to animals that did not seroincrease for any viruses. Collectively these results confirm that prior exposure to these viruses is protective while exposure at or after feedlot entry increases the risk of development of BRD in feedlots. However, the modest increases in risk associated with seroincrease for each virus separately, and the progressive increases in risk with multiple viral exposures highlights

  4. Delayed Newcastle disease virus replication using RNA interference to target the nucleoprotein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Each year millions of chickens die from Newcastle disease virus (NDV) worldwide, leading to economic and food losses. Current vaccination campaigns have limitations including cost, administration, and thermostability. These problems are heightened in the developing world where constraints are more...

  5. Biological and phylogenic characterization of virulent Newcastle disease virus circulating in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this report, virulent Newcastle disease viruses (NDVs) isolated in Mexico between 1998 and 2006 were subjected to biological and phylogenetic assessment. Biological characterization using standard pathogenicity tests and phylogenetic analysis were performed. Chicken embryo mean death time (MDT)...

  6. Novel tubular and crystalline structures in purified preparations of Newcastle disease virus. Brief report.

    PubMed

    Gowans, E J; McNulty, M S

    1979-01-01

    Hitherto undescribed tubular and crystalline structures were detected by negative contrast electron microscopy in purified preparations of Newcastle disease virus. It is suggested that these are viral in origin and are composed of aggregates of viral glycoprotein.

  7. Neurological lesions in chickens experimentally infected with virulent Newcastle disease virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropil reaction was evaluated in chickens inoculated with four different Newcastle disease virus (NDV) isolates, including Texas GB, Turkey North Dakota, Nevada Cormorant (velogenic neurotropic) and Anhinga (mesogenic). Tissues for this study included archived formalin-fixed, paraffin embedded br...

  8. Biological and phylogenetic characterization of a genotype VII Newcastle disease virus from Venezuela: Efficacy of vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we describe the characterization a virulent genotype VII Newcastle disease virus (NDV) from Venezuela and evaluate the efficacy of heterologous genotype commercial vaccination under field and controlled rearing conditions. Biological pathotyping and molecular analysis were applied. Results sh...

  9. Transient lingual papillitis associated with confirmed herpes simplex virus 1 in a patient with kawasaki disease.

    PubMed

    Krakowski, Andrew C; Kim, Silvia S; Burns, Jane C

    2014-01-01

    We present a case of transient lingual papillitis associated with confirmed herpes simplex virus 1 that developed after a child received intravenous immunoglobulin and infliximab for acute Kawasaki disease.

  10. Evaluation and identification of Marek’s disease virus BAC clones as standardized reagents for research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease (MD), a lymphoproliferative disease in chickens. Understanding of MDV gene function advanced significantly following the cloning of the MDV genome as either a series of overlapping cosmids or as a bacterial artificial chr...

  11. Transcriptional profiling of Marek's disease virus genes during cytolytic and latent infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD), a lymphoproliferative disease of chicken is caused by a highly cell-associated alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latent infection within CD4+ T cells. The expression analysis of limited viral transcripts ha...

  12. Global gene expression profiling of Marek's disease virus during cytolytic and latency infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD), a lymphoproliferative disease of domestic chickens, is caused by an avian alpha-herpesvirus, Marek’s disease virus (MDV). MDV causes an early cytolytic infection in B cells followed by a latency infection in CD4+ T cells. The transcriptional analysis of a limited number of MD...

  13. Marek’s disease virus-induced transient cecal tonsil atrophy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of domestic chickens that is caused by a highly cell-associated oncogenic '-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latent infection within CD4+ T cells. MD is characterized by bursal/th...

  14. Expression of Marek's disease virus oncoprotein Meq during infection in the natural host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus (MDV, Gallid herpesvirus 2) causes a lymphoproliferative disease known as Marek's disease (MD), which is unique among alphaherpesviruses as the viral genome encodes an oncoprotein, Meq. Previous studies, using cultured fibroblasts and MDV-transformed lymphoblastoid cell lines, ...

  15. Pathogenesis of new sub-genotypes of Newcastle disease virus strains from Israel and Pakistan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND) is a devastating disease of poultry worldwide caused by virulent strains of Newcastle disease virus (NDV). New genotypes and sub-genotypes of NDV frequently emerge. In the past few years, NDV strains belonging to sub-genotype VIIi and XIIIb emerged in the Middle East and Asi...

  16. Transcriptional profiling of chicken gene expression during cytolytic infection of Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD), a lymphoproliferative disease of chicken is caused by a highly cell-associated alpha-herpesvirus, Marek’s disease virus (MDV). MDV replicates in chicken lymphocytes and establishes a latent infection within CD4+ T cells. The expression analysis of limited viral and host transc...

  17. Marek’s disease virus induces transient atrophy of cecal tonsils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of domestic chickens caused by an immunosupperessive alpha herpesvirus, Marek’s disease virus (MDV). Clinical signs of MD include bursal/thymic atrophy and neurological disorders. The cecal tonsils (CT) are the largest lymphoid aggregates of avia...

  18. Transcriptomic Analysis of Host Immune Response in the Skin of Chickens Infected with Marek's Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus, a highly cell-associated oncogenic 'alpha-herpesvirus, is the causative agent of a T cell lymphoma and neuropathic disease called Marek’s disease. The skin is the only anatomical site where infectious enveloped cell-free virions are produced and shed into the environment. Stud...

  19. Marek's Disease Virus Infection Induces Widespread Differential Chromatin Marks in Inbred Chicken Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a neoplastic disease in chickens caused by the MD virus (MDV). Successful vaccine development against MD has resulted in increased virulence of MDV and the understanding of genetic resistance to the disease is, therefore, crucial to long-term control strategies. Also, epigene...

  20. Characterization of a chimeric foot-and-mouth disease virus bearing a bovine rhinitis B virus leader proteinase.

    PubMed

    Uddowla, Sabena; Pacheco, Juan M; Larson, Christopher; Bishop, Elizabeth; Rodriguez, Luis L; Rai, Devendra K; Arzt, Jonathan; Rieder, Elizabeth

    2013-12-01

    Bovine rhinitis B virus (BRBV) shares many motifs and sequence similarities with foot-and-mouth disease virus (FMDV). This study examined if the BRBV leader proteinase (L(pro) ) could functionally replace that of FMDV. A mutant A24LBRV3DYR FMDV engineered with the BRBV L(pro) and an antigenic marker in the 3D polymerase exhibited growth properties and eIF4G cleavage similar to parental A24WT virus. The A24LBRV3DYR type I interferon activity in infected bovine cells resembled that of A24LL virus that lacks L(pro), but this effect was less pronounced for A24LBRV3DYR infected porcine cells. In vivo studies showed that the A24LBRV3DYR virus was attenuated in cattle, and exhibited low virulence in pigs exposed by direct contact. The mutant virus induced protective immunity in cattle against challenge with parental A24WT. These results provide evidence that L(pro) of different Aphthoviruses are not fully functionally interchangeable and have roles that may depend on the nature of the infected host.

  1. Ebola Virus Disease (The Killer Virus): Another Threat to Humans and Bioterrorism: Brief Review and Recent Updates

    PubMed Central

    Sharma, Sarang; Dutta, Shubha Ranjan; Dudeja, Pooja; Sharma, Vivek

    2015-01-01

    Ebola virus disease (EVD) described as “one of the world’s most virulent diseases” by WHO was popularly known as Ebola haemorrhagic fever in the past. It is usually considered a severe and deadly illness when humans are concerned. EVD outbreaks have shown to have a very high fatality rate ranging from 50 - 90% with a reported occurrence primarily seen near the tropical rainforests of remote villages in Central and West Africa. The virus is transmitted to people from wild animals and within the human community through human-to-human contact. Natural host for Ebola virus is not yet conclusively identified but the most probable host appears to be the fruit bats of the Pteropodidae family. Five subspecies of Ebola virus are recognized till date, with Zaire Ebola virus being the most aggressive of all varieties and recording up to 90% mortality. All Ebola forms are highly contagious and hence have been classed as Category A Priority Pathogens by WHO. Severely ill patients warrant intensive support therapy. Medical workers working in affected areas need to undertake extensive measures to prevent contracting the disease. Till date, no particular anti-viral therapy has demonstrated effectiveness in Ebola virus infection. Also, no vaccine for use in humans is yet approved by the regulatory bodies. If Ebola was actually misused as a biological weapon, it could be a serious threat. Idea behind this article is to briefly review the history and present recent updates on Ebola virus, its pathogenesis and possible hopes for treatment. PMID:26266139

  2. Effect of vaccination on transmission characteristics of highly virulent Newcastle disease virus in experimentally infected chickens.

    PubMed

    Fentie, Tsegaw; Dadi, Kara; Kassa, Tesfu; Sahle, Mesfin; Cattoli, Giovanni

    2014-01-01

    An experimental study was conducted to evaluate the effect of vaccines produced in Ethiopia from vaccine strains used worldwide on the transmission characteristics of velogenic Newcastle disease virus field strain after different vaccination schemes. Chickens were vaccinated with Hitchner B1, La Sota or I-2 via the intraocular and intranasal routes. Vaccine and challenge viruses induced high antibody levels, both in inoculated and contact birds. Prime-boost vaccination protected birds against morbidity and mortality and significantly reduced the incidence of viral shedding from chickens compared with single vaccinated and unvaccinated birds. Protection from disease and mortality was correlated with the presence of positive antibody titres (>4 log2) at day of challenge. Most of the unvaccinated and in-contact birds excreted the virus and showed a high level of antibody titres, indicating the high infectivity of the challenge virus. The detection of the challenge virus in most of vaccinated birds demonstrated that the tested vaccination protocols cannot fully protect birds from viral infection, replication and shedding, and vaccinated-infected birds can act as a source of infection for susceptible flocks. The high mortality observed in unvaccinated birds and their contacts confirmed the virulence of the challenge virus and indicated that this field virus strain can easily spread in an unvaccinated poultry population and cause major outbreaks. Progressive vaccinations supported by biosecurity measures should therefore be implemented to control the disease and introduction of the virus to the poultry farms.

  3. Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression.

    PubMed

    Sawatsky, Bevan; Wong, Xiao-Xiang; Hinkelmann, Sarah; Cattaneo, Roberto; von Messling, Veronika

    2012-04-01

    To characterize the importance of infection of epithelial cells for morbillivirus pathogenesis, we took advantage of the severe disease caused by canine distemper virus (CDV) in ferrets. To obtain a CDV that was unable to enter epithelial cells but retained the ability to enter immune cells, we transferred to its attachment (H) protein two mutations shown to interfere with the interaction of measles virus H with its epithelial receptor, human nectin-4. As expected for an epithelial receptor (EpR)-blind CDV, this virus infected dog and ferret epithelial cells inefficiently and did not cause cell fusion or syncytium formation. On the other hand, the EpR-blind CDV replicated in cells expressing canine signaling lymphocyte activation molecule (SLAM), the morbillivirus immune cell receptor, with similar kinetics to those of wild-type CDV. While ferrets infected with wild-type CDV died within 12 days after infection, after developing severe rash and fever, animals infected with the EpR-blind virus showed no clinical signs of disease. Nevertheless, both viruses spread rapidly and efficiently in immune cells, causing similar levels of leukopenia and inhibition of lymphocyte proliferation activity, two indicators of morbillivirus immunosuppression. Infection was documented for airway epithelia of ferrets infected with wild-type CDV but not for those of animals infected with the EpR-blind virus, and only animals infected with wild-type CDV shed virus. Thus, epithelial cell infection is necessary for clinical disease and efficient virus shedding but not for immunosuppression.

  4. [Multicentric Castleman disease not associated with HHV-8 and HIV viruses].

    PubMed

    Forteski, Denise de Fatima; Netto, Fernanda Calil Machado; Lomonte, Andrea Barranjard Vannucci; dos Anjos, Bruno César Cavalcanti; Zerbini, Maria Claudia Nogueira; Zerbini, Cristiano Augusto de Freitas

    2014-01-01

    Castleman's disease (CD) is a polyclonal lymphoproliferative disorder also known as giant nodular hyperplasia or angiofollicular lymph node hyperplasia. It is a rare disease often associated to human immunodeficiency virus (HIV) and human herpes virus 8 (HHV-8). Histopathological findings in Castleman's disease suggest an exaggerated response to antigenic stimuli seen in other diseases associated with immune activation, such as rheumatoid arthritis. An important aspect of its pathogenesis is the autonomous production of interleukin-6 (IL-6). In this disease, the clinical manifestations are associated to IL-6 serum levels, and surgical removal of the compromised lymph nodes or use of anti-IL-6 antibodies can slow down the symptoms. We describe a multicentric Castleman's disease in a young woman not associated to HHV-8 virus infection or immunosuppression. A short review of the literature follows the description of this clinical case.

  5. Complete genome sequence and clinicopathological characterization of a virulent Newcastle disease virus isolated from poultry in South America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND) is one of the most important diseases of poultry, negatively affecting poultry production worldwide. The disease is caused by Newcastle disease virus (NDV) or avian paramyxovirus type-1 (APMV-1), a negative sense single-stranded RNA virus of the genus Avulavirus, family Param...

  6. Phylogenetic analysis of Newcastle disease virus isolates occurring in India during 1989-2013.

    PubMed

    Desingu, P A; Singh, S D; Dhama, K; Karthik, K; Vinodh Kumar, O R; Malik, Y S

    2016-06-01

    The study details characterization of Newcastle disease virus (NDV) isolates recovered from commercial poultry flocks (chicken) and wild birds (crane) of India during the time period from 1989 to 2013. Phylogenetic analysis revealed that most of the NDV isolates belongs to class II, genotype XIIIa and a chicken isolate (108/BAREILLY/AD-IVRI/91) was of genotype VI, where it showed diversity of 3 % from the other viruses belonging to same genotype. Another chicken isolate (75/RAMPUR/AD-IVRI/89) grouped in genotype III and showed 4 % diversity with viruses of genotype III. The crane origin NDV identified as of genotype II corresponding to the vaccine virus. This appears to be the first report about existence of genotype XIIIa and its ancestral viruses are circulating in India for the last two decades in different species of birds. Furthermore, genetically distinct viruses belonging to genotypes II, III and VI are also circulating in India.

  7. Horizontal Transmissible Protection against Myxomatosis and Rabbit Hemorrhagic Disease by Using a Recombinant Myxoma Virus

    PubMed Central

    Bárcena, Juan; Morales, Mónica; Vázquez, Belén; Boga, José A.; Parra, Francisco; Lucientes, Javier; Pagès-Manté, Albert; Sánchez-Vizcaíno, José M.; Blasco, Rafael; Torres, Juan M.

    2000-01-01

    We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals. PMID:10627521

  8. A VIRUS DISEASE OF PARROTS AND PARRAKEETS DIFFERING FROM PSITTACOSIS

    PubMed Central

    Rivers, Thomas M.; Schwentker, Francis F.

    1932-01-01

    The virus of parrots and parrakeets discovered by Pacheco, Bier, and Meyer is unrelated to the agent causing psittacosis either in birds or in man. The virus is fairly species-specific and manifests itself chiefly by the production of areas of focal necrosis in the liver and acidophilic intranuclear inclusions in affected cells. PMID:19870041

  9. Animal models of respiratory syncytial virus infection and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of human respiratory syncytial virus pathogenesis and immunity has been hampered by its exquisite host specificity, and the difficulties encountered in adapting this virus to a murine host. The reasons for this obstacle are not well understood, but appear to reflect, at least in part, the ...

  10. Ebola virus disease control in West Africa: an ecological, one health approach.

    PubMed

    Meseko, Clement Adebajo; Egbetade, Adeniyi Olugbenga; Fagbo, Shamsudeen

    2015-01-01

    The 2013-2015 Ebola Virus Disease outbreak in West Africa had similar nuances with the 1976 outbreaks in Central Africa; both were caused by the Zaire Ebola Virus strain and originated from rural forested communities. The definitive reservoir host of Ebola virus still remains unknown till date. However, from ecological perspective, it is known that the virus first emerged from forest ecotypes interfacing with human activities. As at March 2015, the outbreak has claimed over 9000 lives, which is unprecedented. Though it remains unproved, the primary sources of infection for past and present outbreaks are forest dwelling, human-hunted fauna. Understanding the ecological factors at play in these forest ecotypes where wild fauna interface with human and causing pathogen spill over is important. A broad based One Health approach incorporating these ecological concepts in the control of Ebola Virus Disease can effectively ameliorate or forestall infection now and in the future.

  11. Virus diseases of peppers (Capsicum spp.) and their control.

    PubMed

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the

  12. Molecular Characterization of Foot-and-Mouth Disease Viruses Collected in Tanzania Between 1967 and 2009.

    PubMed

    Kasanga, C J; Wadsworth, J; Mpelumbe-Ngeleja, C A R; Sallu, R; Kivaria, F; Wambura, P N; Yongolo, M G S; Rweyemamu, M M; Knowles, N J; King, D P

    2015-10-01

    This paper describes the molecular characterization of foot-and-mouth disease viruses (FMDV) recovered from outbreaks in Tanzania that occurred between 1967 and 2009. A total of 44 FMDV isolates, containing representatives of serotypes O, A, SAT 1 and SAT 2 from 13 regions of Tanzania, were selected from the FAO World Reference Laboratory for FMD (WRLFMD) virus collection. VP1 nucleotide sequences were determined for RT-PCR amplicons, and phylogenetic reconstructions were determined by maximum likelihood and neighbour-joining methods. These analyses showed that Tanzanian type O viruses fell into the EAST AFRICA 2 (EA-2) topotype, type A viruses fell into the AFRICA topotype (genotype I), type SAT 1 viruses into topotype I and type SAT 2 viruses into topotype IV. Taken together, these findings reveal that serotypes O, A, SAT 1 and SAT 2 that caused FMD outbreaks in Tanzania were genetically related to lineages and topotypes occurring in the East African region. The close genetic relationship of viruses in Tanzania to those from other countries suggests that animal movements can contribute to virus dispersal in sub-Saharan Africa. This is the first molecular description of viruses circulating in Tanzania and highlights the need for further sampling of representative viruses from the region so as to elucidate the complex epidemiology of FMD in Tanzania and sub-Saharan Africa.

  13. Ihalation, persistence and dispersal f foot-and-mouth disease virus by man.

    PubMed

    Sellers, R F; Donaldson, A I; Herniman, K A

    1970-12-01

    Sampling of human subjects, who had been in contact with animals infected with foot-and-mouth disease (FMD) virus, showed that virus could be recovered from the nose, throat, saliva and from air expelled during coughing, sneezing, talking and breathing. The amounts of virus recovered paralleled those collected with a large-volume sampler and multistage impinger and these findings confirmed that the highest recovery of airborne virus was from infected pigs followed by cattle and sheep. More virus was found in the noses of those examining infected animals than in those operating the samplers, but there was variation between the subjects. In the majority there was a 1.8 log fall in titre by 3.5 hr., but virus persisted in the nose of one subject for 28 hr. Nose blowing or washing the nostrils did not remove virus completely, nor were cloth or industrial masks completely effective in preventing inhalation of virus. It was possible to transmit virus from infected subjects to others on one occasion. No clinical cases of FMD in man resulted from exposure, nor was there any rise in antibody. Use was made of these findings in determining sites of aerosol excretion in animals, and the results are discussed in relation to FMD in man and to the spread of respiratory viruses by the airborne route.

  14. Favipiravir: a new medication for the Ebola virus disease pandemic.

    PubMed

    Nagata, Takashi; Lefor, Alan K; Hasegawa, Manabu; Ishii, Masami

    2015-02-01

    The purpose of this report is to advocate speedy approval and less stringent regulations for the use of experimental drugs such as favipiravir in emergencies. Favipiravir is a new antiviral medication that can be used in emerging viral pandemics such as Ebola virus, 2009 pandemic influenza H1N1 virus, Lassa fever, and Argentine hemorrhagic fever. Although favipiravir is one of the choices for the treatment of patients with Ebola virus, several concerns exist. First, a clinical trial of favipiravir in patients infected with the Ebola virus has not yet been conducted, and further studies are required. Second, favipiravir has a risk for teratogenicity and embryotoxicity. Therefore, the Ministry of Health, Welfare and Labor of Japan has approved this medication with strict regulations for its production and clinical use. However, owing to the emerging Ebola virus epidemic in West Africa, on August 15, 2014, the Minister of Health, Welfare and Labor of Japan approved the use of favipiravir, if needed.

  15. Epstein–Barr virus is associated with periodontal diseases

    PubMed Central

    Gao, Zilong; Lv, Juan; Wang, Min

    2017-01-01

    Abstract Some controversies still exist between the detection of Epstein–Barr virus (EBV)'s DNA and risks of periodontal diseases. Hence, a comprehensive meta-analysis on all available literatures was performed to clarify the relationship between EBV and preidontitis. A comprehensive search was conducted within the PUBMED, EMBASE, and WANFANG databases up to October 10th, 2016 according to inclusion and exclusion criteria and finally 21 case–control literatures were obtained. The outcomes including odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Publication bias was determined by Begg or Egger test. Sensitivity analysis was used to investigate reliability and stability of the results. According to the data from included trials, the association between overall increased risks of periodontitis and the detection of EBV was significant (OR = 6.199, 95% CI = 3.119–12.319, P < 0.001). In the disease-type analysis, the pooled ORs for chronic periodontitis and aggressive periodontitis were 6.586 (95% CI = 3.042–14.262, P < 0.001) and 8.361 (95% CI = 2.109–33.143, P = 0.003), respectively. In the subgroup analysis of ethnicity, our results suggested that high EBV-detecting frequencies were correlated with increased risks of periodontitis in Asians, Europeans, and Americans (P < 0.001). Subgroup analysis by the sample type showed that subgingival plaque (SgP) samples and tissue samples were available for EBV detecting (P < 0.001). Detecting EBV of samples in ≥5 (6) mm sites of periodontal pockets were easier than in ≤3-mm sites (P = 0.023). This meta-analysis indicates that high frequent detection of EBV correlates with increased risk of periodontal diseases. SgP and tissue are available for detecting EBV in patients of periodontitis. At last, our results suggest that detecting EBV of samples in =5 (6) mm sites of periodontal pockets are more sensitive than in ≤3

  16. The complete genome sequence of a virus associated with cotton blue disease, cotton leafroll dwarf virus, confirms that it is a new member of the genus Polerovirus.

    PubMed

    Distéfano, Ana J; Bonacic Kresic, Ivan; Hopp, H Esteban

    2010-11-01

    Cotton blue disease is the most important virus disease of cotton in the southern part of America. The complete nucleotide sequence of the ssRNA genome of the cotton blue disease-associated virus was determined for the first time. It comprised 5,866 nucleotides, and the deduced genomic organization resembled that of members of the genus Polerovirus. Sequence homology comparison and phylogenetic analysis confirm that this virus (previous proposed name cotton leafroll dwarf virus) is a member of a new species within the genus Polerovirus.

  17. Identify, isolate, inform: Background and considerations for Ebola virus disease preparedness in U.S. ambulatory care settings.

    PubMed

    Chea, Nora; Perz, Joseph F; Srinivasan, Arjun; Laufer, Alison S; Pollack, Lori A

    2015-11-01

    Public health activities to identify and monitor persons at risk for Ebola virus disease in the United States include directing persons at risk to assessment facilities that are prepared to safely evaluate for Ebola virus disease. Although it is unlikely that a person with Ebola virus disease will unexpectedly present to a nonemergency ambulatory care facility, the Centers for Disease Control and Prevention have provided guidance for this setting that can be summarized as identify, isolate, and inform.

  18. Zika Virus Disease in Travelers Returning to the United States, 2010-2014.

    PubMed

    Hennessey, Morgan J; Fischer, Marc; Panella, Amanda J; Kosoy, Olga I; Laven, Janeen J; Lanciotti, Robert S; Staples, J Erin

    2016-07-06

    Zika virus is an emerging mosquito-borne flavivirus that typically causes a mild febrile illness with rash, arthralgia, or conjunctivitis. Zika virus has recently caused large outbreaks of disease in southeast Asia, Pacific Ocean Islands, and the Americas. We identified all positive Zika virus test results performed at U.S. Centers for Disease Control and Prevention from 2010 to 2014. For persons with test results indicating a recent infection with Zika virus, we collected information on demographics, travel history, and clinical features. Eleven Zika virus disease cases were identified among travelers returning to the United States. The median age of cases was 50 years (range: 29-74 years) and six (55%) were male. Nine (82%) cases had their illness onset from January to April. All cases reported a travel history to islands in the Pacific Ocean during the days preceding illness onset, and all cases were potentially viremic while in the United States. Public health prevention messages about decreasing mosquito exposure, preventing sexual exposure, and preventing infection in pregnant women should be targeted to individuals traveling to or living in areas with Zika virus activity. Health-care providers and public health officials should be educated about the recognition, diagnosis, and prevention of Zika virus disease.

  19. West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2014.

    PubMed

    Lindsey, Nicole P; Lehman, Jennifer A; Staples, J Erin; Fischer, Marc

    2015-09-04

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States (1). However, several other arboviruses also cause sporadic cases and seasonal outbreaks. This report summarizes surveillance data reported to CDC in 2014 for WNV and other nationally notifiable arboviruses, excluding dengue. Forty-two states and the District of Columbia (DC) reported 2,205 cases of WNV disease. Of these, 1,347 (61%) were classified as WNV neuroinvasive disease (e.g., meningitis, encephalitis, or acute flaccid paralysis), for a national incidence of 0.42 cases per 100,000 population. After WNV, the next most commonly reported cause of arboviral disease was La Crosse virus (80 cases), followed by Jamestown Canyon virus (11), St. Louis encephalitis virus (10), Powassan virus (8), and Eastern equine encephalitis virus (8). WNV and other arboviruses cause serious illness in substantial numbers of persons each year. Maintaining surveillance programs is important to help direct prevention activities.

  20. Pathobiology and subgroup specificity of disease induced by Rous associated virus 7 (RAV-7)

    SciTech Connect

    Carter, J.Y.

    1983-01-01

    When Rous associated virus 7 (RAV-7) was injected intravenously into 10-day old chicken embryos, a disease syndrome developed which was characterized by stunting, hyperlipidemia, hypothyroidism, and hyperinsulinemia. Stocks of RAV-7, a subgroup C avian leukosis virus, were obtained by end-point purification on chick embryo fibroblast cells. The size of the viral RNA was 8.2 kb and the protein banding pattern on polyacrylamide gels was typical of avian leukosis viruses. These results indicated that RAV-7 was a non-defective avian leukosis virus and no sarcoma or defective leukemia viruses were present in the RAV-7 stock. RAV-7 induced a unique disease syndrome although infection by three other subgroup C avian leukosis viruses (tdB77, tdPrC, and RAV-49) resulted in an identical lymphoblastoid infiltration of the thyroid and pancreas. An examination of disease induced by avian leukosis viruses from subgroups A, B, D, and F showed that infection by any of these subgroups did not result in the typical RAV-7 disease syndrome.

  1. Chronic bee paralysis: a disease and a virus like no other?

    PubMed

    Ribière, Magali; Olivier, Violaine; Blanchard, Philippe

    2010-01-01

    Chronic bee paralysis which was called Paralysis is a rather unusual disease caused by a rather unusual virus. In this review, we explore current knowledge of the disease and its etiological agent. Paralysis is the only common viral disease of adult bees whose symptoms include both behavioural and physiological modifications: trembling and hair loss. The disease often affects the strong colonies of an apiary and thousands of dead individuals are then observed in front of the hives. Two sets of symptoms have traditionally been described in the existing literature, but nowadays we can define a general syndrome. The morphology of the Chronic bee paralysis virus (CBPV) particles and the multipartite organisation of the RNA genome are exceptional, as most honey bee viruses are picorna-like viruses belonging to the Iflavirus and Cripavirus genera with symmetric particles and monopartite positive, single-strand RNA genomes. CBPV is currently classified as an RNA virus but is not included in any family or genus. Although it shares several characteristics with viruses in the Nodaviridae and Tombusviridae families, it differs from previously known viruses according to the various demarcation criteria defined by the International Committee on Taxonomy of Viruses (ICTV). Thus, it should be considered as the type species of a new group of positive-strand RNA viruses. The recent sequencing of the complete CBPV genome has opened the way for phylogenetic studies and development of new molecular tools able to detect variable isolates and to quantify genomic loads. This article considers the results of such recent detection tests but also previous studies including: (i) the distribution of CBPV infection within the bees and the hive, (ii) the way the virus spreads and its persistence in the colony environment, and (iii) geographical and seasonal distribution and impact of CBPV infections.

  2. Isolation of a virulent Newcastle disease virus from confiscated LaSota vaccine.

    PubMed

    Pedersen, Janice C; Hines, Nichole L; Killian, Mary Lea; Predgen, Ann S; Schmitt, Beverly J

    2013-06-01

    Vials of Newcastle disease vaccine labeled as LaSota were confiscated by the Arizona Division of Customs and Border Protection officials. Two different avian type 1 paramyxoviruses were isolated from all three vials of vaccine submitted to the National Veterinary Services Laboratories. The LaSota strain of avian paramyxovirus type 1 virus was isolated from all three vials and analyzed by nucleotide sequence analysis. A virulent Newcastle disease virus was also present in all three vials, but in low concentration. The virulence of the Newcastle disease virus was characterized by the intracerebral chicken pathogenicity index chicken inoculation assay but could not be determined by nucleotide sequence analysis from the virus isolated from embryonating chicken eggs. The intracerebral chicken pathogenicity index value for the isolated Newcastle disease virus was 1.55. Strains of Newcastle disease virus with intracerebral pathogenicity indexes significantly above 1.0 have been found to selectively kill many types of cancer cells while not affecting normal nonneoplastic cells and are considered to be a viable option for cancer treatment in humans by alternative medical researchers; however, the treatment is not approved for use in the United States by the Food and Drug Administration. Customs and Border Protection officials have been notified of an increased risk of Newcastle disease virus entering the United States for use as a nonapproved cancer treatment. Illegal importation of Newcastle disease vaccine for vaccination of backyard poultry is also a threat. This case report emphasizes the importance of conducting chicken inoculation for complete virus pathotyping and demonstrates the need for stringent security procedures at U.S. borders to detect known livestock pathogens that may be smuggled in for use in animal agriculture and reasons unrelated to animal agriculture.

  3. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens.

    PubMed

    Costa-Hurtado, Mar; Afonso, Claudio L; Miller, Patti J; Shepherd, Eric; Cha, Ra Mi; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary J

    2015-09-23

    Highly pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide and produce co-infections especially in areas of the world where both viruses are endemic; but little is known about the interactions between these two viruses. The objective of this study was to determine if co-infection with NDV affects HPAIV replication in chickens. Only infections with virulent NDV strains (mesogenic Pigeon/1984 or velogenic CA/2002), and not a lentogenic NDV strain (LaSota), interfered with the replication of HPAIV A/chicken/Queretaro/14588-19/95 (H5N2) when the H5N2 was given at a high dose (10(6.9) EID50) two days after the NDV inoculation, but despite this interference, mortality was still observed. However, chickens infected with the less virulent mesogenic NDV Pigeon/1984 strain three days prior to being infected with a lower dose (10(5.3-5.5) EID50) of the same or a different HPAIV, A/chicken/Jalisco/CPA-12283-12/2012 (H7N3), had reduced HPAIV replication and increased survival rates. In conclusion, previous infection of chickens with virulent NDV strains can reduce HPAIV replication, and consequently disease and mortality. This interference depends on the titer of the viruses used, the virulence of the NDV, and the timing of the infections. The information obtained from these studies helps to understand the possible interactions and outcomes of infection (disease and virus shedding) when HPAIV and NDV co-infect chickens in the field.

  4. Spontaenous Avian Leukosis Virus-like lymphomas in specific-pathogen-free chickens inoculated with serotype 2 Marek’s disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chickens of Avian Disease and Oncology Laboratory (ADOL) line alv6, known to develop spontaneous avian leukosis virus (ALV)-like lymphomas at two years of age or older, were inoculated either in-ovo, or at 1 day of age with strain SB-1 of serotype 2 Marek’s disease virus (MDV). Inoculated and uninoc...

  5. Role of endogenous avian leukosis virus and serotype 2 Marek’s disease virus in enhancement of spontaneous lymphoid-leukosis-like tumors in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of endogenous subgroup E avian Leukosis virus (ALV-E) and strain SB-1 of serotype 2 Marek’s disease virus (MDV) on the enhancement of spontaneous lymphoid leukosis (LL)-like tumors was studied in chickens of Avian Disease and Oncology Laboratory (ADOL) line named 0.TVB*S1, or RFS. This...

  6. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is mainly controlled through biosecurity and vaccination with live-attenuated strains of the virus and vectored vaccines based on turkey he...

  7. Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review.

    PubMed

    Lightner, D V

    2011-01-01

    Penaeid shrimp aquaculture is an important industry in the Americas, and the industry is based almost entirely on the culture of the Pacific White Shrimp, Litopenaeus vannamei. Western Hemisphere shrimp farmers in 14 countries in 2004 produced more than 200,000 metric tons of shrimp, generated more than $2 billion in revenue, and employed more than 500,000 people. Disease has had a major impact on shrimp aquaculture in the Americas since it became a significant commercial entity in the 1970s. Diseases due to viruses, rickettsial-like bacteria, true bacteria, protozoa, and fungi have emerged as major diseases of farmed shrimp in the region. Many of the bacterial, fungal and protozoan caused diseases are managed using improved culture practices, routine sanitation, and the use of chemotherapeutics. However, the virus diseases have been far more problematic to manage and they have been responsible for the most costly epizootics. Examples include the Taura syndrome pandemic that began in 1991-1992 when the disease emerged in Ecuador, and the subsequent White Spot Disease pandemic that followed its introduction to Central America from Asia in 1999. Because of their socioeconomic significance to shrimp farming, seven of the nine crustacean diseases listed by the World Animal Organization (OIE) are virus diseases of shrimp. Of the seven virus diseases of penaeid shrimp, five are native to the Americas or have become enzootic following their introduction. The shrimp virus diseases in the Americas are increasingly being managed by exclusion using a combination of biosecurity and the practice of culturing domesticated specific pathogen-free (SPF) stocks or specific pathogen-resistant (SPR) stocks. Despite the significant challenges posed by disease, the shrimp farming industry of the Americas has responded to the challenges posed by disease and it has developed methods to manage its diseases and mature into a sustainable industry.

  8. Complete genome sequence of Colocasia bobone disease-associated virus, a putative cytorhabdovirus infecting taro.

    PubMed

    Higgins, Colleen M; Bejerman, Nicolas; Li, Ming; James, Anthony P; Dietzgen, Ralf G; Pearson, Michael N; Revill, Peter A; Harding, Robert M

    2016-03-01

    We report the first genome sequence of a Colocasia bobone disease-associated virus (CBDaV) derived from bobone-affected taro [Colocasia esculenta L. Schott] from Solomon Islands. The negative-strand RNA genome is 12,193 nt long, with six major open reading frames (ORFs) with the arrangement 3'-N-P-P3-M-G-L-5'. Typical of all rhabdoviruses, the 3' leader and 5' trailer sequences show complementarity to each other. Phylogenetic analysis indicated that CBDaV is a member of the genus Cytorhabdovirus, supporting previous reports of virus particles within the cytoplasm of bobone-infected taro cells. The availability of the CBDaV genome sequence now makes it possible to assess the role of this virus in bobone, and possibly alomae disease of taro and confirm that this sequence is that of Colocasia bobone disease virus (CBDV).

  9. Ebola virus disease and Marburg disease in pregnancy: a review and management considerations for filovirus infection.

    PubMed

    Bebell, Lisa M; Riley, Laura E

    2015-06-01

    The largest-ever recorded outbreak of viral hemorrhagic fever is ongoing. As a result of the epidemic and rural nature of outbreaks, little is published about the Filovirus infections Ebola virus disease and Marburg disease in pregnancy. This review of viral hemorrhagic fever focusing on Marburg and Ebola uses knowledge of disease in nonpregnant individuals and pregnancy-specific data to inform management for pregnant women. Filovirus infection presentation is similar between pregnant and nonpregnant patients, although infections may be more severe in pregnancy. Although labeled as hemorrhagic fevers, Marburg and Ebola do not commonly cause gross bleeding and should be conceptualized as diseases of high gastrointestinal losses. Early, aggressive supportive care is the mainstay of Filovirus infection management with massive fluid resuscitation as the key management principle. Patients often require 5-10 L or more per day of intravenous or oral fluid to maintain circulating blood volume in the setting of ongoing gastrointestinal loss. Fluid shifts warrant aggressive monitoring and correction of potassium levels and acid-base disturbances to prevent life-threatening arrhythmias and metabolic complications. Regardless of maternal survival, fetal loss rates are nearly 100% in Filovirus infection, likely resulting from unchecked transplacental and hematogenous viral spread. High fetal loss rates support the placenta as a difficult-to-eradicate Filovirus infection reservoir. In conclusion, the management of Filovirus infection in pregnancy should focus on stabilizing the mother with intensive monitoring and aggressive fluid and electrolyte repletion as well as maintaining strict infection control to minimize transmission to others.

  10. Predicting Subnational Ebola Virus Disease Epidemic Dynamics from Sociodemographic Indicators

    PubMed Central

    Valeri, Linda; Patterson-Lomba, Oscar; Gurmu, Yared; Ablorh, Akweley; Bobb, Jennifer; Townes, F. William; Harling, Guy

    2016-01-01

    Background The recent Ebola virus disease (EVD) outbreak in West Africa has spread wider than any previous human EVD epidemic. While individual-level risk factors that contribute to the spread of EVD have been studied, the population-level attributes of subnational regions associated with outbreak severity have not yet been considered. Methods To investigate the area-level predictors of EVD dynamics, we integrated time series data on cumulative reported cases of EVD from the World Health Organization and covariate data from the Demographic and Health Surveys. We first estimated the early growth rates of epidemics in each second-level administrative district (ADM2) in Guinea, Sierra Leone and Liberia using exponential, logistic and polynomial growth models. We then evaluated how these growth rates, as well as epidemic size within ADM2s, were ecologically associated with several demographic and socio-economic characteristics of the ADM2, using bivariate correlations and multivariable regression models. Results The polynomial growth model appeared to best fit the ADM2 epidemic curves, displaying the lowest residual standard error. Each outcome was associated with various regional characteristics in bivariate models, however in stepwise multivariable models only mean education levels were consistently associated with a worse local epidemic. Discussion By combining two common methods—estimation of epidemic parameters using mathematical models, and estimation of associations using ecological regression models—we identified some factors predicting rapid and severe EVD epidemics in West African subnational regions. While care should be taken interpreting such results as anything more than correlational, we suggest that our approach of using data sources that were publicly available in advance of the epidemic or in real-time provides an analytic framework that may assist countries in understanding the dynamics of future outbreaks as they occur. PMID:27732614

  11. A No-Notice Drill of Hospital Preparedness in Responding to Ebola Virus Disease in Taiwan.

    PubMed

    Hsu, Shih-Min; Chien, Li-Jung; Tseng, Shu-Hui; Kuo, Steve H S

    2015-01-01

    The Ebola virus was first discovered in 1976, but the outbreak of Ebola virus disease that began in Guinea, West Africa, in December 2013 shocked the world. It is the largest and most severe epidemic of Ebola virus disease to date. The US Centers for Disease Control and Prevention confirmed that inadequate implementation of the policy of acquiring travel history led to a delay in identifying the first imported Ebola virus disease case. The Taiwan Centers for Disease Control developed a no-notice drill that used a simulated patient to assess hospitals' emergency preparedness capacity in responding to Ebola virus disease. Despite the fact that regular inspection shows that more than 90% of regional hospitals and medical centers inquired about patients' travel history, occupation, contact history, and cluster information, the no-notice drill revealed that more than 40% of regional hospitals and medical centers failed to ask emergency room patients about these factors. Therefore, to assist in inquiries about travel history, occupation, contact history, and cluster information in emergency triage and outpatient settings, the Taiwan CDC revised the criteria for hospital infection control inspection. It requested that hospitals issue appropriate reminders and implement process control mechanisms to block diagnostic processes in instances in which healthcare workers do not inquire about travel history, occupation, contact history, and cluster information. Furthermore, the Taiwan CDC will continue no-notice inspections in order to strengthen hospitals' infection control measures and reduce the risk of infectious disease transmission in the healthcare system.

  12. Inactivation of Avian Influenza Virus, Newcastle Disease Virus and Goose Parvovirus Using Solution of Nano-Sized Scallop Shell Powder

    PubMed Central

    THAMMAKARN, Chanathip; SATOH, Keisuke; SUGURO, Atsushi; HAKIM, Hakimullah; RUENPHET, Sakchai; TAKEHARA, Kazuaki

    2014-01-01

    ABSTRACT Scallop shell powder produced by calcination process − the average diameter of the powder particles being 20 µm (SSP) − was further ground into nano-sized particles, with average diameter of 500 nm, here designated CaO-Nano. Solution of CaO-Nano could inactivate avian influenza virus within 5 sec, whereas the solution of SSP could not even after 1 hr incubation. CaO-Nano solution could also inactivate Newcastle disease virus and goose parvovirus within 5 sec and 30 sec, respectively. The virus-inactivating capacity (neutralizing index: NI>3) of the solution was not reduced by the presence of 20% fetal bovine serum. CaO-Nano solution seems to be a good candidate of materials for enhancement of biosecurity in farms. PMID:24871643

  13. Inactivation of avian influenza virus, newcastle disease virus and goose parvovirus using solution of nano-sized scallop shell powder.

    PubMed

    Thammakarn, Chanathip; Satoh, Keisuke; Suguro, Atsushi; Hakim, Hakimullah; Ruenphet, Sakchai; Takehara, Kazuaki

    2014-09-01

    Scallop shell powder produced by calcination process - the average diameter of the powder particles being 20 µm (SSP) - was further ground into nano-sized particles, with average diameter of 500 nm, here designated CaO-Nano. Solution of CaO-Nano could inactivate avian influenza virus within 5 sec, whereas the solution of SSP could not even after 1 hr incubation. CaO-Nano solution could also inactivate Newcastle disease virus and goose parvovirus within 5 sec and 30 sec, respectively. The virus-inactivating capacity (neutralizing index: NI>3) of the solution was not reduced by the presence of 20% fetal bovine serum. CaO-Nano solution seems to be a good candidate of materials for enhancement of biosecurity in farms.

  14. Complete genome sequence of a velogenic Newcastle disease virus isolated in Mexico.

    PubMed

    Absalón, Angel E; Mariano-Matías, Andrea; Vásquez-Márquez, Alejandra; Morales-Garzón, Andrés; Cortés-Espinosa, Diana V; Ortega-García, Roberto; Lucio-Decanini, Eduardo

    2012-10-01

    In Mexico, the number of cases of the highly virulent Newcastle disease virus is increasing. In 2005, an outbreak of Newcastle disease occurred on an egg laying hen farm in the state of Puebla despite vaccination with the LaSota strain. Farmers experienced a major drop in egg production as a consequence of a field challenge virus. In this study, we characterize the virus, APMV1/chicken/Mexico/P05/2005, responsible for the outbreak. The virus is categorized as a velogenic virus with an intracranial pathogenicity index of 1.99 and a chicken embryo mean death time of 36 h. The complete genome length of the virus was sequenced as consisting of 15,192 bp. In addition, phylogenetic analysis classified the virus as a member of the class II, genotype V. The highly pathogenic nature of the virus has been linked to the amino acid sequence at the fusion protein cleavage site, which contains multiple basic amino acids (RRQKR↓F).

  15. Zika virus infection: Past and present of another emerging vector-borne disease.

    PubMed

    Sakkas, Hercules; Economou, Vangelis; Papadopoulou, Chrissanthy

    2016-01-01

    Zika virus infection is an emerging mosquito-borne disease, first identified in Uganda in 1947. It is caused by the Zika arbovirus, and transmitted by the bites of infected mosquitoes of the genus Aedes. For almost half a century, the Zika virus was reported as the causative agent of sporadic human infections. In 2007, the Zika virus emerged outside Asia and Africa causing an epidemic on the Island of Yap in Micronesia. The manifestation of the newly acquired human infection varies from asymptomatic to self-limiting acute febrile illness with symptoms and clinical features similar to those caused by the Dengue virus ('Dengue-like syndrome'). The real-time PCR and serological methods have been successfully applied for the diagnosis of the disease. The treatment is symptomatic, since there is no specific antiviral treatment or a vaccine. During the recent outbreaks in French Polynesia and Brazil, incidents of Guillain-Barrι syndrome and microcephaly were associated with Zika virus infection, giving rise to fears of further global spread of the virus. Prevention and vector control strategies have to be urgently implemented by national health authorities in order to contain future outbreaks in vulnerable populations. This review summarizes the existing information on Zika virus characteristics, pathogenesis and epidemiology, the available methods for the diagnosis of Zika virus infection and recent approaches for prevention and control.

  16. Non-Lytic Egression of Infectious Bursal Disease Virus (IBDV) Particles from Infected Cells.

    PubMed

    Méndez, Fernando; Romero, Nicolás; Cubas, Liliana L; Delgui, Laura R; Rodríguez, Dolores; Rodríguez, José F

    2017-01-01

    Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is responsible for a devastating immunosuppressive disease affecting juvenile domestic chickens. IBDV particles are naked icosahedrons enclosing a bipartite double-stranded RNA genome harboring three open reading frames (ORF). One of these ORFs codes for VP5, a non-structural polypeptide dispensable for virus replication in tissue culture but essential for IBDV pathogenesis. Using two previously described recombinant viruses, whose genomes differ in a single nucleotide, expressing or not the VP5 polypeptide, we have analyzed the role of this polypeptide during the IBDV replication process. Here, we show that VP5 is not involved in house-keeping steps of the virus replication cycle; i.e. genome transcription/replication, protein translation and virus assembly. Although infection with the VP5 expressing and non-expressing viruses rendered similar intracellular infective progeny yields, striking differences were detected on the ability of their progenies to exiting infected cells. Experimental data shows that the bulk of the VP5-expressing virus progeny efficiently egresses infected cells during the early phase of the infection, when viral metabolism is peaking and virus-induced cell death rates are as yet minimal, as determined by qPCR, radioactive protein labeling and quantitative real-time cell death analyses. In contrast, the release of the VP5-deficient virus progeny is significantly abridged and associated to cell death. Taken together, data presented in this report show that IBDV uses a previously undescribed VP5-dependent non-lytic egress mechanism significantly enhancing the virus dissemination speed. Ultrastructural analyses revealed that newly assembled IBDV virions associate to a vesicular network apparently facilitating their trafficking from virus assembly factories to the extracellular milieu, and that this association requires the expression of the VP5 polypeptide.

  17. Non-Lytic Egression of Infectious Bursal Disease Virus (IBDV) Particles from Infected Cells

    PubMed Central

    Méndez, Fernando; Romero, Nicolás; Cubas, Liliana L.; Delgui, Laura R.; Rodríguez, Dolores

    2017-01-01

    Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is responsible for a devastating immunosuppressive disease affecting juvenile domestic chickens. IBDV particles are naked icosahedrons enclosing a bipartite double-stranded RNA genome harboring three open reading frames (ORF). One of these ORFs codes for VP5, a non-structural polypeptide dispensable for virus replication in tissue culture but essential for IBDV pathogenesis. Using two previously described recombinant viruses, whose genomes differ in a single nucleotide, expressing or not the VP5 polypeptide, we have analyzed the role of this polypeptide during the IBDV replication process. Here, we show that VP5 is not involved in house-keeping steps of the virus replication cycle; i.e. genome transcription/replication, protein translation and virus assembly. Although infection with the VP5 expressing and non-expressing viruses rendered similar intracellular infective progeny yields, striking differences were detected on the ability of their progenies to exiting infected cells. Experimental data shows that the bulk of the VP5-expressing virus progeny efficiently egresses infected cells during the early phase of the infection, when viral metabolism is peaking and virus-induced cell death rates are as yet minimal, as determined by qPCR, radioactive protein labeling and quantitative real-time cell death analyses. In contrast, the release of the VP5-deficient virus progeny is significantly abridged and associated to cell death. Taken together, data presented in this report show that IBDV uses a previously undescribed VP5-dependent non-lytic egress mechanism significantly enhancing the virus dissemination speed. Ultrastructural analyses revealed that newly assembled IBDV virions associate to a vesicular network apparently facilitating their trafficking from virus assembly factories to the extracellular milieu, and that this association requires the expression of the VP5 polypeptide. PMID

  18. Using epidemiological information to develop effective integrated virus disease management strategies.

    PubMed

    Jones, Roger A C

    2004-03-01

    Virus diseases cause serious losses in yield and quality of cultivated plants worldwide. These losses and the resulting financial damage can be limited by controlling epidemics using measures that minimise virus infection sources or suppress virus spread. For each combination of virus, cultivated plant and production system, there is an 'economic threshold' above which the financial damage is sufficient to justify using such measures. However, individual measures used alone may bring only small benefits and they may become ineffective, especially over the long term. When diverse control measures that act in different ways are combined and used together, their effects are complementary resulting in far more effective overall control. Such experiences have led to the development of integrated management concepts for virus diseases that combine available host resistance, cultural, chemical and biological control measures. Selecting the ideal mix of measures for each pathosystem and production situation requires detailed knowledge of the epidemiology of the causal virus and the mode of action of each individual control measure so that diverse responses can be devised to meet the unique features of each of the different scenarios considered. The strategies developed must be robust and necessitate minimal extra expense, labour demands and disruption to standard practices. Examples of how epidemiological information can be used to develop effective integrated disease management (IDM) strategies for diverse situations are described. They involve circumstances where virus transmission from plant-to-plant occurs in four different ways: by contact, non-persistently or persistently by insect vectors, and by root-infecting fungi. The examples are: Subterranean clover mottle virus (SCMoV) (contact-transmitted) and Bean yellow mosaic virus (BYMV) (non-persistently aphid-transmitted) in annually self-regenerating clover pasture; three seed-borne viruses (all non-persistently aphid

  19. Molecular characterisation of foot-and-mouth disease viruses from Pakistan, 2005-2008.

    PubMed

    Waheed, U; Parida, S; Khan, Q M; Hussain, M; Ebert, K; Wadsworth, J; Reid, S M; Hutchings, G H; Mahapatra, M; King, D P; Paton, D J; Knowles, N J

    2011-04-01

    Foot-and-mouth disease (FMD), an economically important disease of cloven-hoofed animals, is endemic in Pakistan where three virus serotypes are present (O, A and Asia 1). Fifty-eight clinical samples collected between 2005 and 2008 from animals with suspected FMD in various locations in Pakistan were subjected to virus isolation on primary cell culture, antigen ELISA and real-time RT-PCR (rRT-PCR). Viruses were isolated from 32 of these samples and identified as FMDV type O (n = 31) or type A (n = 1). Foot-and-mouth disease virus (FMDV) genome was detected in a further 11 samples by real-time RT-PCR. Phylogenetic analyses of the VP1 nucleotide sequences showed that all of the type O viruses belonged to the MIDDLE EAST-SOUTH ASIA topotype with the majority belonging to the PanAsia-2 lineage; a single example of the older PanAsia lineage was identified. The single FMDV type A virus belonged to the ASIA topotype, but did not cluster with known strains that are currently circulating (such as Iran-05) and was not closely related to other type A viruses from the region. These findings demonstrate the widespread distribution of O-PanAsia-2 in Pakistan and the presence of undisclosed novel type A lineages in the region.

  20. Diagnostic Tools for Bluetongue and Epizootic Hemorrhagic Disease Viruses Applicable to North American Veterinary Diagnosticians.

    PubMed

    Wilson, William C; Daniels, Peter; Ostlund, Eileen N; Johnson, Donna E; Oberst, Richard D; Hairgrove, Thomas B; Mediger, Jessica; McIntosh, Michael T

    2015-06-01

    This review provides an overview of current and potential new diagnostic tests for bluetongue (BT) and epizootic hemorrhagic disease (EHD) viruses compiled from international participants of the Orbivirus Gap Analysis Workshop, Diagnostic Group. The emphasis of this review is on diagnostic tools available to North American veterinary diagnosticians. Standard diagnostic tests are readily available for BT/EHD viruses, and there are described tests that are published in the World Organization for Animal Health (OIE) Terrestrial Manual. There is however considerable variation in the diagnostic approach to these viruses. Serological assays are well established, and many laboratories are experienced in running these assays. Numerous nucleic acid amplification assays are also available for BT virus (BTV) and EHD virus (EHDV). Although there is considerable experience with BTV reverse-transcriptase PCR (RT-PCR), there are no standards or comparisons of the protocols used by various state and federal veterinary diagnostic laboratories. Methods for genotyping BTV and EHDV isolates are available and are valuable tools for monitoring and analyzing circulating viruses. These methods include RT-PCR panels or arrays, RT-PCR and sequencing of specific genome segments, or the use of next-generation sequencing. In addition to enabling virus characterization, use of advanced molecular detection methods, including DNA microarrays and next-generation sequencing, significantly enhance the ability to detect unique virus strains that may arise through genetic drift, recombination, or viral genome segment reassortment, as well as incursions of new virus strains from other geographical areas.

  1. Routes and prevalence of shedding of psittacine beak and feather disease virus.

    PubMed

    Ritchie, B W; Niagro, F D; Latimer, K S; Steffens, W L; Pesti, D; Ancona, J; Lukert, P D

    1991-11-01

    Psittacine beak and feather disease (PBFD) virus was recovered from the feces and crop washings from various species of psittacine birds diagnosed with PBFD. High concentrations of the virus also could be demonstrated in feather dust collection from a room where 22 birds with active cases of PBFD were being housed. The virions recovered from the feces, crop, and feather dust were confirmed to be PBFD virus by ultrastructural, physical, or antigenic characteristics. Virus recovered from the feather dust and feces hemagglutinated cockatoo erythrocytes. The specificity of the agglutination was confirmed by hemagglutination inhibition, using rabbit antibodies against PBFD virus. During the test period, 26% (8 of 31) of the birds screened were found to be excreting PBFD virus in their feces, and 21% (3 of 14) of crop washings were positive for PBFD virus. Some birds in the sample group had active cases of diarrhea, whereas others had normal-appearing feces. Diarrhea was found to be the only significant indicator of whether a bird was likely to be excreting virus from the digestive tract. These findings suggest that exposure of susceptible birds to PBFD virus may occur from contact with contaminated feather dust, feces, or crop secretions. Viral particles that were morphologically similar to parvovirus (20- to 24 nm-icosahedral nonenveloped virions) also were recovered from feces of some of the birds.

  2. [Oncolytic viruses as a new way of treatment of neoplastic diseases].

    PubMed

    Kukla, Urszula; Chronowska, Justyna; Łabuzek, Krzysztof; Okopień, Bogusław

    2015-08-01

    Despite the unceasing progression in chemotherapy, radiotherapy and surgery, neoplasms are still the second, after cardiovascular diseases, cause of death in the world. The creation of oncolytic viruses gives hope for increase of anticancer therapy effectiveness. Oncolytic viruses are the type of viruses that selectively infect and cause the lyse of tumor cells excluding normal cells. This mechanism allows to avoid the consequences of the possible replication of the virus, which having entered to the organism, replicates in organism's cells by using the DNA of host cells. The development of genetic engineering and molecular biology has enabled the creation of this kind of genetically modified viruses, which deprive them of their virulence. Currently, there are many clinical trials in progress including the use of oncolytic viruses in head and neck squamous cell carcinoma, thyroid cancer, colorectal cancer, liver cancer, melanoma and glioblastoma multiforme treatment. There are parallel studies in animals using the subsequent viruses. Oncolytic viruses treatment is generally well tolerated, without significant side effects. It is worth to point out that this method combined with chemotherapy and radiotherapy allows to reduce the use of therapeutic doses, which significantly reduces the toxicity of conventional treatment. Further clinical studies evaluating the efficacy and safety of oncolytic viruses will develop more effective and better tolerated therapeutic protocols in the future.

  3. Haggling over viruses: the downside risks of securitizing infectious disease.

    PubMed

    Elbe, Stefan

    2010-11-01

    This article analyses how the 'securitization' of highly pathogenic avian influenza (H5N1) contributed to the rise of a protracted international virus-sharing dispute between developing and developed countries. As fear about the threat of a possible human H5N1 pandemic spread across the world, many governments scrambled to stockpile anti-viral medications and vaccines, albeit in a context where there was insufficient global supply to meet such a rapid surge in demand. Realizing that they were the likely 'losers' in this international race, some developing countries began to openly question the benefits of maintaining existing forms of international health cooperation, especially the common practice of sharing national virus samples with the rest of the international community. Given that such virus samples were also crucial to the high-level pandemic preparedness efforts of the West, the Indonesian government in particular felt emboldened to use international access to its H5N1 virus samples as a diplomatic 'bargaining chip' for negotiating better access to vaccines and other benefits for developing countries. The securitized global response to H5N1 thus ended up unexpectedly entangling the long-standing international virus-sharing mechanism within a wider set of political disputes, as well as prompting governments to subject existing virus-sharing arrangements to much narrower calculations of national interest. In the years ahead, those risks to international health cooperation must be balanced with the policy attractions of the global health security agenda.

  4. Immunoreactivity and trypsin sensitivity of recombinant virus-like particles of foot-and-mouth disease virus.

    PubMed

    Basagoudanavar, S H; Hosamani, M; Tamil, R P; Sreenivasa, B P; Chandrasekhar, B K; Venkataramanan, R

    2015-03-01

    Foot-and-mouth disease (FMD) is an important infection affecting the health and productivity of cloven-hoofed livestock. Development of improved vaccines and diagnostic reagents is being explored to facilitate the disease control. There is an emerging interest in virus-like particles (VLPs), as their constituent structural proteins are the major immunogens. The VLPs are similar to natural virus particles but lack viral nucleic acid. The objective of the present study was to express the VLPs of FMD virus (FMDV) serotype Asia-1 (IND 63/72), using baculovirus system and characterize them for antigenic structure. The VLPs expressed in insect cells showed immunoreactivity similar to inactivated cell culture FMDV. Further they possess similar sensitivity to trypsin as the inactivated cell culture FMDV, suggesting that trypsin-sensitive antigenic sites could be similarly arranged. Our findings suggest that the FMD VLPs have similar antigenic conformational feature like the wild type virus, thus supporting their utility in development of non-infectious FMD vaccines and/or diagnostic assays.

  5. Complete Genome and Clinicopathological Characterization of a Virulent Newcastle Disease Virus Isolate from South America

    PubMed Central

    Diel, Diego G.; Susta, Leonardo; Cardenas Garcia, Stivalis; Killian, Mary L.; Brown, Corrie C.; Afonso, Claudio L.

    2012-01-01

    Newcastle disease (ND) is one of the most important diseases of poultry, negatively affecting poultry production worldwide. The disease is caused by Newcastle disease virus (NDV) or avian paramyxovirus type 1 (APMV-1), a negative-sense single-stranded RNA virus of the genus Avulavirus, family Paramyxoviridae. Although all NDV isolates characterized to date belong to a single serotype of APMV-1, significant genetic diversity has been described between different NDV isolates. Here we present the complete genome sequence and the clinicopathological characterization of a virulent Newcastle disease virus isolate (NDV-Peru/08) obtained from poultry during an outbreak of ND in Peru in 2008. Phylogenetic reconstruction and analysis of the evolutionary distances between NDV-Peru/08 and other isolates representing established NDV genotypes revealed the existence of large genomic and amino differences that clearly distinguish this isolate from viruses of typical NDV genotypes. Although NDV-Peru/08 is a genetically distinct virus, pathogenesis studies conducted with chickens revealed that NDV-Peru/08 infection results in clinical signs characteristic of velogenic viscerotropic NDV strains. Additionally, vaccination studies have shown that an inactivated NDV-LaSota/46 vaccine conferred full protection from NDV-Peru/08-induced clinical disease and mortality. This represents the first complete characterization of a virulent NDV isolate from South America. PMID:22135263

  6. West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2015.

    PubMed

    Krow-Lucal, Elisabeth; Lindsey, Nicole P; Lehman, Jennifer; Fischer, Marc; Staples, J Erin

    2017-01-20

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. The leading cause of domestically acquired arboviral disease in the United States is West Nile virus (WNV) (1). Other arboviruses, including La Crosse, St. Louis encephalitis, Jamestown Canyon, Powassan, and eastern equine encephalitis viruses, also cause sporadic cases and outbreaks. This report summarizes surveillance data reported to CDC in 2015 for nationally notifiable arboviruses. It excludes dengue, chikungunya, and Zika viruses, which are primarily nondomestic viruses typically acquired through travel (and are addressed in other CDC reports). In 2015, 45 states and the District of Columbia (DC) reported 2,282 cases of domestic arboviral disease. Among these cases, 2,175 (95%) were WNV disease and 1,455 (67%) of those were classified as neuroinvasive disease (meningitis, encephalitis, or acute flaccid paralysis). The national incidence of WNV neuroinvasive disease was 0.45 cases per 100,000 population. Because arboviral diseases continue to cause serious illness, maintaining surveillance is important to direct prevention activities such as reduction of vector populations and screening of blood donors.

  7. Zika Virus Disease Cases - 50 States and the District of Columbia, January 1-July 31, 2016.

    PubMed

    Walker, William L; Lindsey, Nicole P; Lehman, Jennifer A; Krow-Lucal, Elisabeth R; Rabe, Ingrid B; Hills, Susan L; Martin, Stacey W; Fischer, Marc; Staples, J Erin

    2016-09-16

    Zika virus is a mosquito-borne flavivirus primarily transmitted to humans by Aedes aegypti mosquitoes (1). Zika virus infections have also been documented through intrauterine transmission resulting in congenital infection; intrapartum transmission from a viremic mother to her newborn; sexual transmission; blood transfusion; and laboratory exposure (1-5). Most Zika virus infections are asymptomatic (1,6). Clinical illness, when it occurs, is generally mild and characterized by acute onset of fever, maculopapular rash, arthralgia, or nonpurulent conjunctivitis. However, Zika virus infection during pregnancy can cause adverse outcomes such as fetal loss, and microcephaly and other serious brain anomalies (1-3). Guillain-Barré syndrome, a rare autoimmune condition affecting the peripheral nervous system, also has been associated with Zika virus infection (1). Following the identification of local transmission of Zika virus in Brazil in May 2015, the virus has continued to spread throughout the Region of the Americas, and travel-associated cases have increased (7). In 2016, Zika virus disease and congenital infections became nationally notifiable conditions in the United States (8). As of September 3, 2016, a total of 2,382 confirmed and probable cases of Zika virus disease with symptom onset during January 1-July 31, 2016, had been reported from 48 of 50 U.S. states and the District of Columbia. Most cases (2,354; 99%) were travel-associated, with either direct travel or an epidemiologic link to a traveler to a Zika virus-affected area. Twenty-eight (1%) cases were reported as locally acquired, including 26 associated with mosquito-borne transmission, one acquired in a laboratory, and one with an unknown mode of transmission. Zika virus disease should be considered in patients with compatible clinical signs or symptoms who traveled to or reside in areas with ongoing Zika virus transmission or who had unprotected sex with someone who traveled to those areas. Health

  8. Quantification of lumpy skin disease virus following experimental infection in cattle.

    PubMed

    Babiuk, S; Bowden, T R; Parkyn, G; Dalman, B; Manning, L; Neufeld, J; Embury-Hyatt, C; Copps, J; Boyle, D B

    2008-09-01

    Lumpy skin disease along with sheep pox and goatpox are the most serious poxvirus diseases of livestock, and are caused by viruses that belong to the genus Capripoxvirus within the subfamily Chordopoxvirinae, family Poxviridae. To facilitate the study of lumpy skin disease pathogenesis, we inoculated eight 4- to 6-month-old Holstein calves intravenously with lumpy skin disease virus (LSDV) and collected samples over a period of 42 days for analysis by virus isolation, real-time PCR and light microscopy. Following inoculation, cattle developed fever and skin nodules, with the extent of infection varying between animals. Skin nodules remained visible until the end of the experiment on day post-inoculation (DPI) 42. Viremia measured by real-time PCR and virus isolation was not observed in all animals but was detectable between 6 and 15 DPI. Low levels of viral shedding were observed in oral and nasal secretions between 12 and 18 DPI. Several tissues were assessed for the presence of virus at DPI 3, 6, 9, 12, 15, 18 and 42 by virus isolation and real-time PCR. Virus was consistently detected by real-time PCR and virus isolation at high levels in skin nodules indicating LSDV has a tropism for skin. In contrast, relatively few lesions were observed systemically. Viral DNA was detected by real-time PCR in skin lesions collected on DPI 42. Cattle developing anti-capripoxvirus antibodies starting at DPI 21 was detected by serum neutralization. The disease in this study varied from mild with few secondary skin nodules to generalized infection of varying severity, and was characterized by morbidity with no mortality.

  9. Genetic characterization and pathogenicity assessment of Newcastle disease virus isolated from wild peacock.

    PubMed

    Khulape, Sagar A; Gaikwad, Satish S; Chellappa, Madhan Mohan; Mishra, Bishnu Prasad; Dey, Sohini

    2014-12-01

    The continued spread and occurrence of Newcastle disease virus (NDV) has posed potential threat to domestic poultry industry around the globe. Mainly, wild avian species has always been implicated for the natural reservoir for virus and spread of the disease. In the present study, we report the isolation of Newcastle disease virus (NDV/Peacock/India/2012) in necropsy brain tissue sample of wild peacock from North India. Complete genome of the virus was found to be 15,186 nucleotides (nts) with six genes in order of 3'-N-P-M-F-HN-L-5', which was limited by 55-nts leader region at the 3' end and a 114-nts trailer sequence at 5' end. Sequence analysis of fusion protein revealed the dibasic amino acid cleavage site (112)R-R-Q-K-R-F(117), a characteristic motif of virulent virus. Phylogenetic analysis placed the isolate in genotype II of Newcastle disease virus showing the lowest mean percent divergence (6 %) with other genotype II counterparts. The isolate was characterized as mesogenic (intermediate pathotype) based on the mean death time (63 h) in embryonated chicken eggs and the intra-cerebral pathogenicity index (1.40) in day-old chicks. The report emphasizes the dynamic ecology of NDV strains circulating in a wild avian host during the outbreak of 2012 in North India. Further the genotypic and pathotypical characterizations of the isolate could help in development of homologous vaccine against NDV strain circulating in avian population.

  10. Mucosal disease-like lesions in sheep infected with Border disease virus.

    PubMed

    Monies, R J; Paton, D J; Vilcek, S

    2004-12-11

    An enteric disease characterised by diarrhoea and ill thrift affected 12 of a flock of 700 six- to 12-month-old ewe lambs in Cornwall between December 1996 and September 1997. The affected lambs were undersized, became thin and suffered an unremitting diarrhoea until they died. The illness lasted for three to 14 days, although, with hindsight, the owner considered that the lambs had been below average size before the enteric signs developed. The outbreak ceased only as a result of the dispersal sale of the flock as breeding ewes. The flock had been purchased from different sources, but 11 of the cases occurred in a group of 40 purchased from one source. Postmortem, the alimentary changes resembled mucosal disease in cattle, and immunostaining of histological sections of the affected tissues revealed pestiviral antigen. Non-cytopathic pestiviruses were isolated from the lesions of two of the affected lambs and from the blood of several clinically normal ewe lambs from the same group. All the pestivirus isolates were typed as Border disease virus.

  11. Newcastle disease viruses causing recent outbreaks worldwide show unexpectedly high genetic similarity with historical virulent isolates from the 1940s

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), a devastating disease of poultry and wild birds. Phylogenetic analyses clearly distinguish historical isolates (obtained prior to 1960) from currently circulating viruses of class II genotypes V, VI, VII, and XII throug...

  12. Characterizing the molecular basis of attenuation of Marek’s disease virus via in vitro serial passage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease (MD) is a lymphoproliferative disease of chickens caused by the oncogenic Gallid herpesvirus 2, commonly known as Marek’s disease virus (MDV). MD vaccines, the primary control method, are often generated by repeated in vitro serial passage of this highly cell-associated virus to atte...

  13. Effect of foot-and-mouth disease virus on the frequency, phenotype and function of circulating dendritic cells in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes one of the most devastating diseases in cloven-hoofed animals. Disease symptoms in FMDV-infected animals appear within 2 to 3 days of exposure. Dendritic cells (DC) play an essential role in protective immune responses agai...

  14. Virus-host interactions and their roles in coral reef health and disease.

    PubMed

    Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S

    2017-04-01

    Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

  15. Evaluating the Efficacy of Achillea millefolium and Thymus vulgaris Extracts Against Newcastle Disease Virus in Ovo

    PubMed Central

    Rezatofighi, Seyedeh Elham; Seydabadi, Akram; Seyyed Nejad, Seyyed Mansour

    2014-01-01

    Background: Nowadays natural products such as pure compounds and plant extract scan provide unlimited opportunities for new antiviral drugs. Newcastle disease virus (NDV) is one of the most important viral diseases in poultry industry. Vaccination could provide protection against NDV outbreaks, but it is not sufficient because infections by NDVs have remained frequent around the world. Objectives: The current research aimed to study Achillea millefolium and Thymus vulgaris antiviral activity against Newcastle disease virus (NDV). Materials and Methods: The antiviral activity of the plants was measured by the reduction assay of viral titer, and explained by inhibition percentage (IP). Results: Inhibition percentage was determined as 10 1.75, which indicated the ability of the extracts to reduce the viral potency by more than 56 folds. Conclusions: Both plants were found effective against Newcastle disease virus. PMID:25147678

  16. Bovine viral diarrhea virus: involvement in bovine respiratory disease and diagnostic challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews the contribution of bovine viral diarrhea viruses (BVDV) to the development of Bovine Respiratory Disease (BRD). Veterinarians and producers generally consider BRD as one of the most significant diseases affecting production in the cattle industry. BRD can affect the performance (...

  17. Genome Sequence of a Virulent Genotype III Newcastle Disease Virus Isolated from Laying Ducks in China

    PubMed Central

    Wen, Guoyuan; Wang, Min; Wang, Honglin; Li, Lintao; Luo, Qingping; Zhang, Tengfei

    2016-01-01

    Here, we report the complete genome sequence of a virulent Newcastle disease virus (NDV) strain HN1007, isolated from diseased duck flocks in Henan, China, in 2010. The isolate has a genome length of 15,186 nucleotides, and was classified as a member of genotype III of class II. PMID:28034854

  18. A novel thermostable Newcastle disease virus vaccine vector for expression of a heterologous gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thermostable Newcastle disease virus (NDV) vaccines have been used widely to control Newcastle disease for village flocks, especially in the developing countries. To explore the potential use of the thermostable NDV as a vaccine vector, a reverse genetic system for the thermostable avirulent NDV...

  19. Marek’s disease virus induced transient atrophy of cecal tonsils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although bursal and thymic atrophy associated with Marek’s disease (MD) is well established and characterized, the effect of Marek's disease virus (MDV) infection on lymphoid aggregates within the gut-associated lymphoid tissue (GALT) is not known. The cecal tonsils (CT) are the two largest lympho...

  20. Assessing Sensitivity and Specificity of Surveillance Case Definitions for Zika Virus Disease

    PubMed Central

    Ho, Hanley; Win, Mar-Kyaw; Leo, Yee-Sin

    2017-01-01

    We evaluated performance of 5 case definitions for Zika virus disease surveillance in a human cohort during an outbreak in Singapore, August 26–September 5, 2016. Because laboratory tests are largely inaccessible, use of case definitions that include rash as a required clinical feature are useful in identifying this disease. PMID:28117032

  1. Assessing Sensitivity and Specificity of Surveillance Case Definitions for Zika Virus Disease.

    PubMed

    Chow, Angela; Ho, Hanley; Win, Mar-Kyaw; Leo, Yee-Sin

    2017-04-01

    We evaluated performance of 5 case definitions for Zika virus disease surveillance in a human cohort during an outbreak in Singapore, August 26-September 5, 2016. Because laboratory tests are largely inaccessible, use of case definitions that include rash as a required clinical feature are useful in identifying this disease.

  2. Separate evolution of virulent newcastle disease virus from Mexico and Central America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A poultry outbreak of Newcastle disease (ND) was reported in Belize in 2008. The characteristics of three virulent Newcastle Disease Virus (NDV) isolates from this outbreak (NDV-Belize-3/08, NDV-Belize-12/08, NDV-Belize-4/08) were assessed by genomic analysis and by clinico-pathological characteriz...

  3. Characterization of Newcastle disease virus isolates recovered from pigeons in the territory of the Russian Federation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND) is a continual problem for the poultry industry with synanthropic birds representing one of the possible reservoirs of infection. Outbreaks of ND are regularly confirmed among pigeons in different regions of the Russian Federation. The spread of Newcastle disease virus (NDV) a...

  4. Development of a novel thermostable Newcastle disease virus vaccine vector for expression of a heterologous gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thermostable Newcastle disease virus (NDV) vaccines have been used widely to control Newcastle disease (ND) for village flocks, due to their independence of cold chains for delivery and storage. To explore the potential use of the thermostable NDV as a vaccine vector, an infectious clone of the...

  5. Establishment of an Aerosal-Based Marek's Disease Virus Infection Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV), which is the causative agent of Marek’s disease (MD), is shed by infected chickens and transmitted to other chickens through the respiratory route. Experimental reproduction of MD has been commonly done either by intra-abdominal inoculation of cell-associated MDV or by e...

  6. Ebola virus disease: What clinicians in the United States need to know

    PubMed Central

    Fischer, William A.; Uyeki, Timothy M.; Tauxe, Robert V.

    2015-01-01

    In March 2014 the World Health Organization was notified of an outbreak of Ebola virus disease (EVD) in the forest region of Guinea. Over the subsequent 8 months, this outbreak has become the most devastating Ebola epidemic in history with 21,296 infections and 8,429 deaths. The recent introduction of Ebola into noncontiguous countries including the United States from infected travelers highlights the importance of preparedness of all healthcare providers. Early identification and rapid isolation of patients suspected of being infected with Ebola virus is critical to limiting the spread of this virus. Additionally, enhanced understanding of Ebola case definitions, clinical presentation, treatment and infection control strategies will improve the ability of healthcare providers to safe care for patients with Ebola virus disease. PMID:26116335

  7. Detection of Corchorus golden mosaic virus Associated with Yellow Mosaic Disease of Jute (Corchorus capsularis).

    PubMed

    Ghosh, Raju; Palit, Paramita; Paul, Sujay; Ghosh, Subrata Kumar; Roy, Anirban

    2012-06-01

    Yellow mosaic disease, caused by a whitefly transmitted New World Begomovirus, named Corchorus golden mosaic virus (CoGMV), is emerging as a serious biotic constraint for jute fibre production in Asia. For rapid and sensitive diagnosis of the Begomovirus associated with this disease, a non-radiolabelled diagnostic probe, developed against the DNA A component of the east Indian isolate of CoGMV, detected the presence of the virus in infected plants and viruliferous whiteflies following Southern hybridization and nucleic acid spot hybridization tests. Presence of the virus was also confirmed when polymerase chain reaction amplification was performed using virus-specific primers on DNA templates isolated from infected plants and viruliferous whiteflies.

  8. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    PubMed Central

    Allison, Andrew B.; Keel, M. Kevin; Philips, Jamie E.; Cartoceti, Andrew N.; Munk, Brandon A.; Nemeth, Nicole M.; Welsh, Trista I.; Thomas, Jesse M.; Crum, James M.; Lichtenwalner, Anne B.; Fadly, Aly M.; Zavala, Guillermo; Holmes, Edward C.; Brown, Justin D.

    2014-01-01

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we describe the widespread distribution, genetic diversity, pathogenesis, and evolution of LPDV in the United States. Characterization of the provirus genome of the index LPDV case from North America demonstrated an 88% nucleotide identity to the Israeli prototype strain. Although phylogenetic analysis indicated that the majority of viruses fell into a single North American lineage, a small subset of viruses from South Carolina were most closely related to the Israeli prototype. These results suggest that LPDV was transferred between continents to initiate outbreaks of disease. However, the direction (New World to Old World or vice versa), mechanism, and time frame of the transcontinental spread currently remain unknown. PMID:24503062

  9. Avian oncogenesis induced by lymphoproliferative disease virus: a neglected or emerging retroviral pathogen?

    PubMed

    Allison, Andrew B; Kevin Keel, M; Philips, Jamie E; Cartoceti, Andrew N; Munk, Brandon A; Nemeth, Nicole M; Welsh, Trista I; Thomas, Jesse M; Crum, James M; Lichtenwalner, Anne B; Fadly, Aly M; Zavala, Guillermo; Holmes, Edward C; Brown, Justin D

    2014-02-01

    Lymphoproliferative disease virus (LPDV) is an exogenous oncogenic retrovirus that induces lymphoid tumors in some galliform species of birds. Historically, outbreaks of LPDV have been reported from Europe and Israel. Although the virus has previously never been detected in North America, herein we describe the widespread distribution, genetic diversity, pathogenesis, and evolution of LPDV in the United States. Characterization of the provirus genome of the index LPDV case from North America demonstrated an 88% nucleotide identity to the Israeli prototype strain. Although phylogenetic analysis indicated that the majority of viruses fell into a single North American lineage, a small subset of viruses from South Carolina were most closely related to the Israeli prototype. These results suggest that LPDV was transferred between continents to initiate outbreaks of disease. However, the direction (New World to Old World or vice versa), mechanism, and time frame of the transcontinental spread currently remain unknown.

  10. Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease.

    PubMed

    Suazo, Paula A; Tognarelli, Eduardo I; Kalergis, Alexis M; González, Pablo A

    2015-04-01

    Infection with herpes simplex viruses is one of the most ancient diseases described to affect humans. Infection with these viruses produces vexing effects to the host, which frequently recur. Infection with herpes simplex viruses is lifelong, and currently there is no vaccine or drug to prevent or cure infection. Prevalence of herpes simplex virus 2 (HSV-2) infection varies significantly depending on the geographical region and nears 20% worldwide. Importantly, HSV-2 is the first cause of genital ulcers in the planet. HSV-2 affects approximately 500 million people around the globe and significantly increases the likelihood of acquiring the human immunodeficiency virus (HIV), as well as its shedding. Thus, controlling HSV-2 infection and spread is of public health concern. Here, we review the diseases produced by herpes simplex viruses, the factors that modulate HSV-2 infection, the relationship between HSV-2 and HIV and novel therapeutic and prophylactic microbicides/antivirals under development to prevent infection and pathological outcomes produced by this virus. We also review mutations associated with HSV-2 resistance to common antivirals.

  11. Development of a highly immunogenic Newcastle disease virus chicken vaccine strain of duck origin.

    PubMed

    Kim, J Y; Kye, S J; Lee, H J; Gaikwad, S; Lee, H S; Jung, S C; Choi, K S

    2016-04-01

    Newcastle disease virus (NDV) strain NDRL0901 was developed as a live vaccine candidate for control of Newcastle disease. NDV isolate KR/duck/13/07 (DK1307) of duck origin was used as the selected vaccine strain. DK1307 was passaged 6 times in chickens. Then a single clone from the chicken-adapted virus (DK1307C) was finally selected, and the vaccine strain was named NDRL0901. DK1307C and the clone NDRL0901 viruses showed enhanced immunogenicity compared to the DK1307 virus. Principal component analysis based on fusion and hemagglutinin-neuraminidase genes revealed the codon usage pattern in the dataset is distinct separating duck viral sequences and avian sequences, and passage of the duck origin virus into the chicken host causes deviation in the codon usage pattern. The NDRL0901 virus was avirulent and did not acquire viral virulence even after 7 back passages in chickens. When day-old chicks were vaccinated with the NDRL0901 virus via spray, eye drops, and drinking water, the vaccinated birds showed no clinical signs and had significant protection efficacy (>80%) against very virulent NDV (Kr005 strain) infection regardless of the administration route employed. The results indicate that the NDRL0901 strain is safe in chickens and can offer protective immunity.

  12. Association of tomato leaf curl Sudan virus with leaf curl disease of tomato in Jeddah, Saudi Arabia.

    PubMed

    Sohrab, Sayed Sartaj; Yasir, Muhammad; El-Kafrawy, Sherif Ali; Abbas, Ayman T; Mousa, Magdi Ali Ahmed; Bakhashwain, Ahmed A

    2016-06-01

    Tomato is an important vegetable crop and its production is adversely affected by leaf curl disease caused by begomovirus. Leaf curl disease is a serious concern for tomato crops caused by begomovirus in Jeddah, Kingdom of Saudi Arabia. Tomato leaf curl disease has been shown to be mainly caused either by tomato leaf curl Sudan virus or tomato yellow leaf curl virus as well as tomato leaf curl Oman virus. Many tomato plants infected with monopartite begomoviruses were also found to harbor a symptom enhancing betasatellites. Here we report the association of tomato leaf curl Sudan virus causing leaf curl disease of tomato in Jeddah, Kingdom of Saudi Arabia. The complete genome sequence analysis showed highest (99.9 %) identity with tomato leaf curl Sudan virus causing leaf curl disease in Arabian Peninsula. In phylogenetic relationships analysis, the identified virus formed closest cluster with tomato leaf curl Sudan virus. In recombination analysis study, the major parent was identified as tomato leaf curl Sudan virus. Findings of this study strongly supports the associated virus is a variant of tomato leaf curl Sudan virus causing disease in Sudan, Yemen and Arabian Peninsula. The betasatellites sequence analysis showed highest identity (99.8 %) with tomato leaf curl betasatellites-Amaranthus-Jeddah. The phylogenetic analysis result based on betasatellites formed closed cluster with tomato yellow leaf curl Oman betasatellites. The importance of these findings and occurrence of begomovirus in new geographic regions causing leaf curl disease of tomato in Jeddah, Kingdom of Saudi Arabia are discussed.

  13. Necrolytic acral erythema: a rare skin disease associated with hepatitis C virus infection*

    PubMed Central

    Botelho, Luciane Francisca Fernandes; Enokihara, Milvia Maria Simões e Silva; Enokihara, Mauro Yoshiaki

    2016-01-01

    Necrolytic acral erythema is a rare skin disease associated with hepatitis C virus infection. We report a case of a 31-year-old woman with hepatitis C virus infection and decreased zinc serum level. Physical examination revealed scaly, lichenified plaques, well-demarcated with an erythematous peripheral rim located on the lower limbs. After blood transfusion and oral zinc supplementation the patient presented an improvement of lesions. PMID:27828642

  14. Management of Microbiological Samples in a Confirmed Case of Ebola Virus Disease: Constraints and Limitations

    PubMed Central

    Hogardt, Michael; Wolf, Timo; Kann, Gerrit; Brodt, Hans-Reinhard; Brandt, Christian; Keppler, Oliver T.; Wicker, Sabine; Zacharowski, Kai; Gottschalk, René; Becker, Stephan

    2015-01-01

    In light of the recent Ebola virus outbreak, it has to be realized that besides medical treatment, precise algorithms for the management of complicating microbial infections are mandatory for Ebola virus disease (EVD) patients. While the necessity of such diagnostics is apparent, practical details are much less clear. Our approach, established during the treatment of an EVD patient at the University Hospital in Frankfurt am Main, Germany, provides a roadmap for reliable and safe on-site microbiological testing. PMID:26109444

  15. Development of a plaque assay for Newcastle Disease virus. Memorandum report

    SciTech Connect

    Kournikakis, B.V.; Fildes, J.

    1987-02-01

    A reliable plaque assay system for virulent strains of Newcastle Disease virus (eg. Type BL, LaSota strain used in vaccines and at DRES as a viral BW simulant) utilizing a continuous monkey kidney cell line (LLC-MK2) is described. The use of a continuous cell line eliminates the added time and inconvenience of preparing primary cell cultures (eg. chick embryo fibroblasts) to quantitate the number of infectious virus particles.

  16. Comparative Evaluation of Vaccine Efficacy of Recombinant Marek's Disease Virus Vaccine Lacking Meq Oncogene in Commercial Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus oncogene meq has been identified as the gene involved in tumorigenesis in chickens. We have recently developed a Meq-null virus, rMd5delMeq, in which the oncogene Meq was deleted. Vaccine efficacy experiments conducted in ADOL 15I5 x 71 chickens vaccinated with rMd5delMeq virus...

  17. Pathogenesis of primary foot-and-mouth disease virus infection in the nasopharynx of vaccinated and non-vaccinated cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A time-course pathogenesis study was performed to compare and contrast primary foot-and-mouth disease virus (FMDV) infection in vaccinated and non-vaccinated cattle following simulated-natural virus exposure. FMDV genome and infectious virus were detected during the initial phase of infection from b...

  18. A colorimetric bioassay for high-througput and cost-effectively assessing anti-foot-and-mouth disease virus activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-Mouth Disease virus (FMDV) is one of the most contagious animal viruses and has a devastating effect on livestock industries if an outbreaks occurs, especially in FMD-free countries. The virus is very sensitive to inhibition by type I interferons. Currently, a reported assay to measure FM...

  19. Ebola Virus Disease and Marburg Disease in Pregnancy: A Review and Management Considerations for Filovirus Infection

    PubMed Central

    Bebell, Lisa M.; Riley, Laura E.

    2015-01-01

    The largest-ever recorded outbreak of viral hemorrhagic fever is ongoing. Due to the epidemic and rural nature of outbreaks, little is published about the Filovirus infections Ebola virus disease and Marburg disease in pregnancy. This review of viral hemorrhagic fever focusing on Marburg and Ebola uses knowledge of disease in non-pregnant individuals and pregnancy-specific data to inform management for pregnant women. Filovirus infection presentation is similar between pregnant and non-pregnant patients, though infections may be more severe in pregnancy. Although labeled as hemorrhagic fevers, Marburg and Ebola do not commonly cause gross bleeding and should be conceptualized as diseases of high gastrointestinal losses. Early, aggressive supportive care is the mainstay of Filovirus infection management with massive fluid resuscitation as the key management principle. Patients often require 5–10 liters or more per day of intravenous or oral fluid to maintain circulating blood volume in the setting of ongoing gastrointestinal loss. Fluid shifts warrant aggressive monitoring and correction of potassium levels and acid-base disturbances to prevent life-threatening arrhythmias and metabolic complications. Regardless of maternal survival, fetal loss rates are nearly 100% in Filovirus infection, likely resulting from unchecked transplacental and hematogenous viral spread. High fetal loss rates support the placenta as a difficult-to-eradicate Filovirus infection reservoir. In conclusion, the management of Filovirus infection in pregnancy should focus on stabilizing the mother with intensive monitoring and aggressive fluid and electrolyte repletion, as well as maintaining strict infection control to minimize transmission to others. PMID:26000499

  20. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds.

    PubMed

    Ayala, Andrea J; Dimitrov, Kiril M; Becker, Cassidy R; Goraichuk, Iryna V; Arns, Clarice W; Bolotin, Vitaly I; Ferreira, Helena L; Gerilovych, Anton P; Goujgoulova, Gabriela V; Martini, Matheus C; Muzyka, Denys V; Orsi, Maria A; Scagion, Guilherme P; Silva, Renata K; Solodiankin, Olexii S; Stegniy, Boris T; Miller, Patti J; Afonso, Claudio L

    2016-01-01

    Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife.

  1. Genetic characterization and evolutionary analysis of Newcastle disease virus isolated from domestic duck in South Korea.

    PubMed

    Gaikwad, Satish; Kim, Ji-Ye; Lee, Hyun-Jeong; Jung, Suk Chan; Choi, Kang-Seuk

    2016-03-15

    Domestic ducks are considered a potential reservoir of Newcastle disease virus. In the study, a Newcastle disease virus (NDV) isolated from a domestic duck during surveillance in South Korea was characterized. The complete genome of the NDV isolate was sequenced, and the phylogenetic relationship to reference strains was studied. Phylogenetic analysis revealed that the strain clustered in genotype I of Class II ND viruses, has highly phylogenetic similarity to NDV strains isolated from waterfowl in China, but was distant from the viruses isolated in chickens and vaccine strains used in South Korea. Pathogenicity experiment in chickens revealed it to be a lentogenic virus. The deduced amino acid sequence of the cleavage site of the fusion (F) protein confirmed that the isolate contained the avirulent motif (112)GKQGRL(117) at the cleavage site and caused no apparent disease in chickens and ducks. With phylogeographic analysis based on fusion gene, we estimate the origin of an ancestral virus of the isolate and its sister strain located in China around 1998. It highlights the need of continuous surveillance to enhance current understanding of the molecular epidemiology and evolution of the pathogenic strains.

  2. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds

    PubMed Central

    Ayala, Andrea J.; Dimitrov, Kiril M.; Becker, Cassidy R.; Goraichuk, Iryna V.; Arns, Clarice W.; Bolotin, Vitaly I.; Ferreira, Helena L.; Gerilovych, Anton P.; Goujgoulova, Gabriela V.; Martini, Matheus C.; Muzyka, Denys V.; Orsi, Maria A.; Scagion, Guilherme P.; Silva, Renata K.; Solodiankin, Olexii S.; Stegniy, Boris T.; Miller, Patti J.; Afonso, Claudio L.

    2016-01-01

    Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife. PMID:27626272

  3. Occult hepatitis B virus infection is not associated with disease progression of chronic hepatitis C virus infection

    PubMed Central

    Cho, Junhyeon; Lee, Sang Soo; Choi, Yun Suk; Jeon, Yejoo; Chung, Jung Wha; Baeg, Joo Yeong; Si, Won Keun; Jang, Eun Sun; Kim, Jin-Wook; Jeong, Sook-Hyang

    2016-01-01

    AIM To clarify the prevalence of occult hepatitis B virus (HBV) infection (OBI) and the association between OBI and liver disease progression, defined as development of liver cirrhosis or hepatocellular carcinoma (HCC), worsening of Child-Pugh class, or mortality in cases of chronic hepatitis C virus (HCV) infection. METHODS This prospective cohort study enrolled 174 patients with chronic HCV infection (chronic hepatitis, n = 83; cirrhosis, n = 47; HCC, n = 44), and evaluated disease progression during a mean follow-up of 38.7 mo. OBI was defined as HBV DNA positivity in 2 or more different viral genomic regions by nested polymerase chain reaction using 4 sets of primers in the S, C, P and X open reading frame of the HBV genome. RESULTS The overall OBI prevalence in chronic HCV patients at enrollment was 18.4%, with 16.9%, 25.5% and 13.6% in the chronic hepatitis C, liver cirrhosis and HCC groups, respectively (P = 0.845). During follow-up, 52 patients showed disease progression, which was independently associated with aspartate aminotransferase > 40 IU/L, Child-Pugh score and sustained virologic response (SVR), but not with OBI positivity. In 136 patients who were not in the SVR state during the study period, OBI positivity was associated with neither disease progression, nor HCC development. CONCLUSION The prevalence of OBI in chronic HCV patients was 18.4%, and OBI was not associated with disease progression in South Koreans. PMID:27895431

  4. Effects of Chicken Interferon Gamma on Newcastle Disease Virus Vaccine Immunogenicity

    PubMed Central

    Cardenas-Garcia, Stivalis; Dunwoody, Robert P.; Marcano, Valerie; Diel, Diego G.; Williams, Robert J.; Gogal, Robert M.; Brown, Corrie C.; Miller, Patti J.; Afonso, Claudio L.

    2016-01-01

    More effective vaccines are needed to control avian diseases. The use of chicken interferon gamma (chIFNγ) during vaccination is a potentially important but controversial approach that may improve the immune response to antigens. In the present study, three different systems to co-deliver chIFNγ with Newcastle disease virus (NDV) antigens were evaluated for their ability to enhance the avian immune response and their protective capacity upon challenge with virulent NDV. These systems consisted of: 1) a DNA vaccine expressing the Newcastle disease virus fusion (F) protein co-administered with a vector expressing the chIFNγ gene for in ovo and booster vaccination, 2) a recombinant Newcastle disease virus expressing the chIFNγ gene (rZJ1*L/IFNγ) used as a live vaccine delivered in ovo and into juvenile chickens, and 3) the same rZJ1*L/IFNγ virus used as an inactivated vaccine for juvenile chickens. Co-administration of chIFNγ with a DNA vaccine expressing the F protein resulted in higher levels of morbidity and mortality, and higher amounts of virulent virus shed after challenge when compared to the group that did not receive chIFNγ. The live vaccine system co-delivering chIFNγ did not enhanced post-vaccination antibody response, nor improved survival after hatch, when administered in ovo, and did not affect survival after challenge when administered to juvenile chickens. The low dose of the inactivated vaccine co-delivering active chIFNγ induced lower antibody titers than the groups that did not receive the cytokine. The high dose of this vaccine did not increase the antibody titers or antigen-specific memory response, and did not reduce the amount of challenge virus shed or mortality after challenge. In summary, regardless of the delivery system, chIFNγ, when administered simultaneously with the vaccine antigen, did not enhance Newcastle disease virus vaccine immunogenicity. PMID:27409587

  5. Virus Excretion from Foot-And-Mouth Disease Virus Carrier Cattle and Their Potential Role in Causing New Outbreaks.

    PubMed

    Parthiban, Aravindh Babu R; Mahapatra, Mana; Gubbins, Simon; Parida, Satya

    2015-01-01

    The role of foot-and-mouth disease virus (FMDV) carrier cattle in causing new outbreaks is still a matter of debate and it is important to find out these carrier animals by post-outbreak serosurveillance to declare freedom from FMDV infection. In this study we explore the differences in viral shedding between carrier and non-carrier animals, quantify the transmission rate of FMDV infection from carriers to susceptible animals and identify potential viral determinants of viral persistence. We collected nasal and saliva samples from 32 vaccinated and 7 unvaccinated FMDV carrier cattle and 48 vaccinated and 13 unvaccinated non-carrier cattle (total n=100) during the acute phase of infection (up to 28 days post-challenge) and then from limited number of animals up to a maximum 168 days post-challenge. We demonstrate that unvaccinated cattle excrete significantly higher levels of virus for longer periods compared with vaccinated cattle and this is independent of whether or not they subsequently become carriers. By introducing naïve cattle in to the FMDV carrier population we show the risk of new outbreaks is clearly very low in controlled conditions, although there could still be a potential threat of these carrier animals causing new outbreaks in the field situation. Finally, we compared the complete genome sequences of viruses from carrier cattle with the challenge virus and found no evidence for viral determinants of the carrier state.

  6. Generation of Newcastle Disease Virus (NDV) Recombinants Expressing the Infectious Laryngotracheitis Virus (ILTV) Glycoprotein gB or gD as Dual Vaccines.

    PubMed

    Zhao, Wei; Spatz, Stephen; Zsak, Laszlo; Yu, Qingzhong

    2016-01-01

    Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infection with infectious laryngotracheitis virus (ILTV), a member of the family Herpesviridae. The current commercial ILT vaccines are either unsafe or ineffective. Therefore, there is a pressing need to develop safer and more efficacious vaccines. Newcastle disease (ND), caused by infection with Newcastle disease virus (NDV), a member of the family Paramyxoviridae, is one of the most serious infectious diseases of poultry. The NDV LaSota strain, a naturally occurring low-virulence NDV strain, has been routinely used as a live vaccine throughout the world. This chapter describes the generation of Newcastle disease virus (NDV) LaSota vaccine strain-based recombinant viruses expressing glycoprotein B (gB) or glycoprotein D (gD) of ILTV as dual vaccines against ND and ILT using reverse genetics technology.

  7. Host-Virus Interaction of ZIKA Virus in Modulating Disease Pathogenesis.

    PubMed

    Routhu, Nanda Kishore; Byrareddy, Siddappa N

    2017-03-27

    The Zika virus (ZIKV) is a newly emerging pathogen that has resulted in a worldwide epidemic. It primarily spreads either through infected Aedes aegypti or Aedes albopictus mosquitos leading to severe neurological disorders such as microcephaly and Guillain-Barré syndrome in susceptible individuals. The mode of ZIKV entry into specific cell types such as: epidermal keratinocytes, fibroblasts, immature dendritic cells (iDCs), and stem-cell-derived human neural progenitors has been determined through its major surface envelope glycoprotein. It has been known that oligosaccharides that are covalently linked to viral envelope proteins are crucial in defining host-virus interactions. However, the role of sugars/glycans in exploiting host-immune mechanisms and aiding receptor-mediated virus entry is not well defined. Therefore, this review focuses on host-pathogen interactions to better understand ZIKV pathogenesis.

  8. Inoculation of swine with foot-and-mouth disease SAP-mutant virus induces early protection against disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) leader proteinase (L^pro) cleaves itself from the viral polyprotein and cleaves the translation initiation factor eIF4G. As a result, host cell translation is inhibited, affecting the host innate immune response. We have demonstrated that L^pro is also associated ...

  9. Identification of a nonvirion protein of Aleutian disease virus: mink with Aleutian disease have antibody to both virion and nonvirion proteins.

    PubMed Central

    Bloom, M E; Race, R E; Wolfinbarger, J B

    1982-01-01

    We studied Aleutian disease virus polypeptides in Crandall feline kidney (CRFK) cells. When CRFK cells labeled with [35S]methionine at 60 h postinfection were studied by immunoprecipitation with sera from infected mink, the major Aleutian disease virus virion polypeptides (p85 and p75) were consistently identified, as was a 71,000-dalton nonvirion protein (p71). The peptide maps of p85 and p75 were similar, but the map of p71 was different. p85, p75, and p71 were all precipitated by sera from Aleutian disease virus-infected mink, including those with signs of progressive disease, but heterologous sera raised against purified Aleutian disease virus did not precipitate the nonvirion p71. These results indicated that the nonvirion p71 was unrelated to p85 and p75 and further suggested that mink infected with Aleutian disease virus develop antibody to nonvirion, as well as structural, viral proteins. Images PMID:6287034

  10. Replication of the resident Marek's Disease virus genome in synchronized nonproducer MKT-1 cells.

    PubMed

    Lau, R Y; Nonoyama, M

    1980-02-01

    MKT-1, a virus nonproducer lymphoblastoid cell line established from a Marek's disease tumor, was synchronized by double thymidine block to determine the sequence of events in the synthesis of cellular and latent marek's disease virus DNA. Cellular DNA synthesis was measured by incorporation of [3H]thymidine, whereas viral DNA synthesis was determined by DNA-DNA reassociation kinetics. The results of these studies indicate that the resident Marek's disease viral DNA in MKT-1 cells replicates during the early S phase of the cell cycle, before the onset of active cellular DNA synthesis. This observation is similar to that seen in the replication of resident Epstein-Barr virus DNA in synchronized Raji cells.

  11. Comparison of Test Results for Zika Virus RNA in Urine, Serum, and Saliva Specimens from Persons with Travel-Associated Zika Virus Disease - Florida, 2016.

    PubMed

    Bingham, Andrea M; Cone, Marshall; Mock, Valerie; Heberlein-Larson, Lea; Stanek, Danielle; Blackmore, Carina; Likos, Anna

    2016-05-13

    In May 2015, Zika virus was reported to be circulating in Brazil. This was the first identified introduction of the virus in the Region of the Americas. Since that time, Zika virus has rapidly spread throughout the region. As of April 20, 2016, the Florida Department of Health Bureau of Public Health Laboratories (BPHL) has tested specimens from 913 persons who met state criteria for Zika virus testing. Among these 913 persons, 91 met confirmed or probable Zika virus disease case criteria and all cases were travel-associated (1). On the basis of previous small case studies reporting real time reverse-transcription polymerase chain reaction (RT-PCR) detection of Zika virus RNA in urine, saliva, and semen (2-6), the Florida Department of Health collected multiple specimen types from persons with suspected Zika virus disease. Test results were evaluated by specimen type and number of days after symptom onset to determine the most sensitive and efficient testing algorithm for acute Zika virus disease. Urine specimens were collected from 70 patients with suspected Zika virus disease from zero to 20 days after symptom onset. Of these, 65 (93%) tested positive for Zika virus RNA by RT-PCR. Results for 95% (52/55) of urine specimens collected from persons within 5 days of symptom onset tested positive by RT-PCR; only 56% (31/55) of serum specimens collected on the same date tested positive by RT-PCR. Results for 82% (9/11) of urine specimens collected >5 days after symptom onset tested positive by RT-PCR; none of the RT-PCR tests for serum specimens were positive. No cases had results that were exclusively positive by RT-PCR testing of saliva. BPHL testing results suggest urine might be the preferred specimen type to identify acute Zika virus disease.

  12. Virus and host genomic, molecular, and cellular interactions during Marek's disease pathogenesis and oncogenesis

    PubMed Central

    McPherson, M. C.; Delany, M. E.

    2016-01-01

    Marek's Disease Virus (MDV) is a chicken alphaherpesvirus that causes paralysis, chronic wasting, blindness, and fatal lymphoma development in infected, susceptible host birds. This disease and its protective vaccines are highly relevant research targets, given their enormous impact within the poultry industry. Further, Marek's disease (MD) serves as a valuable model for the investigation of oncogenic viruses and herpesvirus patterns of viral latency and persistence—as pertinent to human health as to poultry health. The objectives of this article are to review MDV interactions with its host from a variety of genomic, molecular, and cellular perspectives. In particular, we focus on cytogenetic studies, which precisely assess the physical status of the MDV genome in the context of the chicken host genome. Combined, the cytogenetic and genomic research indicates that MDV-host genome interactions, specifically integration of the virus into the host telomeres, is a key feature of the virus life cycle, contributing to the viral achievement of latency, transformation, and reactivation of lytic replication. We present a model that outlines the variety of virus-host interactions, at the multiple levels, and with regard to the disease states. PMID:26755654

  13. An alternate delivery system improves vaccine performance against foot-and-mouth disease virus (FMDV).

    PubMed

    Pandya, Mital; Pacheco, Juan M; Bishop, Elizabeth; Kenney, Mary; Milward, Francis; Doel, Timothy; Golde, William T

    2012-04-26

    Foot-and-mouth disease virus (FMDV) causes vesicular disease of cloven-hoofed animals with severe agricultural and economic implications. One of the most highly infectious and contagious livestock pathogens known, the disease spreads rapidly in naïve populations making it critical to have rapidly acting vaccines. Needle inoculation of killed virus vaccine is an efficient method of swiftly vaccinating large numbers of animals, either in eradication efforts or in outbreak situations in disease free countries, although, to be efficient, this requires utilizing the same needle with multiple animals. Here we present studies using a needle free system for vaccination with killed virus vaccine, FMDV strain O1 Manisa, as a rapid and consistent delivery platform. Cattle were vaccinated using a commercially available vaccine formulation at the manufacturer's recommended dose as well as four and sixteen fold less antigen load per dose. Animals were challenged intradermalingually (IDL) with live, virulent virus, homologous strain O1 Manisa, at various times following vaccination. All non-vaccinated control cattle exhibited clinical disease, including fever, viremia and lesions, specifically vesicle formation. Cattle vaccinated with the 1/16× and 1/4× doses using the needle free device were protected when challenged at both 7 and 28 days after vaccination. These data suggest that effective protection against disease can be achieved with 1/16 of the recommended vaccine dose when delivered using the needle free, intradermal delivery system, indicating the current vaccine stockpile that can be extended by many fold using this system.

  14. Recent advances in the development of vaccines for Ebola virus disease.

    PubMed

    Ohimain, Elijah Ige

    2016-01-04

    Ebola virus is one of the most dangerous microorganisms in the world causing hemorrhagic fevers in humans and non-human primates. Ebola virus (EBOV) is a zoonotic infection, which emerges and re-emerges in human populations. The 2014 outbreak was caused by the Zaire strain, which has a kill rate of up to 90%, though 40% was recorded in the current outbreak. The 2014 outbreak is larger than all 20 outbreaks that have occurred since 1976, when the virus was first discovered. It is the first time that the virus was sustained in urban centers and spread beyond Africa into Europe and USA. Thus far, over 22,000 cases have been reported with about 50% mortality in one year. There are currently no approved therapeutics and preventive vaccines against Ebola virus disease (EVD). Responding to the devastating effe1cts of the 2014 outbreak and the potential risk of global spread, has spurred research for the development of therapeutics and vaccines. This review is therefore aimed at presenting the progress of vaccine development. Results showed that conventional inactivated vaccines produced from EBOV by heat, formalin or gamma irradiation appear to be ineffective. However, novel vaccines production techniques have emerged leading to the production of candidate vaccines that have been demonstrated to be effective in preclinical trials using small animal and non-human primates (NHP) models. Some of the promising vaccines have undergone phase 1 clinical trials, which demonstrated their safety and immunogenicity. Many of the candidate vaccines are vector based such as Vesicular Stomatitis Virus (VSV), Rabies Virus (RABV), Adenovirus (Ad), Modified Vaccinia Ankara (MVA), Cytomegalovirus (CMV), human parainfluenza virus type 3 (HPIV3) and Venezuelan Equine Encephalitis Virus (VEEV). Other platforms include virus like particle (VLP), DNA and subunit vaccines.

  15. Experimental West Nile Virus Infection in Rabbits: An Alternative Model for Studying Induction of Disease and Virus Control

    PubMed Central

    Suen, Willy W.; Uddin, Muhammad J.; Wang, Wenqi; Brown, Vienna; Adney, Danielle R.; Broad, Nicole; Prow, Natalie A.; Bowen, Richard A.; Hall, Roy A.; Bielefeldt-Ohmann, Helle

    2015-01-01

    The economic impact of non-lethal human and equine West Nile virus (WNV) disease is substantial, since it is the most common presentation of the infection. Experimental infection with virulent WNV strains in the mouse and hamster models frequently results in severe neural infection and moderate to high mortality, both of which are not representative features of most human and equine infections. We have established a rabbit model for investigating pathogenesis and immune response of non-lethal WNV infection. Two species of rabbits, New Zealand White (Oryctolagus cuniculus) and North American cottontail (Sylvilagus sp.), were experimentally infected with virulent WNV and Murray Valley encephalitis virus strains. Infected rabbits exhibited a consistently resistant phenotype, with evidence of low viremia, minimal-absent neural infection, mild-moderate neuropathology, and the lack of mortality, even though productive virus replication occurred in the draining lymph node. The kinetics of anti-WNV neutralizing antibody response was comparable to that commonly seen in infected horses and humans. This may be explained by the early IFNα/β and/or γ response evident in the draining popliteal lymph node. Given this similarity to the human and equine disease, immunocompetent rabbits are, therefore, a valuable animal model for investigating various aspects of non-lethal WNV infections. PMID:26184326

  16. The begomoviruses Honeysuckle yellow vein mosaic virus and Tobacco leaf curl Japan virus with DNAbeta satellites cause yellow dwarf disease of tomato.

    PubMed

    Ogawa, T; Sharma, P; Ikegami, M

    2008-11-01

    The complete nucleotide sequences of two begomoviruses (Nara virus-1 and Nara virus-2), a satellite DNA (DNAbeta-Nara) and defective DNAs were obtained from honeysuckle (Lonicera japonica) showing characteristic yellow vein mosaic symptoms in Nara Prefecture, Japan. One begomovirus (Ibaraki virus) and a satellite DNA (DNAbeta-Ibaraki) was isolated and cloned from honeysuckle plants exhibited typical yellowing of veins and small elliptical shaped enations along veins on the under side of the leaves in Ibaraki Prefecture, Japan. The genome organization of the three viruses is the same as those of other Old World monopartite begomoviruses. Nara virus-1 had overall nucleotide sequence identity with Nara virus-2 of 94% and Ibaraki virus of 90%. DNAbeta-Nara had overall nucleotide sequence identity with DNAbeta-Ibaraki of 83%. Comparison of the nucleotide sequences with other begomoviruses revealed that Nara virus-1 and Nara virus-2 are strains of Honeysuckle yellow vein mosaic virus (HYVMV), hence named as HYVMV-Nara1 and HYVMV-Nara2, whereas Ibaraki virus was a strain of Tobacco leaf curl Japan virus (TbLCJV), designated as TbLCJV-Hs[Iba]. HYVMV-Nara1 and HYVMV-Nara2 have hybrid genomes, which are likely to have formed recombination between HYVMV and TbLCJV. TbLCJV-Hs[Iba] or HYVMV-Nara2 could infect and cause yellowing, leaf crinkling and stunting symptoms when partial tandem dimeric constructs were agroinoculated on tomato plants. However, in the presence of DNAbeta, both TbLCJV-Hs[Iba] or HYVMV-Nara2 produced more severe stunting symptoms in tomato plants. Therefore, these viruses along with their satellites are causal agents of tomato yellow dwarf disease in Japan, and honeysuckle acts as a potential reservoir host. Previously available evidence indicated that DNAbeta elements do not contain iteron sequences of their helper viruses; hence this is the first evidence that DNAbeta satellites have the iteron of their helper virus.

  17. Artifically inserting a reticuloendotheliosis virus long terminal repeat into a bacterial artificial chromosome clone of Marek's disease virus (MDV) alters expression of nearby MDV genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long terminal repeat (LTR) sequence of reticuloendotheliosis virus (REV) was inserted into the very virulent Marek’s disease virus (MDV) Md5 bacterial artificial chromosome clone. The insertion site was nearly identical to the REV LTR that was naturally inserted into the JM/102W strain of MDV fo...

  18. Insertion of reticuloendotheliosis virus long terminal repeat into a bacterial artificial chromosome clone of a very virulent Marek's disease virus alters its pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Co-cultivation of strain JM/102W of Marek’s disease virus (MDV) with reticuloendotheliosis virus (REV) resulted in the generation of a recombinant MDV containing REV long terminal repeat (LTR) named RM1 strain of MDV; a strain that was highly attenuated for oncogenicity, but induced severe bursal an...

  19. Predicting antigenic sites on the foot-and-mouth disease virus capsid of the South African Territories (SAT) types using virus neutralization data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) outer capsid proteins 1B, 1C and 1D contribute to the virus serotype distribution and antigenic variants that exist within each of the seven serotypes. This study presents a phylogenetic, genetic and antigenic analysis of the South African Territories (SAT) seroty...

  20. Efficacy of a BAC clone of a recombinant strain of Marek’s disease virus containing reticuloendotheliosis virus LTR following in ovo Vaccination at 18 days of embryonation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously reported on the pathogenicity of various passage levels of a bacterial artificial chromosome (BAC) clone of a recombinant Marek’s disease virus (MDV) strain rMd5 containing reticuloendotheliosis virus (REV) long terminal repeat (LTR) termed rMd5 REV LTR BAC. In this study, we eval...

  1. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinic...

  2. Cell culture and electron microscopy for identifying viruses in diseases of unknown cause.

    PubMed

    Goldsmith, Cynthia S; Ksiazek, Thomas G; Rollin, Pierre E; Comer, James A; Nicholson, William L; Peret, Teresa C T; Erdman, Dean D; Bellini, William J; Harcourt, Brian H; Rota, Paul A; Bhatnagar, Julu; Bowen, Michael D; Erickson, Bobbie R; McMullan, Laura K; Nichol, Stuart T; Shieh, Wun-Ju; Paddock, Christopher D; Zaki, Sherif R

    2013-06-01

    During outbreaks of infectious diseases or in cases of severely ill patients, it is imperative to identify the causative agent. This report describes several events in which virus isolation and identification by electron microscopy were critical to initial recognition of the etiologic agent, which was further analyzed by additional laboratory diagnostic assays. Examples include severe acute respiratory syndrome coronavirus, and Nipah, lymphocytic choriomeningitis, West Nile, Cache Valley, and Heartland viruses. These cases illustrate the importance of the techniques of cell culture and electron microscopy in pathogen identification and recognition of emerging diseases.

  3. Shellfish-associated enteric virus illness: virus localization, disease outbreaks and prevention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous outbreaks of shellfish-borne enteric virus illness have been reported worldwide. Most notable among the outbreaks are those involving norovirus illness and hepatitis A. Lessons learned from outbreak investigations indicate that most outbreaks are preventable. Anthropogenic sources of con...

  4. The immunomodulating V and W proteins of Nipah virus determine disease course

    PubMed Central

    Satterfield, Benjamin A.; Cross, Robert W.; Fenton, Karla A.; Agans, Krystle N.; Basler, Christopher F.; Geisbert, Thomas W.; Mire, Chad E.

    2015-01-01

    The viral determinants that contribute to Nipah virus (NiV)-mediated disease are poorly understood compared with other paramyxoviruses. Here we use recombinant NiVs (rNiVs) to examine the contributions of the NiV V and W proteins to NiV pathogenesis in a ferret model. We show that a V-deficient rNiV is susceptible to the innate immune response in vitro and behaves as a replicating non-lethal virus in vivo. Remarkably, rNiV lacking W expression results in a delayed and altered disease course with decreased respiratory disease and increased terminal neurological disease associated with altered in vitro inflammatory cytokine production. This study confirms the V protein as the major determinant of pathogenesis, also being the first in vivo study to show that the W protein modulates the inflammatory host immune response in a manner that determines the disease course. PMID:26105519

  5. Persistence of DNA sequences of BK virus and JC virus in normal human tissues and in diseased tissues.

    PubMed

    Chesters, P M; Heritage, J; McCance, D J

    1983-04-01

    Available evidence suggests that BK virus (BKV) and JC virus (JCV) persist in the kidneys of healthy individuals after primary infection and may reactivate when the host's immune response is impaired. Data supporting this hypothesis are presented. A previous study had shown BKV to be present in the kidneys of eight (57%) of 14 subjects. In the present study, which extended the investigation to a total of 30 subjects, BKV DNA was found in the renal tissues of 10 (33%) subjects, and JCV DNA was found in the renal tissues of three (10%) subjects. The viral DNA detected appeared not to be integrated with host DNA and to be isolated in foci. Investigation of normal and diseased brain tissue, including tissue from six subjects with multiple sclerosis, failed to reveal the presence of either JCV DNA or BKV DNA.

  6. Understanding the Emergence of Ebola Virus Disease in Sierra Leone: Stalking the Virus in the Threatening Wake of Emergence

    PubMed Central

    Wauquier, Nadia; Bangura, James; Moses, Lina; Humarr Khan, Sheik; Coomber, Moinya; Lungay, Victor; Gbakie, Michael; Sesay, Mohammed S.K.; Gassama, Ibrahim A.K.; Massally, James L.B.; Gbakima, Aiah; Squire, James; Lamin, Mohamed; Kanneh, Lansana; Yillah, Mohammed; Kargbo, Kandeh; Roberts, Willie; Vandi, Mohammed; Kargbo, David; Vincent, Tom; Jambai, Amara; Guttieri, Mary; Fair, Joseph; Souris, Marc; Gonzalez, Jean Paul

    2015-01-01

    Since Ebola Virus Disease (EVD) was first identified in 1976 in what is now the Democratic Republic of Congo, and despite the numerous outbreaks recorded to date, rarely has an epidemic origin been identified. Indeed, among the twenty-one most documented EVD outbreaks in Africa, an index case has been identified four times, and hypothesized in only two other instances. The initial steps of emergence and spread of a virus are critical in the development of a potential outbreak and need to be thoroughly dissected and understood in order to improve on preventative strategies. In the current West African outbreak of EVD, a unique index case has been identified, pinpointing the geographical origin of the epidemic in Guinea. Herein, we provide an accounting of events that serve as the footprint of EVD emergence in Sierra Leone and a road map for risk mitigation fueled by lessons learned. PMID:25969797

  7. Disinfection of foot-and-mouth disease and African swine fever viruses with citric acid and sodium hypochlorite on birch wood carriers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transboundary animal disease viruses such as foot-and-mouth disease virus (FMDV) and African swine fever virus (ASFV) are highly contagious and cause severe morbidity and mortality in livestock. Proper disinfection during an outbreak can help prevent virus spread and will shorten the time for contam...

  8. General introduction into the Ebola virus biology and disease.

    PubMed

    Zawilińska, Barbara; Kosz-Vnenchak, Magdalena

    2014-01-01

    Epidemic of Ebola hemorrhagic fever which appeared in the countries of West Africa in 2014, is the largest outbreak which occurred so far. The virus causing this epidemic, Zaire Ebolavirus (ZEBOV), along with four other species of Ebolaviruses is classified to the genus Ebolavirus in the family Filoviridae. ZEBOV is one of the most virulent pathogens among the viral haemorrhagic fevers, and case fatality rates up to 90% have been reported. Mortality is the result of multi-organ failure and severe bleeding complications. The aim of this review is to present the general characteristics of the virus and its biological properties, pathogenicity and epidemiology, with a focus on laboratory methods used in the diagnosis of these infections.

  9. A monoclonal antibody to inclusion body disease of cranes virus enabling specific immunohistochemistry and competitive ELISA

    USGS Publications Warehouse

    Letchworth, G.J.; Fishel, J.R.; Hansen, W.R.

    1997-01-01

    Inclusion body disease of cranes (IBDC) herpesvirus kills some infected cranes and persists in convalescent animals. To enable further study and rapid identification of carrier animals, we developed a monoclonal antibody (MAb) to IBDC virus and used it in immunohistochemistry and a competitive enzyme-linked immunosorbent assay (ELISA). We used conventional techniques to make murine MAbs directed against IBDC virus purified from infected duck embryo cells. Hybridomas reacting in an ELISA with IBDC virus but not uninfected duck embryo cells were characterized by radioimmunoprecipitation, in situ immunohistochemistry, and competitive ELISA with neutralizing and nonneutralizing crane sera. MAb 2C11 immunoprecipitated 59-, 61-, and 110-kD proteins from IBDC virus-infected but not uninfected cells and stained glutaraldehyde-fixed IBDC virus plaques but not surrounding uninfected duck embryo cells in vitro. Antibody 2C11 did not react with duck embryo cells infected with falcon herpesvirus, psittacine herpesvirus, infectious laryngotracheitis, pigeon herpesvirus, or duck plague virus. A competitive ELISA using antibody 2C11 identified most sera that were positive in the neutralization test. This antibody will be useful in further characterizing IBDC virus, its pathogenesis, and its natural history.

  10. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink.

    PubMed Central

    Hadlow, W J; Race, R E; Kennedy, R C

    1983-01-01

    Information was sought on the comparative pathogenicity of four North American strains (isolates) of Aleutian disease virus for royal pastel (a non-Aleutian genotype) and sapphire (an Aleutian genotype) mink. The four strains (Utah-1, Ontario [Canada], Montana, and Pullman [Washington]), all of mink origin, were inoculated intraperitoneally and intranasally in serial 10-fold dilutions. As indicated by the appearance of specific antibody (counterimmunoelectrophoresis test), all strains readily infected both color phases of mink, and all strains were equally pathogenic for sapphire mink. Not all strains, however, regularly caused Aleutian disease in pastel mink. Infection of pastel mink with the Utah-1 strain invariably led to fatal disease. Infection with the Ontario strain caused fatal disease nearly as often. The Pullman strain, by contrast, almost never caused disease in infected pastel mink. The pathogenicity of the Montana strain for this color phase was between these extremes. These findings emphasize the need to distinguish between infection and disease when mink are exposed to Aleutian disease virus. The distinction has important implications for understanding the natural history of Aleutian disease virus infection in ranch mink. PMID:6193063

  11. Comparative Phylodynamics of Rabbit Hemorrhagic Disease Virus in Australia and New Zealand

    PubMed Central

    Eden, John-Sebastian; Kovaliski, John; Duckworth, Janine A.; Swain, Grace; Mahar, Jackie E.; Strive, Tanja

    2015-01-01

    ABSTRACT The introduction of rabbit hemorrhagic disease virus (RHDV) into Australia and New Zealand during the 1990s as a means of controlling feral rabbits is an important case study in viral emergence. Both epidemics are exceptional in that the founder viruses share an origin and the timing of their release is known, providing a unique opportunity to compare the evolution of a single virus in distinct naive populations. We examined the evolution and spread of RHDV in Australia and New Zealand through a genome-wide evolutionary analysis, including data from 28 newly sequenced RHDV field isolates. Following the release of the Australian inoculum strain into New Zealand, no subsequent mixing of the populations occurred, with viruses from both countries forming distinct groups. Strikingly, the rate of evolution in the capsid gene was higher in the Australian viruses than in those from New Zealand, most likely due to the presence of transient deleterious mutations in the former. However, estimates of both substitution rates and population dynamics were strongly sample dependent, such that small changes in sample composition had an important impact on evolutionary parameters. Phylogeographic analysis revealed a clear spatial structure in the Australian RHDV strains, with a major division between those viruses from western and eastern states. Importantly, RHDV sequences from the state where the virus was first released, South Australia, had the greatest diversity and were diffuse throughout both geographic lineages, such that this region was likely a source population for the subsequent spread of the virus across the country. IMPORTANCE Most studies of viral emergence lack detailed knowledge about which strains were founders for the outbreak or when these events occurred. Hence, the human-mediated introduction of rabbit hemorrhagic disease virus (RHDV) into Australia and New Zealand from known starting stocks provides a unique opportunity to understand viral evolution

  12. Notes from The Field: Ebola Virus Disease Cluster - Northern Sierra Leone, January 2016.

    PubMed

    Alpren, Charles; Sloan, Michelle; Boegler, Karen A; Martin, Daniel W; Ervin, Elizabeth; Washburn, Faith; Rickert, Regan; Singh, Tushar; Redd, John T

    2016-07-08

    On January 14, 2016, the Sierra Leone Ministry of Health and Sanitation was notified that a buccal swab collected on January 12 from a deceased female aged 22 years (patient A) in Tonkolili District had tested positive for Ebola virus by reverse transcription-polymerase chain reaction (RT-PCR). The most recent case of Ebola virus disease (Ebola) in Sierra Leone had been reported 4 months earlier on September 13, 2015 (1), and the World Health Organization had declared the end of Ebola virus transmission in Sierra Leone on November 7, 2015 (2). The Government of Sierra Leone launched a response to prevent further transmission of Ebola virus by identifying contacts of the decedent and monitoring them for Ebola signs and symptoms, ensuring timely treatment for anyone with Ebola, and conducting an epidemiologic investigation to identify the source of infection.

  13. Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design.

    PubMed

    Kotecha, Abhay; Seago, Julian; Scott, Katherine; Burman, Alison; Loureiro, Silvia; Ren, Jingshan; Porta, Claudine; Ginn, Helen M; Jackson, Terry; Perez-Martin, Eva; Siebert, C Alistair; Paul, Guntram; Huiskonen, Juha T; Jones, Ian M; Esnouf, Robert M; Fry, Elizabeth E; Maree, Francois F; Charleston, Bryan; Stuart, David I

    2015-10-01

    Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.

  14. In silico analysis suggests repurposing of ibuprofen for prevention and treatment of EBOLA virus disease

    PubMed Central

    Veljkovic, Veljko; Goeijenbier, Marco; Glisic, Sanja; Veljkovic, Nevena; Perovic, Vladimir R.; Sencanski, Milan; Branch, Donald R.; Paessler, Slobodan

    2015-01-01

    The large 2014/2015 Ebola virus outbreak in West Africa points out the urgent need to develop new preventive and therapeutic approaches that are effective against Ebola viruses and  can be rapidly utilized. Recently, a simple theoretical criterion for the virtual screening of molecular libraries for candidate inhibitors of Ebola virus infection was proposed. Using this method the ‘drug space’ was screened and 267 approved and 382 experimental drugs as candidates for treatment of the Ebola virus disease (EVD) have been selected. Detailed analysis of these drugs revealed the non-steroidal anti-inflammatory drug ibuprofen as an inexpensive, widely accessible and minimally toxic candidate for prevention and treatment of EVD. Furthermore, the molecular mechanism underlying this possible protective effect of ibuprofen against EVD is suggested in this article. PMID:26167272

  15. RNA sequence and transcriptional properties of the 3' end of the Newcastle disease virus genome

    SciTech Connect

    Kurilla, M.G.; Stone, H.O.; Keene, J.D.

    1985-09-01

    The 3' end of the genomic RNA of Newcastle disease virus (NDV) has been sequenced and the leader RNA defined. Using hybridization to a 3'-end-labeled genome, leader RNA species from in vitro transcription reactions and from infected cell extracts were found to be 47 and 53 nucleotides long. In addition, the start site of the 3'-proximal mRNA was determined by sequence analysis of in vitro (beta-32P)GTP-labeled transcription products. The genomic sequence extending beyond the leader region demonstrated an open reading frame for at least 42 amino acids and probably represents the amino terminus of the nucleocapsid protein (NP). The terminal 8 nucleotides of the NDV genome were identical to those of measles virus and Sendai virus while the sequence of the distal half of the leader region was more similar to that of vesicular stomatitis virus. These data argue for strong evolutionary relatedness between the paramyxovirus and rhabdovirus groups.

  16. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors

    PubMed Central

    Walsh, Stephen R; Dolin, Raphael

    2011-01-01

    Less than 200 years after its introduction, widespread use of vaccinia virus (VACV) as a smallpox vaccine has eradicated variola virus. Along with the remarkable success of the vaccination program, frequent and sometimes severe adverse reactions to VACV were encountered. After eradication, VACV has been reserved for select populations who might be at significant risk for orthopoxvirus infections. Events over the past decade have renewed concerns over the potential use of variola virus as a biological weapon. Accordingly, interest in VACV and attenuated derivatives has increased, both as vaccines against smallpox and as vectors for other vaccines. This article will focus on new developments in the field of orthopoxvirus immunization and will highlight recent advances in the use of vaccinia viruses as vectors for infectious diseases and malignancies. PMID:21854314

  17. Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus.

    PubMed Central

    Kleina, L G; Grubman, M J

    1992-01-01

    The thiol protease inhibitor E-64 specifically blocks autocatalytic activity of the leader protease of foot-and-mouth disease virus (FMDV) and interferes with cleavage of the structural protein precursor in an in vitro translation assay programmed with virion RNA. Experiments with FMDV-infected cells and E-64 or a membrane-permeable analog, E-64d, have confirmed these results and demonstrated interference in virus assembly, causing a reduction in virus yield. In addition, there is a lag in the appearance of virus-induced cellular morphologic alterations, a delay in cleavage of host cell protein p220 and in shutoff of host protein synthesis, and a decrease in viral protein and RNA synthesis. The implications of using E-64-based compounds as potential antiviral agents for FMDV are discussed. Images PMID:1331517

  18. Entry of parainfluenza virus into cells as a target for interrupting childhood respiratory disease

    PubMed Central

    Moscona, Anne

    2005-01-01

    Human parainfluenza viruses cause several serious respiratory diseases in children for which there is no effective prevention or therapy. Parainfluenza viruses initiate infection by binding to cell surface receptors and then, via coordinated action of the 2 viral surface glycoproteins, fuse directly with the cell membrane to release the viral replication machinery into the host cell’s cytoplasm. During this process, the receptor-binding molecule must trigger the viral fusion protein to mediate fusion and entry of the virus into a cell. This review explores the binding and entry into cells of parainfluenza virus type 3, focusing on how the receptor-binding molecule triggers the fusion process. There are several steps during the process of binding, triggering, and fusion that are now understood at the molecular level, and each of these steps represents potential targets for interrupting infection. PMID:16007245

  19. Virus-like particles of hepatitis B virus core protein containing five mimotopes of infectious bursal disease virus (IBDV) protect chickens against IBDV.

    PubMed

    Wang, Yong-shan; Ouyang, Wei; Liu, Xiao-juan; He, Kong-wang; Yu, Sheng-qing; Zhang, Hai-bin; Fan, Hong-jie; Lu, Cheng-ping

    2012-03-09

    Current infectious bursal disease virus (IBDV) vaccines suffer from maternal antibody interference and mimotope vaccines might be an alternative. Previously we demonstrated an IBDV VP2 five-mimotope polypeptide, 5EPIS, elicited protective immunity in chickens. In the current study, the 5epis gene was inserted into a plasmid carrying human hepatitis B virus core protein (HBc) gene at its major immunodominant region site. The recombinant gene was efficiently expressed in Escherichia coli to produce chimeric protein HBc-5EPIS which self-assembles to virus-like particles (VLP). Two-week old specific-pathogen-free chickens were immunized intramuscularly with HBc-5EPIS VLP or 5EPIS polypeptide without adjuvant (50 μg/injection) on day 0, 7, 14 and 21. Anti-5EPIS antibody was first detected on day 7 and day 21 in HBc-5EPIS and 5EPIS groups, respectively; on day 28, anti-5EPIS titers reached 12,800 or 1600 by ELISA, and 3200 or 800 by virus neutralization assay in HBc-5EPIS and 5EPIS groups, respectively. No anti-5EPIS antibody was detected in the buffer control group throughout the experiment. Challenge on day 28 with a virulent IBDV strain (GX8/99) resulted in 100%, 40.0% and 26.7% survival for chickens immunized with HBc-5EPIS, 5EPIS and buffer, respectively. These data suggest epitope presentation on chimeric VLP is a promising approach for improving mimotope vaccines for IBDV.

  20. Suppression of Swine NK Cell Function During Acute Infection with Foot-and-Mouth Disease Virus (FMDV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) infects cloven-hoofed animals and causes an economically devastating disease. This highly acute infection has multiple negative effects on the innate response, presumably contributing to the rapid spread of virus within the host. Understanding the regulation of in...

  1. Complete genome sequencing of a novel Newcastle disease virus isolate circulating in layer chickens in the Dominican Republic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease virus (NDV) causes a serious disease in avian species and is especially important due to the economic damages it causes to the international poultry industry. The virus continues to evolve worldwide and it is important for U.S. veterinarians to be able to recognize and characteriz...

  2. Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species.

    PubMed

    Cardenas Garcia, Stivalis; Navarro Lopez, Roberto; Morales, Romeo; Olvera, Miguel A; Marquez, Miguel A; Merino, Ruben; Miller, Patti J; Afonso, Claudio L

    2013-08-01

    Newcastle disease, one of the most important health problems that affects the poultry industry around the world, is caused by virulent strains of Newcastle disease virus. Newcastle disease virus is considered to be endemic in several countries in the Americas, including Mexico. In order to control Newcastle disease outbreaks and spread, intensive vaccination programs, which include vaccines formulated with strains isolated at least 60 years ago, have been established. These vaccines are dissimilar in genotype to the virulent Newcastle disease viruses that had been circulating in Mexico until 2008. Here, 28 isolates obtained between 2008 and 2011 from different regions of Mexico from free-living wild birds, captive wild birds, and poultry were phylogenetically and biologically characterized in order to study the recent epidemiology of Newcastle disease viruses in Mexico. Here we demonstrate that, until recently, virulent viruses from genotype V continued to circulate and evolve in the country. All of the Newcastle disease viruses of low virulence, mostly isolated from nonvaccinated free-living wild birds and captive wild birds, were highly similar to LaSota (genotype II) and PHY-LMV42 (genotype I) vaccine strains. These findings, together with the discovery of two virulent viruses at the Mexican zoo, suggest that Newcastle disease viruses may be escaping from poultry into the environment.

  3. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  4. Molecular Epidemiology of Newcastle Disease in Mexico and the Potential Spillover of Viruses from Poultry into Wild Bird Species

    PubMed Central

    Cardenas Garcia, Stivalis; Navarro Lopez, Roberto; Morales, Romeo; Olvera, Miguel A.; Marquez, Miguel A.; Merino, Ruben; Miller, Patti J.

    2013-01-01

    Newcastle disease, one of the most important health problems that affects the poultry industry around the world, is caused by virulent strains of Newcastle disease virus. Newcastle disease virus is considered to be endemic in several countries in the Americas, including Mexico. In order to control Newcastle disease outbreaks and spread, intensive vaccination programs, which include vaccines formulated with strains isolated at least 60 years ago, have been established. These vaccines are dissimilar in genotype to the virulent Newcastle disease viruses that had been circulating in Mexico until 2008. Here, 28 isolates obtained between 2008 and 2011 from different regions of Mexico from free-living wild birds, captive wild birds, and poultry were phylogenetically and biologically characterized in order to study the recent epidemiology of Newcastle disease viruses in Mexico. Here we demonstrate that, until recently, virulent viruses from genotype V continued to circulate and evolve in the country. All of the Newcastle disease viruses of low virulence, mostly isolated from nonvaccinated free-living wild birds and captive wild birds, were highly similar to LaSota (genotype II) and PHY-LMV42 (genotype I) vaccine strains. These findings, together with the discovery of two virulent viruses at the Mexican zoo, suggest that Newcastle disease viruses may be escaping from poultry into the environment. PMID:23770910

  5. Exchange of Newcastle disease virus fusion and hemagglutinin-neuraminidase genes into a vaccine backbone: effects on virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle Disease Virus (NDV) is the causative agent of Newcastle disease (ND), a very important infection that causes significant economic losses to the poultry industry. Currently, viruses of genotypes V, VI, and VII circulate worldwide causing significant mortality in poorly vaccinated chickens....

  6. Characterization of epitope-tagged foot-and-mouth disease virus.

    PubMed

    Seago, Julian; Jackson, Terry; Doel, Claudia; Fry, Elizabeth; Stuart, David; Harmsen, Michiel M; Charleston, Bryan; Juleff, Nicholas

    2012-11-01

    Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals with an almost-worldwide distribution. Conventional FMD vaccines consisting of chemically inactivated viruses have aided in the eradication of FMD from Europe and remain the main tool for control in endemic countries. Although significant steps have been made to improve the quality of vaccines, such as improved methods of antigen concentration and purification, manufacturing processes are technically demanding and expensive. Consequently, there is large variation in the quality of vaccines distributed in FMD-endemic countries compared with those manufactured for emergency use in FMD-free countries. Here, we have used reverse genetics to introduce haemagglutinin (HA) and FLAG tags into the foot-and-mouth disease virus (FMDV) capsid. HA- and FLAG-tagged FMDVs were infectious, with a plaque morphology similar to the non-tagged parental infectious copy virus and the field virus. The tagged viruses utilized integrin-mediated cell entry and retained the tag epitopes over serial passages. In addition, infectious HA- and FLAG-tagged FMDVs were readily purified from small-scale cultures using commercial antibodies. Tagged FMDV offers a feasible alternative to the current methods of vaccine concentration and purification, a potential to develop FMD vaccine conjugates and a unique tool for FMDV research.

  7. Management of a pet dog after exposure to a human patient with Ebola virus disease.

    PubMed

    Spengler, Jessica R; Stonecipher, Shelley; McManus, Catherine; Hughes-Garza, Holly; Dow, Max; Zoran, Debra L; Bissett, Wesley; Beckham, Tammy; Alves, Derron A; Wolcott, Mark; Tostenson, Samantha; Dorman, Bill; Jones, Jody; Sidwa, Thomas J; Knust, Barbara; Behravesh, Casey Barton

    2015-09-01

    In October 2014, a health-care worker who had been part of the treatment team for the first laboratory-confirmed case of Ebola virus disease imported to the United States developed symptoms of Ebola virus disease. A presumptive positive reverse transcription PCR assay result for Ebola virus RNA in a blood sample from the worker was confirmed by the CDC, making this the first documented occurrence of domestic transmission of Ebola virus in the United States. The Texas Department of State Health Services commissioner issued a control order requiring disinfection and decontamination of the health-care worker's residence. This process was delayed until the patient's pet dog (which, having been exposed to a human with Ebola virus disease, potentially posed a public health risk) was removed from the residence. This report describes the movement, quarantine, care, testing, and release of the pet dog, highlighting the interdisciplinary, one-health approach and extensive collaboration and communication across local, county, state, and federal agencies involved in the response.

  8. Interferon α/β Receptor-Deficient Mice as a Model for Ebola Virus Disease.

    PubMed

    Brannan, Jennifer M; Froude, Jeffery W; Prugar, Laura I; Bakken, Russell R; Zak, Samantha E; Daye, Sharon P; Wilhelmsen, Catherine E; Dye, John M

    2015-10-01

    A major obstacle in ebolavirus research is the lack of a small-animal model for Sudan virus (SUDV), as well as other wild-type (WT) ebolaviruses. Here, we expand on research by Bray and by Lever et al suggesting that WT ebolaviruses are pathogenic in mice deficient for the type 1 interferon (IFN) α/β receptor (IFNα/βR-/-). We examined the disease course of several WT ebolaviruses: Boneface (SUDV/Bon) and Gulu variants of SUDV, Ebola virus (EBOV), Bundibugyo virus (BDBV), Taï Forest virus, and Reston virus (RESTV). We determined that exposure to WT SUDV or EBOV results in reproducible signs of disease in IFNα/βR-/- mice, as measured by weight loss and partial lethality. Vaccination with the SUDV or EBOV glycoprotein (GP)-expressing Venezuelan equine encephalitis viral replicon particle vaccine protected these mice from SUDV/Bon and EBOV challenge, respectively. Treatment with SUDV- or EBOV-specific anti-GP antibodies protected mice from challenge when delivered 1-3 days after infection. Serial sampling experiments revealed evidence of disseminated intravascular coagulation in the livers of mice infected with the Boneface variant of SUDV, EBOV, and BDBV. Taken together, these data solidify the IFNα/βR-/- mouse as an important and useful model for the study of WT EBOV disease.

  9. Alternative Mechanisms of Respiratory Syncytial Virus Clearance in Perforin Knockout Mice Lead to Enhanced Disease

    PubMed Central

    Aung, Sandra; Rutigliano, John A.; Graham, Barney S.

    2001-01-01

    Virus-specific cytotoxic T lymphocytes are key effectors for the clearance of virus-infected cells and are required for the normal clearance of respiratory syncytial virus (RSV) in mice. Although perforin/granzyme-mediated lysis of infected cells is thought to be the major molecular mechanism used by CD8+ cytotoxic T lymphocytes for elimination of virus, its role in RSV has not been reported. Here, we show that viral clearance in perforin knockout (PKO) mice is slightly delayed but that both PKO and wild-type mice clear virus by day 10, suggesting an alternative mechanism of RSV clearance. Effector T cells from the lungs of both groups of mice were shown to lyse Fas (CD95)-overexpressing target cells in greater numbers than target cells expressing low levels of Fas, suggesting that Fas ligand (CD95L)-mediated target cell lysis was occurring in vivo. This cell lysis was associated with a delay in RSV-induced disease in PKO mice compared to the time of disease onset for wild-type controls, which correlated with increased and prolonged production of gamma interferon and tumor necrosis factor alpha levels in PKO mice. We conclude that while perforin is not necessary for the clearance of primary RSV infection, the use of alternative CTL target cell killing mechanisms is less efficient and can lead to enhanced disease. PMID:11559824

  10. [Epidemiology of Ebola virus disease and of other highly contagious, life-threatening diseases with low incidence in Germany].

    PubMed

    Ehlkes, L; Kreuels, B; Schwarz, N G; May, Jürgen

    2015-07-01

    Apart from sporadic exported cases, the occurrence of Ebola, Marburg and Lassa virus diseases is limited to the African continent. Crimean-Congo Hemorrhagic Fever occurs in Southeastern Europe but, so far, not in Germany. Other hemorrhagic fever disease-viruses occur in distinct regions in South America. Pulmonary plague is the bacterial infectious disease with the most contagious and lethal course and it is endemic to Madagascar and East Africa, but also occurs in other countries (e.g. India, USA). Monkey pox epidemics have occurred in remote areas of the Congo Basin. Such outbreaks could potentially become more common with the discontinuation of the cross-protective smallpox vaccination. The Severe Acute Respiratory Syndrome (SARS) that emerged in 2002/2003 is another pathogen with significant epidemic potential. Typical for these diseases is a natural circulation between reservoir animals in remote areas. Sporadic transmission to humans can occur through contact with an infected animal. Subsequent human-to-human transmission can lead to epidemics, such as the current outbreak of Ebola virus disease in West Africa.

  11. Deletion of Marek’s disease virus large subunit of ribonucleotide reductase (RR) impairs virus growth in vitro and in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV), a highly cell-associated lymphotropic alphaherpesvirus, is the causative agent of a neoplastic disease in domestic chickens, called Marek’s disease (MD). In the unique long region of the MDV genome, open reading frames UL39 and UL40 encode the large and small subunits o...

  12. Protective efficacy of a recombinant bacterial artificial chromosome clone of a very virulent Marek’s disease virus containing a reticuloendotheliosis virus long terminal repeat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV), an alphaherpesvirus, causes Marek’s disease (MD), a lymphoproliferative disease in poultry characterized by T-cell lymphomas, nerve lesions and mortality. Vaccination is used worldwide to control MD, but increasingly virulent field strains can overcome this protection, d...

  13. Protecting trees against virus diseases in the 21st century: genetic engineering of Plum pox virus resistance - from concept to product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sharka disease, caused by Plum pox virus (PPV), was first recorded in Bulgaria during the early twentieth century. Since that first report, the disease has progressively spread throughout Europe where it has infected over 100 million stone fruit trees. From Europe, sharka disease spread to Asia, A...

  14. Construction of recombinant baculovirus vaccines for Newcastle disease virus and an assessment of their immunogenicity.

    PubMed

    Ge, Jingping; Liu, Ying; Jin, Liying; Gao, Dongni; Bai, Chengle; Ping, Wenxiang

    2016-08-10

    Newcastle disease (ND) is a lethal avian infectious disease caused by Newcastle disease virus (NDV) which poses a substantial threat to China's poultry industry. Conventional live vaccines against NDV are available, but they can revert to virulent strains and do not protect against mutant strains of the virus. Therefore, there is a critical unmet need for a novel vaccine that is safe, efficacious, and cost effective. Here, we designed novel recombinant baculovirus vaccines expressing the NDV F or HN genes. To optimize antigen expression, we tested the incorporation of multiple regulatory elements including: (1) truncated vesicular stomatitis virus G protein (VSV-GED), (2) woodchuck hepatitis virus post-transcriptional regulatory element (WPRE), (3) inverted terminal repeats (ITRs) of adeno-associated virus (AAV Serotype II), and (4) the cytomegalovirus (CMV) promoter. To test the in vivo efficacy of the viruses, we vaccinated chickens with each construct and characterized the cellular and humoral immune response to challenge with virulent NDV (F48E9). All of the vaccine constructs provided some level of protection (62.5-100% protection). The F-series of vaccines provided a greater degree of protection (87.5-100%) than the HN-series (62.5-87.5%). While all of the vaccines elicited a robust cellular and humoral response subtle differences in efficacy were observed. The combination of the WPRE and VSV-GED regulatory elements enhanced the immune response and increased antigen expression. The ITRs effectively increased the length of time IFN-γ, IL-2, and IL-4 were expressed in the plasma. The F-series elicited higher titers of neutralizing antibody and NDV-specific IgG. The baculovirus system is a promising platform for NDV vaccine development that combines the immunostimulatory benefits of a recombinant virus vector with the non-replicating benefits of a DNA vaccine.

  15. Virus diseases of the salmonidae in the western United States. I. Etiology and epizootiology

    USGS Publications Warehouse

    1965-01-01

    The history of fish diseases in western United States shows an increasing awareness that viruses could cause epizootics in fish. Fishery biologists bunked first, for protozoan and metazoan parasites, then for bacteria, and if none could be identified assumed that the mortalities were attributable to nutritional deficiency, Microbiologists in general were cognizant of virus diseases in other animals and investigators of fish diseases were alert to the possibility that piscine epizootics could be of similar cause. In 1950 an epizootic occurred in sockeye salmon (Gncorhynchus norkm) that was shown to have a viral etiologic agent.In recent years, with increasing frequency, we have been able to demonstrate a virus utiology for epizootics and panzootics in trout and salmon in several states in the West.  FIGURE 1 is a map showing the location of epizootics of infectious pancreatic necrosis (IPN), Sacramento River chinook disease (SRCD), Oregon sockeye disease (OSD), and Columbia River sockeye disease (CRSDJ. The pathology and immunopathology of these are discussed in detail in other reports. The present report was initiated as a review of the literature concerning the diseases and to present in brief a description of their etiologic agents.

  16. Evidence of bat origin for Menangle virus, a zoonotic paramyxovirus first isolated from diseased pigs.

    PubMed

    Barr, Jennifer A; Smith, Craig; Marsh, Glenn A; Field, Hume; Wang, Lin-Fa

    2012-12-01

    Menangle virus (MenPV) is a zoonotic paramyxovirus capable of causing disease in pigs and humans. It was first isolated in 1997 from stillborn piglets at a commercial piggery in New South Wales, Australia, where an outbreak of reproductive disease occurred. Neutralizing antibodies to MenPV were detected in various pteropid bat species in Australia and fruit bats were suspected to be the source of the virus responsible for the outbreak in pigs. However, previous attempts to isolate MenPV from various fruit bat species proved fruitless. Here, we report the isolation of MenPV from urine samples of the black flying fox, Pteropus alecto, using a combination of improved procedures and newly established bat cell lines. The nucleotide sequence of the bat isolate is 94 % identical to the pig isolate. This finding provides strong evidence supporting the hypothesis that the MenPV outbreak in pigs originated from viruses in bats roosting near the piggery.

  17. Ebola Virus Disease Epidemic: What Can the World Learn and Not Learn from West Africa?

    PubMed Central

    Azuine, Romuladus E.; Ekejiuba, Sussan E.; Singh, Gopal K.; Azuine, Magnus A.

    2015-01-01

    With over 4,500 deaths and counting, and new cases identified in two developed countries that are struggling and faltering in their handling of the epidemic, the 2014 Ebola Virus Disease (EVD) epidemic is unlike any of its kind ever encountered. The ability of some poor, resource-limited, developing countries in sub-Saharan Africa to efficiently handle the epidemic within their shores provides some lessons learned for the global health community. Among others, the 2014 EVD epidemic teaches us that it is time to put the “P” back in public and population health around the world. The global health community must support a sustainable strategy to mitigate Ebola virus and other epidemics both within and outside their shores, even after the cameras are gone. Ebola virus must not be called the disease of the poor and developing world. PMID:27621980

  18. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae).

    PubMed

    Chihota, C M; Rennie, L F; Kitching, R P; Mellor, P S

    2001-04-01

    Aedes aegypti female mosquitoes are capable of the mechanical transmission of lumpy skin disease virus (LSDV) from infected to susceptible cattle. Mosquitoes that had fed upon lesions of LSDV-infected cattle were able to transmit virus to susceptible cattle over a period of 2-6 days post-infective feeding. Virus was isolated from the recipient animals in 5 out of 7 cases. The clinical disease recorded in the animals exposed to infected mosquitoes was generally of a mild nature, with only one case being moderate. LSDV has long been suspected to be insect transmitted, but these findings are the first to demonstrate this unequivocally, and they suggest that mosquito species are competent vectors.

  19. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae).

    PubMed Central

    Chihota, C. M.; Rennie, L. F.; Kitching, R. P.; Mellor, P. S.

    2001-01-01

    Aedes aegypti female mosquitoes are capable of the mechanical transmission of lumpy skin disease virus (LSDV) from infected to susceptible cattle. Mosquitoes that had fed upon lesions of LSDV-infected cattle were able to transmit virus to susceptible cattle over a period of 2-6 days post-infective feeding. Virus was isolated from the recipient animals in 5 out of 7 cases. The clinical disease recorded in the animals exposed to infected mosquitoes was generally of a mild nature, with only one case being moderate. LSDV has long been suspected to be insect transmitted, but these findings are the first to demonstrate this unequivocally, and they suggest that mosquito species are competent vectors. PMID:11349983

  20. Attempted mechanical transmission of lumpy skin disease virus by biting insects.

    PubMed

    Chihota, C M; Rennie, L F; Kitching, R P; Mellor, P S

    2003-09-01

    The mosquitoes Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae), the stable fly Stomoxys calcitrans Linnaeus (Diptera: Muscidae) and the biting midge Culicoides nubeculosus Meigen (Diptera: Ceratopogonidae) were allowed to feed on either lumpy skin disease (LSD) infected animals or through a membrane on a bloodmeal containing lumpy skin disease virus (LSDV). These arthropods were then allowed to refeed on susceptible cattle at various intervals after the infective feed. Virus was detected in the insects by polymerase chain reaction immediately after feeding and at sufficiently high titre to enable transmission to occur. However, no transmission of virus from infected to susceptible animals by An. stephensi, S. calcitrans, C. nubeculosus and Cx. quinquefasciatus was observed.

  1. Foot and mouth disease (FMD) virus: quantification of whole virus particles during the vaccine manufacturing process by size exclusion chromatography.

    PubMed

    Spitteler, Marcelo A; Fernández, Ignacio; Schabes, Erika; Krimer, Alejandro; Régulier, Emmanuel G; Guinzburg, Mariela; Smitsaart, Eliana; Levy, M Susana

    2011-09-22

    Foot and mouth disease (FMD) is a highly infectious viral disease that affects cattle, sheep, goats and swine causing severe economic losses worldwide. The efficacy of inactivated vaccines is critically dependent on the integrity of foot and mouth disease virus (FMDV) particles. The recommended method to quantify the active ingredient of vaccines is the 140S quantitative sucrose density gradient analysis. This method has been an immensely valuable tool over the past three decades but it is highly operator dependent and difficult to automate. We developed a method to quantify FMDV particles during the vaccine manufacturing process that is based on separation of components by size-exclusion chromatography and measurement of virus by absorption at 254nm. The method is linear in the 5-70μg/mL range, it is applicable to different FMDV strains, and has a good correlation with the 140S test. The proposed method uses standard chromatographic media and it is amenable to automation. The method has potential as a process analytical technology and for control of final product by manufacturers, international vaccine banks and regulatory agencies.

  2. A necrotizing pneumonia in lambs caused by pseudorabies virus (Aujesky's disease virus).

    PubMed Central

    Schmidt, S P; Pirtle, E C; Hagemoser, W A; Wages, D P

    1987-01-01

    An outbreak of pseudorabies occurred in sheep housed with swine in the same building. Although the sheep and swine were not in physical contact, the lambs and ewes were exposed to air from the sows' section. Three dead lambs were submitted to the Iowa State University Veterinary Diagnostic Laboratory for necropsy. Grossly there were pulmonary congestion and multifocal pulmonary hemorrhages. Microscopic lesions were severe acute multifocal necrotizing bronchopneumonia with necrotizing vasculitis and intranuclear inclusion bodies within the neurons of the parabronchial ganglia. Bacterial cultures were negative for pathogenic agents; pseudorabies virus was isolated from ovine brain tissue. Viral antigen was demonstrated in the neurons of the parabronchial ganglia by immunoperoxidase staining. Electron microscopy revealed nucleocapsids in the parabronchial ganglionic neurons which contained basophilic intranuclear inclusion bodies. Viral DNA prepared from the ovine pseudorabies virus isolate was found by restriction endonuclease analysis to be related to the Indiana Funkhauser strain of pseudorabies virus. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3032388

  3. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection.

    PubMed

    Driskell, Elizabeth A; Jones, Cheryl A; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, S Mark

    2010-04-10

    The direct transmission of highly pathogenic avian influenza (HPAI) viruses to humans in Eurasia and subsequent disease has sparked research efforts leading to better understanding of HPAI virus transmission and pathogenicity in mammals. There has been minimal focus on examining the capacity of circulating low pathogenic wild bird avian influenza viruses to infect mammals. We have utilized a mouse model for influenza virus infection to examine 28 North American wild bird avian influenza virus isolates that include the hemagglutinin subtypes H2, H3, H4, H6, H7, and H11. We demonstrate that many wild bird avian influenza viruses of several different hemagglutinin types replicate in this mouse model without adaptation and induce histopathologic lesions similar to other influenza virus infections but cause minimal morbidity. These findings demonstrate the potential of wild avian influenza viruses to directly infect mice without prior adaptation and support their potential role in emergence of pandemic influenza.

  4. Particle-to-PFU Ratio of Ebola Virus Influences Disease Course and Survival in Cynomolgus Macaques

    PubMed Central

    Alfson, Kendra J.; Avena, Laura E.; Beadles, Michael W.; Staples, Hilary; Nunneley, Jerritt W.; Ticer, Anysha; Dick, Edward J.; Owston, Michael A.; Reed, Christopher; Patterson, Jean L.; Carrion, Ricardo

    2015-01-01

    ABSTRACT This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. IMPORTANCE Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically

  5. Comparative quantitative monitoring of rabbit haemorrhagic disease viruses in rabbit kittens

    PubMed Central

    2014-01-01

    Background Only one strain (the Czech CAPM-v351) of rabbit haemorrhagic disease virus (RHDV) has been released in Australia and New Zealand to control pest populations of the European rabbit O. cuniculus. Antigenic variants of RHDV known as RHDVa strains are reportedly replacing RHDV strains in other parts of the world, and Australia is currently investigating the usefulness of RHDVa to complement rabbit biocontrol efforts in Australia and New Zealand. RHDV efficiently kills adult rabbits but not rabbit kittens, which are more resistant to RHD the younger they are and which may carry the virus without signs of disease for prolonged periods. These different infection patterns in young rabbits may significantly influence RHDV epidemiology in the field and hence attempts to control rabbit numbers. Methods We quantified RHDV replication and shedding in 4–5 week old rabbits using quantitative real time PCR to assess their potential to shape RHDV epidemiology by shedding and transmitting virus. We further compared RHDV-v351 with an antigenic variant strain of RHDVa in kittens that is currently being considered as a potential RHDV strain for future release to improve rabbit biocontrol in Australia. Results Kittens were susceptible to infection with virus doses as low as 10 ID50. Virus growth, shedding and transmission after RHDVa infection was found to be comparable or non-significantly lower compared to RHDV. Virus replication and shedding was observed in all kittens infected, but was low in comparison to adult rabbits. Both viruses were shed and transmitted to bystander rabbits. While blood titres indicated that 4–5 week old kittens mostly clear the infection even in the absence of maternal antibodies, virus titres in liver, spleen and mesenteric lymph node were still high on day 5 post infection. Conclusions Rabbit kittens are susceptible to infection with very low doses of RHDV, and can transmit virus before they seroconvert. They may therefore play an important

  6. Adeno-Associated Virus Gene Therapy for Liver Disease

    PubMed Central

    Kattenhorn, Lisa M.; Tipper, Christopher H.; Stoica, Lorelei; Geraghty, Deborah S.; Wright, Teresa L.; Clark, K. Reed; Wadsworth, Samuel C.

    2016-01-01

    The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments. PMID:27897038

  7. Use of BAC clones as standardized reagents for Marek’s disease virus research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cloning of the Marek’s disease virus (MDV) genome as an infectious bacterial artificial chromosome (BAC) clone have led to major advances through our ability to study individual gene function by making precise insertions and deletions in the viral genome. We believe that MDV BAC clones will repl...

  8. An inactivated influenza D virus vaccine partially protects cattle from respiratory disease caused by homologous challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Originally isolated from swine, the proposed influenza D virus has since been shown to be common in cattle. Inoculation of IDV to naïve calves resulted in mild respiratory disease histologically characterized by tracheitis. As several studies have associated the presence of IDV with acute bovine r...

  9. Potential Evidence of a Unique Marek's Disease Virus Strain Circulating in Pennsylvania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, virus isolates were grown and characterized from two flocks in Pennsylvania experiencing higher than normal mortality attributed to Marek’s disease. The first flock was 28-week old commercial white layers vaccinated with HVT + Rispens, and the second flock was 36-week old commercial brown ...

  10. An MHC Class I Immune Evasion Gene of Marek's Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s Disease Virus (MDV) is a widespread pathogen of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to MHC class I down-regulation (Virology 282:198–205 (2001)), but the gene(s)involved have not been identified. Here we demonstrate tha...

  11. AN MHC class I immune evasion gene of Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...

  12. Complete Genome Sequence of a Newcastle Disease Virus Isolated from Wild Peacock (Pavo cristatus) in India

    PubMed Central

    Khulape, Sagar A.; Gaikwad, Satish S.; Chellappa, Madhan Mohan; Mishra, Bishnu Prasad

    2014-01-01

    We report here the complete genome sequence of a Newcastle disease virus (NDV) isolated from a wild peacock. Phylogenetic analysis showed that it belongs to genotype II, class II of NDV strains. This study helps to understand the ecology of NDV strains circulating in a wild avian host of this geographical region during the outbreak of 2012 in northwest India. PMID:24903868

  13. Recombinant Newcastle disease virus expressing IL15 demonstrates promising antitumor efficiency in melanoma model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant Newcastle Disease Virus (rNDV) has shown oncolytic therapeutic effect in preclinical studies. Previous data indicate that rNDV carrying IL2 has shown promise in cancer therapy. Due to the significant side effects of IL2, IL15 has been introduced into cancer therapy. A number of studies h...

  14. Recombinant Newcastle disease virus Anhinga Strain (NDV/Anh-EGFP) for Hepatoma Therapy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hepatocellular carcinoma remains one of the most common malignant tumors in the world. Newcastle disease virus (NDV) has been proved to be an efficient oncolytic agent. NDV tumor killing efficacy is not only depending on the NDV strain but the type of tumor targeted. It is significant to discover mo...

  15. Characterization of Beak and Feather Disease Virus Genomes from Wild Musk Lorikeets (Glossopsitta concinna)

    PubMed Central

    Subir, Sarker; Adriaanse, Katherine; Forwood, Jade K.; Ghorashi, Seyed A.; Raidal, Shane R.

    2016-01-01

    Three complete genomes of beak and feather disease virus (BFDV) were recovered from wild musk lorikeets (Glossopsitta concinna). The genomes consisted of 2,008 to 2,010 nucleotides (nt) and encode two major proteins transcribing in opposing directions. This is the first report of BFDV complete genome sequences obtained from this host species. PMID:27795266

  16. Effects of the HN gene c-terminal extensions on the Newcastle disease virus virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is a multifunctional protein that has receptor recognition, neuraminidase and fusion promotion activities. Sequence analysis revealed that the HN gene of many extremely low virulence NDV strains encodes a larger open reading frame...

  17. Host responses in the bursa of Fabricius of chickens infected with virulent Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host responses associated with very virulent Marek’s disease virus (MDV) infection in the bursa of Fabricius of chicken was investigated. The expression of MDV pp38 antigen and MDV gB transcripts were higher at 4 days post-infection (dpi) and then showed a declining trend. On the contrary, the expre...

  18. A novel approach for a foreign gene expression by Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease virus (NDV) has been developed as vectors using reverse genetics technology to express foreign genes for vaccine, anticancer and gene therapy purposes. The foreign genes are usually inserted into the intergenic region of the NDV genome as an additional transcription unit. Based on ...

  19. Complete Genome Sequence of a Newcastle Disease Virus Isolate from an Outbreak in Central India

    PubMed Central

    Gogoi, Polakshee; Morla, Sudhir; Kaore, Megha; Kurkure, Nitin Vasantrao

    2015-01-01

    The complete genome sequence of a Newcastle disease virus (NDV) strain NDV/Chicken/Nagpur/01/12 was isolated from vaccinated chicken farms in India during outbreaks in 2012. The genome is 15,192 nucleotides in length and is classified as genotype VII in class II. PMID:25593257

  20. Presence of virulent Newcastle disease virus in vaccinated chickens in farms in Pakistan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sites where virulent Newcastle disease virus persists in endemic countries are unknown. Evidence presented here shows that the same strain that caused a previous outbreak was present in both apparently healthy and sick vaccinated birds from multiple farms that had high average specific antibody...