Ganesh, Venkataraman; Odachowski, Marcin
2017-01-01
Abstract The enantiospecific coupling of secondary and tertiary boronic esters to aromatics has been investigated. Using p‐lithiated phenylacetylenes and a range of boronic esters coupling has been achieved by the addition of N‐bromosuccinimide (NBS). The alkyne functionality of the intermediate boronate complex reacts with NBS triggering the 1,2‐migration of the group on boron to carbon giving a dearomatized bromoallene intermediate. At this point elimination and rearomatization occurs with neopentyl boronic esters, giving the coupled products. However, using pinacol boronic esters, the boron moiety migrates to the adjacent carbon resulting in formation of ortho boron‐incorporated coupled products. The synthetic utility of the boron incorporated product has been demonstrated by orthogonal transformation of both the alkyne and boronic ester functionalities. PMID:28618129
Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.
Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K
2015-06-05
Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.
Three-chain B{sub 6n+14} cages as possible precursors for the syntheses of boron fullerenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Haigang, E-mail: luhg@sxu.edu.cn; Li, Si-Dian
Using the first principle methods, we proposed a series of three-chain boron cages B{sub 6n+14} (n = 1–12) which are mainly built by fusing three boron semi-double-rings. Their simple geometric structures (approximate D{sub 3} or C{sub 3} symmetry) facilitate their bottom-up syntheses from the hexagonal B{sub 7} and the double-chain boron clusters, such as B{sub 2}, B{sub 4}, B{sub 6}, B{sub 8}H{sub 2}, B{sub 10}H{sub 2}, B{sub 12}H{sub 2}, and the double ring B{sub 20}. The spherical shapes of these three-chain boron cages show that they could be taken as the possible precursors to further synthesize the boron fullerenes, suchmore » as B{sub 80}. Therefore, these three-chain boron cages provide a possible synthesis pathway of the boron fullerenes from the experimentally synthesized small planar boron clusters.« less
Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.
Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J
2015-04-01
The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Ektarawong, A.; Simak, S. I.; Alling, B.
2018-05-01
We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.
NASA Astrophysics Data System (ADS)
Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.
2015-09-01
Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.
Beta cell device using icosahedral boride compounds
Aselage, Terrence L.; Emin, David
2002-01-01
A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaborn, C.D.; Nielsen, F.H.
1994-06-01
Because boron resembles silicon in its chemical properties, an experiment was performed to determine if excessive dietary boron would affect the response to silicon deprivation and, conversely, if silicon would influence the effects of an excessive intake of boron. Male weanling Sprague-Dawley rats were assigned to groups of 6 or 12 in a two-by-two factorially arranged experiment. Supplemented to a ground corn/casein diet containing 1.2 [mu]g silicon and 3 [mu]g boron per gram were silicon as sodium metasilicate at 0 or 50 [mu]g/g and boron as orthoboric acid at 0 or 500 [mu]g/g diet. At nine weeks, animals fed highmore » dietary boron had significantly decreased final body weights, liver-weight-to-body-weight ratios, urinary cAMP concentrations, plasma triglyceride, cholesterol, glycine, valine, leucine, and lysine concentrations and skull copper, sodium, and manganese concentrations. High dietary boron also significantly increased brain-weight-to-body-weight ratios, magnesium concentrations of femur, brain, and plasma, zinc concentration of femur, and iron concentration of skull. The bone mineral findings suggest that excess dietary boron exerts subtle effects on bone composition. Dietary silicon affected blood urea nitrogen, hematocrit, hemoglobin, and the concentrations of plasma threonine and aspartic acid in animals fed excess boron. Depression of the testes-weight-to-body-weight ratio of animals fed 500 [mu]g boron per gram diet was most marked in animals not fed silicon. Although excessive dietary boron did not markedly enhanced the response of rats to silicon deprivation, dietary silicon affected their response to high dietary boron. Thus, dietary silicon apparently can influence boron toxicity.« less
Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe
2017-12-27
Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p < 0.05), increased the number of positive proliferating cell nuclear antigen (PCNA + ) cells and concentrations of glutathione peroxidase (GSH-Px) and phosphorylated extracellular signal-regulated kinase (p-ERK) (p < 0.05), and promoted mRNA expression of PCNA and ERK1/2 in thymocytes (p < 0.05). However, the number of caspase-3 + cells and the expression level of caspase-3 mRNA were reduced (p < 0.05). Supplementation with 40, 80, and 160 mg/L boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p < 0.05). Our study showed that supplementation of various doses of boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.
Theoretical investigation of calcium-decorated β12 boron sheet for hydrogen storage
NASA Astrophysics Data System (ADS)
Tang, Xiao; Gu, Yuantong; Kou, Liangzhi
2018-03-01
From first-principles calculations based on density functional theory, we find that the recently synthesized β12 boron sheet is a perfect candidate for calcium-decoration and hydrogen storage application. In contrast to graphene where defects are required to capture Ca, the naturally formed hexagonal hollow ring in β12 boron sheet provides the ideal site for Ca adsorption, and up to 6H2 molecules for each Ca atom can be captured with a desirable binding energy of ∼0.2 eV/H2. The gravimetric hydrogen density for Ca decorated boron sheet can reach up to 8.92 wt%. From the electronic analysis, it is found that both the orbital hybridizations and polarization mechanism play significant roles in H2 adsorption and storage.
Silvi, Mattia; Sandford, Christopher; Aggarwal, Varinder K
2017-04-26
Vinyl boronates react with electron-deficient alkyl iodides in the presence of visible light to give boronic esters in which two new C-C bonds have been created. The reaction occurs by radical addition of an electron-deficient alkyl radical to the vinyl boronate followed by electron transfer with another molecule of alkyl iodide, continuing the chain, and triggering a 1,2-metalate rearrangement. In a number of cases, the use of a photoredox catalyst enhances yields significantly. The scope of the radical precursor includes α-iodo ketones, esters, nitriles, primary amides, α-fluorinated halo-acetates and perfluoroalkyl iodides.
Hattori, Yoshihide; Kusaka, Shintaro; Mukumoto, Mari; Ishimura, Miki; Ohta, Yoichiro; Takenaka, Hiroshi; Uehara, Kouki; Asano, Tomoyuki; Suzuki, Minoru; Masunaga, Shin-Ichiro; Ono, Koji; Tanimori, Shinji; Kirihata, Mitsunori
2014-12-01
Boron-neutron capture therapy (BNCT) is an attractive technique for cancer treatment. As such, α, α-cycloalkyl amino acids containing thiododecaborate ([B12H11](2-)-S-) units were designed and synthesized as novel boron delivery agents for BNCT. In the present study, new thiododecaborate α, α-cycloalkyl amino acids were synthesized, and biological evaluation of the boron compounds as boron carrier for BNCT was carried out.
Fragment approach to the electronic structure of τ -boron allotrope
NASA Astrophysics Data System (ADS)
Karmodak, Naiwrit; Jemmis, Eluvathingal D.
2017-04-01
The presence of nonconventional bonding features is an intriguing part of elemental boron. The recent addition of τ boron to the family of three-dimensional boron allotropes is no exception. We provide an understanding of the electronic structure of τ boron using a fragment molecular approach, where the effect of symmetry reduction on skeletal bands of B12 and the B57 fragments are examined qualitatively by analyzing the projected density of states of these fragments. In spite of the structural resemblance to β boron, the reduction of symmetry from a rhombohedral space group to the orthorhombic one destabilizes the bands and reduces the electronic requirements. This suggests the presence of the partially occupied boron sites, as seen for a β boron unit cell, and draws the possibility for the existence of different energetically similar polymorphs. τ boron has a lower binding energy than β boron.
NASA Astrophysics Data System (ADS)
Ektarawong, A.
2018-05-01
The phase stability of icosahedral boron subselenide B12(B1-xSex) 2 , where 0.5 ≤x ≤1 , is explored using a first-principles cluster expansion. The results shows that, instead of a continuous solid solution, B12(B1-xSex) 2 is thermodynamically stable as an individual line compound at the composition of B9.5Se . The ground-state configuration of B9.5Se is represented by a mixture of B12(Se-Se), B12(B-Se), and B12(Se-B) with a ratio of 1:1:1, where they form a periodic A B C A B C ⋯ stacking sequence of B12(Se-Se), B12(B-Se), and B12(Se-B) layers along the c axis of the hexagonal conventional unit cell. The structural and electronic properties of the ground-state B9.5Se are also derived and discussed. By comparing the derived ground-state properties of B9.5Se to the existing experimental data of boron subselenide B˜13Se , I proposed that the as-synthesized boron subselenide B˜13Se , as reported in the literature, has the actual composition of B9.5Se .
Review: Microstructure Engineering of Titanium Alloys via Small Boron Additions (Preprint)
2011-07-01
small amount of boron to γ titanium aluminides (TiAl) has been found to improve room temperature ductility [12]. The principal effect of boron...AFRL-RX-WP-TP-2011-4298 REVIEW: MICROSTRUCTURE ENGINEERING OF TITANIUM ALLOYS VIA SMALL BORON ADDITIONS (Preprint) D.B. Miracle...2011 Journal Article Preprint 01 July 2011 – 01 July 2011 4. TITLE AND SUBTITLE REVIEW: MICROSTRUCTURE ENGINEERING OF TITANIUM ALLOYS VIA SMALL
Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy
Miura, Michiko; Slatkin, Daniel N.
1997-03-18
A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.
Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy
Miura, Michiko; Slatkin, Daniel N.
1995-10-03
A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.
Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy
Miura, Michiko; Slatkin, Daniel N.
1997-08-05
A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized. by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.
Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy
Miura, M.; Slatkin, D.N.
1995-10-03
A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.
Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy
Miura, M.; Slatkin, D.N.
1997-03-18
A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.
Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy
Miura, M.; Slatkin, D.N.
1997-08-05
A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.
Present knowledge of electronic properties and charge transport of icosahedral boron-rich solids
NASA Astrophysics Data System (ADS)
Werheit, Helmut
2009-06-01
B12 icosahedra or related structure elements determine the different modifications of elementary boron and numerous boron-rich compounds from α-rhombohedral boron with 12 to YB66 type with about 1584 atoms per unit cell. Typical are well-defined high density intrinsic defects: Jahn-Teller distorted icosahedra, vacancies, incomplete occupancies, statistical occupancies and antisite defects. The correlation between intrinsic point defects and electron deficiencies solves the discrepancy between theoretically predicted metal and experimentally proved semiconducting character. The electron deficiencies generate split-off valence states, which are decisive for the electronic transport, a superposition of band-type and hopping-type conduction. Their share depends on actual conditions like temperature or pre-excitation. The theoretical model of bipolaron hopping is incompatible with numerous experiments. Technical application of the typically p-type icosahedral boron-rich solids requires suitable n-type counterparts; doping and other possibilities are discussed.
Ultratough single crystal boron-doped diamond
Hemley, Russell J [Carnegie Inst. for Science, Washington, DC ; Mao, Ho-Kwang [Carnegie Inst. for Science, Washington, DC ; Yan, Chih-Shiue [Carnegie Inst. for Science, Washington, DC ; Liang, Qi [Carnegie Inst. for Science, Washington, DC
2015-05-05
The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.
Boron removal from aqueous solution by direct contact membrane distillation.
Hou, Deyin; Wang, Jun; Sun, Xiangcheng; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing
2010-05-15
The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 microg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Zioła-Frankowska, Anetta; Frankowski, Marcin; Novotny, Karel; Kanicky, Viktor
2014-01-01
The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content) fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day) is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.
Demirçivi, Pelin; Saygılı, Gülhayat Nasün
2017-07-01
In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).
Design and fabrication of an innovative and environmental friendly adsorbent for boron removal.
Wei, Yu-Ting; Zheng, Yu-Ming; Chen, J Paul
2011-03-01
Boron can pose adverse effects on human beings and plants species. It exists in various water environments and is difficult to be removed by conventional technologies. In this study, an efficient and environmental friendly sorbent was fabricated by the functionalization of a natural biopolymer, chitosan, with N-methylglucamine through atom transfer radical polymerization. The SEM and BET studies revealed that the sorbent had a rougher surface and a more porous structure than the chitosan. At the optimum neutral pH, the maximum sorption capacity was as high as 3.25 mmol/g, much higher than the commercial boron selective resins (e.g., Amberlite IRA-743) and many other synthesized sorbents. Almost 90% of boron sorption occurred within 8 h and the equilibrium was established in 12 h, which was well described by an intraparticle surface diffusion model. The presence of sodium chloride and sodium nitrate had no effect on the boron removal. The boron concentration in seawater could be reduced to less than 0.5 mg/L from 4.8 mg/L when a sorbent dosage of 1.2 g/L was used. It was therefore concluded that the sorption technology from this study could be promising for boron removal from aqueous solutions. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Foster, Camera; Koschan, Merry; Wu, Yuntao; Melcher, Charles L.
2018-03-01
Many single crystal scintillators, such as Lu3Al5O12, have intrinsic defects that impede their performance. In addition to doping with activators such as cerium, codoping can be used to improve the scintillation properties of a variety of scintillators. In particular, boron has been shown to improve the light yield, energy resolution, and self-absorption of other garnet scintillators, such as GGAG, when incorporated into the lattice via codoping. In this study, single crystals of LuAG: 0.2 at.% Ce codoped with varying concentrations of boron were grown via the Czochralski method at a rate of 1.2 mm/h. Results will show the effect boron codoping has on the scintillation properties of LuAG: Ce, including light yield, decay time, and self-absorption.
In vivo and in vitro effects of boron and boronated compounds.
Benderdour, M; Bui-Van, T; Dicko, A; Belleville, F
1998-03-01
Boron is ubiquitously present in soils and water. Associated with pectin it is essential for vascular plants as a component of cell walls, and it stabilizes cell membranes. It is required for the growth of pollen tubes and is involved in membrane transport, stimulating H(+)-pumping ATPase activity and K+ uptake. However, a high boron concentration in the soils is toxic to plants and some boronated derivatives are used as herbicides. An absolute requirement for boron has not been definitively demonstrated in animals and humans. However, experiments with boron supplementation or deprivation show that boron is involved in calcium and bone metabolism, and its effects are more marked when other nutrients (cholecalciferol, magnesium) are deficient. Boron supplementation increases the serum concentration of 17 beta-estradiol and testosterone but boron excess has toxic effects on reproductive function. Boron may be involved in cerebral function via its effects on the transport across membranes. It affects the synthesis of the extracellular matrix and is beneficial in wound healing. Usual dietary boron consumption in humans is 1-2 mg/day for adults. As boron has been shown to have biological activity, research into the chemistry of boronated compounds has increased. Boronated compounds have been shown to be potent anti-osteoporotic, anti-inflammatory, hypolipemic, anti-coagulant and anti-neoplastic agents both in vitro and in vivo in animals.
NASA Astrophysics Data System (ADS)
Al-Ammar, Assad S.; Gupta, Rajesh K.; Barnes, Ramon M.
2000-06-01
Injection of 10-20 ml/min of ammonia gas into an inductively coupled plasma-mass spectrometry (ICP-MS) spray chamber during boron determination eliminates the memory effect of a 1 μg/ml B solution within a 2-min washing time. Ammonia gas injection also reduces the boron blank by a factor of four and enhances the sensitivity by 33-90%. Boron detection limits are improved from 12 and 14 to 3 and 4 ng/ml, respectively, for two ICP-MS instruments. Trace boron concentrations in certified reference materials agree well using ammonia gas injection.
Zioła-Frankowska, Anetta; Frankowski, Marcin; Novotny, Karel; Kanicky, Viktor
2014-01-01
The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content) fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day) is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time. PMID:25379551
Structure and Growth of Hexagonal Boron Nitride on Ir(111).
Farwick Zum Hagen, Ferdinand H; Zimmermann, Domenik M; Silva, Caio C; Schlueter, Christoph; Atodiresei, Nicolae; Jolie, Wouter; Martínez-Galera, Antonio J; Dombrowski, Daniela; Schröder, Ulrike A; Will, Moritz; Lazić, Predrag; Caciuc, Vasile; Blügel, Stefan; Lee, Tien-Lin; Michely, Thomas; Busse, Carsten
2016-12-27
Using the X-ray standing wave method, scanning tunneling microscopy, low energy electron diffraction, and density functional theory, we precisely determine the lateral and vertical structure of hexagonal boron nitride on Ir(111). The moiré superstructure leads to a periodic arrangement of strongly chemisorbed valleys in an otherwise rather flat, weakly physisorbed plane. The best commensurate approximation of the moiré unit cell is (12 × 12) boron nitride cells resting on (11 × 11) substrate cells, which is at variance with several earlier studies. We uncover the existence of two fundamentally different mechanisms of layer formation for hexagonal boron nitride, namely, nucleation and growth as opposed to network formation without nucleation. The different pathways are linked to different distributions of rotational domains, and the latter enables selection of a single orientation only.
Global transport of light elements boron and carbon in the full-W ASDEX Upgrade
NASA Astrophysics Data System (ADS)
ASDEX Upgrade Team; Hakola, A.; Likonen, J.; Koivuranta, S.; Krieger, K.; Mayer, M.; Neu, R.; Rohde, V.; Sugiyama, K.
2011-08-01
Transport of carbon and boron has been investigated in the full-W ASDEX Upgrade after experimental campaigns with (2008) and without (2007) boronizations. For this purpose, poloidal deposition profiles of the two elements on tungsten and graphite regions of lower-divertor tiles have been determined. Carbon is mainly deposited in the inner divertor - 80-90% of the determined 12C and 13C inventories on W - while boron shows a much more symmetric deposition profile. In the unboronized machine, the boron inventories are a factor of 10 smaller than in the boronized case and result from residual boron atoms left in the torus prior to the 2007 campaign. Both carbon and boron are deposited more efficiently and/or show less erosion on graphite than on tungsten, particularly in the outer divertor. For 13C, the difference is 10-100 in favor of graphite. This is most probably caused by a higher re-erosion from tungsten surfaces.
Promising Sparingly Alloyed Boron-Bearing Steels for the Production of High-Strength Fasteners
NASA Astrophysics Data System (ADS)
Bobylev, M. V.; Koroleva, E. G.; Shtannikov, P. A.
2005-05-01
The main advantages of boron-bearing steels used for production of rolled sections at cold upset shops of Russian automotive plants are considered. A thermodynamic model for the majority of boron-bearing steels for high-strength fasteners is used to plot nomograms characterizing the effect of titanium, aluminum, nitrogen, and boron on the amount of nitrides and oxides segregated in crystallization and on the content of effective boron. The effect of effective boron on the characteristics of hardenability is estimated. The studies conducted are used for determining the range of permissible contents of titanium and aluminum ensuring through hardenability of rolled bars from steels 12G1R, 20G2R, and 30G1R up to 25 mm in diameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1964-01-01
An aliquot of the sample is evaporated to dryness with sodium hydroxide, and the boron is determined absorptiometrically on the residue as the curcumin complex. The method is applicable to water containing 0.065 to 0.05 ppm boron. The standard deviation obtained from 12 recoveries at the 0.25 mu g level was 0.014 mu g. (auth)
Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery.
Vancoillie, Gertjan; Hoogenboom, Richard
2016-10-19
Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.
Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery
Vancoillie, Gertjan; Hoogenboom, Richard
2016-01-01
Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials. PMID:27775572
A Boron Protecting Group Strategy for 1,2-Azaborines.
Baggett, Andrew W; Liu, Shih-Yuan
2017-10-25
Upon reaction with either molecular oxygen or di-tert-butylperoxide in the presence of a simple copper(I) salt and an alcohol, a range of 1,2-azaborines readily exchange B-alkyl or B-aryl moieties for B-alkoxide fragments. This transformation allows alkyl and aryl groups to serve for the first time as removable protecting groups for the boron position of 1,2-azaborines during reactions that are not compatible with the easily modifiable B-alkoxide moiety. This reaction can be applied to synthesize a previously inaccessible BN isostere of ethylbenzene, a compound of interest in biomedical research. A sequence of epoxide ring opening using N-deprotonated 1,2-azaborines followed by an intramolecular version of the boron deprotection reaction can be applied to access the first examples of BN isosteres of dihydrobenzofurans and benzofurans, classes of compounds that are important to medicinal chemistry and natural product synthesis.
Jin, Erhui; Li, Shenghe; Ren, Man; Hu, Qianqian; Gu, Youfang; Li, Kui
2017-08-01
This study demonstrated the mechanisms of boron effects in a rat model and provided a scientific basis for the rational of boron use. These findings were achieved by investigating the effects of boron (10, 20, 40, 80, 160, 320, and 640 mg/L in drinking water or 1.5, 3, 6, 12, 24, 48, and 96 mg/kg BW) on rat serum immunoglobulins (IgGs), splenic cytokines, lymphocyte subsets, as well as on lymphocyte proliferation and apoptosis. Addition of 20 (3) and 40 (6) mg/L (mg/kg BW) of boron to drinking water significantly increased rat serum IgG concentrations, splenic IFN-γ and IL-4 expression as well as the number of splenic CD3 + , CD4 + and proliferating cell nuclear antigen (PCNA) + cells. Supplementation of drinking water with 40 mg/L (6 mg/kg BW) boron also markedly increased splenic IL-2 expression and the CD4 + /CD8 + cell ratio and reduced splenic CD8 + cell number. Supplementation with 80 mg/L (12 mg/kg BW) boron significantly increased CD3 + and PCNA + cell numbers (P < 0.05) and decreased the IL-10 expression in the spleen. Addition of 320 (48) and 640 (96) mg/L (mg/kg BW) boron markedly reduced the serum IgG concentrations; splenic IL-2 and IL-10 expression; the number of CD3 + , CD4 + and PCNA + cells; and increased the number of splenic CD8 + and caspase-3 + cells and promoted caspase-3 expression in CD3 + cells. In conclusion, these findings suggest that the supplementation of rat drinking water with 20(3) and 40(6) mg/L (mg/kg BW) boron can markedly enhance humoral and cellular immune functions, while boron concentrations above 320 mg/L (48 mg/kg BW) can have an inhibitory effect or even toxicity on immune functions. These results exhibit a U-shaped response characteristic of low and high doses of boron supplementation on immune function and imply that proper boron supplementation in food for humans and animals could be used as an immunity regulator.
A molecular cross-linking approach for hybrid metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Dahee; Saleh, Liban A. M.; Berkson, Zachariah J.
Developing methods to create hybrid materials to maximize their transformative capabilities has been the subject of significant interest. In particular, several key methods have been developed to manipulate earth abundant metal oxides such as TiO 2 to produce hybrid materials with improved or new properties relevant to a broad spectrum of applications. Here, we introduce a new approach we refer to as “molecular doping”, whereby a hybrid molecular boron oxide material is formed from polyhedral boron cluster precursors of the type [B 12(OH) 12] 2-. This new approach is enabled by the inherent robustness of the boron cluster molecular buildingmore » block, which is compatible with harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, we show how this material can be successfully interfaced with TiO 2, resulting in boron-rich hybrid materials with unprecedented photophysical and electrochemical properties.« less
A molecular cross-linking approach for hybrid metal oxides.
Jung, Dahee; Saleh, Liban M A; Berkson, Zachariah J; El-Kady, Maher F; Hwang, Jee Youn; Mohamed, Nahla; Wixtrom, Alex I; Titarenko, Ekaterina; Shao, Yanwu; McCarthy, Kassandra; Guo, Jian; Martini, Ignacio B; Kraemer, Stephan; Wegener, Evan C; Saint-Cricq, Philippe; Ruehle, Bastian; Langeslay, Ryan R; Delferro, Massimiliano; Brosmer, Jonathan L; Hendon, Christopher H; Gallagher-Jones, Marcus; Rodriguez, Jose; Chapman, Karena W; Miller, Jeffrey T; Duan, Xiangfeng; Kaner, Richard B; Zink, Jeffrey I; Chmelka, Bradley F; Spokoyny, Alexander M
2018-04-01
There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO 2 , to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as 'molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B 12 (OH) 12 ] 2- . This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO 2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.
A molecular cross-linking approach for hybrid metal oxides
NASA Astrophysics Data System (ADS)
Jung, Dahee; Saleh, Liban M. A.; Berkson, Zachariah J.; El-Kady, Maher F.; Hwang, Jee Youn; Mohamed, Nahla; Wixtrom, Alex I.; Titarenko, Ekaterina; Shao, Yanwu; McCarthy, Kassandra; Guo, Jian; Martini, Ignacio B.; Kraemer, Stephan; Wegener, Evan C.; Saint-Cricq, Philippe; Ruehle, Bastian; Langeslay, Ryan R.; Delferro, Massimiliano; Brosmer, Jonathan L.; Hendon, Christopher H.; Gallagher-Jones, Marcus; Rodriguez, Jose; Chapman, Karena W.; Miller, Jeffrey T.; Duan, Xiangfeng; Kaner, Richard B.; Zink, Jeffrey I.; Chmelka, Bradley F.; Spokoyny, Alexander M.
2018-03-01
There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO2, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as `molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B12(OH)12]2-. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.
Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH.
Gilbert, B; Perfetti, L; Fauchoux, O; Redondo, J; Baudat, P A; Andres, R; Neumann, M; Steen, S; Gabel, D; Mercanti, D; Ciotti, M T; Perfetti, P; Margaritondo, G; De Stasio, G
2000-07-01
Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 microm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.
Structural stability and electronic properties of β-tetragonal boron: A first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Wataru, E-mail: hayami.wataru@nims.go.jp
2015-01-15
It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too greatmore » to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.« less
Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes
NASA Astrophysics Data System (ADS)
Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng
2016-06-01
Combined Photoelectron Spectroscopy (PES) and theoretical calculations have found that anion boron clusters (Bn-) are planar and quasi-planar up to B25-. Recent works show that anion pure boron clusters continued to be planar at B27-,B30-,B35- and B36-. B35- and B36- provide the first experimental evidence for the viability of the two-dimensional (2D) boron sheets (Borophene). The 2D to three-dimensional (3D) transitions are shown to happen at B40-,B39- and B28-, which possess cage-like structures. These fullerene-like boron cage clusters are named as Borospherene. Recently, borophenes or similar structures are claimed to be synthesized by several groups. Following an electronic design principle, a series of transition-metal-doped boron clusters (M©Bn-, n=8-10) are found to possess the monocyclic wheel structures. Meanwhile, CoB12- and RhB12- are revealed to adopt half-sandwich-type structures with the quasi-planar B12 moiety similar to the B12- cluster. Very lately, we show that the CoB16- cluster possesses a highly symmetric Cobalt-centered drum-like structure, with a new record of coordination number at 16. Here we report the CoB18- cluster to possess a unique planar structure, in which the Co atom is doped into the network of a planar boron cluster. PES reveals that the CoB18- cluster is a highly stable electronic system with the first adiabatic detachment energy (ADE) at 4.0 eV. Global minimum searches along with high-level quantum calculations show the global minimum for CoB18- is perfectly planar and closed shell (1A1) with C2v symmetry. The Co atom is bonded with 7 boron atoms in the closest coordination shell and the other 11 boron atoms in the outer coordination shell. The calculated vertical detachment energy (VDE) values match quite well with our experimental results. Chemical bonding analysis by the Adaptive Natural Density Partitioning (AdNDP) method shows the CoB18- cluster is π-aromatic with four 4-centered-2-electron (4c-2e) π bonds and one 19-centered-2-electron (19c-2e) π bond, 10 π electrons in total. This perfectly planar structure reveals the viability of creating a new class of hetero-borophenes and metallo-borophenes by doping metal atoms into the plane of monolayer boron atoms. This gives a new approach to design perspective hetero-borophenes and metallo-borophenes materials with tunable chemical, magnetic and optical properties.
Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys
NASA Astrophysics Data System (ADS)
Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely
2018-03-01
An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.
Boron removal and its concentration in aqueous solution through progressive freeze concentration.
Wang, Li Pang
2017-09-01
This study explored the feasibility of progressive freeze concentration in boron removal and its concentration in aqueous solution. The influence of three key parameters in progressive freeze concentration on boron removal and concentration, namely, the advance speed of the ice front, the circumferential velocity of the stirrer, and the initial boron concentration, are investigated by conducting batch experiments. The results show that the effectiveness of boron removal increases with a lower advance speed of the ice front, a higher circumferential velocity of the stirrer, and a lower initial boron concentration. For a model boron solution with an initial concentration of 100 mg/L, the boron concentration in the ice phase after progressive freeze concentration is below 1 mg/L when the advance speed of the ice front is lower than 1 cm/h and the circumferential velocity of the stirrer is higher than 0.12 m/s. In addition, the concentration of boron in the liquid phase occurs simultaneously with progressive freeze concentration. Furthermore, the results also suggest that this method can be applied to the purification and concentration of not only organic molecules but also inorganic ions.
Experimental realization of two-dimensional boron sheets
NASA Astrophysics Data System (ADS)
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.
Asano, Ryuji; Nagami, Amon; Fukumoto, Yuki; Miura, Kaori; Yazama, Futoshi; Ito, Hideyuki; Sakata, Isao; Tai, Akihiro
2014-11-01
New disodium mercaptoundecahydro-closo-dodecaborate (BSH)-conjugated chlorin derivatives 11, 12, 16 and 20 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized. The in vivo biodistribution and clearance of 11, 12, 16 and 20 were investigated in tumor-bearing mice. Compounds 12 and 16 showed good tumor-selective accumulation among the four derivatives. The time to maximum accumulation of compound 16 in tumor tissue was one-fourth of that of compound 12, and clearance from normal tissues of compound 16 was similar to that of compound 12. The in vivo therapeutic efficacy of PDT using 16, which has twice as many boron atoms as 12, was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 6h after injection of 16. Tumor growth was significantly inhibited by PDT using 16. These results suggested that 16 is a good candidate for both PDT and BNCT of cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilton, B.R.; Zubriski, J.C.
1985-01-01
Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yieldsmore » from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.« less
Zhou, Wei; Peng, Liang-Zhi; Chun, Chang-Pin; Jiang, Cai-Lun; Ling, Li-Li; Wang, Nan-Qi; Xing, Fei; Huang, Yi
2014-04-01
To investigate the level of boron nutrient in citrus and its impact factors, a total of 954 citrus leaf samples and 302 soil samples were collected from representative orchards in the 12 main citrus production counties in the Three Gorges Reservoir region of Chongqing to determine the boron content in citrus leaves, as well as the relationships between leaf boron content with soil available boron content, soil pH value, cultivar, rootstock and the age of tree. Results indicated that the leaf samples from 41.6% orchards (< 35 mg x kg(-1)) and the soil samples from 89.4% orchards (< 0.5 mg x kg(-1)) were boron insufficient. The correlation of leaf boron content and soil available boron content was not significant. The soil pH, cultivar, rootstock and the age of tree did affect the leaf boron content. The leaves from the orchards with soil pH of 4.5-6.4 demonstrated significantly higher boron contents than with the soil pH of 6.5-8.5. The leaf boron contents in the different cultivars was ranged as Satsuma mandarin > pomelo > valencia orange > sweet orange > tangor > navel orange. The citrus on trifoliate orange and sour pomelo rootstocks had significantly higher leaf boron contents than on Carrizo citrange and red tangerine rootstocks. Compared with the adult citrus trees (above 8 year-old), 6.6% more of leaf samples of younger trees (3 to 8 year-old) contained boron contents in the optimum range (35-100 mg x kg(-1)).
Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan
2017-09-30
Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10 B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[ 18 F]fluorofenbufen ester boronopinacol (m-[ 18 F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [ 18 F]FFBPin to compete FBPin for binding to COX-1 (IC 50 =0.91±0.68μM) and COX-2 (IC 50 =0.33±0.24μM). [ 18 F]FFBPin-derived 60-min dynamic PET scans predict the 10 B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[ 18 F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [ 18 F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper COX-2 targeting of boron NSAIDs. Copyright © 2017. Published by Elsevier B.V.
Ammonium-tungstate-promoted growth of boron nitride nanotubes
NASA Astrophysics Data System (ADS)
E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang
2018-05-01
Ammonium tungstate ((NH4)10W12O41 · xH2O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B2O2) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH4)10W12O41 · xH2O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO3)2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO3)2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.
Ammonium-tungstate-promoted growth of boron nitride nanotubes.
E, Songfeng; Li, Chaowei; Li, Taotao; Geng, Renjie; Li, Qiulong; Lu, Weibang; Yao, Yagang
2018-05-11
Ammonium tungstate ((NH 4 ) 10 W 12 O 41 · xH 2 O) is a kind of oxygen-containing ammonium salt. The following study proves that it can be successfully used as a metal oxide alternative to produce boron oxide (B 2 O 2 ) by oxidizing boron (B) in a traditional boron oxide chemical vapor deposition (BOCVD) process. This special oxidant promotes the simplistic fabrication of boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace, an outcome which may have resulted from its strong oxidizability. The experimental results demonstrate that the mole ratio of B and (NH 4 ) 10 W 12 O 41 · xH 2 O is a key parameter in determining the formation, quality and quantity of BNNTs when stainless steel is employed as a catalyst. We also found that Mg(NO 3 ) 2 and MgO nanoparticles (NPs) can be used as catalysts to grow BNNTs with the same precursor. The BNNTs obtained from the Mg(NO 3 ) 2 catalyst were straighter than those obtained from the MgO NP catalyst. This could have been due to the different physical forms of the catalysts that were used.
Fast-spectrum space-power-reactor concepts using boron control devices
NASA Technical Reports Server (NTRS)
Mayo, W.
1973-01-01
Several fast-spectrum space power reactor concepts that use boron carbide control devices were examined to determine the neutronic feasibility of the designs. The designs considered were (1) a 199-fuel-pin, 12-poison-reflector-control-drum reactor; (2) a 232-fuel-pin reactor with 12 reflector drums and three in-core control rods; (3) a 337-fuel-pin design with 12 incore control rods; and a 181-fuel-pin design with six drums closely coupled to the core to increase reactivity per drum. Adequate reactivity control and excess reactivity could be obtained for each concept, and the goals of 50,000 hours at 2.17 thermal megawatts with a lithium-7 coolant outlet temperature of 1222 K could be met without exceeding the 1-percent-clad-creep criterion. Heating rates in the boron carbide were calculated, but a heat transfer analysis was not done.
Functional characterization of Citrus macrophylla BOR1 as a boron transporter.
Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio
2013-11-01
Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants. © 2013 Scandinavian Plant Physiology Society.
Boron exposure assessment using drinking water and urine in the North of Chile.
Cortes, S; Reynaga-Delgado, E; Sancha, A M; Ferreccio, C
2011-12-01
Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3mgL(-1), with a median value of 2.9mgL(-1), while concentrations of boron in bottled water varied from 0.01 to 12.2mgL(-1). Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4mgL(-1), with a median of 4.28mgL(-1) and was found to be correlated with tap water sampled from the homes of the volunteers (r=0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure. Copyright © 2011 Elsevier B.V. All rights reserved.
Vyakaranam, Kamesh; Hosmane, Narayan S.
2004-01-01
A number of nucleoside mono- and diphosphites and phosphonates containing 1,2-dicarbadodecaborane (12) (la-6b) at 5'-position of the sugar moiety have been synthesized in good yields. Experimental details along with the spectroscopic and analytical data, supporting the formation of the title compounds, are presented. These constitute a new generation of boron compounds that are envisioned to be useful in cancer treatment via Boron Neutron Capture Therapy (BNCT). PMID:18365067
Boron-carbide-aluminum and boron-carbide-reactive metal cermets
Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.
1986-01-01
Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.
Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al
Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.
1985-05-06
Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.
Synthesis of Boron Nitride Nanotubes for Engineering Applications
NASA Technical Reports Server (NTRS)
Hurst, Janet; Hull, David; Gorican, Dan
2005-01-01
Boron Nitride nanotubes (BNNT) are of interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted large amounts of attention. Both materials have potentially unique and significant properties which may have important structural and electronic applications in the future. However of even more interest than their similarities may be the differences between carbon and boron nanotubes. Whilt boron nitride nanotubes possess a very high modulus similaar to CNT, they are also more chemically and thermally inert. Additionally BNNT possess more uniform electronic properties, having a uniform band gap of approximately 5.5 eV while CNT vary from semi-conductin to conductor behavior. Boron Nitride nanotubes have been synthesized by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistently producing a reliable product has proven difficult. Progress in synthesis of 1-2 gram sized batches of Boron Nitride nanotubes will be discussed as well as potential uses for this unique material.
New Convex and Spherical Structures of Bare Boron Clusters
NASA Astrophysics Data System (ADS)
Boustani, Ihsan
1997-10-01
New stable structures of bare boron clusters can easily be obtained and constructed with the help of an "Aufbau Principle" suggested by a systematicab initioHF-SCF and direct CI study. It is concluded that boron cluster formation can be established by elemental units of pentagonal and hexagonal pyramids. New convex and small spherical clusters different from the classical known forms of boron crystal structures are obtained by a combination of both basic units. Convex structures simulate boron surfaces which can be considered as segments of open or closed spheres. Both convex clusters B16and B46have energies close to those of their conjugate quasi-planar clusters, which are relatively stable and can be considered to act as a calibration mark. The closed spherical clusters B12, B22, B32, and B42are less stable than the corresponding conjugated quasi-planar structures. As a consequence, highly stable spherical boron clusters can systematically be predicted when their conjugate quasi-planar clusters are determined and energies are compared.
Li2 B12 and Li3 B12 : Prediction of the Smallest Tubular and Cage-like Boron Structures.
Dong, Xue; Jalife, Said; Vásquez-Espinal, Alejandro; Ravell, Estefanía; Pan, Sudip; Cabellos, José Luis; Liang, Wei-Yan; Cui, Zhong-Hua; Merino, Gabriel
2018-04-16
An intriguing structural transition from the quasi-planar form of B 12 cluster upon the interaction with lithium atoms is reported. High-level computations show that the lowest energy structures of LiB 12 , Li 2 B 12 , and Li 3 B 12 have quasi-planar (C s ), tubular (D 6d ), and cage-like (C s ) geometries, respectively. The energetic cost of distorting the B 12 quasi-planar fragment is overcompensated by an enhanced electrostatic interaction between the Li cations and the tubular or cage-like B 12 fragments, which is the main reason of such drastic structural changes, resulting in the smallest tubular (Li 2 B 12 ) and cage-like (Li 3 B 12 ) boron structures reported to date. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy
NASA Technical Reports Server (NTRS)
Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani
2013-01-01
Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.
Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vengosh, A.; Chivas, A.R.; McCulloch, M.T.
1991-10-01
The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in themore » calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.« less
N2O reduction over a fullerene-like boron nitride nanocage: A DFT study
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.
2017-07-01
We study, for the first time, the adsorption and catalytic decomposition of N2O molecule over a fullerene-like boron nitride nanocage (B12N12) using density functional theory calculations. It is found that the electron donating property of the cage plays an important role in the adsorption and activation of N2O. By the incorporation of a carbon atom into B12N12 cluster, our results indicate that the adsorption of N2O over B11N12C or B12N11C is more stronger than over pristine B12N12. The decomposition of N2O into N2 and O species over the C-doped clusters is energetically more favorable than that on B12N12. Moreover, the C-doping plays an important role in reducing the activation barrier for the CO + O* reaction over B12N12 surface.
NASA Technical Reports Server (NTRS)
Speck, J. S.
1986-01-01
The microstructures of melt-spun superalloy ribbons with variable boron levels have been studied by transmission electron microscopy. The base alloy was of approximate composition Ni-11% Cr-5%Mo-5%Al-4%Ti with boron levels of 0.06, 0.12, and 0.60 percent (all by weight). Thirty micron thick ribbons display an equiaxed chill zone near the wheel contact side which develops into primary dendrite arms in the ribbon center. Secondary dendrite arms are observed near the ribbon free surface. In the higher boron bearing alloys, boride precipitates are observed along grain boundaries. A concerted effort has been made to elucidate true grain shapes by the use of bright field/dark field microscopy. In the low boron alloy, grain shapes are often convex, and grain faces are flat. Boundary faces frequently have large curvature, and grain shapes form concave polygons in the higher boron level alloys. It is proposed that just after solidification, in all of the alloys studied, grain shapes were initially concave and boundaries were wavy. Boundary straightening is presumed to occur on cooling in the low boron alloy. Boundary migration is precluded in the higher boron alloys by fast precipitation of borides at internal interfaces.
Magneto-Resistance in thin film boron carbides
NASA Astrophysics Data System (ADS)
Echeverria, Elena; Luo, Guangfu; Liu, J.; Mei, Wai-Ning; Pasquale, F. L.; Colon Santanta, J.; Dowben, P. A.; Zhang, Le; Kelber, J. A.
2013-03-01
Chromium doped semiconducting boron carbide devices were fabricated based on a carborane icosahedra (B10C2H12) precursor via plasma enhanced chemical vapor deposition, and the transition metal atoms found to dope pairwise on adjacent icosahedra site locations. Models spin-polarized electronic structure calculations of the doped semiconducting boron carbides indicate that some transition metal (such as Cr) doped semiconducting boron carbides may act as excellent spin filters when used as the dielectric barrier in a magnetic tunnel junction structure. In the case of chromium doping, there may be considerable enhancements in the magneto-resistance of the heterostructure. To this end, current to voltage curves and magneto-transport measurements were performed in various semiconducting boron carbide both in and out plane. The I-V curves as a function of external magnetic field exhibit strong magnetoresistive effects which are enhanced at liquid Nitrogen temperatures. The mechanism for these effects will be discussed in the context of theoretical calculations.
Semiconducting icosahedral boron arsenide crystal growth for neutron detection
NASA Astrophysics Data System (ADS)
Whiteley, C. E.; Zhang, Y.; Gong, Y.; Bakalova, S.; Mayo, A.; Edgar, J. H.; Kuball, M.
2011-03-01
Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors, thermoelectric converters, and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron (or B12As2 powder) and arsenic in a sealed quartz ampoule. B12As2 crystals of 10-15 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 h and slowly cooled (3.5 °C/h). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), and elemental analysis by energy dispersive X-ray spectroscopy (EDS) confirmed that the crystals had the expected rhombohedral structure and chemical stoichiometry. The concentrations of residual impurities (nickel, carbon, etc.) were low, as measured by Raman spectroscopy and secondary ion mass spectrometry (SIMS). Additionally, low etch-pit densities (4.4×107 cm-2) were observed after etching in molten KOH at 500 °C. Thus, the flux growth method is viable for growing large, high-quality B12As2 crystals.
Ionic High-Pressure Form of Elemental Boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oganov, A.; Chen, J; Gatti, C
2009-01-01
This Letter presents the results of high-pressure experiments and ab initio evolutionary crystal structure predictions, and found a new boron phase that we named gamma-B28. This phase is comprised of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement, stable between 19 and 89 GPa, and exhibits evidence for charge transfer (for which our best estimate is delta approximately 0.48) between the constituent clusters to give (B2)delta+(B12)delta-. We have recently found that the same high-pressure boron phase may have given rise to the Bragg reflections reported by Wentorf in 1965 (ref. 1), although the chemical composition was not analysedmore » and the data (subsequently deleted from the Powder Diffraction File database) seems to not have been used to propose a structure model. We also note that although we used the terms 'partially ionic' and 'ionic' to emphasize the polar nature of the high-pressure boron phase and the influence this polarity has on several physical properties of the elemental phase, the chemical bonding in gamma-B28 is predominantly covalent.« less
Analysis of boron carbides' electronic structure
NASA Technical Reports Server (NTRS)
Howard, Iris A.; Beckel, Charles L.
1986-01-01
The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.
Li, Fengyu; Jiang, De-en; Chen, Zhongfang
2014-02-01
Inspired by the exciting properties of B80 clusters and the novel chemical bonding of planar tetra-coordinated carbon (ptC), we computationally investigated C12B68 clusters by substituting 12 boron atoms to 12 carbon in the B80 framework. Three types of C12B68 configurations, namely core-shell, boron-trapped and fullerene-like, were examined. The fullerene-like C12B68 clusters are featured with multiple quasi-planar tetra-coordinated carbon moieties; though with "magic" (72) number of electrons, they are not highly aromatic due to the limitations of Hirsch's rule for clusters with more than 50 π electrons. These C12B68 fullerenes are not global minima, but the appreciable HOMO-LUMO gaps, spherical aromaticity, and the thermal stability indicate their reasonable stabilities.
Koc, Fulya; Aysan, Erhan; Hasbahceci, Mustafa; Arpaci, Beyza; Gecer, Salih; Demirci, Selami; Sahin, Fikrettin
2016-06-01
The impact of boron on the development of obesity remains controversial in the analysis of experimental and clinical data. The objective of this study was to investigate the relationship between blood and urine boron concentrations and obesity in normal, overweight, obese, and morbidly obese subjects in different age groups. A total of 105 subjects were categorized into 12 groups based on body mass index and three different age levels: as young adult (18 to 34 years old), adult (35 to 54 years old), and older adult (greater than 55 years old). Age, gender, body mass index, and blood and urine boron concentrations were recorded for each subject. There were 50 women and 55 men, with a mean age of 44.63 ± 17.9 years. Blood and urine boron concentrations were similar among the groups (p = 0.510 and p = 0.228, respectively). However, a positive correlation between age and blood boron concentration (p = 0.001) was detected in contrast to the presence of a negative correlation between age and urine boron concentration (p = 0.027). Multiple linear regression analysis showed that there was no significant relationship between gender, age, and quantitative values of body mass index for each subject, and blood and urine boron concentrations. Although the relationship between boron and obesity has not been confirmed, changes of blood and urine boron concentrations with age may have some physiologic sequences to cause obesity.
NASA Astrophysics Data System (ADS)
Chang, Ying; Yuan, Conghui; Liu, Cheng; Mao, Jie; Li, Yuntong; Wu, Haiyang; Wu, Yuzhe; Xu, Yiting; Zeng, Birong; Dai, Lizong
2017-10-01
A novel strategy has been developed to generate B, N co-doped carbon materials (CNBs) through the pyrolysis of boronate polymer nanoparticles (BPNs) derived from the condensation reaction between catechol and boronic monomers. The morphology, surface area and heteroatom (viz. B and N) content of the CNBs can be easily adjusted by altering the molar ratio between catechol and boronic monomers. The supercapacitor and oxygen reduction reaction (ORR) performance of the CNBs are optimized. CNBs derived from equal molar ratio of catechol and boronic monomers exhibit favorable performance for supercapacitor, featuring a specific capacitance of up to 299.4 F/g at 0.2 A/g, an improved rate capability and excellent cycle stability. Notably, CNBs prepared using 1/2 molar ratio of catechol to boronic monomers show excellent ORR performance, as they demonstrate good electrocatalytic activity, high tolerance for methanol and long durability. Our findings may be of interest in the design of carbon materials with optimized electrochemical properties through the control over surface area and the content of heteroatom.
Phenylene bridged boron-nitrogen containing dendrimers.
Proń, Agnieszka; Baumgarten, Martin; Müllen, Klaus
2010-10-01
The synthesis and characterization of novel phenylene bridged boron-nitrogen containing π-conjugated dendrimers N3B6 and N3B3, with peripheral boron atoms and 1,3,5-triaminobenzene moiety as a core, are presented. UV-vis absorption and emission measurements reveal that the optical properties of the resulting compounds can be controlled by changing the donor/acceptor ratio: a 1:1 ratio results in a more efficient charge transfer than the 1:2 ratio. This was proven by the red shift of the emission maxima and the stronger solvatochromic effect in N3B3 compared to N3B6.
Garabalino, Marcela A; Monti Hughes, Andrea; Molinari, Ana J; Heber, Elisa M; Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Nievas, Susana; Nigg, David W; Aromando, Romina F; Itoiz, Maria E; Trivillin, Verónica A; Schwint, Amanda E
2011-03-01
We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3. © Springer-Verlag 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari
2011-03-01
Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studiesmore » at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.« less
NASA Astrophysics Data System (ADS)
Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.
2018-01-01
Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.
NASA Astrophysics Data System (ADS)
Zheng, Chuanjiang; Yu, Dunbo; Li, Kuoshe; Luo, Yang; Jin, Jinling; Lu, Shuo; Li, Hongwei; Mao, Yongjun; Quan, Ningtao
2016-08-01
Melt spun ribbons of a series of SmFe12Bx (x=0.0, 0.5, 0.75, 1.0, 1.25, and 1.5) have been prepared by the melt spinning technique. Sm-Fe-B melt spun ribbons with single phase TbCu7-type structure were prepared from the SmFe12Bx (x=0.5, 0.75, and 1.0) alloys at the surface velocity around 40 m/s. The addition of boron not only inhibits the appearance of soft magnetic phase α-Fe, but also enhances the ability of amorphous formation for melt spun Sm-Fe ribbons. The concentration of boron atoms, however, exceeds the limit of the solubility (x>1.0) of Sm-Fe alloys, which does not impede the appearance of α-Fe but accelerates the formation of metastable phase Sm2Fe23B3 that is unfavorable to their magnetic properties. Moreover, it is found that the addition of boron whose concentration is 0.0≤x≤0.75 can stabilize the metastable TbCu7-type structure because of the increase of the lattice parameter ratio c/a. The magnetic properties of as-annealed SmFe12B1.0 melt spun ribbons with an energy product of 2.19MGOe, a coercivity of 2.36 kOe and a remanence of 4.8 kGs have been achieved. The microstructural characteristics of as-annealed melt spun SmFe12 and SmFe12B1.0 ribbons have been discussed as well. The following sequence of the hyperfine field H(6l)
Ordering of lipid membranes altered by boron nitride nanosheets.
Zhang, Yonghui; Li, Zhen; Chan, Chun; Ma, Jiale; Zhi, Chunyi; Cheng, Xiaolin; Fan, Jun
2018-02-07
Boron nitride nanosheets are novel promising nanomaterials with a lower cytotoxicity than graphene making them a better candidate for biomedical applications. However, there is no systematic study on how they interact with cell membranes. Here we employed large scale all-atom molecular dynamics simulations to provide molecular details of the structure and properties of membranes after the insertion of boron nitride nanosheets. Our results reveal that the boron nitride nanosheet can extract phospholipids from the lipid bilayers and is enveloped by the membrane. Afterwards, the acyl chains of lipid molecules re-orient and become more ordered. As a result, a fluid to gel phase transition occurs in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer. Consequently, the bending moduli of the bilayers increase, and the diffusivity of the individual lipid molecule decreases. These changes will affect relevant cellular activities, such as endocytosis and signal transduction. Our study provides novel insights into the biocompatibility and cytotoxicity of boron nitride nanosheets, which may facilitate the design of safer nanocarriers, antibiotics and other bio-nanotechnology applications.
Boron Nitride Nanotubes for Engineering Applications
NASA Technical Reports Server (NTRS)
Hurst, Janet; Hull, David; Gorican, Daniel
2005-01-01
Boron nitride nanotubes (BNNT) are of significant interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted wide attention. Both materials have potentially unique and important properties for structural and electronic applications. However of even more consequence than their similarities may be the complementary differences between carbon and boron nitride nanotubes While BNNT possess a very high modulus similar to CNT, they also possess superior chemical and thermal stability. Additionally, BNNT have more uniform electronic properties, with a uniform band gap of 5.5 eV while CNT vary from semi-conductive to highly conductive behavior. Boron nitride nanotubes have been synthesized both in the literature and at NASA Glenn Research Center, by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistent large scale production of a reliable product has proven difficult. Progress in the reproducible synthesis of 1-2 gram sized batches of boron nitride nanotubes will be discussed as well as potential uses for this unique material.
Sputtered boron indium oxide thin-film transistors
NASA Astrophysics Data System (ADS)
Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.
2017-11-01
Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.
NASA Astrophysics Data System (ADS)
Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Tasnádi, F.; Wang, F.; Alling, B.
2016-04-01
The elastic properties of alloys between boron suboxide (B6O) and boron carbide (B13C2), denoted by (B6O)1-x(B13C2)x, as well as boron carbide with variable carbon content, ranging from B13C2 to B4C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B6O)1-x(B13C2)x is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic properties calculations demonstrate that configurational disorder in B13C2, where a part of the C atoms in the CBC chains substitute for B atoms in the B12 icosahedra, drastically increase the Young's and shear modulus, as compared to an atomically ordered state, B12(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B4C to B13C2. The elastic moduli of the (B6O)1-x(B13C2)x system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B6O)1-x(B13C2)x. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B6O-rich as well as ordered or disordered B13C2-rich domains in the material prepared through equilibrium routes is predicted.
Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E
2013-08-01
Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.
Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites
Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker
2011-01-01
Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...
Local Atomic Arrangements and Band Structure of Boron Carbide.
Rasim, Karsten; Ramlau, Reiner; Leithe-Jasper, Andreas; Mori, Takao; Burkhardt, Ulrich; Borrmann, Horst; Schnelle, Walter; Carbogno, Christian; Scheffler, Matthias; Grin, Yuri
2018-05-22
Boron carbide, the simple chemical combination of boron and carbon, is one of the best-known binary ceramic materials. Despite that, a coherent description of its crystal structure and physical properties resembles one of the most challenging problems in materials science. By combining ab initio computational studies, precise crystal structure determination from diffraction experiments, and state-of-the-art high-resolution transmission electron microscopy imaging, this concerted investigation reveals hitherto unknown local structure modifications together with the known structural alterations. The mixture of different local atomic arrangements within the real crystal structure reduces the electron deficiency of the pristine structure CBC+B 12 , answering the question about electron precise character of boron carbide and introducing new electronic states within the band gap, which allow a better understanding of physical properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kusari, Upal
The goal of the work described in this dissertation was two-fold: (1) To use the unique properties of ionic liquids to develop new synthetic routes to boron-containing molecules including substituted decaboranes, ortho-carboranes and chalcogeno-boranes, and (2) to combine newly developed chemical precursors with template routes to fabricate the non-oxide ceramics boron carbide, silicon carbide and boron nitride on the micro- and nano-scales. The first application of ionic liquid and related salt systems to the hydroboration of a variety of olefins with the polyborane cage B10H 14, leading to the syntheses of functionalized decaborane clusters, 6-R-B10H13, was demonstrated. The decaborane olefin-hydroboration reaction was found to proceed with a wide variety of functional olefins, including, alkenyl, halide, phenyl, ether, ester, pinacolborane, ketone and alcohol-containing olefins. These reactions provide a general, simple, one-pot and high-yield alternative route to functional boranes. The functional decaboranes were then converted by another ionic liquid mediated reaction, to its ortho -carborane derivatives 3-R-1,2-Et2C2B 10H9. Experimental and computational studies of the hydroboration mechanism suggest that the ionic liquid induced the formation of the B 10H13- anion which behaved as an electrophile in the olefin-hydroboration reaction. The unique properties of ionic liquids were also found to be useful in mediating the insertion of chalcogen heteroatoms into the borane clusters nido-B10H14, nido-5,6-C2B8H12 and arachno -4-CB8H14 and led to the improved syntheses of the known compounds nido-7-SB10H12, nido-7-SeB10H12, nido-7,9,10-SC 2B8H10, nido-7,9,10-SeC 2B8H10 and arachno-6,9-CSB 8H12, as well as the synthesis of the new 10-vertex selena-monocarbaborane arachno-6,9-CSeB8H12 (˜40% yield). The second part of the thesis demonstrated that newly developed chemical precursors can be used in conjunction with silica bead and diatom frustule templates to generate highly uniform, nanoporous layered materials and 3-D, free-standing nano- and micro-structures of boron carbide, boron nitride and silicon carbide. The retention of structural features on the micron and nanometer length scales, allowed the fabrication of advanced materials with a range of potential applications, as shown by the production of a SiC/BN-microbasket composite using the frustule template-derived boron nitride replicas.
Ratajski, Michal; Osterloh, Jens; Gabel, Detlef
2006-03-01
The literature on the synthesis and the biological properties of boron-containing chlorins and phthalocyanines is reviewed. A series of homologous derivatives of pyropheophorbide A is described. The compounds contain the B(12)H(11)SH(2-) cluster attached to the single carboxyl group and vary in the length of the alkyl chain (methyl, propyl, pentyl, heptyl and nonyl) attached via an ether linkage to the former vinyl group. Cellular uptake was found for all derivatives except the nonyl sidechain. The compounds were moderately cell-toxic. Localization in lysosomes could be excluded; the compounds localized probably in the mitochondria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attebery, C.W.; Zimmer, A.T.; Hedgecock, N.S.
1989-01-01
A waste-water characterization hazardous-waste survey was conducted at Beale AFB by USAFOEHL/ECQ personnel to provide the base with sufficient information to address a State of California Notice of Violation concerning excessive discharges of boron and cyanide from the base sewage-treatment plant (STP). The results of the survey showed that the 9th RTS Precision Photo Lab along with other film-processing organizations were major contributors to the boron and cyanide discharge problems being experienced by the base STP. Maintenance organizations that utilize soaps and detergents that contain boron and cyanide also contributed to the problem.
Feasibility studies of the growth of 3-5 compounds of boron by MOCVD
NASA Technical Reports Server (NTRS)
Manasevit, H. M.
1988-01-01
Boron-arsenic and boron-phosphorus films have been grown on Si sapphire and silicon-on-sapphire (SOS) by pyrolyzing Group 3 alkyls of boron, i.e., trimethylborane (TMB) and triethylborane (TEB), in the presence of AsH3 and PH3, respectively, in an H2 atmosphere. No evidence for reaction between the alkyls and the hydrides on mixing at room temperature was found. However, the films were predominantly amorphous. The film growth rate was found to depend on the concentration of alkyl boron compound and was essentially constant when TEB and AsH3 were pyrolyzed over the temperature range 550 C to 900 C. The films were found to contain mainly carbon impurities (the amount varying with growth temperature), some oxygen, and were highly stressed and bowed on Si substrates, with some crazing evident in thin (2 micron) B-P and thick (5 micron) B-As films. The carbon level was generally higher in films grown using TEB as the boron source. Films grown from PH3 and TMB showed a higher carbon content than those grown from AsH3 and TMB. Based on their B/As and B/P ratios, films with nominal compositions B sub12-16 As2 and B sub1.1-1.3 P were grown using TMB as the boron source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandy, P.; Yu, Ming; Leahy, C.
2015-03-28
An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemicalmore » bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters B{sub N} with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B{sub 12} units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.« less
NASA Astrophysics Data System (ADS)
Tandy, P.; Yu, Ming; Leahy, C.; Jayanthi, C. S.; Wu, S. Y.
2015-03-01
An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ˜230 compact boron clusters BN with N in the range from ˜100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B12 units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.
Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci
2011-01-01
Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...
Khan, Majharul Haque; Jamali, Sina S; Lyalin, Andrey; Molino, Paul J; Jiang, Lei; Liu, Hua Kun; Taketsugu, Tetsuya; Huang, Zhenguo
2017-01-01
Outstanding protection of Cu by high-quality boron nitride nanofilm (BNNF) 1-2 atomic layers thick in salt water is observed, while defective BNNF accelerates the reaction of Cu toward water. The chemical stability, insulating nature, and impermeability of ions through the BN hexagons render BNNF a great choice for atomic-scale protection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of boron derivatives on extracellular matrix formation.
Benderdour, M; Van Bui, T; Hess, K; Dicko, A; Belleville, F; Dousset, B
2000-10-01
Boric acid solution (3%) dramatically improves wound healing through action on the extracellular matrix, a finding that has been obtained in vitro. Consequently, investigations are presently underway to produce boronated compounds having a therapeutical effectiveness similar to that of boric acid. On the basis of experimental results obtained with boric acid, we examined the effects of boron derivatives on extracellular matrix formation and degradation and analyzed their potential toxicity by using two biological models (chick embryo cartilage and human fibroblasts). The four boron derivatives tested in this study (triethanolamine borate; N-diethyl-phosphoramidate-propylboronique acid; 2,2 dimethylhexyl-1,3-propanediol-aminopropylboronate and 1,2 propanediol-aminopropylboronate) mimicked the effects of boric acid. They induced a decrease of intracellular concentrations in extracellular matrix macromolecules (proteoglycans, proteins)-associated with an increase of their release in culture medium and stimulated the activity of intra- and extracellular proteases. Similarly to boric acid, these actions occurred after exposure of the cells to concentrations of all boron derivatives without apparent toxic effects. The compounds were found to be more toxic than boric acid itself when concentrations were calculated according to their molecular weight. Nevertheless, these in vitro preliminary results demonstrate effects of boron derivatives that may be of therapeutic benefit in wound repair.
Olgun, Osman; Bahtiyarca, Yilmaz
2015-09-01
This study was conducted to determine the effects of supplementation of different levels of cadmium and boron on performance, eggshell quality, and mineral concentrations of bone in layer diets. In this trial, a total of 144 layer chickens, 21 weeks old, were randomly divided into 12 experimental groups. In each experimental group, there were four replicates, and in each of the replicates, there were three hens. Experimental diets consisted of all possible combinations of four levels of added cadmium (0, 5, 15, and 45 mg/kg) and three levels of added boron (0, 60, and 120 mg/kg) to the basal diet. Added cadmium (15 or 45 mg/kg) had a significant adverse effect on performance parameters (P < 0.01). Eggshell thickness increased with the addition of 5 mg/kg level of cadmium to the diet (P < 0.01). Tibia cadmium content increased with the addition of cadmium and boron in the diet (P < 0.01). However, tibia boron content decreased with the supplementation of cadmium (P < 0.01). These results indicate that the addition of boron to the diet did not prevent adverse effect of cadmium on performance and eggshell quality, or accumulation of cadmium in bone.
Improving the efficiency of boron application on the vineyards during NPK fertilization
NASA Astrophysics Data System (ADS)
Magomadov, Andy; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Minkina, Tatiana; Sushkova, Svetlana
2017-04-01
The effect of different doses and time of boron fertilization on growth and development of grape plants were studied on the soils of Terek-Kumskiy sands of Chechen Republic, Russian Federation. The studies have shown that sandy soils of pilot area have a low content of main macronutrients except of potassium. The boron content in the sandy soils varies within wide limits and characterizes this soil as lack of boron content especially in water-soluble boron distribution through the soil profile. It was developed a technique for roots feeding of grapes for the first time, that allows to control chemical processes the NPK uptake by plant roots. The studied process realized by implementation of optimum amount of boron in plant-available form, introduced in a certain phase of plants growth. It helps to improve the efficiency of nitrogen, phosphate, potassium using. It was found that boron improves the movement of growth substances and ascorbic acid from the leaves to the fertile parts and cannot be replaced by other nutrients. The plants need of boron throughout the growing season. Boron plays an important role in cell division and protein synthesis is an essential component of cell membranes. The use of boric acid as a fertilizer to increase the number of ovaries on grape plants, stimulating the formation of new points of stems and root growth, increased the number of shoots, improved growth, increased the sugar content of the grapes and taste of the fruit, which is a result of more active uptake of boron by grapes. The optimal dose of boron fertilization on the sandy soil and the comparative agroecological and economic evaluation of its application presented in the research. The use of boron fertilizers allowed to increase the sugar content, acidity, tasting score grapes up to 12-38%. The greatest effect of boron fertilization achieved by application to the phase start of sap flow in a dose of 3 kg/ha in the background N90P90K90. The developed technique for sandy soils fertilization allows to increase a quality of grapes, their properties also allow to improve a costs of produced grape material. This research was supported by Project of President of Russian Federation № MK-3476.2017.5, RFBR № 16-35-60051, 16-35-00347.
Zhong, Rong-Lin; Zhang, Ji; Muhammad, Shabbir; Hu, Yang-Yang; Xu, Hong-Liang; Su, Zhong-Min
2011-10-10
On the basis of the famous staggered biphenalenyl diradical π dimer 1, the eclipsed biphenalenyl (1a), with no centrosymmetry, was obtained by rotating a layer of 1 by 60° around its central axis. Furthermore, the central carbon atoms of 1 and 1a were substituted by boron and nitrogen atoms to form 2 and 2a with a novel 2e-12c bond. We found that the novel 2e-12c bond is formed by the electron pair of the occupied orbital of the phenalenyl monomer substituted by the nitrogen atom and the unoccupied orbital of the phenalenyl monomer substituted by the boron atom. As a result of the novel 2e-12c bond, 2 and 2a exhibit a fascinating interlayer charge-transfer transition character, which results in a significant difference in the dipole moments (Δμ) between the ground state and the crucial excited state. The values of Δμ for 2 and 2a are 6.4315 and 6.9253 Debye, clearly larger than the values of 0 and 0.0015 Debye for 1 and 1a. Significantly, the boron/nitrogen substitution effect can greatly enhance the first hyperpolarizabilities (β(0) ) of 2 and 2a with a novel 2e-12c bond compared with 1 and 1a with a traditional 2e-12c bond: 0 and 19 a.u. for 1 and 1a are much lower than 3516 and 12272 a.u. for 2 and 2a. Furthermore, the interaction energies (E(int) )of 2 and 2a are larger than those of 1 and 1a, which could be considered as a signature of reliability for the newly designed dimers. Our present work will be beneficial for further theoretical and experimental studies on the properties of molecules with the novel 2e-12c bond. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates
NASA Astrophysics Data System (ADS)
Vengosh, Avner; Kolodny, Yehoshua; Starinsky, Abraham; Chivas, Allan R.; McCulloch, Malcolm T.
1991-10-01
The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The boron content of the biogenic skeletons is independent of mineralogical composition and is probably related to biological (vital) effects. The δ11B values of the carbonates range from 14.2 to 32.2%. (relative to NBS SRM 951) and overlap with the δ11B values of modern deep-sea carbonate sediments ( δ11B = 8.9 to 26.2%.). The variations of δ11B may be controlled by isotopic exchange of boron species in which 10B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. Carbonates with low δ11B values (~ 15%.) may indicate preferential incorporation of tetrahedral species, whereas the higher δ11B values (~30%.) may indicate (1) uptake of both boron species assuming equilibrium with seawater (2) preferential incorporation of B(OH) 4- from in situ high-pH internal fluids of organisms that are isolated from seawater. The B content and δ11B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 ± 0.9 × 10 10 g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 × 10 10 g/yr) and approximately half that of altered oceanic crust (14 × 10 10 g/yr). Thus, carbonates are an important sink for B in the oceans being ~20% of the total sinks. The preferential incorporation of 10B into calcium carbonate results in oceanic 11B-enrichment, estimated as 1.2 ± 0.3 × 10 12 per mil · g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record. The potential use of boron-isotope geochemistry in skeletons as a tracer for palaeoenvironments is demonstrated in Ostracoda and Foraminifera from the Gulf of Carpentaria, Australia. The δ11B values of glacial-age, buried skeletons (4.0 and 4.9%., respectively) are lower than that of their modern equivalents (17.6 and 13.3%., respectively). This may reflect a "terrestrial" boron-isotope signature of the water in the gulf during the Late Quaternary when it was isolated from the ocean.
Effect of dietary boron on 5-fluorouracil induced oral mucositis in rats
Aras, Mutan Hamdi; Sezer, Ufuk; Erkilic, Suna; Demir, Tuncer; Dagli, Seyda Nur
2013-01-01
Objective: The aim of this study was to evaluate the effect of boron on 5-fluorouracil (5-FU)–induced oral mucositis in rats. Materials and Methods: Sixty-four male Wistar albino rats were injected with 5-FU on days 1 and 3. The right cheek pouch mucosa was scratched with the tip of an 18-G needle, dragged twice in a linear movement, on days 3 and 5. The animals were randomly divided into two groups of 32: boron group (BG) and control group (CG). Rats in the CG did not receive any treatment, whereas the others were fed boron (3 mg·kg-1·day-1) by gavage. The animals were sacrificed on day 3 (n = 8), 6 (n = 8), 9 (n = 8), and 12 (n = 8), and the cheek pouch was removed for histopathological analysis. Results: On day 3, both groups showed necrosis and active inflammation, but the inflammation was mild in CG and moderate in BG. On day 6, both BG and CG showed necrosis; in the CG, there was moderate inflammation, and in the BG, there was severe inflammation and granulation tissue around the necrotic area. On day 9, re-epithelization began in both groups, and there were no differences between groups. Re-epithelization was complete in both groups on day 12. Conclusion: We found no beneficial effect of boron in healing oral mucositis. Additional research is warranted to elucidate the pathogenic inflammatory mechanisms involved in mucositis and the prophylactic and therapeutic roles of antioxidants. PMID:24926211
Mechanism for amorphization of boron carbide B{sub 4}C under uniaxial compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryal, Sitaram; Rulis, Paul; Ching, W. Y.
2011-11-01
Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B{sub 4}C), B{sub 11}C-CBC, and B{sub 12}-CCC, where B{sub 11}C or B{sub 12} is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that themore » B{sub 11}C-CBC (B{sub 12}-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B{sub 11}C and B{sub 12} icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (C{sub ij}) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.« less
Extending neutron autoradiography technique for boron concentration measurements in hard tissues.
Provenzano, Lucas; Olivera, María Silvina; Saint Martin, Gisela; Rodríguez, Luis Miguel; Fregenal, Daniel; Thorp, Silvia I; Pozzi, Emiliano C C; Curotto, Paula; Postuma, Ian; Altieri, Saverio; González, Sara J; Bortolussi, Silva; Portu, Agustina
2018-07-01
The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the 10 B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 10 12 cm -2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the 10 B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Method of making an icosahedral boride structure
Hersee, Stephen D.; Wang, Ronghua; Zubia, David; Aselage, Terrance L.; Emin, David
2005-01-11
A method for fabricating thin films of an icosahedral boride on a silicon carbide (SiC) substrate is provided. Preferably the icosahedral boride layer is comprised of either boron phosphide (B.sub.12 P.sub.2) or boron arsenide (B.sub.12 As.sub.2). The provided method achieves improved film crystallinity and lowered impurity concentrations. In one aspect, an epitaxially grown layer of B.sub.12 P.sub.2 with a base layer or substrate of SiC is provided. In another aspect, an epitaxially grown layer of B.sub.12 As.sub.2 with a base layer or substrate of SiC is provided. In yet another aspect, thin films of B.sub.12 P.sub.2 or B.sub.12 As.sub.2 are formed on SiC using CVD or other vapor deposition means. If CVD techniques are employed, preferably the deposition temperature is above 1050.degree. C., more preferably in the range of 1100.degree. C. to 1400.degree. C., and still more preferably approximately 1150.degree. C.
Gate-dependent Pseudospin Mixing in Graphene/boron Nitride Moire Superlattices
2014-08-31
LETTERS PUBLISHED ONLINE: 31 AUGUST 2014 | DOI : 10.1038/NPHYS3075 Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices... Dirac –Weyl spinors with a two-component pseudospin1–12. The unique pseudospin structure of Dirac electrons leads to emerging phenomena such as the...massless Dirac cone2, anomalous quantum Hall eect2,3, and Klein tunnelling4,5 in graphene. The capability to manipulate electron pseudospin is highly
Organotin Dyes Bearing Anionic Boron Clusters as Cell-Staining Fluorescent Probes.
Muñoz-Flores, Blanca M; Cabrera-González, Justo; Viñas, Clara; Chávez-Reyes, Arturo; Dias, H V Rasika; Jiménez-Pérez, Víctor M; Núñez, Rosario
2018-04-11
Within the cell nucleus, in the nucleoli, ribosomal RNAs are synthesized and participate in several biological processes. To better understand nucleoli-related processes, their visualization is often required, for which specific markers are needed. Herein, we report the design of novel fluorescent organotin compounds derived from 4-hydroxy-N'-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide and their cytoplasm and nucleoli staining of B16F10 cells in vitro. Tin compounds bearing an aliphatic carbon chain (-C 12 H 25 ) and an electron-donating group (-OH) were prepared, and the latter could be derivatized to bear the boron cluster anions [B 12 H 12 ] 2- and [3,3'-Co(1,2-C 2 B 9 H 11 ) 2 ] - (COSAN). All of the conjugates have been fully characterized and their luminescence properties have been assessed. In general, they show good quantum yields in solution (24-49 %), those for the COSAN derivatives being lower. Remarkably, the linking of [B 12 H 12 ] 2- and COSAN to the complexes made them more soluble, without being detrimental to their luminescence properties. Living B16F10 cells were treated with all of the compounds to determine their fluorescence staining properties; the compounds bearing the aliphatic chain showed a reduced staining capacity due to the formation of aggregates. Notably, the complexes bearing different boron clusters showed different staining effects; those bearing [B 12 H 12 ] 2- showed extraordinary staining of the nucleoli and cytoplasm, whereas those bearing COSAN were only detected in the cytoplasm. The remarkable fluorescence staining properties shown by these organotin compounds make them excellent candidates for fluorescence bioimaging in vitro. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
12. "TAPE ROOM" LOCATED AT SOUTHEAST CORNER OF MAIN ROOM. ...
12. "TAPE ROOM" LOCATED AT SOUTHEAST CORNER OF MAIN ROOM. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Recent Advances in Azaborine Chemistry
Campbell, Patrick G.; Marwitz, Adam J. V.
2013-01-01
The chemistry of organoboron compounds has been primarily dominated by their use as powerful reagents in synthetic organic chemistry. Recently, the incorporation of boron as part of a functional target structure has emerged as a useful way to generate diversity in organic compounds. A commonly applied strategy is the replacement of a CC unit with its isoelectronic BN unit. In particular, the BN/CC isosterism of the ubiquitous arene motif has undergone a renaissance in the past decade. The parent molecule of the 1,2-dihydro-1,2-azaborine family has now been isolated. New mono- and polycyclic BN heterocycles have been synthesized for potential use in biomedical and materials science applications. This review is a tribute to Dewar's first synthesis of a monocyclic 1,2-dihydro-1,2-azaborine 50 years ago and discusses recent advances in the synthesis and characterization of carbon(C)-boron(B)-nitrogen(N)-containing heterocycles. PMID:22644658
Short-Term Coral Bleaching Is Not Recorded by Skeletal Boron Isotopes
Schoepf, Verena; McCulloch, Malcolm T.; Warner, Mark E.; Levas, Stephen J.; Matsui, Yohei; Aschaffenburg, Matthew D.; Grottoli, Andréa G.
2014-01-01
Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of seawater pH using boron isotopes should be uncompromised by short-term bleaching events. PMID:25396422
Short-term coral bleaching is not recorded by skeletal boron isotopes.
Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G
2014-01-01
Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of seawater pH using boron isotopes should be uncompromised by short-term bleaching events.
Energetic Materials and Metals Contamination at CFB/ASU Wainwirght, Alberta Phase 1
2008-11-01
Edmonton, Alberta). Metals analyzed for this study were silver (Ag), aluminium (Al), arsenic (As), boron (B), barium (Ba), beryllium (Be), bismuth 4...selenium (Se), antimony (Sb), tin (Sn), strontium (Sr), tellurium (Te), titanium (Ti), thallium (Tl), uranium (U), vanadium (V), zinc (Zn), and...mg/kg mg/kg mg/kg Aluminium - 9070 1040 Antimony 40 2 1 Arsenic 12 7 13.6 Barium 2000 177 73.4 Beryllium 8 40 40 Bismuth - 20 20 Boron - 10
Controlling the charge transfer in phenylene-bridged borylene-amine pi-conjugated systems.
Proń, Agnieszka; Zhou, Gang; Norouzi-Arasi, Hassan; Baumgarten, Martin; Müllen, Klaus
2009-08-20
Novel boron-nitrogen-containing pi-conjugated compounds 3,3'- and 4,4'-((2,4,6-triisopropylphenyl)borylene)bis(N,N-diarylbenzenamine) (1-2), m- and p-phenylene bridged to the boron center, respectively, have been synthesized and characterized. Optical studies by means of UV-vis absorption and emission measurements as well as DFT calculations reveal a different charge transfer behavior between the para series and the meta series at ground and excited states.
NASA Astrophysics Data System (ADS)
Kuperman, Marina V.; Losytskyy, Mykhaylo Yu.; Bykov, Alexander Yu.; Yarmoluk, Sergiy M.; Zhizhin, Konstantin Yu.; Kuznetsov, Nikolay T.; Varzatskii, Oleg A.; Gumienna-Kontecka, Elzbieta; Kovalska, Vladyslava B.
2017-08-01
The interactions of boron cluster compounds closo-borates with biomolecules are widely studied due to their efficiency as agents for boron neutron capture therapy of cancer. In present work the binding abilities of anionic halogen closo-borates [B10Hal10]2- (Hal = Cl, Br, I) and [B12Hal12]2- (Hal = Cl, I) towards bovine and human serum albumins were investigated by spectroscopic and isothermal titration calorimetry (ITC) methods. The protein fluorescence quenching method and ITC studies confirmed the complex formation. The degree of protein fluorescence quenching increased from chlorine to iodine boron derivatives that is attributed to external heavy atom effect. The ITC data point on the existence in the protein structure of two types of binding sites: with higher and lower affinity to closo-borates. Albumin-closo-borate complex binding ratio, n (4-5 anions per protein molecule) is higher than for the parent hydrogen closo-borates (2 anions per protein molecule). Binding constants estimated by fluorescent and ITC methods indicate higher affinity of halogen closo-borates to albumins (K in the range of 104-106 M-1) comparing to that of the hydrogen closo-borate (K about 103 M-1). Due to their high affinity and high binding ratio to albumins halogen closo-borates are proposed for further studies as agents for boron neutron capture therapy.
NASA Astrophysics Data System (ADS)
Ramanjaneyulu, P. S.; Sayi, Y. S.; Ramakumar, K. L.
2008-08-01
Quantification of boron in diverse materials of relevance in nuclear technology is essential in view of its high thermal neutron absorption cross section. A simple and sensitive method has been developed for the determination of boron in uranium-aluminum-silicon alloy, based on leaching of boron with 6 M HCl and H 2O 2, its selective separation by solvent extraction with 2-ethyl hexane 1,3-diol and quantification by spectrophotometry using curcumin. The method has been evaluated by standard addition method and validated by inductively coupled plasma-atomic emission spectroscopy. Relative standard deviation and absolute detection limit of the method are 3.0% (at 1 σ level) and 12 ng, respectively. All possible sources of uncertainties in the methodology have been individually assessed, following the International Organization for Standardization guidelines. The combined uncertainty is calculated employing uncertainty propagation formulae. The expanded uncertainty in the measurement at 95% confidence level (coverage factor 2) is 8.840%.
Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe
2018-04-18
In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.
Enhancing boron rejection in FO using alkaline draw solutions.
Wang, Yi-Ning; Li, Weiyi; Wang, Rong; Tang, Chuyang Y
2017-07-01
This study provides a novel method to enhance boron removal in a forward osmosis (FO) process. It utilizes the reverse solute diffusion (RSD) of ions from alkaline draw solutions (DSs) and the concentration polarization of the hydroxyl ions to create a highly alkaline environment near the membrane active surface. The results show that boron rejection can be significantly enhanced by increasing the pH of NaCl DS to 12.5 in the active-layer-facing-feed-solution (AL-FS) orientation. The effect of RSD enhanced boron rejection was further promoted in the presence of concentration polarization (e.g., in the active-layer-facing-draw-solution (AL-DS) orientation). The current study opens a new dimension for controlling contaminant removal by FO using tailored DS chemistry, where the RSD-induced localized water chemistry change is taken advantage in contrast to the conventional method of chemical dosing to the bulk feed water. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Gilland, James H.; Haag, Thomas W.; Mackey, Jonathan; Yim, John; Pinero, Luis; Williams, George; Peterson, Peter; Herman, Daniel
2017-01-01
NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5kW Technology Demonstration Unit-3 (TDU-3) has been the subject of extensive technology maturation in preparation for flight system development. Detailed performance, stability, and plume characterization tests of the thruster were performed at NASA GRC's Vacuum Facility 5 (VF-5). The TDU-3 thruster implements a magnetic topology that is identical to TDU-1. The TDU-3 boron nitride silica composite discharge channel material is different than the TDU-1 heritage boron nitride discharge channel material. Performance and stability characterization of the TDU-3 thruster was performed at discharge voltages between 300V and 600V and at discharge currents between 5A and 21.8A. The thruster performance and stability were assessed for varying magnetic field strength, cathode flow fractions between 5% and 9%, varying harness inductance, and for reverse magnet polarity. Performance characterization test results indicate that the TDU-3 thruster performance is in family with the TDU-1 levels. TDU-3's thrust efficiency of 65% and specific impulse of 2,800sec at 600V and 12.5kW exceed performance levels of SOA Hall thrusters. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations (discharge current peak-to-peak and root mean square magnitudes), discharge current waveform power spectral density analysis, and maps of the current-voltage-magnetic field. Stability characterization test results indicate a stability profile similar to TDU-1. Finally, comparison of the TDU-1 and TDU-3 plume profiles found that there were negligible differences in the plasma plume characteristics between the TDU with heritage boron nitride versus the boron nitride silica composite discharge channel.
Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits.
Uysal, Tancan; Ustdal, Ayca; Sonmez, Mehmet Fatih; Ozturk, Figen
2009-09-01
To evaluate the effects of dietary boron on bone regeneration in rabbits in response to expansion of the midpalatal suture during different retention periods. Twenty-eight 12-week-old New Zealand white male rabbits were separated into four equal groups: group 1 (B+10) and group 2 (B-10) had retention periods of 10 days with or without boron intake, respectively. Group 3 (B+20, with boron) and group 4 (B-20, without boron) were retained for 20 days. All groups had a 5-day expansion period. For both B+ groups, boron was prepared in distilled water and given to the rabbits during their (1) nursery phase (40 days), (2) expansion phase, and (3) retention period at a dosage of 3 mg/kg daily by oral gavage. Bone regeneration in the midpalatal suture was evaluated by a bone histomorphometric method, and the mineralized area (Md.Ar), fibrosis area (Fb.Ar), mineralized area/fibrosis area (Md.Ar/Fb.Ar), bone area (B.Ar) and osteoblast number (N.Ob) parameters were evaluated. Statistical analysis showed significant differences between groups for all investigated measurements. Md.Ar (P < .01), Md.Ar/Fb.Ar (P < .001), B.Ar (P < .01), and N.Ob (P < .01) parameters were increased and Fb.Ar (P < .01) was decreased in groups B+10 and B+20. No significant differences were observed during an additional 10-day retention period in all groups (P < .05). Boron has a positive effect on the early phase of bone regeneration of the midpalatal suture in response to expansion and may be beneficial in routine maxillary expansion procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blatt, C.R.
1982-01-01
Preplant applications of Borate -65 at 0.56, 1.12 and 2.24 kg B/ha were reflected in significant increases in soil and leaf B levels up to one year following boron application. After 2 cropping seasons soil B level did not reflect rate of applied B and Solubor was applied broadcast at 1.12, 2.24 and 4.48 kg B/ha in the spring of the 3rd cropping season. Soil and leaf B levels and leaf marginal necrosis increased compared with control plots at all rates of applied B at full bloom in the 3rd cropping season. Rate of applied B was reflected in significantmore » soil and leaf B increases one year following application. Fruit yields through four cropping seasons were not affected by any source of rate of applied B. A soil B range of 0.15-0.25 ppM and a leaf B range of 20-30 ppm will give optimum crop response from the Midway strawberry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ektarawong, A., E-mail: anekt@ifm.liu.se; Hultman, L.; Birch, J.
The elastic properties of alloys between boron suboxide (B{sub 6}O) and boron carbide (B{sub 13}C{sub 2}), denoted by (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x}, as well as boron carbide with variable carbon content, ranging from B{sub 13}C{sub 2} to B{sub 4}C are calculated from first-principles. Furthermore, the mixing thermodynamics of (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x} is studied. A superatom-special quasirandom structure approach is used for modeling different atomic configurations, in which effects of configurational disorder between the carbide and suboxide structural units, as well as between boron and carbon atoms within the units, are taken into account. Elastic propertiesmore » calculations demonstrate that configurational disorder in B{sub 13}C{sub 2}, where a part of the C atoms in the CBC chains substitute for B atoms in the B{sub 12} icosahedra, drastically increase the Young’s and shear modulus, as compared to an atomically ordered state, B{sub 12}(CBC). These calculated elastic moduli of the disordered state are in excellent agreement with experiments. Configurational disorder between boron and carbon can also explain the experimentally observed almost constant elastic moduli of boron carbide as the carbon content is changed from B{sub 4}C to B{sub 13}C{sub 2}. The elastic moduli of the (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x} system are also practically unchanged with composition if boron-carbon disorder is taken into account. By investigating the mixing thermodynamics of the alloys, in which the Gibbs free energy is determined within the mean-field approximation for the configurational entropy, we outline the pseudo-binary phase diagram of (B{sub 6}O){sub 1−x}(B{sub 13}C{sub 2}){sub x}. The phase diagram reveals the existence of a miscibility gap at all temperatures up to the melting point. Also, the coexistence of B{sub 6}O-rich as well as ordered or disordered B{sub 13}C{sub 2}-rich domains in the material prepared through equilibrium routes is predicted.« less
A first-principles core-level XPS study on the boron impurities in germanium crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Jun; Yoshimoto, Yoshihide; Suwa, Yuji
2013-12-04
We systematically investigated the x-ray photoelectron spectroscopy (XPS) core-level shifts and formation energies of boron defects in germanium crystals and compared the results to those in silicon crystals. Both for XPS core-level shifts and formation energies, relationship between defects in Si and Ge is roughly linear. From the similarity in the formation energy, it is expected that the exotic clusters like icosahedral B12 exist in Ge as well as in Si.
Depressurization amorphization of single-crystal boron carbide.
Yan, X Q; Tang, Z; Zhang, L; Guo, J J; Jin, C Q; Zhang, Y; Goto, T; McCauley, J W; Chen, M W
2009-02-20
We report depressurization amorphization of single-crystal boron carbide (B4C) investigated by in situ high-pressure Raman spectroscopy. It was found that localized amorphization of B4C takes place during unloading from high pressures, and nonhydrostatic stresses play a critical role in the high-pressure phase transition. First-principles molecular dynamics simulations reveal that the depressurization amorphization results from pressure-induced irreversible bending of C-B-C atomic chains cross-linking 12 atom icosahedra at the rhombohedral vertices.
Functionalizing graphene by embedded boron clusters
NASA Astrophysics Data System (ADS)
Quandt, Alexander; Kunstmann, Jens; Ozdogan, Cem; Fehske, Holger
2010-03-01
We present results from an ab initio study of B7 clusters implanted into graphene [1,2]. Our model system consists of an alternating chain of quasiplanar B7 clusters. We show that graphene easily accepts these alternating B7-C6 chains and that the implanted boron components may dramatically modify the electronic properties. This suggests that our model system might serve as a blueprint for the controlled layout of graphene based nanodevices, where the semiconducting properties are supplemented by parts of the graphene matrix itself, and the basic metallic wiring is provided by alternating chains of implanted boron clusters. [1] A. Quandt, C. "Ozdogan, J. Kunstmann, and H. Fehske, Nanotechnology 19, 335707 (2008). [2] A. Quandt, C. "Ozdogan, J. Kunstmann, and H. Fehske, phys. stat. solidi (b) 245, 2077 (2008).
NASA Astrophysics Data System (ADS)
Teyssier, J.; Lortz, R.; Petrovic, A.; van der Marel, D.; Filippov, V.; Shitsevalova, N.
2008-10-01
We report a detailed study of specific heat, electrical resistivity, and optical spectroscopy in the superconducting boride LuB12 (Tc=0.4K) , and compare it to the higher Tc compound ZrB12 (Tc=6K) . Both compounds have the same structure based on enclosed metallic Lu or Zr ions in oversized boron cages. The infrared reflectivity and ellipsometry in the visible range allow us to extract the optical conductivity from 6 meV to 4 eV in the normal state from 20 to 280 K. By extracting the superconducting properties, phonon density of states, and electron-phonon coupling function from these measurements, we discuss the important factors governing Tc and explain the difference between the two compounds. The phonon density of states seems to be insignificantly modified by substitution of Zr with Lu. However, the soft vibrations of the metal ions in boron cages, responsible for the relatively high Tc in ZrB12 , have almost no contribution to the electron-phonon coupling in LuB12 .
Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert
2015-11-16
On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.
The use of metalorganics in the preparation of semiconductor materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manasevit, H.M.; Hewitt, W.B.; Nelson, A.J.
1989-10-01
The authors describe boron-arsenic and boron-phosphorus films grown on Si, sapphire, and silicon-on-sapphire (SOS) by pyrolyzing Group III alkyls of boron, i.e., trimethylborane (TMB) and triethylborane (TEB) in the presence of AsH/sub 3/ and PH/sub 3/, respectively, in a H/sub 2/ atmosphere. No evidence for reaction between the alkyls and the hydrides on mixing at room temperature was found. The films were predominantly amorphous. The film growth rate was found to depend on the concentration of alkyl boron compound and was essentially constant when TEB and AsH/sub 3/ were pyrolyzed over the temperature range of 550{sup 0}-900{sup 0}C. The filmsmore » were found to contain mainly carbon impurities (the amount varying with growth temperature), some oxygen, and were highly stressed and bowed on Si substrates, with some crazing evident in thin (2 {mu}m) B-P and thick (5 {mu}m) B-As films. The carbon level was generally higher in films grown using TEB as the boron source. Films grown from PH/sub 3/ and TMB showed a higher carbon content than those grown from AsH/sub 3/ and TMB. Based on their B/As and B/P ratios, films with nominal compositions B/sub 12-16/As/sub 2/P and B/sub 1.1-1.3/P were grown using TMB as the boron source.« less
Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auge, Gregoire; Partyka, Stanislas; Guerard, Bruno
Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 withmore » lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron detection characteristics, between 0,5 to 5 μm (equivalent to 0,25 to 2.5 massive layer). The thickness is homogenous within a ±20% range. The layer is an almost pure {sup 10}B layer (90%). The ratio of the amount of deposed boron 10 to the amount of raw boron 10 used is more than 80%. Hence, another advantage of this technique is that Boron 10 will be deposited on the cathodes only, without loss of this expensive material. 2 grids of a Multi-Grid detector have been coated with pure Boron by using this technique. The film structure has been analysed with a microscope and the detector has been tested on a monochromatic neutron beam line. Preliminary results will be shown. (authors)« less
Co-doping of CVD diamond with boron and sulfur
NASA Astrophysics Data System (ADS)
Eaton, Sally Catherine
Boron is well-established as a p-type dopant in diamond, but attempts to find a viable n-type dopant remain unsuccessful. In 1999, sulfur was reported to give n-type conductivity. However, later measurements indicated that the samples contained boron and were p-type. Recently, we showed that diamond co-doped with sulfur and small quantities of boron shows n-type conductivity, which was established by Mott-Schottky analyses, thermoelectric effect, Hall measurements, scanning tunneling spectroscopy (STS), and UV open-circuit photo-potential. At higher boron concentrations, a transition to p-type behavior is observed due to overcompensation. Experiments performed without boron in the feed gas or without residual boron in the reactor chamber showed no sulfur incorporation and no change in conductivity. There is evidence that the excess sulfur concentration in the near-surface region is not stable. At room temperature and below, the activation energies range from 0.06 to 0.12 eV. Above 400K there is an irreversible loss in conductivity and the activation energy increases to approximately 1.3 eV. Additionally, we observed by SIMS that there exists a concentration gradient in sulfur with film depth. This sulfur concentration gradient is also observed in our electrical measurements. STS shows a decrease in conductivity with film depth and Hall effect measurements show both p-type and n-type coefficients for samples which are n-type in the near-surface region. The flat-band potential obtained from the Mott-Schottky experiments is only 1 to 1.5 V more negative on the electrochemical scale than that for boron-doped diamond. This implies that the Fermi level is only 1 to 1.5 eV higher than the Fermi level in boron-doped diamond. This observation implies that the n-type conductivity is not by excitation of electrons to the conduction band, but by an alternate mechanism that occurs in the middle of the band gap. One such possibility is an acceptor impurity band. Electrons from individual donor states can be excited into this acceptor band where they are free to move. This mechanism would create n-type conductivity even if the Fermi level was low in the bandgap.
Termite Resistance of MDF Panels Treated with Various Boron Compounds
Usta, Mustafa; Ustaomer, Derya; Kartal, Saip Nami; Ondaral, Sedat
2009-01-01
In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX), boric acid (BA), zinc borate (ZB), or sodium perborate tetrahydrate (SPT) were added to urea-formaldehyde (UF) resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH4Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus Shiraki. Laboratory termite resistance tests showed that all samples containing boron compounds had greater resistance against termite attack compared to untreated MDF samples. At the second and third weeks of exposure, nearly 100% termite mortalities were recorded in all boron compound treated samples. The highest termite mortalities were determined in the samples with either BA or BX. Also, it was found that SPT showed notable performance on the termite mortality. As chemical loadings increased, termite mortalities increased, and at the same time the weight losses of the samples decreased. PMID:19582229
12. "SITE PLAN." Test Area 1100. Specifications No. OC35973; Drawing ...
12. "SITE PLAN." Test Area 1-100. Specifications No. OC359-73; Drawing No. 5841-C-1; D.O. SERIES AW1525/7 Rev. A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
12. DETAIL SHOWING EAST SIDE OF THE OXYGEN AND HYDROGEN ...
12. DETAIL SHOWING EAST SIDE OF THE OXYGEN AND HYDROGEN PRE-VALVE DECK (2ND LEVEL). Looking south. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Sahle, Christoph J; Kujawski, Simon; Remhof, Arndt; Yan, Yigang; Stadie, Nicholas P; Al-Zein, Ali; Tolan, Metin; Huotari, Simo; Krisch, Michael; Sternemann, Christian
2016-02-21
We present an in situ study of the thermal decomposition of Mg(BH4)2 in a hydrogen atmosphere of up to 4 bar and up to 500 °C using X-ray Raman scattering spectroscopy at the boron K-edge and the magnesium L2,3-edges. The combination of the fingerprinting analysis of both edges yields detailed quantitative information on the reaction products during decomposition, an issue of crucial importance in determining whether Mg(BH4)2 can be used as a next-generation hydrogen storage material. This work reveals the formation of reaction intermediate(s) at 300 °C, accompanied by a significant hydrogen release without the occurrence of stable boron compounds such as amorphous boron or MgB12H12. At temperatures between 300 °C and 400 °C, further hydrogen release proceeds via the formation of higher boranes and crystalline MgH2. Above 400 °C, decomposition into the constituting elements takes place. Therefore, at moderate temperatures, Mg(BH4)2 is shown to be a promising high-density hydrogen storage material with great potential for reversible energy storage applications.
NASA Astrophysics Data System (ADS)
Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar
2018-04-01
Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).
Dixon, R L; Lee, I P; Sherins, R J
1976-01-01
Results of a U.S.S.R.--U.S. cooperative laboratory effort to improve and validate experimental techniques used to assess subtle reproductive effects in male laboratory animals are reported. The present studies attempted to evaluate the reproductive toxicity of cadmium as cadmium chloride and boron as borax (Na2B4O7) and to investigate the mechanism of toxicity in the rat following acute and subchronic oral exposure. In vitro cell separation techniques, in vivo serial mating tests, and plasma assays for hormones were utilized. Effects on the seminal vesicle and prostate were evaluated with chemical and enzyme assays. Clinical chemistry was monitored routinely. Acute oral doses, expressed as boron were 45, 150, and 450 mg/kg while doses for cadmium equivalent were 6.25, 12.5, and 25 mg/kg. Rats were also allowed free access to drinking water containing either boron (0.3, 1.0, and 6.0 mg/l.) or cadmium (0.001, and 0.l mg/l.) for 90 days. Randomly selected animals were studied following 30, 60, and 90 days of treatment. These initial studies, utilizing a variety of methods to assess the reproductive toxicity of environmental substances in male animals, suggest that cadmium and boron at the concentrations and dose regimens tested are without significant reproductive toxicity. PMID:1269508
Zheng, Qiang; Wagner, Frank R; Ormeci, Alim; Prots, Yurii; Burkhardt, Ulrich; Schmidt, Marcus; Schnelle, Walter; Grin, Yuri; Leithe-Jasper, Andreas
2015-11-09
Two ternary borides MNi9 B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single-crystal X-ray diffraction data reveal AlNi9 B8 and GaNi9 B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Å and a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two-dimensional layers, which consist of puckered [B16 ] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices-condensed [Ni12 ] icosahedra, which form a three-dimensional framework interpenetrated by boron porphyrin-reminiscent layers. An unusual local arrangement resembling a giant metallo-porphyrin entity is formed by the [B16 ] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B-B interactions and weak Ni-Ni interactions. Multi-center dative B-Ni interaction occurs between the Al-Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9 B8 is a Pauli-paramagnetic metal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boron containing multilayer coatings and method of fabrication
Makowiecki, D.M.; Jankowski, A.F.
1997-09-23
Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.
Boron containing multilayer coatings and method of fabrication
Makowiecki, Daniel M.; Jankowski, Alan F.
1997-01-01
Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.
Optical properties of boron-group (V) hexagonal nanowires: DFT investigation
NASA Astrophysics Data System (ADS)
Santhibhushan, B.; Soni, Mahesh; Srivastava, Anurag
2017-07-01
The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group V element. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.
Xu, Fen; Xie, Yi; Zhang, Xu; Zhang, Shuyuan; Liu, Xianming; Tian, Xiaobo
2004-01-26
In this paper we describe the large-scale synthesis of inorganic fullerene-like (IF-like) hexagonal boron nitride with vessel, hollow sphere, peanut, and onion structures by reacting BBr(3) with the synergic nitrogen sources NaNH(2) and NH(4)Cl at 400-450 degrees C for 6-12 h. The composition of products could be confirmed to be pure boron nitride with hexagonal structures by the XRD patterns and FT-IR, XPS, and EDXA spectra. The representative HRTEM images clearly reveal the layerlike features of the products. Here, the peanut-like structure of the IF-like BN is reported for the first time, and added to the list as one kind of new morphology of BN nanomaterials. The similarity in the structure between h-BN and graphite is responsible for the formation of IF-like BN with nanostructures of vessels, hollow spheres, peanuts, and onions.
Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji
2012-08-29
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options.
2012-01-01
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options. PMID:22929110
Methods of forming boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J
A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less
Rhodium-Catalyzed Boron Arylation of 1,2-Azaborines**
Rudebusch, Gabriel E.; Zakharov, Lev N.; Liu, Shih-Yuan
2013-01-01
A Sn-phony in B! BN isosteres of biphenyl compounds are prepared through Rh-catalyzed cross-coupling between 2-chloro-1,2-azaborines and arylstannanes (see scheme). The synthetic method should enable investigations of structure–activity relationships (SARs) by expanding the chemical space of the pharmaceutically relevant biphenyl structure through BN/CC isosterism. PMID:23832871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; Hou, Gao-Lei; Aprà, Edoardo
2017-10-09
The relative stability and electron loss process of Multiply Charged Anions have been traditionally explained in terms of the classical Coulomb interaction between spatially separated charges. In this study we report the surprising properties of [B12X12]2-, X = F – At, that are counterintuitive compared to the prevailing classical description and justify their classification into a new class of MCAs. In this new class of MCAs, comprising of a “Boron core” surrounded by a “Halogen shell”, the sign of the total charge in these two regions changes along the halogen series from F to At. With the aid of photoelectronmore » spectroscopy and electronic structure calculations we demonstrate that the behavior of these MCAs is largely determined by quantum effects rather than classical electrostatics. The second excess electron is always taken from the most positively charged region, viz. the “Boron core” for F – Br and the surrounding “Halogen shell” for I, At.« less
AN INVESTIGATION OF THE BENZOIN METHOD FOR THE FLUORIMETRIC DETERMINATION OF BORON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, G.; Radley, J.A.
1961-01-01
The development of the boron -benzoin fluorescence at microgram concentrations of boron was investigated; a simple, but sensitive, fluorimeter was used. The development and decay of fluorescence intensity with time were observed in various solvents in the presence of different basic compounds. The fluorescence produced when formamide and its N-derivatives are used as the solvent media is stronger than that found when ethanol is used. A glycine buffer solution of pH 12.8 is effective in producing the correct conditions for developing fluorescence with ethanol as solvent, but is not effective in the formamide series of solvents. Isopropylamine and isobutylamine aremore » effective bases in both ethanol and the formamide series. For a series of solvents of a given chemical type, e.g., the formamides, there may be an increase in fluorescence intensity with dielectric constant, although this is not true for the alcohols. Oxygen has a pronounced inhibiting action on the development of fluorescence in ethanol, but has much less effect in formamide. There is a linear relationship between fluorescence intensity and amount of boron present in the range studied (0.05 to 0.5 - g). (auth)« less
Electroreduction of CO{sub 2} using copper-deposited on boron-doped diamond (BDD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panglipur, Hanum Sekar; Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Einaga, Yasuaki
Electroreduction of CO{sub 2} was studied at copper-modified boron-doped diamond (Cu-BDD) electrodes as the working electrode. The Cu-BDD electrodes were prepared by electrochemical reduction with various concentrations of CuSO{sub 4} solutions. FE-SEM was utilized to characterize the electrodes. At Cu-BDD electrodes, a reduction peak at around -1.2 V (vs Ag/AgCl) attributtable to CO{sub 2} reductions could be observed by cyclic voltammetry technique of CO{sub 2} bubbled in water containing 0.1M NaCl. Accordingly, electroreduction of CO{sub 2} was conducted at -1.2 V (vs Ag/AgCl) using amperometry technique. The chemical products of the electroreduction analyzed by using HPLC showed the formation of formaldehyde, formicmore » acid, and acetic acid at Cu-BDD electrodes.« less
Measurement of the Elastic Modulus of a Single Boron Nitride Nanotube
NASA Astrophysics Data System (ADS)
Chopra, Nasreen G.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A.
1997-03-01
In situ transmission electron microscope (TEM) measurements of thermally-excited vibrational characteristics of boron nitride (BN) nanotubes are used to extract the elastic modulus. We find BN nanotubes to have a higher axial Young's modulus, 1.2 TPa, than any other insulating fiber. This value is consistent with theoretical predictions and confirms previous TEM observations of the high degree of crystallinity of these structures. This work was supported by the U. S. Department of Energy under contract No. DE-AC03-76-SF00098 and the Office of Naval Research, Order No. N00014-95-F-0099
Trivedi, Rajiv; Rami Reddy, E; Kiran Kumar, Ch; Sridhar, B; Pranay Kumar, K; Srinivasa Rao, M
2011-07-01
A simple and efficient synthetic approach toward a series of chiral aryl boronate esters, starting from D-xylose, as anti-microbial agents, is described herein. Minimum inhibitory concentration and zone of inhibition revealed that these derivatives exhibit potent anti-bacterial and anti-fungal properties. Herein, we report the first anti-microbial activity of this class of compounds. All products have been characterized by NMR ((1)H, (13)C and (11)B), IR, elemental and mass spectral study. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kueffer, Peter J.; Maitz, Charles A.; Khan, Aslam A.; Schuster, Seth A.; Shlyakhtina, Natalia I.; Jalisatgi, Satish S.; Brockman, John D.; Nigg, David W.; Hawthorne, M. Frederick
2013-01-01
The application of boron neutron capture therapy (BNCT) following liposomal delivery of a 10B-enriched polyhedral borane and a carborane against mouse mammary adenocarcinoma solid tumors was investigated. Unilamellar liposomes with a mean diameter of 134 nm or less, composed of an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine and incorporating Na3[1-(2′-B10H9)-2-NH3B10H8] in the aqueous interior and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, were injected into the tail veins of female BALB/c mice bearing right flank EMT6 tumors. Biodistribution studies indicated that two identical injections given 24 h apart resulted in tumor boron levels exceeding 67 µg/g tumor at 54 h—with tumor/blood boron ratios being greatest at 96 h (5.68:1; 43 µg boron/g tumor)—following the initial injection. For BNCT experiments, tumor-bearing mice were irradiated 54 h after the initial injection for 30 min with thermal neutrons, resulting in a total fluence of 1.6 × 1012 neutrons per cm2 (±7%). Significant suppression of tumor growth was observed in mice given BNCT vs. control mice (only 424% increase in tumor volume at 14 d post irradiation vs. 1551% in untreated controls). In a separate experiment in which mice were given a second injection/irradiation treatment 7 d after the first, the tumor growth was vastly diminished (186% tumor volume increase at 14 d). A similar response was obtained for mice irradiated for 60 min (169% increase at 14 d), suggesting that neutron fluence was the limiting factor controlling BNCT efficacy in this study. PMID:23536304
Crystalline boron nitride aerogels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.
This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less
Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides
Lech, Andrew T.; Turner, Christopher L.; Mohammadi, Reza; Tolbert, Sarah H.; Kaner, Richard B.
2015-01-01
Superhard metals are of interest as possible replacements with enhanced properties over the metal carbides commonly used in cutting, drilling, and wear-resistant tooling. Of the superhard metals, the highest boride of tungsten—often referred to as WB4 and sometimes as W1–xB3—is one of the most promising candidates. The structure of this boride, however, has never been fully resolved, despite the fact that it was discovered in 1961—a fact that severely limits our understanding of its structure–property relationships and has generated increasing controversy in the literature. Here, we present a new crystallographic model of this compound based on refinement against time-of-flight neutron diffraction data. Contrary to previous X-ray–only structural refinements, there is strong evidence for the presence of interstitial arrangements of boron atoms and polyhedral bonding. The formation of these polyhedra—slightly distorted boron cuboctahedra—appears to be dependent upon the defective nature of the tungsten-deficient metal sublattice. This previously unidentified structure type has an intermediary relationship between MB2 and MB12 type boride polymorphs. Manipulation of the fractionally occupied metal and boron sites may provide insight for the rational design of new superhard metals. PMID:25733870
Defect annealing in electron-irradiated boron-doped silicon
NASA Astrophysics Data System (ADS)
Awadelkarim, O. O.; Chen, W. M.; Weman, H.; Monemar, B.
1990-01-01
Defects introduced by room-temperature electron irradiation and subsequent annealing in boron-doped silicon are studied by means of deep-level transient spectroscopy, photoluminescence, and optical detection of magnetic resonance (ODMR) techniques. ODMR reveals a thermally induced paramagnetic (S=(1/2) defect center that is produced following annealing at 400 °C. The center possesses a C3v point-group symmetry with the trigonal axis along <111>. Detailed analysis of the ODMR line shapes indicates the involvement of a silicon atom in the defect center. It appears from the results that boron is either another possible defect component or an essential catalyst for the defect formation. The occurrence of the ODMR signal together with a luminescence band peaking at 0.80 eV is independent of oxygen or carbon contents in the samples. The band does not belong to the center observed by ODMR; however, a decrease in its intensity, under resonance conditions in the ODMR center, is explained in terms of carrier recombination, capture, or energy-transfer processes involving this center. Annealing studies on a metastable hole trap observed at Ev+0.12 eV (Ev being the top of the valence band) establish the trap assignment to a carbon-interstitial-carbon-substitutional pair. The introduction of postannealing traps observed at Ev+0.07 eV, Ev+0.45 eV, and Ec-0.59 eV (Ec being the conduction-band edge) is found to be boron dependent. Isothermal formation of the centers responsible for these traps are observed, and none of the traps appears to be related to either the center observed by ODMR or the 0.80-eV band.
Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head and Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna
2007-10-01
Purpose: Head and neck carcinomas that recur locally after conventional irradiation pose a difficult therapeutic problem. We evaluated safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of such cancers. Methods and Materials: Twelve patients with inoperable, recurred, locally advanced (rT3, rT4, or rN2) head and neck cancer were treated with BNCT in a prospective, single-center Phase I-II study. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 56-74 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed using the RECIST (Response Evaluation Criteria in Solid Tumors) criteria andmore » adverse effects using the National Cancer Institute common toxicity grading v3.0. Intravenously administered boronophenylalanine-fructose (BPA-F, 400 mg/kg) was used as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Ten patients received BNCT twice; 2 were treated once. Ten (83%) patients responded to BNCT, and 2 (17%) had tumor growth stabilization for 5.5 and 7.6 months. The median duration of response was 12.1 months; six responses were ongoing at the time of analysis or death (range, 4.9-19.2 months). Four (33%) patients were alive without recurrence with a median follow-up of 14.0 months (range, 12.8-19.2 months). The most common acute adverse effects were mucositis, fatigue, and local pain; 2 patients had a severe (Grade 3) late adverse effect (xerostomia, 1; dysphagia, 1). Conclusions: Boron neutron capture therapy is effective and safe in the treatment of inoperable, locally advanced head and neck carcinomas that recur at previously irradiated sites.« less
Electroextraction of boron from boron carbide scrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Ashish; Anthonysamy, S., E-mail: sas@igcar.gov.in; Ghosh, C.
2013-10-15
Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction processmore » developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.« less
JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron
NASA Astrophysics Data System (ADS)
Stiel, Leonard; Baker, Ernest; Capellos, Christos
2009-06-01
The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.
Process for microwave sintering boron carbide
Holcombe, C.E.; Morrow, M.S.
1993-10-12
A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.
Process for microwave sintering boron carbide
Holcombe, Cressie E.; Morrow, Marvin S.
1993-01-01
A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.
Bassil, Elias; Hu, Hening; Brown, Patrick H.
2004-01-01
The only defined physiological role of boron in plants is as a cross-linking molecule involving reversible covalent bonds with cis-diols on either side of borate. Boronic acids, which form the same reversible bonds with cis-diols but cannot cross-link two molecules, were used to selectively disrupt boron function in plants. In cultured tobacco (Nicotiana tabacum cv BY-2) cells, addition of boronic acids caused the disruption of cytoplasmic strands and cell-to-cell wall detachment. The effect of the boronic acids could be relieved by the addition of boron-complexing sugars and was proportional to the boronic acid-binding strength of the sugar. Experiments with germinating petunia (Petunia hybrida) pollen and boronate-affinity chromatography showed that boronic acids and boron compete for the same binding sites. The boronic acids appear to specifically disrupt or prevent borate-dependent cross-links important for the structural integrity of the cell, including the organization of transvacuolar cytoplasmic strands. Boron likely plays a structural role in the plant cytoskeleton. We conclude that boronic acids can be used to rapidly and reversibly induce boron deficiency-like responses and therefore are useful tools for investigating boron function in plants. PMID:15466241
Investigation of Isotopically Tailored Boron in Advanced Fission and Fusion Reactor Systems.
NASA Astrophysics Data System (ADS)
Domaszek, Gerald Raymond
This research examines the use of B^ {11}, in the form of metallic boron and boron carbide, as a moderating and reflecting material. An examination of the neutronic characteristics of the B ^{11} isotope of boron has revealed that B^{11} has neutron scattering and absorption cross sections favorably comparable to those of Be^9 and C^ {12}. Preliminary analysis of the neutronics of B ^{11} were performed by conducting one dimensional transport calculations on an infinite slab of varying thickness. Beryllium is the best of the three materials in reflecting neutrons due primarily to the contribution from (n,2n) reactions. Tailored neutron energy beam transmission experiments were carried out to experimentally verify the predicted neutronic characteristics of B^{11 }. To further examine the neutron moderating and reflecting characteristics of B^{11 }, the energy dependent neutron flux was measured as a function of position in an exponential pile constructed of B_4C isotopically enriched to 98.5 percent B^{11}. After the experimental verification of the neutronic behavior of B^{11}, further design studies were conducted using metallic boron and boron carbide enriched in the B^{11 } isotope. The use of materials isotopically enriched in B^{11} as a liner in the first wall/blanket of a magnetic confinement fusion reactor demonstrated acceptable tritium regeneration in the lithium blanket. Analysis of the effect of contaminant levels of B^{10} showed that B^{10} contents of less than 1 percent in metallic boron produced negligible adverse effects on the tritium breeding. A comparison of the effectiveness of graphite and B^{11}_4C when used as moderators in a reactor fueled with natural uranium has shown that the maximum k_infty for a given fuel rod design is approximately the same for both materials. Approximately half the volume of the moderator is required when B^{11 }_4C is substituted for graphite to obtain essentially the same K_infty . An analysis of the effectiveness of various materials as reflector control elements for a compact space reactor has shown that B^{11} is neutronically superior to graphite in these applications. Metallic boron and boron carbide isotopically enriched in B^{11} have been demonstrated to be neutronically acceptable for varied applications in advanced reactor systems. B^ {11} has been shown to be superior in performance to graphite. While only somewhat inferior to beryllium as neutron multipliers, B^ {11} and B^{11} _4C have safety, supply and cost advantage over beryllium. (Abstract shortened with permission of author.).
Method of fabricating boron containing coatings
Makowiecki, Daniel M.; Jankowski, Alan F.
1999-01-01
Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.
Method of fabricating boron containing coatings
Makowiecki, D.M.; Jankowski, A.F.
1999-04-27
Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.
Synergistic methods for the production of high-strength and low-cost boron carbide
NASA Astrophysics Data System (ADS)
Wiley, Charles Schenck
2011-12-01
Boron carbide (B4C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B4C make it a nearly ideal material for personnel and vehicular armor. B4C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B4C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B4C powders. The boron carbide powder examined in this study was a sub-micron (0.6 mum median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form of phenolic resin, and titanium additives in the form of 32 nm and 0.9 mum TiO2 powders were selected. Parametric studies of sintering behavior were performed via high-temperature dilatometry in order to measure the in-situ sample contraction and thereby measure the influence of the additives and their amounts on the overall densification rate. Additionally, broad composition and sintering/post-HIPing studies followed by characterization and mechanical testing elucidated the effects of these additives on sample densification, microstructure de- velopment, and mechanical properties such as Vickers hardness and microindentation fracture toughness. Based upon this research, a process has been developed for the sintering of boron carbide that yielded end products with high relative densities (i.e., 100%, or theoretical density), microstructures with a fine (˜2-3 mum) grain size, and high Vickers microindentation hardness values. In addition to possessing these improved physical properties, the costs of producing this material were substantially lower (by a factor of 5 or more) than recently patented work on the pressureless sintering and post-HIPing of phase-pure boron carbide powder. This recently patented work developed out of our laboratory utilized an optimized powder distribution and yielded samples with high relative densities and high hardness values. The current work employed the use of titanium and carbon additives in specific ratios to activate the sintering of boron carbide powder possessing an approximately mono-modal particle size distribution. Upon heating to high temperatures, these additives produced fine-scale TiB2 and graphite inclusions that served to hinder grain growth and substantially improve overall sintered and post-HIPed densities when added in sufficient concentrations. The fine boron carbide grain size manifested as a result of these second phase inclusions caused a substantial increase in hardness; the highest hardness specimen yielded a hardness value (2884.5 kg/mm2) approaching that of phase-pure and theoretically-dense boron carbide (2939 kg/mm2). Additionally, the same high-hardness composition exhibited a noticeably higher fracture toughness (3.04 MPa˙m1/2) compared to phase-pure boron carbide (2.42 MPa˙m1/2), representing a 25.6% improvement. A potential consequence of this study would be the development of a superior armor material that is sufficiently affordable, allowing it to be incorporated into the general soldier's armor chassis.
Study of the specific features of single-crystal boron microstructure
NASA Astrophysics Data System (ADS)
Blagov, A. E.; Vasil'ev, A. L.; Dmitriev, V. P.; Ivanova, A. G.; Kulikov, A. G.; Marchenkov, N. V.; Popov, P. A.; Presnyakov, M. Yu.; Prosekov, P. A.; Pisarevskii, Yu. V.; Targonskii, A. V.; Chernaya, T. S.; Chernyshov, D. Yu.
2017-09-01
A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δ a/ a ≈ 0.4 and δ c/ c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [2\\bar 2013] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3-0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50-300 K are indicative of its high structural quality.
Microstructure of a Creep-Resistant 10 Pct Chromium Steel Containing 250 ppm Boron
NASA Astrophysics Data System (ADS)
Golpayegani, Ardeshir; Liu, Fang; Svensson, Henrik; Andersson, Marcus; Andrén, Hans-Olof
2011-04-01
The microstructure of a trial martensitic chromium steel containing a high content of boron (250 ppm) was characterized in detail in the as-tempered and aged conditions. This steel has a similar composition and heat treatment as the TAF steel that still is unsurpassed in creep strength among all 9 to 12 pct chromium steels. Characterization was performed by using scanning electron microscopy, energy-filtered transmission electron microscopy, secondary ion mass spectroscopy, and atom probe tomography. Focus was placed on investigating different types of precipitates that play a key role in improving the creep resistance of these steels. The low tempering temperature of 963 K (690 °C) is enough for the precipitation of the full volume fraction of both MX and M23C6. A high boron content, more than 1 at. pct, was found in M23C6 precipitates and they grow slowly during aging. The high boron level in the steel results in metal borides rather than BN with the approximate formula (Mo0.66Cr0.34)2(Fe0.75V0.25)B2. Two families of MX precipitates were found, one at lath boundaries about 35 nm in size and one dense inside the laths, only 5 to 15 nm in size.
Kavas, T; Christogerou, A; Pontikes, Y; Angelopoulos, G N
2011-01-30
Four boron-containing wastes (BW), named as Sieve (SBW), Dewatering (DBW), Thickener (TBW) and Mixture (MBW) waste, from Kirka Boron plant in west Turkey were investigated for the formation of artificial lightweight aggregates (LWA). The characterisation involved chemical, mineralogical and thermal analyses as well as testing of their bloating behaviour by means of heating microscopy. It was found that SBW and DBW present bloating behaviour whereas TBW and MBW do not. Following the above results two mixtures M1 and M2 were prepared with (in wt.%): 20 clay mixture, 40 SBW, 40 DBW and 20 clay mixture, 35 SBW, 35 DBW, 10 quartz sand, respectively. Two different firing modes were applied: (a) from room temperature till 760 °C and (b) abrupt heating at 760 °C. The obtained bulk density for M1 and M2 pellets is 1.2g/cm(3) and 0.9 g/cm(3), respectively. The analysis of microstructure with electron microscopy revealed a glassy phase matrix and an extended formation of both interconnected and isolated, closed pores. The results indicate that SBW and DBW boron-containing wastes combined with a clay mixture and quartz sand can be valorised for the manufacturing of lightweight aggregates. Copyright © 2010 Elsevier B.V. All rights reserved.
Printsevskaya, S S; Reznikova, M I; Korolev, A M; Lapa, G B; Olsufyeva, E N; Preobrazhenskaya, M N; Plattner, J J; Zhang, Y K
2013-04-01
The ability of boron-containing compounds to undergo a number of novel binding interactions with drug target functional groups has recently been described. In an extension of this work, we have incorporated a boron-containing scaffold, the benzoxaborole, into several glycopeptides antibiotics. The aim of this work is to exploit the inherent reactivity of boron to gain additional interactions with the bacterial cell wall components to improve binding affinity and to thereby overcome resistance. Three antibacterial glycopeptides (vancomycin, eremomycin and teicoplanin aglycone) have been selected for the construction of a series of 12 new benzoxaborole-glycopeptide conjugates. The hybrid antibiotics, in which the benzoxaborole and glycopeptide moieties were separated by a linker, exhibited excellent antibacterial activity against Gram-positive bacteria, including those with intermediate susceptibility to glycopeptides. Some analogs also demonstrated activity against vancomycin-resistant enterococci. Conjugation of antibiotics with benzoxaborole derivatives provides antibiotics with new and useful properties. Teicoplanin aglycone-benzoxaborole derivatives overcome resistance of Gram-positive bacteria to vancomycin.
Grosjean, Benoit; Pean, Clarisse; Siria, Alessandro; Bocquet, Lyderic; Vuilleumier, Rodolphe; Bocquet, Marie-Laure
2017-01-01
Recent nanofluidic measurements revealed strongly different surface charge measurements for boron-nitride and graphitic nanotubes when in contact with saline and alkaline water. 1,2 These observations contrast with the similar reactivity of a graphene layer and its boron nitride counterpart, using Density Functional Theory (DFT) framework, for intact and dissociative adsorption of gaseous water molecules. Here, we investigate, by DFT in implicit water, single and multiple adsorption of anionic hydroxide on single layers. A differential adsorption strength is found in vacuum for the first ionic adsorption on the two materials – chemisorbed on BN while physisorbed on graphene. The effect of implicit solvation reduces all adsorption values resulting in a favorable (non-favorable) adsorption on BN (graphene). We also calculate a pKa ≃ 6 for BN in water, in good agreement with experiments. Comparatively, the unfavorable results for graphene in water echoes the weaker surface charge measurements, but points to an alternative scenario. PMID:27809540
Boron-rich plasma by high power impulse magnetron sputtering of lanthanum hexaboride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oks, Efim M.; Anders, Andre
2012-10-15
Boron-rich plasmas have been obtained using a LaB{sub 6} target in a high power impulse sputtering (HiPIMS) system. The presence of {sup 10}B{sup +}, {sup 11}B{sup +}, Ar{sup 2+}, Ar{sup +}, La{sup 2+}, and La{sup +} and traces of La{sup 3+}, {sup 12}C{sup +}, {sup 14}N{sup +}, and {sup 16}O{sup +} have been detected using an integrated mass and energy spectrometer. Peak currents as low as 20 A were sufficient to obtain plasma dominated by {sup 11}B{sup +} from a 5 cm planar magnetron. The ion energy distribution function for boron exhibits an energetic tail extending over several 10 eV,more » while argon shows a pronounced peak at low energy (some eV). This is in agreement with models that consider sputtering (B, La) and gas supply (from background and 'recycling'). Strong voltage oscillations develop at high current, greatly affecting power dissipation and plasma properties.« less
Boron nitride converted carbon fiber
Rousseas, Michael; Mickelson, William; Zettl, Alexander K.
2016-04-05
This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Kinetic Investigation and Wear Properties of Fe2B Layers on AISI 12L14 Steel
NASA Astrophysics Data System (ADS)
Keddam, M.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Arenas-Flores, A.; Zuno-Silva, J.; Zamarripa-Zepeda, D.; Gomez-Vargas, O. A.
2018-03-01
In the current study, the powder-pack boriding was applied to the AISI 12L14 steel in the temperature range 1123 K to 1273 K for an exposure time between 2 and 8 hours. The produced boride layer was composed of Fe2B with a sawtooth morphology. A diffusion model based on the integral method was applied to investigate the growth kinetics of Fe2B layers. As a main result, the boron diffusion coefficients in Fe2B were estimated by considering the principle of mass balance at the (Fe2B/substrate) interface with an inclusion of boride incubation times. The value of activation energy for boron diffusion in AISI 12L14 steel was estimated as 165 kJ mol-1 and compared with other values of activation energy found in the literature. An experimental validation of the present model was made by using four different boriding conditions. Furthermore, the Rockwell-C adhesion test was employed to assess the cohesion of boride layers to the base metal. The scratch and pin-on-disc tests were also carried out to analyze the effect of boriding on wear behavior of AISI 12L14 steel.
Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül
2016-01-01
Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.
No evidence that boron influences tree species distributions in lowland tropical forests of Panama.
Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W
2017-04-01
It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.
Iguchi, Yoshiya; Michiue, Hiroyuki; Kitamatsu, Mizuki; Hayashi, Yuri; Takenaka, Fumiaki; Nishiki, Tei-Ichi; Matsui, Hideki
2015-07-01
Glioblastoma, a malignant brain tumor with poor disease outcomes, is managed in modern medicine by multimodality therapy. Boron neutron capture therapy (BNCT) is an encouraging treatment under clinical investigation. In malignant cells, BNCT consists of two major factors: neutron radiation and boron uptake. To increase boron uptake in cells, we created a mercapto-closo-undecahydrododecaborate ([B12HnSH](2-)2Na(+), BSH) fused with a short arginine peptide (1R, 2R, 3R) and checked cellular uptake in vitro and in vivo. In a mouse brain tumor model, only BSH with at least three arginine domains could penetrate cell membranes of glioma cells in vitro and in vivo. Furthermore, to monitor the pharmacokinetic properties of these agents in vivo, we fused BSH and BSH-3R with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA); DOTA is a metal chelating agent for labeling positron emission tomography (PET) probe with (64)Cu. We administered BSH-DOTA-(64)Cu and BSH-3R-DOTA-(64)Cu to the tumor model through a mouse tail vein and determined the drugs' pharmacokinetics by PET imaging. BSH-3R showed a high uptake in the tumor area on PET imaging. We concluded that BSH-3R is the ideal boron compound for clinical use during BNCT and that in developing this compound for clinical use, the BSH-3R PET probe is essential for pharmacokinetic imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electro-oxidation and characterization of nickel foam electrode for removing boron.
Kartikaningsih, Danis; Huang, Yao-Hui; Shih, Yu-Jen
2017-01-01
The electrocoagulation (EC) using metallic Ni foam as electrodes was studied for the removal of boron from solution. The electrolytic parameters were pH (4-12), current density (0.6-2.5 mA cm -2 ), and initial concentration of boron (10-100 mg L -1 ). Experimental results revealed that removal efficiency was maximized at pH 8-9, and decreased as the pH increased beyond that range. At particular onset potentials (0.5-0.8 V vs. Hg/HgO), the micro-granular nickel oxide that was created on the surface of the nickel metal substrate depended on pH, as determined by cyclic voltammetry. Most of the crystallites of the precipitates comprised a mixed phase of β-Ni(OH) 2 , a theophrastite phase, and NiOOH, as revealed by XRD and SEM analyses. A current density of 1.25 mA cm -2 was effective in the EC of boron, and increasing the concentration of boric acid from 10 to 100 mg L -1 did not greatly impair removal efficiency. A kinetic investigation revealed that the reaction followed a pseudo-second order rate model. The optimal conditions under which 99.2% of boron was removed from treated wastewater with 10 mg L -1 -B, leaving less than 0.1 mg L -1 -B in the electrolyte, were pH 8 and 1.25 mA cm -2 for 120 min. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tsin, Fabien; Thomere, Angélica; Bris, Arthur Le; Collin, Stéphane; Lincot, Daniel; Rousset, Jean
2016-05-18
Highly transparent and conductive materials are required for many industrial applications. One of the interesting features of ZnO is the possibility to dope it using different elements, hence improving its conductivity. Results concerning the zinc oxide thin films electrodeposited in a zinc perchlorate medium containing a boron precursor are presented in this study. The addition of boron to the electrolyte leads to significant effects on the morphology and crystalline structure as well as an evolution of the optical properties of the material. Varying the concentration of boric acid from 0 to 15 mM strongly improves the compactness of the deposit and increases the band gap from 3.33 to 3.45 eV. Investigations were also conducted to estimate and determine the influence of boric acid on the electrical properties of the ZnO layers. As a result, no doping effect effect by boron was demonstrated. However, the role of boric acid on the material quality has also been proven and discussed. Boric acid strongly contributes to the growth of high quality electrodeposited zinc oxide. The high doping level of the film can be attributed to the perchlorate ions introduced in the bath. Finally, a ZnO layer electrodeposited in a boron rich electrolyte was tested as front contact of a Cu(In, Ga)(S, Se)2 based solar cell. An efficiency of 12.5% was measured with a quite high fill factor (>70%) which confirms the high conductivity of the ZnO thin film.
Creep Strength Behavior of Boron Added P91 Steel and its Weld in the Temperature Range of 600-650°C
NASA Astrophysics Data System (ADS)
Swaminathan, J.; Das, C. R.; Baral, Jayashree; Phaniraj, C.; Ghosh, R. N.; Albert, S. K.; Bhaduri, A. K.
One of the promising ways for mitigation of Type IV cracking — a failure by cracking at the intercritical /fine grained heat affected zone, a life limiting problem in advanced 9-12 Cr ferritic steel weld like that of P91 is through modification of alloy composition by addition of boron. Addition of boron was observed to improve the microstructure at the weld zone and hence the creep strength. In the present work, boron (100 ppm with controlled nitrogen) added P91 steel after normalizing at 1050°C and 1150°C and tempered at 760°C were studied for the creep behavior in the base metal and welded condition in the temperature range of 600-650°C. Creep strength was characterized in terms of stress and temperature dependence of creep rate and rupture time. Weld creep life was reduced compared to the base metal with rupture occurring at the ICHAZ (Type IV crack). However at longer time (at lower stress levels) exposure creep crack moves from weld metal to HAZ (Type II crack). Rupture life was found to superior for the base and weld in the boron containing steel when higher normalizing temperature is used. Estimation of 105 h was attempted based on short term rupture data available and weld strength factors were calculated. Observed values are better for P91BH condition than the values for P91BLcondition as well as those available for P91 in open literature
Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.
Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I
2014-04-15
Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center-two-electron (2c-2e) σ bonds on the periphery and delocalized multicenter-two-electron (nc-2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron's electron deficiency and leads to fluxional behavior, which has been observed in B13(+) and B19(-). A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B(-), formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B(-)/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors' laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.
Development of neuraminidase detection using gold nanoparticles boron-doped diamond electrodes.
Wahyuni, Wulan T; Ivandini, Tribidasari A; Saepudin, Endang; Einaga, Yasuaki
2016-03-15
Gold nanoparticles-modified boron-doped diamond (AuNPs-BDD) electrodes, which were prepared with a self-assembly deposition of AuNPs at amine-terminated boron-doped diamond, were examined for voltammetric detection of neuraminidase (NA). The detection method was performed based on the difference of electrochemical responses of zanamivir at gold surface before and after the reaction with NA in phosphate buffer solution (PBS, pH 5.5). A linear calibration curve for zanamivir in 0.1 M PBS in the absence of NA was achieved in the concentration range of 1 × 10(-6) to 1 × 10(-5) M (R(2) = 0.99) with an estimated limit of detection (LOD) of 2.29 × 10(-6) M. Furthermore, using its reaction with 1.00 × 10(-5) M zanamivir, a linear calibration curve of NA can be obtained in the concentration range of 0-12 mU (R(2) = 0.99) with an estimated LOD of 0.12 mU. High reproducibility was shown with a relative standard deviation (RSD) of 1.14% (n = 30). These performances could be maintained when the detection was performed in mucin matrix. Comparison performed using gold-modified BDD (Au-BDD) electrodes suggested that the good performance of the detection method is due to the stability of the gold particles position at the BDD surface. Copyright © 2016 Elsevier Inc. All rights reserved.
Direct current sputtering of boron from boron/boron mixtures
Timberlake, J.R.; Manos, D.; Nartowitz, E.
1994-12-13
A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.
Recent developments with boron as a platform for novel drug design.
Leśnikowski, Zbigniew J
2016-06-01
After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.
Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.
Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiationmore » has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B–/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors’ laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.« less
Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.; ...
2017-08-01
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heber, Elisa M.; Hawthorne, M. Frederick; Kueffer, Peter J.
2014-11-11
Unilamellar liposomes formulated with an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH 3(CH 2)15-7,8-C 2B 9H 11] in the lipid bilayer, and encapsulating Na 3[1-(2’-B 10-H 9)-2-NH 3B 10H 8] were prepared by probe sonication and investigated in vivo. Microwave assisted digestion followed by inductively coupled plasma-optical emission spectroscopy was utilized to determine the biodistribution of boron in various tissues following either a single tail vein injection or two identical injections (separated by 24 hours) of the liposomal suspension in BALB/c mice bearing EMT6 mammary adenocarcinomas in their right flank. Double-injection protocols resulted in a boron content in themore » tumor exceeding 50 µg of boron per gram of tissue for 48 to 72 hours subsequent to the initial injection while tumor:blood boron ratios were more ideal from 54 hours (1.9:1) to 96 hours (5.7:1) subsequent to the initial injection. Tumor bearing mice were given a double-injection of liposomes containing the 10B-enriched analogs of the aforementioned agents and subjected to a 30 minute irradiation by thermal neutrons with a flux of 8.8 x 10 8 (±7%) neutrons/cm 2 s integrated over the energy range of 0.0 – 0.414 eV. Significant tumor response for a single BNCT treatment was demonstrated by growth curves versus a control group. Vastly diminished tumor growth was witnessed at 14 days (186% increase versus 1551% in controls) in mice that were given a second injection/radiation treatment 7 days after the first. Mice given a one hour neutron irradiation following the double-injection of liposomes had a similar response (169% increase at 14 days) suggesting that neutron fluence is the limiting factor towards BNCT efficacy in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Dux, R.; Mayer, M.; Neu, R.; Pütterich, T.; Bobkov, V.; Fuchs, J. C.; Eich, T.; Giannone, L.; Gruber, O.; Herrmann, A.; Horton, L. D.; Maggi, C. F.; Meister, H.; Müller, H. W.; Rohde, V.; Sips, A.; Stäbler, A.; Stober, J.; ASDEX Upgrade Team
2009-04-01
After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H-L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (≈10 MW m-2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved energy confinement, as well as in smaller ELMs.
Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation
NASA Technical Reports Server (NTRS)
Whitney, R. Roy (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin (Inventor)
2015-01-01
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.
12. "OBSERVATION POSTS, STRUCTURAL PLANS AND DETAILS." Specifications No. OC25572; ...
12. "OBSERVATION POSTS, STRUCTURAL PLANS AND DETAILS." Specifications No. OC2-55-72; Drawing No. 60-09-12; sheet 89 of 148; file no. 1321/40, Rev. A. Very faint stamp above note reads: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Chu, T. L.
1975-01-01
The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.
1. Photographic copy of engineering drawing showing structure of Test ...
1. Photographic copy of engineering drawing showing structure of Test Stand 'B' (4215/E-16), also known as the 'Short Snorter.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Structural Addition - Bldg. E-12, Edwards Test Station,' drawing no. E12/1-1, 8 August 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA
12. Credit BG. Typical view down one of the underground ...
12. Credit BG. Typical view down one of the underground tunnels connecting the Control and Recording Center with all the JPL Edwards Facility test stands. In addition to personnel traffic, the tunnel system carried electrical power cables, instrumentation and control circuits, and high pressure helium and nitrogen lines. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
Takahashi, Lauren; Takahashi, Keisuke
2017-03-27
An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.
Electron irradiation induced phase separation in a sodium borosilicate glass
NASA Astrophysics Data System (ADS)
Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.
2004-06-01
Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.
Adhesion, friction, and deformation of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Buckley, Donald H.; Alterovitz, Samuel A.; Pouch, John J.; Liu, David C.
1987-01-01
The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.
Adhesion, friction and deformation of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Alterovitz, S. A.; Pouch, J. J.; Liu, D. C.
1987-01-01
The tribological properties and mechanical strength of boron nitride films were investigated. The BN films were predominantly amorphous and nonstoichiometric and contained small amounts of oxides and carbides. It was found that the yield pressure at full plasticity, the critical load to fracture, and the shear strength of interfacial adhesive bonds (considered as adhesion) depended on the type of metallic substrate on which the BN was deposited. The harder the substrate, the greater the critical load and the adhesion. The yield pressures of the BN film were 12 GPa for the 440C stainless steel substrate, 4.1 GPa for the 304 stainless steel substrate, and 3.3 GPa for the titanium substrate.
Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation
Whitney, R Roy; Jordan, Kevin; Smith, Michael W
2015-03-24
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.
Efficient boron nitride nanotube formation via combined laser-gas flow levitation
Whitney, R. Roy; Jordan, Kevin; Smith, Michael
2014-03-18
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.
Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation
NASA Technical Reports Server (NTRS)
Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)
2014-01-01
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).
Direct current sputtering of boron from boron/coron mixtures
Timberlake, John R.; Manos, Dennis; Nartowitz, Ed
1994-01-01
A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.
Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E
2016-11-05
Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.
Atmospheric contribution to boron enrichment in aboveground wheat tissues.
Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick
2017-05-01
Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identification of a Novel System for Boron Transport: Atr1 Is a Main Boron Exporter in Yeast▿ †
Kaya, Alaattin; Karakaya, Huseyin C.; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Koc, Ahmet
2009-01-01
Boron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1Δ mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1Δ cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1Δ cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance. PMID:19414602
Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem
2012-04-01
Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. © 2011 Blackwell Publishing Ltd.
Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing.
Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D
2004-04-01
We characterize three new fluorescent probes that show both spectral shifts and intensity changes in the presence of aqueous cyanide, allowing for both excitation and fluorescence emission wavelength ratiometric and colorimetric sensing. The relatively high binding constants of the probes for cyanide enables a distinct colorimetric change to be visually observed with as little as 10 microM cyanide. The response of the new probes is based on the ability of the boronic acid group to interact with the CN(-) anion, changing from the neutral form of the boronic acid group R-B(OH)(2) to the anionic R-B(-)(OH)3 form, which is an electron-donating group. The presence of an electron-deficient quaternary heterocyclic nitrogen center and a strong electron-donating amino group in the 6 position on the quinolinium backbone provides for the spectral changes observed upon CN(-) complexation. We have determined the binding constants for the ortho-, meta-, and para-boronic acid probes to be 0.12, 0.17, and 0.14 microM(-3). In addition we have synthesized a control compound that does not contain the boronic acid moiety, allowing for structural comparisons and a rationale for the sensing mechanism to be made. Finally we show that the affinity for monosaccharides, such as glucose or fructose, is relatively low as compared to that for cyanide, enabling the potential detection of cyanide in physiologies up to lethal levels.
Epitaxial hexagonal boron nitride on Ir(111): A work function template
NASA Astrophysics Data System (ADS)
Schulz, Fabian; Drost, Robert; Hämäläinen, Sampsa K.; Demonchaux, Thomas; Seitsonen, Ari P.; Liljeroth, Peter
2014-06-01
Hexagonal boron nitride (h-BN) is a prominent member in the growing family of two-dimensional materials with potential applications ranging from being an atomically smooth support for other two-dimensional materials to templating growth of molecular layers. We have studied the structure of monolayer h-BN grown by chemical vapor deposition on Ir(111) by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments and state-of-the-art density functional theory (DFT) calculations. The lattice mismatch between the h-BN and Ir(111) surface results in the formation of a moiré superstructure with a periodicity of ˜29 Å and a corrugation of ˜0.4 Å. By measuring the field emission resonances above the h-BN layer, we find a modulation of the work function within the moiré unit cell of ˜0.5 eV. DFT simulations for a 13-on-12 h-BN/Ir(111) unit cell confirm our experimental findings and allow us to relate the change in the work function to the subtle changes in the interaction between boron and nitrogen atoms and the underlying substrate atoms within the moiré unit cell. Hexagonal boron nitride on Ir(111) combines weak topographic corrugation with a strong work function modulation over the moiré unit cell. This makes h-BN/Ir(111) a potential substrate for electronically modulated thin film and heterosandwich structures.
Heber, Elisa M; Hawthorne, M Frederick; Kueffer, Peter J; Garabalino, Marcela A; Thorp, Silvia I; Pozzi, Emiliano C C; Monti Hughes, Andrea; Maitz, Charles A; Jalisatgi, Satish S; Nigg, David W; Curotto, Paula; Trivillin, Verónica A; Schwint, Amanda E
2014-11-11
The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%.
Heber, Elisa M.; Hawthorne, M. Frederick; Kueffer, Peter J.; Garabalino, Marcela A.; Thorp, Silvia I.; Pozzi, Emiliano C. C.; Hughes, Andrea Monti; Maitz, Charles A.; Jalisatgi, Satish S.; Nigg, David W.; Curotto, Paula; Trivillin, Verónica A.; Schwint, Amanda E.
2014-01-01
The application of boron neutron capture therapy (BNCT) mediated by liposomes containing 10B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70–88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70–88%. PMID:25349432
Methods of producing continuous boron carbide fibers
Garnier, John E.; Griffith, George W.
2015-12-01
Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.
In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.
1999-06-06
Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We presentmore » results from an investigation of boron uptake in vivo by the synovium.« less
12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Chen, Ming; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao
2012-07-01
Using density-functional theory calculations, we investigated the adsorption of transition-metal (TM) atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) on carbon doped hexagonal boron nitride (BN) sheet and the corresponding cage (B12N12). With carbon substitution of nitrogen, Sc, V, Cr, and Mn atoms were energetically favorable to be dispersed on the BN nanostructures without clustering or the formation of TM dimers, due to the strong binding between TM atoms and substrate, which contains the half-filled levels above the valence bands maximum. The carbon doped BN nanostructures with dispersed Sc could store up to five and six H2, respectively, with the average binding energy of 0.3 ˜ 0.4 eV, indicating the possibility of fabricating hydrogen storage media with high capacity. We also demonstrated that the geometrical effect is important for the hydrogen storage, leading to a modulation of the charge distributions of d levels, which dominates the binding between H2 and TM atoms.
The Physiological Role of Boron on Health.
Khaliq, Haseeb; Juming, Zhong; Ke-Mei, Peng
2018-03-15
Boron is an essential mineral that plays an important role in several biological processes. Boron is required for growth of plants, animals, and humans. There are increasing evidences of this nutrient showing a variety of pleiotropic effects, ranging from anti-inflammatory and antioxidant effects to the modulation of different body systems. In the past few years, the trials showed disease-related polymorphisms of boron in different species, which has drawn attention of scientists to the significance of boron to health. Low boron profile has been related with poor immune function, increased risk of mortality, osteoporosis, and cognitive deterioration. High boron status revealed injury to cell and toxicity in different animals and humans. Some studies have shown some benefits of higher boron status, but findings have been generally mixed, which perhaps accentuates the fact that dietary intake will benefit only if supplemental amount is appropriate. The health benefits of boron are numerous in animals and humans; for instance, it affects the growth at safe intake. Central nervous system shows improvement and immune organs exhibit enhanced immunity with boron supplementation. Hepatic metabolism also shows positive changes in response to dietary boron intake. Furthermore, animals and human fed diets supplemented with boron reveal improved bone density and other benefits including embryonic development, wound healing, and cancer therapy. It has also been reported that boron affects the metabolism of several enzymes and minerals. In the background of these health benefits, low or high boron status is giving cause for concern. Additionally, researches are needed to further elucidate the mechanisms of boron effects, and determine the requirements in different species.
Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange
2014-11-21
Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, <12%, n=6), and satisfactory recoveries between 84.9% and 101.0% under optimal conditions. Real environmental samples collected from rivers, local lakes, rain and spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Band gap engineering of BC2N for nanoelectronic applications
NASA Astrophysics Data System (ADS)
Lim, Wei Hong; Hamzah, Afiq; Ahmadi, Mohammad Taghi; Ismail, Razali
2017-12-01
The BC2N as an example of boron-carbon-nitride (BCN), has the analogous structure as the graphene and boron nitride. It is predicted to have controllable electronic properties. Therefore, the analytical study on the engineer-able band gap of the BC2N is carried out based on the schematic structure of BC2N. The Nearest Neighbour Tight Binding (NNTB) model is employed with the dispersion relation and the density of state (DOS) as the main band gap analysing parameter. The results show that the hopping integrals having the significant effect on the band gap, band structure and DOS of BC2N nanowire (BC2NNW) need to be taken into consideration. The presented model indicates consistent trends with the published computational results around the Dirac points with the extracted band gap of 0.12 eV. Also, it is distinguished that wide energy gap of boron nitride (BN) is successfully narrowed by this carbon doped material which assures the application of BC2N on the nanoelectronics and optoelectronics in the near future.
Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.
2017-02-21
According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.
Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta
2016-03-01
Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.
Anode performance of boron-doped graphites prepared from shot and sponge cokes
NASA Astrophysics Data System (ADS)
Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao
The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.
Electron paramagnetic resonance of deep boron in silicon carbide
NASA Astrophysics Data System (ADS)
Baranov, P. G.; Mokhov, E. N.
1996-04-01
In this article we report the first EPR observation of deep boron centres in silicon carbide. A direct identification of the boron atom involved in the defect centre, considered as deep boron, has been established by the presence of a hyperfine interaction with 0268-1242/11/4/005/img1 and 0268-1242/11/4/005/img2 nuclei in isotope-enriched 6H-SiC:B crystals. Deep boron centres were shown from EPR spectra to have axial symmetry along the hexagonal axis. A correspondence between the EPR spectra and the luminescence, ODMR and DLTS spectra of deep boron centres has been indicated. The structural model for a deep boron centre as a boron - vacancy pair is presented and the evidence for bistable behaviour of deep boron centres is discussed.
Method of manufacture of atomically thin boron nitride
Zettl, Alexander K
2013-08-06
The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.
Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu
2018-06-01
An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12 mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.
Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags
NASA Astrophysics Data System (ADS)
Jakobsson, Lars Klemet; Tangstad, Merete
2018-04-01
Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.
Koç, Cengiz
2007-02-01
Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity. Even though Boron concentration of river water is under 0.5 ppm limit value, Boron element will store in basin soils, decrease in crop yields, and occur problematic soils in basin.
Boron exposure through drinking water during pregnancy and birth size.
Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie
2016-10-01
Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru
2015-04-01
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru
2015-01-01
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713
Fabrication of boron sputter targets
Makowiecki, Daniel M.; McKernan, Mark A.
1995-01-01
A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.
Structure prediction of boron-doped graphene by machine learning
NASA Astrophysics Data System (ADS)
M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji
2018-06-01
Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.
Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz
2015-10-01
Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagunova, I.A.
A characteristic feature of the products of mud-volcano activity in the Kerch-Taman region is their high boron content. Distribution of boron in waters of mud volcanoes is characterized by restriction of anomalously high concentrations of boron to mud volcanoes actively operating at the present time in general, and to the most active period of operation of the individual volcano; there is a direct correlation between boron and the hydrocarbonate ion (r/sub B//HCO/sub 3// = 0.5), and between boron and carbon dioxide from the mud-volcano gases (r/sub B//CO/sub 2// = 0.4). The correlation is lacking between boron and mineralization, and betweenmore » boron and chlorine, the correlation is close to inverse. A spatial connection between areas of development of mud volcanism and belts of boron mineralization has been established. Anomalously high boron concentrations in the products of mud volcanism in the Kerch-Taman region are part of the overall increased boron capacity of the Crimea and the Caucasus, which has been controlled by recent magmatic activity.« less
METHOD OF COATING SURFACES WITH BORON
Martin, G.R.
1949-10-11
A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.
Boron Dissolved and Particulate Atmospheric Inputs to a Forest Ecosystem (Northeastern France).
Roux, Philippe; Turpault, Marie-Pierre; Kirchen, Gil; Redon, Paul-Olivier; Lemarchand, Damien
2017-12-19
Boron concentrations and isotopic compositions of atmospheric dust and dissolved depositions were monitored over a two-year period (2012-2013) in the forest ecosystem of Montiers (Northeastern France). This time series allows the determination of the boron atmospheric inputs to this forest ecosystem and contributes to refine our understanding of the sources and processes that control the boron atmospheric cycle. Mean annual dust and dissolved boron atmospheric depositions are comparable in size (13 g·ha -1 ·yr -1 and 16 g·ha -1 ·yr -1 , respectively), which however show significant intra- and interannual variations. Boron isotopes in dust differ from dissolved inputs, with an annual mean value of +1 ‰ and +18 ‰ for, respectively. The notable high boron contents (190-390 μg·g -1 ) of the dust samples are interpreted as resulting from localized spreading of boron-rich fertilizers, thus indicating a significant local impact of regional agricultural activities. Boron isotopes in dissolved depositions show a clear seasonal trend. The absence of correlation with marine cyclic solutes contradicts a control of atmospheric boron by dissolution of seasalts. Instead, the boron data from this study are consistent with a Rayleigh-like evolution of the atmospheric gaseous boron reservoir with possible but limited anthropogenic and/or biogenic contributions.
Insights into the Mechanisms Underlying Boron Homeostasis in Plants
Yoshinari, Akira; Takano, Junpei
2017-01-01
Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed. PMID:29204148
Craig, Sandra
2011-01-01
Carbohydrates in various forms play a vital role in numerous critical biological processes. The detection of such saccharides can give insight into the progression of such diseases such as cancer. Boronic acids react with 1,2 and 1,3 diols of saccharides in non-aqueous or basic aqueous media. Herein, we describe the design, synthesis and evaluation of three bisboronic acid fluorescent probes, each having about ten linear steps in its synthesis. Among these compounds that were evaluated, 9b was shown to selectively label HepG2, liver carcinoma cell line within a concentration range of 0.5–10 μM in comparison to COS-7, a normal fibroblast cell line. PMID:22177855
Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide
2013-11-01
Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.
Senior, Lisa A.; Sloto, Ronald A.
2006-01-01
During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast to concentrations over 5,000 ?g/L in the Congo Road area. Although concentrations of fluoride up to 4 mg/L were reported for a few well-water samples collected throughout the Newark Basin, about 90 percent of the samples had concentrations of 0.5 mg/L or less. The USGS sampled 58 wells primarily in 5 areas in the Newark Basin, southeastern Pennsylvania, from February 2004 through April 2005 to identify other possible areas of elevated arsenic, boron, and fluoride and to characterize the geochemical environment associated with elevated concentrations of these constituents. Sampled wells included 12 monitor wells at an industrial facility near Congo Road, 45 private-supply wells in Berks, Montgomery, and Bucks Counties, and 1 private-supply well near Dillsburg, York County, an area where elevated fluoride in ground water had been reported in the adjacent Gettysburg Basin. Wells were sampled in transects from the diabase through the adjacent hornfels and into the unaltered shales of the Brunswick Group. Field measurements were made of pH, temperature, dissolved oxygen concentration, and specific conductance. Samples were analyzed in the laboratory for major ions, nutrients, total organic carbon, dissolved and total concentrations of selected trace elements, and boron isotopic composition. Generally, the ground water from the 46 private-supply wells had relatively neutral to alkaline pH (ranging from 6.1 to 9.1) and moderate concentrations of dissolved oxygen. Most water samples were of the calcium-bicarbonate type. Concentrations of arsenic up to 60 ?g/L, boron up to 3,950 ?g/L, and fluoride up to 0.70 mg/L were measured. Drinking-water standards or health advisories (for constituents that do not have standards established) were exceeded most frequently (about 20 percent of samples) for arsenic and boron and less frequently (6 percent or less of samples) for total iron, manganese, sulfate, nitrate, lead, molybdenum, and strontium. In water from 12 monitor
Development of magnetic resonance technology for noninvasive boron quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, K.M.
1990-11-01
Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.
Special features of the technology of boronizing steel in a calcium chloride melt
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.
1999-12-01
A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.
Fabrication of boron sputter targets
Makowiecki, D.M.; McKernan, M.A.
1995-02-28
A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.
Process of Making Boron-Fiber Reinforced Composite Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)
2002-01-01
The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.
Experimental Study on Application of Boron Mud Secondary Resource to Oxidized Pellets Production
NASA Astrophysics Data System (ADS)
Fu, Xiao-Jiao; Chu, Man-Sheng; Zhao, Jia-Qi; Chen, Shuang-Yin; Liu, Zheng-Gen; Wang, Si-Yuan
2017-07-01
In order to realize comprehensive and massive treatment of boron mud secondary resource, fundamental study on boron mud applied to oxidized pellets production as additive was carried out in the paper under laboratory conditions. The effects of boron mud on the performance of oxidized pellets were investigated systemically, and boron mud was combined with other boron-rich material innovatively. The results showed that, within certain limits, boron mud can improve properties of oxidized pellets. The bentonite content decreased to 0.3 % when adding 1.0 % boron mud additive and the pellets met blast furnace requirements. With the combination additive content 0.8 %, bentonite content can be further decreased to 0.2 %, and the pellets properties were better than base pellet. Therefore, it was an effective way to reduce environmental pollution and optimize blast furnace operation by developing boron mud secondary resource as pellets additive.
Boron removal in radioactive liquid waste by forward osmosis membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doo Seong Hwang; Hei Min Choi; Kune Woo Lee
2013-07-01
This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron.more » No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)« less
Ferromagnetism and semiconducting of boron nanowires
2012-01-01
More recently, motivated by extensively technical applications of carbon nanostructures, there is a growing interest in exploring novel non-carbon nanostructures. As the nearest neighbor of carbon in the periodic table, boron has exceptional properties of low volatility and high melting point and is stronger than steel, harder than corundum, and lighter than aluminum. Boron nanostructures thus are expected to have broad applications in various circumstances. In this contribution, we have performed a systematical study of the stability and electronic and magnetic properties of boron nanowires using the spin-polarized density functional calculations. Our calculations have revealed that there are six stable configurations of boron nanowires obtained by growing along different base vectors from the unit cell of the bulk α-rhombohedral boron (α-B) and β-rhombohedral boron (β-B). Well known, the boron bulk is usually metallic without magnetism. However, theoretical results about the magnetic and electronic properties showed that, whether for the α-B-based or the β-B-based nanowires, their magnetism is dependent on the growing direction. When the boron nanowires grow along the base vector [001], they exhibit ferromagnetism and have the magnetic moments of 1.98 and 2.62 μB, respectively, for the α-c [001] and β-c [001] directions. Electronically, when the boron nanowire grows along the α-c [001] direction, it shows semiconducting and has the direct bandgap of 0.19 eV. These results showed that boron nanowires possess the unique direction dependence of the magnetic and semiconducting behaviors, which are distinctly different from that of the bulk boron. Therefore, these theoretical findings would bring boron nanowires to have many promising applications that are novel for the boron bulk. PMID:23244063
NASA Technical Reports Server (NTRS)
Jordan, Kevin (Inventor); Smith, Michael W. (Inventor); Park, Cheol (Inventor)
2012-01-01
Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.
Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA
2012-06-06
Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.
Plasma boron and the effects of boron supplementation in males.
Green, N R; Ferrando, A A
1994-01-01
Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p < 0.01), lean body mass (p < 0.01), and one repetition maximum (RM) squat (p < 0.001) and one RM bench press (p < 0.01). The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all. PMID:7889885
Microwave sintering of boron carbide
Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.
1988-06-10
A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.
Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid
2012-07-01
Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.
Removal of boron (B) from waste liquors.
Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K
2006-01-01
This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.
Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis
Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet
2011-01-01
Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689
Jarzembska, Katarzyna N; Kamiński, Radosław; Durka, Krzysztof; Woźniak, Krzysztof
2018-05-10
This contribution is devoted to the first electron density studies of a luminescent oxyquinolinato boron complex in the solid state. ortho-Phenylenediboronic acid mixed with 8-hydroxyquinoline in dioxane forms high-quality single crystals via slow solvent evaporation, which allows successful high resolution data collection (sin θ/λ = 1.2 Å -1 ) and charge density distribution modeling. Particular attention has been paid to the boron-oxygen fragment connecting the two parts of the complex, and to the solvent species exhibiting anharmonic thermal motion. The experiment and theory compared rather well in terms of atomic charges and volumes, except for the boron centers. Boron atoms, as expected, constitute the most electron-deficient species in the complex molecule, whereas the neighboring oxygen and carbon atoms are the most significantly negatively charged ones. This part of the molecule appears to be very much involved in the charge transfer occurring between the acid fragment and oxyquinoline moiety leading to the observed fluorescence, as supported by the time-dependent density functional theory (TDDFT) results and the generated transition density maps. TDDFT calculations indicated that p-type atomic orbitals contributing to the HOMO-1, HOMO, and LUMO play the major role in the lowest energy transitions, and enabled further comparison with the charge density features, which is discussed in details. Furthermore, the results confirmed the known fact the Q ligand character is most important for the spectroscopic properties of this class of complexes.
Boron-based nanostructures: Synthesis, functionalization, and characterization
NASA Astrophysics Data System (ADS)
Bedasso, Eyrusalam Kifyalew
Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any contamination and with a uniform size distribution. Various reaction parameters such as temperature, reaction time, and sonication were altered to find the optimal reaction conditions. Once these conditions were determined, boron nanorods were produced then functionalized with amine-terminated polyethylene glycol.
Facile isolation of α-ribazole from vitamin B12 hydrolysates using boronate affinity chromatography.
Mattes, Theodoric A; Escalante-Semerena, Jorge C
2018-05-16
Alpha-ribazole (α-R) is a unique riboside found in the nucleotide loop of coenzyme B 12 (CoB 12 ). α-R is not an intermediate of the de novo biosynthetic pathway of coenzyme B 12 , but some bacteria of the phylum Firmicutes have evolved a two-protein system (transporter, kinase) that scavenges α-R from the environment and converts it to the pathway intermediate α-RP. Since α-R is not commercially available, one must either synthesize α-R, or isolate it from hydrolysates of vitamin B 12 (cyano-B 12 , CNB 12 ), so the function of the above-mentioned proteins can be studied. Here we report a facile protocol for the isolation of α-R from CNB 12 hydrolysates. CNB 12 dissolved in NaOH (5 M) was heated to 85 °C for 75 min, then cooled to 4 °C for 30 min. The solution was neutralized with HCl (5 M), and the hydrolysate was diluted with an equal volume of ammonium acetate (0.3 M, pH 8.8). Alkaline phosphatase was added and the mixture was incubated at 37 °C for 16 h. After incubation, the sample was loaded onto a boronate affinity resin column, washed with ammonium sulfate (0.3 M, pH 8.8), water (to remove residual corrinoids) and finally with formic acid (0.1 M) to release (α-R). Formic acid was removed by lyophilization, and the final yield of α-R was 85% from the theoretically recoverable amount. Methods for quantifying the concentration of α-R are reported. Copyright © 2018. Published by Elsevier B.V.
Method for preparing boron-carbide articles
Benton, S.T.; Masters, D.R.
1975-10-21
The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.
Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Durmazuçar, Hasan H.; Gündüz, Güngör
2000-12-01
Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.
Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing
2013-01-24
The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.
Boron nitride - Composition, optical properties, and mechanical behavior
NASA Technical Reports Server (NTRS)
Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.
1987-01-01
A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.
Boron nitride: Composition, optical properties and mechanical behavior
NASA Technical Reports Server (NTRS)
Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.
1987-01-01
A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.
NASA Technical Reports Server (NTRS)
Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)
2003-01-01
An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Bandana; Solanki, Chetan Singh
Formation of boron skin is an unavoidable phenomenon in p-type emitter formation with boron dopant source. The boron skin thickness is generally less than 100 nm and difficult to remove by chemical and physical means. Low temperature oxidation (LTO) used in this work is useful in removing boron skin thickness up to 30 nm and improves the emitter performance. The effective minority carrier lifetime gets improved by more than 30% after using LTO and leakage current of the emitter gets lowered by 100 times thereby showing the importance of low temperature oxidation in boron spin on dopant diffused emitters.
BN Bonded BN fiber article and method of manufacture
Hamilton, Robert S.
1981-08-18
A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.
Boron hydride polymer coated substrates
Pearson, R.K.; Bystroff, R.I.; Miller, D.E.
1986-08-27
A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.
Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor
NASA Technical Reports Server (NTRS)
Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)
2001-01-01
A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.
Boron hydride polymer coated substrates
Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.
1987-01-01
A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.
Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor
NASA Technical Reports Server (NTRS)
Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)
2000-01-01
A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.
Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.
Blevins, D G; Lukaszewski, K M
1994-01-01
Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877
Thermal neutron shield and method of manufacture
Metzger, Bert Clayton; Brindza, Paul Daniel
2014-03-04
A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.
Synthesis, salvage, and catabolism of uridine nucleotides in boron-deficient squash roots.
Lovatt, C J; Albert, L S; Tremblay, G C
1981-12-01
Previous work has provided evidence that plants may require boron to maintain adequate levels of pyrimidine nucleotides, suggesting that the state of boron deficiency may actually be one of pyrimidine starvation. Since the availability of pyrimidine nucleotides is influenced by their rates of synthesis, salvage, and catabolism, we compared these activities in the terminal 3 centimeters of roots excised from boron-deficient and -sufficient squash plants (Cucurbita pepo L.). Transferring 5-day-old squash plants to a boron-deficient nutrient solution resulted in cessation of root elongation within 18 hours. However, withholding boron for up to 30 hours did not result in either impaired de novo pyrimidine biosynthesis or a change in the sensitivity of the de novo pathway to regulation by end product inhibition. Boron deprivation had no significant effect on pyrimidine salvage or catabolism. These results provide evidence that boron-deficient plants are not starved for uridine nucleotides collectively. Whether a particular pyrimidine nucleotide or derivative is limiting during boron deprivation remains to be examined.
Asymmetric homologation of boronic esters bearing azido and silyloxy substituents.
Singh, R P; Matteson, D S
2000-10-06
In the asymmetric homologation of boronic esters with a (dihalomethyl)lithium, substituents that can bind metal cations tend to interfere. Accordingly, we undertook the introduction of weakly basic oxygen and nitrogen substituents into boronic esters in order to maximize the efficiency of multistep syntheses utilizing this chemistry. Silyloxy boronic esters cannot be made efficiently by direct substitution, but a (hydroxymethyl)boronic ester has been silylated in the usual manner. Conversion of alpha-halo boronic esters to alpha-azido boronic esters has been carried out with sodium azide and a tetrabutylammonium salt as phase-transfer catalyst in a two-phase system with water and either nitromethane or ethyl acetate. These are safer solvents than the previously used dichloromethane, which can form an explosive byproduct with azide ion. Boronic esters containing silyloxy or alkoxy and azido substituents have been shown to react efficiently with (dihalomethyl)lithiums, resulting in efficient asymmetric insertion of the halomethyl group into the carbon-boron bond.
Boron chemicals in diagnosis and therapeutics
Das, Bhaskar C; Thapa, Pritam; Karki, Radha; Schinke, Caroline; Das, Sasmita; Kambhampati, Suman; Banerjee, Sushanta K; Van Veldhuizen, Peter; Verma, Amit; Weiss, Louis M; Evans, Todd
2013-01-01
Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade®), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin’s lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans. PMID:23617429
X-ray photoemission spectroscopy of nonmetallic materials: Electronic structures of boron and BxOy
NASA Astrophysics Data System (ADS)
Ong, C. W.; Huang, H.; Zheng, B.; Kwok, R. W. M.; Hui, Y. Y.; Lau, W. M.
2004-04-01
Although an increasing volume of x-ray photoemission spectroscopic (XPS) data has been accumulated on boron and boron-rich compounds because of their unusual properties, including a unique three-center, two-electron bonding configuration, their common nonmetallic nature has been overlooked. Typically, the measured energy-state data are not clarified by surface Fermi level positions of these nonmetallic samples, which compromises the scientific contents of the data. In the present study, we revisited the XPS studies of sputter-cleaned β-rhombohedral boron (βr-B), the oxidized surface of βr-B, B6O pellet, and polished B2O3, to illustrate the impact and resolution of this scientific issue. These samples were chosen because βr-B is the most thermodynamically stable polytype of pure boron, B2O3 is its fully oxidized form, and B6O is the best known superhard family member of boron-rich compounds. From our XPS measurements, including those from a sputter-cleaned gold as a metal reference, we deduced that our βr-B had a surface Fermi level located at 0.7±0.1 eV from its valence-band maximum (VBM) (referred as EFL) and a binding energy for its B 1s core level at 187.2 eV from VBM (Eb,VBM). The latter attribute, unlike typical XPS binding energy data that are referenced to a sample-dependent Fermi level (Eb,FL), is immune from any uncertainties and variations arising from sample doping and surface charging. For bulk B2O3, we found an Eb,VBM for its B 1s core level at 190.5 eV and an Eb,FL at 193.6 eV. For our βr-B subjected to a surface oxidation treatment, an overlayer structure of ˜1.2 nm B2O3/˜2 nm B2O/B was found. By comparing the data from this sample and those from βr-B and bulk B2O3, we infer that the oxide overlayer carried some negative fixed charge and this induced on the semiconducting βr-B sample an upward surface band bending of ˜0.6 eV. As for our B6O sample, we found an EFL of ˜1.7 eV and two different chemical states having Eb,VBM of 185.4 and 187.2 eV, with the former belonging to boron with no oxygen neighbor and the latter to boron with an oxygen neighbor. The methodology in this work is universally applicable to all nonmetallic samples.
Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, V., E-mail: V.Mohammadi@tudelft.nl; Nihtianov, S.
The lateral gas phase diffusion length of boron atoms, L{sub B}, along silicon and boron surfaces during chemical vapor deposition (CVD) using diborane (B{sub 2}H{sub 6}) is reported. The value of L{sub B} is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and confirmed analytically in the boron deposition temperature range from 700 °C down to 400 °C. For this temperature range the local loading effect of the boron deposition is investigated on the micro scale. A L{sub B} = 2.2 mm was determined for boron deposition at 700 °C, while a L{sub B}more » of less than 1 mm was observed at temperatures lower than 500 °C.« less
Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.
Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro
2015-12-01
The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.
The versatility of boron in biological target engagement
NASA Astrophysics Data System (ADS)
Diaz, Diego B.; Yudin, Andrei K.
2017-08-01
Boron-containing molecules have been extensively used for the purposes of chemical sensing, biological probe development and drug discovery. Due to boron's empty p orbital, it can coordinate to heteroatoms such as oxygen and nitrogen. This reversible covalent mode of interaction has led to the use of boron as bait for nucleophilic residues in disease-associated proteins, culminating in the approval of new therapeutics that work by covalent mechanisms. Our analysis of a wide range of covalent inhibitors with electrophilic groups suggests that boron is a unique electrophile in its chameleonic ability to engage protein targets. Here we review boron's interactions with a range of protein side-chain residues and reveal that boron's properties are nuanced and arise from its uncommon coordination preferences. These mechanistic and structural insights should serve as a guide for the development of selective boron-based bioactive molecules.
Methylboronic acid fertilization alleviates boron deficiency symptoms in Arabidopsis thaliana.
Duran, Catherine; Arce-Johnson, Patricio; Aquea, Felipe
2018-07-01
Our results showed that methylboronic acid is capable of alleviating boron deficiency, enhancing plant growth, and is less toxic than boric acid at higher concentrations. Boron is an essential plant micronutrient and its deficiency occurs in several regions globally, resulting in impaired plant growth. Boron fertilization is a common agricultural practice, but the action range of boron is narrow, sharply transitioning from deficiency to toxicity. Boric acid (BA) is the most common chemical form used in agriculture. In this work, we describe that methylboronic acid (MBA) is capable of alleviating boron deficiency in Arabidopsis. MBA is a boronic acid, but does not naturally occur in soils, necessitating synthesis. Other boronic acids have been described as boron competitors in plants, inhibiting auxin biosynthesis and root development. MBA is more water-soluble than BA and delivers the same amount of boron per molecule. We observed that Arabidopsis seedlings grown in the presence of MBA presented higher numbers of lateral roots and greater main root length compared to plants grown in BA. In addition, root hair length and leaf surface area were increased using MBA as a boron fertilizer. Finally, MBA was less toxic than BA at high concentrations, producing a slight reduction in the main root length but no decrease in total chlorophyll. Our results open a new opportunity to explore the use of a synthetic form of boron in agriculture, providing a tool for future research for plant nutrition.
Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; ...
2016-11-16
Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Cheng; Zhang, Pengfei; Dai, Sheng
Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less
Crystalline boron nitride aerogels
Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta
2017-04-04
This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.
Process for making boron nitride using sodium cyanide and boron
Bamberger, Carlos E.
1990-02-06
This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.
Process for making boron nitride using sodium cyanide and boron
Bamberger, Carlos E.
1990-01-01
This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.
Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth.
Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling
2016-01-01
Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.
Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth
Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling
2016-01-01
Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca2+]c and induce the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth. PMID:26955377
Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study
NASA Astrophysics Data System (ADS)
Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk
2014-12-01
Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmeide, Matthias; Kondratenko, Serguei
2011-01-07
Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less
Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen
2016-11-01
Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.
Biological effects of tolerable level chronic boron intake on transcription factors.
Orenay Boyacioglu, Seda; Korkmaz, Mehmet; Kahraman, Erkan; Yildirim, Hatice; Bora, Selin; Ataman, Osman Yavuz
2017-01-01
The mechanism of boron effect on human transcription and translation has not been fully understood. In the current study it was aimed to reveal the role of boron on the expression of certain transcription factors that play key roles in many cellular pathways on human subjects chronically exposed to low amounts of boron. The boron concentrations in drinking water samples were 1.57±0.06mg/l for boron group while the corresponding value for the control group was 0.016±0.002mg/l. RNA isolation was performed using PAX gene RNA kit on the blood samples from the subjects. The RNA was then reverse transcribed into cDNA and analyzed using the Human Transcription Factors RT 2 Profiler™ PCR Arrays. While the boron amount in urine was detected as 3.56±1.47mg/day in the boron group, it was 0.72±0.30mg/day in the control group. Daily boron intake of the boron and control groups were calculated to be 6.98±3.39 and 1.18±0.41mg/day, respectively. The expression levels of the transcription factor genes were compared between the boron and control groups and no statistically significant difference was detected (P>0.05). The data suggest that boron intake at 6.98±3.39mg/day, which is the dose at which beneficial effects might be seen, does not result in toxicity at molecular level since the expression levels of transcription factors are not changed. Although boron intake over this level will seem to increase RNA synthesis, further examination of the topic is needed using new molecular epidemiological data. Copyright © 2016 Elsevier GmbH. All rights reserved.
Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.
Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H
2013-04-01
An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.
Neal, Colin; Williams, Richard J; Bowes, Michael J; Harrass, Michael C; Neal, Margaret; Rowland, Philip; Wickham, Heather; Thacker, Sarah; Harman, Sarah; Vincent, Colin; Jarvie, Helen P
2010-02-15
The changing patterns of riverine boron concentration are examined for the Thames catchment in southern/southeastern England using data from 1997 to 2007. Boron concentrations are related to an independent marker for sewage effluent, sodium. The results show that boron concentrations in the main river channels have declined with time especially under baseflow conditions when sewage effluent dilution potential is at its lowest. While boron concentrations have reduced, especially under low-flow conditions, this does not fully translate to a corresponding reduction in boron flux and it seems that the "within-catchment" supplies of boron to the river are contaminated by urban sources. The estimated boron reduction in the effluent input to the river based on the changes in river chemistry is typically around 60% and this figure matches with an initial survey of more limited data for the industrial north of England. Data for effluent concentrations at eight sewage treatment works within the Kennet also indicate substantial reductions in boron concentrations: 80% reduction occurred between 2001 and 2008. For the more contaminated rivers there are issues of localised rather than catchment-wide sources and uncertainties over the extent and nature of water/boron stores. Atmospheric sources average around 32 to 61% for the cleaner and 4 to 14% for the more polluted parts. The substantial decreases in the boron concentrations correspond extremely well with the timing and extent of European wide trends for reductions in the industrial and domestic usage of boron-bearing compounds. It clearly indicates that such reductions have translated into lower average and peak concentrations of boron in the river although the full extent of these reductions has probably not yet occurred due to localised stores that are still to deplete.
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2018-01-01
Boron rich layer (BRL) formed beneath the borosilicate glass layer during p-type emitter formation is an undesirable phenomenon. It influences different cell parameters and can degrade the device performance. In this work, the device degradation study is done for different BRL thicknesses produced with different concentrations of the boric acid dopant source. The bulk carrier lifetime reduces to more than 75% and emitter saturation current density becomes more than 10-12 mA cm-2 for 60 nm of BRL thickness. The observed J sc and V oc values become zero for BRL thicknesses higher than 40 nm as seen in this work and the device properties could not be enhanced. So, higher thicknesses of BRL should be avoided.
Maeda, Dean Y.; Peck, Angela M.; Schuler, Aaron D.; Quinn, Mark T.; Kirpotina, Liliya N.; Wicomb, Winston N.; Auten, Richard L.; Gundla, Rambabu; Zebala, John A.
2015-01-01
Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation. PMID:25933594
Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar
2007-06-01
In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.
SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J; Yoon, D; Shin, H
Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show thatmore » the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less
Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.
2007-01-01
Concentrations of boron greater than the U.S. Environmental Protection Agency (USEPA) 900 ?g/L removal action level (RAL) standard were detected in water sampled by the USEPA in 2004 from three domestic wells near Beverly Shores, Indiana. The RAL regulates only human-affected concentrations of a constituent. A lack of well logs and screened depth information precluded identification of whether water from sampled wells, and their boron sources, were from human-affected or natural sources in the surficial aquifer, or associated with a previously defined natural, confined aquifer source of boron from the subtill or basal sand aquifers. A geochemically-based classification of the source of boron in ground water could potentially determine the similarity of boron to known sources or mixtures between known sources, or classify whether the relative age of the ground water predated the potential sources of contamination. The U.S. Geological Survey (USGS), in cooperation with the USEPA, investigated the use of a geochemical method that applied boron stable isotopes, and concentrations of boron, tritium, and other constituents to distinguish between natural and human-affected sources of boron in ground water and thereby determine if the RAL was applicable to the situation. Boron stable-isotope ratios and concentrations of boron in 17 ground-water samples and tritium concentrations in 9 ground-water samples collected in 2004 were used to identify geochemical differences between potential sources of boron in ground water near Beverly Shores, Indiana. Boron and d11B analyses for this investigation were made on unacidified samples to assure consistency of the result with unacidified analyses of d11B values from other investigations. Potential sources of boron included surficial-aquifer water affected by coal-combustion products (CCP) or domestic-wastewater, upward discharge of ground water from confined aquifers, and unaffected water from the surficial aquifer that was distant from human-affected boron sources. Boron concentrations in potential ground-water sources of boron were largest (15,700 to 24,400 ?g/L) in samples of CCP-affected surficial aquifer water from four wells at a CCP landfill and smallest (27 to 63 ?g/L) in three wells in the surficial aquifer that were distant from human-affected boron sources. Boron concentrations in water from the basal sand aquifer ranged from 656 ?g/L to 1,800 ?g/L. Boron concentrations in water from three domestic-wastewater-affected surficial aquifer wells ranged from 84 to 387 ?g/L. Among the representative ground-water samples, boron concentrations from all four samples of CCP-affected surficial aquifer water and four of five samples of water from the basal sand aquifer had concentrations greater than the RAL. A comparison of boron concentrations in acid-preserved and unacidified samples indicated that boron concentrations reported for this investigation may be from about 11 to 16 percent less than would be reported in a standard analysis of an acidified sample. The stable isotope boron-11 was most enriched in comparison to boron-10 in ground water from a confined aquifer, the basal sand aquifer (d11B, 24.6 to 34.0 per mil, five samples); it was most depleted in CCP-affected water from the surficial aquifer (d11B, 0.1 to 6.6 per mil, four samples). Domestic-wastewater-affected water from the surficial aquifer (d11B, 8.7 to 11.7 per mil, four samples) was enriched in boron-11, in comparison to individual samples of a borax detergent additive and a detergent with perborate bleach; it was intermediate in composition between basal sand aquifer water and CCP-affected water from the surficial aquifer. The similarity between a ground-water sample from the surficial aquifer and a hypothetical mixture of unaffected surficial aquifer and basal sand aquifer waters indicates the potential for long-term upward discharge of ground water into the surficial aquifer from one or more confined aquifers. Est
The Effect of Boronizing on Metallic Alloys for Automotive Applications
NASA Astrophysics Data System (ADS)
Petrova, Roumiana S.; Suwattananont, Naruemon; Samardzic, Veljko
2008-06-01
In this study the wear resistance, corrosion resistance, and oxidation resistance of boronized metallic alloys were investigated. Thermochemical treatment was performed by powder pack boronizing process at temperature 850-950 °C for 4 h. Saw-tooth morphology and smooth interface microstructures were observed with an optical microscope; microhardness was measured across the coating depth. The phases present in the boron coatings depend on the substrate material. High-temperature oxidation resistance was investigated and it was found that boron coating on ferrous alloys can resist temperatures up to 800 °C. The corrosion resistance of the boronized samples was improved and the corrosion rate was calculated for boronized and plain specimens. Wear testing was conducted by following the procedures of ASTM G99, ASTM D2526, and ASTM D4060. The obtained experimental results revealed that boronizing significantly improves the wear-resistance, corrosion-resistance, and oxidation resistance of metallic alloys.
Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts
NASA Astrophysics Data System (ADS)
Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming
2017-12-01
A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.
Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk
2016-05-11
Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.
Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.
Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke
2014-06-24
The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.
Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies
NASA Astrophysics Data System (ADS)
Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.
2018-05-01
Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.
Türker, Onur Can; Baran, Talat
2018-01-28
The metalloid boron (B) and its compounds widely exist in the environment, and boron can have hazardous effects on plants, animals, and human beings when it is found in high concentrations in water bodies. It is difficult and costly to remove B with conventional treatment methods from drinking water. Therefore, alternative and cost-effective treatment techniques are necessary. In this study, for the first time, a novel and environmentally friendly method based on the phytoremediation ability of chitosan and duckweed (Lemna gibba L.) combination was evaluated for B removal from drinking water. Our results from batch adsorption experiment indicated that the highest B uptake capacity of chitosan bead was found as 3.18 mg/g, and we determined the optimal B sorption occurs at pH value of 7. The Langmuir isotherm and pseudo-second-order kinetic model better fitted the equilibrium obtained for B removal. B in drinking water could be reduced to less than 2.4 mg L -1 when 0.05 g of plant-based chitosan beads and 12 L. gibba fronds were used in the 4-day treatment period.
Lee, Jia-Cheng; Chuang, Keh-Shih; Chen, Yi-Wei; Hsu, Fang-Yuh; Chou, Fong-In; Yen, Sang-Hue; Wu, Yuan-Hung
2017-01-01
Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting.
Lee, Jia-Cheng; Chuang, Keh-Shih; Chen, Yi-Wei; Hsu, Fang-Yuh; Chou, Fong-In; Yen, Sang-Hue
2017-01-01
Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting. PMID:28662135
NASA Technical Reports Server (NTRS)
Pless, W. M.; Lewis, W. H.
1971-01-01
A description is given of the boron/epoxy and graphite/epoxy nondestructive test standards which were fabricated, tested and delivered to the National Aeronautics and Space Administration. Detailed design drawings of the standards are included to show the general structures and the types and location of simulated defects built into the panels. The panels were laminates with plies laid up in the 0 deg, + or - 45 deg, and 90 deg orientations and containing either titanium substrates or interlayered titanium perforated shims. Panel thickness was incrementally stepped from 2.36 mm (0.093 in.) to 12.7 mm (0.500 in.) for the graphite/epoxy standards, and from 2.36 mm (0.093 in.) to 6.35 mm (0.25 in.) for the boron/epoxy standards except for the panels with interlayered shims which were 2.9 mm (0.113 in.) maximum thickness. The panel internal conditions included defect free regions, resin variations, density/porosity variations, cure variations, delaminations/disbonds at substrate bondlines and between layers, inclusions, and interlayered shims. Ultrasonic pulse echo C-scan and low-kilovoltage X-ray techniques were used to evaluate and verify the internal conditions of the panels.
New Boron Analogues of Pyrophosphates and Deoxynucleoside Boranophosphates
Vyakaranam, Kamesh; Rana, Geeta; Spielvogel, Bernard F.
2001-01-01
Tetraethyldicyanoborane pyrophosphate (2) and 3'-(diethylphosphite-cyanoborano)-5'-dimethoxytrityl.N4-benzoyl-deoxycytidine (3) have been synthesized in 70% and 76% yields, respectively. The compatibility of the substituted boranophosphates with common protecting groups is hereby demonstrated. Boron containing biologically active compounds, such as nucleosides and nucleotides 1-6 and amino acids 7-9 are important due to their potential therapeutic activity, research and diagnostic applications. Many boron containing compounds have shown promising activity as anticancer, 10. 11. 12 antiinflammatory,13 and antiosteoporotic 13agents. Oligonucleotdes in which a non-bridging oxygen atom is replaced by a borane(BH3) group are a very important class of modified nucleic acids. 1. 3. 14-16 The BH3 group is isoelectronic with oxygen in natural oligonucleotides and isoelectronic and isostructural with the oligonucleotide methyl phosphonates, which are nuclease resistant. On the other hand, the α-borano triphosphates are good substrates for DNA polymerases and incorporation of boranophosphates into DNA causes an increase in the resistance to exo- and endonucleases 2. 17a as compared to non-modified DNA. There are also notable applications of the α-borano triphosphates in PCR sequencing 17a and nucleic acid detection 17b. PMID:18475988
Boron- and salt-tolerant trees and shrubs for northern Nevada
Heidi Kratsch
2012-01-01
Boron is a mineral that, in small quantities, is essential for plant growth and development , but becomes toxic at levels above 0.5 to 1 part per million (ppm) in the soil. Excess boron may be naturally present in the soil, and it can accumulate by irrigating with water high in boron. Boron occurs naturally in arid soils originating from geologically young deposits. It...
Characterization of boron carbide with an electron microprobe
NASA Technical Reports Server (NTRS)
Matteudi, G.; Ruste, J.
1983-01-01
Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.
Muna, Grace W.; Swope, Vernon M.; Swain, Greg M.; Porter, Marc D.
2011-01-01
This paper reports on preliminary tests of the performance of boron-doped diamond powder (BDDP) as a stationary phase in electrochemically modulated liquid chromatography (EMLC). EMLC manipulates retention through changes in the potential applied (Eappl) to a conductive packing. Porous graphitic carbon (PGC) has routinely been utilized as a material in EMLC separations. Herein the utility of BDDP as a stationary phase in EMLC was investigated and its stability, both compositionally and microstructurally, relative to PGC was compared. The results show that BDDP is stable over a wide range of Eappl values (i.e., −1.2 to +1.2 V vs. Ag/AgCl, sat’d NaCl). The data also reveal that electrostatics play a key role in the adsorption of the aromatic sulfonates on the BDDP stationary phase, and that these analytes are more weakly retained in comparison to the PGC support. The potential for this methodology to provide a means to advance the understanding of molecular adsorption and retention mechanisms on carbonaceous materials is briefly discussed. PMID:18922535
Magnetic Resonance Characterization of Defects in Icosahedral and Cubic Boron Arsenide Bulk Crystals
NASA Astrophysics Data System (ADS)
Glaser, E. R.; Freitas, J. A., Jr.; Cress, C. D.; Perkins, F. K.; Prokes, S. M.; Ruppalt, L. B.; Culbertson, J. C.; Whiteley, C.; Edgar, J. H.; Tian, F.; Ren, Z.; Kim, J.; Shi, L.; Naval Research Lab Team; Kansas State U. Team; U. Houston Team; U. Texas Team
Low-temperature electron spin resonance (ESR) at 9.5 GHz and optically-detected magnetic resonance (ODMR) at 24 GHz were employed to investigate point defects in icosahedral and cubic Boron Arsenide bulk crystals. These semiconductors are of interest for use in high radiation and/or high temperature environments. ESR of the (001) B12As2 (Eg = 3.47 eV) mm-size platelets revealed two distinct features of unknown origin. The first signal is characterized by Zeeman splitting g-values of g|| = 2.017, g⊥ = 2.0183 while the second with g|| = 2.0182, g⊥ = 1.9997. Most notably, the second signal was also observed from ODMR on the broad 2.4 eV ``yellow/green'' photoluminescence band previously reported for these crystals and suggests its direct involvement in this likely defect-related radiative recombination process. Preliminary ESR obtained for the 100-300 micron-size cubic BAs crystals revealed a signal with g-value of 2.018 (very similar to that found for the B12As2 crystals) and broad FWHM value of 182 G. Possible origins of these defects will be discussed.
Chemical disposition of boron in animals and humans.
Moseman, R F
1994-01-01
Elemental boron was isolated in 1808. It typically occurs in nature as borates hydrated with varying amounts of water. Important compounds are boric acid and borax. Boron compounds are also used in the production of metals, enamels, and glasses. In trace amounts, boron is essential for the growth of many plants, and is found in animal and human tissues at low concentrations. Poisoning in humans has been reported as the result of accidental ingestion or use of large amounts in the treatment of burns. Boron as boric acid is fairly rapidly absorbed and excreted from the body via urine. The half-life of boric acid in humans is on the order of 1 day. Boron does not appear to accumulate in soft tissues of animals, but does accumulate in bone. Normal levels of boron in soft tissues, urine, and blood generally range from less than 0.05 ppm to no more than 10 ppm. In poisoning incidents, the amount of boric acid in brain and liver tissue has been reported to be as high as 2000 ppm. Recent studies at the National Institute of Environmental Health Sciences have indicated that boron may contribute to reduced fertility in male rodents fed 9000 ppm of boric acid in feed. Within a few days, boron levels in blood and most soft tissues quickly reached a plateau of about 15 ppm. Boron in bone did not appear to plateau, reaching 47 ppm after 7 days on the diet. Cessation of exposure to dietary boron resulted in a rapid drop in bone boron.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889870
Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.
Moghaddasi, Leyla; Bezak, Eva
2018-03-01
Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.
Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women
Mahabir, S.; Spitz, M. R.; Barrera, S. L.; Dong, Y. Q.; Eastham, C.; Forman, M. R.
2012-01-01
Hormone replacement therapy (HRT) may reduce lung cancer risk. Dietary boron may have actions similar to those of HRT; however, no previous study has reported the associations between dietary boron intake and lung cancer risk or the joint effects of boron intake and HRT use on lung cancer risk. The authors examined the associations between boron intake and the joint effects of boron intake and HRT on lung cancer risk in women. In an ongoing case-control study in Houston, Texas (July 1995 through April 2005, end date for this analysis), 763 women were diagnosed with lung cancer, and 838 were matched healthy controls with data on both diet and HRT. Multiple logistic regression analyses were conducted to assess the associations between dietary boron and HRT with lung cancer risk. After adjustment for potential confounders, the odds ratios for lung cancer with decreasing quartiles of dietary boron intake were 1.0, 1.39 (95% confidence interval (CI): 1.02, 1.90), 1.64 (95% CI: 1.20, 2.24), and 1.95 (95% CI: 1.42, 2.68) mg/day, respectively, for all women (ptrend < 0.0001). In joint-effects analyses, compared with women with high dietary boron intake who used HRT, the odds ratio for lung cancer for low dietary boron intake and no HRT use was 2.07 (95% CI: 1.53, 2.81). Boron intake was inversely associated with lung cancer in women, whereas women who consumed low boron and did not use HRT were at substantial increased odds. PMID:18343880
USDA-ARS?s Scientific Manuscript database
Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...
NASA Astrophysics Data System (ADS)
Ao, Wen; Wang, Yang; Wu, Shixi
2017-07-01
Study on the boron-based primary combustion products can bridge the gap between primary combustion and secondary combustion in solid rocket ramjets. To clarify the initial state and ignition characteristics of boron particles in the after-burning chamber of solid rocket ramjets, the elemental, composition and morphology of the primary combustion products collected under gas generator chamber pressure of 0.2 MPa and 6 MPa were investigated by energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive (SEM-EDS) individually. The ignition times of boron particles among the primary combustion products were determined using a high temperature tube furnace system. The BD model was adopted for numerical verification. The numerical solution procedure of boron ignition model in a real afterburner chamber was modified. The results show that the sum of B, C, O elements in the primary combustion products reaches approximately 90%. The primary combustion products are mainly consisted of B, C, and B2O3. Images of the primary combustion products present highly agglomeration, indicating an oxidation of boron surface. Numerous spherical carbon particles with a diameter around 100 nm are observed in the products. Three features of the boron in the primary combustion products are obtained, compared to virgin boron. First most of the boron lumps are covered by carbon particles on the surface. Second the mean particle size is five times larger than that of virgin boron. Third the overall initial oxide layer covered on boron surface increases its thickness by above 0.1 μm. The ignition time of boron in the primary combustion products reaches 20-30 ms under 1673-1873 K, which is quite different from virgin boron of 4 ms. Numerical calculation results show the key reason leading to such a long ignition time is the variation of the initial oxide layer thickness. In conclusion, the physicochemical properties of boron particles are found to differ with virgin boron after primary combustion process. The accurate evaluation of the initial oxide layer thickness and initial particle radius is a crucial procedure before the numerical calculation of boron ignition kinetics. Results of our study are expected to provide better insight in the simulation of solid rocket ramjets working process.
Trace, Minor Elements, and Stable Isotopes in Montastraea faveolata as an Indicator of Stress
NASA Astrophysics Data System (ADS)
Holmes, C. W.; Buster, N. A.; Hudson, J. H.
2004-12-01
Coral cores were obtained along the fore reef from Looe Key Reef, Florida Keys, and analyzed for minor and trace elements by laser ablation ICP-MS and stable oxygen and carbon isotopes. Sample locations within the corals were chosen based on the location of annual bands as determined by x-radiographs. The LA-ICP-MS data were obtained along the corallite wall. Boron, magnesium, and phosphorous concentrations can be correlated among the corals analyzed. The highest elemental concentrations and the carbon and oxygen isotopic records in the Looe Key Montastraea faveolata were linked to times of reported bleaching. Boron, a common element in sea water, exists as two species, B(OH)3 below a pH of 8.0 and B(OH)4- above a pH of 8. Hemming and others (1998) determined that boron varied positively with 13C, both being coincident with high-density bands. They proposed that photosynthetic activity of zooxanthellae is the driving process, causing the shift in pH. During periods of stress, energy that would be used for normal coral activity (reproduction and growth) is diverted for tissue repair, food gathering, and waste removal. At extreme stress, these activities are reduced. As a result of decreased zooxanthellate activity, the chemistry at the organic-inorganic boundary may change as follows. 1. The pH rises, increasing the boron levels in the carbonate skeleton. 2. Phosphorous, expelled during normal growth activity, is retained, inhibiting the precipitation of "normal" aragonite. 3. The Mg/Ca ratio changes as calcium is being used preferentially. In the Looe Key Reef corals, boron, magnesium, and phosphorous all were elevated during times of reported bleaching. Within the same time intervals, the δ 13C, which displayed values of between -2 % and -3 % in the "normal" light-density portion of the skeleton, approached a δ 13C of 0 % in the stressed, high-density portion of the skeleton. Thus, the combination of high magnesium, boron, and phosphorous concentrations, coupled with the stable isotopic records of carbon and oxygen, correlate to stress events, such as bleaching in the Looe Key corals. These relations seem to confirm the model proposed by Hemming and others, and this chemistry may be useful in determining the record of stress events in other corals. Hemming, N.G., Guilderson, T.P. and Fairbanks, R.G., 1998, Seasonal variations in the boron isotopic composition of corals, a productivity signal?, Global Biogeochemical Cycles, v. 12, p.581-586.
Wang, Ling-Wei; Liu, Yen-Wan Hsueh; Chou, Fong-In; Jiang, Shiang-Huei
2018-06-19
Head and neck (HN) cancer is an endemic disease in Taiwan, China. Locally recurrent HN cancer after full-dose irradiation poses a therapeutic challenge, and boron neutron capture therapy (BNCT) may be a solution that could provide durable local control with tolerable toxicity. The Tsing-Hua Open Pool Reactor (THOR) at National Tsing-Hua University in Hsin-Chu, provides a high-quality epithermal neutron source for basic and clinical BNCT research. Our first clinical trial, entitled "A phase I/II trial of boron neutron capture therapy for recurrent head and neck cancer at THOR", was carried out between 2010 and 2013. A total of 17 patients with 23 recurrent HN tumors who had received high-dose photon irradiation were enrolled in the study. The fructose complex of L-boronophenylalanine was used as a boron carrier, and a two-fraction BNCT treatment regimen at 28-day intervals was used for each patient. Toxicity was acceptable, and although the response rate was high (12/17), re-recurrence within or near the radiation site was common. To obtain better local control, another clinical trial entitled "A phase I/II trial of boron neutron capture therapy combined with image-guided intensity-modulated radiotherapy (IG-IMRT) for locally recurrent HN cancer" was initiated in 2014. The first administration of BNCT was performed according to our previous protocol, and IG-IMRT was initiated 28 days after BNCT. As of May 2017, seven patients have been treated with this combination. The treatment-related toxicity was similar to that previously observed with two BNCT applications. Three patients had a complete response, but locoregional recurrence was the major cause of failure despite initially good responses. Future clinical trials combining BNCT with other local or systemic treatments will be carried out for recurrent HN cancer patients at THOR.
Magnetron sputtered boron films and TI/B multilayer structures
Makowiecki, Daniel M.; Jankowski, Alan F.
1993-01-01
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.
Magnetron sputtered boron films and Ti/B multilayer structures
Makowiecki, Daniel M.; Jankowski, Alan F.
1995-01-01
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.
Magnetron sputtered boron films and TI/B multilayer structures
Makowiecki, D.M.; Jankowski, A.F.
1993-04-20
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.
Magnetron sputtered boron films and Ti/B multilayer structures
Makowiecki, D.M.; Jankowski, A.F.
1995-02-14
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.
Study of the effects of focused high-energy boron ion implantation in diamond
NASA Astrophysics Data System (ADS)
Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.
2017-08-01
Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.
Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr
2014-12-01
Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapymore » was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less
Saint-Louis, Carl Jacky; Shavnore, Renée N; McClinton, Caleb D C; Wilson, Julie A; Magill, Lacey L; Brown, Breanna M; Lamb, Robert W; Webster, Charles Edwin; Schrock, Alan K; Huggins, Michael T
2017-12-13
Nine new polycyclic aromatic BN-1,2-azaborine analogues containing the N-BOH moiety were synthesized using a convenient two-step, one-pot procedure. Characterization of the prepared compounds show the luminescence wavelength and the quantum yields of the azaborines were tunable by controlling the power and location of the donor and acceptor substituents on the chromophore. UV-visible spectroscopy and density functional theory (DFT) computations revealed that the addition of electron-donating moieties to the isoindolinone hemisphere raised the energy of the HOMO, resulting in the reduction of the HOMO-LUMO gap. The addition of an electron-accepting moiety to the isoindolinone hemisphere and an electron-donating group to the boronic acid hemisphere decreased the HOMO-LUMO gap considerably, leading to emission properties from partial intramolecular charge transfer (ICT) states. The combined effect of an acceptor on the isoindolinone side and a donor on the boronic acid side (strong acceptor-π-donor) gave the most red-shifted absorption. The polycyclic aromatic BN-1,2-azaborines emitted strong fluorescence in solution and in the solid-state with the largest red-shifted emission at 640 nm and a Stokes shift of Δλ = 218 nm, or Δν = 8070 cm -1 .
Chemical and structural characterization of boron carbide powders and ceramics
NASA Astrophysics Data System (ADS)
Kuwelkar, Kanak Anant
Boron carbide is the material of choice for lightweight armor applications due to its extreme hardness, high Young's modulus and low specific weight. The homogeneity range in boron carbide extends from 9 to 20 at% carbon with the solubility limits not uniquely defined in literature. Over the homogeneity range, the exact lattice positions of boron and carbon atoms have not been unambiguously established, and this topic has been the consideration of significant debate over the last 60 years. The atomic configuration and positions of the boron and carbon atoms play a key role in the crystal structure of the boron carbide phases. Depending on the atomic structure, boron carbide exhibits different mechanical properties which may alter its ballistic performance under extreme dynamic conditions. This work focusses on refinement and development of analytical and chemical methods for an accurate determination of the boron carbide stoichiometry. These methods were then utilized to link structural changes of boron carbide across the solubility range to variations in mechanical properties. After an extensive assessment of the currently employed characterization techniques, it was discerned that the largest source of uncertainty in the determination of the boron carbide stoichiometry was found to arise from the method utilized to evaluate the free carbon concentration. To this end, a modified spiking technique was introduced for free carbon determination where curve fitting techniques were employed to model the asymmetry of the 002 free carbon diffraction peak based on the amorphous, disordered and graphitic nature of carbon. A relationship was then established between the relative intensities of the carbon and boron carbide peaks to the percentage of added carbon and the free-carbon content was obtained by extrapolation. Samples with varying chemistry and high purity were synthesized across the solubility range by hot pressing mixtures of amorphous boron and boron carbide. Vibrational mode frequencies and lattice parameter measurements from Rietveld refinement were correlated to the respective B:C ratios calculated using the developed characterization techniques. An expansion of the unit cell and change in slope in the lattice parameter-stoichiometry relationship were observed at more boron rich stoichiometries. These observations were justified through the proposal of a simplified structural model considering preferential substitution of boron atoms for carbon atoms in the icosahedra from 20 at% to 13.3 at% carbon, followed by formation of B-B bonds from 13.3 at % C to 9 at% C. Hardness measurements uncovered decreased hardness values in boron rich boron carbide which was attributed to the formation of weaker unit cells. Load induced amorphization was also detected in all the indented materials. Finally, experimental observations have shown that failure in boron carbide may be governed by a mechanism other than amorphization and synthesizing boron carbide with a modified microstructure at stoichiometries close to B4C may be the way forward to attain improved ballistic performance.
Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering
NASA Astrophysics Data System (ADS)
Munhollon, Tyler Lee
Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with less than 40 wt. % amorphous boron additions. X-ray diffraction analysis revealed the samples to be phase pure and boron-rich. Carbon content was determined to be at or near expected values with exception of samples with greater than 40 wt. % amorphous boron additions. Raman microspectroscopy further confirmed the changes in chemistry as well as revealed the chemical homogeneity of the samples. Microstructural analysis carried out using both optical and electron imaging showed clean and consistent microstructures. The changes in the chemistry of the boron carbide samples has been shown to significantly affect the static mechanical properties. Ultrasonic wave speed measurements were used to calculate the elastic moduli which showed a clear decrease in the Young's and shear moduli with a slight increase in bulk modulus. Berkovich nano-indentation revealed a similar trend, as the hardness and fracture toughness of the material decreased with decreasing carbon content. Amorphization within 1 kg Knoop indents was shown to diminish in intensity and extent as carbon content decreased, signifying a mechanism for amorphization mitigation.
NASA Astrophysics Data System (ADS)
Qian, Guoyu; Wang, Zhi; Gong, Xuzhong; Sun, Liyuan
2017-12-01
Slag structure plays an important role in determining the relative ease of boron removal from silicon. Correlation between slag structure and boron removal thermodynamics was experimentally studied by Raman and nuclear magnetic resonance (NMR) spectroscopy using CaO-SiO2-Na2O slags with different optical basicities (0.6 to 0.71). Optimization of slag depolymerization leads to efficient removal of boron. The extent of nonbridged oxygen content (NBO/T) and boron removal gradually increased with an increase in optical basicity from 0.6 to 0.66: B2O3 derived from boron oxidation captured nonbridging oxygens of Q 0(Si), Q 1(Si), and Q 2(Si), and was incorporated into the silicate network in the form of Q 3(Si and B). When optical basicity increased to 0.71, NBO/T rapidly increased and boron removal decreased considerably. Quick depolymerization of Q 3(Si and B) deteriorated the stability of boron. Various structural forms of boron in the silicate network were successfully detected: the BO3 trihedrons [3]B-3Si, [3]B-2Si-1NBO, and BO3 (nonring), and the BO4 tetrahedrons BO4 (1B, 3Si) and BO4 (0B, 4Si). BO4 (1B, 3Si) was the main structure contributing to the increase of boron capacity; BO3 (nonring), detected under higher optical basicity conditions, may cause deterioration of boron removal by suppressing its oxidation.
Genady, Afaf R; Ioppolo, Joseph A; Azaam, Mohamed M; El-Zaria, Mohamed E
2015-03-26
A series of mercaptoundecahydrododecaborate (B12H11SH(2-), BSH) bearing mono- and dicarboxyalkyl derivatives was prepared, characterized, and their reactivity towards amidation and esterification in DMF was evaluated. Symmetrical alkylation of BSH was achieved by treatment with primary haloalkyl carboxylic acids in aqueous acetonitrile to produce S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate tetramethylammonium salts. Unsymmetrically substituted sulfonium salts were obtained through a similar treatment of cyanoethylthioether-undecahydro-closo-dodecaborate tetramethylammonium salt with haloalkyl carboxylic acid. Selective removal of the remaining cyanoethyl group upon treatment with tetramethylammonium hydroxide yielded S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate ditetramethylammonium salts. N,N'-dicyclohexylcarbodiimide (DCC) activated amidation of S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate or S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate tetramethylammonium salts with propargylamine provided the opportunity to install terminal acetylene groups for further conjugation. These compounds acted as powerful building blocks for the synthesis of a broad range of 1,4-disubstituted 1,2,3-triazole products in high yields, utilizing the Cu(I)-mediated click cycloaddition reaction. The synthesis of BSH-lipid with a two-tailed moiety was also achieved, by esterification of S,S-bis(carboxyethyl)sulfoniumundecahydro-closo-dodecaborate(1-) tetramethylammonium salt with 1,2-O-distearoyl-sn-3-glycerol, which may prove useful in the liposomal boron delivery system. The bio-compatibility of the azide-alkyne click reaction was then utilized by performing this reaction in cell culture. The distribution of BSH in HeLa cells could be visualized by treating the cells first with a BSH-alkyne compound and then with Alexa Fluor 488(®) azide dye. The BSH-dye conjugate, which did not wash out, revealed the distribution of boron in the HeLa cells. Cytotoxicity assays of these BSH derivatives revealed that the synthesized BSH-conjugated triazoles possessed low cytotoxicity in HeLa cancer cells. Of these compounds, BSH conjugated triazole 15 induced a significant increase in the level of boron accumulation in HeLa cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Recent progress in boron nanomaterials
Kondo, Takahiro
2017-01-01
Abstract Various types of zero, one, and two-dimensional boron nanomaterials such as nanoclusters, nanowires, nanotubes, nanobelts, nanoribbons, nanosheets, and monolayer crystalline sheets named borophene have been experimentally synthesized and identified in the last 20 years. Owing to their low dimensionality, boron nanomaterials have different bonding configurations from those of three-dimensional bulk boron crystals composed of icosahedra or icosahedral fragments. The resulting intriguing physical and chemical properties of boron nanomaterials are fascinating from the viewpoint of material science. Moreover, the wide variety of boron nanomaterials themselves could be the building blocks for combining with other existing nanomaterials, molecules, atoms, and/or ions to design and create materials with new functionalities and properties. Here, the progress of the boron nanomaterials is reviewed and perspectives and future directions are described. PMID:29152014
Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1993-01-01
Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.
Transcriptomic analysis of boron hyperaccumulation mechanisms in Puccinellia distans.
Öztürk, Saniye Elvan; Göktay, Mehmet; Has, Canan; Babaoğlu, Mehmet; Allmer, Jens; Doğanlar, Sami; Frary, Anne
2018-05-01
Puccinellia distans, common alkali grass, is found throughout the world and can survive in soils with boron concentrations that are lethal for other plant species. Indeed, P. distans accumulates very high levels of this element. Despite these interesting features, very little research has been performed to elucidate the boron tolerance mechanism in this species. In this study, P. distans samples were treated for three weeks with normal (0.5 mg L -1 ) and elevated (500 mg L -1 ) boron levels in hydroponic solution. Expressed sequence tags (ESTs) derived from shoot tissue were analyzed by RNA sequencing to identify genes up and down-regulated under boron stress. In this way, 3312 differentially expressed transcripts were detected, 67.7% of which were up-regulated and 32.3% of which were down-regulated in boron-treated plants. To partially confirm the RNA sequencing results, 32 randomly selected transcripts were analyzed for their expression levels in boron-treated plants. The results agreed with the expected direction of change (up or down-regulation). A total of 1652 transcripts had homologs in A. thaliana and/or O. sativa and mapped to 1107 different proteins. Functional annotation of these proteins indicated that the boron tolerance and hyperaccumulation mechanisms of P. distans involve many transcriptomic changes including: alterations in the malate pathway, changes in cell wall components that may allow sequestration of excess boron without toxic effects, and increased expression of at least one putative boron transporter and two putative aquaporins. Elucidation of the boron accumulation mechanism is important in developing approaches for bioremediation of boron contaminated soils. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hanaoka, Hideki; Uraguchi, Shimpei; Takano, Junpei; Tanaka, Mayuki; Fujiwara, Toru
2014-06-01
Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Processing and characterization of boron carbide-hafnium diboride ceramics
NASA Astrophysics Data System (ADS)
Brown-Shaklee, Harlan James
Hafnium diboride based ceramics are promising candidate materials for advanced aerospace and nuclear reactor components. The effectiveness of boron carbide and carbon as HfB2 sintering additives was systematically evaluated. In the first stage of the research, boron carbide and carbon additives were found to improve the densification behavior of milled HfB2 powder in part by removing oxides at the HfB2 surface during processing. Boron carbide additives reduced the hot pressing temperature of HfB2 by 150°C compared to carbon, which reduced the hot pressing temperature by ˜50°C. Reduction of oxide impurities alone could not explain the difference in sintering enhancement, however, and other mechanisms of enhancement were evaluated. Boron carbides throughout the homogeneity range were characterized to understand other mechanisms of sintering enhancement in HfB2. Heavily faulted carbon rich and boron rich boron carbides were synthesized for addition to HfB2. The greatest enhancement to densification was observed in samples containing boron- and carbon-rich compositions whereas B6.5 C provided the least enhancement to densification. It is proposed that carbon rich and boron rich boron carbides create boron and hafnium point defects in HfB2, respectively, which facilitate densification. Evaluation of the thermal conductivity (kth) between room temperature and 2000°C suggested that the stoichiometry of the boron carbide additives did not significantly affect kth of HfB2-BxC composites. The improved sinterability and the high kth (˜110 W/m-K at 300K and ˜90 W/m-K at 1000°C ) of HfB2-BxC ceramics make them excellent candidates for isotopically enriched reactor control materials.
2012-07-05
semiconductor that exhibits unusual properties as the result of the bonding within the 12-atom boron icosahe- dron that is an integral part of its crystal...aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if...LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 13 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1A ...
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1-A IN FOREGROUND. LIGHTS OF MAIN BASE, EDWARDS AFB, IN THE BACKGROUND. EDWARDS AFB." Test Area 1-120. Looking west past Test Stand 1-A to Test Area 1-115 and Test Area 1-110. Photo no. "12,401 57; G-AFFTC 12 DEC 57; TS 1-A Aux #1". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feakes, D.A.; Shelly, K.; Hawthorne, M.F.
1995-02-28
The nido-carborane species K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] has been synthesized for use as an addend for the bilayer membrane of liposomes. Small unilamellar vesicles, composed of distearoylphosphatidylcholine/cholesterol, 1:1, and incorporating K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] in the bilayer, have been investigated in vivo. The time-course biodistribution of boron delivered by these liposomes was determined by inductively coupled plasma-atomic emission spectroscopy analyses after the injection of liposomal suspensions in BALB/c mice bearing EMT6 mammary adenocarcinomas. At the low injected doses normally used ({approx}5-10 mg of boron per kg of body weight), peak tumor boron concentrations ofmore » {approx}35 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx}8 were achieved. These values are sufficiently high for the successful application of boron neutron capture therapy. The bilayer-embedded boron compound may provide the sole boron source or, alternatively, a concentrated aqueous solution of a hydrophilic boron compound may also be encapsulated within the liposomes to provide a dose enhancement. Thus, the incorporation of both K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] and the hydrophilic species, Na{sub 3}[1-(2{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}], within the same liposomes demonstrated significantly enhanced biodistribution characteristics, exemplified by maximum tumor boron concentrations of {approx} 50 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx} 6. 18 refs., 1 fig.« less
Boron isotopes at the catchment scale, a new potential tool to infer critical zone processes.
NASA Astrophysics Data System (ADS)
Gaillardet, J.; Noireaux, J.; Braun, J. J.; Riotte, J.; Louvat, P.; Bouchez, J.; Lemarchand, D.; Muddu, S.; Mohan Kumar, M.; Candaudap, F.
2017-12-01
Boron is a mid-mass element that has two isotopes, 10B and 11B. These isotopes are largely fractioned by a number of chemical, biological and physical processes. Boron as a great affinity for clays and is useful for life, making it a double tracer of critical zone processes. This study focuses on the Mule Hole Critical Zone Observatory in South India. This is part of the French Research Infrastructure OZCAR and has benefited from the fruitful Indo-French collaboration (Indo-French Cell for Water Sciences) for more that 15 years. Boron and its isotopes were measured in the different compartment of the CZ in Mule Hole, vegetation, atmosphere, throughfall, soil, soil water, river water and compared to the behavior of other elements. The well constrained hydrology in Mule Hole allowed us to calculate the main fluxes affecting boron in the Critical Zone and came to the first order conclusion that the recycling of boron by vegetation is by far the most important flux within the system, reaching 15-20 times the catchment outlet flux. From an isotopic point of view, the total range of variation is measured between -3 ‰ and 77‰, with a bedrock value at 10‰ in classical delta unit, making boron a well suited tracer for constraining CZ processes. The flux of boron most enriched in heavy boron is the throughfall, showing the importance of biological processes in controlling the boron isotopic composition of the stream. Boron in soils in depleted in the heavy isotope but is enriched in boron compared to the bedrock, a surprising situation that we interpret as the legacy of a previous stage of transient weathering. These results indicate a strong decoupling between the behaviors of boron at the surface of the CZ and at depth.
NASA Astrophysics Data System (ADS)
Jafari, A.; Ghoranneviss, M.; Salar Elahi, A.
2016-03-01
Large-area boron doped graphene was synthesized on Cu foil (as a catalyst) by Hot Filament Chemical Vapor Deposition (HFCVD) using boron oxide powder and ethanol vapor. To investigate the effect of different boron percentages, grow time and the growth mechanism of boron-doped graphene, scanning electron microscopy (SEM), Raman scattering and X-ray photoelectron spectroscopy (XPS) were applied. Also in this experiment, the I-V characteristic carried out for study of electrical property of graphene with keithley 2361 system. Nucleation of graphene domains with an average domain size of ~20 μm was observed when the growth time is 9 min that has full covered on the Cu surface. The Raman spectroscopy show that the frequency of the 2D band down-shifts with B doping, consistent with the increase of the in-plane lattice constant, and a weakening of the B-C in-plane bond strength relative to that of C-C bond. Also the shifts of the G-band frequencies can be interpreted in terms of the size of the C-C ring and the changes in the electronic structure of graphene in the presence of boron atoms. The study of electrical property shows that by increasing the grow time the conductance increases which this result in agree with SEM images and graphene grain boundary. Also by increasing the boron percentage in gas mixer the conductance decreases since doping graphene with boron creates a band-gap in graphene band structure. The XPS results of B doped graphene confirm the existence of boron in doped graphene, which indicates the boron atoms doped in the graphene lattice are mainly in the form of BC3. The results showed that boron-doped graphene can be successfully synthesized using boron oxide powder and ethanol vapor via a HFCVD method and also chemical boron doping can be change the electrical conductivity of the graphene.
Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei
2014-06-01
In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.
Dietary boron: possible roles in human and animal physiology
USDA-ARS?s Scientific Manuscript database
Boron is a bioactive element of low molecular weight. Since discovery of the first boron biomolecule, boromycin, in 1967, several other similar biomolecules are now well-characterized. Most recently described was a bacterial cell-to-cell communication signal that requires boron, autoinducer-II. Boro...
NASA Astrophysics Data System (ADS)
Rogl, P.; Rupp, B.; Felner, I.; Fischer, P.
1993-06-01
Within the homogeneous range of uranium monocarbide UB 1- xC 1+ x, the crystal structures of stoichiometric UBC and of the carbon-rich solid solution UB 0.78C 1.22, have been refined from single-crystal X-ray counter data. From X-ray analysis crystal symmetry in both cases is consistent with the centro-symmetric space group Cmcm and there are no indications of superstructure formation. In contrast to the fully ordered atom arrangement revealed for stoichiometric UBC ( a = 0.35899(4), b = 1.19781(12), c = 0.33474(3) nm), random occupation by boron and carbon atoms is observed for the boron site in UB 0.78C 1.22 ( a = 0.35752(4), b = 1.18584(3), c = 0.33881(4) nm). For 279(278) reflections (|F 0| > 3σ) the obtained reliability factors R x = ∑|ΔF|/∑| F0| were R x = 0.069 for UBC and R x = 0.050 for UB 0.78C 1.22. Neutron powder diffraction experiments at 9 and 295 K unambiguously revealed full occupancy by the nonmetal atoms in UB 0.78C 1.22 and prove the statistical occupation of B and C atoms in the B-sites. For the orthorhombic symmetry Cmcm, refinement was not better than R1 = 0.044. A model calculation in monoclinic symmetry C12/ m1, however, resulted in a significant reduction of the residual value to R1 = 0.030, releasing spatial constraints on the boron atoms. Thus the boron-boron chain in Cmcm (B-B = 0.1874 nm) is dissolved into boron pairs (B-B = 0.1706 nm) which are loosely bound at a distance of 0.2043 nm. The formation of C-B-B-C groups corresponds to the structure types of ThBC and Th 3B 2C 3. The magnetic behavior has been investigated in the temperature range from 4.2 K to 1000 K for UB 1- xC 1+ x (UBC-type) and U 1- xMxB 2C (ThB 2C-type for the high temperature modification and 1-UB 2C-type for the low temperature modification) with U partially substituted by Th or Sc, Lu. From magnetic susceptibilities, the alloys UB 1- xC 1+ x reveal temperature independent paramagnetism with typical intermediate valence fluctuation behavior ( TSF ˜ 350 K). ThB 2C and 1-UB 2C both are temperature independent paramagnets, whereas h-UB 2C is a ferromagnet with the rather high Curie temperature TM = 80(2) K. TM and the saturation magnetiziation per U atom both successively decrease on substitution of U by Th, Sc, or Lu in UB 2C, whereas the U-moments remain practically unchanged at μ eff(U) ˜ 1.9 μ B. Uranium L 3-XANES (X-ray Absorption Near Edge Structure) spectroscopy revealed increased d-band localization, comparable to uranium-transition metal alloys, in nonmagnetic UB 1- xC 1+ x ( x = 0, 0.22). No superconductivity was observed down to 1.5 K; no hydrogen uptake was observed for UB 2C and ThB 2C even under hydrogen pressures as high as 7 × 10 7 Pa at 670 K.
Properties of vacuum-evaporated boron films
NASA Technical Reports Server (NTRS)
Feakes, F.
1973-01-01
The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.
Mechanisms implicated in the effects of boron on wound healing.
Nzietchueng, Rosine Mayap; Dousset, Brigitte; Franck, Patricia; Benderdour, Mohamed; Nabet, Pierre; Hess, Ketsia
2002-01-01
Recently, we demonstrated that boron modulates the turnover of the extracellular matrix and increases TNFalpha release. In the present study, we used an in vitro test to investigate the direct effect of boron on specific enzymes (elastase, trypsin-like enzymes, collagenase and alkaline phosphatase) implicated in extracellular matrix turnover. Boron decreased the elastase and alkaline phosphatase activity, but had no effect on trypsin and collagenase activities. The effect of boron on the enzyme activities was also tested in fibroblasts considered as an in vivo test. In contrast to the results obtained in vitro, boron enhanced the trypsin-like, collagenase, and cathepsin D activities in fibroblasts. Boron did not modify the generation of free radicals compared to the control and did not seem to act on the intracellular alkaline phosphatase activity, However, as it did enhance phosphorylation, it can be hypothesized that boron may affect living cells via a mediator, which could be TNFalpha whose transduction signal involves a cascade of phosphorylations.
NASA Astrophysics Data System (ADS)
Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.
2017-03-01
Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.
X-ray method shows fibers fail during fatigue of boron-epoxy laminates
NASA Technical Reports Server (NTRS)
Roderick, G. L.; Whitcomb, J. D.
1975-01-01
A method proposed for studying progressive fiber fracture in boron-epoxy laminates during fatigue tests is described. It is based on the intensity of X-ray absorption of the tungsten core in the boron filaments as contrasted with that of the boron and epoxy matrix. When the laminate is X-rayed, the image of the tungsten in the born filaments is recorded on a photographic plate. Breaks in the boron laminates can be easily identified by magnifying the photographic plates. The method is suitable for studying broken boron filaments in most matrix materials, and may supply key information for developing realistic fatigue and fracture models.
Trivillin, V A; Garabalino, M A; Colombo, L L; González, S J; Farías, R O; Monti Hughes, A; Pozzi, E C C; Bortolussi, S; Altieri, S; Itoiz, M E; Aromando, R F; Nigg, D W; Schwint, A E
2014-06-01
BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25-76ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung. © 2013 Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.W. Nigg; Various Others
BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.
Magnetron sputtered boron films
Makowiecki, Daniel M.; Jankowski, Alan F.
1998-01-01
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.
Low pressure growth of cubic boron nitride films
NASA Technical Reports Server (NTRS)
Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)
1997-01-01
A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.
Magnetron sputtered boron films
Makowiecki, D.M.; Jankowski, A.F.
1998-06-16
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogitsu, Tadashi; Schwegler, Eric; Galli, Giulia
2013-05-08
In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been knownmore » for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.« less
Morphological transformations of BNCO nanomaterials: Role of intermediates
NASA Astrophysics Data System (ADS)
Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.
2018-06-01
Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than the 1D boron and nitrogen co-doped tube-like carbon nanorods. The significant differences in the PL properties can be attributed to different carbon structures in these nanomaterials. These achievements can be used to synthesize and control the structures of nanomaterials and contribute to the development of the next generation optoelectronic nanodevices based on 1D and 2D nanomaterials.
40 CFR Appendix A to Part 68 - Table of Toxic Endpoints
Code of Federal Regulations, 2014 CFR
2014-07-01
... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane
40 CFR Appendix A to Part 68 - Table of Toxic Endpoints
Code of Federal Regulations, 2013 CFR
2013-07-01
... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane
40 CFR Appendix A to Part 68 - Table of Toxic Endpoints
Code of Federal Regulations, 2012 CFR
2012-07-01
... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane
Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene
2007-03-01
COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Lonnie Carlson, Major...DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Presented to the Faculty Department of Engineering Physics Graduate School...DISTRIBUTION UNLIMITED AFIT/GNE/ENP/07-01 COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE Lonnie
THE BORON-CURCUMIN COMPLEX IN TRACE BORON DETERMINATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyes, M.R.; Metcalfe, J.
1963-01-01
A simple and robust method for the formation of the complex of boron with curcumin is described. The sensitivity of the method is 6.6 x 10/sup -5/ g/cm/sup 2/. Formation of the complex is believed to be quantitative under the conditions used and some evidence is given for a 1: 3 boron; curcumin ratio. Methods are outlined for the determination of boron in a number of metals, compounds, and organic materials. (auth)
Method for production of free-standing polycrystalline boron phosphide film
Baughman, Richard J.; Ginley, David S.
1985-01-01
A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.
Methods for boron delivery to mammalian tissue
Hawthorne, M. Frederick; Feaks, Debra A.; Shelly, Kenneth J.
2003-01-01
Boron neutron capture therapy can be used to destroy tumors. This treatment modality is enhanced by delivering compounds to the tumor site where the compounds have high concentrations of boron, the boron compounds being encapsulated in the bilayer of a liposome or in the bilayer as well as the internal space of the liposomes. Preferred compounds, include carborane units with multiple boron atoms within the carborane cage structure. Liposomes with increased tumor specificity may also be used.
Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.
Andrade, Leandro H; Barcellos, Thiago
2009-07-16
The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.
Chatterjee, Mithu; Liu, Qiujie; Menello, Caitlin; Galli, Mary; Gallavotti, Andrea
2017-08-01
The micronutrient boron is essential in maintaining the structure of plant cell walls and is critical for high yields in crop species. Boron can move into plants by diffusion or by active and facilitated transport mechanisms. We recently showed that mutations in the maize boron efflux transporter ROTTEN EAR (RTE) cause severe developmental defects and sterility. RTE is part of a small gene family containing five additional members ( RTE2 - RTE6 ) that show tissue-specific expression. The close paralogous gene RTE2 encodes a protein with 95% amino acid identity with RTE and is similarly expressed in shoot and root cells surrounding the vasculature. Despite sharing a similar function with RTE , mutations in the RTE2 gene do not cause growth defects in the shoot, even in boron-deficient conditions. However, rte2 mutants strongly enhance the rte phenotype in soils with low boron content, producing shorter plants that fail to form all reproductive structures. The joint action of RTE and RTE2 is also required in root development. These defects can be fully complemented by supplying boric acid, suggesting that diffusion or additional transport mechanisms overcome active boron transport deficiencies in the presence of an excess of boron. Overall, these results suggest that RTE2 and RTE function are essential for maize shoot and root growth in boron-deficient conditions. Copyright © 2017 by the Genetics Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, H.B.; Desai, S.R.; Nadkarni, M.N.
1961-01-01
A procedure has been standardized for the determination of boron in cokes, pitches, and graphites. The method consists of fixing the boron present in the sample as calcium borate, ion-exchange separation of boric acid from the associated cations, and the colorimetric determination of boron using the curcumin-trichloracetic acid method. Sulfur which is usually present in pitches and cokes is expected to be oxidized to sulfate during the fixation of boron and hence its effect on the colorimetry has been studied. Application of the procedure to the determination of 0.50 and 1.00 microgram amounts of boron, has given coefficients of variationmore » of l0.0 and 6.7% respectively. (auth)« less
Edward Raja, Chellaiah; Omine, Kiyoshi
2013-08-01
Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, M. Frederick
2005-04-07
Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer,more » incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic unimolecular nanoparticles presenting several advantages: tunable size through functionalization and branching, spherical shape due to the icosahedral B122 core, promising water solubility resulting from degradation of all pendant closo-carborane groups to their hydrophilic nido anion substituents, and efficient boron delivery owing to the presence of 120 boron atoms which gives rise to a boron content as high as 40% by weight. Keeping the new objective in mind, we have focused on the design, synthesis and evaluation of new and very boron-rich closomer species. Additionally, progress has also been made toward the evaluation of a newly synthesized boron-rich lipid as a substitute for DSPC in bilayer construction, and the boron content of the resulting liposomes has been greatly enhanced. Related research involving the synthesis and self-assembly of carborane-containing amphiphiles has been systematically studied. Combined hydrophobic and hydrophilic properties of the single-chain amphiphiles allow their spontaneous self-assembly to form rods under a variety of variable conditions, such as concentration in the bilayer, carborane cage structure, chain-length, counterion identity, solvents, methods of preparation, and the ionic charge. On the other hand, the number of attached chains affects the self-assembly process. Particles having totally different shapes have been observed for dual-chain amphiphiles.« less
Screening of Wheat Genotypes for Boron Efficiency in Bangladesh
USDA-ARS?s Scientific Manuscript database
A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...
40 CFR 68.130 - List of substances.
Code of Federal Regulations, 2014 CFR
2014-07-01
...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane
40 CFR 68.130 - List of substances.
Code of Federal Regulations, 2012 CFR
2012-07-01
...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane
40 CFR 68.130 - List of substances.
Code of Federal Regulations, 2013 CFR
2013-07-01
...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane
40 CFR 68.130 - List of substances.
Code of Federal Regulations, 2010 CFR
2010-07-01
...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane
40 CFR 68.130 - List of substances.
Code of Federal Regulations, 2011 CFR
2011-07-01
...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane
Maeda, Dean Y; Peck, Angela M; Schuler, Aaron D; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Auten, Richard L; Gundla, Rambabu; Zebala, John A
2015-06-01
Blockade of undesired neutrophil migration to sites of inflammation remains an area of substantial pharmaceutical interest. To effect this blockade, a validated therapeutic target is antagonism of the chemokine receptor CXCR2. Herein we report the discovery of 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide 6, an antagonist with activity at both CXCR1 and CXCR2 receptors (IC50 values 31 and 21 nM, respectively). Compound 6 exhibited potent inhibition of neutrophil influx in a rat model of pulmonary inflammation, and is hypothesized to interact with a unique intracellular binding site on CXCR2. Compound 6 (SX-576) is undergoing further investigation as a potential therapy for pulmonary inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.).
Çatav, Şükrü Serter; Genç, Tuncer Okan; Kesik Oktay, Müjgan; Küçükakyüz, Köksal
2018-04-01
Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H 2 O 2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.
Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.
Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M
2007-01-01
In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.
Na{sub 3}[B{sub 20}H{sub 17}NH{sub 3}]: Synthesis and liposomal delivery to murine tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feakes, D.A.; Shelly, K.; Knobler, C.B.
1994-04-12
The polyhedral borane ion [n-B{sub 20}H{sub 18}]{sup 2{minus}} reacts with liquid ammonia in the presence of a suitable base to produce an apical-equatorial (ae) isomer of the [B{sub 20}H{sub 17}NH{sub 3}]{sup 3{minus}} ion, [1-(2{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}]{sup 3{minus}}. The structure of this product has been confirmed by {sup 11}B NMR spectroscopy and x-ray crystallography. This species undergoes acid-catalyzed rearrangement to an apical-apical (a{sup 2}) isomer, [1-(1{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}]{sup 3{minus}}, whose structure has been determined by {sup 11}B NMR spectroscopy. The sodium salts of both the ae and the a{sup 2} isomers of [B{sub 20}H{sub 17}NH{submore » 3}]{sup 3{minus}} have been encapsulated within small unilamellar liposomes, composed of distearoyl phosphatidyl-choline/cholesterol (1:1), and investigated as boron-delivery agents for boron neutron capture therapy (BNCT) of cancer. The biodistribution of boron was determined after the injection of liposomal suspensions into BALB/c mice bearing EMT6 tumors. Both [B{sub 20}H{sub 17}NH{sub 3}]{sup 3{minus}} isomers exhibited excellent tumor uptake and selectivity at very low injected doses, achieving peak tumor boron concentrations of 30-40 {mu}g of B/g of tissue and tumor/blood boron ratios of {approximately}5. The enhanced retention of the [B{sub 20}H{sub 17}NH{sub 3}]{sup 3{minus}} isomers by EMT6 tumors may be attributed to their facile intracellular oxidation. In another experiment, [ae-B{sub 20}H{sub 17}NH{sub 3}]{sup 3{minus}} was encapsulated in liposomes prepared with 5% PEG-2000-distearoyl phosphatidylethanolamine in the liposome membrane. As expected, these liposomes exhibited a longer circulation lifetime in the biodistribution experiment, resulting in the continued accumulation of boron in the tumor over the entire 48-hr experiment and reaching a maximum of 47 {mu}g of B/g of tumor.« less
A study on the formation of solid state nanoscale materials using polyhedral borane compounds
NASA Astrophysics Data System (ADS)
Romero, Jennifer V.
The formation of boron containing materials using a variety of methods was explored. The pyrolysis of a metal boride precursor solution can be accomplished using a one-source method by combining TiCl4, B10H 14 and CH3CN in one reaction vessel and pyrolyzing it at temperatures above 900 °C. Amorphous dark blue colored films were obtained after the pyrolysis reactions. Well-defined spherical shaped grains or particles were observed by SEM. The amorphous films generated contained titanium, however, the determination of the boron content of the films was inconclusive. This one pot method making metal boride thin films has the advantage of being able to dictate the stoichiometry of the reactants. Another part of this work represents the first report of both the use of metal boride materials and the use of a titanium-based compound for the formation of nanotubes. This method provides a facile method for generating well-formed boron-containing carbon nanotubes in a "one-pot" process through an efficient aerosol process. The formation of metal boride corrosion resistant layers was also explored. It was shown that metallic substrates can be effectively boronized using paste mixtures containing boron carbide and borax. The formation of a Fe4B 2 iron boride phase was achieved, however, this iron boride phase does not give enough corrosion protection. The formation of a corrosion resistant metal boride coating with strong adhesion was accomplished by boronization of a thermal sprayed nickel layer on the surface of steel. Surfactants were explored as possible nanoreactors in which metal boride nanoparticles could be formed to use as nanotube growth catalyst via room temperature reaction. Different surfactants were used, but none of them successfully generated very well dispersed metal boride nanoparticles. Nanoparticles with varying shapes and sizes were generated which were highly amorphous. The carboxylic acid derivative of closo-C2B 10 cages was explored as a ligand in the hydrothermal preparation of coordination polymers with zinc salts. It was found that the stability of the cage is apparently insufficient under these conditions and cage degradation was observed. Consequently, a preliminary investigation of the preparation of dipyridyl derivatives of both the closo-C2B 10 and the closo-B12 cages was performed.
1979-03-01
made in continuous form by reducing boron trichloride with hydrogen and depositing the elemental boron formed on an electrically heated, continuously...filament take-up unit. A stoichio- metric mixture of boron trichloride and hydrogen is introduced at the top of the reactor. These react at the surface of...fibers are tungsten wire, boron trichloride , and hydrogen gas. The fine diameter tungsten wire on which boron is deposited is an imported product and is
THE BORON-CURCUMIN COMPLEX IN THE DETERMINATION OF TRACE AMOUNTS OF BORON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, M.R.; Metcalfe, J.
1962-12-01
A simple and robust method is described for the formation of the complex of boron with curcumin. The sensitivity of the method is 8.0 to 8.5 x 10/sup -5/ mu g per sq. cm by Sandell's definition. Formation of the complex is believed to be quartitative under the conditions used, and some evidence is given for a ratio of boron to curcumin of 1 to 3. Methods are outlined for determining boron in some metals, compounds, and organic materials. (auth)
Free-standing polycrystalline boron phosphide film and method for production thereof
Baughman, R.J.; Ginley, D.S.
1982-09-09
A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.
Mineral resource of the month: boron
Crangle, Robert D.
2012-01-01
The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.
Lee, Chun-Young; Ahn, Su-Jin; Cheon, Cheol-Hong
2013-12-06
The first metal-free thermal protodeboronation of ortho- and para-phenol boronic acids in DMSO was developed. The protodeboronation was successfully applied to the synthesis of ortho- and meta-functionalized phenols using the boronic acid moiety as a blocking group and a directing group, respectively. Mechanistic studies suggested that this protodeboronation proceeds through the coordination of water to the boron atom followed by σ-bond metathesis.
Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.
Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri
2011-09-05
The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetron sputtered boron films for increasing hardness of a metal surface
Makowiecki, Daniel M [Livermore, CA; Jankowski, Alan F [Livermore, CA
2003-05-27
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.
Kulvik, Martti; Kallio, Merja; Laakso, Juha; Vähätalo, Jyrki; Hermans, Raine; Järviluoma, Eija; Paetau, Anders; Rasilainen, Merja; Ruokonen, Inkeri; Seppälä, Matti; Jääskeläinen, Juha
2015-12-01
We studied the uptake of boron after 100 mg/kg BPA infusion in three meningioma and five schwannoma patients as a pre-BNCT feasibility study. With average tumour-to-whole blood boron concentrations of 2.5, we discuss why BNCT could, and probably should, be developed to treat severe forms of the studied tumours. However, analysing 72 tumour and 250 blood samples yielded another finding: the plasma-to-whole blood boron concentrations varied with time, suggesting that the assumed constant boron ratio of 1:1 between normal brain tissue and whole blood deserves re-assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermal expansion of boron subnitrides
NASA Astrophysics Data System (ADS)
Cherednichenko, Kirill A.; Gigli, Lara; Solozhenko, Vladimir L.
2018-07-01
The lattice parameters of two boron subnitrides, B13N2 and B50N2, have been measured as a function of temperature between 298 and 1273 K, and the corresponding thermal expansion coefficients have been determined. Thermal expansion of both boron subnitrides was found to be quasi-linear, and the volume thermal expansion coefficients of B50N2 (15.7 (2) × 10-6 K-1) and B13N2 (21.3 (2) × 10-6 K-1) are of the same order of magnitude as those of boron-rich compounds with structure related to α-rhombohedral boron. For both boron subnitrides no temperature-induced phase transitions have been observed in the temperature range under study.
Thermal insulation for high temperature microwave sintering operations and method thereof
Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.
1995-01-01
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.
Method of preparing thermal insulation for high temperature microwave sintering operations
Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.
1996-01-01
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.
Evolution of anisotropy in bcc Fe distorted by interstitial boron
NASA Astrophysics Data System (ADS)
Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert
2018-01-01
The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.
McLean, Ben; Eveleens, Clothilde A; Mitchell, Izaac; Webber, Grant B; Page, Alister J
2017-10-11
Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.
Combined effect of boron and salinity on water transport: The role of aquaporins.
Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela
2008-10-01
Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.
Aysan, Erhan; Idiz, Ufuk Oguz; Elmas, Leyla; Saglam, Esra Kaytan; Akgun, Zuleyha; Yucel, Serap Baskaya
2017-06-01
This study is aimed to evaluate the effects of boron on radiation-induced skin reactions (RISR) in breast cancer patients. After 47 patients with invasive ductal carcinoma underwent radiotherapy, 23 (49%) received a boron-based gel, and 24 (51%) received placebo. Assessments were performed according to the Radiation Therapy Oncology Group (RTOG) skin scale and a Five-Point Horizontal Scale (FPHS). At the end of the fifth week of radiotherapy, the RTOG scores in the boron group were significantly lower than those in the placebo group (p = .024). The FPHS score was higher in the placebo group than in the boron group, and this difference was not statistically significant (p = .079). Using the RTOG scoring system, we revealed that the application of a boron-based gel diminished RISR. The mechanism of action is unclear but may be related to antioxidant, wound healing, and thermal degradation effects of boron.
Rapid transporter regulation prevents substrate flow traffic jams in boron transport
Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi
2017-01-01
Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285
Rapid transporter regulation prevents substrate flow traffic jams in boron transport.
Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi; Marée, Athanasius Fm; Fujiwara, Toru; Grieneisen, Verônica A
2017-09-05
Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana , boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow.
Boron-containing amino carboxylic acid compounds and uses thereof
Kabalka, George W.; Srivastava, Rajiv R.
2000-03-14
Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.
Thermal neutron shield and method of manufacture
Brindza, Paul Daniel; Metzger, Bert Clayton
2013-05-28
A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.
Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet
NASA Astrophysics Data System (ADS)
Suh, Chang Hee; Jang, Won Seok; Oh, Sang Kyun; Lee, Rac Gyu; Jung, Yun-Chul; Kim, Young Suk
2012-08-01
Boron steel is widely used throughout the automobile industry due to its high tensile strength and hardenability. When boron steel is used for body parts, only high strength is required for crashworthiness. However, when boron steel is used for chassis parts, a high fatigue life is needed. The microstructure of boron steel is mainly affected by the cooling rate during hot stamping. Therefore, this study investigated the low cyclic fatigue life according to the cooling rate. The fatigue life increased at a low strain amplitude when the cooling rate was fast. However, at a high strain amplitude, the fatigue life decreased, due to the low ductility and fracture toughness of the martensite formed by rapid cooling. Martensite formed by a fast cooling rate shows excellent fatigue life at a low total strain amplitude; however, a multiphase microstructure formed by a slow cooling rate is recommended if the parts experience high and low total strain amplitudes alternately. In addition, the cooling rate has little effect on the distribution of solute boron and boron precipitations, so it is expected that boron rarely affects low cyclic fatigue.
NASA Astrophysics Data System (ADS)
Scorei, Romulus
2012-02-01
Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".
Where Boron? Mars Rover Detects It
2016-12-13
This map shows the route driven by NASA's Curiosity Mars rover (blue line) and locations where the rover's Chemistry and Camera (ChemCam) instrument detected the element boron (dots, colored by abundance of boron according to the key at right). The main map shows the traverse from landing day (Sol 0) in August 2012 to the rover's location in September 2016, with boron detections through September 2015. The inset at upper left shows a magnified version of the most recent portion of that traverse, with boron detections during that portion. Overlapping dots represent cases when boron was detected in multiple ChemCam observation points in the same target and non-overlapping dots represent cases where two different targets in the same location have boron. Most of the mission's detections of boron have been made in the most recent seven months (about 200 sols) of the rover's uphill traverse. The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is up. The scale bar at lower right represents one kilometer (0.62 mile). http://photojournal.jpl.nasa.gov/catalog/PIA21150
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru
Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereasmore » for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.« less
Boron investigation survey, March Air Force Base, California. Final report, 27 Jan-7 Feb 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland III , J.G.
1992-07-01
Armstrong Laboratory conducted a field survey to investigate the source of boron in the March AFB CA wastewater treatment plant effluent. The survey measured boron contributions from drinking water, domestic sources, and industrial sources over a 10-day period. The survey also evaluated the effluent to the treatment plant over the same 10 days. Boron results at the regulatory discharge point averaged 0.48 mg/1, which complies with the base permit. The results also showed drinking water levels averaged 0.225 mg/1, domestic contribution combined with drinking water levels averaged 0.396 mg/1, and mixed industrial and domestic levels ranged from 0.246 mg/1 tomore » 1.84 mg/1. The report presents bulk boron sample results from a variety of soaps and bleaches. Recommendations include further investigation into industrial activity generating high boron levels, discouraging the use of boron-containing products by military, contract, and domestic users and negotiating with the regulating agency for permitting boron at a higher level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emiliano C. C. Pozzi; Veronica A. Trivilin; Lucas L. Colombo
Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For eachmore » rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 +/- 6.6 for Sham, 7.8 +/- 4.1 for Beam only, 4.4 +/- 5.6 for BPA-BNCT I and 0.45 +/- 0.20 for BPA-BNCT II; tumor nodule weight was 750 +/- 480 mg for Sham, 960 +/- 620 mg for Beam only, 380 +/- 720 mg for BPA-BNCT I and 7.3 +/- 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.« less
Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea
2014-01-01
Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400
Naghii, M R; Wall, P M; Samman, S
1996-12-01
Boron is an essential micronutrient for higher plants. The results of studies in animals and humans have suggested a potential role for boron as a modulator of the steroid hormone pathway. As part of a study to obtain baseline information on boron in humans, the boron content of selected foods (66 items) consumed in Australia was determined. Mean values are presented for the element per 100 g or 100 ml of food and per serving. Major sources of the element were nuts, dried fruits, legumes, fresh vegetables and fruits. The boron content of these foods correlated positively and strongly with values provided by the comprehensive Finnish Tables of mineral composition of foods and with the US Food and Drug Administration Total Diet Study. Because of the similarity in methods employed by this study and that used for the comprehensive Finnish Tables, the latter was used to analyze the boron content in 7-day weighed food records of 32 subjects. Using data obtained from the food records and assigning the corresponding values from the Finnish Tables for the boron content of foods, the average daily consumption of boron for a selected group of Australians was found to be 2.23 +/- 1.23 mg/day.
Controlled growth of semiconductor crystals
Bourret-Courchesne, Edith D.
1992-01-01
A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.
Controlled growth of semiconductor crystals
Bourret-Courchesne, E.D.
1992-07-21
A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.
Fillers for improved graphite fiber retention by polymer matrix composites
NASA Technical Reports Server (NTRS)
House, E. E.; Sheppard, C. H.
1981-01-01
The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.
NASA Astrophysics Data System (ADS)
Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.
2017-07-01
The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.
Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates
NASA Astrophysics Data System (ADS)
Yeh, Po-Ching
2011-12-01
This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, D; Bednarz, B
Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt tomore » validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.« less
Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan
2009-07-01
Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.
Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.
2014-01-01
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. PMID:24684609
Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W
2014-06-01
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, M.F.
The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.
USDA-ARS?s Scientific Manuscript database
Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...
Lyday, Phyllis A.
2005-01-01
What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.
Dispersion toughened silicon carbon ceramics
Wei, G.C.
1984-01-01
Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.
USDA-ARS?s Scientific Manuscript database
Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...
USDA-ARS?s Scientific Manuscript database
Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...
Method for separating boron isotopes
Rockwood, Stephen D.
1978-01-01
A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.
Development and application of colorimetric microassay for determining boron-containing compounds
S. Nami Kartal; Frederick Green
2002-01-01
This paper describes the development of a microsssay for boron and the application of this microassay for evaluating leachability of boron by post-treatment of southern pine with the calcium precipitating agent NHA (N'N-napthaloylhydroxylamine). The microsssay method for quantitative estimation of boron content in treated wood and leachates is a microadaptation of...
The prospects for composites based on boron fibers
NASA Technical Reports Server (NTRS)
Naslain, R.
1978-01-01
The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.
Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides
Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman
2012-01-01
Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669
Experimental observation of boron nitride chains.
Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi; Algara-Siller, Gerardo; Kaiser, Ute; Suenaga, Kazu; Krasheninnikov, Arkady V
2014-12-23
We report the formation and characterization of boron nitride atomic chains. The chains were made from hexagonal boron nitride sheets using the electron beam inside a transmission electron microscope. We find that the stability and lifetime of the chains are significantly improved when they are supported by another boron nitride layer. With the help of first-principles calculations, we prove the heteroatomic structure of the chains and determine their mechanical and electronic properties. Our study completes the analogy between various boron nitride and carbon polymorphs, in accordance with earlier theoretical predictions.
Enhanced-wetting, boron-based liquid-metal ion source and method
Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.
1999-01-01
A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.
Enhanced-wetting, boron-based liquid-metal ion source and method
Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.
1999-02-16
A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.
Combustion Performance of a Staged Hybrid Rocket with Boron addition
NASA Astrophysics Data System (ADS)
Lee, D.; Lee, C.
2018-04-01
In this paper, the effect of boron on overall system specific impulse was investigated. Additionally, a series of combustion tests was carried out to analyze and evaluate the effect of boron addition on O/F variation and radial temperature profiles. To maintain the hybrid rocket engine advantages, upper limit of boron contents in solid fuel was set to be 10 wt%. The results also suggested that, when adding boron to solid fuel, it helped to provide more uniform radial temperature distribution and also to increase specific impulse by 3.2%.
Producing carbon stripper foils containing boron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, J. O. Jr.
2012-12-19
Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko
1997-07-01
Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phasemore » is suggested.« less
Friction and transfer behavior of pyrolytic boron nitride in contact with various metals
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1976-01-01
Sliding friction experiments were conducted with pyrolytic boron nitride in sliding contact with itself and various metals. Auger emission spectroscopy was used to monitor transfer of pyrolytic boron nitride to metals and metals to pyrolytic boron nitride. Results indicate that the friction coefficient for pyrolytic boron nitride in contact with metals can be related to the chemical activity of the metals and more particularly to the d valence bond character of the metal. Transfer was found to occur to all metals except silver and gold and the amount of transfer was less in the presence than in the absence of metal oxide. Friction was less for pyrolytic boron nitride in contact with a metal in air than in vacuum.
Safety Assessment of Boron Nitride as Used in Cosmetics.
Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2015-01-01
The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. © The Author(s) 2015.
Calculation of residual principal stresses in CVD boron on carbon filaments
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1980-01-01
A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber
2011-04-01
Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment ofmore » glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).« less
Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing
2018-05-25
A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12-16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max ) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.
Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.
2017-10-01
We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 °C, with B/(B + Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges from x = 0.06 to 0.16, closely following the gas-flow ratios. Transmission electron microscopy indicates the sole presence of a wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B + Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B + Al) gas-flow ratios that we have studied, which is significantly higher than previously thought.
NASA Astrophysics Data System (ADS)
Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing
2018-05-01
A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12–16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.
Sabater, Carlos; Olano, Agustín; Prodanov, Marin; Montilla, Antonia; Corzo, Nieves
2017-12-01
One of the most promising uses of whey permeate (WP) is the synthesis of prebiotic oligosaccharides. Herein, commercial WP was submitted to chemical isomerization catalysed by sodium borate at an alkaline pH and subsequent purification using anion-exchange resins to remove boron. Subsequently, purified mixtures were used to synthesize prebiotic oligosaccharides using β-galactosidase from Bacillus circulans. Isomerization of concentrated WP (200 g L -1 lactose) gave rise to levels of lactulose up to 155.5 g L -1 after 30 min of reaction (molar ratio of boron/lactose, 1/1; pH 12; 70 °C). Boron was removed from the isomerized WP (IWP) using the combination of a strong acid (IR-120, H + ) and a weak base (IRA-743) anion-exchange resins, reducing its level to <1 ppm, without loss of lactulose. During the transglycosylation reaction of purified IWP (lactose/lactulose ratio, 1/2.4) maximum content of prebiotic compounds was achieved, i.e. 690 g kg -1 WP after 3 h of reaction. This study shows that combined chemical-enzymatic reactions together with the purification of IWP results in an efficient synthesis of prebiotic oligosaccharides. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Koshiba, Taichi; Kobayashi, Masaru; Matoh, Toru
2009-01-01
Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD. PMID:19054807
Trace metals in corals--hind casting environmental chemical changes in the tropical Atlantic waters
NASA Astrophysics Data System (ADS)
Holmes, C. W.; Koenig, A.; Ridley, W. I.; Wilson, S. A.
2002-12-01
As corals grow, they secrete a calcareous skeleton with the aid of photosynthetic activity of endosymbiotic dinoflagellates (zooxanthellae). The rate of this secretion varies inter-annually. Entrapped with the carbonate are trace substances that record the chemistry of the surrounding ocean. Detailing changes in chemistry requires careful and very tedious high-resolution sampling. The advent of laser ablation inductive couple plasma/mass spectroscopy (LA-ICP/MS) circumvents this sampling problem. This method also permits a continuous scan of the entire coral skeleton. Another problem has been the lack of a carbonate standard which appears to be resolved with the creation of an artificial carbonate standard (USGS MAC-1). This standard is presently undergoing rigorous analysis, but preliminary results are very positive. The LA-ICP/MS data of three Atlantic corals reveals an intriguing distribution of trace metals and boron that may be related to climatic driven chemical changes during the last hundred years. The distribution of the trace metals appears to have an association with three climate signals: 1. the strength of the North Atlantic Oscillation (NAO), 2. the local effects of El Nino in the Florida region and 3. change in oceanic chemistry, possibly due to rising CO2. Aluminum and titanium levels vary with the strength of the NAO. The highest concentrations occur at the time of strong positive NOA when there is large amount of sediment transported off the deserts of North Africa. This relationship is particularly strong in the coral from the Cape Verde Islands. Along the eastern seaboard of the Atlantic, the relationship is not as pronounced but still observable. Nutrients and anthropogenic trace metals, such as zinc, lead, and mercury appear to correlate with local conditions and show a weak correspondence to the El Nino as it affects south Florida. Boron variation is directly related to the high-density bands of the corals. The long-term record of boron concentrations in a coral collected at Looe Key shows an increase of approximately 25 percent from 1885 to a peak in the early 1970s. From the peak until 1983, the time of collection, boron decreases about 15 percent. Boron in the twenty-year record in the Cape Verde coral shows a similar decrease. Hemming and others (1986) found that the boron concentration and the heavy isotope of carbon, 13C are concentrated in the annual high-density bands. They proposed that this phenomenon is the result of the physiological processes leading to the precipitation of the carbonate structure. Assuming that the zooanthellae are driving the photosynthetic processes, the explanation of high boron and associated high δ13C is the result of increased primary productivity. As a result, 12C is preferentially utilized within the cell leaving the extracelluar fluids in the region between the basal ectoderm and exoskeleton enriched in 13C. In addition, this increased activity increases HCO3^{-} leading to the higher pH in these fluids. This increase in pH, favors an increase in the reactive species, B(OH)_{4}$-which leads to increased boron precipitation within the carbonate structure. If this model is correct, our data suggest that increases in boron reflect increases in photosynthesis from the 1800s till about 1970, then have slightly decreased.
Energy release properties of amorphous boron and boron-based propellant primary combustion products
NASA Astrophysics Data System (ADS)
Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu
2015-07-01
The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albayrak, Onder, E-mail: albayrakonder@mersin.edu.tr
In the current study, boron doped biphasic calcium phosphate bioceramics consisting of a mixture of boron doped hydroxyapatite (BHA) and beta tricalcium phosphate (β-TCP) of varying BHA/β-TCP ratios were obtained after sintering stage. The effects of varying boron contents and different sintering temperatures on the BHA/β-TCP ratios and on the sinterability of the final products were investigated. Particle sizes and morphologies of the obtained precipitates were determined using SEM. XRD and FTIR investigation were conducted to detect the boron formation in the structure of HA and quantitative analysis was performed to determine the BHA/β-TCP ratio before and after sintering stage.more » In order to determine the sinterability of the obtained powders, pellets were prepared and sintered; the rates of densification were calculated and obtained results were correlated by SEM images. Also Vickers microhardness values of the sintered samples were determined. The experimental results verified that boron doped hydroxyapatite powders were obtained after sintering stage and the structure consists of a mixture of BHA and β-TCP. As the boron content used in the precipitation stage increases, β-TCP content of the BHA/β-TCP ratio increases but sinterability, density and microhardness deteriorate. As the sintering temperature increases, β-TCP content, density and microhardness of the samples increase and sinterability improves. - Highlights: • This is the first paper about boron doped biphasic calcium phosphate bioceramics. • Boron doping affects the structural and mechanical properties. • BHA/β-TCP ratio can be adjustable with boron content and sintering temperature.« less
Goszczyński, Tomasz M; Kowalski, Konrad; Leśnikowski, Zbigniew J; Boratyński, Janusz
2015-02-01
Boron clusters represent a vast family of boron-rich compounds with extraordinary properties that provide the opportunity of exploitation in different areas of chemistry and biology. In addition, boron clusters are clinically used in boron neutron capture therapy (BNCT) of tumors. In this paper, a novel, in solid state (solvent free), thermal method for protein modification with boron clusters has been proposed. The method is based on a cyclic ether ring opening in oxonium adduct of cyclic ether and a boron cluster with nucleophilic centers of the protein. Lysozyme was used as the model protein, and the physicochemical and biological properties of the obtained conjugates were characterized. The main residues of modification were identified as arginine-128 and threonine-51. No significant changes in the secondary or tertiary structures of the protein after tethering of the boron cluster were found using mass spectrometry and circular dichroism measurements. However, some changes in the intermolecular interactions and hydrodynamic and catalytic properties were observed. To the best of our knowledge, we have described the first example of an application of cyclic ether ring opening in the oxonium adducts of a boron cluster for protein modification. In addition, a distinctive feature of the proposed approach is performing the reaction in solid state and at elevated temperature. The proposed methodology provides a new route to protein modification with boron clusters and extends the range of innovative molecules available for biological and medical testing. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sanghoon; Kang, Yongjoon; Lee, Changhee, E-mail: chlee@hanyang.ac.kr
The boron segregation behavior in the coarse-grained heat-affected zone (CGHAZ) of 10 ppm boron-added low-alloy steel during the welding cycle was investigated by taking the changes in the microstructure and hardness into account. Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress, and the boron segregation behavior was analyzed by secondary ion mass spectrometry (SIMS) and particle tracking autoradiography (PTA). The segregation of boron was found to initially increase, and then decrease with an increase in the heat input. This is believed to be due to the back-diffusion of boron withmore » an increase in the exposure time at high temperature after non-equilibrium grain boundary segregation. The grain boundary segregation of boron could be decreased by an external stress applied during the welding cycle. Such behavior may be due to an increase in the grain boundary area as a result of the grain size reduction induced by the external stress. - Highlights: • Boron segregation behavior in the CGHAZ of low-alloy steel during a welding cycle was investigated. • Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress. • Boron segregation behavior was analyzed using SIMS and PTA techniques.« less
Hybrid-PIC Modeling of the Transport of Atomic Boron in a Hall Thruster
NASA Technical Reports Server (NTRS)
Smith, Brandon D.; Boyd, Iaian D.; Kamhawi, Hani
2015-01-01
Computational analysis of the transport of boron eroded from the walls of a Hall thruster is performed by implementing sputter yields of hexagonal boron nitride and velocity distribution functions of boron within the hybrid-PIC model HPHall. The model is applied to simulate NASA's HiVHAc Hall thruster at a discharge voltage of 500V and discharge powers of 1-3 kW. The number densities of ground- and 4P-state boron are computed. The density of ground-state boron is shown to be a factor of about 30 less than the plasma density. The density of the excited state is shown to be about three orders of magnitude less than that of the ground state, indicating that electron impact excitation does not significantly affect the density of ground-state boron in the discharge channel or near-field plume of a Hall thruster. Comparing the rates of excitation and ionization suggests that ionization has a greater influence on the density of ground-state boron, but is still negligible. The ground-state boron density is then integrated and compared to cavity ring-down spectroscopy (CRDS) measurements for each operating point. The simulation results show good agreement with the measurements for all operating points and provide evidence in support of CRDS as a tool for measuring Hall thruster erosion in situ.
Modeling and Modification of the Electromagnetic Properties of Advanced Composite Materials.
1980-01-01
Direction into x tpaper L2JI F L TRANSVERSE CONDuCTIVmf !( oDK FIGUR 1-2 ’I I _ _ _ _ _ _ _ _ _ _ _ _ _ _ T-1 14 Pe’u are the electron, hole mobilities and...Otte and Lipsitt [4]. One of the conclusions of (5] is to characterize CYD boron as a collection of small crystallites of the 3-rhombohedral form
Clarifying Atomic Weights: A 2016 Four-Figure Table of Standard and Conventional Atomic Weights
ERIC Educational Resources Information Center
Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.
2017-01-01
To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron,…
Mineral resource of the month: boron
Lyday, Phyllis A.
2005-01-01
What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.
The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet
USDA-ARS?s Scientific Manuscript database
NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...
Boron compounds as anion binding agents for nonaqueous battery electrolytes
Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili
2000-02-08
Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.
Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes
Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James; Sun, Xuehui
2002-01-01
Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.
BIO-PRECIPITATES PRODUCED BY TWO AUTOCHTHONOUS BORON TOLERANT STREPTOMYCES STRAINS.
Moraga, Norma Beatriz; Irazusta, Verónica; Amoroso, María Julia; Rajal, Verónica Beatriz
2017-08-01
Boron is widespread in the environment. Although contaminated soils are hard to recover different strategies have been investigated in the recent years. Bioremediation is one of the most studied because it is eco-friendly and less costly than other techniques. The aim of this research was to evaluate whether two Streptomyces strains isolated from boron contaminated soils in Salta, Argentina, may help remove boron from such soils. For this, they were grown in different liquid media with two boric acid concentrations and their specific growth rate and specific boric acid consumption rate were determined. Both strains showed great capacity to remove boron from the media. Increasing boric acid concentrations affected negatively the specific growth rate, however the specific boric acid consumption rate was superior. Boron bio-precipitates were observed when the strains grew in the presence of boric acid, probably due to an adaptive response developed by the cells to the exposure, for which many proteins were differentially synthetized. This strategy to tolerate high concentrations of boron by immobilizing it in bio-precipitates has not been previously described, to the best of our knowledge, and may have a great potential application in remediating soils contaminated with boron compounds.
Effects of boron on structure and antioxidative activities of spleen in rats.
Hu, Qianqian; Li, Shenghe; Qiao, Enmei; Tang, Zhongtao; Jin, Erhui; Jin, Guangming; Gu, Youfang
2014-04-01
In order to determine the relationship between boron and development of the spleen, especially in the promoting biological effects, we examined the effects of different levels of boron on weight, organ index, microstructure, and antioxidative activities of the spleen in rats. Sprague-Dawley (SD) rats were selected and treated with different concentrations of boron, and then, the organs were resected and weighed. One half of the tissue was fixed and embedded in paraffin to observe tissue structure changes. The other half of the tissue was homogenated for determining the antioxidant activities. The results showed that 40 mg/L of boron could increase weight, organ indexes, and antioxidant capacity of spleens and improve the spleen tissue structure, while the boron concentration above 80 mg/L could decrease weight, organ indexes, and antioxidant capacity of spleens and damage the spleen tissue structure. The higher the concentration, the more serious the damage was. Especially at the concentration of 640 mg/L, it could significantly inhibit the development of the spleen and even exhibit toxic effect. Hence, low boron concentration played a protective role in the development of the spleen, while high boron concentration could damage the organs and even produce toxic effect.
Effect of MoO3 on the synthesis of boron nitride nanotubes over Fe and Ni catalysts.
Nithya, Jeghan Shrine Maria; Pandurangan, Arumugam
2012-05-01
Synthesis of boron nitride nanotubes at reduced temperature is important for industrial manufactures. In this study boron nitride nanotubes were synthesized by thermal evaporation method using B/Fe2O3/MoO3 and B/Ni2O3/MoO3 mixtures separately with ammonia as the nitrogen source. The growth of boron nitride nanotubes occurred at 1100 degrees C, which was relatively lower than other metal oxides assisted growth processes requiring higher than 1200 degrees C. MoO3 promoted formation of B2O2 and aided boron nitride nanotubes growth at a reduced temperature. The boron nitride nanotubes with bamboo shaped, nested cone structured and straight tubes like forms were evident from the high resolution transmission electron microscopy. Metallic Fe and Ni, formed during the process, were the catalysts for the growth of boron nitride nanotubes. Their formation was established by X-ray diffraction. FT Raman showed a peak due to B-N vibration of BNNTs close to 1370 cm(-1). Hence MoO3 assisted growth of boron nitride nanotubes is advantageous, as it significantly reduced the synthesis temperature.
NASA Astrophysics Data System (ADS)
Chioma Affam, Augustine; Chung Wong, Chee; Seyam, Mohammed A. B.; Matt, Chelsea Ann Anak Frederick; Lantan Anak Sumbai, Josephine; Evuti, Abdullahi Mohammed
2018-03-01
Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT) method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal). It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zasneda, Sabriani; Widita, Rena
2010-06-22
Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less
Method of preparing thermal insulation for high temperature microwave sintering operations
Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.
1996-07-16
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.
Thermal insulation for high temperature microwave sintering operations and method thereof
Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.
1995-09-12
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.
Tamay-Cach, Feliciano; Correa-Basurto, José; Villa-Tanaca, Lourdes; Mancilla-Percino, Teresa; Juárez-Montiel, Margarita; Trujillo-Ferrara, José G
2013-10-01
Three glutamic acid derivatives, two boron-containing and one imide-containing compound, were synthesized and tested for antimicrobial activity targeting glutamate-racemase. Antimicrobial effect was evaluated over Bacillus spp. Docking analysis shown that the test compounds bind near the active site of racemase isoforms, suggesting an allosteric effect. The boron derivatives had greater affinity than the imide derivative. In vitro assays shown good antimicrobial activity for the boron-containing compounds, and no effectiveness for the imide-containing compounds. The minimum inhibitory concentration of tetracycline, used as standard, was lower than that of the boron-containing derivatives. However, it seems that the boron-containing derivatives are more selective for bacteria. Experimental evidence suggests that the boron-containing derivatives act by inhibiting the racemase enzyme. Therefore, these test compounds probably impede the formation of the bacterial cell wall. Thus, the boron-containing glutamic acid derivatives should certainly be of interest for future studies as antimicrobial agents for Bacillus spp.
Boronization on NSTX using Deuterated Trimethylboron
DOE Office of Scientific and Technical Information (OSTI.GOV)
W.R. Blanchard; R.C. Gernhardt; H.W. Kugel
2002-01-28
Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in themore » execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described.« less
Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert
2015-02-23
Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sahara, Ryoji; Matsunaga, Tetsuya; Hongo, Hiromichi; Tabuchi, Masaaki
2016-05-01
Small amounts of boron improve the mechanical properties in high-chromium ferritic heat-resistant steels. In this work, the stabilizing mechanism by boron in body-centered cubic iron (bcc Fe) through (Fe,Cr)23(C,B)6 precipitates was investigated by first-principles calculations. Formation energy analysis of (Fe,Cr)23(C,B)6 reveals that the compounds become more stable to elemental solids as the boron concentration increases. Furthermore, the interface energy of bcc Fe(110) || Fe23(C,B)6(111) also decreases with boron concentration in the compounds. The decreased interface energy caused by boron addition is explained by the balance between the change in the phase stability of the precipitates and the change in the misfit parameter for the bcc Fe matrix and the precipitates. These results show that boron stabilizes the microstructure of heat-resistant steels, which is important for understanding the origins of the creep strength in ferritic steels.
Recent progress on borophene: Growth and structures
NASA Astrophysics Data System (ADS)
Kong, Longjuan; Wu, Kehui; Chen, Lan
2018-06-01
Boron is the neighbor of carbon on the periodic table and exhibits unusual physical characteristics derived from electron-deficient, highly delocalized covalent bonds. As the nearest neighbor of carbon, boron is in many ways similar to carbon, such as having a short covalent radius and the flexibility to adopt sp 2 hybridization. Hence, boron could be capable of forming monolayer structural analogues of graphene. Although many theoretical papers have reported finding two-dimensional allotropes of boron, there had been no experimental evidence for such atom-thin boron nanostructures until 2016. Recently, the successful synthesis of single-layer boron (referred to as borophene) on the Ag(111) substrate opens the era of boron nanostructures. In this brief review, we will discuss the progress that has been made on borophene in terms of synthetic techniques, characterizations and the atomic models. However, borophene is just in infancy; more efforts are expected to be made in future on the controlled synthesis of quality samples and tailoring its physical properties.
Spherical boron nitride particles and method for preparing them
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2003-11-25
Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.
Bortolussi, Silva; Ciani, Laura; Postuma, Ian; Protti, Nicoletta; Luca Reversi; Bruschi, Piero; Ferrari, Cinzia; Cansolino, Laura; Panza, Luigi; Ristori, Sandra; Altieri, Saverio
2014-06-01
The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations. © 2013 Published by Elsevier Ltd.
Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles
NASA Astrophysics Data System (ADS)
Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya
2018-04-01
Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.
Boron Partitioning Coefficient above Unity in Laser Crystallized Silicon.
Lill, Patrick C; Dahlinger, Morris; Köhler, Jürgen R
2017-02-16
Boron pile-up at the maximum melt depth for laser melt annealing of implanted silicon has been reported in numerous papers. The present contribution examines the boron accumulation in a laser doping setting, without dopants initially incorporated in the silicon wafer. Our numerical simulation models laser-induced melting as well as dopant diffusion, and excellently reproduces the secondary ion mass spectroscopy-measured boron profiles. We determine a partitioning coefficient k p above unity with k p = 1 . 25 ± 0 . 05 and thermally-activated diffusivity D B , with a value D B ( 1687 K ) = ( 3 . 53 ± 0 . 44 ) × 10 - 4 cm 2 ·s - 1 of boron in liquid silicon. For similar laser parameters and process conditions, our model predicts the anticipated boron profile of a laser doping experiment.
Calculation of residual principal stresses in CVD boron on carbon filaments
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1980-01-01
A three-dimensional finite element model of the chemical vapor deposition (CVD) of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented to show how the principal residual stresses and the filament elongation vary as the parameters defining deposition strain and creep are varied. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. This comparison requires that for good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and that the build-up of residual stresses is limited by significant boron and carbon creep rates.
New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick
This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide rangemore » of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have demonstrated the predicted increase in binding energy experimentally, currently at ~10 kJ/mol. The synthetic route for incorporation of boron at the outset is to create appropriately designed copoly- mers, with a boron-free and a boron-carrying monomer, followed by pyrolysis of the polymer, yielding a bo- ron-substituted carbon scaffold in which boron atoms are bonded to carbon atoms by synthesis. This is in contrast to a second route (funded by DE-FG36-08GO18142) in which first high-surface area carbon is cre- ated and doped by surface vapor deposition of boron, with incorporation of the boron into the lattice the final step of the fabrication. The challenge in the first route is to create high surface areas without compromising sp2 boron-carbon bonds. The challenge in the second route is to create sp2 boron-carbon bonds without com- promising high surface areas.« less
2017-10-03
Physics of Solids, 78 (314-332). 2014. 6. C . X. Zhang, J . Z. Song, Q. D. Yang, “Periodic buckling patterns of graphene/hexagonal boron nitride...Mechanics, 139 (78-97), 2015. 9. Y. C . Gu, J . Jung, Q. D. Yang, and W. Q. Chen, “A New Stabilizing Method for Numerical Analyses with Severe...Local and Global Instability”, ASME Journal of Applied Mechanics, 82 (101010-1, -12), 2015 10. J . Jung, B. C . Do, and Q. D. Yang, “A-FEM for Arbitrary
Method to improve lubricity of low-sulfur diesel and gasoline fuels
Erdemir, Ali
2004-08-31
A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.
Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong
2014-12-01
Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.
METHOD OF PREPARING POLONIUM-BORON SOURCES
Birden, J.H.
1959-08-01
An improved technique is described for preparation of a polonium-boron neutron source. A selected amount of Po-210 is vaporized into a thin walled nickel container, then the desired amcunt of boron powder is added. After sealing the container, it is heated quickly by induction heating to vaporize the Po-210 and deposit it in the still cool boron powder. The unit is then quickly cooled to prevent revaporization of the Po-210 from the boron. The build-up of neutron emission may be followed by means of a neutron counter in order to terminate the heating at the optimum level of neutron yield.
NASA Astrophysics Data System (ADS)
Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan
2017-11-01
A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.
B38: an all-boron fullerene analogue.
Lv, Jian; Wang, Yanchao; Zhu, Li; Ma, Yanming
2014-10-21
Fullerene-like structures formed by elements other than carbon have long been sought. Finding all-boron (B) fullerene-like structures is challenging due to the geometrical frustration arising from competitions among various structural motifs. We report here the prediction of a B38 fullerene analogue found through first-principles swarm structure searching calculations. The structure is highly symmetric and consists of 56 triangles and four hexagons, which provide an optimal void in the center of the cage. Energetically, it is more favorable than the planar and tubular structures, and possesses an unusually high chemical stability: a large energy gap (∼2.25 eV) and a high double aromaticity, superior to those of most aromatic quasi-planar B12 and double-ring B20 clusters. Our findings represent a key step forward towards to the understanding of structures of medium-sized B clusters and map out the experimental direction of the synthesis of an all-B fullerene analogue.
PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)
NASA Astrophysics Data System (ADS)
Tanaka, Takaho
2009-07-01
This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions, 'Boron chemistry' and 'Superconductivity', were also held at the symposium. The session on Boron chemistry was planned to honor the scientific work in boron chemistry of Professor J Bauer on the occasion of his retirement. Many recent results were discussed in the session, and Professor Bauer himself introduced novel rare-earth-boron-carbon compounds RE10B7C10 (RE = Gd - Er) in his lecture. In the latter session, on the basis of recent discoveries of superconductivity in MgB2 and in β-boron under high pressure, the superconductivity of boron and related materials was discussed and the superconductivity of boron-doped diamond was also addressed. More than 120 participants from 16 countries attended the ISBB 2008, and active presentations (22 invited, 33 oral and 68 posters) and discussions suggest that research on boron and borides is entering a new phase of development. This volume contains 46 articles from 52 submitted manuscripts. The reviewers were invited not only from symposium participants but also from specialists worldwide, and they did a great job of evaluating and commenting on the submitted manuscripts to maintain the highest quality standard of this volume. Recent discoveries of superconductivity in boron under high pressure, synthesis of a new allotrope of boron and of various boron and boride nanostructures will lead this highly interdisciplinary field of science, which will further grow and gain attention in terms of both basic and applied research. In this context, we are very much looking forward to the next symposium, which will be held in Istanbul, Turkey, in 2011, organized by Professor Onuralp Yucel, Istanbul Technical University. Turkey currently has the world highest share of borate production and is expected to be involved more in boron-related research. Acknowledgements We gratefully acknowledge the style improvement by Dr K Iakoubovskii, and sincerely thank Shimane Prefecture and Matsue City for their financial support. The symposium was also supported by Tokyo University of Science, Suwa and foundations including, the Kajima Foundation, Foundation for Promotion of Material Science and Technology of Japan and Nippon Sheet Glass Foundation for Materials Science and Engineering, as well as companies including JFE Steel Corporation, Shincron Co, Ltd, Toyo Kohan Co, Ltd, Fukuda Metal Foil and Powder Co, Ltd, Japan New Metals Co, Ltd, H C Starck Ltd and Fritsch Japan Co, Ltd. Editors Chair Takaho Tanaka (National Institute for Materials Science, Japan) Vice chairs Koun Shirai (Osaka University, Japan) Kaoru Kimura (The University of Tokyo, Japan) Ken-ichi Takagi (Tokyo City University, Japan) Touetsu Shishido (Tohoku University, Japan) Shigeru Okada (Kokushikan University) Hideaki Itoh (Nagoya University,Japan) Katsumitsu Nakamura (Nihon University, Japan) Organizing committee of ISBB 2008 K Takagi Chairman (Tokyo City University) T Tanaka Program Committee Chairman (National Institute for Materials Science) K Kimura Secretary (The University of Tokyo) J Akimitsu (Aoyama University)K Shirai (Osaka University) H Itoh (Nagoya University)T Shishido (Tohoku University) K Nakamura (Nihon University)K Soga (Tokyo University of Science) K Nishiyama (Tokyo University of Science, Suwa)M Takeda (Nagaoka University of Technology) S Okada (Kokushikan University)Y Yamazaki (Toyo Kohan Co, Ltd) International Scientific Committee 0f ISBB (2008-2011) K Takagi Chairman (Japan) B Albert (Germany) J-F Halet (France) M Takeda (Japan) M Antadze (Georgia) H Hillebrecht (Germany) T Tanaka (Japan) J Bauer (France) W Jung (Germany) R Telle (Germany) I Boustani (Germany) K Kimura (Japan) M Trenary (USA) D Emin (USA) T Mori (Japan) O Tsagareishvili (Georgia) M Engler (Germany) P D Ownby (USA) H Werheit (Germany) N Frage (Israel) P Rogl (Austria) G Will (Germany) Yu Grin (Germany) S Shalamberidze (Georgia) O Yucel (Turkey) V N Gurin (Russia) N Shitsevalova (Ukraine) G Zhang (China)
Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride
NASA Astrophysics Data System (ADS)
Rinaldo, Steven G.
This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.
Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions
2015-04-17
Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions Anthony P. Shaw,*,† Giancarlo Diviacchi,‡ Ernest L. Black,‡ Jared D...have been demonstrated to produce thick white smoke clouds upon combustion. These compositions use powdered boron carbide (B4C) as a pyrotechnic...ignition and are safe to handle. KEYWORDS: Smoke, Obscurants, Pyrotechnics, Boron carbide, Sustainable chemistry ■ INTRODUCTION Visible obscuration
Apparatus for the production of boron nitride nanotubes
Smith, Michael W; Jordan, Kevin
2014-06-17
An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.
Low-loss binder for hot pressing boron nitride
Maya, Leon
1991-01-01
Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.
Synthesis, Properties, and Applications Of Boron Nitride
NASA Technical Reports Server (NTRS)
Pouch, John J.; Alterovitz, Samuel A.
1993-01-01
Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.
Radiation hardening of metal-oxide semi-conductor (MOS) devices by boron
NASA Technical Reports Server (NTRS)
Danchenko, V.
1974-01-01
Technique using boron effectively protects metal-oxide semiconductor devices from ionizing radiation without using shielding materials. Boron is introduced into insulating gate oxide layer at semiconductor-insulator interface.
Hot tensile behaviour in silicon-killed boron microalloyed steels
NASA Astrophysics Data System (ADS)
Chown, Lesley H.; Cornish, Lesley A.
2017-10-01
Low carbon steel for drawing and cold heading applications should have low strength, high ductility and low strain ageing rates. To achieve this, nitrogen must be removed from solid solution, which can be done by low additions of boron. A wire producer had been experiencing occasional problems with severe cracking on silicon-killed, boron steel billets during continuous casting, but the solution was not obvious. Samples from four billets, each from different casts, were removed for analysis and testing. The tested steel compositions were within the specification limits, with boron to nitrogen ratios of 0.40-1.19. Hot ductility testing was performed on a Gleeble 1500 using parameters approximating the capabilities of this particular billet caster. The steel specimens were subjected to in situ melting, then cooled at a rate of 2 C.s-1 to temperatures in the range 750-1250°C, where they were then pulled to failure at a strain rate of 8x10-4 s-1. In this work, it was found that both the boron to nitrogen ratio and the manganese to sulphur ratio influenced the hot ductility and hence the crack susceptibility. Excellent hot ductility was found for B:N ratios above 1.0, which confirmed that the B:N ratio should be above a stoichiometric value of 0.8 to remove all nitrogen from solid solution. TEM analysis showed that coarse BN precipitates nucleated on other precipitates, such as (Fe,Mn)S, which have relatively low melting points, and are detrimental to hot ductility. Low Mn:S ratios of 10 - 12 were shown to promote precipitation of FeS, so a Mn:S > 14 was recommended. A narrower billet surface temperature range for straightening was recommended to prevent transverse surface cracking. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly for Mn:S < 14. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was derived as a simple tool to predict, and hence mitigate, scrap levels in the casting plant.
Day, Joanna K; Bresner, Christopher; Coombs, Natalie D; Fallis, Ian A; Ooi, Li-Ling; Aldridge, Simon
2008-02-04
The thermodynamic factors underlying the use of ferroceneboronic esters as electrochemical or colorimetric fluoride ion sensors have been investigated through the synthesis of a range of systematically related derivatives differing in the number/nature of the boronic ester substituents and in the nature of ancillary ligands. Thus, if the shift in electrochemical potential associated with the conversion of one (or more) boronic ester group(s) to anionic boronate(s) on fluoride binding is sufficient to allow oxidation of the resulting host/guest complex by dioxygen, colorimetric sensing is possible. In practice, while monofunctional systems of the type CpFe[eta(5)-C(5)H(4)B(OR)(2)] offer selectivity in fluoride binding, electrochemical shifts in chloroform solution are insufficient to allow for a colorimetric response. Two chemical modification strategies have been shown to be successful in realizing a colorimetric sensor: (i) the use of the more strongly electron-donating Cp(*) ancillary ligand (which shifts the oxidation potential of both the free receptor and the resulting fluoride adduct cathodically by ca. -400 mV) and (ii) receptors featuring two or more binding sites and consequently a larger fluoride-induced electrochemical shift. Thus, in the case of [eta(5)-C(5)H(4)B(OR)(2)](2)Fe [(OR)(2) = OC(H)PhC(H)PhO, 2(s)], the binding of 2 equiv of fluoride gives an electrochemical shift (in chloroform) of -960 mV (cf. -530 mV for the corresponding monofunctional analogue, 1(s)). Related tris- and tetrakis-functionalized systems are also shown to be oxidized as the bis(fluoride) adducts, presumably because of fast oxidation kinetics, relative to the rate of the (electrostatically unfavorable) binding of a third equivalent of fluoride. Furthermore, the rate of sensor response (as measured by UV/vis spectroscopy) is found to be strongly enhanced by the presence of pendant (uncomplexed) three-coordinate boronic ester functions (e.g., a rate enhancement of 1-2 orders of magnitude for 3(s)/4(s) with respect to 2(s)) and/or delocalized aromatic substituents.
Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi
2013-02-01
Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.
Boron containing compounds and their preparation and use in neutron capture therapy
Gabel, D.
1992-09-01
The present invention pertains to boron containing thiouracil derivatives, their method of preparations, and their use in the therapy of malignant melanoma using boron neutron capture therapy. No Drawings
Boron nitride housing cools transistors
NASA Technical Reports Server (NTRS)
1965-01-01
Boron nitride ceramic heat sink cools transistors in r-f transmitter and receiver circuits. Heat dissipated by the transistor is conducted by the boron nitride housing to the metal chassis on which it is mounted.
Effect of Boron and Titanium Addition on the Hot Ductility of Low-Carbon Nb-Containing Steel
NASA Astrophysics Data System (ADS)
Liu, Wei-Jian; Li, Jing; Shi, Cheng-Bin; Huo, Xiang-Dong
2015-12-01
The effect of boron and titanium addition on the hot ductility of Nb-containing steel was investigated using hot tensile tests. The fracture surface and the quenched longitudinal microstructure were examined by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that both steel samples had the similar change from 1,100°C to 700°C. The hot ductility of Nb-containing steel with boron and titanium addition was higher than the steel without boron and titanium in the temperature range of 900-750°C. Because the formation of intergranular ferrite was inhibited by solute boron segregating on the grain boundary, the formation of TiN changed the distribution of Nb- and boron-containing precipitates and improved the amount of intragranular ferrite.
Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K
2014-11-18
We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.
Exposure assessment of boron in Bandırma boric acid production plant.
Duydu, Yalçin; Başaran, Nurşen; Bolt, Hermann M
2012-06-01
Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL of 17.5mg B/kg-bw/day (corresponds to ∼2020 ng boron/g blood) has been identified for the (male) reproductive effects of boron in a multigenerational study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day (corresponds to 1270 ng boron/g blood). These values are being taken as the basis of current EU safety assessments. The present study was conducted to assess the boron exposure under extreme exposure conditions in a boric acid production plant located in Bandırma, Turkey. The mean blood boron concentrations of low and high exposure groups were 72.94 ± 15.43 (48.46-99.91) and 223.89 ± 60.49 (152.82-454.02)ng/g respectively. The mean blood boron concentration of the high exposure group is still ≈ 6 times lower than the highest no effect level of boron in blood with regard to the developmental effects in rats and ≈ 9 times lower than the highest no effect level of boron in blood with regard to the reprotoxic effects in male rats. In this context, boric acid and sodium borates should not be considered as toxic to reproduction for humans in daily life. Copyright © 2012 Elsevier GmbH. All rights reserved.
Microstructure and Porosity of Laser Welds in Cast Ti-6Al-4V with Addition of Boron
NASA Astrophysics Data System (ADS)
Tolvanen, Sakari; Pederson, Robert; Klement, Uta
2018-03-01
Addition of small amounts of boron to cast Ti-6Al-4V alloy has shown to render a finer microstructure and improved mechanical properties. For such an improved alloy to be widely applicable for large aerospace structural components, successful welding of such castings is essential. In the present work, the microstructure and porosity of laser welds in a standard grade cast Ti-6Al-4V alloy as well as two modified alloy versions with different boron concentrations have been investigated. Prior-β grain reconstruction revealed the prior-β grain structure in the weld zones. In fusion zones of the welds, boron was found to refine the grain size significantly and rendered narrow elongated grains. TiB particles in the prior-β grain boundaries in the cast base material restricted grain growth in the heat-affected zone. The TiB particles that existed in the as cast alloys decreased in size in the fusion zones of welds. The hardness in the weld zones was higher than in the base material and boron did not have a significant effect on hardness of the weld zones. The fusion zones were smaller in the boron-modified alloys as compared with Ti-6Al-4V without boron. Computed tomography X-ray investigations of the laser welds showed that pores in the FZ of the boron modified alloys were confined to the lower part of the welds, suggesting that boron addition influences melt pool flow.
Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio
2015-04-01
This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.
Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape
NASA Technical Reports Server (NTRS)
Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.
2007-01-01
The term HYCARB denotes a hybrid composite of polyimide matrices reinforced with carbon and boron fibers. HYCARB and an improved process for fabricating dry HYCARB tapes have been invented in a continuing effort to develop lightweight, strong composite materials for aerospace vehicles. Like other composite tapes in this line of development, HYCARB tapes are intended to be used to build up laminated structures having possibly complex shapes by means of automated tow placement (ATP) - a process in which a computer-controlled multiaxis machine lays down prepreg tape or tows. The special significance of the present process for making dry HYCARB for ATP is that it contributes to the reduction of the overall cost of manufacturing boron-reinforced composite-material structures while making it possible to realize increased compression strengths. The present process for making HYCARB tapes incorporates a "wet to dry" process developed previously at Langley Research Center. In the "wet to dry" process, a flattened bundle of carbon fiber tows, pulled along a continuous production line between pairs of rollers, is impregnated with a solution of a poly(amide acid) in N-methyl-2-pyrrolidinone (NMP), then most of the NMP is removed by evaporation in hot air. In the present case, the polyamide acid is, more specifically, that of LaRC. IAX (or equivalent) thermoplastic polyimide, and the fibers are, more specifically, Manganite IM7 (or equivalent) polyacrylonitrile- based carbon filaments that have a diameter of 5.2 m and are supplied in 12,000-filament tows. The present process stands in contrast to a prior process in which HYCARB tape was made by pressing boron fibers into the face of a wet carbon-fiber/ poly(amide acid) prepreg tape . that is, a prepreg tape from which the NMP solvent had not been removed. In the present process, one or more layer(s) of side-by-side boron fibers are pressed between dry prepreg tapes that have been prepared by the aforementioned gwet to dry h process. The multilayer tape is then heated to imidize the matrix material and remove most of the remaining solvent, and is pressed to consolidate the multiple layers into a dense tape. For tests, specimens of HYCARB tapes and laminated composite panels made from HYCARB tape were prepared as follows: HYCARB tapes were fabricated as described above. Each panel was made by laying down ten layers of tape, containing, variously, one, two, or three boron-fiber plies and the remainder carbon- fiber-only plies (see figure). Each panel was made by laying down ten layers of tape. Each panel was then cured by heating to a temperature of 225 C for 15 minutes, then pressing at 200 psi (A1.4 MPa) while heating to 371 C, holding at 371 C for 1 hour, then continuing to hold pressure during cooling. Control specimens that were otherwise identical except that they did not contain boron fibers also were prepared. In room-temperature flexural tests, the HYCARB specimens performed comparably to the control specimens; in room-temperature, open-hole compression tests, the HYCARB specimens performed slightly better, by amounts that increased with boron content.
Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures
1997-12-15
TITLE AND SUBTITLE Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures 6. AUTHOR(S) Kristen J. Law...project has developed a low temperature polymer ceramic composite consisting of boron carbide layers bonded by cement, laminated with polymer...composite have been shown to compare favorably to those of partially sintered boron carbide. Applications for this material have been identified in
Neutron absorbing room temperature vulcanizable silicone rubber compositions
Zoch, Harold L.
1979-11-27
A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.
Development and Performance of Boron Carbide-Based Smoke Compositions
2013-03-06
DOI: 10.1002/prep.201200166 Development and Performance of Boron Carbide -Based Smoke Compositions Anthony P. Shaw,*[a] Jay C. Poret,[a] Robert A...volatilized and recondense to give smoke. Boron carbide was recognized as a pyrotechnic fuel many years ago, but it has since been overlooked. A 1961...Abstract : Pyrotechnic smoke compositions for visual ob- scuration containing boron carbide , potassium nitrate, po- tassium chloride, and various lubricants
The performance of a boron-loaded gel-fuel ramjet
NASA Astrophysics Data System (ADS)
Haddad, A.; Natan, B.; Arieli, R.
2011-10-01
The present work focuses on the possibility of combining the advantages of ramjet propulsion with the high energetic potential of boron. However, the use of boron poses two major challenges. The first, common to all solid additives to liquid fuels is particle sedimentation and poor dispersion. This problem is solved through the use of a gel fuel. The second obstacle, specific to boron-enriched fuels, is the difficulty in realizing the full energetic potential of boron. This could be overcome by means of an aft-combustion chamber, where fuel-rich combustion products are mixed with cold bypass air. Cooling causes the gaseous boron oxide to condense and, as a consequence, the heat of evaporation trapped in the gaseous oxide is released. The merits of such a combination are assessed through its ability to power an air-to-surface missile of relatively small size, capable of delivering a large payload to over a distance of about 1000 km in short time. The paper presents a preliminary design of a ramjet missile using a gel fuel loaded with boron. The thermochemical aspects of the two-stage combustion of the fuel are considered. A comparison with a solid rocket motor (SRM) missile launched under the same conditions as the ramjet missile is made. The boron-loaded gel-fuel ramjet is found superior for this mission.
Amorphous boron gasket in diamond anvil cell research
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin
2003-11-01
Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.
Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2016-01-19
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.
Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2016-01-01
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258
Corrosion and wear behaviors of boronized AISI 316L stainless steel
NASA Astrophysics Data System (ADS)
Kayali, Yusuf; Büyüksaǧiş, Aysel; Yalçin, Yılmaz
2013-09-01
In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.
SU-E-T-656: Quantitative Analysis of Proton Boron Fusion Therapy (PBFT) in Various Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, D; Jung, J; Shin, H
2015-06-15
Purpose: Three alpha particles are concomitant of proton boron interaction, which can be used in radiotherapy applications. We performed simulation studies to determine the effectiveness of proton boron fusion therapy (PBFT) under various conditions. Methods: Boron uptake regions (BURs) of various widths and densities were implemented in Monte Carlo n-particle extended (MCNPX) simulation code. The effect of proton beam energy was considered for different BURs. Four simulation scenarios were designed to verify the effectiveness of integrated boost that was observed in the proton boron reaction. In these simulations, the effect of proton beam energy was determined for different physical conditions,more » such as size, location, and boron concentration. Results: Proton dose amplification was confirmed for all proton beam energies considered (< 96.62%). Based on the simulation results for different physical conditions, the threshold for the range in which proton dose amplification occurred was estimated as 0.3 cm. Effective proton boron reaction requires the boron concentration to be equal to or greater than 14.4 mg/g. Conclusion: We established the effects of the PBFT with various conditions by using Monte Carlo simulation. The results of our research can be used for providing a PBFT dose database.« less
Electrochemical Corrosion Behavior of Spray-Formed Boron-Modified Supermartensitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Nogueira, Ricardo P.; Kiminami, Claudio S.; Botta, Walter J.; Bolfarini, Claudemiro
2017-04-01
Spray-formed boron-modified supermartensitic stainless steel (SMSS) grades are alloys developed to withstand severe wear conditions. The addition of boron to the conventional chemical composition of SMSS, combined with the solidification features promoted by the spray forming process, leads to a microstructure composed of low carbon martensitic matrix reinforced by an eutectic network of M2B-type borides, which considerably increases the wear resistance of the stainless steel. Although the presence of borides in the microstructure has a very beneficial effect on the wear properties of the alloy, their effect on the corrosion resistance of the stainless steel was not comprehensively evaluated. The present work presents a study of the effect of boron addition on the corrosion resistance of the spray-formed boron-modified SMSS grades by means of electrochemical techniques. The borides fraction seems to have some influence on the repassivation kinetics of the spray-formed boron-modified SMSS. It was shown that the Cr content of the martensitic matrix is the microstructural feature deciding the corrosion resistance of this sort of alloys. Therefore, if the Cr content in the alloy is increased to around 14 wt pct to compensate for the boron consumed by the borides formation, the corrosion resistance of the alloy is kept at the same level of the alloy without boron addition.
Benton, Samuel T.
1976-01-01
This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.
Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.
Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F
2016-08-11
We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.