High-Pressure Design of Advanced BN-Based Materials.
Kurakevych, Oleksandr O; Solozhenko, Vladimir L
2016-10-20
The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.
Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys
Matsushita, Masafumi
2011-01-01
Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride. PMID:28824144
Elastic and mechanical softening in boron-doped diamond
Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.
2017-01-01
Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50–3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials. PMID:28233808
Elastic and mechanical softening in boron-doped diamond
NASA Astrophysics Data System (ADS)
Liu, Xiaobing; Chang, Yun-Yuan; Tkachev, Sergey N.; Bina, Craig R.; Jacobsen, Steven D.
2017-02-01
Alternative approaches to evaluating the hardness and elastic properties of materials exhibiting physical properties comparable to pure diamond have recently become necessary. The classic linear relationship between shear modulus (G) and Vickers hardness (HV), along with more recent non-linear formulations based on Pugh’s modulus extending into the superhard region (HV > 40 GPa) have guided synthesis and identification of novel superabrasives. These schemes rely on accurately quantifying HV of diamond-like materials approaching or potentially exceeding the hardness of the diamond indenter, leading to debate about methodology and the very definition of hardness. Elasticity measurements on such materials are equally challenging. Here we used a high-precision, GHz-ultrasonic interferometer in conjunction with a newly developed optical contact micrometer and 3D optical microscopy of indentations to evaluate elasticity-hardness relations in the ultrahard range (HV > 80 GPa) by examining single-crystal boron-doped diamond (BDD) with boron contents ranging from 50-3000 ppm. We observe a drastic elastic-mechanical softening in highly doped BDD relative to the trends observed for superhard materials, providing insight into elasticity-hardness relations for ultrahard materials.
Boron containing multilayer coatings and method of fabrication
Makowiecki, D.M.; Jankowski, A.F.
1997-09-23
Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.
Boron containing multilayer coatings and method of fabrication
Makowiecki, Daniel M.; Jankowski, Alan F.
1997-01-01
Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.
Microstructure and Porosity of Laser Welds in Cast Ti-6Al-4V with Addition of Boron
NASA Astrophysics Data System (ADS)
Tolvanen, Sakari; Pederson, Robert; Klement, Uta
2018-03-01
Addition of small amounts of boron to cast Ti-6Al-4V alloy has shown to render a finer microstructure and improved mechanical properties. For such an improved alloy to be widely applicable for large aerospace structural components, successful welding of such castings is essential. In the present work, the microstructure and porosity of laser welds in a standard grade cast Ti-6Al-4V alloy as well as two modified alloy versions with different boron concentrations have been investigated. Prior-β grain reconstruction revealed the prior-β grain structure in the weld zones. In fusion zones of the welds, boron was found to refine the grain size significantly and rendered narrow elongated grains. TiB particles in the prior-β grain boundaries in the cast base material restricted grain growth in the heat-affected zone. The TiB particles that existed in the as cast alloys decreased in size in the fusion zones of welds. The hardness in the weld zones was higher than in the base material and boron did not have a significant effect on hardness of the weld zones. The fusion zones were smaller in the boron-modified alloys as compared with Ti-6Al-4V without boron. Computed tomography X-ray investigations of the laser welds showed that pores in the FZ of the boron modified alloys were confined to the lower part of the welds, suggesting that boron addition influences melt pool flow.
Method of fabricating boron containing coatings
Makowiecki, Daniel M.; Jankowski, Alan F.
1999-01-01
Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.
Method of fabricating boron containing coatings
Makowiecki, D.M.; Jankowski, A.F.
1999-04-27
Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.
NASA Technical Reports Server (NTRS)
Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)
2015-01-01
Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Ali; Abbasi, Seyed Mehdi; Madar, Karim Zangeneh
2018-04-01
The effects of boron and zirconium on cast structure, hardness, and tensile properties of the nickel-based superalloy 718Plus were investigated. For this purpose, five alloys with different contents of boron and zirconium were cast via vacuum induction melting and then purified via vacuum arc remelting. Microstructural analysis by light-optical microscope and scanning electron microscope equipped with energy-dispersive x-ray spectroscopy and phase studies by x-ray diffraction analysis were performed. The results showed that boron and zirconium tend to significantly reduce dendritic arm spacing and increase the amount of Laves, Laves/gamma eutectic, and carbide phases. It was also found that boron led to the formation of B4C and (Cr, Fe, Mo, Ni, Ti)3B2 phases and zirconium led to the formation of intermetallic phases and ZrC carbide. In the presence of boron and zirconium, the hardness and its difference between dendritic branches and inter-dendritic spaces increased by concentrating such phases as Laves in the inter-dendritic spaces. These elements had a negative effect on tensile properties of the alloy, including ductility and strength, mainly because of the increase in the Laves phase. It should be noted that the largest degradation of the tensile properties occurred in the alloys containing the maximum amount of zirconium.
NASA Astrophysics Data System (ADS)
Dubrovinskaia, Natalia; Solozhenko, Vladimir L.; Miyajima, Nobuyoshi; Dmitriev, Vladimir; Kurakevych, Oleksandr O.; Dubrovinsky, Leonid
2007-03-01
The authors report a synthesis of unique superhard aggregated boron nitride nanocomposites (ABNNCs) showing the enhancement of hardness up to 100% in comparison with single crystal c-BN. Such a great hardness increase is due to the combination of the Hall-Petch and the quantum confinement effects. The decrease of the grain size down to 14nm and the simultaneous formation of the two dense BN phases with hexagonal and cubic structures within the grains at nano- and subnanolevel result in enormous mechanical property enhancement with maximum hardness of 85(5)GPa. Thus, ABNNC is the first non-carbon-based bulk material with the value of hard-ness approaching that of single crystal and polycrystalline diamond and aggregated diamond nanorods. ABNNC also has an unusually high fracture toughness for superhard materials (K1C=15MPam0.5) and wear resistance (WH=11; compare, for industrial polycrystalline diamond, WH=3-4), in combination with high thermal stability (above 1600K in air), making it an exceptional superabrasive.
Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron
NASA Astrophysics Data System (ADS)
Hebbache, M.; Živković, D.
Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.
Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel
NASA Astrophysics Data System (ADS)
Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon
2018-05-01
The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.
NASA Astrophysics Data System (ADS)
Yaakob, K. I.; Ishak, M.; Idris, S. R. A.; Aiman, M. H.; Khalil, N. Z.
2017-09-01
Recent car manufacturer requirement in lightweight and optimum safety lead to utilization of boron steel with tailor welded blank approach. Laser welding process in tailor welded blank (TWB) production can be applied in continuous wave (CW) of pulse wave (PW) which produce different thermal experience in welded area. Instead of microstructure identification, hardness properties also can determine the behavior of weld area. In this paper, hardness variation of welded boron steel using PW and CW mode is investigated. Welding process is conducted using similar average power for both welding mode. Hardness variation across weld area is observed. The result shows similar hardness pattern across weld area for both welding mode. Hardness degradation at fusion zone (FZ) is due to ferrite formation existence from high heat input applied. With additional slower cooling rate for CW mode, the hardness degradation is become obvious. The normal variation of hardness behavior with PW mode might lead to good strength.
Synergistic methods for the production of high-strength and low-cost boron carbide
NASA Astrophysics Data System (ADS)
Wiley, Charles Schenck
2011-12-01
Boron carbide (B4C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B4C make it a nearly ideal material for personnel and vehicular armor. B4C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B4C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B4C powders. The boron carbide powder examined in this study was a sub-micron (0.6 mum median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form of phenolic resin, and titanium additives in the form of 32 nm and 0.9 mum TiO2 powders were selected. Parametric studies of sintering behavior were performed via high-temperature dilatometry in order to measure the in-situ sample contraction and thereby measure the influence of the additives and their amounts on the overall densification rate. Additionally, broad composition and sintering/post-HIPing studies followed by characterization and mechanical testing elucidated the effects of these additives on sample densification, microstructure de- velopment, and mechanical properties such as Vickers hardness and microindentation fracture toughness. Based upon this research, a process has been developed for the sintering of boron carbide that yielded end products with high relative densities (i.e., 100%, or theoretical density), microstructures with a fine (˜2-3 mum) grain size, and high Vickers microindentation hardness values. In addition to possessing these improved physical properties, the costs of producing this material were substantially lower (by a factor of 5 or more) than recently patented work on the pressureless sintering and post-HIPing of phase-pure boron carbide powder. This recently patented work developed out of our laboratory utilized an optimized powder distribution and yielded samples with high relative densities and high hardness values. The current work employed the use of titanium and carbon additives in specific ratios to activate the sintering of boron carbide powder possessing an approximately mono-modal particle size distribution. Upon heating to high temperatures, these additives produced fine-scale TiB2 and graphite inclusions that served to hinder grain growth and substantially improve overall sintered and post-HIPed densities when added in sufficient concentrations. The fine boron carbide grain size manifested as a result of these second phase inclusions caused a substantial increase in hardness; the highest hardness specimen yielded a hardness value (2884.5 kg/mm2) approaching that of phase-pure and theoretically-dense boron carbide (2939 kg/mm2). Additionally, the same high-hardness composition exhibited a noticeably higher fracture toughness (3.04 MPa˙m1/2) compared to phase-pure boron carbide (2.42 MPa˙m1/2), representing a 25.6% improvement. A potential consequence of this study would be the development of a superior armor material that is sufficiently affordable, allowing it to be incorporated into the general soldier's armor chassis.
Chemical and structural characterization of boron carbide powders and ceramics
NASA Astrophysics Data System (ADS)
Kuwelkar, Kanak Anant
Boron carbide is the material of choice for lightweight armor applications due to its extreme hardness, high Young's modulus and low specific weight. The homogeneity range in boron carbide extends from 9 to 20 at% carbon with the solubility limits not uniquely defined in literature. Over the homogeneity range, the exact lattice positions of boron and carbon atoms have not been unambiguously established, and this topic has been the consideration of significant debate over the last 60 years. The atomic configuration and positions of the boron and carbon atoms play a key role in the crystal structure of the boron carbide phases. Depending on the atomic structure, boron carbide exhibits different mechanical properties which may alter its ballistic performance under extreme dynamic conditions. This work focusses on refinement and development of analytical and chemical methods for an accurate determination of the boron carbide stoichiometry. These methods were then utilized to link structural changes of boron carbide across the solubility range to variations in mechanical properties. After an extensive assessment of the currently employed characterization techniques, it was discerned that the largest source of uncertainty in the determination of the boron carbide stoichiometry was found to arise from the method utilized to evaluate the free carbon concentration. To this end, a modified spiking technique was introduced for free carbon determination where curve fitting techniques were employed to model the asymmetry of the 002 free carbon diffraction peak based on the amorphous, disordered and graphitic nature of carbon. A relationship was then established between the relative intensities of the carbon and boron carbide peaks to the percentage of added carbon and the free-carbon content was obtained by extrapolation. Samples with varying chemistry and high purity were synthesized across the solubility range by hot pressing mixtures of amorphous boron and boron carbide. Vibrational mode frequencies and lattice parameter measurements from Rietveld refinement were correlated to the respective B:C ratios calculated using the developed characterization techniques. An expansion of the unit cell and change in slope in the lattice parameter-stoichiometry relationship were observed at more boron rich stoichiometries. These observations were justified through the proposal of a simplified structural model considering preferential substitution of boron atoms for carbon atoms in the icosahedra from 20 at% to 13.3 at% carbon, followed by formation of B-B bonds from 13.3 at % C to 9 at% C. Hardness measurements uncovered decreased hardness values in boron rich boron carbide which was attributed to the formation of weaker unit cells. Load induced amorphization was also detected in all the indented materials. Finally, experimental observations have shown that failure in boron carbide may be governed by a mechanism other than amorphization and synthesizing boron carbide with a modified microstructure at stoichiometries close to B4C may be the way forward to attain improved ballistic performance.
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.
2013-09-01
Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.
NASA Astrophysics Data System (ADS)
Diaz-Cano, Andres
Boron carbide (B4C) is the third hardest material after diamond and cubic boron nitride. It's unique combination of properties makes B4C a highly valuable material. With hardness values around 35 MPa, a high melting point, 2450°C, density of 2.52 g/cm3, and high chemical inertness, boron carbide is used in severe wear components, like cutting tools and sandblasting nozzles, nuclear reactors' control rots, and finally and most common application, armor. Production of complex-shaped ceramic component is complex and represents many challenges. Present research presents a new and novel approach to produce complex-shaped B4C components. Proposed approach allows forming to be done at room temperatures and under very low forming pressures. Additives and binder concentrations are kept as low as possible, around 5Vol%, while ceramics loadings are maximized above 50Vol%. Given that proposed approach uses water as the main solvent, pieces drying is simple and environmentally safe. Optimized formulation allows rheological properties to be tailored and adjust to multiple processing approaches, including, injection molding, casting, and additive manufacturing. Boron carbide samples then were pressureless sintered. Due to the high covalent character of boron carbide, multiples sintering aids and techniques have been proposed in order to achieve high levels of densification. However, is not possible to define a clear sintering methodology based on literature. Thus, present research developed a comprehensive study on the effect of multiple sintering aids on the densification of boron carbide when pressureless sintered. Relative densities above 90% were achieved with values above 30MPa in hardness. Current research allows extending the uses and application of boron carbide, and other ceramic systems, by providing a new approach to produce complex-shaped components with competitive properties.
Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering
NASA Astrophysics Data System (ADS)
Munhollon, Tyler Lee
Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with less than 40 wt. % amorphous boron additions. X-ray diffraction analysis revealed the samples to be phase pure and boron-rich. Carbon content was determined to be at or near expected values with exception of samples with greater than 40 wt. % amorphous boron additions. Raman microspectroscopy further confirmed the changes in chemistry as well as revealed the chemical homogeneity of the samples. Microstructural analysis carried out using both optical and electron imaging showed clean and consistent microstructures. The changes in the chemistry of the boron carbide samples has been shown to significantly affect the static mechanical properties. Ultrasonic wave speed measurements were used to calculate the elastic moduli which showed a clear decrease in the Young's and shear moduli with a slight increase in bulk modulus. Berkovich nano-indentation revealed a similar trend, as the hardness and fracture toughness of the material decreased with decreasing carbon content. Amorphization within 1 kg Knoop indents was shown to diminish in intensity and extent as carbon content decreased, signifying a mechanism for amorphization mitigation.
Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.
Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E
2009-07-01
The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.
Multi-Functional BN-BN Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho (Inventor); Bryant, Robert G. (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Gibbons, Luke (Inventor); Lowther, Sharon (Inventor); Thibeault, Sheila A. (Inventor); Fay, Catharine C. (Inventor)
2017-01-01
Multifunctional Boron Nitride nanotube-Boron Nitride (BN-BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN-BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN-BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties. By substituting with other elements into the original structure of the nanotubes and/or matrix, new nanocomposites (i.e., BCN, BCSiN ceramics) which possess excellent hardness, tailored photonic bandgap and photoluminescence, result.
NASA Astrophysics Data System (ADS)
Kilic, Ahmet; Alcay, Ferhat; Aydemir, Murat; Durgun, Mustafa; Keles, Armagan; Baysal, Akın
2015-05-01
A new series of Schiff base ligands (L1-L3) and their corresponding fluorine/phenyl boron hybrid complexes [LnBF2] and [LnBPh2] (n = 1, 2 or 3) have been synthesized and well characterized by both analytical and spectroscopic methods. The Schiff base ligands and their corresponding fluorine/phenyl boron hybrid complexes have been characterized by NMR (1H, 13C and 19F), FT-IR, UV-Vis, LC-MS, and fluorescence spectroscopy as well as melting point and elemental analysis. The fluorescence efficiencies of phenyl chelate complexes are greatly red-shifted compared to those of the fluorine chelate analogs based on the same ligands, presumably due to the large steric hindrance and hard π → π∗ transition of the diphenyl boron chelation, which can effectively prevent molecular aggregation. The boron hybrid complexes were applied to the transfer hydrogenation of acetophenone derivatives to 1-phenylethanol derivatives in the presence of 2-propanol as the hydrogen source. The catalytic studies showed that boron hybrid complexes are good catalytic precursors for transfer hydrogenation of aromatic ketones in 0.1 M iso-PrOH solution. Also, we have found that both steric and electronic factors have a significant impact on the catalytic properties of this class of molecules.
Synthesis, Properties, and Applications Of Boron Nitride
NASA Technical Reports Server (NTRS)
Pouch, John J.; Alterovitz, Samuel A.
1993-01-01
Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.
Corrosion and wear behaviors of boronized AISI 316L stainless steel
NASA Astrophysics Data System (ADS)
Kayali, Yusuf; Büyüksaǧiş, Aysel; Yalçin, Yılmaz
2013-09-01
In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.
Ames Lab 101: BAM (Boron-Aluminum-Magnesium)
Cook, Bruce
2017-12-13
Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team at the Ames Laboratory.
Experimental Validation for Hot Stamping Process by Using Taguchi Method
NASA Astrophysics Data System (ADS)
Fawzi Zamri, Mohd; Lim, Syh Kai; Razlan Yusoff, Ahmad
2016-02-01
Due to the demand for reduction in gas emissions, energy saving and producing safer vehicles has driven the development of Ultra High Strength Steel (UHSS) material. To strengthen UHSS material such as boron steel, it needed to undergo a process of hot stamping for heating at certain temperature and time. In this paper, Taguchi method is applied to determine the appropriate parameter of thickness, heating temperature and heating time to achieve optimum strength of boron steel. The experiment is conducted by using flat square shape of hot stamping tool with tensile dog bone as a blank product. Then, the value of tensile strength and hardness is measured as response. The results showed that the lower thickness, higher heating temperature and heating time give the higher strength and hardness for the final product. In conclusion, boron steel blank are able to achieve up to 1200 MPa tensile strength and 650 HV of hardness.
Invited Article: Indenter materials for high temperature nanoindentation
NASA Astrophysics Data System (ADS)
Wheeler, J. M.; Michler, J.
2013-10-01
As nanoindentation at high temperatures becomes increasingly popular, a review of indenter materials for usage at high temperatures is instructive for identifying appropriate indenter-sample materials combinations to prevent indenter loss or failure due to chemical reactions or wear during indentation. This is an important consideration for nanoindentation as extremely small volumes of reacted indenter material will have a significant effect on measurements. The high temperature hardness, elastic modulus, thermal properties, and chemical reactivities of diamond, boron carbide, silicon carbide, tungsten carbide, cubic boron nitride, and sapphire are discussed. Diamond and boron carbide show the best elevated temperature hardness, while tungsten carbide demonstrates the lowest chemical reactivity with the widest array of elements.
Sun, Yi; Zhang, Jian; Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng
2018-04-02
In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants for in situ reactions, respectively. The influence of the sintering process and the crystallography type of boron on the microstructure and mechanical properties of composites were studied and compared. The densities were evaluated using Archimedes' principle. The microstructure and mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine, and a Vickers hardness tester. The prepared composite material showed a high density and excellent comprehensive performance under the PAS condition of 20 MPa at 1000 °C for 3 min. Amorphous boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline boron combining well with the titanium matrix at 1100 °C. The composite samples with a relative density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa, and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous boron was increased by 7.64% and 15.50%, respectively.
Luo, Guoqiang; Shen, Qiang; Zhang, Lianmeng
2018-01-01
In this paper, titanium matrix composites with in situ TiB whiskers were synthesized by the plasma activated sintering technique; crystalline boron and amorphous boron were used as reactants for in situ reactions, respectively. The influence of the sintering process and the crystallography type of boron on the microstructure and mechanical properties of composites were studied and compared. The densities were evaluated using Archimedes’ principle. The microstructure and mechanical properties were characterized by SEM, XRD, EBSD, TEM, a universal testing machine, and a Vickers hardness tester. The prepared composite material showed a high density and excellent comprehensive performance under the PAS condition of 20 MPa at 1000 °C for 3 min. Amorphous boron had a higher reaction efficiency than crystalline boron, and it completely reacted with the titanium matrix to generate TiB whiskers, while there was still a certain amount of residual crystalline boron combining well with the titanium matrix at 1100 °C. The composite samples with a relative density of 98.33%, Vickers hardness of 389.75 HV, compression yield strength of up to 1190 MPa, and an ultimate compressive strength of up to 1710 MPa were obtained. Compared with the matrix material, the compressive strength of TC4 titanium alloy containing crystalline boron and amorphous boron was increased by 7.64% and 15.50%, respectively. PMID:29614842
Submicron cubic boron nitride as hard as diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guoduan; Kou, Zili, E-mail: kouzili@scu.edu.cn, E-mail: yanxz@hpstar.ac.cn; Lei, Li
Here, we report the sintering of aggregated submicron cubic boron nitride (sm-cBN) at a pressure of 8 GPa. The sintered cBN compacts exhibit hardness values comparable to that of single crystal diamond, fracture toughness about 5-fold that of cBN single crystal, in combination with a high oxidization temperature. Thus, another way has been demonstrated to improve the mechanical properties of cBN besides reducing the grain size to nano scale. In contrast to other ultrahard compacts with similar hardness, the sm-cBN aggregates are better placed for potential industrial application, as their relative low pressure manufacturing perhaps be easier and cheaper.
NASA Astrophysics Data System (ADS)
Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.
2016-02-01
In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.
Low pressure growth of cubic boron nitride films
NASA Technical Reports Server (NTRS)
Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)
1997-01-01
A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.
Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review
NASA Astrophysics Data System (ADS)
Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal
2017-08-01
Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.
Acute and chronic toxicity of boron to a variety of freshwater organisms.
Soucek, David J; Dickinson, Amy; Koch, Brian T
2011-08-01
Boron enters the aquatic environment from various sources, including weathering of borates, sewage effluents, coal combustion, use of cleaning compounds, and agrochemicals. The present study was designed to generate data on acute and chronic boron toxicity in support of an update of water quality standards in Illinois, USA. We examined the acute toxicity of boron to eight different freshwater organisms including a fish, an insect, two crustaceans, and four bivalve mollusks. To our knowledge, this is the first study to present data on the toxicity of boron to freshwater mollusks. We also sought to clarify whether hardness or pH affect boron toxicity to aquatic life, and to quantify chronic effect levels in two freshwater species. Sensitivity among the various species ranged widely, with the fathead minnow (Pimephales promelas) being the most sensitive. Neither pH nor hardness had a consistent effect on acute boron toxicity to two crustaceans (Ceriodaphnia dubia and Hyalella azteca), but we observed evidence that chloride reduces boron toxicity to H. azteca. The fathead minnow, while more acutely sensitive than the other species, had a lower acute to chronic ratio than did H. azteca, which had reduced reproduction at 13 mg/L. While we do not know the extent to which the eight tested species represent the range of sensitivities of native but untested species in Illinois, the current water quality standard for Illinois (1 mg/L) is conservative with regard to the native species tested thus far. Copyright © 2011 SETAC.
Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.
Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Sahin, Fikrettin
2014-11-01
Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.
Magnetron sputtered boron films for increasing hardness of a metal surface
Makowiecki, Daniel M [Livermore, CA; Jankowski, Alan F [Livermore, CA
2003-05-27
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.
Tribo-mechanical and electrical properties of boron-containing coatings
NASA Astrophysics Data System (ADS)
Qian, Jincheng
The development of new hard protective coatings with advanced performance is very important for progress in a variety of scientific and industrial fields. Application of hard protective coatings can significantly improve the performance of parts and components, extend their service life, and save energy in many industrial applications including aerospace, automotive, manufacturing, and other industries. In addition, the multifunctionality of protective coatings is also required in many other application fields such as optics, microelectronics, biomedical, magnetic storage media, etc. Therefore, protective coatings with enhanced tribo-mechanical and corrosion properties as well as other functions are in demand. The coating characteristics can be adjusted by controlling the microstructure at different scales. For example, films with nanostructures, such as superlattice, nanocolumn, and nanocomposite systems, exhibit distinctive characteristics compared to single-phase materials. They show superior tribo-mechanical properties due to the presence of strong interfaces, and different functions can be achieved due to the multi-phase characteristics. Boron-containing materials with their excellent mechanical properties and interesting electronic characteristics are good candidates for functional hard protective coatings. For instance, cubic boron nitride (c-BN), boron carbide (B1-xCx), and titanium diboride (TiB 2) are well known for their high hardness, high thermal stability, and high chemical inertness. An interesting example is the boron carbon nitride (BCN) compound that possesses many attractive properties because its structure is similar to that of carbon (graphite and diamond) and of boron nitride (BN in hexagonal and cubic phases). The main goal of this work is to further develop the family of Boron-containing films including B1-xCx, Ti-B-C, and BCN films fabricated by magnetron sputtering, and to enhance their performance by controlling their microstructure on the nanoscale. Their tribo-mechanical, corrosion, and electrical properties are studied in relation to the composition and microstructure, aiming at enhancing their performance for multi-functional protective coating applications via microstructural design. First, B1-xCx (0 < x < 1) films with tailored tribo-mechanical properties were deposited by magnetron sputtering using one graphite and two boron targets. The hardness of the B1-xC x films was found to reach 25 GPa both for boron-rich and carbon-rich films, and the friction coefficient and wear rate can be adjusted from 0.66 to 0.13 and from 6.4x10-5 mm3/Nm to 1.3x10 -7 mm3/Nm, respectively, by changing the carbon content from 19 to 76 at.%. The hardness variation is closely related to the microstructure, and the low friction and wear rate of the B0.24C0.76 film are due to the high portion of an amorphous carbon phase. Moreover, application of the B0.81C0.19 film improves the corrosion resistance of the M2 steel substrate significantly, indicated by the decrease of the corrosion current by almost four orders of magnitude. Based on the optimization of the B1-xCx films, nanostructured Ti-B-C films with different compositions were deposited by adding titanium by simultaneously sputtering a titanium diboride target. We found that the film microstructure features TiB2 nanocrystallites embedded in an amorphous boron carbide matrix. The film hardness varies from 33 to 42 GPa with different titanium contents, which is related to the changes in microstructure, namely, the size and concentration of the TiB2 nanocrystallites. The friction coefficient and wear rate are in the ranges of 0.37-0.73 and of 3.3x10-6-5.7x10-5 mm3/Nm, respectively, which are affected by the mechanical properties and the surface chemical states of the films. By applying the Ti-B-C films, the corrosion resistance of the M2 steel substrate is significantly enhanced as documented by a reduction of the corrosion current density by two orders of magnitude. BCN films were synthesized by magnetron sputtering using a single B 4C target in an N2: Ar gas mixture. The BCN films exhibit an amorphous structure and contain a mixture of B-C, B-N, and C-N bonds. The films show p-type conductivity with an optical band gap of 1.0 eV. Subsequently, ZnO nanorods were grown on the BCN films using hydrothermal synthesis to form BCN/ZnO nanorods p-n heterojunctions. The performance of the junctions is evaluated by the I-V characterization, which shows a rectification behavior with a rectification ratio of 1500 at the bias voltages of +/-5 V.
Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air
NASA Technical Reports Server (NTRS)
Allen, G. P.; Wisander, D. W.
1973-01-01
Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.
Kasende, Okuma Emile; Muya, Jules Tshishimbi; Broeckaert, Lies; Maes, Guido; Geerlings, Paul
2012-08-23
A density functional theory (DFT) study is performed to determine the stability of the complexes formed between either the N or O site of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone molecules and different ligands. The studied ligands are boron and alkali Lewis acids, namely, B(CH(3))(3), HB(CH(3))(2), H(2)B(CH(3)), BH(3), H(2)BF, HBF(2), BF(3), Li(+), Na(+), and K(+). The acids are divided into two groups according to their hardness. The reactivity predictions, according to the molecular electrostatic potential (MEP) map and the natural bond orbital (NBO) analysis, are in agreement with the calculated relative stabilities. Our findings reveal a strong regioselectivity with borane and its derivatives preferring the nitrogen site in both pyrimidone isomers, while a preference for oxygen is observed for the alkali acids in the 3-methyl-4-pyrimidone molecule. The complexation of 1-methyl-2-pyrimidone with these hard alkali acids does not show any discrimination between the two sites due to the presence of a continuous delocalized density region between the nitrogen and the oxygen atoms. The preference of boron Lewis acids toward the N site is due to the stronger B-N bond as compared to the B-O bond. The influence of fluorine or methyl substitution on the boron atom is discussed through natural orbital analysis (NBO) concentrating on the overlap of the boron empty p-orbital with the F lone pairs and methyl hyperconjugation, respectively. The electrophilicity of the boron acids gives a good overall picture of the interaction capabilities with the Lewis base.
Experimental pressure-temperature phase diagram of boron: resolving the long-standing enigma
Parakhonskiy, Gleb; Dubrovinskaia, Natalia; Bykova, Elena; Wirth, Richard; Dubrovinsky, Leonid
2011-01-01
Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the present work this enigma has been resolved based on the α-B-to- β-B phase boundary line which we experimentally established in the pressure interval of ∼4 GPa to 8 GPa and linearly extrapolated down to ambient pressure. In a series of high pressure high temperature experiments we synthesised single crystals of the three boron phases (α-B, β-B, and γ-B) and provided evidence of higher thermodynamic stability of α-B. Our work opens a way for reproducible synthesis of α-boron, an optically transparent direct band gap semiconductor with very high hardness, thermal and chemical stability. PMID:22355614
Electronic and mechanic properties of trigonal boron nitride by first-principles calculations
NASA Astrophysics Data System (ADS)
Mei, Hua Yue; Pang, Yong; Liu, Ding Yu; Cheng, Nanpu; Zheng, Shaohui; Song, Qunliang; Wang, Min
2018-07-01
A new boron nitride allotrope with 6 atoms in a unit cell termed as trigonal BN (TBN), which belongs to P3121 space group, is theoretically investigated. Electronic structures, mechanic properties, phonon spectra and other properties were calculated by using first-principles based on density functional theory (DFT). The elastic constants reveal that TBN is mechanically stable. Furthermore, phonon dispersion indicates that TBN is dynamically stable. The calculated bulk modulus and shear modulus of TBN are 323 and 342 GPa, respectively. The calculated Young's modulus are Ex = Ey = 760 GPa, Ez = 959 GPa, indicating that TBN is a super-hard and brittle material. The universal anisotropy index, which is only 0.296, shows its weak anisotropy. Band structure states clearly that TBN is an indirect semiconductor with a band gap of 3.87 eV. The valence bands are mainly composed of N 2p states, and the conduction bands are mainly contributed by B 2p states. Simulated X-ray diffraction patterns (XRD) and Raman spectra were also provided for future experimental characterizations. Due to its band gap and super-hard properties, TBN may possess potential in super-hard, optical and electronic applications.
NASA Astrophysics Data System (ADS)
Zhang, H.; Tang, H.; He, Y. Z.; Zhang, J. L.; Li, W. H.; Guo, S.
2017-11-01
Effects of heat treatment on borides precipitation and mechanical properties of arc-melted and laser-cladded CoCrNiFeAl1.8Cu0.7B0.3Si0.1 high-entropy alloys were comparatively studied. The arc-melted alloy contains lots of long strip borides distributed in the body-centered cubic phase, with a hardness about 643 HV0.5. Laser-cladding can effectively inhibit the boride precipitation and the laser-cladded alloy is mainly composed of a simple bcc solid solution, with a high hardness about 769 HV0.5, indicating the strengthening effect by interstitial boron atoms is greater than the strengthening by borides precipitation. Heat treatments between 800°C and 1200°C can simultaneously improve the hardness and fracture toughness of arc-melted alloys, owing to the boride spheroidization, dissolution, re-precipitation, and hence the increased boron solubility and nano-precipitation in the bcc solid solution. By contrast, the hardness of laser-cladded alloys reduce after heat treatments in the same temperature range, due to the decreased boron solubility in the matrix.
Improving hardness and toughness of boride composites based on aluminum magnesium boride
NASA Astrophysics Data System (ADS)
Peters, Justin Steven
The search for new super-hard materials has usually focused on strongly bonded, highly symmetric crystal structures similar to diamond. The two hardest single-phase materials, diamond and cubic boron nitride (cBN), are metastable, and both must be produced at high temperatures and pressures, which makes their production costly. In 2000, a superhard composite based on a low-symmetry, boron-rich compound was reported. Since then, many advances have been made in the study of this AlMgB14--TiB2 composite. The composite has been shown to exhibit hardness greater than either of its constituent phases, relying on its sub-micron microstructure to provide hardening and strengthening mechanisms. With possible hardness around 40 GPa, an AlMgB 14--60 vol% TiB2 approaches the hardness of cBN, yet is amenable to processing under ambient pressure conditions. There are interesting aspects of both the AlMgB14 and TiB 2 phases. AlMgB14 is comprised of a framework of boron, mostly in icosahedral arrangements. It is part of a family of 12 known compounds with the same boron lattice, with the metal atoms replaced by Li, Na, Y or a number of Lanthanides. Another peculiar trait of this family of compounds is that every one contains a certain amount of intrinsic vacancies on one or both of the metal sites. These vacancies are significant, ranging from 3 to 43% of sites depending on the composition. TiB2 is a popular specialty ceramic material due to its high hardness, moderate toughness, good corrosion resistance, and high thermal and electrical conductivity. The major drawback is the difficulty of densification of pure TiB2 ceramics. A combination of sintering aids, pressure, and temperatures of 1800°C are often required to achieve near full density articles. The AlMgB14--TiB2 composites can achieve 99% density from hotpressing at 1400°C. This is mostly due to the preparation of powders by a high-energy milling technique known as mechanical alloying. The resulting fine powders have high activity, and Fe from wear debris acts as a sintering aid. Mechanical alloying improves the sinterability of the composite material, it has the same effect on pure TiB2. TiB 2 processed by high-energy milling has been found to achieve 99% theoretical density at 1400°C with the addition of ˜1 wt% Fe. Both the AlMgB14--TiB2 composites and pure TiB2 produced from these methods have enhanced mechanical properties due to their fine microstructures. These materials show exceptional promise in the field of wear resistance. This includes cutting tools, erosion resistant coatings, and low-friction sliding contacts to name a few. Under certain wear conditions, the composite material can show performance on par with that of current high-end cBN and WC materials tailored for wear resistance. The composite material also exhibits low reactivity with Ti alloys, a pre-requisite for effective machining of these alloys, a trait that few hard materials possess.
Surface structuring of boron doped CVD diamond by micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.
2018-05-01
Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greve, L., E-mail: lars.greve@volkswagen.de; Medricky, M., E-mail: miloslav.medricky@volkswagen.de; Andres, M., E-mail: miloslav.medricky@volkswagen.de
A comprehensive strain hardening and fracture characterization of different grades of boron steel blanks has been performed, providing the foundation for the implementation into the modular material model (MMM) framework developed by Volkswagen Group Research for an explicit crash code. Due to the introduction of hardness-based interpolation rules for the characterized main grades, the hardening and fracture behavior is solely described by the underlying Vickers hardness. In other words, knowledge of the hardness distribution within a hot-formed component is enough to set up the newly developed computational model. The hardness distribution can be easily introduced via an experimentally measured hardnessmore » curve or via hardness mapping from a corresponding hot-forming simulation. For industrial application using rather coarse and computationally inexpensive shell element meshes, the user material model has been extended by a necking/post-necking model with reduced mesh-dependency as an additional failure mode. The present paper mainly addresses the necking/post-necking model.« less
Recent developments in turning hardened steels - A review
NASA Astrophysics Data System (ADS)
Sivaraman, V.; Prakash, S.
2017-05-01
Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.
Extending neutron autoradiography technique for boron concentration measurements in hard tissues.
Provenzano, Lucas; Olivera, María Silvina; Saint Martin, Gisela; Rodríguez, Luis Miguel; Fregenal, Daniel; Thorp, Silvia I; Pozzi, Emiliano C C; Curotto, Paula; Postuma, Ian; Altieri, Saverio; González, Sara J; Bortolussi, Silva; Portu, Agustina
2018-07-01
The neutron autoradiography technique using polycarbonate nuclear track detectors (NTD) has been extended to quantify the boron concentration in hard tissues, an application of special interest in Boron Neutron Capture Therapy (BNCT). Chemical and mechanical processing methods to prepare thin tissue sections as required by this technique have been explored. Four different decalcification methods governed by slow and fast kinetics were tested in boron-loaded bones. Due to the significant loss of the boron content, this technique was discarded. On the contrary, mechanical manipulation to obtain bone powder and tissue sections of tens of microns thick proved reproducible and suitable, ensuring a proper conservation of the boron content in the samples. A calibration curve that relates the 10 B concentration of a bone sample and the track density in a Lexan NTD is presented. Bone powder embedded in boric acid solution with known boron concentrations between 0 and 100 ppm was used as a standard material. The samples, contained in slim Lexan cases, were exposed to a neutron fluence of 10 12 cm -2 at the thermal column central facility of the RA-3 reactor (Argentina). The revealed tracks in the NTD were counted with an image processing software. The effect of track overlapping was studied and corresponding corrections were implemented in the presented calibration curve. Stochastic simulations of the track densities produced by the products of the 10 B thermal neutron capture reaction for different boron concentrations in bone were performed and compared with the experimental results. The remarkable agreement between the two curves suggested the suitability of the obtained experimental calibration curve. This neutron autoradiography technique was finally applied to determine the boron concentration in pulverized and compact bone samples coming from a sheep experimental model. The obtained results for both type of samples agreed with boron measurements carried out by ICP-OES within experimental uncertainties. The fact that the histological structure of bone sections remains preserved allows for future boron microdistribution analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fabrication of Fe-Based Diamond Composites by Pressureless Infiltration
Li, Meng; Sun, Youhong; Meng, Qingnan; Wu, Haidong; Gao, Ke; Liu, Baochang
2016-01-01
A metal-based matrix is usually used for the fabrication of diamond bits in order to achieve favorable properties and easy processing. In the effort to reduce the cost and to attain the desired bit properties, researchers have brought more attention to diamond composites. In this paper, Fe-based impregnated diamond composites for drill bits were fabricated by using a pressureless infiltration sintering method at 970 °C for 5 min. In addition, boron was introduced into Fe-based diamond composites. The influence of boron on the density, hardness, bending strength, grinding ratio, and microstructure was investigated. An Fe-based diamond composite with 1 wt % B has an optimal overall performance, the grinding ratio especially improving by 80%. After comparing with tungsten carbide (WC)-based diamond composites with and without 1 wt % B, results showed that the Fe-based diamond composite with 1 wt % B exhibits higher bending strength and wear resistance, being satisfactory to bit needs. PMID:28774124
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.; Buzyurkin, A. E.; Kosarev, V. F.; Malikov, A. G.; Orishich, A. M.; Ryashin, N. S.
2018-01-01
The work is dedicated to the creation of new ceramic-composite materials based on boron carbide, nickel and using a laser welding in order to obtain three dimensional objects henceforth. The perspective way of obtaining which has been suggested by the authors combined two methods: cold spray technology and subsequent laser post-treatment. At this stage, the authors focused on the interaction of the laser with the substance, regardless of the multi-layer object development. The investigated material of this work was the metal-ceramic mixture based on boron carbide, which has high physical and mechanical characteristics, such as hardness, elastic modulus, and chemical resistance. The nickel powder as a binder and different types of boron carbide were used. The ceramic content varied from 30 to 70% by mass. Thin ceramic layers were obtained by the combined method and cross-sections of different seams were studied. It was shown that the most perspective layers for additive manufacturing could be obtained from cold spray coatings with ceramic concentrations more than 50% by weight treated when laser beam was defocused (thermal-conductive laser mode).
A new superhard material: Osmium diboride OsB 2
NASA Astrophysics Data System (ADS)
Hebbache, M.; Stuparević, L.; Živković, D.
2006-08-01
Superhard materials have many industrial applications, wherever resistance to abrasion and wear are important. The synthesis of new superhard materials is one of the great challenges to scientists. We re-examined the phase diagram of the binary osmium-boron system and confirmed the existence of two hexagonal phases, OsB 1.1, Os 2B 3, and an orthorhombic phase, OsB 2. Almost nothing is known about the physical properties of osmium borides. Microhardness measurements show that OsB 2 is extremely hard. Ab initio calculations show that this is due to formation of covalent bonds between boron atoms. OsB 2 is also a low compressibility material. It can be used as hard coating.
Boron-carbide-aluminum and boron-carbide-reactive metal cermets
Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.
1986-01-01
Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.
Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al
Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.
1985-05-06
Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.
Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations
2015-08-01
been reported in experimental studies. Particular ceramics analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon...analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon carbide, and titanium diboride. Data for penetration depth...include high hardness, high elastic stiffness, high strengths (static/dynamic compressive, shear, and bending), and low density relative to armor steels
Wang, Min; Yang, Yang; Yang, Zhenzhong; Gu, Lin; Chen, Qianwang; Yu, Yan
2017-04-01
Boron, nitrogen dual-doping 3D hard carbon nanofibers thin film is synthesized using a facile process. The nanofibers exhibit high specific capacity and remarkable high-rate capability due to the synergistic effect of 3D porous structure, large surface area, and enlarged carbon layer spacing, and the B, N codoping-induced defects.
QMD and classical MD simulation of alpha boron and boron-carbide behavior under pressure
NASA Astrophysics Data System (ADS)
Yanilkin, Alexey; Korotaev, Pavel; Kuksin, Alexey; Pokatashkin, Pavel
2015-06-01
Boron and some boron-rich compounds are super-hard and light-weighted material with a wide range of different applications. Nevertheless, the question of its behavior under pressure is still open. In the present work we study the equation of state (EOS), stability and deformation of α-B and B4C under high pressure within quantum and classical molecular dynamics (QMD and MD). Based on QMD results the finite temperature EOSs are revealed. CBC chain bending, amorphization and recrystallization of B4C are investigated under hydrostatic, uniform and uniaxial compression. The influence of nonhydrostatic loading is discussed. Angular dependent interatomic potentials are derived by force-matching method. The properties of α-B and B4C, obtained by classical potential, are verified. Structure, bulk modulus, pressure-volume relation, Gruneisen and thermal expansion coefficients are in good agreement with both ab initio and experimental data. These potentials are used to study shock wave propagation in a single crystal of α-B and B4C. Two mechanisms of shear deformation are observed: stacking fault formation and local amorphization. The crystallographic orientations of defects are in a good agreement with experiments.
Super-hard cubic BN layer formation by nitrogen ion implantation
NASA Astrophysics Data System (ADS)
Komarov, F. F.; Pilko, V. V.; Yakushev, V. A.; Tishkov, V. S.
1994-11-01
Microcrystalline and amorphous boron thin films were implanted with nitrogen ions at energies from 25 to 125 keV and with doses from 2 × 10 17 to 1 × 10 18 at.cm 2 at temperatures below 200°C. The structure of boron nitride phases after ion implantation, formation of phases and phase transformations were investigated by TEM and TED methods. The cubic boron nitride phase is revealed. The microhardness of the formed films was satisfactorily explained in terms of chemical compound formation by polyenergetic ion implantation. The influence of the copper impurity on the formation of the cubic boron nitride phase is demonstrated. It has also been shown that low concentrations of copper promote cubic BN boundary formation.
Kang, Joon Sang; Wu, Huan; Hu, Yongjie
2017-12-13
Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of boron phosphide. The present study paves the way toward the establishment of a new framework, based on the phonon spectra-material structure relationship, for the rational design of high thermal conductivity materials and nano- to multiscale devices.
Synthesis, Structure, and Properties of Refractory Hard-Metal Borides
NASA Astrophysics Data System (ADS)
Lech, Andrew Thomas
As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".
BIO-PRECIPITATES PRODUCED BY TWO AUTOCHTHONOUS BORON TOLERANT STREPTOMYCES STRAINS.
Moraga, Norma Beatriz; Irazusta, Verónica; Amoroso, María Julia; Rajal, Verónica Beatriz
2017-08-01
Boron is widespread in the environment. Although contaminated soils are hard to recover different strategies have been investigated in the recent years. Bioremediation is one of the most studied because it is eco-friendly and less costly than other techniques. The aim of this research was to evaluate whether two Streptomyces strains isolated from boron contaminated soils in Salta, Argentina, may help remove boron from such soils. For this, they were grown in different liquid media with two boric acid concentrations and their specific growth rate and specific boric acid consumption rate were determined. Both strains showed great capacity to remove boron from the media. Increasing boric acid concentrations affected negatively the specific growth rate, however the specific boric acid consumption rate was superior. Boron bio-precipitates were observed when the strains grew in the presence of boric acid, probably due to an adaptive response developed by the cells to the exposure, for which many proteins were differentially synthetized. This strategy to tolerate high concentrations of boron by immobilizing it in bio-precipitates has not been previously described, to the best of our knowledge, and may have a great potential application in remediating soils contaminated with boron compounds.
NASA Astrophysics Data System (ADS)
Chiodo, S.; Gotsis, H. J.; Russo, N.; Sicilia, E.
2006-07-01
Recently it has been reported that osmium diboride has an unusually large bulk modulus combined with high hardness, and consequently is a most interesting candidate as an ultra-incompressible and hard material. The electronic and structural properties of the transition metal diborides OsB 2 and RuB 2 have been calculated within the local density approximation (LDA). It is shown that the high hardness is the result of covalent bonding between transition metal d states and boron p states in the orthorhombic structure.
Preparation and uses of amorphous boron carbide coated substrates
Riley, Robert E.; Newkirk, Lawrence R.; Valencia, Flavio A.
1981-09-01
Cloth is coated at a temperature below about 1000.degree. C. with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.
Preparation and uses of amorphous boron carbide coated substrates
Riley, R.E.; Newkirk, L.R.; Valencia, F.A.; Wallace, T.C.
1979-12-05
Cloth is coated at a temperature below about 1000/sup 0/C with amorphous boron-carbon deposits in a process which provides a substantially uniform coating on all the filaments making up each yarn fiber bundle of the cloth. The coated cloths can be used in the as-deposited condition for example as wear surfaces where high hardness values are needed; or multiple layers of coated cloths can be hot-pressed to form billets useful for example in fusion reactor wall armor. Also provided is a method of controlling the atom ratio of B:C of boron-carbon deposits onto any of a variety of substrates, including cloths.
NASA Astrophysics Data System (ADS)
Aydogdu, Yildirim; Turabi, Ali Sadi; Kok, Mediha; Aydogdu, Ayse; Tobe, Hirobumi; Karaca, Haluk Ersin
2014-12-01
The effects of the substitution of gallium with boron on the physical, mechanical and magnetic shape memory properties of Ni51Mn28.5Ga20.5- xBx (at.%) ( x = 0, 1, 2, 3) polycrystalline alloys are investigated. It has been found that transformation temperatures are decreasing while hardness is increasing with boron addition. B-doping of NiMnGa alloys results in the formation of a second phase that increases its ductility and strength in compression. Moreover, saturation magnetization of austenite is decreasing, while Curie temperature of austenite is increasing with B-doping.
Characterization of B4C-composite-reinforced aluminum alloy composites
NASA Astrophysics Data System (ADS)
Singh, Ram; Rai, R. N.
2018-04-01
Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.
Sene, Saad; Reinholdt, Marc; Renaudin, Guillaume; Berthomieu, Dorothée; Zicovich-Wilson, Claudio M; Gervais, Christel; Gaveau, Philippe; Bonhomme, Christian; Filinchuk, Yaroslav; Smith, Mark E; Nedelec, Jean-Marie; Bégu, Sylvie; Mutin, P Hubert; Laurencin, Danielle
2013-01-14
Boronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy ((1)H, (13)C, (11)B and (43)Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave--GIPAW--method). These data allow relationships between the geometry around the OH groups in boronates and the IR and (1)H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic-inorganic materials containing boronate building blocks. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Disorder and defects are not intrinsic to boron carbide
NASA Astrophysics Data System (ADS)
Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander
2016-01-01
A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.
Vasylkiv, Oleg; Borodianska, Hanna; Badica, Petre; Grasso, Salvatore; Sakka, Yoshio; Tok, Alfred; Su, Liap Tat; Bosman, Michael; Ma, Jan
2012-02-01
Boron carbide B4C powders were subject to reactive spark plasma sintering (also known as field assisted sintering, pulsed current sintering or plasma assisted sintering) under nitrogen atmosphere. For an optimum hexagonal BN (h-BN) content estimated from X-ray diffraction measurements at approximately 0.4 wt%, the as-prepared BaCb-(BxOy/BN) ceramic shows values of Berkovich and Vickers hardness of 56.7 +/- 3.1 GPa and 39.3 +/- 7.6 GPa, respectively. These values are higher than for the vacuum SPS processed B4C pristine sample and the h-BN -mechanically-added samples. XRD and electronic microscopy data suggest that in the samples produced by reactive SPS in N2 atmosphere, and containing an estimated amount of 0.3-1.5% h-BN, the crystallite size of the boron carbide grains is decreasing with the increasing amount of N2, while for the newly formed lamellar h-BN the crystallite size is almost constant (approximately 30-50 nm). BN is located at the grain boundaries between the boron carbide grains and it is wrapped and intercalated by a thin layer of boron oxide. BxOy/BN forms a fine and continuous 3D mesh-like structure that is a possible reason for good mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sanghoon; Kang, Yongjoon; Lee, Changhee, E-mail: chlee@hanyang.ac.kr
The boron segregation behavior in the coarse-grained heat-affected zone (CGHAZ) of 10 ppm boron-added low-alloy steel during the welding cycle was investigated by taking the changes in the microstructure and hardness into account. Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress, and the boron segregation behavior was analyzed by secondary ion mass spectrometry (SIMS) and particle tracking autoradiography (PTA). The segregation of boron was found to initially increase, and then decrease with an increase in the heat input. This is believed to be due to the back-diffusion of boron withmore » an increase in the exposure time at high temperature after non-equilibrium grain boundary segregation. The grain boundary segregation of boron could be decreased by an external stress applied during the welding cycle. Such behavior may be due to an increase in the grain boundary area as a result of the grain size reduction induced by the external stress. - Highlights: • Boron segregation behavior in the CGHAZ of low-alloy steel during a welding cycle was investigated. • Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress. • Boron segregation behavior was analyzed using SIMS and PTA techniques.« less
Synthesis and Characterization of Low-Cost Superhard Transition-Metal Borides
NASA Astrophysics Data System (ADS)
Kaner, Richard
2013-06-01
The increasing demand for high-performance cutting and forming tools, along with the shortcomings of traditional tool materials such as diamond (unable to cut ferrous materials), cubic boron nitride (expensive) and tungsten carbide (relatively-low hardness), has motivated the search for new superhard materials for these applications. This has led us to a new class of superhard materials, dense refractory transition-metal borides, which promise to address some of the existing problems of conventional superhard materials. For example, we have synthesized rhenium diboride (ReB2) using arc melting at ambient pressure. This superhard material has demonstrated an excellent electrical conductivity and superior mechanical properties, including a Vickers hardness of 48.0 GPa (under an applied load of 0.49 N). To further increase the hardness and lower the materials costs, we have begun exploring high boron content metal borides including tungsten tetraboride (WB4) . We have synthesized WB4 by arc melting and studied its hardness and high-pressure behavior. With a similar Vickers hardness (43.3 GPa under a load of 0.49 N) and bulk modulus (326-339 GPa) to ReB2, WB4 offers a lower cost alternative and has the potential to be used in cutting tools. To further enhance the hardness of this superhard metal, we have created the binary and ternary solid solutions of WB4 with Cr, Mn and Ta, the results of which show a hardness increase of up to 20 percent. As with other metals, these metallic borides can be readily cut and shaped using electric discharge machining (EDM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagakubo, A.; Ogi, H., E-mail: ogi@me.es.osaka-u.ac.jp; Hirao, M.
Nano-polycrystalline boron nitride (BN) is expected to replace diamond as a superhard and superstiff material. Although its hardening was reported, its elasticity remains unclear and the as-measured hardness could be significantly different from the true value due to the elastic recovery. In this study, we measured the longitudinal-wave elastic constant of nano-polycrystalline BNs using picosecond ultrasound spectroscopy and confirmed the elastic softening for small-grain BNs. We also measured Vickers and Knoop hardness for the same specimens and clarified the relationship between hardness and stiffness. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearlymore » unchanged. We attribute the apparent increase in Vickers hardness to the elastic recovery and propose a model to support this insight.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less
NASA Astrophysics Data System (ADS)
Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.
2015-10-01
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.
The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam
NASA Astrophysics Data System (ADS)
Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina
2016-01-01
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.
Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide
NASA Astrophysics Data System (ADS)
Akinlabi, E. T.; Erinosho, M. F.
2017-11-01
Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.
Lahiri, Debrupa; Singh, Virendra; Benaduce, Ana Paula; Seal, Sudipta; Kos, Lidia; Agarwal, Arvind
2011-01-01
This study proposes boron nitride nanotube (BNNT) reinforced hydroxyapatite (HA) as a novel composite material for orthopedic implant applications. The spark plasma sintered (SPS) composite structure shows higher density compared to HA. Minimal lattice mismatch between HA and BNNT leads to coherent bonding and strong interface. HA-4 wt% BNNT composite offers excellent mechanical properties-120% increment in elastic modulus, 129% higher hardness and 86% more fracture toughness, as compared to HA. Improvements in the hardness and fracture toughness are related to grain refinement and crack bridging by BNNTs. HA-BNNT composite also shows 75% improvement in the wear resistance. The wear morphology suggests localized plastic deformation supported by the sliding of outer walls of BNNT. Osteoblast proliferation and cell viability show no adverse effect of BNNT addition. HA-BNNT composite is, thus, envisioned as a potential material for stronger orthopedic implants. Copyright © 2010 Elsevier Ltd. All rights reserved.
The effect of boriding on wear resistance of cold work tool steel
NASA Astrophysics Data System (ADS)
Anzawa, Y.; Koyama, S.; Shohji, I.
2017-05-01
Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ~ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement.
Hosseini, Seyed Ali; Madar, Karim Zangeneh; Abbasi, Seyed Mehdi
2017-08-01
The segregation of the elements during solidification and the direct formation of destructive phases such as Laves from the liquid, result in in-homogeneity of the cast structure and degradation of mechanical properties. Homogenization heat treatment is one of the ways to eliminate destructive Laves from the cast structure of superalloys such as 718Plus. The collected data presents the effect of homogenization treatment conditions on the cast structure, hardness, and tensile properties of the alloy 718Plus in the presence of boron and zirconium additives. For this purpose, five alloys with different contents of boron and zirconium were cast by VIM/VAR process and then were homogenized at various conditions. The microstructural investigation by OM and SEM and phase analysis by XRD were done and then hardness and tensile tests were performed on the homogenized alloys.
Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M
2004-04-01
Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.
Designing Superhard Materials by Incorporating Boron Into Heavy Transition Metals
NASA Astrophysics Data System (ADS)
Liang, Yongcheng; Li, Anhu; Zhao, Jianzhi; Zhang, Wenqing
First-principles calculations on the incompressibility, elasticity and hardness of the Os, OsB2, Re, and ReB2 materials have systematically been performed by the plane-wave basis pseudopotential method. Transition metals Os and Re, which have high bulk modulus but low hardness, can be converted into hard materials by combining them with small B atoms. Moreover, electronic and structural mechanisms of ReB2 and OsB2 are analyzed in detail and compared. It is shown that incorporating small B atoms into heavy transition metals should be a valid pathway to obtain new superhard materials.
Method for fabricating boron carbide articles
Ardary, Zane L.; Reynolds, Carl D.
1980-01-01
The present invention is directed to the fabrication of boron carbide articles having length-to-diameter or width ratios greater than 2 to 1. The process of the present invention is practiced by the steps comprising hot pressing boron carbide powder into article segments or portions in which the segments have a length-to-diameter or width ratio less than 1.5, aligning a plurality of the initially hot-pressed segments in a hot-pressing die with the end surfaces of the segments placed in intimate contact with one another, and then hot pressing the aligned segments into an article of the desired configuration. The resulting article exhibits essentially uniform density throughout the structure with the bonds between the segments being equivalent in hardness, strength, and density to the remainder of the article.
Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner
2015-01-01
The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, Lori A.; Friese, Judah I.; Finn, Erin C.
Critical assemblies provide one method of achieving a fast neutron spectrum that is close to a 235U fission-energy neutron spectrum for nuclear data measurements. Previous work has demonstrated the use of a natural boron carbide capsule for spectral-tailoring in a mixed spectrum reactor as an alternate and complementary method for performing fission-energy neutron experiments. Previous fission products measurements showed that the neutron spectrum achievable with natural boron carbide was not as hard as what can be achieved with critical assemblies. New measurements performed with the Washington State University TRIGA reactor using a boron carbide capsule 96% enriched in 10B formore » irradiations resulted in a neutron spectrum very similar to a critical assembly and a pure 235U fission spectrum. The current work describes an experiment involving a highly-enriched uranium target irradiated under the new 10B4C capsule. Fission product yields were measured following radiochemical separations and are presented here. Reactor dosimetry measurements for characterizing neutron spectra and fluence for the enriched boron carbide capsule and critical assemblies are also discussed.« less
Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao
2017-01-01
Abstract Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices. PMID:28179961
Discovery of Superconductivity in Hard Hexagonal ε-NbN.
Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng
2016-02-29
Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.
Discovery of superconductivity in hard hexagonal ε-NbN
Zou, Yongtao; Li, Qiang; Qi, Xintong; ...
2016-02-29
Since the discovery of superconductivity in boron-doped diamond with a critical temperature (T C) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower T C have been addressed by themore » weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less
Discovery of Superconductivity in Hard Hexagonal ε-NbN
Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng
2016-01-01
Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments. PMID:26923318
NASA Astrophysics Data System (ADS)
Gupta, Ankit; Hussain, Manowar; Misra, Saurav; Das, Alok Kumar; Mandal, Amitava
2018-06-01
The purpose of this study is to make a boron carbide (B4C) and cubic boron nitride (cBN) reinforced Ti6Al4V metal matrix composites (MMC's) by direct metal laser sintering (DMLS) technique using the continuous wave (CW) SPI fiber laser and to check the feasibility of the formation of three dimensional objects by this process. For this study, the process parameters like laser power density (3.528-5.172 W/cm2 (×104), scanning speed (3500-4500 mm/min), composition of the reinforced materials B4C (5-25% by volume) and cBN (3% by volume) were taken as input variables and hatching gap (0.2 mm), spot diameter (0.4 mm), layer thickness (0.4 mm) were taken as constant. It was analyzed that surface characteristic, density and the mechanical properties of sintered samples were greatly influenced by varying the input process parameters. Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and X-Ray diffraction (XRD) were performed for microstructural analysis, elemental analysis, and recognition of intermetallic compounds respectively. Mechanical properties like micro-hardness & wear rate were examined by Vickers micro-hardness tester & pin on disc arrangement respectively. From hardness tests, it was observed that hardness property of the sintered specimens was increased as compared to the parent material. The XRD results show that there is a good affinity between Ti6Al4V-B4C-cBN to produce various intermetallic compounds which themselves enhance the mechanical properties of the samples. From FESEM analysis, we can conclude that there is a uniform distribution of reinforcements in the titanium alloy matrix. Furthermore, the coefficient of friction (COF) was characterized by the irregular pattern and it tends to decrease with an increase in the volume % of reinforcement. The results obtained in this work may be useful in preparing the MMC's with improved mechanical properties and overall characteristics.
NASA Astrophysics Data System (ADS)
Keddam, Mourad; Taktak, Sukru
2017-03-01
The present study is focused on the estimation of activation energy of boron in the plasma paste borided Ti6Al4V alloy, which is extensively used in technological applications, using an analytical diffusion model. Titanium boride layers were successfully produced by plasma paste boriding method on the Ti6Al4V alloy in the temperature range of 973-1073 K for a treatment time ranging from 3 to 7 h. The presence of both TiB2 top-layer and TiB whiskers sub-layer was confirmed by the XRD analysis and SEM observations. The surface hardness of the borided alloy was evaluated using Micro-Knoop indenter. The formation rates of the TiB2 and TiB layers were found to have a parabolic character at all applied process temperatures. A diffusion model was suggested to estimate the boron diffusivities in TiB2 and TiB layers under certain assumptions, by considering the effect of boride incubation times. Basing on own experimental data on boriding kinetics, the activation energies of boron in TiB2 and TiB phases were estimated as 136.24 ± 0.5 and 63.76 ± 0.5 kJ mol-1, respectively. Finally, the obtained values of boron activation energies for Ti6Al4V alloy were compared with the data available in the literature.
Hard magnetic property enhancement of Co{sub 7}Hf-based ribbons by boron doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, H. W.; Liao, M. C.; Shih, C. W.
2014-11-10
Hard magnetic property enhancement of melt spun Co{sub 88}Hf{sub 12} ribbons by boron doping is demonstrated. B-doping could not only remarkably enhance the magnetic properties from energy product ((BH){sub max}) of 2.6 MGOe and intrinsic coercivity ({sub i}H{sub c}) of 1.5 kOe for B-free Co{sub 88}Hf{sub 12} ribbons to (BH){sub max} = 7.7 MGOe and {sub i}H{sub c} = 3.1 kOe for Co{sub 85}Hf{sub 12}B{sub 3} ribbons but also improve the Curie temperature (T{sub C}) of 7:1 phase. The (BH){sub max} value achieved in Co{sub 85}Hf{sub 12}B{sub 3} ribbons is the highest in Co-Hf alloy ribbons ever reported, which is about 15% higher thanmore » that of Co{sub 11}Hf{sub 2}B ribbons spun at 16 m/s [M. A. McGuire, O. Rios, N. J. Ghimire, and M. Koehler, Appl. Phys. Lett. 101, 202401 (2012)]. The structural analysis confirms that B enters the orthorhombic Co{sub 7}Hf (7:1) crystal structure as interstitial atoms, forming Co{sub 7}HfB{sub x}, in the as-spun state. Yet B may diffuse out from the 7:1 phase after post-annealing, leading to the reduction of Curie temperature and the magnetic properties. The uniformly refined microstructure with B-doping results in high remanence (B{sub r}) and improves the squareness of demagnetization curve. The formation of interstitial-atom-modified Co{sub 7}HfB{sub x} phase and the microstructure refinement are the main reasons to give rise to the enhancement of hard magnetic properties in the B-containing Co{sub 7}Hf-based ribbons.« less
Chemical reaction of hexagonal boron nitride and graphite nanoclusters in mechanical milling systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muramatsu, Y.; Grush, M.; Callcott, T.A.
1997-04-01
Synthesis of boron-carbon-nitride (BCN) hybrid alloys has been attempted extensively by many researchers because the BCN alloys are considered an extremely hard material called {open_quotes}super diamond,{close_quotes} and the industrial application for wear-resistant materials is promising. A mechanical alloying (MA) method of hexagonal boron nitride (h-BN) with graphite has recently been studied to explore the industrial synthesis of the BCN alloys. To develop the MA method for the BCN alloy synthesis, it is necessary to confirm the chemical reaction processes in the mechanical milling systems and to identify the reaction products. Therefore, the authors have attempted to confirm the chemical reactionmore » process of the h-BN and graphite in mechanical milling systems using x-ray absorption near edge structure (XANES) methods.« less
Fluid synthesis and structure of a new polymorphic modification of boron nitride
NASA Astrophysics Data System (ADS)
Pokropivny, V. V.; Smolyar, A. S.; Ovsiannikova, L. I.; Pokropivny, A. V.; Kuts, V. A.; Lyashenko, V. I.; Nesterenko, Yu. V.
2013-04-01
A new previously unknown phase of boron nitride with a hardness of 0.41-0.63 GPa has been pre-pared by the supercritical fluid synthesis. The presence of a new phase is confirmed by the X-ray spectra and IR absorption spectra, where new reflections and bands are distinguished. The fundamental reflection of the X-ray diffraction pattern is d = 0.286-0.291 nm, and the characteristic band in the infrared absorption spectrum is observed at 704 cm-1. The X-ray diffraction pattern and the experimental and theoretical infrared absorption spectra show that a new synthesized boron nitride phase can be a cluster crystal (space group 211) with a simple cubic lattice. Cage clusters of a fullerene-like morphology B24N24 with point symmetry O are arranged in lattice sites.
Sheinberg, H.
1983-07-26
A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.
NASA Astrophysics Data System (ADS)
Matrosov, M. Yu; Martynov, P. G.; Goroshko, T. V.; Zvereva, M. I.; Mitrofanov, A. V.; Barabash, K. Yu
2017-12-01
The results of the study of influence of heat treatment modes on microstructure, size and shape of grains, mechanical properties of high-strength flat products from low-alloyed C-Mn-Cr-Si-Mo steel microalloyed by boron are presented. Heat treatment modes, which provide a combination of high impact viscosity at negative temperatures and guaranteed hardness, are determined.
Sheinberg, Haskell
1986-01-01
A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.
Ultrahard stitching of nanotwinned diamond and cubic boron nitride in C 2-BN composite
Liu, Xiaobing; Chen, Xin; Ma, Hong-An; ...
2016-07-27
Materials combining the hardness and strength of diamond with the higher thermal stability of cubic boron nitride (cBN) have broad potential value in science and engineering. Reacting nanodiamond with cBN at moderate pressures and high temperatures provides a pathway to such materials. Here we report the fabrication of C x-BN nanocomposites, measuring up to 10 mm in longest dimension, by reacting nanodiamond with pre-synthesized cBN in a large-volume press. The nanocomposites consist of randomly-oriented diamond and cBN domains stitched together by sp 3-hybridized C-B and C-N bonds, leading to p-type semiconductivity. Dislocations near the sutures accommodate lattice mismatch between diamondmore » and cBN. Nanotwinning within both diamond and cBN domains further contributes to a bulk hardness ~50% higher than sintered cBN. We find the nanocomposite of C 2-BN exhibits p-type semiconductivity with low activation energy and high thermal stability, making it a functional,ultrahard substance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinovskis, Paulius, E-mail: paulius.malinovskis@kemi.uu.se; Lewin, Erik; Jansson, Ulf
2016-05-15
DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB{sub 2−x} (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB{sub 2} structure (AlB{sub 2}-type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB{sub 2} phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissuemore » phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Yuri, E-mail: yufi55@mail.ru; National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050; National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electronmore » beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.« less
Evaluation of seed chemical quality traits and sensory properties of natto soybean.
Yoshikawa, Yoko; Chen, Pengyin; Zhang, Bo; Scaboo, Andrew; Orazaly, Moldir
2014-06-15
Natto is a popular soyfood in Japan, and the U.S. is the largest supplier of natto soybeans. However, information on natto seed chemical and sensory properties is very limited. The objectives of this study were to evaluate differences of seed chemical and sensory properties among natto types and determine heritability and correlation. A total of 15 small-seeded natto genotypes (three superior, nine moderate and three inferior) were evaluated for protein, oil, calcium, manganese, boron and sugar content and processed into a natto product to evaluate appearance, stickiness, flavor, texture and shelf-life. The superior natto group had a higher sugar content but lower protein plus oil, calcium, manganese and boron content than other two groups. Most seed quality traits exhibited high heritability. The natto sensory preference was positively correlated with sucrose and oil content, but negatively correlated with seed hardness, protein, protein plus oil, calcium, manganese, and boron contents. Selecting soybean lines with low protein, protein plus oil, calcium, manganese, and boron content while with high sucrose will be an effective approach for soybean breeding for natto production. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.
1997-10-01
Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.
NASA Astrophysics Data System (ADS)
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy
2017-03-01
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.
New Low Temperature Processing for Boron Carbide/Aluminum Based Composite Armor
1990-06-01
cases. The aluminum powder was finer than 325 mesh (nominal 4 ptm diameter). The titanium diboride powder also had a median particle diameter of 4 g ~m...Al Before Heat Treatment. Sample Density Hardness Flex ( g /mL) (Rockwell A) Strength 70/30 B4 C/Al/dry 2.62±.03 81±3 57±5 ksi 70/30 B4 C/AI/wet/A 2.57...0.4 w/o nitrogen, 160 ppm calcium, 140 ppm chromium. 270 ppm iron, and 330 ppm nickel. The surface area was 7 m 2 / g . Initial dispersion and filter
Magnetron-Sputtered Amorphous Metallic Coatings
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Mehra, M.; Khanna, S. K.
1985-01-01
Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.
Advanced refractory-metal and process technology for the fabrication of x-ray masks
NASA Astrophysics Data System (ADS)
Brooks, Cameron J.; Racette, Kenneth C.; Lercel, Michael J.; Powers, Lynn A.; Benoit, Douglas E.
1999-06-01
This paper provides an in-depth report of the advanced materials and process technology being developed for x-ray mask manufacturing at IBM. Masks using diamond membranes as replacement for silicon carbide are currently being fabricated. Alternate tantalum-based absorbers, such as tantalum boron, which offer improved etch resolution and critical dimension control, as well as higher x-ray absorption, are also being investigated. In addition to the absorber studies, the development of conductive chromium- based hard-mask films to replace the current silicon oxynitride layer is being explored. The progress of this advanced-materials work, which includes significant enhancements to x-ray mask image-placement performance, will be outlined.
Comparative Mechanical Improvement of Stainless Steel 304 Through Three Methods
NASA Astrophysics Data System (ADS)
Mubarok, N.; Notonegoro, H. A.; Thosin, K. A. Z.
2018-05-01
Stainless Steel 304 (SS304) is one of stainless steel group widely used in industries for various purposes. In this paper, we compared the experimental process to enhance the mechanical properties of the surface SS304 through three different methods, cold rolled, annealed salt baht bronzing (ASB), and annealed salt baht boronizing-quench (ASB-Q). The phase change in SS304 due to the cold rolled process makes this method is to abandon. The increasing of the annealing time in the ASB method has a nonlinear relationship with the increases in hardness value. Comparing to the increases in hardness value of the ASB method, the hardness value of ASB-Q methods is still lower than that method.
Reactive multilayer synthesis of hard ceramic foils and films
Makowiecki, Daniel M.; Holt, Joseph B.
1996-01-01
A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.
Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kon, O., E-mail: okon42@htotmail.com; Pazarlioglu, S.; Sen, S.
2015-03-30
In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000{sup o}C for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB{sub 2} and Nb{sub 3}B{sub 4} and also iron boride phases such as FeB, Fe{sub 2}B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurementsmore » were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV{sub 0.005}.« less
Radiation tolerance of boron doped dendritic web silicon solar cells
NASA Technical Reports Server (NTRS)
Rohatgi, A.
1980-01-01
The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.
Adhesion and friction of transition metals in contact with nonmetallic hard materials
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1981-01-01
Sliding friction experiments were conducted with the metals yttrium, titanium, tantalum, zirconium, vanadium, neodymium, iron, cobalt, nickel, tungsten, platinum, rhenium, ruthenium, and rhodium in sliding contact with single crystal diamond, silicon carbide, pyrolytic boron nitride, and ferrite. Auger electron spectroscopy analysis was conducted with the metals and nonmetals to determine the surface chemistry and the degree of surface cleanliness. The results of the investigation indicate the adhesion and friction of the transition metals in contact with diamond, silicon carbide, boron nitride, and ferrite are related to the relative chemical activity of the metals. The more chemically active the metal, the higher the coefficient of friction and the greater amount of transfer to the nonmetals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolopus, James A.; Boatner, Lynn A.
Nanoindenters are commonly used for measuring the mechanical properties of a wide variety of materials with both industrial and scientific applications. Typically, these instruments employ an indenter made of a material of suitable hardness bonded to an appropriate shaft or holder to create an indentation on the material being tested. While a variety of materials may be employed for the indenter, diamond and boron carbide are by far the most common materials used due to their hardness and other desirable properties. However, as the increasing complexity of new materials demands a broader range of testing capabilities, conventional indenter materials exhibitmore » significant performance limitations. Among these are the inability of diamond indenters to perform in-situ measurements at temperatures above 600oC in air due to oxidation of the diamond material and subsequent degradation of the indenters mechanical properties. Similarly, boron carbide also fails at high temperature due to fracture. [1] Transition metal carbides possess a combination of hardness and mechanical properties at high temperatures that offer an attractive alternative to conventional indenter materials. Here we describe the technical aspects for the growth of single-crystal tungsten carbide (WC) for use as a high-temperature indenter material, and we examine a possible approach to brazing these crystals to a suitable mount for grinding and attachment to the indenter instrument. The use of a by-product of the recovery process is also suggested as possibly having commercial value.« less
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; ...
2016-12-02
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricatedmore » Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Furthermore, despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricatedmore » Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Furthermore, despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.« less
Liquid phase sintering of silicon carbide
Cutler, R.A.; Virkar, A.V.; Hurford, A.C.
1989-05-09
Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.
Liquid phase sintering of silicon carbide
Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.
1989-01-01
Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.
Reactive multilayer synthesis of hard ceramic foils and films
Makowiecki, D.M.; Holt, J.B.
1996-02-13
A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.
Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes
Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James; Sun, Xuehui
2002-01-01
Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.
NASA Astrophysics Data System (ADS)
Jia, Z. C.; Zhu, J. Q.; Jiang, C. Z.; Shen, W. X.; Han, J. C.; Chen, R. R.
2011-10-01
Boron phosphide films were grown on silicon substrate by radio frequency reactive magnetron sputtering using boron target and hydrogen phosphine at different gas flow ratios (PH 3/Ar) at lower temperature. The chemical composition, microstructure and mechanical properties were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectrum, FTIR spectrum, surface profilometer and nano-indenter. The results indicate that the atomic ratio (P/B) rises from 1.06 up to 1.52 with the gas flow ratio increasing from 3/50 to 15/50. Simultaneously, the hardness and Young's modulus decrease from 25.4 GPa to 22.5 GPa, and 250.4 GPa to 238.4 GPa, respectively. Microstructure transforms from microcrystalline state to amorphous state along with the gas flow ratio increasing. Furthermore higher gas flow ratio leads to lower stress. The BP film prepared at the gas flow ratio of 3/50 can be contributed with the best properties.
Pang, Jingyu; Chao, Yanhong; Chang, Honghong; Li, Hongping; Xiong, Jun; He, Minqiang; Zhang, Qi; Li, Huaming; Zhu, Wenshuai
2017-12-15
In this paper, the carbon-doped boron nitride nanoplate (C-BNNP) was prepared by pyrolyzing the precursor under N 2 and served as an excellent adsorbent for removal of Rhodamine B (RhB). The structure and composition of C-BNNP were characterized and its adsorption behavior for RhB was investigated. Compared with boron nitride nanoplate (BNNP) which was synthesized under NH 3 , C-BNNP displayed an enhancement of the adsorption capacity for RhB (833mg/g). The adsorption activity was comprehensibly studied by kinetics, isotherm and thermodynamics. The adsorption kinetics followed pseudo-second-order model. The equilibrium adsorption data agreed well with the Langmuir isotherm. And the thermodynamics indicated that the adsorption process was a spontaneous, exothermic and physisorption process. In addition, the density functional theory was proposed that doping carbon in the BNNP decreased the chemical hardness of the adsorbent and enhanced the adsorption capacity of C-BNNP for RhB. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadooghi, Ali; Payganeh, Gholamhassan
2018-02-01
Powder metallurgy process is one of the approaches to manufacture nanocomposite samples, in which the product quality depends upon the pressure, temperature, and sintering time. In this manuscript, steel is selected as the base material together with 2% carbon-based reinforcing TiC particles, and 2% hBN particles as the self-lubricant material. The powders were mixed for 5 h in high ball milling, and compacted with two pressures of 350 and 450 MPa, sintered in the furnace for 2 and 4 h, and sintering temperatures of 1350 and 1450 °C were utilized. SEM, XRD, and EDX tests are performed to identify the nanocomposite structure, and DTA tests are carried out to specify the temperature graph of the material. Finally, hardness, wear, and bending tests are done to find the corresponding mechanical properties of the samples. As a result, the optimum process parameters, including pressure, temperature and sintering duration is achieved. Results show that adding the reinforcing particles into a steel matrix increase the hardness, as well as flexural strength of the nanocomposite product. Also, coefficient of friction shows a decreases.
Boron chemicals in diagnosis and therapeutics
Das, Bhaskar C; Thapa, Pritam; Karki, Radha; Schinke, Caroline; Das, Sasmita; Kambhampati, Suman; Banerjee, Sushanta K; Van Veldhuizen, Peter; Verma, Amit; Weiss, Louis M; Evans, Todd
2013-01-01
Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade®), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin’s lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans. PMID:23617429
Ferromagnetism and semiconducting of boron nanowires
2012-01-01
More recently, motivated by extensively technical applications of carbon nanostructures, there is a growing interest in exploring novel non-carbon nanostructures. As the nearest neighbor of carbon in the periodic table, boron has exceptional properties of low volatility and high melting point and is stronger than steel, harder than corundum, and lighter than aluminum. Boron nanostructures thus are expected to have broad applications in various circumstances. In this contribution, we have performed a systematical study of the stability and electronic and magnetic properties of boron nanowires using the spin-polarized density functional calculations. Our calculations have revealed that there are six stable configurations of boron nanowires obtained by growing along different base vectors from the unit cell of the bulk α-rhombohedral boron (α-B) and β-rhombohedral boron (β-B). Well known, the boron bulk is usually metallic without magnetism. However, theoretical results about the magnetic and electronic properties showed that, whether for the α-B-based or the β-B-based nanowires, their magnetism is dependent on the growing direction. When the boron nanowires grow along the base vector [001], they exhibit ferromagnetism and have the magnetic moments of 1.98 and 2.62 μB, respectively, for the α-c [001] and β-c [001] directions. Electronically, when the boron nanowire grows along the α-c [001] direction, it shows semiconducting and has the direct bandgap of 0.19 eV. These results showed that boron nanowires possess the unique direction dependence of the magnetic and semiconducting behaviors, which are distinctly different from that of the bulk boron. Therefore, these theoretical findings would bring boron nanowires to have many promising applications that are novel for the boron bulk. PMID:23244063
Boron compounds as anion binding agents for nonaqueous battery electrolytes
Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili
2000-02-08
Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.
NASA Astrophysics Data System (ADS)
Makuch, N.; Piasecki, A.; Dziarski, P.; Kulka, M.
2015-12-01
Ni-base superalloys were widely used in aeronautics, chemical and petrochemical industries due to their high corrosion resistance, high creep and rupture strength at high temperature. However, these alloys were not considered for applications in which conditions of appreciable mechanical wear were predominant. The diffusion boriding provided suitable protection against wear. Unfortunately, this process required long duration and high temperature. In this study, instead of the diffusion process, the laser alloying with boron and niobium was used in order to produce the hard and wear resistant layer on Nimonic 80A-alloy. The laser-alloying was carried out as a two-step process. First, the external cylindrical surface of specimens was pre-placed with a paste containing boron and niobium. Then, the pre-placed coating and the thin surface layer of the substrate were re-melted by a laser beam. The high laser beam power (P=1.56 kW) and high averaging irradiance (E=49.66 kW/cm2) provided the thick laser re-melted zone. The laser-borided layers were significantly thicker (470 μm) in comparison with the layers obtained as a consequence of the diffusion boriding. Simultaneously, the high overlapping of multiple laser tracks (86%) caused that the laser-alloyed layer was uniform in respect of the thickness. The produced layer consisted of nickel borides (Ni3B, Ni2B, Ni4B3, NiB), chromium borides (CrB, Cr2B), niobium borides (NbB2, NbB) and Ni-phase. The presence of hard borides caused the increase in microhardness up to 1000 HV in the re-melted zone. However, the measured values were lower than those-characteristic of niobium borides, chromium borides and nickel borides. The presence of the soft Ni-phase in re-melted zone was the reason for such a situation. After laser alloying, the significant increase in abrasive wear resistance was also observed. The mass wear intensity factor, as well as the relative mass loss of the laser-alloyed specimens, was over 10 times smaller in comparison with untreated Nimonic 80A-alloy.
Recent developments with boron as a platform for novel drug design.
Leśnikowski, Zbigniew J
2016-06-01
After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.
NASA Astrophysics Data System (ADS)
Yang, Lina; Zhang, Kan; Zeng, Yi; Wang, Xin; Du, Suxuan; Tao, Chuanying; Ren, Ping; Cui, Xiaoqiang; Wen, Mao
2017-11-01
Boron doped bcc-W (WBx, x = B/W) films were deposited on Si(100) substrates by magnetron co-sputtering pure W and B targets. Our results reveal that when the absolute value of substrate bias voltage (Vb) increases from floating to 240 V, the value of x monotonously decreases from 0.18 to 0.04, accompanied by a phase transition from a mixture of tetragonal γ-W2B and body-centered cubic α-W(B) phase (-Vb ≤ 60 V) to α-W(B) single phase (-Vb > 60 V). Hardness, depending on Vb, increases first and then drops, where the maximum hardness of 30.8 GPa was obtained at -Vb = 60 V and far higher than pure W and W2B theoretical value. In the mixed phase structure, the grain boundaries strengthening, Hall-Petch effect and solid-solution strengthening induced by B dominate the strengthening mechanism. Astonishingly, the film grown at -Vb = 120 V still possesses twice higher hardness than pure W, wherein unexpectedly low (6.7 at.%) B concentration and only the single α-W(B) phase can be identified. In this case, both Hall-Petch effect and solid-solution strengthening work. Besides, low friction coefficient of ∼0.18 can be obtained for the films with α-W(B) phase, which is competitive to that of reported B-rich transition-metal borides, such as TiB2, CrB and CrB2.
Boron-based nanostructures: Synthesis, functionalization, and characterization
NASA Astrophysics Data System (ADS)
Bedasso, Eyrusalam Kifyalew
Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any contamination and with a uniform size distribution. Various reaction parameters such as temperature, reaction time, and sonication were altered to find the optimal reaction conditions. Once these conditions were determined, boron nanorods were produced then functionalized with amine-terminated polyethylene glycol.
Grinding tool for making hemispherical bores in hard materials
Duran, E.L.
1985-04-03
A grinding tool for forming hemispherical bores in hard materials such as boron carbide. The tool comprises a hemicircular grinding bit, formed of a metal bond diamond matrix, which is mounted transversely on one end of a tubular tool shaft. The bit includes a spherically curved outer edge surface which is the active grinding surface of the tool. Two coolant fluid ports on opposite sides of the bit enable introduction of coolant fluid through the bore of the tool shaft so as to be emitted adjacent the opposite sides of the grinding bit, thereby providing optimum cooling of both the workpiece and the bit.
Optically transparent, scratch-resistant, diamond-like carbon coatings
He, Xiao-Ming; Lee, Deok-Hyung; Nastasi, Michael A.; Walter, Kevin C.; Tuszewski, Michel G.
2003-06-03
A plasma-based method for the deposition of diamond-like carbon (DLC) coatings is described. The process uses a radio-frequency inductively coupled discharge to generate a plasma at relatively low gas pressures. The deposition process is environmentally friendly and scaleable to large areas, and components that have geometrically complicated surfaces can be processed. The method has been used to deposit adherent 100-400 nm thick DLC coatings on metals, glass, and polymers. These coatings are between three and four times harder than steel and are therefore scratch resistant, and transparent to visible light. Boron and silicon doping of the DLC coatings have produced coatings having improved optical properties and lower coating stress levels, but with slightly lower hardness.
Aysan, Erhan; Idiz, Ufuk Oguz; Elmas, Leyla; Saglam, Esra Kaytan; Akgun, Zuleyha; Yucel, Serap Baskaya
2017-06-01
This study is aimed to evaluate the effects of boron on radiation-induced skin reactions (RISR) in breast cancer patients. After 47 patients with invasive ductal carcinoma underwent radiotherapy, 23 (49%) received a boron-based gel, and 24 (51%) received placebo. Assessments were performed according to the Radiation Therapy Oncology Group (RTOG) skin scale and a Five-Point Horizontal Scale (FPHS). At the end of the fifth week of radiotherapy, the RTOG scores in the boron group were significantly lower than those in the placebo group (p = .024). The FPHS score was higher in the placebo group than in the boron group, and this difference was not statistically significant (p = .079). Using the RTOG scoring system, we revealed that the application of a boron-based gel diminished RISR. The mechanism of action is unclear but may be related to antioxidant, wound healing, and thermal degradation effects of boron.
Initial Assessment of CSA Group Niobium Boron Based Coatings on 4340 Steel
2017-07-01
Technical Report ARWSB-TR-17026 Initial Assessment of CSA Group Niobium- Boron Based Coatings on 4340 Steel C.P. Mulligan...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Initial Assessment of CSA Group Niobium- Boron Based Coatings on 4340...metallographic mounts reported as (1) thin and (2) thick Niobium- Boron (Nb-B) type coatings on steel. CSA Group is interested in providing coatings for potential
NASA Astrophysics Data System (ADS)
Parsard, Gregory G.
Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.
Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger; Lenarduzzi, Roberto; Killough, Stephen M
Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detectmore » the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.« less
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen
2018-04-01
The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdemir, Ali
This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne's research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaboratorsmore » in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based materials with known and potential anti-friction and -wear properties have been manufactured as colloidal additives and tested for their effectiveness in controlling friction and wear. Unlike other anti-friction and -wear additives, which consist of zinc, molybdenum, sulfur, phosphorus, and even chlorine, lubricious boron compounds considered in this project are made of boron, oxygen, nitrogen, and hydrogen, which are more environmentally benign. Among others, boric acid is a natural mineral (known in mineralogy as "sassolite"). Based on our earlier exploratory research, it was found to offer the best overall prospect in terms of performance improvements, environmental friendliness, and ease of manufacturing and, hence, cost effectiveness. Hexagonal boron nitride and borax also offered good prospects for improving the tribological properties of lubricated sliding surfaces. Boron oxide particles were found to be rather hard and somewhat abrasive and, hence, were not considered beyond the initial screening studies. In our bench-top tribological evaluation, we also demonstrated that those additives which worked well with engine oils could work equally well with very common gear oils. When added at appropriate concentrations, such gear oils were found to provide significant resistance to micropitting and scuffing failures in bench-top tribological test systems. Their traction coefficients were also reduced substantially and their scuffing limits were improved considerably. Such impressive tribological behavior of boron-based additives may have been due to their high chemical affinities to interact with sliding contact surfaces and to form slick and protective boundary films. Indeed, our surface studies have confirmed that most of the boron-based nanoparticulate additives prepared in our project possess a strong tendency to form a boron-rich boundary film on sliding contact surfaces. It is believed that the formation of such slick and highly durable boundary films is perhaps one of the fundamental reasons for their superior anti-friction, -wear, and -scuffing performance. Boron-based additives developed under this project have shown potential to reduce or replace the uses of environmentally unsafe sulfur- and phosphorus-bearing anti-wear and friction additives, such as zinc dialkyl dithiophosphate (ZDDP) and molybdenum dialkyl dithiocarbamate (MoDTC), in current lubricating oils. Because ZDDP and MoDTC were suspected of adversely impacting the performance of after-treatment catalysts in current engines, the Environmental Protection Agency (EPA) and other regulatory agencies are demanding that the concentrations of these catalysts in current oils be curtailed drastically. The boron-based nano-additives developed in this project may help reduce the use of ZDDP and MoDTC additives and, hence, help ease the poisoning effects on after-treatment catalysts. When used as lubricity additives, these boron additives can chemically interact with sliding or contacting surfaces and form a protective and slick boundary film, which can, in turn, help reduce friction and wear and increase resistance to scuffing. In the cases of traditional anti-friction and -wear additives mentioned, such protective boundary films result from phosphorus, sulfur, and other elements in the additive package, and again they have been under increased scrutiny in recent years, mainly because of their adverse effects on after-treatment devices. Overall, the boron-based nano-additive technology of this project was shown to hold promise for a broad range of industrial and transportation applications where lower friction and higher resistance to wear and scuffing are needed. Due to more stringent operating conditions of modern machinery, rolling, rotating, and sliding components have been failing to meet the projected lifetimes, mainly because of failures related to mechanical wear, corrosion, and scuffing. The novel boron-based additive technology developed under this project may help such machine components to function reliably by cutting down the friction and wear losses and by increasing resistance to scuffing.« less
Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions
2015-04-17
Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions Anthony P. Shaw,*,† Giancarlo Diviacchi,‡ Ernest L. Black,‡ Jared D...have been demonstrated to produce thick white smoke clouds upon combustion. These compositions use powdered boron carbide (B4C) as a pyrotechnic...ignition and are safe to handle. KEYWORDS: Smoke, Obscurants, Pyrotechnics, Boron carbide, Sustainable chemistry ■ INTRODUCTION Visible obscuration
Enhanced-wetting, boron-based liquid-metal ion source and method
Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.
1999-01-01
A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.
Enhanced-wetting, boron-based liquid-metal ion source and method
Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.
1999-02-16
A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.
Neutron absorbing room temperature vulcanizable silicone rubber compositions
Zoch, Harold L.
1979-11-27
A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.
Development and Performance of Boron Carbide-Based Smoke Compositions
2013-03-06
DOI: 10.1002/prep.201200166 Development and Performance of Boron Carbide -Based Smoke Compositions Anthony P. Shaw,*[a] Jay C. Poret,[a] Robert A...volatilized and recondense to give smoke. Boron carbide was recognized as a pyrotechnic fuel many years ago, but it has since been overlooked. A 1961...Abstract : Pyrotechnic smoke compositions for visual ob- scuration containing boron carbide , potassium nitrate, po- tassium chloride, and various lubricants
Thermodynamic stability of boron: the role of defects and zero point motion.
van Setten, Michiel J; Uijttewaal, Matthé A; de Wijs, Gilles A; de Groot, Robert A
2007-03-07
Its low weight, high melting point, and large degree of hardness make elemental boron a technologically interesting material. The large number of allotropes, mostly containing over a hundred atoms in the unit cell, and their difficult characterization challenge both experimentalists and theoreticians. Even the ground state of this element is still under discussion. For over 30 years, scientists have attempted to determine the relative stability of alpha- and beta-rhombohedral boron. We use density functional calculations in the generalized gradient approximation to study a broad range of possible beta-rhombohedral structures containing interstitial atoms and partially occupied sites within a 105 atoms framework. The two most stable structures are practically degenerate in energy and semiconducting. One contains the experimental 320 atoms in the hexagonal unit cell, and the other contains 106 atoms in the triclinic unit cell. When populated with the experimental 320 electrons, the 106 atom structure exhibits a band gap of 1.4 eV and an in-gap hole trap at 0.35 eV above the valence band, consistent with known experiments. The total energy of these two structures is 23 meV/B lower than the original 105 atom framework, but it is still 1 meV/B above the alpha phase. Adding zero point energies finally makes the beta phase the ground state of elemental boron by 3 meV/B. At finite temperatures, the difference becomes even larger.
Bayraktaroglu, Esra; Gulsoy, H Ozkan; Gulsoy, Nagihan; Er, Ozay; Kilic, Hasan
2012-01-01
The research was investigated the effect of boron additions on sintering characteristics, mechanical, corrosion properties and biocompatibility of injection molded austenitic grade 316L stainless steel. Addition of boron is promoted to get high density of sintered 316L stainless steels. The amount of boron plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders have been used with the elemental NiB powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperature. The debinded samples were sintered at different temperature for 60 min. Mechanical property, microstructural characterization and electrochemical property of the sintered samples were performed using tensile testing, hardness, optical, scanning electron microscopy and electrochemical corrosion experiments. Sintered samples were immersed in a simulated body fluid (SBF) with elemental concentrations that were comparable to those of human blood plasma for a total period of 15 days. Both materials were implanted in fibroblast culture for biocompatibility evaluations were carried out. Results of study showed that sintered 316L and 316L with NiB addition samples exhibited high mechanical and corrosion properties in a physiological environment. Especially, 316L with NiB addition can be used in some bioapplications.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
NASA Astrophysics Data System (ADS)
Barcellona, A.; Palmeri, D.
2009-05-01
The strains, transformation temperatures, microstructure, and microhardness of a microalloyed boron and aluminum precoated steel, which has been isothermally deformed under uniaxial tensile tests, have been investigated at temperatures between 873 and 1223 K, using a fixed strain rate value of 0.08 s-1. The effect of each factor, such as temperature and strain value, has been later valued considering the shift generated on the continuous cooling transformation (CCT) diagram. The experimental results consist of the starting temperatures that occur for each transformation, the microhardness values, and the obtained microstructure at the end of each thermomechanical treatment. All the thermomechanical treatments were performed using the thermomechanical simulator Gleeble 1500. The results showed that increasing hot prestrain (HPS) values generate, at the same cooling rate, lower hardness values; this means that the increasing of HPS generates a shift of the CCT diagram toward a lower starting time for each transformation. Therefore, high values of hot deformations during the hot stamping process require a strict control of the cooling process in order to ensure cooling rate values that allow maintaining good mechanical component characteristics. This phenomenon is amplified when the prestrain occurs at lower temperatures, and thus, it is very sensitive to the temperature level.
NASA Astrophysics Data System (ADS)
Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan
2013-06-01
Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.
Fundamental tribological properties of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1989-01-01
The adhesion, friction, and micromechanical properties of ion-beam-deposited boron nitride (BN) films are reviewed. The BN films are examined in contact with BN metals and other harder materials. For simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. First, the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces are discussed. The effects of surface films, hardness of metals, and temperature on tribological response with respect to adhesion and friction are considered. The second part deals with the abrasion of the BN films. Elastic, plastic, and fracture behavior of the BN films in solid-state contact are discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of BN films deposited on substrates is also addressed.
Fundamental tribological properties of ion-beam-deposited boron nitride films
NASA Technical Reports Server (NTRS)
Miyoshi, K.
1990-01-01
The adhesion, friction, and micromechanical properties of ion-beam-deposited boron nitride (BN) films are reviewed. The BN films are examined in contact with BN metals and other harder materials. For simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. First, the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces are discussed. The effects of surface films, hardness of metals, and temperature on tribological response with respect to adhesion and friction are considered. The second part deals with the abrasion of the BN films. Elastic, plastic, and fracture behavior of the BN films in solid-state contact are discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of BN films deposited on substrates is also addressed.
Fluorescent sensors based on boronic acids
NASA Astrophysics Data System (ADS)
Cooper, Christopher R.; James, Tony D.
1999-05-01
Sensor systems have long been needed for detecting the presence in solution of certain chemically or biologically important species. Sensors are used in a wide range of applications from simple litmus paper that shows a single color change in acidic or basic environments to complex biological assays that use enzymes, antibodies and antigens to display binding events. With this work the use of boronic acids in the design and synthesis of sensors for saccharides (diols) will be presented. The fluorescent sensory systems rely on photoinduced electron transfer (PET) to modulate the observed fluorescence. When saccharides form cyclic boronate esters with boronic acids, the Lewis acidity of the boronic acid is enhanced and therefore the Lewis acid-base interaction between the boronic acid and a neighboring amine is strengthened. The strength of this acid-base interaction modulates the PET from the amine (acting as a quencher) to anthracene (acting as a fluorophore). These compounds show increased fluorescence at neutral pH through suppression of the PET from nitrogen to anthracene on saccharide binding. The general strategy for the development of saccharide selective systems will be discussed. The potential of the boronic acid based systems will be illustrated using the development of glucose and glucosamine selective fluorescent sensors as examples.
Chemical precursors to non-oxide ceramics: Macro to nanoscale materials
NASA Astrophysics Data System (ADS)
Forsthoefel, Kersten M.
Non-oxide ceramics exhibit a number of important properties that make them ideal for technologically important applications (thermal and chemical stability, high strength and hardness, wear-resistance, light weight, and a range of electronic and optical properties). Unfortunately, traditional methodologies to these types of materials are limited to fairly simple shapes and complex processed forms cannot be attained through these methods. The establishment of the polymeric precursor approach has allowed for the generation of advanced materials, such as refractory non-oxide ceramics, with controlled compositions, under moderate conditions, and in processed forms. The goal of the work described in this dissertation was both to develop new processible precursors to technologically important ceramics and to achieve the formation of advanced materials in processed forms. One aspect of this research exploited previously developed preceramic precursors to boron carbide, boron nitride and silicon carbide for the generation of a wide variety of advanced materials: (1) ultra-high temperature ceramic (UHTC) structural materials composed of hafnium boride and related composite materials, (2) the quaternary borocarbide superconductors, and (3) on the nanoscale, non-oxide ceramic nanotubules. The generation of the UHTC and the quaternary borocarbide materials was achieved through a method that employs a processible polymer/metal(s) dispersion followed by subsequent pyrolyses. In the case of the UHTC, hafnium oxide, hafnium, or hafnium boride powders were dispersed in a suitable precursor to afford hafnium borides or related composite materials (HfB2/HfC, HfB2/HfN, HfB2/SiC) in high yields and purities. The quaternary borocarbide superconducting materials were produced from pyrolyses of dispersions containing appropriate stoichiometric amounts of transition metal, lanthanide metal, and the polyhexenyldecaborane polymer. Both chemical vapor deposition (CVD) based routes employing a molecular precursor and porous alumina templating routes paired with solution-based methodologies are shown to generate non-oxide ceramic nanotubules of boron carbide, boron nitride and silicon carbide compositions. In the final phase of this work, a new metal-catalyzed route to poly(1-alkenyl- o-carborane) homopolymers and related copolymers was developed. Both homopolymers of 1-alkenyl-o-carboranes (1-vinyl-, 1-butenyl-, 1-hexenyl-) and copolymers of 1-hexenyl-o-carborane and allyltrimethylsilane or 1-hexenyl-o-carborane and 6-hexenyldecaborane were synthesized via the Cp2ZrMe2/B(C6F5) 3 catalyst system. A copolymer containing 1-hexenyl-o-carborane and the cross-linking agent, 6-hexenyldecaborane, was synthetically designed which exhibits initial cross-linking at ˜250°C and then converts in 75% yields to boron carbide at 1250°C.
High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor
Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong
2014-01-01
Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter. PMID:28788161
High Purity and Yield of Boron Nitride Nanotubes Using Amorphous Boron and a Nozzle-Type Reactor.
Kim, Jaewoo; Seo, Duckbong; Yoo, Jeseung; Jeong, Wanseop; Seo, Young-Soo; Kim, Jaeyong
2014-08-11
Enhancement of the production yield of boron nitride nanotubes (BNNTs) with high purity was achieved using an amorphous boron-based precursor and a nozzle-type reactor. Use of a mixture of amorphous boron and Fe decreases the milling time for the preparation of the precursor for BNNTs synthesis, as well as the Fe impurity contained in the B/Fe interdiffused precursor nanoparticles by using a simple purification process. We also explored a nozzle-type reactor that increased the production yield of BNNTs compared to a conventional flow-through reactor. By using a nozzle-type reactor with amorphous boron-based precursor, the weight of the BNNTs sample after annealing was increased as much as 2.5-times with much less impurities compared to the case for the flow-through reactor with the crystalline boron-based precursor. Under the same experimental conditions, the yield and quantity of BNNTs were estimated as much as ~70% and ~1.15 g/batch for the former, while they are ~54% and 0.78 g/batch for the latter.
Fabrication of boron sputter targets
Makowiecki, Daniel M.; McKernan, Mark A.
1995-01-01
A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.
Bellaloui, Nacer; Smith, James R; Mengistu, Alemu
2017-01-01
The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and lignin, and inform growers of the importance of timely harvest for maintaining high seed quality.
NASA Astrophysics Data System (ADS)
Gaballa, Osama Gaballa Bahig
Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering temperature, and hot-pressing pressure. Also, WC additions to Ta4HfC5 were found to improve densification and increase microhardness. The ability to process these materials at relatively low temperature would save energy and reduce cost. Boron-based hard materials are used in numerous applications such as industrial machining, armor plating, and wear-resistant coatings. It was often thought that in addition to strong bonding, super-hard materials must also possess simple crystallographic unit cells with high symmetry and a minimum number of crystal defects (e.g., diamond and cubic boron nitride (cBN)). However, one ternary boride, AlMgB14, deviates from this paradigm; AlMgB 14 has a large, orthorhombic unit cell (oI64) with multiple icosahedral boron units. TiB2 has been shown to be an effective reinforcing phase in AlMgB 14, raising hardness, wear resistance, and corrosion resistance. Thus, it was thought that adding other, similar phases (i.e., ZrB2 and HfB2) to AlMgB14 could lead to useful improvements in properties vis-à-vis pure AlMgB14. Group IV metal diborides (XB2, where X = Ti, Zr, or Hf) are hard, ultra-high temperature ceramics. These compounds have a primitive hexagonal crystal structure (hP3) with planes of graphite-like boride rings above and below planes of metal atoms. Unlike graphite, there is strong bonding between the planes, resulting in high hardness. For this study two-phase composites of 60 vol. % metal diborides with 40 vol. % AlMgB14 were produced and characterized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Miao; Du, Yonghui; Gao, Lili
A recent experimental study reported the successful synthesis of an orthorhombic FeB{sub 4} with a high hardness of 62(5) GPa [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013)], which has reignited extensive interests on whether transition-metal borides compounds will become superhard materials. However, it is contradicted with some theoretical studies suggesting transition-metal boron compounds are unlikely to become superhard materials. Here, we examined structural and electronic properties of FeB{sub 4} using density functional theory. The electronic calculations show the good metallicity and covalent Fe–B bonding. Meanwhile, we extensively investigated stress-strain relations of FeB{sub 4} under various tensile andmore » shear loading directions. The calculated weakest tensile and shear stresses are 40 GPa and 25 GPa, respectively. Further simulations (e.g., electron localization function and bond length along the weakest loading direction) on FeB{sub 4} show the weak Fe–B bonding is responsible for this low hardness. Moreover, these results are consistent with the value of Vickers hardness (11.7–32.3 GPa) by employing different empirical hardness models and below the superhardness threshold of 40 GPa. Our current results suggest FeB{sub 4} is a hard material and unlikely to become superhard (>40 GPa)« less
Dynamic consolidation of cubic boron nitride and its admixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, H.; Ahrens, T.J.
1988-09-01
Cubic boron nitride (C-BN) powders admixed with graphite-structured boron nitride powder (g-BN), silicon carbide whisker (SCW), or silicon nitride whisker (SNW) were shock compacted to pressures up to 22 GPa. Unlike previous work with diamond and graphite (D. K. Potter and T. J. Ahrens, J. Appl. Phys. 63, 910 (1987)) it was found that the addition of g-BN inhibited dynamic consolidation. Good consolidation was achieved with a 4--8 ..mu..m particle size C-BN powder admixed with 15 wt.% SNW or 20 wt.% SCW. Whereas a 37--44 ..mu..m particle size C-BN mixture was only poorly consolidated. Scanning electron microscopy (SEM) analysis demonstratemore » that SCW and SNW in the mixtures were highly deformed and indicated melt textures. A skin heating model was used to describe the physics of consolidation. Model calculations are consistent with SEM analysis images that indicate plastic deformation of SCW and SNW. Micro-Vickers hardness values as high as 50 GPa were obtained for consolidated C-BN and SNW mixtures. This compares to 21 GPa for single-crystal Al/sub 2/O/sub 3/ and 120 GPa for diamond.« less
Composite Reinforcement using Boron Nitride Nanotubes
2016-11-15
atomistic environment, which often results in notable changes of its binding to the system. By contrast, Cu and Ti exhibits quite uniform behaviour ...contrast, Cu and Ti exhibits quite uniform behaviour and hardly change their binding energy with tube size for the systems investigated. Studies on...reinforced Cu is rather brittle and therefore comparison of the behaviour of Al, Ti and Cu is important, and also because Cu is used in alloys to produce
Bonin, Hélène; Delbrayelle, Dominique; Demonchaux, Patrice; Gras, Emmanuel
2010-04-21
Boronic esters have long been considered as poor partners in cross-coupling reactions with arene diazoniums. Here is reported an unprecedented application of self-activated boronic esters in a base-free cross-coupling reaction with diazonium salts under mild and user friendly conditions.
Semiconducting boron carbide thin films: Structure, processing, and diode applications
NASA Astrophysics Data System (ADS)
Bao, Ruqiang
The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic performance and the accelerated lifetime test of betavoltaic devices. Structural analysis by X-ray diffraction and high resolution transmission electron microscopy showed that the prepared B4C thin films are amorphous. The presence of icosahedrons, which account for the radiation hardness of icosahedral boron rich solids, in the amorphous B4C thin films was supported by Fourier transform infrared spectroscopy. The pair distribution functions derived from selected area diffraction pattern of amorphous B 4C thin films showed that the short range order structure of amorphous B4C thin films is similar to beta-rhombohedral boron but with a shorter distance. The investigation of electrical properties of B4 C thin films showed that the resistivity of B4C thin films ranges from 695 O-cm to 9650 O-cm depending on the deposition temperature; the direct and indirect bandgaps for B4C thin films are 2.776 - 2.898 eV and 1.148 - 1.327 eV, respectively; the effective lifetime of excess charge carrier is close to 0.1 ms for B4C thin film deposited at room temperature and approximates to 1 ms for those deposited at 175 °C to 500 °C. Based on structural characterization and electrical properties of B4C thin films, a structural model of B4C thin films was proposed and supported by nanoindenter experiments, i.e., the hardness of thin films deposited at temperature in the range of 275 °C to 350 °C is lower than that of the films deposited at RT and 650 °C. Heterojunctions of B4C / n-Si (100) possessing photovoltaic response have been fabricated. The suitable deposition temperature for B 4C thin film to fabricate photovoltaic device is from 175 °C to 350 °C. When the Si substrate surface was not pre-cleaned before depositing B4C thin film, the B4C / n-Si (100) heterojunction has better photovoltaic responses, presumably because there were no sputter-produced defects on the surface of Si (100) substrate. Until now, the best achievable photovoltaic performance is B4C / n-Si (100) heterojunction with 200 nm thick B4C thin film when the Si (100) substrate surface was not pre-cleaned by RF sputtering. When this heterojunction was characterized using solar simulator with air mass 1.5 spectra, the short circuit current density is 1.484 mA/cm2, the open circuit voltage is about 0.389 V, and the power conversion efficiency is about 0.214 %. In addition, B5C thin films deposited by plasma enhanced chemical vapor deposition were used to make some of the devices studied in this dissertation. It was found that the Si-doped BC / n-Si (111) heterojunctions also demonstrates their photovoltaic and betavoltaic responses. Even after irradiated by a 120 keV electron beam to a fluence of 4.38x1017 electrons/cm 2, the heterojunctions still posses betavoltaic behavior and their responses to the incident irradiance density are similar to that before irradiation.
Boron investigation survey, March Air Force Base, California. Final report, 27 Jan-7 Feb 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland III , J.G.
1992-07-01
Armstrong Laboratory conducted a field survey to investigate the source of boron in the March AFB CA wastewater treatment plant effluent. The survey measured boron contributions from drinking water, domestic sources, and industrial sources over a 10-day period. The survey also evaluated the effluent to the treatment plant over the same 10 days. Boron results at the regulatory discharge point averaged 0.48 mg/1, which complies with the base permit. The results also showed drinking water levels averaged 0.225 mg/1, domestic contribution combined with drinking water levels averaged 0.396 mg/1, and mixed industrial and domestic levels ranged from 0.246 mg/1 tomore » 1.84 mg/1. The report presents bulk boron sample results from a variety of soaps and bleaches. Recommendations include further investigation into industrial activity generating high boron levels, discouraging the use of boron-containing products by military, contract, and domestic users and negotiating with the regulating agency for permitting boron at a higher level.« less
Fabrication of boron sputter targets
Makowiecki, D.M.; McKernan, M.A.
1995-02-28
A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.
Gunda, Harini; Das, Saroj Kumar; Jasuja, Kabeer
2018-04-05
Layered metal diborides that contain metal atoms sandwiched between boron honeycomb planes offer a rich opportunity to access graphenic forms of boron. We recently demonstrated that magnesium diboride (MgB 2 ) could be exfoliated by ultrasonication in water to yield boron-based nanosheets. However, knowledge of the fate of metal boride crystals in aqueous phases is still in its incipient stages. This work presents our preliminary findings on the discovery that MgB 2 crystals can undergo dissolution in water under ambient conditions to result in precursors (prenucleation clusters) that, upon aging, undergo nonclassical crystallization preferentially growing in lateral directions by two-dimensional (2D) oriented attachment. We show that this recrystallization can be utilized as an avenue to obtain a high yield (≈92 %) of boron-based nanostructures, including nanodots, nanograins, nanoflakes, and nanosheets. These nanostructures comprise boron honeycomb planes chemically modified with hydride and oxy functional groups, which results in an overall negative charge on their surfaces. This ability of MgB 2 crystals to yield prenucleation clusters that can self-seed to form nanostructures comprising chemically modified boron honeycomb planes presents a new facet to the physicochemical interaction of MgB 2 with water. These findings also open newer avenues to obtain boron-based nanostructures with tunable morphologies by varying the chemical milieu during recrystallization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz
2015-10-01
Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, S.; Rani, A. M. A.; Altaf, K.; Baig, Z.
2018-04-01
Powder Metallurgy (P/M) is one of the continually evolving technologies used for producing metal materials of various sizes and shapes. However, some P/M materials have limited use in engineering for their performance deficiency including fully dense components. AISI 316L Stainless Steel (SS) is one of the promising materials used in P/M that combines outstanding corrosion resistance, strength and ductility for numerous applications. It is important to analyze the material composition along with the processing conditions that lead to a superior behaviour of the parts manufactured with P/M technique. This research investigates the effect of Boron addition on the compactibility, densification, sintering characteristics and microhardness of 316L SS parts produced with P/M. In this study, 0.25% Boron was added to the 316L Stainless Steel matrix to study the increase in densification of the 316L SS samples. The samples were made at different compaction pressures ranging from 100 MPa to 600 MPa and sintered in Nitrogen atmosphere at a temperature of 1200°C. The effect of compaction pressure and sintering temperature and atmosphere on the density and microhardness was evaluated. The microstructure of the samples was examined by optical microscope and microhardness was found using Vickers hardness machine. Results of the study showed that sintered samples with Boron addition exhibited high densification with increase in microhardness as compared to pure 316L SS sintered samples.
Boronic acid-based chemical sensors for saccharides.
Zhang, Xiao-Tai; Liu, Guang-Jian; Ning, Zhang-Wei; Xing, Guo-Wen
2017-11-27
During the past decades, the interaction between boronic acids-functionalized sensors and saccharides is of great interest in the frontier domain of the interdiscipline concerning both biology and chemistry. Various boronic acid-based sensing systems have been developed to detect saccharides and corresponding derivatives in vitro as well as in vivo, which embrace unimolecular sensors, two-component sensing ensembles, functional assemblies, and boronic acid-loaded nanomaterials or surfaces. New sensing strategies emerge in endlessly with excellent selectivity and sensitivity. In this review, several typical sensing systems were introduced and some promising examples were highlighted to enable the deep insight of saccharides sensing on the basis of boronic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bortolussi, Silva; Ciani, Laura; Postuma, Ian; Protti, Nicoletta; Luca Reversi; Bruschi, Piero; Ferrari, Cinzia; Cansolino, Laura; Panza, Luigi; Ristori, Sandra; Altieri, Saverio
2014-06-01
The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations. © 2013 Published by Elsevier Ltd.
Lee, Bin; Lee, Dongju; Lee, Jun Ho; Ryu, Ho Jin; Hong, Soon Hyung
2016-01-01
Ceramics have superior hardness, strength and corrosion resistance, but are also associated with poor toughness. Here, we propose the boron nitride nanoplatelet (BNNP) as a novel toughening reinforcement component to ceramics with outstanding mechanical properties and high-temperature stability. We used a planetary ball-milling process to exfoliate BNNPs in a scalable manner and functionalizes them with polystyrene sulfonate. Non-covalently functionalized BNNPs were homogeneously dispersed with Si3N4 powders using a surfactant and then consolidated by hot pressing. The fracture toughness of the BNNP/Si3N4 nanocomposite increased by as much as 24.7% with 2 vol.% of BNNPs. Furthermore, BNNPs enhanced strength (9.4%) and the tribological properties (26.7%) of the ceramic matrix. Microstructural analyzes have shown that the toughening mechanisms are combinations of the pull-out, crack bridging, branching and blunting mechanisms. PMID:27271465
Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; ...
2016-11-16
Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Cheng; Zhang, Pengfei; Dai, Sheng
Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less
Experimental Study on Application of Boron Mud Secondary Resource to Oxidized Pellets Production
NASA Astrophysics Data System (ADS)
Fu, Xiao-Jiao; Chu, Man-Sheng; Zhao, Jia-Qi; Chen, Shuang-Yin; Liu, Zheng-Gen; Wang, Si-Yuan
2017-07-01
In order to realize comprehensive and massive treatment of boron mud secondary resource, fundamental study on boron mud applied to oxidized pellets production as additive was carried out in the paper under laboratory conditions. The effects of boron mud on the performance of oxidized pellets were investigated systemically, and boron mud was combined with other boron-rich material innovatively. The results showed that, within certain limits, boron mud can improve properties of oxidized pellets. The bentonite content decreased to 0.3 % when adding 1.0 % boron mud additive and the pellets met blast furnace requirements. With the combination additive content 0.8 %, bentonite content can be further decreased to 0.2 %, and the pellets properties were better than base pellet. Therefore, it was an effective way to reduce environmental pollution and optimize blast furnace operation by developing boron mud secondary resource as pellets additive.
A carbon isotope challenge to the snowball Earth.
Sansjofre, P; Ader, M; Trindade, R I F; Elie, M; Lyons, J; Cartigny, P; Nogueira, A C R
2011-10-05
The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation. High partial pressures of atmospheric CO(2) (pCO2; from 20,000 to 90,000 p.p.m.v.) in the aftermath of the Marinoan glaciation (∼635 Myr ago) have been inferred from both boron and triple oxygen isotopes. These pCO2 values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise. The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units, provide estimates lower than 3,200 p.p.m.v.--and possibly as low as the current value of ∼400 p.p.m.v. Our new constraint, and our re-interpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.
Atmospheric contribution to boron enrichment in aboveground wheat tissues.
Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick
2017-05-01
Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metalworking and machining fluids
Erdemir, Ali; Sykora, Frank; Dorbeck, Mark
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
Flat-plate solar array project process development area, process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
The program is designed to investigate the fabrication of solar cells on N-type base material by a simultaneous diffusion of N-type and P-type dopants to form an P(+)NN(+) structure. The results of simultaneous diffusion experiments are being compared to cells fabricated using sequential diffusion of dopants into N-base material in the same resistivity range. The process used for the fabrication of the simultaneously diffused P(+)NN(+) cells follows the standard Westinghouse baseline sequence for P-base material except that the two diffusion processes (boron and phosphorus) are replaced by a single diffusion step. All experiments are carried out on N-type dendritic web grown in the Westinghouse pre-pilot facility. The resistivities vary from 0.5 (UC OMEGA)cm to 5 (UC OMEGA)cm. The dopant sources used for both the simultaneous and sequential diffusion experiments are commercial metallorganic solutions with phosphorus or boron components. After these liquids are applied to the web surface, they are baked to form a hard glass which acts as a diffusion source at elevated temperatures. In experiments performed thus far, cells produced in sequential diffusion tests have properties essentially equal to the baseline N(+)PP(+) cells. However, the simultaneous diffusions have produced cells with much lower IV characteristics mainly due to cross-doping of the sources at the diffusion temperature. This cross-doping is due to the high vapor pressure phosphorus (applied as a metallorganic to the back surface) diffusion through the SiO2 mask and then acting as a diffusant source for the front surface.
The versatility of boron in biological target engagement
NASA Astrophysics Data System (ADS)
Diaz, Diego B.; Yudin, Andrei K.
2017-08-01
Boron-containing molecules have been extensively used for the purposes of chemical sensing, biological probe development and drug discovery. Due to boron's empty p orbital, it can coordinate to heteroatoms such as oxygen and nitrogen. This reversible covalent mode of interaction has led to the use of boron as bait for nucleophilic residues in disease-associated proteins, culminating in the approval of new therapeutics that work by covalent mechanisms. Our analysis of a wide range of covalent inhibitors with electrophilic groups suggests that boron is a unique electrophile in its chameleonic ability to engage protein targets. Here we review boron's interactions with a range of protein side-chain residues and reveal that boron's properties are nuanced and arise from its uncommon coordination preferences. These mechanistic and structural insights should serve as a guide for the development of selective boron-based bioactive molecules.
NASA Astrophysics Data System (ADS)
Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang
Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.
Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material
Ma, Shuailing; Bao, Kuo; Tao, Qiang; Zhu, Pinwen; Ma, Teng; Liu, Bo; Liu, Yazhou; Cui, Tian
2017-01-01
We synthesized orthorhombic FeB-type MnB (space group: Pnma) with high pressure and high temperature method. MnB is a promising soft magnetic material, which is ferromagnetic with Curie temperature as high as 546.3 K, and high magnetization value up to 155.5 emu/g, and comparatively low coercive field. The strong room temperature ferromagnetic properties stem from the positive exchange-correlation between manganese atoms and the large number of unpaired Mn 3d electrons. The asymptotic Vickers hardness (AVH) is 15.7 GPa which is far higher than that of traditional ferromagnetic materials. The high hardness is ascribed to the zigzag boron chains running through manganese lattice, as unraveled by X-ray photoelectron spectroscopy result and first principle calculations. This exploration opens a new class of materials with the integration of superior mechanical properties, lower cost, electrical conductivity, and fantastic soft magnetic properties which will be significant for scientific research and industrial application as advanced structural and functional materials. PMID:28262805
X-ray method shows fibers fail during fatigue of boron-epoxy laminates
NASA Technical Reports Server (NTRS)
Roderick, G. L.; Whitcomb, J. D.
1975-01-01
A method proposed for studying progressive fiber fracture in boron-epoxy laminates during fatigue tests is described. It is based on the intensity of X-ray absorption of the tungsten core in the boron filaments as contrasted with that of the boron and epoxy matrix. When the laminate is X-rayed, the image of the tungsten in the born filaments is recorded on a photographic plate. Breaks in the boron laminates can be easily identified by magnifying the photographic plates. The method is suitable for studying broken boron filaments in most matrix materials, and may supply key information for developing realistic fatigue and fracture models.
Physico-chemical characteristics of groundwater in and around Surat City (India).
Raval, Viral H; Malik, G M
2010-10-01
Groundwater samples were collected from different locations of Surat city, Gujarat (India). These samples from 32 locations of Surat city were analysed for their physico-chemical characteristics involving pH, colour, odour, hardness, chloride, alkalinity, COD, sulfate, TDS, SS, iron, Cu, boron, chromium, temperature and Langelier Saturation Index. On comparing the results against drinking water quality standards laid by Indian Council of Medical Research (ICMR) and World Health Organization (WHO), it is found that most of the water samples are non-potable. Most of the samples indicated Total Alkalinity, Hardness, Chloride and TDS values much higher than the permissible level stipulated by ICMR and WHO. Even at some places Langelier Saturation Index values found higher too. The high values of these parameters may have health implications and therefore these need attention.
NASA Astrophysics Data System (ADS)
Abe, Fujio; Tabuchi, M.; Tsukamoto, S.
Boundary hardening is shown to be the most important strengthening mechanism in creep of tempered martensitic 9% Cr steel base metal and welded joints at 650 °C. The enrichment of soluble boron near prior austenite grain boundaries (PAGBs) by the GB segregation is essential for the reduction of coarsening rate of M23C6 carbides near PAGBs, enhancing the boundary and sub-boundary hardening near PAGBs, and also for the change in α/γ transformation behavior in heat-affected-zone (HAZ) of welded joints during heating of welding, producing the same microstructure in HAZ as in the base metal. Excess addition of nitrogen to the 9Cr-boron steel promotes the formation of boron nitrides during normalizing heat treatment, which consumes most of soluble boron and degrades the creep strength. A NIMS 9Cr steel (MARBN; Martensitic 9Cr steel strengthened by boron and MX nitrides) with 120-150 ppm boron and 60-90 ppm nitrogen, where no boron nitride forms during normalizing heat treatment, exhibits not only much higher creep strength of base metal than Grades 91, 92 and 122 but also substantially no degradation in creep strength due to Type IV fracture in HAZ of welded joints at 650°C. The protective Cr2O3-rich scale forms on the surface of 9Cr steel by pre-oxidation treatment in Ar gas, which significantly improves the oxidation resistance in steam at 650°C.
NASA Astrophysics Data System (ADS)
Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.
2018-03-01
Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.
The prospects for composites based on boron fibers
NASA Technical Reports Server (NTRS)
Naslain, R.
1978-01-01
The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.
Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk
2016-05-11
Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.
2008-12-01
oxynitride (AlON), silicon carbide, aluminum oxide and boron carbide. A power-law equation (H = kFc ) is shown to fit the Knoop data quite well. A plot...20 22 24 26 0 20 40 60 80 100 120 140 a/F + b kFc HK= 24.183 F-0.0699 R2= 0.97 H K (G Pa ) Load (N) HK = a/F + b ErrorValue 0.919483.7367a
Effect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu–Ti Alloys
Semboshi, Satoshi; Ikeda, Jun; Iwase, Akihiro; Takasugi, Takayuki; Suzuki, Shigeru
2015-01-01
The effects of boron doping on the microstructural evolution and mechanical and electrical properties of age-hardenable Cu–4Ti (at.%) alloys are investigated. In the quenched Cu–4Ti–0.03B (at.%) alloy, elemental B (boron) is preferentially segregated at the grain boundaries of the supersaturated solid-solution phase. The aging behavior of the B-doped alloy is mostly similar to that of conventional age-hardenable Cu–Ti alloys. In the early stage of aging at 450 °C, metastable β′-Cu4Ti with fine needle-shaped precipitates continuously form in the matrix phase. Cellular discontinuous precipitates composed of the stable β-Cu4Ti and solid-solution laminates are then formed and grown at the grain boundaries. However, the volume fraction of the discontinuous precipitates is lower in the Cu–4Ti–0.03B alloy than the Cu–4Ti alloy, particularly in the over-aging period of 72–120 h. The suppression of the formation of discontinuous precipitates eventually results in improvement of the hardness and tensile strength. It should be noted that minor B doping of Cu–Ti alloys also effectively enhances the elongation to fracture, which should be attributed to segregation of B at the grain boundaries.
NASA Astrophysics Data System (ADS)
Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan
2016-07-01
Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.
NASA Technical Reports Server (NTRS)
Speck, J. S.
1986-01-01
The microstructures of melt-spun superalloy ribbons with variable boron levels have been studied by transmission electron microscopy. The base alloy was of approximate composition Ni-11% Cr-5%Mo-5%Al-4%Ti with boron levels of 0.06, 0.12, and 0.60 percent (all by weight). Thirty micron thick ribbons display an equiaxed chill zone near the wheel contact side which develops into primary dendrite arms in the ribbon center. Secondary dendrite arms are observed near the ribbon free surface. In the higher boron bearing alloys, boride precipitates are observed along grain boundaries. A concerted effort has been made to elucidate true grain shapes by the use of bright field/dark field microscopy. In the low boron alloy, grain shapes are often convex, and grain faces are flat. Boundary faces frequently have large curvature, and grain shapes form concave polygons in the higher boron level alloys. It is proposed that just after solidification, in all of the alloys studied, grain shapes were initially concave and boundaries were wavy. Boundary straightening is presumed to occur on cooling in the low boron alloy. Boundary migration is precluded in the higher boron alloys by fast precipitation of borides at internal interfaces.
Insights into the Mechanisms Underlying Boron Homeostasis in Plants
Yoshinari, Akira; Takano, Junpei
2017-01-01
Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed. PMID:29204148
Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?
Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun
2015-02-21
Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.
NASA Astrophysics Data System (ADS)
Ao, Wen; Wang, Yang; Wu, Shixi
2017-07-01
Study on the boron-based primary combustion products can bridge the gap between primary combustion and secondary combustion in solid rocket ramjets. To clarify the initial state and ignition characteristics of boron particles in the after-burning chamber of solid rocket ramjets, the elemental, composition and morphology of the primary combustion products collected under gas generator chamber pressure of 0.2 MPa and 6 MPa were investigated by energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive (SEM-EDS) individually. The ignition times of boron particles among the primary combustion products were determined using a high temperature tube furnace system. The BD model was adopted for numerical verification. The numerical solution procedure of boron ignition model in a real afterburner chamber was modified. The results show that the sum of B, C, O elements in the primary combustion products reaches approximately 90%. The primary combustion products are mainly consisted of B, C, and B2O3. Images of the primary combustion products present highly agglomeration, indicating an oxidation of boron surface. Numerous spherical carbon particles with a diameter around 100 nm are observed in the products. Three features of the boron in the primary combustion products are obtained, compared to virgin boron. First most of the boron lumps are covered by carbon particles on the surface. Second the mean particle size is five times larger than that of virgin boron. Third the overall initial oxide layer covered on boron surface increases its thickness by above 0.1 μm. The ignition time of boron in the primary combustion products reaches 20-30 ms under 1673-1873 K, which is quite different from virgin boron of 4 ms. Numerical calculation results show the key reason leading to such a long ignition time is the variation of the initial oxide layer thickness. In conclusion, the physicochemical properties of boron particles are found to differ with virgin boron after primary combustion process. The accurate evaluation of the initial oxide layer thickness and initial particle radius is a crucial procedure before the numerical calculation of boron ignition kinetics. Results of our study are expected to provide better insight in the simulation of solid rocket ramjets working process.
NASA Astrophysics Data System (ADS)
Serra, R.; Oliveira, V.; Oliveira, J. C.; Kubart, T.; Vilar, R.; Cavaleiro, A.
2015-03-01
Amorphous and crystalline sputtered boron carbide thin films have a very high hardness even surpassing that of bulk crystalline boron carbide (≈41 GPa). However, magnetron sputtered B-C films have high friction coefficients (C.o.F) which limit their industrial application. Nanopatterning of materials surfaces has been proposed as a solution to decrease the C.o.F. The contact area of the nanopatterned surfaces is decreased due to the nanometre size of the asperities which results in a significant reduction of adhesion and friction. In the present work, the surface of amorphous and polycrystalline B-C thin films deposited by magnetron sputtering was nanopatterned using infrared femtosecond laser radiation. Successive parallel laser tracks 10 μm apart were overlapped in order to obtain a processed area of about 3 mm2. Sinusoidal-like undulations with the same spatial period as the laser tracks were formed on the surface of the amorphous boron carbide films after laser processing. The undulations amplitude increases with increasing laser fluence. The formation of undulations with a 10 μm period was also observed on the surface of the crystalline boron carbide film processed with a pulse energy of 72 μJ. The amplitude of the undulations is about 10 times higher than in the amorphous films processed at the same pulse energy due to the higher roughness of the films and consequent increase in laser radiation absorption. LIPSS formation on the surface of the films was achieved for the three B-C films under study. However, LIPSS are formed under different circumstances. Processing of the amorphous films at low fluence (72 μJ) results in LIPSS formation only on localized spots on the film surface. LIPSS formation was also observed on the top of the undulations formed after laser processing with 78 μJ of the amorphous film deposited at 800 °C. Finally, large-area homogeneous LIPSS coverage of the boron carbide crystalline films surface was achieved within a large range of laser fluences although holes are also formed at higher laser fluences.
Energy release properties of amorphous boron and boron-based propellant primary combustion products
NASA Astrophysics Data System (ADS)
Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu
2015-07-01
The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.
Experimental study on internal cooling system in hard turning of HCWCI using CBN tools
NASA Astrophysics Data System (ADS)
Ravi, A. M.; Murigendrappa, S. M.
2018-04-01
In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.
NASA Astrophysics Data System (ADS)
Yoshida, Y.; Matsumura, A.; Higeta, K.; Inoue, T.; Shimizu, S.; Motonami, Y.; Sato, M.; Sadahiro, T.; Fujii, K.
1991-07-01
The hardness depth profiles of cemented carbides which were implanted with high-energy B + ions have been estimated using a dynamic microhardness tester. The B + implantations into (16% Co)-cemented WC alloys were carried out under conditions where the implantation energies were 1-3 MeV and the fluences 1 × 10 17-1 × 10 18ions/cm 2. The profiles show that the implanted layer becomes harder as fluences are chosen at higher values and there is a peak at a certain depth which depends on the implantation energy. In X-ray diffraction (XRD) studies of the implanted surface the broadened refraction peaks of only WC and Co are detected and the increments of lattice strain and of residual stress in the near-surface region are observed. It is supposed that the hardening effect should be induced by an increase in residual stress produced by lattice strain. The hardness depth profile in successive implantation of ions with different energies agrees with the compounded profile of each one of the implantations. It is concluded that the hardness depth profile can be controlled under adequate conditions of implantation.
Functionalizing graphene by embedded boron clusters
NASA Astrophysics Data System (ADS)
Quandt, Alexander; Özdoğan, Cem; Kunstmann, Jens; Fehske, Holger
2008-08-01
We present a model system that might serve as a blueprint for the controlled layout of graphene based nanodevices. The systems consists of chains of B7 clusters implanted in a graphene matrix, where the boron clusters are not directly connected. We show that the graphene matrix easily accepts these alternating B7-C6 chains and that the implanted boron components may dramatically modify the electronic properties of graphene based nanomaterials. This suggests a functionalization of graphene nanomaterials, where the semiconducting properties might be supplemented by parts of the graphene matrix itself, but the basic wiring will be provided by alternating chains of implanted boron clusters that connect these areas.
Li, Meng; Xu, Su-Ying; Gross, Andrew J; Hammond, Jules L; Estrela, Pedro; Weber, James; Lacina, Karel; James, Tony D; Marken, Frank
2015-06-10
The interaction of ferrocene-boronic acid with fructose is investigated in aqueous 0.1 m phosphate buffer at pH 7, 8 and 9. Two voltammetric methods, based on 1) a dual-plate generator-collector micro-trench electrode (steady state) and 2) a square-wave voltammetry (transient) method, are applied and compared in terms of mechanistic resolution. A combination of experimental data is employed to obtain new insights into the binding rates and the cumulative binding constants for both the reduced ferrocene-boronic acid (pH dependent and weakly binding) and for the oxidised ferrocene-boronic acid (pH independent and strongly binding).
Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio
2015-04-01
This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.
Utility of Boron in Dermatology.
Jackson, David G; Cardwell, Leah A; Oussedik, Elias; Feldman, Steven R
2017-08-09
Boron compounds are being investigated as therapies for dermatologic conditions. Several features of boron chemistry make this element an ideal component in dermatologic treatments. We review the published dermatologically-relevant clinical trials and case studies pertaining to boron compounds. PubMed was utilized to query terms boron, chemistry, drug, development, dermatology, atopic dermatitis, psoriasis, onychomycosis, tavaborole, AN 2690, crisaborole, and AN 2728. Clinical trials, case studies, animal studies and in vitro studies. pertaining to atopic dermatitis, psoriasis and onychomycosis were included. Crisaborole 2% topical solution reduced atopic dermatitis lesions by approximately 60% when compared to pre-treatment baseline. Crisaborole maintains its dose-dependent effect in treatment of psoriasis and significantly reduces psoriatic plaques when compared to controls. Adverse effects were mild, frequency of events varied between studies. Crisaborole was well tolerated when applied to sensitive skin. Topical tavaborole significantly reduced or eliminated onychomycosis with minimal side effects compared to placebo. Tavaborole was effective in treating recalcitrant onychomycosis. Boron-based compounds form stable interactions with enzyme targets and are safe medications for the treatment of atopic dermatitis, psoriasis, and onychomycosis. The mild and rare side effects of topical boron-based compounds may make them ideal treatments for individuals with sensitive skin and pediatric populations.
Islam, Md Nurul; Islam, Md Shahidul; Hoque, Md Ashraful; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru
2014-12-01
Histone deacetylase (HDAC) inhibitors are a class of potential therapeutics for the treatment of cancer. Bicyclic tetrapeptides equipped with methoxymethyl ketone and boronic acid as zinc-binding group were designed and synthesized. The inhibitory activities of these compounds were evaluated against HDAC enzymes. The cell-free and cell-based assay data showed that both potency and selectivity changed with the change in zinc-binding group. Boronic acid-based compound showed poor activity whereas methoxymethyl ketone-based compound displayed impressive activity in both cell-free and cell-based conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong
2016-02-01
The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.
Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide
2013-11-01
Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.
Ground-water quality atlas of Wisconsin
Kammerer, Phil A.
1981-01-01
This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.
A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed
2015-06-01
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.
Computational study on the functionalization of BNNC with pyrrole molecule
NASA Astrophysics Data System (ADS)
Payvand, Akram; Tavangar, Zahra
2018-05-01
The functionalization of the boron nitride nanocone (BNNC) by pyrrole molecule was studied using B3LYP/6-311+G(d) level of theory. The reaction was studied in three methods in different layers of the nanocone: Diels-Alder cycloaddition, quartet cycloaddition and the reaction of the nitrogen atom of the pyrrole molecule with the boron or nitrogen atom of the BNNC. Thermodynamic quantities, Chemical hardness and potential and electrophilicity index of the functionalized BNNC were studied. The results show that the tip of nanocone has a higher tendency for participation in the reaction and the most favorable product of the reaction between BNNC and pyrrole molecule is produced from the reaction of N atom of pyrrole with the B atom of BNNC. The reaction decreases the energy gap value which leads to increasing the reactivity and conductivity of functionalized nanocone. The calculated NICS values confirm the aromaticity in the pristine nanocone as well as in the functionalized nanocone.
Deposition and characterization of aluminum magnesium boride thin film coatings
NASA Astrophysics Data System (ADS)
Tian, Yun
Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (< 3 x 10-6 Torr), accompanied by strong texture formation. Low vacuum level-as deposited AlMgB14 films have low hardness (10 GPa), but high vacuum level-as deposited AlMgB14 films exhibit an extremely high hardness (45 GPa - 51 GPa), and the higher deposition temperature results in still higher hardness. Furthermore, a very low friction coefficient (0.04 - 0.05) has been observed for high vacuum level-as deposited AlMgB14 films, which could be ascribed to the in situ formation of a surface self-lubricating layer. Unlike most boron-rich boride films, high vacuum level-as deposited AlMgB14 films also possess a low n-type electrical resistivity, which is a consequence of high carrier concentration and moderate carrier mobility. The operative electrical transport mechanism and doping behavior for high vacuum level-as deposited AlMgB14 films are discussed in detail in this thesis.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... the Region I fuel storage racks reflect credit for fuel assembly burnup and soluble boron. Based on... boron concentration of 850 parts per million (ppm) during normal operations, and 1350 ppm during...) racks when considering the presence of soluble boron in the pool water for criticality control and the...
Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E
2013-08-01
Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.
Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.
Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I
2014-04-15
Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center-two-electron (2c-2e) σ bonds on the periphery and delocalized multicenter-two-electron (nc-2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron's electron deficiency and leads to fluxional behavior, which has been observed in B13(+) and B19(-). A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B(-), formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B(-)/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors' laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.
NASA Astrophysics Data System (ADS)
Jenkins, Peter Anthony
A novel Boron Neutron Capture Therapy (BNCT) regimen for the treatment of HER2+ breast cancers has been proposed as an alternative to whole breast irradiation for breast conservation therapy patients. The proposed therapy regimen is based on the assumed production of boron delivery agents that would be synthesized from compounds of Trastuzumab (Herceptin ®) and oligomeric phosphate diesters (OPDs). The combination of the anti-HER2 monoclonal antibody and the high boron loading capability of OPDs has led to the assumption that boron could be delivered to the HER2+ cancer cells at Tumor to Healthy Tissue ratios (T:H) of up to 35:1 and boron concentrations above 50 μg/g. This significantly increased boron delivery efficiency has opened new BNCT possibilities. This proof of concept study examined treatment parameters derived as the results in previous efforts in the context of patient-specific geometry and compared calculated dose results to those observed during actual patient therapy. These results were based on dose calculations performed with a set of calculated Kerma coefficients derived from tissues specific to the regions of interest for breast cancer. A comparison was made of the dose to the tumor region, the patient's skin, and the peripheral organs. The results of this study demonstrated that, given the performance of the proposed boron delivery agent, the BNCT treatment regimen is feasible. The feasibility is based on the findings that the equivalent dose could be delivered to the treatment volume with less dose to the skin and peripheral organs. This is anticipated to improve the treatment outcomes by maintaining local control of tumor cells while reducing dose to healthy tissues.
Genesis of Infrared Decoy Flares: The Early Years from 1950 into the 1970s. First Edition
2009-01-26
Ignition is by a pull wire igniter. The ignition strip is made from composition PL 6239. The original grain consists of composition PL 6239. Based...products in the visible, namely boron dioxide and beryllium oxide. In the infrared, they observed carbon monoxide and carbon dioxide selective emissions...and emissions at the infrared wavelengths of 5.4µm and 5.9µm that they attributed to boron hydride oxide, boron oxide hydroxide, and boron monoxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attebery, C.W.; Zimmer, A.T.; Hedgecock, N.S.
1989-01-01
A waste-water characterization hazardous-waste survey was conducted at Beale AFB by USAFOEHL/ECQ personnel to provide the base with sufficient information to address a State of California Notice of Violation concerning excessive discharges of boron and cyanide from the base sewage-treatment plant (STP). The results of the survey showed that the 9th RTS Precision Photo Lab along with other film-processing organizations were major contributors to the boron and cyanide discharge problems being experienced by the base STP. Maintenance organizations that utilize soaps and detergents that contain boron and cyanide also contributed to the problem.
Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.
Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiationmore » has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B–/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors’ laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.« less
Reuse of Boron Waste as an Additive in Road Base Material
Zhang, Yutong; Guo, Qinglin; Li, Lili; Jiang, Ping; Jiao, Yubo; Cheng, Yongchun
2016-01-01
The amount of boron waste increases year by year. There is an urgent demand to manage it in order to reduce the environmental impact. In this paper, boron waste was reused as an additive in road base material. Lime and cement were employed to stabilize the waste mixture. Mechanical performances of stabilized mixture were evaluated by experimental methods. A compaction test, an unconfined compressive test, an indirect tensile test, a modulus test, a drying shrinkage test, and a frost resistance test were carried out. Results indicated that mechanical strengths of lime-stabilized boron waste mixture (LSB) satisfy the requirements of road base when lime content is greater than 8%. LSB can only be applied in non-frozen regions as a result of its poor frost resistance. The lime–cement-stabilized mixture can be used in frozen regions when lime and cement contents are 8% and 5%, respectively. Aggregate reduces the drying shrinkage coefficient effectively. Thus, aggregate is suggested for mixture stabilization properly. This work provides a proposal for the management of boron waste. PMID:28773539
Surface roughness analysis after laser assisted machining of hard to cut materials
NASA Astrophysics Data System (ADS)
Przestacki, D.; Jankowiak, M.
2014-03-01
Metal matrix composites and Si3N4 ceramics are very attractive materials for various industry applications due to extremely high hardness and abrasive wear resistance. However because of these features they are problematic for the conventional turning process. The machining on a classic lathe still requires special polycrystalline diamond (PCD) or cubic boron nitride (CBN) cutting inserts which are very expensive. In the paper an experimental surface roughness analysis of laser assisted machining (LAM) for two tapes of hard-to-cut materials was presented. In LAM, the surface of work piece is heated directly by a laser beam in order to facilitate, the decohesion of material. Surface analysis concentrates on the influence of laser assisted machining on the surface quality of the silicon nitride ceramic Si3N4 and metal matrix composite (MMC). The effect of the laser assisted machining was compared to the conventional machining. The machining parameters influence on surface roughness parameters was also investigated. The 3D surface topographies were measured using optical surface profiler. The analysis of power spectrum density (PSD) roughness profile were analyzed.
Fan, Changzeng; Li, Jian; Wang, Limin
2014-01-01
We have explored the mechanical properties, electronic structures and phase transition behaviors of three designed new phases for element boron from ambient condition to high-pressure of 120 GPa including (1) a C2/c symmetric structure (m-B16); (2) a symmetric structure (c-B56) and (3) a Pmna symmetric structure (o-B24). The calculation of the elastic constants and phonon dispersions shows that the phases are of mechanical and dynamic stability. The m-B16 phase is found to transform into another new phase (the o-B16 phase) when pressure exceeds 68 GPa. This might offer a new synthesis strategy for o-B16 from the metastable m-B16 at low temperature under high pressure, bypassing the thermodynamically stable γ-B28. The enthalpies of the c-B56 and o-B24 phases are observed to increase with pressure. The hardness of m-B16 and o-B16 is calculated to be about 56 GPa and 61 GPa, approaching to the highest value of 61 GPa recorded for α-Ga-B among all available Boron phases. The electronic structures and bonding characters are analyzed according to the difference charge-density and crystal orbital Hamilton population (COHP), revealing the metallic nature of the three phases. PMID:25345910
Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center.
Freund, Yvonne R; Akama, Tsutomu; Alley, M R K; Antunes, Joana; Dong, Chen; Jarnagin, Kurt; Kimura, Richard; Nieman, James A; Maples, Kirk R; Plattner, Jacob J; Rock, Fernando; Sharma, Rashmi; Singh, Rajeshwar; Sanders, Virginia; Zhou, Yasheen
2012-09-21
We have used boron-based molecules to create novel, competitive, reversible inhibitors of phosphodiesterase 4 (PDE4). The co-crystal structure reveals a binding configuration which is unique compared to classical catechol PDE4 inhibitors, with boron binding to the activated water in the bimetal center. These phenoxybenzoxaboroles can be optimized to generate submicromolar potency enzyme inhibitors, which inhibit TNF-α, IL-2, IFN-γ, IL-5 and IL-10 activities in vitro and show safety and efficacy for topical treatment of human psoriasis. They provide a valuable new route for creating novel potent anti-PDE4 inhibitors. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Scorei, Romulus
2012-02-01
Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".
Where Boron? Mars Rover Detects It
2016-12-13
This map shows the route driven by NASA's Curiosity Mars rover (blue line) and locations where the rover's Chemistry and Camera (ChemCam) instrument detected the element boron (dots, colored by abundance of boron according to the key at right). The main map shows the traverse from landing day (Sol 0) in August 2012 to the rover's location in September 2016, with boron detections through September 2015. The inset at upper left shows a magnified version of the most recent portion of that traverse, with boron detections during that portion. Overlapping dots represent cases when boron was detected in multiple ChemCam observation points in the same target and non-overlapping dots represent cases where two different targets in the same location have boron. Most of the mission's detections of boron have been made in the most recent seven months (about 200 sols) of the rover's uphill traverse. The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is up. The scale bar at lower right represents one kilometer (0.62 mile). http://photojournal.jpl.nasa.gov/catalog/PIA21150
Structure and properties of Hardox 450 steel with arc welded coatings
NASA Astrophysics Data System (ADS)
Ivanov, Yu. F.; Konovalov, S. V.; Kormyshev, V. E.; Gromov, V. E.; Teresov, A. D.; Semina, O. A.
2017-12-01
The paper reports on a study of the surface structure, phase composition, and microhardness of Hardox 450 steel with coatings deposited by arc welding of powder wires differing in chemical composition. The study shows that to a depth of 6-8 mm, the microhardness of the thus formed coatings is more than two times the microhardness of the base metal and that their higher mechanical properties are provided by martensite structure containing Nb2C and NbC carbides and Fe2B borides as eutectic lamellae with a transverse size of 30-70 nm; their volume reveals a net-like dislocation substructure with a scalar dislocation density of 1011 cm-2. The highest surface hardness is found for the steel coated with boron-containing wire material. Some ideas are suggested on possible mechanisms and temperature for the formation of Nb and B carbides during the process.
Effect of Al Addition on Microstructure of AZ91D
NASA Astrophysics Data System (ADS)
Joshi, Utsavi; Babu, Nadendla Hari
Casting is a net shape or near net shape forming process so work-hardening will not be applicable for improving properties of magnesium cast alloys. Grain refinement, solid-solution strengthening, precipitation hardening and specially designed heat treatment are the techniques used to enhance the properties of these alloys. This research focusses on grain refinement of magnesium alloy AZ91D, which is a widely used commercial cast alloy. Recently, Al-B based master alloys have shown potential in grain refining AZ91D. A comparative study of the grain refinement of AZ91D by addition of 0.02wt%B, 0.04wt%B, 0.1wt%B, 0.5wt%B and 1.0wt%B of A1-5B master alloy and equivalent amount of solute element aluminium is described in this paper. Hardness profile of AZ91D alloyed with boron and aluminium is compared.
Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing B←N Units.
Liu, Jun; Wang, Tao; Dou, Chuandong; Wang, Lixiang
2018-06-15
Organoboron chemistry is a new tool to tune the electronic structures and properties of conjugated polymers, which are important for applications in organic opto-electronic devices. To investigate the effects of substituents of boron atoms on conjugated polymers, we synthesized three conjugated polymers based on double B←N bridged bipyridine (BNBP) with various substituents on the boron atoms. By changing the substituents from four phenyl groups and two phenyl groups/two fluorine atoms to four fluorine atoms, the BNBP-based polymers show the blue-shifted absorption spectra, decreased LUMO/HOMO energy levels and enhanced electron affinities, as well as the increased electron mobilities. Moreover, these BNBP-based polymers can be used as electron acceptors for all-polymer solar cells. These results demonstrate that the substituents of boron atoms can effectively modulate the electronic properties and applications of conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On Certain Topological Indices of Boron Triangular Nanotubes
NASA Astrophysics Data System (ADS)
Aslam, Adnan; Ahmad, Safyan; Gao, Wei
2017-08-01
The topological index gives information about the whole structure of a chemical graph, especially degree-based topological indices that are very useful. Boron triangular nanotubes are now replacing usual carbon nanotubes due to their excellent properties. We have computed general Randić (Rα), first Zagreb (M1) and second Zagreb (M2), atom-bond connectivity (ABC), and geometric-arithmetic (GA) indices of boron triangular nanotubes. Also, we have computed the fourth version of atom-bond connectivity (ABC4) and the fifth version of geometric-arithmetic (GA5) indices of boron triangular nanotubes.
Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles
NASA Astrophysics Data System (ADS)
Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya
2018-04-01
Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.
Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen
2016-11-01
Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.
Neal, Colin; Williams, Richard J; Bowes, Michael J; Harrass, Michael C; Neal, Margaret; Rowland, Philip; Wickham, Heather; Thacker, Sarah; Harman, Sarah; Vincent, Colin; Jarvie, Helen P
2010-02-15
The changing patterns of riverine boron concentration are examined for the Thames catchment in southern/southeastern England using data from 1997 to 2007. Boron concentrations are related to an independent marker for sewage effluent, sodium. The results show that boron concentrations in the main river channels have declined with time especially under baseflow conditions when sewage effluent dilution potential is at its lowest. While boron concentrations have reduced, especially under low-flow conditions, this does not fully translate to a corresponding reduction in boron flux and it seems that the "within-catchment" supplies of boron to the river are contaminated by urban sources. The estimated boron reduction in the effluent input to the river based on the changes in river chemistry is typically around 60% and this figure matches with an initial survey of more limited data for the industrial north of England. Data for effluent concentrations at eight sewage treatment works within the Kennet also indicate substantial reductions in boron concentrations: 80% reduction occurred between 2001 and 2008. For the more contaminated rivers there are issues of localised rather than catchment-wide sources and uncertainties over the extent and nature of water/boron stores. Atmospheric sources average around 32 to 61% for the cleaner and 4 to 14% for the more polluted parts. The substantial decreases in the boron concentrations correspond extremely well with the timing and extent of European wide trends for reductions in the industrial and domestic usage of boron-bearing compounds. It clearly indicates that such reductions have translated into lower average and peak concentrations of boron in the river although the full extent of these reductions has probably not yet occurred due to localised stores that are still to deplete.
Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.
Moghaddasi, Leyla; Bezak, Eva
2018-03-01
Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... Requirements and ``items'' paragraph of ECCN 1C011 by deleting the reference to boron carbide and replacing it with boron alloys in the MT control section of this ECCN, and by making conforming changes to the MT and NS License Requirements for this ECCN. To effect this change, reference to boron alloys was...
Martin, Aiden A.; Depond, Philip J.
2018-04-24
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the depositionmore » mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. Lastly, the results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Aiden A.; Depond, Philip J.
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the depositionmore » mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. Lastly, the results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.« less
Jung, Hye Jin; Nam, Kyusuk; Sung, Hong-Gye; Hyun, Hyung Soo; Sohn, Youngku; Shin, Weon Gyu
2016-01-01
TiO2-coated boron particles were prepared by a wet ball milling method, with the particle size distribution and average particle size being easily controlled by varying the milling operation time. Based on the results from X-ray photoelectron spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy, it was confirmed that the initial oxide layer on the boron particles surface was removed by the wet milling process, and that a new B–O–Ti bond was formed on the boron surface. The uniform TiO2 layer on the 150 nm boron particles was estimated to be 10 nm thick. Based on linear sweep voltammetry, cyclic voltammetry, current-time amperometry, and electrochemical impedance analyses, the potential for the application of TiO2-coated boron particles as a photoelectrochemical catalyst was demonstrated. A current of 250 μA was obtained at a potential of 0.5 V for hydrogen evolution, with an onset potential near to 0.0 V. Finally, a current of 220 μA was obtained at a potential of 1.0 V for oxygen evolution. PMID:28774132
A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed
2015-06-05
Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less
Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lischner, Johannes, E-mail: jlischner597@gmail.com; Department of Physics and Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ; Nemšák, Slavomír
We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novelmore » solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.« less
Branagan, Daniel J [Iona, ID
2012-01-17
A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.
Wear Resistance of Austempered Ductile Iron with Nanosized Additives
NASA Astrophysics Data System (ADS)
Kaleicheva, J. K.; Mishev, V.
2018-01-01
The wear resistance, microstructure and mechanical properties of austempered ductile iron (ADI) with nanosized additives of cubic boron nitride cBN are investigated. Samples of ductile iron are put under austhempering at the following conditions: heating at 900°С, 1 h and isothermal retention at 280оС, 2 h and 380°С, 2 h with the aim to achieve a lower bainitic structure and an upper bainitic structure. The experimental wear testing of austempered ductile irons is performed in friction conditions of a fixed abrasive by a cinematic scheme „pin - disc” using an accelerated testing method and device. The microstructure of the ADI is investigated by metallographic and X-Ray analyses. The Vickers hardness testing and impact strength examination are carried out. The influence of the nanosized additives of cBN on the wear resistance, microstructure, impact strength and hardness of the ADI is investigated.
Functional characterization of Citrus macrophylla BOR1 as a boron transporter.
Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio
2013-11-01
Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants. © 2013 Scandinavian Plant Physiology Society.
Inter-layer potential for hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded
2014-03-01
A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.
Laser doping of boron-doped Si paste for high-efficiency silicon solar cells
NASA Astrophysics Data System (ADS)
Tomizawa, Yuka; Imamura, Tetsuya; Soeda, Masaya; Ikeda, Yoshinori; Shiro, Takashi
2015-08-01
Boron laser doping (LD) is a promising technology for high-efficiency solar cells such as p-type passivated locally diffused solar cells and n-type Si-wafer-based solar cells. We produced a printable phosphorus- or boron-doped Si paste (NanoGram® Si paste/ink) for use as a diffuser in the LD process. We used the boron LD process to fabricate high-efficiency passivated emitter and rear locally diffused (PERL) solar cells. PERL solar cells on Czochralski Si (Cz-Si) wafers yielded a maximum efficiency of 19.7%, whereas the efficiency of a reference cell was 18.5%. Fill factors above 79% and open circuit voltages above 655 mV were measured. We found that the boron-doped area effectively performs as a local boron back surface field (BSF). The characteristics of the solar cell formed using NanoGram® Si paste/ink were better than those of the reference cell.
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Cheng, Xin-Lu
2018-02-01
Three two-dimensional (2D) single layer boron nitride sheets have been predicted based on the first-principles calculations. These 2D boron nitride sheets are comprised of equivalent boron atoms and nitride atoms with sp2 and sp bond hybridization. The geometry optimization reflects that they all possess stable planar crystal structures with the space group P 6 bar 2 m (D3h3) symmetry. The charge density distribution manifests that the B-N bonds in these boron nitride sheets are covalent in nature but with ionic characteristics. The tunable band gaps indicate their potential applications in nanoscale electronic and optoelectronic devices by changing the length of sp-bonded Bsbnd N linkages.
Metal-Element Compounds of Titanium, Zirconium, and Hafnium as Pyrotechnic Fuels
2015-05-04
including ceramic materials in this role has been far less common. Following the development of boron carbide-based pyrotechnics in our laboratories, we...ameliorate these problems. Commercially available group 4 compounds containing hydrogen, boron , carbon, nitrogen, silicon, and phosphorus were obtained for...predicted behavior suggests that these compounds may be useful for a variety of pyrotechnic applications. 1. INTRODUCTION The recent use of boron
Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors.
Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei; Zhang, Limei; Ren, Jingzheng; Zheng, Mingtao; Dong, Lichun; Sun, Luyi
2016-09-21
In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors based on the as-synthesized B-rGO exhibited an outstanding specific capacitance.
NASA Astrophysics Data System (ADS)
Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming
2014-04-01
Boron doped (B-doped) diamond films are deposited onto WC-Co inserts by HFCVD with the mixture of acetone, trimethyl borate (C3H9BO3) and H2. The as-deposited B-doped diamond films are characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) spectroscopy, Raman spectroscopy, 3D surface topography based on white-light interferometry and Rockwell hardness tester. The effects of mechanical polishing on the friction behavior and cutting performance of B-doped diamond are evaluated by ball-on-plate type reciprocating tribometer and turning of aluminum alloy 7075 materials, respectively. For comparison, the same tests are also conducted for the bare WC-Co inserts with smooth surface. Friction tests suggest that the unpolished and polished B-doped diamond films possess relatively low fluctuation of friction coefficient than as-received bare WC-Co samples. The average stable friction coefficient for B-doped diamond films decreases apparently after mechanical polishing. The values for WC-Co sample, unpolished and polished B-doped diamond films are approximately 0.38, 0.25 and 0.11, respectively. The cutting results demonstrate that the low friction coefficient and high adhesive strength of B-doped diamond films play an essential role in the cutting performance enhancement of the WC-Co inserts. However, the mechanical polishing process may lower the adhesive strength of B-doped diamond films. Consequently, the polished B-doped diamond coated inserts show premature wear in the machining of adhesive aluminum alloy materials.
Processing and characterization of boron carbide-hafnium diboride ceramics
NASA Astrophysics Data System (ADS)
Brown-Shaklee, Harlan James
Hafnium diboride based ceramics are promising candidate materials for advanced aerospace and nuclear reactor components. The effectiveness of boron carbide and carbon as HfB2 sintering additives was systematically evaluated. In the first stage of the research, boron carbide and carbon additives were found to improve the densification behavior of milled HfB2 powder in part by removing oxides at the HfB2 surface during processing. Boron carbide additives reduced the hot pressing temperature of HfB2 by 150°C compared to carbon, which reduced the hot pressing temperature by ˜50°C. Reduction of oxide impurities alone could not explain the difference in sintering enhancement, however, and other mechanisms of enhancement were evaluated. Boron carbides throughout the homogeneity range were characterized to understand other mechanisms of sintering enhancement in HfB2. Heavily faulted carbon rich and boron rich boron carbides were synthesized for addition to HfB2. The greatest enhancement to densification was observed in samples containing boron- and carbon-rich compositions whereas B6.5 C provided the least enhancement to densification. It is proposed that carbon rich and boron rich boron carbides create boron and hafnium point defects in HfB2, respectively, which facilitate densification. Evaluation of the thermal conductivity (kth) between room temperature and 2000°C suggested that the stoichiometry of the boron carbide additives did not significantly affect kth of HfB2-BxC composites. The improved sinterability and the high kth (˜110 W/m-K at 300K and ˜90 W/m-K at 1000°C ) of HfB2-BxC ceramics make them excellent candidates for isotopically enriched reactor control materials.
Edward Raja, Chellaiah; Omine, Kiyoshi
2013-08-01
Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.
New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick
This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide rangemore » of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have demonstrated the predicted increase in binding energy experimentally, currently at ~10 kJ/mol. The synthetic route for incorporation of boron at the outset is to create appropriately designed copoly- mers, with a boron-free and a boron-carrying monomer, followed by pyrolysis of the polymer, yielding a bo- ron-substituted carbon scaffold in which boron atoms are bonded to carbon atoms by synthesis. This is in contrast to a second route (funded by DE-FG36-08GO18142) in which first high-surface area carbon is cre- ated and doped by surface vapor deposition of boron, with incorporation of the boron into the lattice the final step of the fabrication. The challenge in the first route is to create high surface areas without compromising sp2 boron-carbon bonds. The challenge in the second route is to create sp2 boron-carbon bonds without com- promising high surface areas.« less
NASA Astrophysics Data System (ADS)
Yastrebinskii, R. N.
2018-04-01
The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.
Gifford, Ian; Vreeland, Wyatt; Grdanovska, Slavica; Burgett, Eric; Kalinich, John; Vergara, Vernieda; Wang, C-K Chris; Maimon, Eric; Poster, Dianne; Al-Sheikhly, Mohamad
2014-06-01
The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined. Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays. Colony formation assays were utilized to evaluate the decrease in cell survival due to high-linear energy transfer (LET) particles resulting from (10)B thermal neutron capture. BCH delivery by means of encapsulation in a lipid bilayer resulted in a boron uptake of 35.2 ± 4.3 μg/10(9) cells, with minimal cytotoxic effects. PC-3 cells treated with BCH and exposed to a 9.4 × 10(11) n/cm(2) thermal neutron fluence yielded a 20-25% decrease in clonogenic capacity. The decreased survival is attributed to the generation of high-LET α particles and (7)Li nuclei that deposit energy in densely ionizing radiation tracks. Liposome-based delivery of BCH is capable of introducing sufficient boron to PC-3 cells for BNCT. High-LET α particles and (7)Li nuclei generated from (10)B thermal neutron capture significantly decrease colony formation ability in the targeted PC-3 cells.
NASA Astrophysics Data System (ADS)
Lebedeva, R. V.; Tumanova, A. N.; Mashin, N. I.
2007-07-01
We carried out a systematic study of the influence of the main component on the change of analytical signal during atomic-emission analysis of boron compounds. Changes in the intensity of spectral lines of microimpurities as functions of their concentrations in the analytical system based on graphite powder with a variable content of boric acid and boron oxide are presented.
Data-Driven Learning of Total and Local Energies in Elemental Boron
NASA Astrophysics Data System (ADS)
Deringer, Volker L.; Pickard, Chris J.; Csányi, Gábor
2018-04-01
The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β -rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.
Data-Driven Learning of Total and Local Energies in Elemental Boron.
Deringer, Volker L; Pickard, Chris J; Csányi, Gábor
2018-04-13
The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β-rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.
NASA Astrophysics Data System (ADS)
Corti, M.; Bonora, M.; Borsa, F.; Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S.; Zonta, C.; Clerici, A. M.; Cansolino, L.; Ferrari, C.; Dionigi, P.; Porta, A.; Zanoni, G.; Vidari, G.
2011-04-01
We report the investigation of new organic complexes containing a magnetic moment (Gd-based molecular nanomagnets), which can serve the double purpose of acting as boron neutron capture therapy (BNCT) agents, and at the same time act as contrast agents to detect the molecule in the tissue by a proton magnetic resonance imaging (MRI). We also explore the possibility of monitoring the concentration of the BNCT agent directly via proton and boron NMR relaxation. The absorption of 10B-enriched molecules inside tumoral liver tissues has been shown by NMR measurements and confirmed by α spectroscopy. A new molecular Gd-tagged nanomagnet and BNCT agent (GdBPA) has been synthesized and characterized measuring its relaxivity R1 between 10 kHz and 66 MHz, and its use as a contrast agent in MRI has been demonstrated. The NMR-based evidence of the absorption of GdBPA into living tumoral cells is also shown.
Complex fine-scale diffusion coating formed at low temperature on high-speed steel substrate
NASA Astrophysics Data System (ADS)
Chaus, A. S.; Pokorný, P.; Čaplovič, Ľ.; Sitkevich, M. V.; Peterka, J.
2018-04-01
A complex B-C-N diffusion coating was produced at 580 °C for 1 h on AISI M35 steel substrate and compared with a reference coating formed at 880 °C for 2.5 h. The surface and the cross-sections of the samples were subjected to detailed characterisation. The surface roughness, hardness, residual stresses and adhesion of the coatings were also evaluated together with cutting tests using drills on coated and uncoated samples while monitoring cutting force and torque. The surface of the steel treated at 580 °C revealed Fe2B, boron nitride and boron iron carbide, but FeB was noted to be absent. The 580 °C coating had the fine-scale microstructure, which resulted in the excellent adhesion and enhanced wear resistance, relative to reference samples that contained coarse borides. The results established that a complex fine-scale diffusion coating enhanced the wear resistance and reduces the cutting force and torque during drilling, thereby increasing the drill life by a factor of 2.2.
Depond, Philip J
2018-01-01
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the deposition mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. The results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials. PMID:29765806
Martin, Aiden A; Depond, Philip J
2018-01-01
Boron-containing materials are increasingly drawing interest for the use in electronics, optics, laser targets, neutron absorbers, and high-temperature and chemically resistant ceramics. In this article, the first investigation into the deposition of boron-based material via electron beam-induced deposition (EBID) is reported. Thin films were deposited using a novel, large-area EBID system that is shown to deposit material at rates comparable to conventional techniques such as laser-induced chemical vapor deposition. The deposition rate and stoichiometry of boron oxide fabricated by EBID using trimethyl borate (TMB) as precursor is found to be critically dependent on the substrate temperature. By comparing the deposition mechanisms of TMB to the conventional, alkoxide-based precursor tetraethyl orthosilicate it is revealed that ligand chemistry does not precisely predict the pathways leading to deposition of material via EBID. The results demonstrate the first boron-containing material deposited by the EBID process and the potential for EBID as a scalable fabrication technique that could have a transformative effect on the athermal deposition of materials.
Khatti, Zahra; Hashemianzadeh, Seyed Majid
2016-06-10
Molecular dynamics (MD) simulation has been applied to investigate a drug delivery system based on boron nitride nanotubes, particularly the delivery of platinum-based anticancer drugs. For this propose, the behavior of carboplatin drugs inserted in boron nitride nanotubes (BNNT) as a carrier was studied. The diffusion rate of water molecules and carboplatin was investigated inside functionalized and pristine boron nitride nanotubes. The penetration rate of water and drug in functionalized BNNT was higher than that in pristine BNNT due to favorable water-mediated hydrogen bonding in hydroxyl edge-functionalized BNNT. Additionally, the encapsulation of multiple carboplatin drugs inside functionalized boron nitride nanotubes with one to five drug molecules confined inside the nanotube cavity was examined. At high drug loading, the hydrogen bond formation between adjacent drugs and the non-bonded van der Waals interaction between carboplatin and functionalized BNNT inner surface were found to be influential in drug displacement within the functionalized BNNT cavity for higher drug-loading capacity. Copyright © 2016 Elsevier B.V. All rights reserved.
Duran, Edward L.; Lundin, Ralph L.
1989-01-01
Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.
Duran, E.L.; Lundin, R.L.
1988-06-20
Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.
NASA Astrophysics Data System (ADS)
Tang, Bingtao; Wang, Qiaoling; Wei, Zhaohui; Meng, Xianju; Yuan, Zhengjun
2016-05-01
Ultra-high-strength in sheet metal parts can be achieved with hot stamping process. To improve the crash performance and save vehicle weight, it is necessary to produce components with tailored properties. The use of tailor-welded high-strength steel is a relatively new hot stamping process for saving weight and obtaining desired local stiffness and crash performance. The simulation of hot stamping boron steel, especially tailor-welded blanks (TWBs) stamping, is more complex and challenging. Information about thermal/mechanical properties of tools and sheet materials, heat transfer, and friction between the deforming material and the tools is required in detail. In this study, the boron-manganese steel B1500HS and high-strength low-alloy steel B340LA are tailor welded and hot stamped. In order to precisely simulate the hot stamping process, modeling and simulation of hot stamping tailor-welded high-strength steels, including phase transformation modeling, thermal modeling, and thermal-mechanical modeling, is investigated. Meanwhile, the welding zone of tailor-welded blanks should be sufficiently accurate to describe thermal, mechanical, and metallurgical parameters. FE simulation model using TWBs with the thickness combination of 1.6 mm boron steel and 1.2 mm low-alloy steel is established. In order to evaluate the mechanical properties of the hot stamped automotive component (mini b-pillar), hardness and microstructure at each region are investigated. The comparisons between simulated results and experimental observations show the reliability of thermo-mechanical and metallurgical modeling strategies of TWBs hot stamping process.
Futamura, Gen; Kawabata, Shinji; Nonoguchi, Naosuke; Hiramatsu, Ryo; Toho, Taichiro; Tanaka, Hiroki; Masunaga, Shin-Ichiro; Hattori, Yoshihide; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi
2017-01-23
Boron neutron capture therapy (BNCT) is a unique particle radiation therapy based on the nuclear capture reactions in boron-10. We developed a novel boron-10 containing sodium borocaptate (BSH) derivative, 1-amino-3-fluorocyclobutane-1-carboxylic acid (ACBC)-BSH. ACBC is a tumor selective synthetic amino acid. The purpose of this study was to assess the biodistribution of ACBC-BSH and its therapeutic efficacy following Boron Neutron Capture Therapy (BNCT) of the F98 rat glioma. We evaluated the biodistribution of three boron-10 compounds, ACBC-BSH, BSH and boronophenylalanine (BPA), in vitro and in vivo, following intravenous (i.v.) administration and intratumoral (i.t.) convection-enhanced delivery (CED) in F98 rat glioma bearing rats. For BNCT studies, rats were stratified into five groups: untreated controls, neutron-irradiation controls, BNCT with BPA/i.v., BNCT with ACBC-BSH/CED, and BNCT concomitantly using BPA/i.v. and ACBC-BSH/CED. In vitro, ACBC-BSH attained higher cellular uptake F98 rat glioma cells compared with BSH. In vivo biodistribution studies following i.v. administration and i.t. CED of ACBC-BSH attained significantly higher boron concentrations than that of BSH, but much lower than that of BPA. However, following convection enhanced delivery (CED), ACBC-BSH attained significantly higher tumor concentrations than BPA. The i.t. boron-10 concentrations were almost equal between the ACBC-BSH/CED group and BPA/i.v. group of rats. The tumor/brain boron-10 concentration ratio was higher with ACBC-BSH/CED than that of BPA/i.v. group. Based on these data, BNCT studies were carried out in F98 glioma bearing rats using BPA/i.v. and ACBC-BSH/CED as the delivery agents. The corresponding mean survival times were 37.4 ± 2.6d and 44.3 ± 8.0d, respectively, and although modest, these differences were statistically significant. Our findings suggest that further studies are warranted to evaluate ACBC-BSH/CED as a boron delivery agent.
SU-E-T-656: Quantitative Analysis of Proton Boron Fusion Therapy (PBFT) in Various Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, D; Jung, J; Shin, H
2015-06-15
Purpose: Three alpha particles are concomitant of proton boron interaction, which can be used in radiotherapy applications. We performed simulation studies to determine the effectiveness of proton boron fusion therapy (PBFT) under various conditions. Methods: Boron uptake regions (BURs) of various widths and densities were implemented in Monte Carlo n-particle extended (MCNPX) simulation code. The effect of proton beam energy was considered for different BURs. Four simulation scenarios were designed to verify the effectiveness of integrated boost that was observed in the proton boron reaction. In these simulations, the effect of proton beam energy was determined for different physical conditions,more » such as size, location, and boron concentration. Results: Proton dose amplification was confirmed for all proton beam energies considered (< 96.62%). Based on the simulation results for different physical conditions, the threshold for the range in which proton dose amplification occurred was estimated as 0.3 cm. Effective proton boron reaction requires the boron concentration to be equal to or greater than 14.4 mg/g. Conclusion: We established the effects of the PBFT with various conditions by using Monte Carlo simulation. The results of our research can be used for providing a PBFT dose database.« less
Magnesium-based methods, systems, and devices
Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum
2017-12-12
An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.
Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subhash Chandra
2008-05-30
The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysismore » of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.« less
NASA Astrophysics Data System (ADS)
Zhao, L. Z.; Hong, Y.; Fang, X. G.; Qiu, Z. G.; Zhong, X. C.; Gao, X. S.; Liu, Z. W.
2016-06-01
High coercivity Nd25Fe40Co20Al15-xBx (x=7-15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd2(FeCoAl)14B, Nd-rich, and Nd1+ε(FeCo)4B4 phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity Hcj of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest Hcj of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties.
Microstructural optimization of solid-state sintered silicon carbide
NASA Astrophysics Data System (ADS)
Vargas-Gonzalez, Lionel R.
Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These parts exhibited higher density and finer microstructure than a commercially-available sintered SiC from Saint-Gobain (Hexoloy Enhanced, 3.153 g/cm3 and d50 = 4.837 mum). Due to the optimized microstructure, Verco SiC parts exhibited the highest Vickers (2628.30 +/- 44.13 kg/mm 2) and Knoop (2098.50 +/- 24.8 kg/mm2) hardness values of any SiC ceramic, and values equal to those of the "gold standard" hot-pressed boron carbide (PAD-B4C). While the fracture toughness of hot-pressed SiC materials (˜4.5 MPa m ) are almost double that of Verco SiC (2.4 MPa m ), Verco SiC is a better performing ballistic product, implying that the higher hardness of the theoretically-dense, clean-grain boundary, fine-grained SiC is the defining mechanical property for optimization of ballistic behavior.
Goszczyński, Tomasz M; Kowalski, Konrad; Leśnikowski, Zbigniew J; Boratyński, Janusz
2015-02-01
Boron clusters represent a vast family of boron-rich compounds with extraordinary properties that provide the opportunity of exploitation in different areas of chemistry and biology. In addition, boron clusters are clinically used in boron neutron capture therapy (BNCT) of tumors. In this paper, a novel, in solid state (solvent free), thermal method for protein modification with boron clusters has been proposed. The method is based on a cyclic ether ring opening in oxonium adduct of cyclic ether and a boron cluster with nucleophilic centers of the protein. Lysozyme was used as the model protein, and the physicochemical and biological properties of the obtained conjugates were characterized. The main residues of modification were identified as arginine-128 and threonine-51. No significant changes in the secondary or tertiary structures of the protein after tethering of the boron cluster were found using mass spectrometry and circular dichroism measurements. However, some changes in the intermolecular interactions and hydrodynamic and catalytic properties were observed. To the best of our knowledge, we have described the first example of an application of cyclic ether ring opening in the oxonium adducts of a boron cluster for protein modification. In addition, a distinctive feature of the proposed approach is performing the reaction in solid state and at elevated temperature. The proposed methodology provides a new route to protein modification with boron clusters and extends the range of innovative molecules available for biological and medical testing. Copyright © 2014 Elsevier B.V. All rights reserved.
Koc, Fulya; Aysan, Erhan; Hasbahceci, Mustafa; Arpaci, Beyza; Gecer, Salih; Demirci, Selami; Sahin, Fikrettin
2016-06-01
The impact of boron on the development of obesity remains controversial in the analysis of experimental and clinical data. The objective of this study was to investigate the relationship between blood and urine boron concentrations and obesity in normal, overweight, obese, and morbidly obese subjects in different age groups. A total of 105 subjects were categorized into 12 groups based on body mass index and three different age levels: as young adult (18 to 34 years old), adult (35 to 54 years old), and older adult (greater than 55 years old). Age, gender, body mass index, and blood and urine boron concentrations were recorded for each subject. There were 50 women and 55 men, with a mean age of 44.63 ± 17.9 years. Blood and urine boron concentrations were similar among the groups (p = 0.510 and p = 0.228, respectively). However, a positive correlation between age and blood boron concentration (p = 0.001) was detected in contrast to the presence of a negative correlation between age and urine boron concentration (p = 0.027). Multiple linear regression analysis showed that there was no significant relationship between gender, age, and quantitative values of body mass index for each subject, and blood and urine boron concentrations. Although the relationship between boron and obesity has not been confirmed, changes of blood and urine boron concentrations with age may have some physiologic sequences to cause obesity.
High-Speed Imaging Optical Pyrometry for Study of Boron Nitride Nanotube Generation
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Jones, Stephen B.; Lee, Joseph W.
2014-01-01
A high-speed imaging optical pyrometry system is designed for making in-situ measurements of boron temperature during the boron nitride nanotube synthesis process. Spectrometer measurements show molten boron emission to be essentially graybody in nature, lacking spectral emission fine structure over the visible range of the electromagnetic spectrum. Camera calibration experiments are performed and compared with theoretical calculations to quantitatively establish the relationship between observed signal intensity and temperature. The one-color pyrometry technique described herein involves measuring temperature based upon the absolute signal intensity observed through a narrowband spectral filter, while the two-color technique uses the ratio of the signals through two spectrally separated filters. The present study calibrated both the one- and two-color techniques at temperatures between 1,173 K and 1,591 K using a pco.dimax HD CMOS-based camera along with three such filters having transmission peaks near 550 nm, 632.8 nm, and 800 nm.
Boron-Based Catalysts for C-C Bond-Formation Reactions.
Rao, Bin; Kinjo, Rei
2018-05-02
Because the construction of the C-C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C-C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron-based catalysts applied in the field of C-C bond-formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C 6 F 5 ) 3 ; 2) organoboron acids, RB(OH) 2 , and their ester derivatives; 3) borenium ions, (R 2 BL)X; and 4) other miscellaneous kinds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mir, Showkat H.; Chakraborty, Sudip, E-mail: sudiphys@gmail.com, E-mail: prakash.jha@cug.ac.in; Wärnå, John
The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of themore » boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.« less
Adiabatic shear mechanisms for the hard cutting process
NASA Astrophysics Data System (ADS)
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Filatov, E. S.
2017-08-01
The kinetics of thermal diffusion boriding in a melt based on calcium chloride with a boron oxide additive is studied using reversed current. The main temperature, concentration, and current parameters of the process are determined. The phase composition of the coating is determined by a metallographic method.
Zhu, Xiaolin; Liu, Rui; Li, Yuhao; Huang, Hai; Wang, Qiang; Wang, Danfeng; Zhu, Xuan; Liu, Shishen; Zhu, Hongjun
2014-11-04
A novel AIE-active boron-difluoride complex (PTZ) was synthesized which exhibits multi-stimuli responsive characteristics. Its colours and emissions can be switched by mechanical grinding, organic solvent vapours and acid/base vapours. This complex can be utilized in data encryption and decryption based on the protonation-deprotonation effect.
Characterising the large coherence length at diamond’s beamline I13L
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, U. H., E-mail: ulrich.wagner@diamond.ac.uk; Parsons, A.; Rahomaki, J.
2016-07-27
I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuringmore » a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.« less
Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K
2014-11-18
We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.
NASA Astrophysics Data System (ADS)
Kuo, Wei-Cheng; Lee, Ming Jay; Wu, Mount-Learn; Lee, Chien-Chieh; Tsao, I.-Yu; Chang, Jenq-Yang
2017-04-01
In this study, heavily boron-doped hydrogenated Ge epilayers are grown on Si substrates at a low growth temperature (220 °C). The quality of the boron-doped epilayers is dependent on the hydrogen flow rate. The optical emission spectroscopic, X-ray diffraction and Hall measurement results demonstrate that better quality boron-doped Ge epilayers can be obtained at low hydrogen flow rates (0 sccm). This reduction in quality is due to an excess of hydrogen in the source gas, which breaks one of the Ge-Ge bonds on the Ge surface, leading to the formation of unnecessary dangling bonds. The structure of the boron doped Ge epilayers is analyzed by transmission electron microscopy and atomic force microscopy. In addition, the performance, based on the I-V characteristics, of Ge/Si photodetectors fabricated with boron doped Ge epilayers produced under different hydrogen flow rates was examined. The photodetectors with boron doped Ge epilayers produced with a low hydrogen flow rate (0 sccm) exhibited a higher responsivity of 0.144 A/W and a lower dark current of 5.33 × 10-7 A at a reverse bias of 1 V.
2011-01-01
combustion of these materials. To address the aforementioned perchlorate issues, an effort was initiated by ARDEC to remove potassium per- chlorate ...with acceptable burn times for pyrotechnic applications by using potassium nitrate– amorphous boron–crystalline boron/boron carbide–epoxy binder mixtures...3,4] Moreover, it was discovered by ARDEC that a potassium nitrate–boron carbide–epoxy binder mix- ture alone was able to generate suitable green
Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cells
Laine, Hannu S.; Vahanissi, Ville; Liu, Zhengjun; ...
2017-12-15
To facilitate cost-effective manufacturing of boron-implanted silicon solar cells as an alternative to BBr 3 diffusion, we performed a quantitative test of the gettering induced by solar-typical boron-implants with the potential for low saturation current density emitters (< 50 fA/cm 2). We show that depending on the contamination level and the gettering anneal chosen, such boron-implanted emitters can induce more than a 99.9% reduction in bulk iron point defect concentration. The iron point defect results as well as synchrotron-based Nano-X-ray-fluorescence investigations of iron precipitates formed in the implanted layer imply that, with the chosen experimental parameters, iron precipitation is themore » dominant gettering mechanism, with segregation-based gettering playing a smaller role. We reproduce the measured iron point defect and precipitate distributions via kinetics modeling. First, we simulate the structural defect distribution created by the implantation process, and then we model these structural defects as heterogeneous precipitation sites for iron. Unlike previous theoretical work on gettering via boron- or phosphorus-implantation, our model is free of adjustable simulation parameters. The close agreement between the model and experimental results indicates that the model successfully captures the necessary physics to describe the iron gettering mechanisms operating in boron-implanted silicon. Furthermore, this modeling capability allows high-performance, cost-effective implanted silicon solar cells to be designed.« less
Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laine, Hannu S.; Vahanissi, Ville; Liu, Zhengjun
To facilitate cost-effective manufacturing of boron-implanted silicon solar cells as an alternative to BBr 3 diffusion, we performed a quantitative test of the gettering induced by solar-typical boron-implants with the potential for low saturation current density emitters (< 50 fA/cm 2). We show that depending on the contamination level and the gettering anneal chosen, such boron-implanted emitters can induce more than a 99.9% reduction in bulk iron point defect concentration. The iron point defect results as well as synchrotron-based Nano-X-ray-fluorescence investigations of iron precipitates formed in the implanted layer imply that, with the chosen experimental parameters, iron precipitation is themore » dominant gettering mechanism, with segregation-based gettering playing a smaller role. We reproduce the measured iron point defect and precipitate distributions via kinetics modeling. First, we simulate the structural defect distribution created by the implantation process, and then we model these structural defects as heterogeneous precipitation sites for iron. Unlike previous theoretical work on gettering via boron- or phosphorus-implantation, our model is free of adjustable simulation parameters. The close agreement between the model and experimental results indicates that the model successfully captures the necessary physics to describe the iron gettering mechanisms operating in boron-implanted silicon. Furthermore, this modeling capability allows high-performance, cost-effective implanted silicon solar cells to be designed.« less
2008-01-01
To evaluate the scientific evidence on boron including expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing. This review serves as a clinical support tool. Electronic searches were conducted in nine databases, 20 additional journals (not indexed in common databases), and bibliographies from 50 selected secondary references. No restrictions were placed on language or quality of publications. All literature collected pertained to efficacy in humans, dosing, precautions, adverse effects, use in pregnancy/lactation, interactions, alteration of laboratory assays, and mechanisms of action. Standardized inclusion/exclusion criteria are utilized for selection. Grades were assigned using an evidence-based grading rationale. There was a lack of systematic study on the safety and effectiveness of boron in humans. However, based on popular use and supportive scientific data, nine indications are discussed in this review: hormone regulation, improving cognitive function, osteoarthritis, osteoporosis, vaginitis (topical), bodybuilding aid (increasing testosterone), menopausal symptoms, prevention of blood clotting (coagulation effects), and psoriasis (topical). Although studies assessing the use of boron for osteoarthritis and osteoporosis are in preliminary stages, reports are promising. There is conflicting evidence to support the use of boron in hormonal regulation and cognitive function. Future randomized controlled trials are warranted. There is fair negative evidence regarding the use of boron as an anticoagulant, a bodybuilding aid, for menopausal symptoms, or for psoriasis. Excessive use may be harmful, and caution is advised.
Morphological transformations of BNCO nanomaterials: Role of intermediates
NASA Astrophysics Data System (ADS)
Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.
2018-06-01
Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than the 1D boron and nitrogen co-doped tube-like carbon nanorods. The significant differences in the PL properties can be attributed to different carbon structures in these nanomaterials. These achievements can be used to synthesize and control the structures of nanomaterials and contribute to the development of the next generation optoelectronic nanodevices based on 1D and 2D nanomaterials.
Nagabandi, N.; Yegin, C.; Feng, X.; ...
2018-01-31
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. Whilemore » the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.« less
Nagabandi, N; Yegin, C; Feng, X; King, C; Oh, J K; Scholar, E A; Narumanchi, S; Akbulut, M
2018-03-09
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m -1 K and 306-321 W m -1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10 -6 m 2 K -1 s for MBCA-BNNS and 8.5 × 10 -7 m 2 K -1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.
NASA Astrophysics Data System (ADS)
Nagabandi, N.; Yegin, C.; Feng, X.; King, C.; Oh, J. K.; Scholar, E. A.; Narumanchi, S.; Akbulut, M.
2018-03-01
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagabandi, N.; Yegin, C.; Feng, X.
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques; including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. Internal nanostructure was found to be strongly dependent on the linker chemistry. Whilemore » the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride (BBC) linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W/m-K and 306-321 W/m-K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 495 to 400 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3x10-6 m2/K-s for MBCA-BNNS and 8.5x10-7 m2/K-s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.« less
Habib, Komal; Parajuly, Keshav; Wenzel, Henrik
2015-10-20
Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.
NASA Astrophysics Data System (ADS)
Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Sunmi; Choi, Yong; Yoon, Do-Kun; Suh, Tae Suk
2018-06-01
In this study, we proposed an absorbed-dose monitoring technique using prompt gamma rays emitted from the reaction between an antiproton and a boron particle, and demonstrated the greater physical effect of the antiproton boron fusion therapy in comparison with proton beam using Monte Carlo simulation. The physical effect of the treatment, which was 3.5 times greater, was confirmed from the antiproton beam irradiation compared to the proton beam irradiation. Moreover, the prompt gamma ray image is acquired successfully during antiproton irradiation to boron regions. The results show the application feasibility of absorbed dose monitoring technique proposed in our study.
Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Fay, Catharine C.
2012-01-01
Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.
Garabalino, Marcela A; Monti Hughes, Andrea; Molinari, Ana J; Heber, Elisa M; Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Nievas, Susana; Nigg, David W; Aromando, Romina F; Itoiz, Maria E; Trivillin, Verónica A; Schwint, Amanda E
2011-03-01
We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3. © Springer-Verlag 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari
2011-03-01
Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studiesmore » at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.« less
Ebenryter-Olbińska, Katarzyna; Kaniowski, Damian; Sobczak, Milena; Wojtczak, Błażej A; Janczak, Sławomir; Wielgus, Ewelina; Nawrot, Barbara; Leśnikowski, Zbigniew J
2017-11-21
A general and convenient approach for the incorporation of different types of boron clusters into specific locations of the DNA-oligonucleotide chain based on the automated phosphoramidite method of oligonucleotide synthesis and post-synthetic "click chemistry" modification has been developed. Pronounced effects of boron-cluster modification on the physico- and biochemical properties of the antisense oligonucleotides were observed. The silencing activity of antisense oligonucleotides bearing a single boron cluster modification in the middle of the oligonucleotide chain was substantially higher than that of unmodified oligonucleotides. This finding may be of importance for the design of therapeutic nucleic acids with improved properties. The proposed synthetic methodology broadens the availability of nucleic acid-boron cluster conjugates and opens up new avenues for their potential practical use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magneto-Resistance in thin film boron carbides
NASA Astrophysics Data System (ADS)
Echeverria, Elena; Luo, Guangfu; Liu, J.; Mei, Wai-Ning; Pasquale, F. L.; Colon Santanta, J.; Dowben, P. A.; Zhang, Le; Kelber, J. A.
2013-03-01
Chromium doped semiconducting boron carbide devices were fabricated based on a carborane icosahedra (B10C2H12) precursor via plasma enhanced chemical vapor deposition, and the transition metal atoms found to dope pairwise on adjacent icosahedra site locations. Models spin-polarized electronic structure calculations of the doped semiconducting boron carbides indicate that some transition metal (such as Cr) doped semiconducting boron carbides may act as excellent spin filters when used as the dielectric barrier in a magnetic tunnel junction structure. In the case of chromium doping, there may be considerable enhancements in the magneto-resistance of the heterostructure. To this end, current to voltage curves and magneto-transport measurements were performed in various semiconducting boron carbide both in and out plane. The I-V curves as a function of external magnetic field exhibit strong magnetoresistive effects which are enhanced at liquid Nitrogen temperatures. The mechanism for these effects will be discussed in the context of theoretical calculations.
Boron-rich benzene and pyrene derivatives for the detection of thermal neutrons
Yemam, Henok A.; Mahl, Adam; Koldemir, Unsal; Remedes, Tyler; Parkin, Sean; Greife, Uwe; Sellinger, Alan
2015-01-01
A synthetic methodology is developed to generate boron rich aromatic small molecules based on benzene and pyrene moieties for the detection of thermal neutrons. The prepared aromatic compounds have a relatively high boron content up to 7.4 wt%, which is important for application in neutron detection as 10B (20% of natural abundance boron) has a large neutron induced reaction cross-section. This is demonstrated by preparing blends of the synthesized molecules with fluorescent dopants in poly(vinyltoluene) matrices resulting in comparable scintillation light output and neutron capture as state-of-the art commercial scintillators, but with the advantage of much lower cost. The boron-rich benzene and pyrene derivatives are prepared by Suzuki conditions using both microwave and traditional heating, affording yields of 40–93%. This new procedure is simple and straightforward, and has the potential to be scaled up. PMID:26334111
Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.
Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli
2015-12-01
In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Density functional theory and conductivity studies of boron-based anion receptors
Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; ...
2015-07-10
Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor ismore » sufficiently electrophilic that organic solvent molecules compete with F – for boron-site binding, and specific solvent effects must be considered when predicting its F – affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F – and organic solvent molecules. After accounting for specific solvent effects, however, its net F – affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F – ions.« less
Chromium boron surfaced nickel-iron base alloys
NASA Technical Reports Server (NTRS)
Rashid, James M. (Inventor); Friedrich, Leonard A. (Inventor); Freling, Melvin (Inventor)
1984-01-01
Chromium boron diffusion coatings on nickel iron alloys uniquely provide them with improvement in high cycle fatigue strength (up to 30%) and erosion resistance (up to 15 times), compared to uncoated alloy. The diffused chromium layer extends in two essential concentration zones to a total depth of about 40.times.10.sup.-6 m, while the succeeding boron layer is limited to 50-90% of the depth of the richest Cr layer nearest the surface. Both coatings are applied using conventional pack diffusion processes.
Hexagonal OsB 2: Sintering, microstructure and mechanical properties
Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; ...
2015-02-07
In this study, the metastable high pressure ReB 2-type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulusmore » of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frye, Clint D.
The wide bandgap (3.35 eV) semiconductor icosahedral boron phosphide (B 12P 2) has been reported to self-heal from radiation damage from β particles (electrons) with energies up to 400 keV by demonstrating no lattice damage using transmission electron microscopy. This property could be exploited to create radioisotope batteries–semiconductor devices that directly convert the decay energy from a radioisotope to electricity. Such devices potentially have enormous power densities and decades-long lifetimes. To date, the radiation hardness of B 12P 2 has not been characterized by electrical measurements nor have B 12P 2 radioisotope batteries been realized. Therefore, this study was undertakenmore » to evaluate the radiation hardness of B 12P 2 after improving its epitaxial growth, developing ohmic electrical contacts, and reducing the residual impurities. Subsequently, the effects of radiation from a radioisotope on the electrical transport properties of B 12P 2 were tested.« less
Synthesis and studies on microhardness of alkali zinc borate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subhashini,, E-mail: subhashini.p.p@gmail.com; Bhattacharya, Soumalya, E-mail: subhashini.p.p@gmail.com; Shashikala, H. D., E-mail: subhashini.p.p@gmail.com
2014-04-24
The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributedmore » to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.« less
Boron-Based Nanostructures, Stability, Functionality and Synthetic Routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakobson, Boris I.; Ajayan, Pulickel M.
Boron (B) is one of the most intriguing elements not only because of its position between metals and nonmetals in periodic table but also because of its ability to form an enormous number of allotropes. Apart from several bulk three-dimensional (3D) phases, boron can form 0D clusters, 1D nanotubes and nanowires, and 2D layers. In particular, boron sheets of monoatomic thickness have raised interest as a potential new 2D-material and as a (conceptual) precursor, for example, so-called α-sheets, from which other boron structures - fullerene cages and tubes - might be constructed. In fact, a number of planar B clustersmore » up to tens of atoms, found in experiments, appear as seeds for extended sheets. In this project we developed theoretical methods to guide synthesis, have successfully identified the material substrates (Ag, Au, Cu) to producing the pure boron layers, and further even predicted what atomistic structures should be expected. These guidelines have successfully led to discoveries in several labs and now have grown into an active line of research worldwide.« less
Phonon transport in single-layer boron nanoribbons
NASA Astrophysics Data System (ADS)
Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping
2016-11-01
Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green’s function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene’s. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.
NASA Astrophysics Data System (ADS)
Domec, Brennan S.
In today's industry, engineering materials are continuously pushed to the limits. Often, the application only demands high-specification properties in a narrowly-defined region of the material, such as the outermost surface. This, in combination with the economic benefits, makes case hardening an attractive solution to meet industry demands. While case hardening has been in use for decades, applications demanding high hardness, deep case depth, and high corrosion resistance are often under-served by this process. Instead, new solutions are required. The goal of this study is to develop and characterize a new borochromizing process applied to a pre-carburized AISI 8620 alloy steel. The process was successfully developed using a combination of computational simulations, calculations, and experimental testing. Process kinetics were studied by fitting case depth measurement data to Fick's Second Law of Diffusion and an Arrhenius equation. Results indicate that the kinetics of the co-diffusion method are unaffected by the addition of chromium to the powder pack. The results also show that significant structural degradation of the case occurs when chromizing is applied sequentially to an existing boronized case. The amount of degradation is proportional to the chromizing parameters. Microstructural evolution was studied using metallographic methods, simulation and computational calculations, and analytical techniques. While the co-diffusion process failed to enrich the substrate with chromium, significant enrichment is obtained with the sequential diffusion process. The amount of enrichment is directly proportional to the chromizing parameters with higher parameters resulting in more enrichment. The case consists of M7C3 and M23C6 carbides nearest the surface, minor amounts of CrB, and a balance of M2B. Corrosion resistance was measured with salt spray and electrochemical methods. These methods confirm the benefit of surface enrichment by chromium in the sequential diffusion method with corrosion resistance increasing directly with chromium concentration. The results also confirm the deleterious effect of surface-breaking case defects and the need to reduce or eliminate them. The best combination of microstructural integrity, mean surface hardness, effective case depth, and corrosion resistance is obtained in samples sequentially boronized and chromized at 870°C for 6hrs. Additional work is required to further optimize process parameters and case properties.
Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan
2009-07-01
Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.
Chorghe, Darpan; Sari, Mutiara Ayu; Chellam, Shankararaman
2017-12-01
One promising water management strategy during hydraulic fracturing is treatment and reuse of flowback/produced water. In particular, the saline flowback water contains many of the chemicals employed for fracking, which need to be removed before possible reuse as "frac water." This manuscript targets turbidity along with one of the additives; borate-based cross-linkers used to adjust the rheological characteristics of the frac-fluid. Alum and ferric chloride were evaluated as coagulants for clarification and boron removal from saline flowback water obtained from a well in the Eagle Ford shale. Extremely high dosages (> 9000 mg/L or 333 mM Al and 160 mM Fe) corresponding to Al/B and Fe/B mass ratios of ∼70 and molar ratios of ∼28 and 13 respectively were necessary to remove ∼80% boron. Hence, coagulation does not appear to be feasible for boron removal from high-strength waste streams. X-ray photoelectron spectroscopy revealed BO bonding on surfaces of freshly precipitated Al(OH) 3 (am) and Fe(OH) 3 (am) suggesting boron uptake was predominantly via ligand exchange. Attenuated total reflection-Fourier transform infrared spectroscopy provided direct evidence of inner-sphere boron complexation with surface hydroxyl groups on both amorphous aluminum and iron hydroxides. Only trigonal boron was detected on aluminum flocs since possible presence of tetrahedral boron was masked by severe AlO interferences. Both trigonal and tetrahedral conformation of boron complexes were identified on Fe(OH) 3 surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor)
1992-01-01
The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.
MECHANICAL PROPERTIES OF IRRADIATED STAINLESS STEELS. A Compilation of Data in the Literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, R.E.
1961-09-01
Changes in the mechanical properties of stainless steels that are caused by fast neutron irradiation are presented aphic form. These data were abstracted from classified and unclassified reports published since 1948 by USAEC, AECL, and AERE. Data are included for the following stainless steels: AM- 350, Boron stainless, 301, 302, 43l, 440C, 442, 446, Armco 17-4PH (AMS5643), Armco 177PH, and Stainless W. The mechanical properties for which data are reported include hardness, yield strength, tensile strength, total elongation, reduction of area, elastic modulus, fatigue strength, notch factor, creep, stress relaxation, impact energy, and transition temperature. (auth)
Bulk superhard B-C-N nanocomposite compact and method for preparing thereof
Zhao, Yusheng; He, Duanwei
2004-07-06
Bulk, superhard, B-C-N nanocomposite compact and method for preparing thereof. The bulk, superhard, nanocomposite compact is a well-sintered compact and includes nanocrystalline grains of at least one high-pressure phase of B-C-N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compact has a Vicker's hardness of about 41-68 GPa. It is prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture, and sintering the encapsulated ball-milled mixture at a pressure of about 5-25 GPa and at a temperature of about 1000-2500 K.
Luo, Daibing; Wu, Liangzhuan; Zhi, Jinfang
2010-09-21
By means of delicate and conventional methods based on photolithography and hot filament chemical vapor deposition (HFCVD) technology, a novel boron-doped diamond micro-network (BDDMN) film was fabricated, and this micro-structure showed excellent electrochemical sensing properties.
Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.
A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained bymore » varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.« less
Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.
2014-01-01
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. PMID:24684609
Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W
2014-06-01
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Creep Strength Behavior of Boron Added P91 Steel and its Weld in the Temperature Range of 600-650°C
NASA Astrophysics Data System (ADS)
Swaminathan, J.; Das, C. R.; Baral, Jayashree; Phaniraj, C.; Ghosh, R. N.; Albert, S. K.; Bhaduri, A. K.
One of the promising ways for mitigation of Type IV cracking — a failure by cracking at the intercritical /fine grained heat affected zone, a life limiting problem in advanced 9-12 Cr ferritic steel weld like that of P91 is through modification of alloy composition by addition of boron. Addition of boron was observed to improve the microstructure at the weld zone and hence the creep strength. In the present work, boron (100 ppm with controlled nitrogen) added P91 steel after normalizing at 1050°C and 1150°C and tempered at 760°C were studied for the creep behavior in the base metal and welded condition in the temperature range of 600-650°C. Creep strength was characterized in terms of stress and temperature dependence of creep rate and rupture time. Weld creep life was reduced compared to the base metal with rupture occurring at the ICHAZ (Type IV crack). However at longer time (at lower stress levels) exposure creep crack moves from weld metal to HAZ (Type II crack). Rupture life was found to superior for the base and weld in the boron containing steel when higher normalizing temperature is used. Estimation of 105 h was attempted based on short term rupture data available and weld strength factors were calculated. Observed values are better for P91BH condition than the values for P91BLcondition as well as those available for P91 in open literature
Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches
Chen, Lingxiu; He, Li; Wang, Hui Shan; Wang, Haomin; Tang, Shujie; Cong, Chunxiao; Xie, Hong; Li, Lei; Xia, Hui; Li, Tianxin; Wu, Tianru; Zhang, Daoli; Deng, Lianwen; Yu, Ting; Xie, Xiaoming; Jiang, Mianheng
2017-01-01
Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the potential to be used in high-performance graphene-based semiconductor electronics. However, controlled growth of GNRs on dielectric substrates remains a challenge. Here, we report the successful growth of GNRs directly on hexagonal boron nitride substrates with smooth edges and controllable widths using chemical vapour deposition. The approach is based on a type of template growth that allows for the in-plane epitaxy of mono-layered GNRs in nano-trenches on hexagonal boron nitride with edges following a zigzag direction. The embedded GNR channels show excellent electronic properties, even at room temperature. Such in-plane hetero-integration of GNRs, which is compatible with integrated circuit processing, creates a gapped channel with a width of a few benzene rings, enabling the development of digital integrated circuitry based on GNRs. PMID:28276532
Functionalized hexagonal boron nitride nano-coatings for protection of transparent plastics
NASA Astrophysics Data System (ADS)
Van Tran, Thu; Usta, Aybala; Asmatulu, Ramazan
2016-04-01
Nanocoating is the result of a coating application of nanomaterials to build a consistent network of molecules in a paint to protect the surfaces of various materials and devices. Hexagonal Boron Nitride (h-BN) is in two dimensional form with excellent thermal, mechanical and chemical properties. These BN nanocoatings are also a thermally insulating material for heat management. After adding functionalized h-BNs into paints or other coatings, they will absorb the harmful UV part of sunlight and prevent coating against the environmental degradations. The impacts of the environmental factors on the coatings can be substantially eliminated. In the present study, h-BNs were modified with [2-(2-Aminoethylamino) propyl] trimethoxysilane and uniformly dispersed into the polyurethane coatings with different amounts, such as 0.1, 0.2, 0.4, and 0.8wt% to increase hardness and water resistance, and decrease the UV degradation level of coatings and transparent plastics. The prepared samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), Water Contact Angle, and Differential Scanning Calorimeter (DSC). The test results showed that the nanocoatings with functionalized h-BN provided excellent physical and chemical behaviors against the UV and other physical degradations on the substrates.
Conductive multi-walled boron nitride nanotubes by catalytic etching using cobalt oxide.
Kim, Do-Hyun; Jang, Ho-Kyun; Kim, Min-Seok; Kim, Sung-Dae; Lee, Dong-Jin; Kim, Gyu Tae
2017-01-04
Boron nitride nanotubes (BNNTs) are ceramic compounds which are hardly oxidized below 1000 °C due to their superior thermal stability. Also, they are electrically almost insulators with a large band gap of 5 eV. Thus, it is a challenging task to etch BNNTs at low temperature and to convert their electrical properties to a conductive behavior. In this study, we demonstrate that BNNTs can be easily etched at low temperature by catalytic oxidation, resulting in an electrically conductive behavior. For this, multi-walled BNNTs (MWBNNTs) impregnated with Co precursor (Co(NO 3 ) 2 ·6H 2 O) were simply heated at 350 °C under air atmosphere. As a result, diverse shapes of etched structures such as pits and thinned walls were created on the surface of MWBNNTs without losing the tubular structure. The original crystallinity was still kept in the etched MWBNNTs in spite of oxidation. In the electrical measurement, MWBNNTs with a large band gap were converted to electrical conductors after etching by catalytic oxidation. Theoretical calculations indicated that a new energy state in the gap and a Fermi level shift contributed to MWBNNTs being conductive.
Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.
2016-01-01
The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479
Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.
2007-01-01
Concentrations of boron greater than the U.S. Environmental Protection Agency (USEPA) 900 ?g/L removal action level (RAL) standard were detected in water sampled by the USEPA in 2004 from three domestic wells near Beverly Shores, Indiana. The RAL regulates only human-affected concentrations of a constituent. A lack of well logs and screened depth information precluded identification of whether water from sampled wells, and their boron sources, were from human-affected or natural sources in the surficial aquifer, or associated with a previously defined natural, confined aquifer source of boron from the subtill or basal sand aquifers. A geochemically-based classification of the source of boron in ground water could potentially determine the similarity of boron to known sources or mixtures between known sources, or classify whether the relative age of the ground water predated the potential sources of contamination. The U.S. Geological Survey (USGS), in cooperation with the USEPA, investigated the use of a geochemical method that applied boron stable isotopes, and concentrations of boron, tritium, and other constituents to distinguish between natural and human-affected sources of boron in ground water and thereby determine if the RAL was applicable to the situation. Boron stable-isotope ratios and concentrations of boron in 17 ground-water samples and tritium concentrations in 9 ground-water samples collected in 2004 were used to identify geochemical differences between potential sources of boron in ground water near Beverly Shores, Indiana. Boron and d11B analyses for this investigation were made on unacidified samples to assure consistency of the result with unacidified analyses of d11B values from other investigations. Potential sources of boron included surficial-aquifer water affected by coal-combustion products (CCP) or domestic-wastewater, upward discharge of ground water from confined aquifers, and unaffected water from the surficial aquifer that was distant from human-affected boron sources. Boron concentrations in potential ground-water sources of boron were largest (15,700 to 24,400 ?g/L) in samples of CCP-affected surficial aquifer water from four wells at a CCP landfill and smallest (27 to 63 ?g/L) in three wells in the surficial aquifer that were distant from human-affected boron sources. Boron concentrations in water from the basal sand aquifer ranged from 656 ?g/L to 1,800 ?g/L. Boron concentrations in water from three domestic-wastewater-affected surficial aquifer wells ranged from 84 to 387 ?g/L. Among the representative ground-water samples, boron concentrations from all four samples of CCP-affected surficial aquifer water and four of five samples of water from the basal sand aquifer had concentrations greater than the RAL. A comparison of boron concentrations in acid-preserved and unacidified samples indicated that boron concentrations reported for this investigation may be from about 11 to 16 percent less than would be reported in a standard analysis of an acidified sample. The stable isotope boron-11 was most enriched in comparison to boron-10 in ground water from a confined aquifer, the basal sand aquifer (d11B, 24.6 to 34.0 per mil, five samples); it was most depleted in CCP-affected water from the surficial aquifer (d11B, 0.1 to 6.6 per mil, four samples). Domestic-wastewater-affected water from the surficial aquifer (d11B, 8.7 to 11.7 per mil, four samples) was enriched in boron-11, in comparison to individual samples of a borax detergent additive and a detergent with perborate bleach; it was intermediate in composition between basal sand aquifer water and CCP-affected water from the surficial aquifer. The similarity between a ground-water sample from the surficial aquifer and a hypothetical mixture of unaffected surficial aquifer and basal sand aquifer waters indicates the potential for long-term upward discharge of ground water into the surficial aquifer from one or more confined aquifers. Est
Sanz, Delia Nieto; Loubeyre, Paul; Mezouar, Mohamed
2002-12-09
The equation of state of boron has been measured up to 100 GPa by single-crystal x-ray diffraction with helium as the pressure transmitting medium. Rhombohedral beta-boron is the stable structure up to 100 GPa under hydrostatic conditions. Nonhydrostatic stress stabilizes a different rhombohedral structure. At about 100 GPa a pressure-induced amorphization is observed. The amorphous phase can be quenched to ambient pressure. An explanation is proposed based on the different stability under pressure between intraicosahedra and intericosahedra bonds.
Kawasaki, Riku; Sasaki, Yoshihiro; Akiyoshi, Kazunari
2017-01-29
Boron neutron capture therapy, based on the release of thermal neutron irradiation from boron, is a targeted radiation therapy for cancer. Targeted and sufficient accumulation of boron in tumor cells to achieve cytotoxic efficacy and reduce off-target effects remains a challenge. Carborane has been investigated for use as a delivery agent in boron neutron capture therapy because of its high boron content and chemical stability; however, it is cytotoxic, making safe delivery difficult. The aim of this study was to investigate the potential of carborane-bearing pullulan nanogels to safely and effectively deliver boron to tumor cells in vitro and in vivo and, consequently, assess their potential as a boron neutron capture therapeutic. Murine fibrosarcoma cells (CMS5a) were used for in vitro investigations of nanogel cytotoxicity, cell uptake. A mouse fibrosarcoma xenograft model was used to investigate the bio-distribution of nanogels after intravenous administration. The nanogels produced no apparent cytotoxicity and underwent cell uptake in CMS5a cells after a 24 h incubation at up to 2000 μg/mL and 400 μg/mL, respectively. The internalized nanogels were localized around the nuclear membrane. The nanogels were administered intravenously to mice bearing fibrosarcoma xenografts. Nanogel tumor localization likely occurred through the enhanced permeation and retention effect. The nanogels successfully reduced the cytotoxicity of carborane, were internalized into tumor cells, acted as a dual-delivery therapeutic and accumulated in tumors in vivo. Consequently, they demonstrate significant potential as a boron neutron capture therapeutic. Copyright © 2016 Elsevier Inc. All rights reserved.
Methods of forming boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J
A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less
Advanced Boron Carbide-Based Visual Obscurants for Military Smoke Grenades
2014-07-13
determine volume-based diameter distributions of aqueous boron carbide suspensions. Potassium nitrate (MIL-P-156B, 15 μm) and potassium chloride (−50... Potassium chloride was found to be particularly effective in this role. The combustion of certain ternary B4C/KNO3/KCl mixtures (such Distribution A... of unconsolidated mixtures. Five wet binder systems were therefore evaluated. Polyacrylate elastomer and nitro- cellulose (NC) were applied as
Xing, Zhitao; Wang, Hui-Chen; Cheng, Yixiang; James, Tony D; Zhu, Chengjian
2011-11-04
Two boron-contained fluorescent sensors, 1 and 2, based on coumarin have been prepared. The fluorescence response of the two systems was investigated with addition of saccharide and mercury ions. Sensor 2 behaves as a bifunctional fluorescent switch with chemical inputs of D-fructose and mercury ions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MIDA boronates are hydrolysed fast and slow by two different mechanisms
NASA Astrophysics Data System (ADS)
Gonzalez, Jorge A.; Ogba, O. Maduka; Morehouse, Gregory F.; Rosson, Nicholas; Houk, Kendall N.; Leach, Andrew G.; Cheong, Paul H.-Y.; Burke, Martin D.; Lloyd-Jones, Guy C.
2016-11-01
MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for small-molecule construction based on building blocks, largely because of the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, which has hindered efforts to address the current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base mediated and the other neutral. The former can proceed more than three orders of magnitude faster than the latter, and involves a rate-limiting attack by a hydroxide at a MIDA carbonyl carbon. The alternative ‘neutral’ hydrolysis does not require an exogenous acid or base and involves rate-limiting B-N bond cleavage by a small water cluster, (H2O)n. The two mechanisms can operate in parallel, and their relative rates are readily quantified by 18O incorporation. Whether hydrolysis is ‘fast’ or ‘slow’ is dictated by the pH, the water activity and the mass-transfer rates between phases. These findings stand to enable, in a rational way, an even more effective and widespread utilization of MIDA boronates in synthesis.
USDA-ARS?s Scientific Manuscript database
Boron deficient soils pose a critical problem to wheat production in many areas of the world including Bangladesh and causes significant yield reduction. Therefore, in the present study, 21 diverse wheat (Triticum aestivum L.) genotypes collected from three different countries (Bangladesh, India, a...
Microstructure and fracture toughness of Mn-stabilized cubic titanium trialuminide
NASA Astrophysics Data System (ADS)
Zbroniec, Leszek Ireneusz
This thesis project is related to the fracture toughness aspects of the mechanical behavior of the selected Mn-modified cubic Ll2 titanium trialuminicles. Fracture toughness was evaluated using two specimen types: Single-Edge-Precracked-Beam (SEPB) and Chevron-Notched-Beam (CNB). The material tested was in cast, homogenized and HIP-ed condition. In the preliminary stage of the project due to lack of the ASTM Standard for fracture toughness testing of the chevron-notched specimens in bending the analyses of the CNB configuration were done to establish the optimal chevron notch dimensions. Two types of alloys were investigated: (a) boron-free and boron doped low-Mn (9at.% Mn), as well as (b) boron-free and boron-doped high-Mn (14at.% Mn). Toughness was investigated in the temperature range from room temperature to 1000°C and was calculated from the maximum load. It has been found that toughness of coarse-grained "base" 9Mn-25Ti alloy exhibits a broad peak at the 200--500°C temperature range and then decreases with increasing temperature, reaching its room temperature value at 10000°C. However, the work of fracture (gammaWOF) and the stress intensity factor calculated from it (KIWOF) increases continuously with increasing temperature. Also the fracture mode dependence on temperature has been established. To understand the effect of environment on the fracture toughness of coarse-grained "base", boron-free 9Mn-25Ti alloy, the tests were carried out in vacuum (˜1.3 x 10-5 Pa), argon, oxygen, water and liquid nitrogen. It has been shown that fracture toughness at ambient temperature is not affected by the environments containing moisture (water vapor). It seems that at ambient temperatures these materials are completely immune to the water-vapor hydrogen embrittlement and their cause of brittleness is other than environment. To explore the influence of the grain size on fracture toughness the fracture toughness tests were also performed on the dynamically recrystallized "base", boron-free 9Mn-25Ti material with the average grain size of 45 mum. Further refinement of the grain size was obtained by ball-milling of powders in order to obtain a nanostructure material. These were subsequently consolidated by hot pressing with the objective of retaining the nanostructure to the largest extent possible. The estimated grain size of the powder compact was ˜50--200 mum. The indentation microcracking fracture toughness measurements were performed on the powder compacts. It has been found that fracture toughness is independent of the grain size in the range ˜1300--45 mum and that for the finest grains (˜50--200 mum) it drops substantially and is equal to half of that for coarse-grained material. A beneficial effect of boron doping, high-(Mn+Ti) concentration and combination of both, on the fracture toughness was observed at room and elevated temperatures. The addition of boron to a "base" 9at.% Mn-25at.% Ti trialuminicle improves the room temperature fracture toughness by 25--50%. Addition of boron to a high (Mn+Ti) trialuminide improves the room temperature fracture toughness by 100% with respect to a "base" 9Mn-25Ti alloy. Depending on the Mn+Ti concentrations and the level of boron doping, improvements of fracture toughness at 200--600°C and 800--1000°C ranges are also observed.
The shocking development of lithium (and boron) in supernovae
NASA Technical Reports Server (NTRS)
Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James
1989-01-01
It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.
Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis
Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.
2013-01-01
Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523
NASA Astrophysics Data System (ADS)
Yan, J. W.; Tong, L. H.; Xiang, Ping
2017-12-01
Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.
NASA Astrophysics Data System (ADS)
Giannopoulos, Georgios I.; Kontoni, Denise-Penelope N.; Georgantzinos, Stylianos K.
2016-08-01
This paper describes the static and free vibration behavior of single walled boron nitride nanotubes using a structural mechanics based finite element method. First, depending on the type of nanotube under investigation, its three dimensional nanostructure is developed according to the well-known corresponding positions of boron and nitride atoms as well as boron nitride bonds. Then, appropriate point masses are assigned to the atomic positions of the developed space frame. Next, these point masses are suitably interconnected with two-noded, linear, spring-like, finite elements. In order to simulate effectively the interactions observed between boron and nitride atoms within the nanotube, appropriate potential energy functions are introduced for these finite elements. In this manner, various atomistic models for both armchair and zigzag nanotubes with different aspect ratios are numerically analyzed and their effective elastic modulus as well as their natural frequencies and corresponding mode shapes are obtained. Regarding the free vibration analysis, the computed results reveal bending, breathing and axial modes of vibration depending on the nanotube size and chirality as well as the applied boundary support conditions. The longitudinal stiffness of the boron nitride nanotubes is found also sensitive to their geometric characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Riku; JST-ERATO, Japan Science and Technology Agency; Sasaki, Yoshihiro
Boron neutron capture therapy, based on the release of thermal neutron irradiation from boron, is a targeted radiation therapy for cancer. Targeted and sufficient accumulation of boron in tumor cells to achieve cytotoxic efficacy and reduce off-target effects remains a challenge. Carborane has been investigated for use as a delivery agent in boron neutron capture therapy because of its high boron content and chemical stability; however, it is cytotoxic, making safe delivery difficult. The aim of this study was to investigate the potential of carborane-bearing pullulan nanogels to safely and effectively deliver boron to tumor cells in vitro and in vivo and,more » consequently, assess their potential as a boron neutron capture therapeutic. Murine fibrosarcoma cells (CMS5a) were used for in vitro investigations of nanogel cytotoxicity, cell uptake. A mouse fibrosarcoma xenograft model was used to investigate the bio-distribution of nanogels after intravenous administration. The nanogels produced no apparent cytotoxicity and underwent cell uptake in CMS5a cells after a 24 h incubation at up to 2000 μg/mL and 400 μg/mL, respectively. The internalized nanogels were localized around the nuclear membrane. The nanogels were administered intravenously to mice bearing fibrosarcoma xenografts. Nanogel tumor localization likely occurred through the enhanced permeation and retention effect. The nanogels successfully reduced the cytotoxicity of carborane, were internalized into tumor cells, acted as a dual-delivery therapeutic and accumulated in tumors in vivo. Consequently, they demonstrate significant potential as a boron neutron capture therapeutic. - Highlights: • A carborane-bearing pullulan nanogel is developed as a boron delivery agent. • The nanogels are cell-friendly and show effective cell uptake for drug delivery. • The nanogels show passive tumor targeting by enhanced permeation and retention.« less
Overview and Brief History of the Boron Isotope Proxy for Past Seawater pH
NASA Astrophysics Data System (ADS)
Hoenisch, B.; Hemming, G.
2007-05-01
In 1992 Hemming and Hanson (GCA, vol. 56, p. 537-543) showed that a variety of modern marine carbonates revealed a boron isotopic composition close to the isotopic composition of dissolved borate at modern seawater pH, suggesting this was the boron species preferentially adsorbed and incorporated into marine carbonates. With a constant offset between the trigonal and tetrahedrally coordinated boron species and a pH-dependent variation in their fractions, it appeared that this system would be sensitive to pH changes in the natural range of seawater. Accordingly, it was suggested that the boron isotope composition of marine carbonates is a proxy for past seawater pH. Subsequent culture studies with living planktic foraminifers and corals, as well as synthetic precipitation experiments confirmed that the boron isotopic composition follows the isotopic composition of borate across a wide range of seawater pH. In order to use the proxy with confidence, however, all other controls apart from pH need to be thoroughly understood. Recent laboratory and sediment experiments have demonstrated that vital effects and partial shell dissolution have the potential to modify the primary seawater pH signal recorded in the boron isotopic composition of planktic foraminifers. However it has also been shown that careful sample selection allows for avoiding these potential complications. A record of reconstructed surface seawater pH and estimated aqueous PCO2 shows a remarkable match between boron isotope based atmospheric pCO2 estimates and the Vostok ice core CO2 record. This convincingly demonstrates that boron isotopes in planktic foraminifers allow quantitative estimates of atmospheric pCO2 in the past, and confirms that glacial surface ocean pH was ~0.2 units higher compared to interglacial periods. We are going to review and discuss the achievements generated in Gil Hanson's lab over the past 15 years in the light of recent empirical measurements of the boron isotope fractionation between boric acid and borate in seawater.
Structural stability and electronic properties of β-tetragonal boron: A first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Wataru, E-mail: hayami.wataru@nims.go.jp
2015-01-15
It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too greatmore » to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.« less
Dynamic Modulus and Damping of Boron, Silicon Carbide, and Alumina Fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Williams, W.
1980-01-01
The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide coated boron fibers were measured from-190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamics fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron based fibers are strongly anelastic, displaying frequency dependent moduli and very high microstructural damping. Ths single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.
Theoretical investigation of calcium-decorated β12 boron sheet for hydrogen storage
NASA Astrophysics Data System (ADS)
Tang, Xiao; Gu, Yuantong; Kou, Liangzhi
2018-03-01
From first-principles calculations based on density functional theory, we find that the recently synthesized β12 boron sheet is a perfect candidate for calcium-decoration and hydrogen storage application. In contrast to graphene where defects are required to capture Ca, the naturally formed hexagonal hollow ring in β12 boron sheet provides the ideal site for Ca adsorption, and up to 6H2 molecules for each Ca atom can be captured with a desirable binding energy of ∼0.2 eV/H2. The gravimetric hydrogen density for Ca decorated boron sheet can reach up to 8.92 wt%. From the electronic analysis, it is found that both the orbital hybridizations and polarization mechanism play significant roles in H2 adsorption and storage.
Spectrophotometric determination of traces of boron in high purity silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, D.C.; Sarkar, A.K.; Singh, N.
1989-07-01
A reddish brown complex is formed between boron and curcumin in concentrated sulfuric acid and glacial acetic acid mixture (1:1). The colored complex is highly selective and stable for about 3 hours and has the maximum absorbance at 545 nm. The sensitivity of the method is extremely high and the detection limit is 3 parts per billion based on 0.004 absorbance value. The interference of some of the important cations and anions relevant to silicon were studied and it is found that 100 fold excess of most of these cations and anions do not interfere in the determination of boron.more » The method is successfully employed for the determination of boron in silicon used in semiconductor devices. The results have been verified by standard addition method.« less
Feasibility studies of the growth of 3-5 compounds of boron by MOCVD
NASA Technical Reports Server (NTRS)
Manasevit, H. M.
1988-01-01
Boron-arsenic and boron-phosphorus films have been grown on Si sapphire and silicon-on-sapphire (SOS) by pyrolyzing Group 3 alkyls of boron, i.e., trimethylborane (TMB) and triethylborane (TEB), in the presence of AsH3 and PH3, respectively, in an H2 atmosphere. No evidence for reaction between the alkyls and the hydrides on mixing at room temperature was found. However, the films were predominantly amorphous. The film growth rate was found to depend on the concentration of alkyl boron compound and was essentially constant when TEB and AsH3 were pyrolyzed over the temperature range 550 C to 900 C. The films were found to contain mainly carbon impurities (the amount varying with growth temperature), some oxygen, and were highly stressed and bowed on Si substrates, with some crazing evident in thin (2 micron) B-P and thick (5 micron) B-As films. The carbon level was generally higher in films grown using TEB as the boron source. Films grown from PH3 and TMB showed a higher carbon content than those grown from AsH3 and TMB. Based on their B/As and B/P ratios, films with nominal compositions B sub12-16 As2 and B sub1.1-1.3 P were grown using TMB as the boron source.
Han, Yong Duk; Kim, Ka Ram; Park, Yoo Min; Song, Seung Yeon; Yang, Yong Ju; Lee, Kangsun; Ku, Yunhee; Yoon, Hyun C
2017-08-01
According to recent increases in public healthcare costs associated with diabetes mellitus, the development of new glycemic monitoring techniques based on the biosensing of glycated hemoglobin A1c (HbA 1c ), a promising long-term glycemic biomarker, has become a major challenge. In the development of HbA 1c biosensors for point-of-care applications, the selection of an effective biorecognition layer that provides a high reaction yield and specificity toward HbA 1c is regarded as the most significant issue. To address this, we developed a novel HbA 1c biosensing interfacial material by the integration of boronate hydrogel with glass fiber membrane. In the present study, a new boronate-functionalized hydrogel was designed and spatio-selectively photopolymerized on a hydrophilic glass fiber membrane by using N-hydroxyethyl acrylamide, 3-(acrylamido)phenylboronic acid, and bis(N,N'-methylene-bis-acrylamide). Using this approach, the boronic acid group, which specifically recognizes the cis-diol residue of glucose on the HbA 1c molecule, can be three-dimensionally coated on the surface of the glass fiber network with a high density. Because this network structure of boronate hydrogel-grafted fibers enables capillary-driven fluid control, facile HbA 1c biosensing in a lateral flow assay concept could be accomplished. On the proposed HbA 1c biosensing interface, various concentrations of HbA 1c (5-15%) in blood-originated samples were sensitively measured by a colorimetric assay using horseradish peroxidase, a glycoenzyme can generate chromogenic signal after the competitive binding against HbA 1c to the boronic acid residues. Based on the demonstrated advantages of boronate hydrogel-modified membrane including high analytical performance, easy operation, and cost-effectiveness, we expect that the proposed biorecognition interfacial material can be applied not only to point-of-care HbA 1c biosensors, but also to the quantitative analysis of other glycoprotein biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bollina, Ravi
Supersolidus liquid phase sintering (SLPS) is a variant of liquid phase sintering. In SLPS, prealloyed powders are heated between the solidus and liquidus temperature of the alloy. This thesis focuses on processing of stainless steel 316L via SLPS by adding boron. Various amounts of boron were added to study the effect of boron on densification and distortion. The sintering window for water atomized 316L with 0.2% boron ranges from 1430 to 1435°C and 1225 to 1245°C for water atomized 316L with 0.8% boron. The rate of change of liquid content with temperature dVL/dt decreases from 1.5%/°C to 0.1%/°C for in increase in boron content from 0 to 0.8%, giving a wider range and better control during sintering. Further; effect of boron on mechanical properties and corrosion properties was researched. It was possible to achieve tensile strength of 476+/-21 MPa and an yield strength of 250+/-5 MPa with an elongation of 15+/-2 % in water atomized 316L with 0.8% boron. Fracture analysis indicates the presence of a brittle boride phase along the grain boundary causing intergranular fracture resulting in poor ductility. The crux of this thesis discusses the evolution of apparent viscosity and its relation to the microstructure. Beam bending viscometry was successfully used to evaluate the in situ apparent viscosity evolution of water atomized 316L with 0.2 and 0.8% boron additions. The apparent viscosity drops from 174 GPa.s at 1200°C to 4 GPa.s at 1275°C with increasing fractional liquid coverage in the water atomized 316L with 0.8% boron. The apparent viscosity calculated from bending beam and was used as an input into a finite element model (FEM) derived from constitutive equations and gives an excellent, fit between simulation and experiment. The densification behavior of boron doped stainless steel was modelled using Master Sintering Curve (MSC) (based on work of sintering) for the first time. It is proven that MSC can be used to identify change in densification rate upon liquid formation during SLPS.
Crystalline boron nitride aerogels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.
This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandy, P.; Yu, Ming; Leahy, C.
2015-03-28
An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemicalmore » bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ∼230 compact boron clusters B{sub N} with N in the range from ∼100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B{sub 12} units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.« less
NASA Astrophysics Data System (ADS)
Tandy, P.; Yu, Ming; Leahy, C.; Jayanthi, C. S.; Wu, S. Y.
2015-03-01
An upgrade of the previous self-consistent and environment-dependent linear combination of atomic orbitals Hamiltonian (referred as SCED-LCAO) has been developed. This improved version of the semi-empirical SCED-LCAO Hamiltonian, in addition to the inclusion of self-consistent determination of charge redistribution, multi-center interactions, and modeling of electron-electron correlation, has taken into account the effect excited on the orbitals due to the atomic aggregation. This important upgrade has been subjected to a stringent test, the construction of the SCED-LCAO Hamiltonian for boron. It was shown that the Hamiltonian for boron has successfully characterized the electron deficiency of boron and captured the complex chemical bonding in various boron allotropes, including the planar and quasi-planar, the convex, the ring, the icosahedral, and the fullerene-like clusters, the two-dimensional monolayer sheets, and the bulk alpha boron, demonstrating its transferability, robustness, reliability, and predictive power. The molecular dynamics simulation scheme based on the Hamiltonian has been applied to explore the existence and the energetics of ˜230 compact boron clusters BN with N in the range from ˜100 to 768, including the random, the rhombohedral, and the spherical icosahedral structures. It was found that, energetically, clusters containing whole icosahedral B12 units are more stable for boron clusters of larger size (N > 200). The ease with which the simulations both at 0 K and finite temperatures were completed is a demonstration of the efficiency of the SCED-LCAO Hamiltonian.
Zheng, Bing; Yu, Hai-tao; Xie, Ying; Lian, Yong-fu
2014-11-26
First-principles density functional theory calculations were performed to study the effect of Li adsorption on the structural and electronic properties, particularly the work function, of boron α-sheet. The calculated binding energies indicated that boron α-sheet could be well stabilized by the adsorption of Li atoms. Furthermore, the work functions of Li-adsorbed boron α-sheets were observed to decrease drastically with increasing Li coverage. The work functions are lower than that of Mg and even, for some of them, lower than that of Ca, indicating a considerable potential application of Li-adsorbed boron α-sheets as field-emission and electrode materials. Based on the calculated geometric and electronic structures, we discuss in details some possible aspects affecting the work function. The Li coverage dependence of the work functions of Li-adsorbed boron α-sheets was further confirmed by electrostatic potential analyses. The relationship between the work function variation and the Fermi and vacuum energy level shifts was also discussed, and we observed that the variation of the work function is primarily associated with the shift of the Fermi energy level. It is the surface dipole formed by the interaction between adatoms and substrate that should be responsible for the observed variation of the work function, whereas the increasing negative charge and rumpling for boron α-sheet only play minor roles. Additionally, the effect of Li adatoms on the work function of boron α-sheet was confirmed to be much stronger than that of graphene or a graphene double layer.
Lu, Dongmei; Wu, Chao; Li, Pengfei
2014-02-03
Boryl radicals have the potential for the development of new molecular entities and for application in new radical reactions. However, the effects of the substituents and coordinating Lewis bases on the reactivity of boryl radicals are not fully understood. By using first-principles methods, we investigated the spin-density distribution and reactivity of a series of boryl radicals with various substituents and Lewis bases. The substituents, along with the Lewis bases, only affect the radical reactivity when an unpaired electron is in the boron pz orbital, that is, for three-coordinate radicals. We found evidence of synergistic effects between the substituents and the Lewis bases that can substantially broaden the tunability of the reactivity of the boryl radicals. Among Lewis bases, pyridine and imidazol-2-ylidene show a similar capacity for stabilization by delocalizing the spin density. Electron-donating substituents, such as nitrogen, more efficiently stabilize boryl radicals than oxygen and carbon atoms. The reactivity of a boryl radical is always boron based, irrespective of the spin density on boron. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laboratory Investigation of a Leaking Type 316 Socket Weld in a Boron Injection Tank Sampling Line
NASA Astrophysics Data System (ADS)
Xu, Hongqing; Fyfitch, Steve; Hosier, Ryan; Hyres, James
A leak was discovered in a Type 316 stainless steel socket weld in the sampling line for the boron injection tank. A section of the pipeline containing the leaking weld was removed for laboratory investigation that included visual and Stereovisual inspections, liquid penetrant (PT) testing, metallography, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and ferrite content determinations. The leak path was a through-wall transgranular crack in the socket weld. Cracking initiated along the weld-metal-to-base-metal interface at the tip of the crevice between the socket and pipe. The crevice was exposed to oxygenated boron solution at <180°F. Shallow intergranular attack (IGA) was found in the exposed base metal inside the crevice. Based on the investigation results, it was concluded that transgranular stress corrosion cracking (TGSCC) is the primary cracking mechanism.
Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.
Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K
2015-06-05
Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.
Henzlova, D.; Menlove, H. O.; Marlow, J. B.
2015-07-01
Thermal neutron counters utilized and developed for deployment as non-destructive assay (NDA) instruments in the field of nuclear safeguards traditionally rely on 3He-based proportional counting systems. 3He-based proportional counters have provided core NDA detection capabilities for several decades and have proven to be extremely reliable with range of features highly desirable for nuclear facility deployment. Facing the current depletion of 3He gas supply and the continuing uncertainty of options for future resupply, a search for detection technologies that could provide feasible short-term alternative to 3He gas was initiated worldwide. As part of this effort, Los Alamos National Laboratory (LANL) designedmore » and built a 3He-free full scale thermal neutron coincidence counter based on boron-lined proportional technology. The boronlined technology was selected in a comprehensive inter-comparison exercise based on its favorable performance against safeguards specific parameters. This paper provides an overview of the design and initial performance evaluation of the prototype High Level Neutron counter – Boron (HLNB). The initial results suggest that current HLNB design is capable to provide ~80% performance of a selected reference 3He-based coincidence counter (High Level Neutron Coincidence Counter, HLNCC). Similar samples are expected to be measurable in both systems, however, slightly longer measurement times may be anticipated for large samples in HLNB. The initial evaluation helped to identify potential for further performance improvements via additional tailoring of boron-layer thickness.« less
NASA Astrophysics Data System (ADS)
Shamp, Andrew James
Since the first prediction that compressed hydrogen would metallize in 1935 and the further prediction that the metallic allotrope would be a superconductor at high temperatures, metallic hydrogen has been termed the "holy grail" of high-pressure science. A tremendous amount of theoretical and experimental research has been carried out, with the ultimate goal of metallizing hydrogen via the application of external pressure. It has been previously proposed that doping hydrogen with another element can lower the pressure at which metallization occurs. A number of experimental and theoretical studies have investigated doping hydrogen by either a group XIII or XIV element. Experiments in diamond anvil cells have illustrated that it is indeed possible to synthesize hydrogen-rich phases under conditions of extreme pressures, and SiH4 (H2)2, GeH4(H2) n, and Xe(H2)n have been shown to behave as true compounds. The focus herein is on the theoretical exploration of hydrogen-rich phases with novel stoichiometries, which contain a dopant element up to pressures of 350 GPa. In particular, the alkali-metal and alkaline Earth metal polyhydrides (MHn where n > 1) have been considered. Within this thesis the XtalOpt evolutionary algorithm was employed in order to complete this work, and predict the most stable structures of cesium and beryllium polyhydrides under pressure. In addition, we explore the possibility of mixing excess hydrogen with an electronegative element, iodine and phosphorus. The phases found are examined via detailed first principles calculations. In addition, because of its outstanding hardness, thermodynamic stability, low density, electronic properties, thermal stability, and high melting point boron carbide has many uses: i.e. as a refractory material, in abrasive powders and ballistics, as a neutron radiation absorbent, and in electronic applications. However, little is known about the behavior of boron carbide when under the external stress of pressure. The shock compression of boron carbide has been widely studied for decades both experimentally and theoretically. Due to its low density and high shock strength boron carbide is a candidate for use in ballistic applications, such as armor. However, even with the 40 years of boron carbide shocks, its properties and response while in a shocked state have remained difficult to ascertain. A series of first-principles equation of state (EOS) calculations of B4 C that are in excellent agreement with existing Omega laser measurements have been conducted. Furthermore, in the P-T range to 1.5 TPa and 60,000 K the EOS has been extended. These results are relevant for ongoing and future experimental efforts at high-energy laser facilities such as the National Ignition Facility at Lawrence Livermore National Laboratory.
Anti-wear additive derived from soybean oil and boron utilized in a gear oil formulation
USDA-ARS?s Scientific Manuscript database
The synthesis of lubricant additives based on boron and epoxidized soybean oil are presented. These additives are made from a simple patent pending method involving a ring opening reaction and addition of the borate. A pair of different additives were tested in soybean oil, polyalpha olefin basestoc...
The U. S. EPA has conducted a peer review of the scientific basis supporting the health hazard and dose response assessment for Boron that will appear on the Agency's online data base, the Integrated Risk Information System (IRIS). Peer Review is meant to ensure that science is u...
USDA-ARS?s Scientific Manuscript database
Two experiments were conducted with weanling Sprague-Dawley rats to determine whether changes in S-adenosylmethionine utilization or metabolism contribute to the diverse responses to boron deprivation. In both experiments, four treatment groups of 15 male rats were fed ground corn-casein based diets...
From Urey To The Ocean's Glacial Ph: News From The Boron-11 Paleo-acidimetry.
NASA Astrophysics Data System (ADS)
Zeebe, R. E.; Wolf-Gladrow, D. A.; Bijma, J.
Boron paleo-acidimetry is based on the stable boron isotope composition of foraminiferal shells which has been shown to be a function of seawater pH. It is cur- rently one of the most promising paleo-carbonate chemistry proxies. One important parameter of the proxy is the equilibrium fractionation between the dissolved boron species B(OH)3 and B(OH)- which was calculated to be 19 per mil at 25C by Kak- 4 ihana and Kotaka (1977), based on Urey's theory. The calculated equilibrium frac- tionation, however, depends on the vibrational frequencies of the molecules for which different values have been reported in the literature. We have recalculated the equilib- rium fractionation and find that it may be distinctly different from 19 per mil (this is the bad news). The good news is that - theoretically - the use of 11B as a paleo-pH indicator is not compromised through vital effects in planktonic foraminifera. We de- rive this conclusion by the use of a diffusion-reaction model that calculates pH profiles and 11B values in the vicinity of a foraminifer.
Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauber, Jan; Stampfer, Christoph; Peter Grünberg Institute
2015-05-11
The encapsulation of graphene in hexagonal boron nitride provides graphene on substrate with excellent material quality. Here, we present the fabrication and characterization of Hall sensor elements based on graphene boron nitride heterostructures, where we gain from high mobility and low charge carrier density at room temperature. We show a detailed device characterization including Hall effect measurements under vacuum and ambient conditions. We achieve a current- and voltage-related sensitivity of up to 5700 V/AT and 3 V/VT, respectively, outpacing state-of-the-art silicon and III/V Hall sensor devices. Finally, we extract a magnetic resolution limited by low frequency electric noise of less than 50more » nT/√(Hz) making our graphene sensors highly interesting for industrial applications.« less
The mechanism and process of spontaneous boron doping in graphene in the theoretical perspective
NASA Astrophysics Data System (ADS)
Deng, Xiaohui; Zeng, Jing; Si, Mingsu; Lu, Wei
2016-10-01
A theoretical model is presented that reveals the mechanism of spontaneous boron doping of graphene and is consistent with the microwave plasma experiment choosing trimethylboron as the doping source (Tang et al. (2012) [19]). The spontaneous boron doping originates from the synergistic effect of B and other groups (C, H, CH, CH2 or CH3) decomposing from trimethylboron. This work successfully explains the above experimental phenomenon and proposes a novel and feasible method aiming at B doping of graphene. The mechanism presented here may be also suitable for other two-dimensional carbon-based materials.
Fibrous refractory composite insulation. [shielding reusable spacecraft
NASA Technical Reports Server (NTRS)
Leiser, D. B.; Goldstein, H. E.; Smith, M. (Inventor)
1979-01-01
A refractory composite insulating material was prepared from silica fibers and aluminosilicate fibers in a weight ratio ranging from 1:19 to 19:1, and about 0.5 to 30% boron oxide, based on the total fiber weight. The aluminosilicate fiber and boron oxide requirements may be satisfied by using aluminoborosilicate fibers and, in such instances, additional free boron oxide may be incorporated in the mix up to the 30% limit. Small quantities of refractory opacifiers, such as silicon carbide, may be also added. The composites just described are characterized by the absence of a nonfibrous matrix.
Pitois, Aurélien; de las Heras, Laura Aldave; Zampolli, Antonella; Menichetti, Luca; Carlos, Ramon; Lazzerini, Guido; Cionini, Luca; Salvatori, Pietro Alberto; Betti, Maria
2006-02-01
Boron neutron capture therapy (BNCT) is a bimodal radiotherapeutic treatment based on the irradiation of neoplastic tissues with neutrons after the tissues have selectively accumulated molecules loaded with nuclides with large neutron capture cross-sections (such boron-10). Boron-10 carriers have been tested to a limited extent, and clinical trials have been conducted on sulfhydryl borane (10B-BSH) and boronophenylalanine (10B-BPA). However, precise and accurate measurements of boron-10 concentrations (0.1-100 microg/g) in specimens and samples of limited size (microg scale) are needed in order to be able to biologically characterise new compounds in predictive tissue dosimetry, toxicology and pharmacology studies as well as in clinical investigations. A new approach based on fast separation and detection of 10B-BPA performed by coupling capillary electrophoresis to electrospray mass spectrometry is reported. This method allows the quantitative analysis and characterisation of 10B-BPA in a short time with a high separation efficiency. Detection limits of 3 microM for 10B-BPA and 30 ng/mL for 10B were obtained with CE-ESI-MS. A quantification limit of 10 microM for 10B-BPA (100 ng/mL for 10B) was attained. The total boron-10 concentration was determined by high-resolution inductively coupled mass spectrometry in order to validate the method. Boron-10 isotope measurements were carried out by HR-ICP-MS at medium resolution (R=4000) due to the presence of an isobaric interference at mass 10. Good agreement was obtained between the values from CE-ESI-MS and those from HR-ICP-MS. The method has been successfully used to determine the 10B-BPA in two lines of cultured cells.
Molecular-Level Processing of Si-(B)-C Materials with Tailored Nano/Microstructures.
Schmidt, Marion; Durif, Charlotte; Acosta, Emanoelle Diz; Salameh, Chrystelle; Plaisantin, Hervé; Miele, Philippe; Backov, Rénal; Machado, Ricardo; Gervais, Christel; Alauzun, Johan G; Chollon, Georges; Bernard, Samuel
2017-12-01
The design of Si-(B)-C materials is investigated, with detailed insight into the precursor chemistry and processing, the precursor-to-ceramic transformation, and the ceramic microstructural evolution at high temperatures. In the early stage of the process, the reaction between allylhydridopolycarbosilane (AHPCS) and borane dimethyl sulfide is achieved. This is investigated in detail through solid-state NMR and FTIR spectroscopy and elemental analyses for Si/B ratios ranging from 200 to 30. Boron-based bridges linking AHPCS monomeric fragments act as crosslinking units, extending the processability range of AHPCS and suppressing the distillation of oligomeric fragments during the low-temperature pyrolysis regime. Polymers with low boron contents display appropriate requirements for facile processing in solution, leading to the design of monoliths with hierarchical porosity, significant pore volume, and high specific surface area after pyrolysis. Polymers with high boron contents are more appropriate for the preparation of dense ceramics through direct solid shaping and pyrolysis. We provide a comprehensive study of the thermal decomposition mechanisms, and a subsequent detailed study of the high-temperature behavior of the ceramics produced at 1000 °C. The nanostructure and microstructure of the final SiC-based ceramics are intimately linked to the boron content of the polymers. B 4 C/C/SiC nanocomposites can be obtained from the polymer with the highest boron content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Del Rosso, James Q; Plattner, Jacob J
2014-02-01
The development of new drug classes and novel molecules that are brought to the marketplace has been a formidable challenge, especially for dermatologic drugs. The relative absence of new classes of antimicrobial agents is also readily apparent. Several barriers account for slow drug development, including regulatory changes, added study requirements, commercial pressures to bring drugs to market quickly by developing new generations of established compounds, and the greater potential for failure and higher financial risk when researching new drug classes. In addition, the return on investment is usually much lower with dermatologic drugs as compared to the potential revenue from "blockbuster" drugs for cardiovascular or gastrointestinal disease, hypercholesterolemia, and mood disorders. Nevertheless, some researchers are investigating new therapeutic platforms, one of which is boron-containing compounds. Boron-containing compounds offer a wide variety of potential applications in dermatology due to their unique physical and chemical properties, with several in formal phases of development. Tavaborole, a benzoxaborole compound, has been submitted to the United States Food and Drug Administration for approval for treatment of onychomycosis. This article provides a thorough overview of the history of boron-based compounds in medicine, their scientific rationale, physiochemical and pharmacologic properties, and modes of actions including therapeutic targets. A section dedicated to boron-based compounds in development for treatment of various skin disorders is also included.
NASA Astrophysics Data System (ADS)
Askari-Paykani, Mohsen; Shahverdi, Hamid Reza; Miresmaeili, Reza
2016-11-01
In this study, the Vickers hardnesses and room-temperature uniaxial tensile behaviors of four Fe66- x CrNiB x Si ( x = 0 (0B), 0.25 (25B), 0.50 (50B), and 0.75 (75B) wt pct) advanced high-strength steels (AHSSs) in the as-hot-rolled and heat-treated (1373 K (1100 °C)/2 h + 973 K (700 °C)/20 min) conditions were investigated. Microstructural evolution after solidification, hot rolling, heat treatment, and uniaxial tensile tests of 0B, 25B, 50B, and 75B AHSSs was also characterized using field emission gun scanning electron microscopy and X-ray diffraction. The tensile behaviors of the 0B, 25B, 50B, and 75B AHSSs were manifested by an excellent combination of strength and ductility over 34.7 and 47.1 GPa pct, 36.9 and 42.3 GPa pct, 45.9 and 46.4 GPa pct, and 11.9 and 47.8 GPa pct, respectively, arising from microband-induced plasticity in the 0B, 50B, and 75B AHSSs and transformation-induced plasticity in the 25B specimens. All specimens in the as-hot-rolled and heat-treated states showed an austenitic matrix grain. Adding boron to the base alloy (0B) resulted in grain refinement, M2B dispersion, precipitation hardening, and solid solution strengthening, which led to an increase in strength. The results of the present work show promise for automotive applications that require excellent properties and reduced specific weight.
Electroextraction of boron from boron carbide scrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Ashish; Anthonysamy, S., E-mail: sas@igcar.gov.in; Ghosh, C.
2013-10-15
Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction processmore » developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.« less
JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron
NASA Astrophysics Data System (ADS)
Stiel, Leonard; Baker, Ernest; Capellos, Christos
2009-06-01
The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.
Evaluation of Process Performance for Sustainable Hard Machining
NASA Astrophysics Data System (ADS)
Rotella, Giovanna; Umbrello, Domenico; , Oscar W. Dillon, Jr.; Jawahir, I. S.
This paper aims to evaluate the sustainability performance of machining operation of through-hardening steel, AISI 52100, taking into account the impact of the material removal process in its various aspects. Experiments were performed for dry and cryogenic cutting conditions using chamfered cubic boron nitride (CBN) tool inserts at varying cutting conditions (cutting speed and feed rate). Cutting forces, mechanical power, tool wear, white layer thickness, surface roughness and residual stresses were investigated in order to evaluate the effects of extreme in-process cooling on the machined surface. The results indicate that cryogenic cooling has the potential to be used for surface integrity enhancement for improved product life and more sustainable functional performance.
The fracture toughness of borides formed on boronized cold work tool steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ugur; Sen, Saduman
2003-06-15
In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compactmore » and smooth.« less
2009-09-01
kFc ) is shown to fit the Knoop data quite well. A plot of log10 (HK) vs. log10 (F) yielded easily comparable straight lines, whose slope and...AlON), silicon carbide, aluminum oxide and boron carbide. A power-law equation (H = kFc ) is shown to fit the Knoop data quite well. A plot of log10... kFc HK= 24.183 F-0.0699 R2= 0.97 H K (G Pa ) Load (N) HK = a/F + b ErrorValue 0.919483.7367a 0.6903619.361b NA25.591Chisq NA0.67368R2 1 1.1 1.2
Preparation of bulk superhard B-C-N nanocomposite compact
Zhao, Yusheng [Los Alamos, NM; He, Duanwei [Sichuan, CN
2011-05-10
Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.
Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J
2011-12-01
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.
2017-11-01
In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.
Nielsen, Forrest H; Penland, James G
2006-01-01
To determine whether boron deprivation affects rat behaviour and whether behavioural responses to boron deprivation are modified by differing amounts of dietary long-chain omega-3 fatty acids. Female rats were fed diets containing 0.1 mg (9 micromol)/kg boron in a factorial arrangement with dietary variables of supplemental boron at 0 and 3mg (278 micromol)/kg and fat sources of 75 g/kg safflower oil or 65 g/kg fish (menhaden) oil plus 10 g/kg linoleic acid. After 6 weeks, six females per treatment were bred. Dams and pups continued on their respective diets through gestation, lactation and after weaning. Between ages 6 and 20 weeks, behavioural tests were performed on 13-15 male offspring from three dams in each dietary treatment. The rats were euthanized at age 21 weeks for the collection of tissues and blood. At ages 6 and 19 weeks, auditory startle was evaluated with an acoustic startle system and avoidance behaviour was evaluated by using an elevated plus maze. At ages 7 and 20 weeks, spontaneous behaviour activity was evaluated with a photobeam activity system. A brightness discrimination test was performed on the rats between age 15 and 16 weeks. Brain mineral composition was determined by coupled argon plasma atomic emission spectroscopy. Plasma total glutathione was determined by HPLC and total cholesterol and 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) were determined by using commercially available kits. Boron-deficient rats were less active than boron-adequate rats when fed safflower oil based on reduced number, distance and time of horizontal movements, front entries, margin distance and vertical breaks and jumps in the spontaneous activity evaluation. Feeding fish oil instead of safflower oil attenuated the activity response to boron deprivation. In the plus maze evaluation, the behavioural reactivity of the boron-deficient rats fed fish oil was noticeably different than the other three treatments. They made more entries into both open and closed arms and the center area and thus visited more locations. The boron-deficient rats fed fish oil also exhibited the lowest copper and zinc and highest boron concentrations in brain and the highest plasma glutathione concentration. Both boron deprivation and safflower oil increased plasma 8-iso-PGF2alpha. Both dietary boron and long-chain omega-3 fatty acids influence rat behaviour and brain composition and the influence of one these bioactive substances can be altered by changing the intake of the other. Brain mineral and plasma cholesterol, glutathione and 8-iso-PGF2alpha findings suggest that rat behaviour is affected by an interaction between boron and fish oil because both affect oxidative metabolism and act the cellular membrane level.
Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreiner, A. J.; Escuela de Ciencia y Tecnologia, Universidad de Gral San Martin; CONICET,
2007-02-12
A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.
Zhang, Zhenyu; Zhang, Houyu; Jiao, Chuanjun; Ye, Kaiqi; Zhang, Hongyu; Zhang, Jingying; Wang, Yue
2015-03-16
Two novel four-coordinate boron-containing emitters 1 and 2 with deep-blue emissions were synthesized by refluxing a 2-(2-hydroxyphenyl)benzimidazole ligand with triphenylborane or bromodibenzoborole. The boron chelation produced a new π-conjugated skeleton, which rendered the synthesized boron materials with intense fluorescence, good thermal stability, and high carrier mobility. Both compounds displayed deep-blue emissions in solutions with very high fluorescence quantum yields (over 0.70). More importantly, the samples showed identical fluorescence in the solution and solid states, and the efficiency was maintained at a high level (approximately 0.50) because of the bulky substituents between the boron atom and the benzimidazole unit, which can effectively separate the flat luminescent units. In addition, neat thin films composed of 1 or 2 exhibited high electron and hole mobility in the same order of magnitude 10(-4), as determined by time-of-flight. The fabricated electroluminescent devices that employed 1 or 2 as emitting materials showed high-performance deep-blue emissions with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.15, Y = 0.09) and (X = 0.16, Y = 0.08), respectively. Thus, the synthesized boron-containing materials are ideal candidates for fabricating high-performance deep-blue organic light-emitting diodes.
Xekoukoulotakis, N P; Mantzavinos, D; Dillert, R; Bahnemann, D
2010-01-01
Boron-doped TiO(2) photocatalysts were synthesized employing a sol-gel method. Boric acid was used as the boron source and titanium tetra-isopropoxide as the TiO(2) precursor, both dissolved in isopropanol. Nominal boron to titanium atomic ratios were in the range 0 to 4%. After the hydrolysis step, two different procedures for the recovery of TiO(2) were followed, based on either centrifugation of the resulting reaction mixture or evaporation of the solvent under reduced pressure, both followed by a subsequent calcination step performed at 400 or 500 degrees C. The photocatalytic efficiency of the synthesized photocatalysts was assessed by measuring the photocatalytic mineralization of dichloroacetic acid in aqueous suspensions under UV-A irradiation and it was compared to the corresponding efficiency of the commercial Degussa P 25 TiO(2). Photocatalytic efficiency of the synthesized catalysts was higher for the boron-doped TiO(2) synthesized at 2% boron to titanium nominal atomic ratio, centrifuged after the hydrolysis step followed by calcinations at 400 degrees C. However, all photocatalysts synthesized in this work showed lower photocatalytic activity than Degussa P 25 TiO(2), thus highlighting the need of further improvements of the proposed method.
Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping
2017-05-23
With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m -1 K -1 ) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m -1 K -1 ) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.
Aquaglyceroporins Are the Entry Pathway of Boric Acid in Trypanosoma brucei.
Marsiccobetre, Sabrina; Rodríguez-Acosta, Alexis; Lang, Florian; Figarella, Katherine; Uzcátegui, Néstor L
2017-05-01
The boron element possesses a range of different effects on living beings. It is essential to beneficial at low concentrations, but toxic at excessive concentrations. Recently, some boron-based compounds have been identified as promising molecules against Trypanosoma brucei, the causative agent of sleeping sickness. However, until now, the boron metabolism and its access route into the parasite remained elusive. The present study addressed the permeability of T. brucei aquaglyceroporins (TbAQPs) for boric acid, the main natural boron species. To this end, the three TbAQPs were expressed in Saccharomyces cerevisiae and Xenopus laevis oocytes. Our findings in both expression systems showed that all three TbAQPs are permeable for boric acid. Especially TbAQP2 is highly permeable for this compound, displaying one of the highest conductances reported for a solute in these channels. Additionally, T. brucei aquaglyceroporin activities were sensitive to pH. Taken together, these results establish that TbAQPs are channels for boric acid and are highly efficient entry pathways for boron into the parasite. Our findings stress the importance of studying the physiological functions of boron and their derivatives in T. brucei, as well as the pharmacological implications of their uptake by trypanosome aquaglyceroporins. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua
2017-05-01
We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.
Process for microwave sintering boron carbide
Holcombe, C.E.; Morrow, M.S.
1993-10-12
A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.
Process for microwave sintering boron carbide
Holcombe, Cressie E.; Morrow, Marvin S.
1993-01-01
A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.
Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon
2018-05-01
In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.
Interaction of Boron Clusters with Oxygen: a DFT Study
NASA Astrophysics Data System (ADS)
Salavitabar, Kamron; Boggavarapu, Kiran; Kandalam, Anil
A controlled combustion involving aluminum nanoparticles has often been the focus of studies in the field of solid fuel propellants. However very little focus has been given to the study of boron nanoparticles in controlled combustion. In contrast to aluminum nanoclusters, boron nanoclusters (Bn) are known to exhibit a planar geometries even at the size of n = 19 - 20, and thus offer a greater surface area for interaction with oxygen. Earlier experimental studies have shown that boron nanoclusters exhibit different reactivity with oxygen depending on their size and charge. In this poster, we present our recent density functional theory based results, focusing on the reactivity patterns of neutral and negatively charged B5 cluster with On, where n = 1 - 5; and B6 cluster with On (n = 1 - 2). The effect of charge on the reactivity of boron cluster, variation in the stability of product clusters, i e., neutral and negatively charged B5On (n = 1 - 5) and B6On (n = 1 - 2) are also examined. Financial Support from West Chester University Foundation under FaStR grant is acknowledged.
NASA Technical Reports Server (NTRS)
Laakso, J. H.; Zimmerman, D. K.
1972-01-01
An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Tan, Shengwei; Ren, Mengyuan; Yang, Hsiwen; Tang, Dian; Chen, Kongfa; Zhang, Teng; Jiang, San Ping
2018-04-01
Boron volatility is one of the most important properties of borosilicate-based glass sealants in solid oxide fuel cells (SOFCs), as boron contaminants react with lanthanum-containing cathodes, forming LaBO3 and degrading the activity of SOFCs. Here, we report that the reaction between the volatile boron and a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode during polarization can be significantly reduced by doping aluminoborosilicate glass with Gd2O3. Specifically, the Gd cations in glass with 2 mol.% Gd2O3 dissolve preferentially in the borate-rich environment to form more Gd-metaborate structures and promote the formation of calcium metaborate (CaB2O4); they also condense the B-O network after heat treatment, which suppresses poisoning by boron contaminants on the LSCF cathode. The results provide insights into design and development of a reliable sealing glass for SOFC applications.
Boron Neutron Capture Therapy for Malignant Brain Tumors
MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji
2016-01-01
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576
Boron Neutron Capture Therapy for Malignant Brain Tumors.
Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji
2016-07-15
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Libo; Zhou, Gang, E-mail: gzhou@mail.buct.edu.cn
2016-04-14
The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO{sub 2} is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximatemore » to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.« less
Swain, Sarat K; Dash, Satyabrata; Behera, Chandini; Kisku, Sudhir K; Behera, Lingaraj
2013-06-20
A series of cellulose based nanobiocomposites (cellulose/BN) were prepared with incorporation of various percentage of nano boron nitride (BN). The interaction between cellulose and boron nitride was studied by Fourier transform infrared spectroscopy (FTIR). The structure of cellulose/BN nanobiocomposites was investigated by XRD, FESEM, and HRTEM. It was observed that the boron nitride nanoparticles were dispersed within cellulose matrix due to intercalation and partial exfoliation. The quantitative identification of nanobiocomposites was investigated by selected area electron diffraction (SAED). Thermal stabilities of the prepared nanobiocomposites were measured by thermo gravimetric analysis (TGA) and it was found that thermal stability of the nanobiocomposites was higher than the virgin cellulose. The oxygen barrier property of cellulose/BN nanobiocomposites was measured using a gas permeameter and a substantial reduction in oxygen permeability due to increase in boron nitride loading was observed. Further it was noticed that the chemical resistance of the nanobiocomposites was more than the virgin cellulose. Hence, the prepared nanobiocomposite may be widely used for insulating and temperature resistant packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Michalke, Bernhard
2017-03-01
Boron exposure is of interest and concern from an occupational point of view. Usual daily boron intake is related to boron blood plasma concentration <1mg/L and to <3mg/L in urine, but after exposure urine concentrations are quickly elevated. Reliable boron biomonitoring, typically in urine, thus is mandatory for occupational health control institutions. This paper reports on the development of a simple, fast and reliable boron determination procedure based on inductively coupled plasma - optical emission spectrometry (ICP-OES). Major aims for this method were simplicity in sample preparation, low risk for artifacts and interferences, high precision and accuracy, possibly low costs, including lower costs for element selective detection, short total analysis time and suitability for occupational health laboratories. Precision data (serial or day-to-day) from urine and doped urine were very good: <1.5 or <2%. Accuracy was calculated from analysis of a certified reference material (ERM-CD 281), as 99% or according to recoveries of doped concentrations ranging from 102 to 109% recovery. For cross-checking ICP-OES determinations, samples were analyzed also by quadrupole ICP-qMS and by sectorfield ICP-sf-MS at low and medium resolution. Both systems confirmed ICP-OES measurements when using 11 B for quantification. Determinations based on 10 B however showed some bias, except with ICP-sf-MS at medium resolution. The observed elevated signals are discussed with respect to the known Ne ++ interference (as an impurity in Ar), which is not separated in low resolving quadrupole ICP-MS systems or ICP-sf-MS at low resolution. Copyright © 2016 Elsevier GmbH. All rights reserved.
Bassil, Elias; Hu, Hening; Brown, Patrick H.
2004-01-01
The only defined physiological role of boron in plants is as a cross-linking molecule involving reversible covalent bonds with cis-diols on either side of borate. Boronic acids, which form the same reversible bonds with cis-diols but cannot cross-link two molecules, were used to selectively disrupt boron function in plants. In cultured tobacco (Nicotiana tabacum cv BY-2) cells, addition of boronic acids caused the disruption of cytoplasmic strands and cell-to-cell wall detachment. The effect of the boronic acids could be relieved by the addition of boron-complexing sugars and was proportional to the boronic acid-binding strength of the sugar. Experiments with germinating petunia (Petunia hybrida) pollen and boronate-affinity chromatography showed that boronic acids and boron compete for the same binding sites. The boronic acids appear to specifically disrupt or prevent borate-dependent cross-links important for the structural integrity of the cell, including the organization of transvacuolar cytoplasmic strands. Boron likely plays a structural role in the plant cytoskeleton. We conclude that boronic acids can be used to rapidly and reversibly induce boron deficiency-like responses and therefore are useful tools for investigating boron function in plants. PMID:15466241
Kubo, Takuya; Furuta, Hayato; Naito, Toyohiro; Sano, Tomoharu; Otsuka, Koji
2017-06-29
Selective adsorption of carbohydrates and glycoproteins was effectively achieved by molecularly imprinted hydrogels (MIHs) with a poly(ethylene glycol) (PEG)-based crosslinker and 4-vinylphenylboronic acid. In addition, an MIH with a novel boronic acid monomer provided selective adsorption and enabled visible detection of fructose.
Direct sensing of fluoride in aqueous solutions using a boronic acid based sensor.
Wu, Xin; Chen, Xuan-Xuan; Song, Bing-Nan; Huang, Yan-Jun; Ouyang, Wen-Juan; Li, Zhao; James, Tony D; Jiang, Yun-Bao
2014-11-21
Binding of the fluoride ion triggers aggregation of a pyreneboronic acid-catechol ensemble in acidic aqueous solutions, giving rise to intense excimer emission, allowing for sensitive fluoride ion sensing at ppm levels, with an apparent fluoride binding constant higher than 10(3) M(-1) which is unprecedented for boronic acid sensors in water.
Michiue, Hiroyuki; Sakurai, Yoshinori; Kondo, Natsuko; Kitamatsu, Mizuki; Bin, Feng; Nakajima, Kiichiro; Hirota, Yuki; Kawabata, Shinji; Nishiki, Tei-ichi; Ohmori, Iori; Tomizawa, Kazuhito; Miyatake, Shin-ichi; Ono, Koji; Matsui, Hideki
2014-03-01
New anti-cancer therapy with boron neutron capture therapy (BNCT) is based on the nuclear reaction of boron-10 with neutron irradiation. The median survival of BNCT patients with glioblastoma was almost twice as long as those receiving standard therapy in a Japanese BNCT clinical trial. In this clinical trial, two boron compounds, BPA (boronophenylalanine) and BSH (sodium borocaptate), were used for BNCT. BPA is taken up into cells through amino acid transporters that are expressed highly in almost all malignant cells, but BSH cannot pass through the cell membrane and remains outside the cell. We simulated the energy transfer against the nucleus at different locations of boron from outside the cell to the nuclear region with neutron irradiation and concluded that there was a marked difference between inside and outside the cell in boron localization. To overcome this disadvantage of BSH in BNCT, we used a cell-penetrating peptide system for transduction of BSH. CPP (cell-membrane penetrating peptide) is very common peptide domains that transduce many physiologically active substances into cells in vitro and in vivo. BSH-fused CPPs can penetrate the cell membrane and localize inside a cell. To increase the boron ratio in one BSH-peptide molecule, 8BSH fused to 11R with a dendritic lysine structure was synthesized and administrated to malignant glioma cells and a brain tumor mouse model. 8BSH-11R localized at the cell nucleus and showed a very high boron value in ICP results. With neutron irradiation, the 8BSH-11R administrated group showed a significant cancer killing effect compared to the 100 times higher concentration of BSH-administrated group. We concluded that BSH-fused CPPs were one of the most improved and potential boron compounds in the next-stage BNCT trial and 8BSH-11R may be applied in the clinical setting. Copyright © 2013 Elsevier Ltd. All rights reserved.
Diamond- cBN alloy: A universal cutting material
Wang, Pei; He, Duanwei; Wang, Liping; ...
2015-09-08
Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less
Diamond-cBN alloy: A universal cutting material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; High Pressure Science and Engineering Center and Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154; He, Duanwei, E-mail: duanweihe@scu.edu.cn
Diamond and cubic boron nitride (cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesis andmore » characterization of transparent bulk diamond-cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond-cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. High-speed cutting tests on hardened steel and granite suggest that diamond-cBN alloy is indeed a universal cutting material.« less
Diamond- cBN alloy: A universal cutting material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei; He, Duanwei; Wang, Liping
Diamond and cubic boron nitride ( cBN) as conventional superhard materials have found widespread industrial applications, but both have inherent limitations. Diamond is not suitable for high-speed cutting of ferrous materials due to its poor chemical inertness, while cBN is only about half as hard as diamond. Because of their affinity in structural lattices and covalent bonding character, diamond and cBN could form alloys that can potentially fill the performance gap. However, the idea has never been demonstrated because samples obtained in the previous studies were too small to be tested for their practical performance. Here, we report the synthesismore » and characterization of transparent bulk diamond- cBN alloy compacts whose diameters (3 mm) are sufficiently large for them to be processed into cutting tools. The testing results show that the diamond- cBN alloy has superior chemical inertness over polycrystalline diamond and higher hardness than single crystal cBN. In conclusion, high-speed cutting tests on hardened steel and granite suggest that diamond- cBN alloy is indeed a universal cutting material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.
2016-06-28
Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less
Chen, Sisi; Yang, Qingbo; Brow, Richard K; Liu, Kun; Brow, Katherine A; Ma, Yinfa; Shi, Honglan
2017-04-01
Bioactive borate glass has been recognized to have both hard and soft tissue repair and regeneration capabilities through stimulating both osteogenesis and angiogenesis. However, the underlying biochemical and cellular mechanisms remain unclear. In this study, dynamic flow culturing modules were designed to simulate the micro-environment near the vascular depletion and hyperplasia area in wound-healing regions, thus to better investigate the mechanisms underlying the biocompatibility and functionality of borate-based glass materials. Glass fibers were dosed either upstream or in contact with the pre-seeded cells in the dynamic flow module. Two types of borate glasses, doped with (1605) or without (13-93B3) CuO and ZnO, were studied along with the silicate-based glass, 45S5. Substantial fiber dissolution in cell culture medium was observed, leading to the release of ions (boron, sodium and potassium) and the deposition of a calcium phosphate phase. Different levels of vascular endothelial growth factor secretion were observed from cells exposed to these three glass fibers, and the copper/zinc containing borate 1605 fibers exhibited the most positive influence. These results indicate that dynamic studies of in vitro bioactivity provide useful information to understand the in vivo response to bioactive borate glasses. Copyright © 2016 Elsevier B.V. All rights reserved.
Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making
McCallum, R.W.; Branagan, D.J.
1996-01-23
A method of making a permanent magnet is disclosed wherein (1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and (2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties. 33 figs.
Carbide/nitride grain refined rare earth-iron-boron permanent magnet and method of making
McCallum, R. William; Branagan, Daniel J.
1996-01-23
A method of making a permanent magnet wherein 1) a melt is formed having a base alloy composition comprising RE, Fe and/or Co, and B (where RE is one or more rare earth elements) and 2) TR (where TR is a transition metal selected from at least one of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, and Al) and at least one of C and N are provided in the base alloy composition melt in substantially stoichiometric amounts to form a thermodynamically stable compound (e.g. TR carbide, nitride or carbonitride). The melt is rapidly solidified in a manner to form particulates having a substantially amorphous (metallic glass) structure and a dispersion of primary TRC, TRN and/or TRC/N precipitates. The amorphous particulates are heated above the crystallization temperature of the base alloy composition to nucleate and grow a hard magnetic phase to an optimum grain size and to form secondary TRC, TRN and/or TRC/N precipitates dispersed at grain boundaries. The crystallized particulates are consolidated at an elevated temperature to form a shape. During elevated temperature consolidation, the primary and secondary precipitates act to pin the grain boundaries and minimize deleterious grain growth that is harmful to magnetic properties.
Chandra, Subhash; Barth, Rolf F.; Haider, Syed A.; Yang, Weilian; Huo, Tianyao; Shaikh, Aarif L.; Kabalka, George W.
2013-01-01
The development of new boron-delivery agents is a high priority for improving the effectiveness of boron neutron capture therapy. In the present study, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC) as a mixture of its L- and D- enantiomers was evaluated in vivo using the B16 melanoma model for the human tumor and the F98 rat glioma as a model for human gliomas. A secondary ion mass spectrometry (SIMS) based imaging instrument, CAMECA IMS 3F SIMS Ion Microscope, was used for quantitative imaging of boron at 500 nm spatial resolution. Both in vivo and in vitro studies in melanoma models demonstrated that boron was localized in the cytoplasm and nuclei with some cell-to-cell variability. Uptake of cis-ABCPC in B16 cells was time dependent with a 7.5:1 partitioning ratio of boron between cell nuclei and the nutrient medium after 4 hrs. incubation. Furthermore, cis-ABCPC delivered boron to cells in all phases of the cell cycle, including S-phase. In vivo SIMS studies using the F98 rat glioma model revealed an 8:1 boron partitioning ratio between the main tumor mass and normal brain tissue with a 5:1 ratio between infiltrating tumor cells and contiguous normal brain. Since cis-ABCPC is water soluble and can cross the blood-brain-barrier via the L-type amino acid transporters (LAT), it may accumulate preferentially in infiltrating tumor cells in normal brain due to up-regulation of LAT in high grade gliomas. Once trapped inside the tumor cell, cis-ABCPC cannot be metabolized and remains either in a free pool or bound to cell matrix components. The significant improvement in boron uptake by both the main tumor mass and infiltrating tumor cells compared to those reported in animal and clinical studies of p-boronophenylalanine strongly suggest that cis-ABCPC has the potential to become a novel new boron delivery agent for neutron capture therapy of gliomas and melanomas. PMID:24058680
Boron nitride converted carbon fiber
Rousseas, Michael; Mickelson, William; Zettl, Alexander K.
2016-04-05
This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.
PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)
NASA Astrophysics Data System (ADS)
Tanaka, Takaho
2009-07-01
This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions, 'Boron chemistry' and 'Superconductivity', were also held at the symposium. The session on Boron chemistry was planned to honor the scientific work in boron chemistry of Professor J Bauer on the occasion of his retirement. Many recent results were discussed in the session, and Professor Bauer himself introduced novel rare-earth-boron-carbon compounds RE10B7C10 (RE = Gd - Er) in his lecture. In the latter session, on the basis of recent discoveries of superconductivity in MgB2 and in β-boron under high pressure, the superconductivity of boron and related materials was discussed and the superconductivity of boron-doped diamond was also addressed. More than 120 participants from 16 countries attended the ISBB 2008, and active presentations (22 invited, 33 oral and 68 posters) and discussions suggest that research on boron and borides is entering a new phase of development. This volume contains 46 articles from 52 submitted manuscripts. The reviewers were invited not only from symposium participants but also from specialists worldwide, and they did a great job of evaluating and commenting on the submitted manuscripts to maintain the highest quality standard of this volume. Recent discoveries of superconductivity in boron under high pressure, synthesis of a new allotrope of boron and of various boron and boride nanostructures will lead this highly interdisciplinary field of science, which will further grow and gain attention in terms of both basic and applied research. In this context, we are very much looking forward to the next symposium, which will be held in Istanbul, Turkey, in 2011, organized by Professor Onuralp Yucel, Istanbul Technical University. Turkey currently has the world highest share of borate production and is expected to be involved more in boron-related research. Acknowledgements We gratefully acknowledge the style improvement by Dr K Iakoubovskii, and sincerely thank Shimane Prefecture and Matsue City for their financial support. The symposium was also supported by Tokyo University of Science, Suwa and foundations including, the Kajima Foundation, Foundation for Promotion of Material Science and Technology of Japan and Nippon Sheet Glass Foundation for Materials Science and Engineering, as well as companies including JFE Steel Corporation, Shincron Co, Ltd, Toyo Kohan Co, Ltd, Fukuda Metal Foil and Powder Co, Ltd, Japan New Metals Co, Ltd, H C Starck Ltd and Fritsch Japan Co, Ltd. Editors Chair Takaho Tanaka (National Institute for Materials Science, Japan) Vice chairs Koun Shirai (Osaka University, Japan) Kaoru Kimura (The University of Tokyo, Japan) Ken-ichi Takagi (Tokyo City University, Japan) Touetsu Shishido (Tohoku University, Japan) Shigeru Okada (Kokushikan University) Hideaki Itoh (Nagoya University,Japan) Katsumitsu Nakamura (Nihon University, Japan) Organizing committee of ISBB 2008 K Takagi Chairman (Tokyo City University) T Tanaka Program Committee Chairman (National Institute for Materials Science) K Kimura Secretary (The University of Tokyo) J Akimitsu (Aoyama University)K Shirai (Osaka University) H Itoh (Nagoya University)T Shishido (Tohoku University) K Nakamura (Nihon University)K Soga (Tokyo University of Science) K Nishiyama (Tokyo University of Science, Suwa)M Takeda (Nagaoka University of Technology) S Okada (Kokushikan University)Y Yamazaki (Toyo Kohan Co, Ltd) International Scientific Committee 0f ISBB (2008-2011) K Takagi Chairman (Japan) B Albert (Germany) J-F Halet (France) M Takeda (Japan) M Antadze (Georgia) H Hillebrecht (Germany) T Tanaka (Japan) J Bauer (France) W Jung (Germany) R Telle (Germany) I Boustani (Germany) K Kimura (Japan) M Trenary (USA) D Emin (USA) T Mori (Japan) O Tsagareishvili (Georgia) M Engler (Germany) P D Ownby (USA) H Werheit (Germany) N Frage (Israel) P Rogl (Austria) G Will (Germany) Yu Grin (Germany) S Shalamberidze (Georgia) O Yucel (Turkey) V N Gurin (Russia) N Shitsevalova (Ukraine) G Zhang (China)
Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül
2016-01-01
Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.
Theoretical study of ozone adsorption on the surface of Fe, Co and Ni doped boron nitride nanosheets
NASA Astrophysics Data System (ADS)
Farmanzadeh, Davood; Askari Ardehjani, Nastaran
2018-06-01
In this work, the adsorption of ozone molecule on Fe, Co and Ni doped boron nitride nanosheets (BNNSs) were investigated using density functional theory. The most stable adsorption configurations, charge transfer and adsorption energy of ozone molecule on pure and doped BNNSs are calculated. It is shown that ozone molecule has no remarkable interaction with pure boron nitride nanosheet, it tends to be chemisorbed on Fe, Co and Ni doped BNNSs with adsorption energy in the range of -249.4 to -686.1 kJ/mol. In all configurations, the adsorption of ozone molecule generates a semiconductor by reducing Eg in the pure and Fe, Co and Ni doped boron nitride nanosheet. It shows that the conductance of BNNSs change over the adsorption of ozone molecule. The obtained results in this study can be used in developing BN-based sheets for ozone molecule removal.
NASA Astrophysics Data System (ADS)
Adabifiroozjaei, Esmaeil; Koshy, Pramod; Sorrell, Charles Chris
2012-02-01
Interfacial reactions between Al alloy and andalusite low-cement castables (LCCs) containing 5 wt pct B2O3, B4C, and BN were analyzed at 1123 K and 1433 K (850 °C and 1160 °C) using the Alcoa cup test. The results showed that the addition of boron-containing materials led to the formation of aluminoborate (9Al2O3.2B2O3) and glassy phase containing boron in the prefiring temperature (1373 K [1100 °C]), which consequently improved the corrosion resistance of the refractories. The high heat of formation of the aluminoborate phase (which increased its stability to reactions with molten Al alloy) and the low solubility of boron in molten Al were the major factors that contributed to the improvement in the corrosion resistance of B-doped samples.
Observation of an all-boron fullerene
NASA Astrophysics Data System (ADS)
Zhai, Hua-Jin; Zhao, Ya-Fan; Li, Wei-Li; Chen, Qiang; Bai, Hui; Hu, Han-Shi; Piazza, Zachary A.; Tian, Wen-Juan; Lu, Hai-Gang; Wu, Yan-Bo; Mu, Yue-Wen; Wei, Guang-Feng; Liu, Zhi-Pan; Li, Jun; Li, Si-Dian; Wang, Lai-Sheng
2014-08-01
After the discovery of fullerene-C60, it took almost two decades for the possibility of boron-based fullerene structures to be considered. So far, there has been no experimental evidence for these nanostructures, in spite of the progress made in theoretical investigations of their structure and bonding. Here we report the observation, by photoelectron spectroscopy, of an all-boron fullerene-like cage cluster at B40- with an extremely low electron-binding energy. Theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40- with two adjacent hexagonal holes is slightly more stable than the fullerene structure. In contrast, for neutral B40 the fullerene-like cage is calculated to be the most stable structure. The surface of the all-boron fullerene, bonded uniformly via delocalized σ and π bonds, is not perfectly smooth and exhibits unusual heptagonal faces, in contrast to C60 fullerene.
Observation of an all-boron fullerene.
Zhai, Hua-Jin; Zhao, Ya-Fan; Li, Wei-Li; Chen, Qiang; Bai, Hui; Hu, Han-Shi; Piazza, Zachary A; Tian, Wen-Juan; Lu, Hai-Gang; Wu, Yan-Bo; Mu, Yue-Wen; Wei, Guang-Feng; Liu, Zhi-Pan; Li, Jun; Li, Si-Dian; Wang, Lai-Sheng
2014-08-01
After the discovery of fullerene-C60, it took almost two decades for the possibility of boron-based fullerene structures to be considered. So far, there has been no experimental evidence for these nanostructures, in spite of the progress made in theoretical investigations of their structure and bonding. Here we report the observation, by photoelectron spectroscopy, of an all-boron fullerene-like cage cluster at B40(-) with an extremely low electron-binding energy. Theoretical calculations show that this arises from a cage structure with a large energy gap, but that a quasi-planar isomer of B40(-) with two adjacent hexagonal holes is slightly more stable than the fullerene structure. In contrast, for neutral B40 the fullerene-like cage is calculated to be the most stable structure. The surface of the all-boron fullerene, bonded uniformly via delocalized σ and π bonds, is not perfectly smooth and exhibits unusual heptagonal faces, in contrast to C60 fullerene.
No evidence that boron influences tree species distributions in lowland tropical forests of Panama.
Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W
2017-04-01
It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, J. C.; Department of Engineering Physics, Polytechnique Montréal, Montreal, Quebec H3A 3A7; Jha, S. K., E-mail: skylec@gmail.com, E-mail: apwjzh@cityu.edu.hk
2014-11-10
Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ∼1.0 eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of ±5 V.
Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films
NASA Astrophysics Data System (ADS)
Alam, M. T.; Bresnehan, M. S.; Robinson, J. A.; Haque, M. A.
2014-01-01
Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m-1 K-1, is lower than the bulk basal plane value (390 W m-1 K-1) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics.
Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.
Vítová, Lada; Fojt, Lukáš; Vespalec, Radim
2014-04-18
3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Buckley, Donald H.; Pouch, John J.; Alterovitz, Samuel A.; Sliney, Harold E.
1987-01-01
An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2.
NASA Astrophysics Data System (ADS)
Olsson, Anders; Hellsing, Maja S.; Rennie, Adrian R.
2017-05-01
Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Pouch, John J.; Alterovitz, Samuel A.; Sliney, Harold E.; Buckley, Donald H.
1987-01-01
An investigation was conducted to examine the mechanical strength and tribological properties of boron nitride (BN) films ion-beam deposited on silicon (Si), fused silica (SiO2), gallium arsenide (GaAs), and indium phosphide (InP) substrates in sliding contact with a diamond pin under a load. The results of the investigation indicate that BN films on nonmetallic substrates, like metal films on metallic substrates, deform elastically and plastically in the interfacial region when in contact with a diamond pin. However, unlike metal films and substrates, BN films on nonmetallic substrates can fracture when they are critically loaded. Not only does the yield pressure (hardness) of Si and SiO2 substrates increase by a factor of 2 in the presence of a BN film, but the critical load needed to fracture increases as well. The presence of films on the brittle substrates can arrest crack formation. The BN film reduces adhesion and friction in the sliding contact. BN adheres to Si and SiO2 and forms a good quality film, while it adheres poorly to GaAs and InP. The interfacial adhesive strengths were 1 GPa for a BN film on Si and appreciably higher than 1 GPa for a BN film on SiO2.
Superhard Rhenium/Tungsten Diboride Solid Solutions.
Lech, Andrew T; Turner, Christopher L; Lei, Jialin; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B
2016-11-02
Rhenium diboride (ReB 2 ), containing corrugated layers of covalently bonded boron, is a superhard metallic compound with a microhardness reaching as high as 40.5 GPa (under an applied load of 0.49 N). Tungsten diboride (WB 2 ), which takes a structural hybrid between that of ReB 2 and AlB 2 , where half of the boron layers are planar (as in AlB 2 ) and half are corrugated (as in ReB 2 ), has been shown not to be superhard. Here, we demonstrate that the ReB 2 -type structure can be maintained for solid solutions of tungsten in ReB 2 with tungsten content up to a surprisingly large limit of nearly 50 atom %. The lattice parameters for the solid solutions linearly increase along both the a- and c-axes with increasing tungsten content, as evaluated by powder X-ray and neutron diffraction. From micro- and nanoindentation hardness testing, all of the compositions within the range of 0-48 atom % W are superhard, and the bulk modulus of the 48 atom % solid solution is nearly identical to that of pure ReB 2 . These results further indicate that ReB 2 -structured compounds are superhard, as has been predicted from first-principles calculations, and may warrant further studies into additional solid solutions or ternary compounds taking this structure type.
Alternative Process for Manufacturing of Thin Layers of Boron for Neutron Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auge, Gregoire; Partyka, Stanislas; Guerard, Bruno
Due to the worldwide shortage of helium 3, Boron-lined proportional counters are developed intensively by several groups. Up to now, thin boron containing layers for neutron detectors are essentially produced by sputtering of boron carbide (B{sub 4}C). This technology provides high quality films but it is slow and expensive. Our paper describes a novel and inexpensive technology for producing boron layers. This technology is based on chemical synthesis of boron 10 nanoparticles, and on electrophoretic deposition of these particles on metallic plates, or on metallic pieces with more complex shapes. The chemical synthesis consists in: - Heating boron 10 withmore » lithium up to 700 deg. C under inert atmosphere: an intermetallic compound, LiB, is produced; - Hydrolysing this intermetallic compound: LiB + H{sub 2}O → B + Li{sup +} + OH{sup -} + 1/2H{sub 2}, where B is under the form of nanoparticles; - Purifying the suspension of boron nanoparticles in water, from lithium hydroxide, by successive membrane filtrations; - Evaporating the purified suspension, in order to get a powder of nanoparticles. The obtained nanoparticles have size around 300 nm, with a high porosity, of about 50%. This particle size is equivalent to about 150 nm massive particles. The nanoparticles are then put into suspension in a specific solvent, in order to perform deposition on metallic surfaces, by electrophoretic method. The solvent is chosen so that it is not electrolysed even under voltages of several tens of volts. An acid is dissolved into the solvent, so that the nanoparticles are positively charged. Deposition is performed on the cathode within about 10 min. The cathode could be an aluminium plate, or a nickel coated aluminium plate. Homogeneous deposition may also be performed on complex shapes, like grids in a Multigrid detector. A large volume of pieces, can be coated with a Boron-10 film in a few hours. The thickness of the layer can be adjusted according to the required neutron detection characteristics, between 0,5 to 5 μm (equivalent to 0,25 to 2.5 massive layer). The thickness is homogenous within a ±20% range. The layer is an almost pure {sup 10}B layer (90%). The ratio of the amount of deposed boron 10 to the amount of raw boron 10 used is more than 80%. Hence, another advantage of this technique is that Boron 10 will be deposited on the cathodes only, without loss of this expensive material. 2 grids of a Multi-Grid detector have been coated with pure Boron by using this technique. The film structure has been analysed with a microscope and the detector has been tested on a monochromatic neutron beam line. Preliminary results will be shown. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Policy Act of 1969, as amended (NEPA; 42 U.S.C. 4321 et seq.), Council on Environmental Quality NEPA... Base Library, 95 SPTG/SVMG, 5 West Yeager Blvd., Building 2665, Edwards AFB, CA 93524-1295. Kern County Library, Boron Branch, 26967 20 Mule Team Road, Boron, CA 93516. Kern County Library, California City...
Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona
2016-03-01
Sugar alcohols, such as sorbitol, are commonly used as a replacement for sucrose in the food industry, applied as starting material for vitamin C synthesis, and involved as one of the causative factors in diabetic complications. Therefore, their detection and quantification in aqueous solution are necessary. The reversible covalent interactions between boronic acids and diols are the basis of efficient methods for the detection of saccharides. Herein, we report a new internal charge transfer (ICT) fluorene-based fluorescent boronic acid sensor (1) 2-[(9,9-dimethyl-9H-fluoren-2-yl-amino)methyl] phenyl boronic acid that shows significant fluorescence changes upon addition of saccharides. The boronic acid has high affinity (K a = 1107.9 M(-1)) and selectivity for sorbitol at pH = 8.31. It showed a linear response toward sorbitol in the concentration range from 1.0 × 10(-5) to 6.0 × 10(-4) mol L(-1) with the detection limit of 7.04 × 10(-6) mol L(-1). Sensor 1 was used to detect sorbitol in real samples with good recovery.
ANALYSIS OF BORON DILUTION TRANSIENTS IN PWRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DIAMOND,D.J.BROMLEY,B.P.ARONSON,A.L.
2004-02-04
A study has been carried out with PARCS/RELAP5 to understand the consequences of hypothetical boron dilution events in pressurized water reactors. The scenarios of concern start with a small-break loss-of-coolant accident. If the event leads to boiling in the core and then the loss of natural circulation, a boron-free condensate can accumulate in the cold leg. The dilution event happens when natural circulation is re-established or a reactor coolant pump (RCP) is restarted in violation of operating procedures. This event is of particular concern in B&W reactors with a lowered-loop design and is a Generic Safety Issue for the U.S.more » Nuclear Regulatory Commission. The results of calculations with the reestablishment of natural circulation show that there is no unacceptable fuel damage. This is determined by calculating the maximum fuel pellet enthalpy, based on the three-dimensional model, and comparing it with the criterion for damage. The calculation is based on a model of a B&W reactor at beginning of the fuel cycle. If an RCP is restarted, unacceptable fuel damage may be possible in plants with sufficiently large volumes of boron-free condensate in the cold leg.« less
Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.
Xu, Xiaoji G; Jiang, Jian-Hua; Gilburd, Leonid; Rensing, Rachel G; Burch, Kenneth S; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C
2014-11-25
Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polaritonic coupling between graphene SPPs and boron nitride nanotube (BNNT) SPhPs. Infrared scattering type scanning near-field optical microscopy is used to obtain spatial distribution of the two types of polaritons at the nanoscale. The observation suggests that those polaritons interact at the nanoscale in a one-dimensional/two-dimensional (1D/2D) geometry, exchanging energy in a nonplanar configuration at the nanoscale. Control of the polaritonic interaction is achieved by adjustment of the graphene Fermi level through voltage gating. Our observation suggests that boron nitride nanotubes and graphene can interact at mid-infrared frequencies and coherently exchange their energies at the nanoscale through the overlap of mutual electric near field of surface phonon polaritons and surface plasmon polaritons. Such interaction enables the design of nano-optical devices based on BNNT-graphene polaritonics in the mid-infrared range.
Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc; Singaram, Bakthan
2017-11-22
To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen-HPTS (4,4'-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH 4 ) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4-25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H 2 O 2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4'-o-BBV-HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc.
NASA Astrophysics Data System (ADS)
Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas
2017-08-01
The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.
Achilli, Cesare; Grandi, Stefania; Ciana, Annarita; Guidetti, Gianni F; Malara, Alessandro; Abbonante, Vittorio; Cansolino, Laura; Tomasi, Corrado; Balduini, Alessandra; Fagnoni, Maurizio; Merli, Daniele; Mustarelli, Piercarlo; Canobbio, Ilaria; Balduini, Cesare; Minetti, Giampaolo
2014-04-01
Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies. © 2014.
Microstructural investigation of hardfacing weld deposit obtained from CrB paste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kr. Ray, S.; Sarker, B.; Kr. Bhattacharya, S.
Hardfacing weld deposits are used as a protective layer on engineering components and tools subjected to different modes of wear. Cheaper iron-based alloys with chromium and carbon or relatively expensive alloys with some niobium or titanium have long been used as standard hardfacing materials. In recent years boron has substituted the costlier alloying elements and the newly developed Fe-B-C alloys have shown encouraging results. The microstructure of the welded hardfacing deposit is one of the most important factors that determine its performance. The amount, size, distribution and hardness of the individual constituents play important roles in imparting the desired properties.more » Recently Colomonoy sweat on paste containing fine CrB particles (of about 12 {mu}m average size) suspended in an organic binder has been marketed as the new generation hardfacing material. A thin coating of the paste is applied on the component surface, allowed to dry and welded. The welded deposit has been found to offer good wear resistance in many industrial applications. This paper reports the microstructural investigation of the welded deposit obtained from this paste.« less
Kaniowski, Damian; Ebenryter-Olbińska, Katarzyna; Sobczak, Milena; Wojtczak, Błażej; Janczak, Sławomir; Leśnikowski, Zbigniew J; Nawrot, Barbara
2017-08-23
Boron cluster-modified therapeutic nucleic acids with improved properties are of interest in gene therapy and in cancer boron neutron capture therapy (BNCT). High metallacarborane-loaded antisense oligonucleotides (ASOs) targeting epidermal growth factor receptor (EGFR) were synthesized through post-synthetic Cu (I)-assisted "click" conjugation of alkyne-modified DNA-oligonucleotides with a boron cluster alkyl azide component. The obtained oligomers exhibited increased lipophilicity compared to their non-modified precursors, while their binding affinity to complementary DNA and RNA strands was slightly decreased. Multiple metallacarborane residues present in the oligonucleotide chain, each containing 18 B-H groups, enabled the use of IR spectroscopy as a convenient analytical method for these oligomers based on the diagnostic B-H signal at 2400-2650 cm -1 . The silencing activity of boron cluster-modified ASOs used at higher concentrations was similar to that of unmodified oligonucleotides. The screened ASOs, when used in low concentrations (up to 50 μM), exhibited pro-oxidative properties by inducing ROS production and an increase in mitochondrial activities in HeLa cells. In contrast, when used at higher concentrations, the ASOs exhibited anti-oxidative properties by lowering ROS species levels. In the HeLa cells (tested in the MTT assay) treated (without lipofectamine) or transfected with the screened compounds, the mitochondrial activity remained equal to the control level or only slightly changed (±30%). These findings may be useful in the design of dual-action boron cluster-modified therapeutic nucleic acids with combined antisense and anti-oxidant properties.
Boron removal by electrocoagulation and recovery.
Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed
2014-03-15
This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Direct current sputtering of boron from boron/boron mixtures
Timberlake, J.R.; Manos, D.; Nartowitz, E.
1994-12-13
A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.
Zheng, Jiaxin; Song, Wei; Wang, Lu; Lu, Jing; Luo, Guangfu; Zhou, Jing; Qin, Rui; Li, Hong; Gao, Zhengxiang; Lai, Lin; Li, Guangping; Mei, Wai Ning
2009-11-01
We study the adsorptions of nucleic acid bases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) and four amino acids phenylalanine, tyrosine, tryptophan, alanine on the single-walled carbon nanotubes (SWCNTs) and boron nitride nanotubes (SWBNNTs) by using density functional theory. We find that the aromatic content plays a critical role in the adsorption. The adsorptions of nucleic acid bases and amino acids on the (7, 7) SWBNNT are stronger than those on the (7, 7) SWCNT. Oxidative treatment of SWCNTs favors the adsorption of biomolecules on nanotubes.
Carbon or boron modified titanium silicide
Thom, A.J.; Akinc, M.
1998-07-14
A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.
Carbon or boron modified titanium silicide
Thom, A.J.; Akinc, M.
1997-12-02
A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.
Carbon or boron modified titanium silicide
Thom, Andrew J.; Akinc, Mufit
1996-12-03
A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.
Carbon or boron modified titanium silicide
Thom, Andrew J.; Akinc, Mufit
1997-12-02
A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.
Carbon or boron modified titanium silicide
Thom, A.J.; Akinc, M.
1996-12-03
A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.
Carbon or boron modified titanium silicide
Thom, Andrew J.; Akinc, Mufit
1998-07-14
A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.
Catão, Anderson José Lopes; López-Castillo, Alejandro
2017-04-01
In this work, the spectroscopic information, stability and aromaticity of the boron-nitrogen azulene and naphthalene molecules are provided by the use of CC2 (geometry optimization, dipole moment, UV-vis spectrum calculations) and DFT (vibrational spectrum and NMR calculations) methodologies. One isomer of the investigated boron-nitrogen naphthalene (boroazanaphthalene) and two isomers of boron-nitrogen azulene, 1,3,4,6,8-pentaaza-2,3a,5,7,8a-pentaboraazulene (BN-azulene) and 2,3a,5,7,8a-pentaaza-1,3,4,6,8- pentaboraazulene (NB-azulene), are stable systems. However, these molecules have different properties, i.e., different stability, dipole moment, and aromaticity based on the NICS approach. BN-naphthalene has a high dipole moment magnitude showing high polar character, while naphthalene is apolar. BN- and NB-azulene are weakly polar, while ordinary azulene is highly polar in character. Also, substitution of C atoms by B and N atoms decreases the aromaticity. In the case of NB-azulene, the seven-membered ring has anti-aromaticity behavior while both rings of BN-azulene exhibit aromaticity. We expect that the new theoretical data provided in this work will be useful in identifying and characterizing experimentally the compounds investigated, and in helping our understanding of the chemistry of boron-nitrogen molecules. Graphical abstract Boron-nitrogen alternating analogs of azulene. Spectral distinction between isomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinin, Pavel V.; Burgess, Katherine; Jia, Ruth
Dense BC{sub x} phases with high boron concentration are predicted to be metastable, superhard, and conductors or superconductors depending on boron concentration. However, up to this point, diamond-like boron rich carbides BC{sub x} (dl-BC{sub x}) phases have been thought obtainable only through high pressure and high temperature treatment, necessitating small specimen volume. Here, we use electron energy loss spectroscopy combined with transmission electron microscopy, Raman spectroscopy, surface Brillouin scattering, laser ultrasonics (LU) technique, and analysis of elastic properties to demonstrate that low pressure synthesis (chemical vapor deposition) of BC{sub x} phases may also lead to the creation of diamond-like boronmore » rich carbides. The elastic properties of the dl-BC{sub x} phases depend on the carbon sp²versus sp³ content, which decreases with increasing boron concentration, while the boron bonds determine the shape of the Raman spectra of the dl-BC{sub x} after high pressure-high temperature treatment. Using the estimation of the density value based on the sp³ fraction, the shear modulus μ of dl-BC₄, containing 10% carbon atoms with sp³ bonds, and dl-B₃C₂, containing 38% carbon atoms with sp³ bonds, were found to be μ = 19.3 GPa and μ = 170 GPa, respectively. The presented experimental data also imply that boron atoms lead to a creation of sp³ bonds during the deposition processes.« less
Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation
NASA Technical Reports Server (NTRS)
Whitney, R. Roy (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin (Inventor)
2015-01-01
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.
NASA Technical Reports Server (NTRS)
Chu, T. L.
1975-01-01
The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.
NASA Astrophysics Data System (ADS)
Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.
2018-01-01
Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.
NASA Astrophysics Data System (ADS)
Singh, Paviter; Kaur, Gurpreet; Singh, Kulwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Manjot; Krishnan, Unni; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay
2018-02-01
Boron carbide: A traditional ceramic material shows unique properties when explored in nano-range. Specially designed boron-based nanocomposite has been synthesized by reflux method. The addition of SnO2 in base matrix increases the defect states in boron carbide and shows unique catalytic properties. The calculated texture coefficient and Nelson-Riley factor show that the synthesized nanocomposite has large number of defect states. Also this composite is explored for the first time for catalysis degradation of industrial used dyes. The degradation analysis of industrial pollutants such as Novacron red Huntsman (NRH) and methylene blue (MB) dye reveals that the composite is an efficient catalyst. Degradation study shows that 1 g/L catalyst concentration of B4C/SnO2 degrades NRH and MB dye up to approximately 97.38 and 79.41%, respectively, in 20 min under sunlight irradiation. This water-insoluble catalyst can be recovered and reused.
Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai
We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathwaysmore » are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.« less
NASA Astrophysics Data System (ADS)
Withanage, Wenura K.; Penmatsa, Sashank V.; Acharya, Narendra; Melbourne, Thomas; Cunnane, D.; Karasik, B. S.; Xi, X. X.
2018-07-01
We report on the growth of high quality MgB2 thin films on silicon and silicon-on-insulator substrates by hybrid physical chemical vapor deposition. A boron buffer layer was deposited on all sides of the Si substrate to prevent the reaction of Mg vapor and Si. Ar ion milling at a low angle of 1° was used to reduce the roughness of the boron buffer layer before the MgB2 growth. An Ar ion milling at low angle of 1° was also applied to the MgB2 surface to reduce its roughness. The resultant MgB2 films showed excellent superconducting properties and a smooth surface. The process produces thin MgB2 films suitable for waveguide-based superconducting hot electron bolometers and other MgB2-based electronic devices.
Covalent docking of selected boron-based serine beta-lactamase inhibitors
NASA Astrophysics Data System (ADS)
Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni
2015-05-01
AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.
Takahashi, Lauren; Takahashi, Keisuke
2017-03-27
An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farías, R. O.; Trivillin, V. A.; Portu, A. M.
Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Twomore » kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the estimated value in the explanted healthy lung. The proposed preclinical animal model allowed for the study of the explanted lung. As expected, the boron concentration values fell as a result of the application of the preservation protocol required to preserve the lung function. The distribution of the boron concentration retention factor was obtained for healthy lung, with a mean value of 0.46 ± 0.14 consistent with that reported for metastatic colon carcinoma model in rat perfused lung. Considering the human lung model and suitable tumor control probability for lung cancer, a promising average fraction of controlled lesions higher than 85% was obtained even for a low tumor-to-normal boron concentration ratio of 2. Conclusions: This work reports for the first time data supporting the validity of the ovine model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Collectively, the results and analysis presented would strongly suggest that ex situ whole lung BNCT irradiation is a feasible and highly promising technique that could greatly contribute to the treatment of metastatic lung disease in those patients without extrapulmonary spread, increasing not only the expected overall survival but also the resulting quality of life.« less
Farías, R O; Garabalino, M A; Ferraris, S; Santa María, J; Rovati, O; Lange, F; Trivillin, V A; Monti Hughes, A; Pozzi, E C C; Thorp, S I; Curotto, P; Miller, M E; Santa Cruz, G A; Bortolussi, S; Altieri, S; Portu, A M; Saint Martin, G; Schwint, A E; González, S J
2015-07-01
Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (l)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the estimated value in the explanted healthy lung. The proposed preclinical animal model allowed for the study of the explanted lung. As expected, the boron concentration values fell as a result of the application of the preservation protocol required to preserve the lung function. The distribution of the boron concentration retention factor was obtained for healthy lung, with a mean value of 0.46 ± 0.14 consistent with that reported for metastatic colon carcinoma model in rat perfused lung. Considering the human lung model and suitable tumor control probability for lung cancer, a promising average fraction of controlled lesions higher than 85% was obtained even for a low tumor-to-normal boron concentration ratio of 2. This work reports for the first time data supporting the validity of the ovine model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Collectively, the results and analysis presented would strongly suggest that ex situ whole lung BNCT irradiation is a feasible and highly promising technique that could greatly contribute to the treatment of metastatic lung disease in those patients without extrapulmonary spread, increasing not only the expected overall survival but also the resulting quality of life.
In vivo and in vitro effects of boron and boronated compounds.
Benderdour, M; Bui-Van, T; Dicko, A; Belleville, F
1998-03-01
Boron is ubiquitously present in soils and water. Associated with pectin it is essential for vascular plants as a component of cell walls, and it stabilizes cell membranes. It is required for the growth of pollen tubes and is involved in membrane transport, stimulating H(+)-pumping ATPase activity and K+ uptake. However, a high boron concentration in the soils is toxic to plants and some boronated derivatives are used as herbicides. An absolute requirement for boron has not been definitively demonstrated in animals and humans. However, experiments with boron supplementation or deprivation show that boron is involved in calcium and bone metabolism, and its effects are more marked when other nutrients (cholecalciferol, magnesium) are deficient. Boron supplementation increases the serum concentration of 17 beta-estradiol and testosterone but boron excess has toxic effects on reproductive function. Boron may be involved in cerebral function via its effects on the transport across membranes. It affects the synthesis of the extracellular matrix and is beneficial in wound healing. Usual dietary boron consumption in humans is 1-2 mg/day for adults. As boron has been shown to have biological activity, research into the chemistry of boronated compounds has increased. Boronated compounds have been shown to be potent anti-osteoporotic, anti-inflammatory, hypolipemic, anti-coagulant and anti-neoplastic agents both in vitro and in vivo in animals.
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-01-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-10-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.
Horkay, F.; Cho, S. H.; Tathireddy, P.; Rieth, L.; Solzbacher, F.; Magda, J.
2011-01-01
Because the boronic acid moiety reversibly binds to sugar molecules and has low cytotoxicity, boronic acid-containing hydrogels are being used in a variety of implantable glucose sensors under development, including sensors based on optical, fluorescence, and swelling pressure measurements. However, some method of glucose selectivity enhancement is often necessary, because isolated boronic acid molecules have a binding constant with glucose that is some forty times smaller than their binding constant with fructose, the second most abundant sugar in the human body. In many cases, glucose selectivity enhancement is obtained by incorporating pendant tertiary amines into the hydrogel network, thereby giving rise to a hydrogel that is zwitterionic at physiological pH. However, the mechanism by which incorporation of tertiary amines confers selectivity enhancement is poorly understood. In order to clarify this mechanism, we use the osmotic deswelling technique to compare the thermodynamic interactions of glucose and fructose with a zwitterionic smart hydrogel containing boronic acid moieties. We also investigate the change in the structure of the hydrogel that occurs when it binds to glucose or to fructose using the technique of small angle neutron scattering. PMID:22190765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles studymore » based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. In conclusion, this study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.« less
Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav; ...
2016-11-11
Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles studymore » based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. In conclusion, this study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials.« less
Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation
Whitney, R Roy; Jordan, Kevin; Smith, Michael W
2015-03-24
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.
Efficient boron nitride nanotube formation via combined laser-gas flow levitation
Whitney, R. Roy; Jordan, Kevin; Smith, Michael
2014-03-18
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.
Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation
NASA Technical Reports Server (NTRS)
Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)
2014-01-01
A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).
Direct current sputtering of boron from boron/coron mixtures
Timberlake, John R.; Manos, Dennis; Nartowitz, Ed
1994-01-01
A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.
Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E
2016-11-05
Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.
Boron carbide nanowires: Synthesis and characterization
NASA Astrophysics Data System (ADS)
Guan, Zhe
Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a solid orthorhombic phase catalyst. The status of a catalyst depends mainly on temperature. (3) Observation of "invisible" defects in boron carbide nanowires. The planar defects can only be seen under a transmission electron microscope when the electron beam is within the defect plane. Furthermore, there are only two directions within that plane, along which the orientation of defect can be told and clear TEM results can be taken. The challenge is that the TEM sample holder is limited to tilt +/-30° in each direction. A theory was developed based on lattice calculation and simulation to tell the orientation of defect even not from those unique directions. Furthermore, it was tested by experimental data and proved to be successful. (4) Preliminary exploration of structure-transport property of as-synthesized boron carbide nanowires. In collaboration with experts in the field of thermal science, thermal transport properties of a few boron carbide nanowires were studied. All measured nanowires were either pre-characterized or post-characterized by TEM to reveal their structural information such as diameter, fault orientations and chemical composition. The obtained structural information was then analyzed together with measured thermal conductivity to establish a structure-transport property relation. Current data indicate that TF ones have a lower thermal conductivity, which is also diameter-dependent.
Investigating controls on boron isotope ratios in shallow marine carbonates
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.
2017-01-01
The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives. In addition, variability in δ11B based pH estimates provides additional support for the idea that photosynthetic CO2 uptake plays a significant role in driving carbonate precipitation in a wide range of shallow water carbonates.
Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules.
Xu, Liang; Zhang, Shuai; Li, Pengfei
2015-12-21
In the context of modular and rapid construction of molecular diversity and complexity for applications in organic synthesis, biomedical and materials sciences, a generally useful strategy has emerged based on boron-selective chemical transformations. In the last decade, these types of reactions have evolved from proof-of-concept to some advanced applications in the efficient preparation of complex natural products and even automated precise manufacturing on the molecular level. These advances have shown the great potential of boron-selective reactions in simplifying synthetic design and experimental operations, and should inspire new developments in related chemical and technological areas. This tutorial review will highlight the original contributions and representative advances in this emerging field.
Impact resistant boron/aluminum composites for large fan blades
NASA Technical Reports Server (NTRS)
Oller, T. L.; Salemme, C. T.; Bowden, J. H.; Doble, G. S.; Melnyk, P.
1977-01-01
Blade-like specimens were subjected to static ballistic impact testing to determine their relative FOD impact resistance levels. It was determined that a plus or minus 15 deg layup exhibited good impact resistance. The design of a large solid boron/aluminum fan blade was conducted based on the FOD test results. The CF6 fan blade was used as a baseline for these design studies. The solid boron/aluminum fan blade design was used to fabricate two blades. This effort enabled the assessment of the scale up of existing blade manufacturing details for the fabrication of a large B/Al fan blade. Existing CF6 fan blade tooling was modified for use in fabricating these blades.
Identification of a Novel System for Boron Transport: Atr1 Is a Main Boron Exporter in Yeast▿ †
Kaya, Alaattin; Karakaya, Huseyin C.; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Koc, Ahmet
2009-01-01
Boron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1Δ mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1Δ cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1Δ cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance. PMID:19414602
New Icosahedral Boron Carbide Semiconductors
NASA Astrophysics Data System (ADS)
Echeverria Mora, Elena Maria
Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto-resistance, however, these results suggest practical device applications, especially as such effects are manifested in nanoscale films with facile fabrication. Overall, the greater negative magneto-resistance, when undoped with an aromatic, suggests a material with more defects and is consistent with a shorter carrier lifetime.
Spatial Burnout in Water Reactors with Nonuniform Startup Distributions of Uranium and Boron
NASA Technical Reports Server (NTRS)
Fox, Thomas A.; Bogart, Donald
1955-01-01
Spatial burnout calculations have been made of two types of water moderated cylindrical reactor using boron as a burnable poison to increase reactor life. Specific reactors studied were a version of the Submarine Advanced Reactor (sAR) and a supercritical water reactor (SCW) . Burnout characteristics such as reactivity excursion, neutron-flux and heat-generation distributions, and uranium and boron distributions have been determined for core lives corresponding to a burnup of approximately 7 kilograms of fully enriched uranium. All reactivity calculations have been based on the actual nonuniform distribution of absorbers existing during intervals of core life. Spatial burnout of uranium and boron and spatial build-up of fission products and equilibrium xenon have been- considered. Calculations were performed on the NACA nuclear reactor simulator using two-group diff'usion theory. The following reactor burnout characteristics have been demonstrated: 1. A significantly lower excursion in reactivity during core life may be obtained by nonuniform rather than uniform startup distribution of uranium. Results for SCW with uranium distributed to provide constant radial heat generation and a core life corresponding to a uranium burnup of 7 kilograms indicated a maximum excursion in reactivity of 2.5 percent. This compared to a maximum excursion of 4.2 percent obtained for the same core life when w'anium was uniformly distributed at startup. Boron was incorporated uniformly in these cores at startup. 2. It is possible to approach constant radial heat generation during the life of a cylindrical core by means of startup nonuniform radial and axial distributions of uranium and boron. Results for SCW with nonuniform radial distribution of uranium to provide constant radial heat generation at startup and with boron for longevity indicate relatively small departures from the initially constant radial heat generation distribution during core life. Results for SAR with a sinusoidal distribution rather than uniform axial distributions of boron indicate significant improvements in axial heat generation distribution during the greater part of core life. 3. Uranium investments for cylindrical reactors with nonuniform radial uranium distributions which provide constant radial heat generation per unit core volume are somewhat higher than for reactors with uniform uranium concentration at startup. On the other hand, uranium investments for reactors with axial boron distributions which approach constant axial heat generation are somewhat smaller than for reactors with uniform boron distributions at startup.
NASA Astrophysics Data System (ADS)
Harper, D. T.; Penman, D. E.; Hoenisch, B.; Zachos, J. C.
2014-12-01
Boron isotopes (δ11B) and boron/calcium ratios (B/Ca) in tests of planktic foraminifera are controlled by equilibrium reactions between boron and carbon species in seawater, and thus represent important proxies of past marine carbonate chemistry. Indeed, the recent application of these boron-based proxies to fossil shells of planktic foraminifera from cores spanning the Paleocene-Eocene Thermal Maximum (PETM; 56Ma, an abrupt global warming and ocean acidification event) reveal a decline of ~0.3 in the pH of the mixed-layer [1], an anomaly that is well within the range of estimates based on the observed shoaling of the carbonate compensation depth (CCD) [2, and references therein]. The PETM occurred superimposed on a long-term warming trend that initiated in the Late Paleocene and continued into the Early Eocene (LPEE; 53-59Ma). The magnitude of warming [3] and deepening of the CCD [4] indicate that the LPEE was driven by a rise in pCO2 nearly equivalent to that of the PETM [5]. Here we extend the PETM record of boron-based proxies at IODP Site 1209 across the LPEE, in conjunction with stable carbon and oxygen isotopes in planktic foraminifera, in order to better constrain the long-term changes in pH and carbonate chemistry that accompanied the suggested rise in atmospheric CO2. The 20kyr resolution B/Ca record shows a long-term decline of ~25% during the LPEE, as well as subtle 400kyr cycles associated with eccentricity that mirror those observed in δ13C, and thus might reflect on changes in pH. The lower resolution δ11B record exhibits little change during the Late Paleocene before decreasing step-wise to lower values following the PETM, indicating that either pH in the upper ocean did not change significantly prior to the PETM, despite warming and inferred pCO2 increase, or changes in δ11Bseawater compensated for pH driven changes. As verification of these observations at Site 1209, complementary B/Ca and δ11B records are being generated for Atlantic IODP Sites 1262 and 1263. [1] Penman et al. 2014. Paleoceanography. [2] Palike et al. 2012. Nature. [3] Zachos et al. 2001. Science. [4] Leon-Rodriguez and Dickens 2010. Palaeogeogrphy, Palaeoclimatology, and Palaeoecology. [5] Komar, Zeebe and Dickens 2013. Paleoceanography.
New Carbonate Standard Reference Materials for Boron Isotope Geochemistry
NASA Astrophysics Data System (ADS)
Stewart, J.; Christopher, S. J.; Day, R. D.
2015-12-01
The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and Geoanalytical Research, 2004. 28(3): p. 411-416.
Experimental Evaluation of pH and Temperature Effects on the Adsorption of Boron onto Clay Minerals
NASA Astrophysics Data System (ADS)
Hoenisch, B.; Marone, D.; Ruprecht, J.
2017-12-01
Modeling the secular evolution of the concentration [B] and isotopic composition (δ11B) of boron in seawater is hampered by limited constraints on the relative sources (i.e. riverine input of weathering products, hydrothermal convection at mid-ocean ridges and fluids expelled from accretionary prisms) and sinks (i.e. alteration of the oceanic crust, adsorption onto clays, and co-precipitation in carbonates) of boron to and from the ocean. Clays remove approximately 28% of total boron from the ocean and quantification of this sink thus represents a major factor for reconstructing the secular evolution of seawater [B] and δ11B over the Cenozoic. However, the relative strength of the clay sink could have been much smaller in the early Cenozoic compared to today, because borate ion as the charged species is preferentially adsorbed onto detrital clays over boric acid, and because the relative abundance of borate in seawater should have been lower under the more acidic conditions of the early Cenozoic. In addition, different clay minerals tend to fractionate boron isotopes differentially, and the relative composition of clay minerals has varied in the past with the dominant climate and weathering patterns on the continents. We have conducted a range of pH (7.5-8.4) and temperature (3-32°C) experiments with four clay minerals (Kaolinite, Illite, Montmorillonite and Chlorite), to build on previously published but limited experimental data. Similar to a previous study and as expected based on the relative abundance of borate ion in seawater, boron adsorption onto these clays increases at higher pH and lower temperatures, but whereas Montmorillonite and Illite absorb similar quantities of boron, Kaolinite is most and Chlorite least efficient in this process. We are now in the process of characterizing the boron isotope fractionation associated with these adsorption experiments.
Pressure-dependent boron isotopic fractionation observed by column chromatography
NASA Astrophysics Data System (ADS)
Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.
2007-12-01
Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.
Ganesh, Venkataraman; Odachowski, Marcin
2017-01-01
Abstract The enantiospecific coupling of secondary and tertiary boronic esters to aromatics has been investigated. Using p‐lithiated phenylacetylenes and a range of boronic esters coupling has been achieved by the addition of N‐bromosuccinimide (NBS). The alkyne functionality of the intermediate boronate complex reacts with NBS triggering the 1,2‐migration of the group on boron to carbon giving a dearomatized bromoallene intermediate. At this point elimination and rearomatization occurs with neopentyl boronic esters, giving the coupled products. However, using pinacol boronic esters, the boron moiety migrates to the adjacent carbon resulting in formation of ortho boron‐incorporated coupled products. The synthetic utility of the boron incorporated product has been demonstrated by orthogonal transformation of both the alkyne and boronic ester functionalities. PMID:28618129
Boron content and sources in Tertiary aquifers in the Sultanate of Oman
NASA Astrophysics Data System (ADS)
Moraetis, Daniel; Lamki, Mohamed Al; Muhammad, Dawood; Yaroubi, Saif; Batashi, Hamad Al; Pracejus, Bernhard
2017-04-01
The boron (B) content of relatively shallow groundwaters in arid areas is high due to extreme evaporation which precipitates several salts with subsequent boron accumulation originating from rocks dissolution and/or rainwater. In deeper aquifers, where there is no groundwater-surface connection, other sources of boron may affect the water quality. The present study investigates the boron origin observed in 197 wells completed within the units of Umm Er Radhuma (UeR), Rus, Dammam and Fars (from older to younger geological units) which all belong to the Tertiary units of the interior of Oman. The acquired chemical data include major ions (cations and anions), Rare Earth Elements (REE) along with B isotopes (10 and 11) and Sr isotopes (86 and 87). In addition, leaching tests were performed in selected samples to validate the release of B in distilled water. The water samples were grouped based on B concentration of less than 5 mg/l, 5 to 15 mg/l and extreme values of higher than 15 mg/l. The Fars and UeR groundwater samples showed the most extreme boron content (higher than 15 mg/l) yet the former is the shallower and younger unit and the latter is the deeper and older unit. The Fars water of high boron content (higher than 15 mg/l) shows very high content of magnesium and calcium as well as low concentration of Sr. Furthermore, the magnesium and calcium are also high in UeR, while Sr concentration is much higher in UeR compared to Fars. The UeR water with extreme boron content appears in the field of diagenetic water in a diagram of δ11BNIST951 [‰] versus 1/B, along with Sr isotopes ratio and europium (Eu) positive anomaly, while Fars waters appear in a mixing zone of marine water with infiltrated rainwater. The regression analysis of sodium and chloride showed that concentrations of boron up to 10 mg/l can be correlated to halite dissolution in infiltrated rainwater in all units. The laboratory leaching tests verified the rocks capability to release boron up to 7 mg/l with a low water/solid ratio (low porosity rocks). Thus, the lowest boron content (up to 5 mg/l) is correlated to the dissolution of minerals within the Tertiary units. Whilst the samples containing 5 to 15 mg/l of B could correspond to lower water to solid ratio aquifer and/or mixing of low and high boron waters (rainwater and diagenetic or marine water). Finally, B isotopes along the REE analysis are considered as better indices of groundwater origin compared to Sr isotopes ratio especially in the case of diagenetic water identification.
On the Role of Boron in CdTe and CdZnTe Crystals
NASA Astrophysics Data System (ADS)
Pavesi, M.; Marchini, L.; Zha, M.; Zappettini, A.; Zanichelli, M.; Manfredi, M.
2011-10-01
It is well known that group III elements act as donors if they play a substitutional role at the metallic site in II-tellurides; nevertheless, several studies report both on the creation of complexes with vacancies, named A-centers, and on the involvement in self-compensation mechanisms, especially for indium. The boron concentration in II-tellurides is negligible, and its contribution to transport mechanisms has not been studied yet. For the last few years the authors have been developing a new technique to grow CdZnTe by the vertical Bridgman technique, taking advantage of encapsulation by means of boron oxide. In this way, crystals characterized by large single grains, low etch pit density, and high resistivity have been obtained. Recently, x-ray detectors with state-of-the-art performance have been produced from such crystals. Boron contamination, as a consequence of this growth method, is quite low but at least one order of magnitude above values obtained with other growth techniques. Besides being a low-cost technique which is also suitable for large-scale mass production, the encapsulated vertical Bridgman technique is quite useful to prevent dislocations, grain boundaries, and stacking faults; for these reasons, careful characterization was performed to understand the effect of boron both on the electrical properties and on the spectroscopic performance of the final crystals. Our characterization is mainly based on low-temperature photoluminescence in addition to electrical current-voltage measurements, photostimulated current, and x-ray spectroscopy. The results indicate that boron behaves like other group III elements; in fact, boron forms a complex that does not affect the good performance of our x-ray detectors, even if it shows some properties which are typical of A-centers.
Volovetsky, Arthur B.; Balalaeva, Irina V.; Dudenkova, Varvara V.; Shilyagina, Natalia Yu.; Feofanov, Аlexey V.; Efremenko, Anastasija V.; Grin, Mikhail A.; Mironov, Andrey F.; Bregadze, Vladimir I.; Maslennikova, Anna V.
2017-01-01
The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e6-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e6-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal’s weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman’s rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data. PMID:29182594
Volovetsky, Arthur B; Sukhov, Vladimir S; Balalaeva, Irina V; Dudenkova, Varvara V; Shilyagina, Natalia Yu; Feofanov, Аlexey V; Efremenko, Anastasija V; Grin, Mikhail A; Mironov, Andrey F; Sivaev, Igor B; Bregadze, Vladimir I; Maslennikova, Anna V
2017-11-28
The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10 B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e ₆-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e ₆-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal's weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman's rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data.
In vitro study of improved wound-healing effect of bioactive borate-based glass nano-/micro-fibers.
Yang, Qingbo; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa
2015-10-01
Because of the promising wound-healing capability, bioactive glasses have been considered as one of the next generation hard- and soft-tissue regeneration materials. The lack of understanding of the substantial mechanisms, however, indicates the need for further study on cell-glass interactions to better interpret the rehabilitation capability. In the present work, three bioactive glass nano-/micro-fibers, silicate-based 45S5, borate-based 13-93B3 and 1605 (additionally doped with copper oxide and zinc oxide), were firstly compared for their in vitro soaking/conversion rate. The results of elemental monitoring and electron microscopic characterization demonstrated that quicker ion releasing and glass conversion occurred in borate-based fibers than that of silicate-based one. This result was also reflected by the formation speed of hydroxyapatite (HA). This process was further correlated with original boron content and surrounding rheological condition. We showed that an optimal fiber pre-soaking time (or an ideal dynamic flow rate) should exist to stimulate the best cell proliferation and migration ability. Moreover, 13-93B3 and 1605 fibers showed different glass conversion and biocompatibility properties as well, indicating that trace amount variation in composition can also influence fiber's bioactivity. In sum, our in vitro rheological module closely simulated in vivo niche environment and proved a potentially improved wound-healing effect by borate-based glass fibers, and the results shall cast light on future improvement in bioactive glass fabrication. Copyright © 2015 Elsevier B.V. All rights reserved.
Methods of producing continuous boron carbide fibers
Garnier, John E.; Griffith, George W.
2015-12-01
Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.
In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.
1999-06-06
Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We presentmore » results from an investigation of boron uptake in vivo by the synovium.« less
Watabe, Tadashi; Hanaoka, Kohei; Naka, Sadahiro; Kanai, Yasukazu; Ikeda, Hayato; Aoki, Masanao; Shimosegawa, Eku; Kirihata, Mitsunori; Hatazawa, Jun
2017-07-01
The purpose of this study was to establish a practical method to estimate the absolute boron concentrations in the tissues based on the standardized uptake values (SUVs) after administration of 4-borono-phenylalanine (BPA) using 4-borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) PET. Rat xenograft models of C6 glioma (n = 7, body weight 241 ± 28.0 g) were used for the study. PET was performed 60 min after intravenous injection of 18 F-FBPA (30.5 ± 0.7 MBq). After the PET scanning, BPA-fructose (167.3 ± 18.65 mg/kg) was administered by slow intravenous injection to the same subjects. The rats were killed 60 min after the BPA injection and tissue samples were collected from the major organs and tumors. The absolute boron concentrations (unit: ppm) in the samples were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The boron concentrations in the tissues/tumors were also estimated from the 18 F-FBPA PET images using the following formula: estimated absolute boron concentration (ppm) = 0.0478 × [BPA dose (mg/kg)] × SUV. The measured absolute boron concentrations (mBC) by ICP-OES and the estimated boron concentrations (eBC) from the PET images were compared. The percent difference between the mBC and eBC calculated based on the SUV max was -5.2 ± 21.1% for the blood, -9.4 ± 22.3% for the brain, 1.6 ± 21.3% for the liver, -14.3 ± 16.8% for the spleen, -9.5 ± 27.5% for the pancreas, and 3.4 ± 43.2% for the tumor. Relatively large underestimation was observed for the lung (-48.4 ± 16.2%), small intestine (-37.8 ± 19.3%) and large intestine (-33.9 ± 11.0%), due to the partial volume effect arising from the air or feces contained in these organs. In contrast, relatively large overestimation was observed for the kidney (34.3 ± 29.3%), due to the influence of the high uptake in urine. The absolute boron concentrations in tissues/tumors can be estimated from the SUVs on 18 F-FBPA PET using a practical formula. Caution must be exercised in interpreting the estimated boron concentrations in the lung, small intestine and large intestine, to prevent the adverse effects of overexposure, which could occur due to underestimation by partial volume effect using PET.
Fragment approach to the electronic structure of τ -boron allotrope
NASA Astrophysics Data System (ADS)
Karmodak, Naiwrit; Jemmis, Eluvathingal D.
2017-04-01
The presence of nonconventional bonding features is an intriguing part of elemental boron. The recent addition of τ boron to the family of three-dimensional boron allotropes is no exception. We provide an understanding of the electronic structure of τ boron using a fragment molecular approach, where the effect of symmetry reduction on skeletal bands of B12 and the B57 fragments are examined qualitatively by analyzing the projected density of states of these fragments. In spite of the structural resemblance to β boron, the reduction of symmetry from a rhombohedral space group to the orthorhombic one destabilizes the bands and reduces the electronic requirements. This suggests the presence of the partially occupied boron sites, as seen for a β boron unit cell, and draws the possibility for the existence of different energetically similar polymorphs. τ boron has a lower binding energy than β boron.
NASA Astrophysics Data System (ADS)
Ramanjaneyulu, P. S.; Sayi, Y. S.; Ramakumar, K. L.
2008-08-01
Quantification of boron in diverse materials of relevance in nuclear technology is essential in view of its high thermal neutron absorption cross section. A simple and sensitive method has been developed for the determination of boron in uranium-aluminum-silicon alloy, based on leaching of boron with 6 M HCl and H 2O 2, its selective separation by solvent extraction with 2-ethyl hexane 1,3-diol and quantification by spectrophotometry using curcumin. The method has been evaluated by standard addition method and validated by inductively coupled plasma-atomic emission spectroscopy. Relative standard deviation and absolute detection limit of the method are 3.0% (at 1 σ level) and 12 ng, respectively. All possible sources of uncertainties in the methodology have been individually assessed, following the International Organization for Standardization guidelines. The combined uncertainty is calculated employing uncertainty propagation formulae. The expanded uncertainty in the measurement at 95% confidence level (coverage factor 2) is 8.840%.
High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode.
Wu, Tien-Lin; Yeh, Chao-Hui; Hsiao, Wen-Ting; Huang, Pei-Yun; Huang, Min-Jie; Chiang, Yen-Hsin; Cheng, Chien-Hong; Liu, Rai-Shung; Chiu, Po-Wen
2017-05-03
The hole-injection barrier between the anode and the hole-injection layer (HIL) is of critical importance to determine the device performance of organic light-emitting diodes (OLEDs). Here, we report on a record-high external quantum efficiency (EQE) (24.6% in green phosphorescence) of OLEDs fabricated on both rigid and flexible substrates, with the performance enhanced by the use of nearly defect-free and high-mobility boron-doped graphene as an effective anode and hexaazatriphenylene hexacarbonitrile as a new type of HIL. This new structure outperforms the existing graphene-based OLEDs, in which MoO 3 , AuCl 3 , or bis(trifluoromethanesulfonyl)amide are typically used as a doping source for the p-type graphene. The improvement of the OLED performance is attributed mainly to the appreciable increase of the hole conductivity in the nearly defect-free boron-doped monolayer graphene, along with the high work function achieved by the use of a newly developed hydrocarbon precursor containing boron in the graphene growth by chemical vapor deposition.
Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro
2016-09-19
The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advances in boronization on NSTX-Upgrade
Skinner, C. H.; Bedoya, F.; Scotti, F.; ...
2017-01-27
Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF) with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5 s to 5–8 s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron depositionmore » versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. Furthermore, this increase correlated with the rise of oxygen emission from the plasma.« less
Liang, Meijuan; Ren, Yi; Zhang, Haijuan; Ma, Yunxia; Niu, Xiaoying; Chen, Xingguo
2017-09-01
Heteroatom-doped carbon nanoparticles (CNPs) have attracted considerable attention due to an effective improvement in their intrinsic properties. Here, a facile and simple synthesis of nitrogen, boron co-doped carbon nanoparticles (NB-CNPs) from a sole precursor, 3-aminophenylboronic acid, was performed via a one-step solid-phase approach. Because of the presence of boronic acid, NB-CNPs can be used directly as a fluorescent probe for glucose. Based on a boronic acid-triggered specific reaction, we developed a simple NB-CNP probe without surface modification for the detection of glucose. When glucose was introduced, the fluorescence of NB-CNPs was suppressed through a surface-quenching states mechanism. Obvious fluorescence quenching allowed the highly sensitive determination of glucose with a limit of detection of 1.8 μM. Moreover, the proposed method has been successfully used to detect glucose in urine from people with diabetes, suggesting potential application in sensing glucose. Copyright © 2017 John Wiley & Sons, Ltd.
The use of metalorganics in the preparation of semiconductor materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manasevit, H.M.; Hewitt, W.B.; Nelson, A.J.
1989-10-01
The authors describe boron-arsenic and boron-phosphorus films grown on Si, sapphire, and silicon-on-sapphire (SOS) by pyrolyzing Group III alkyls of boron, i.e., trimethylborane (TMB) and triethylborane (TEB) in the presence of AsH/sub 3/ and PH/sub 3/, respectively, in a H/sub 2/ atmosphere. No evidence for reaction between the alkyls and the hydrides on mixing at room temperature was found. The films were predominantly amorphous. The film growth rate was found to depend on the concentration of alkyl boron compound and was essentially constant when TEB and AsH/sub 3/ were pyrolyzed over the temperature range of 550{sup 0}-900{sup 0}C. The filmsmore » were found to contain mainly carbon impurities (the amount varying with growth temperature), some oxygen, and were highly stressed and bowed on Si substrates, with some crazing evident in thin (2 {mu}m) B-P and thick (5 {mu}m) B-As films. The carbon level was generally higher in films grown using TEB as the boron source. Films grown from PH/sub 3/ and TMB showed a higher carbon content than those grown from AsH/sub 3/ and TMB. Based on their B/As and B/P ratios, films with nominal compositions B/sub 12-16/As/sub 2/P and B/sub 1.1-1.3/P were grown using TMB as the boron source.« less
Boron Isotopes in Diatoms: a Proxy for pH?
NASA Astrophysics Data System (ADS)
Donald, H.; Foster, G. L.; Poulton, A. J.; Moore, C. M.; Swann, G. E. A.; Hendry, K. R.
2016-12-01
High latitudes are important regions to consider in terms of ocean acidification, as they are climatically sensitive regions where the greenhouse gas CO2 is exchanged between the ocean and atmosphere. In theory, an improved understanding of these regions could be achieved using the boron isotope palaeo-pH proxy, in which CaCO3-based organisms including foraminifera are traditionally measured. The Southern Ocean is of particular interest in the global carbon cycle, however, foraminifera are scarce in sediments from this region. In contrast, siliceous diatoms are a dominant group of microfossils found within sediments, but as yet, the boron isotope-pH proxy has not been extended to opal. This is the major goal of the current study. Diatoms construct their frustules from biogenic silica by polymerising Si(OH)4, and boron content of these frustules, previously investigated by LA-ICP-MS (Mejía et al. 2013), is around 5-10 ppm. Here, current solution MC-ICP-MS methods used to measure boron isotopes in calcifying organisms have been adapted and developed for use with diatom opal. Preliminary results for sediment diatoms from the onset of major Northern Hemisphere glaciation will be presented (subarctic Northwest Pacific ODP site 882), as well as results for the cultured diatom species Thalassiosira weissflogii grown at varied pCO2. In light of these results, we will speculate on the nature of boron incorporation into diatom opal and its potential as an archive for palaeo-pH reconstructions.
The Physiological Role of Boron on Health.
Khaliq, Haseeb; Juming, Zhong; Ke-Mei, Peng
2018-03-15
Boron is an essential mineral that plays an important role in several biological processes. Boron is required for growth of plants, animals, and humans. There are increasing evidences of this nutrient showing a variety of pleiotropic effects, ranging from anti-inflammatory and antioxidant effects to the modulation of different body systems. In the past few years, the trials showed disease-related polymorphisms of boron in different species, which has drawn attention of scientists to the significance of boron to health. Low boron profile has been related with poor immune function, increased risk of mortality, osteoporosis, and cognitive deterioration. High boron status revealed injury to cell and toxicity in different animals and humans. Some studies have shown some benefits of higher boron status, but findings have been generally mixed, which perhaps accentuates the fact that dietary intake will benefit only if supplemental amount is appropriate. The health benefits of boron are numerous in animals and humans; for instance, it affects the growth at safe intake. Central nervous system shows improvement and immune organs exhibit enhanced immunity with boron supplementation. Hepatic metabolism also shows positive changes in response to dietary boron intake. Furthermore, animals and human fed diets supplemented with boron reveal improved bone density and other benefits including embryonic development, wound healing, and cancer therapy. It has also been reported that boron affects the metabolism of several enzymes and minerals. In the background of these health benefits, low or high boron status is giving cause for concern. Additionally, researches are needed to further elucidate the mechanisms of boron effects, and determine the requirements in different species.
Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.
2017-02-21
According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.
Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta
2016-03-01
Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.
Anode performance of boron-doped graphites prepared from shot and sponge cokes
NASA Astrophysics Data System (ADS)
Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao
The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.
NASA Astrophysics Data System (ADS)
Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.
2016-04-01
Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.
NASA Astrophysics Data System (ADS)
Spadaro, F.; Rossi, A.; Lainé, E.; Woodward, P.; Spencer, N. D.
2017-12-01
Tribotests performed on boron-based thermal films have revealed higher mechanical durability and lower wear coefficients compared to results from tests performed on boron-free thermal films. In the current study, in order to follow and identify the tribochemical reactions taking place in the contact regions, post-characterization has been carried out on the steel ball and on the steel disc. The techniques adopted to achieve this goal were small-area X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). The contact areas have been investigated before and after failure of the thermal films, revealing thermal-film removal inside the wear track on the disc and the presence of a transfer film in the contact area on the steel ball following tribotesting. Furthermore, borate contributions in the deeper layers within the tribo-stressed area on the disc were revealed at the end of the tribotest. These procedures shed light on the tribomechanical and tribochemical reactions taking place in the contact region, on the ability of boron species to sustain tribological stress and provide mechanical stability, and on the mechanical-mixing processes occurring within the sliding contacts. The mass spectra collected before tribotesting on all thermal films suggest the presence of phosphate- and borate-containing structures.
Resendez, Angel; Halim, Md Abdul; Singh, Jasmeet; Webb, Dominic-Luc
2017-01-01
To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed using a two component fluorescent probe based on boronic acid-appended viologen–HPTS (4,4′-o-BBV). Carbohydrates normally giving poor signals (fucose, l-rhamnose, xylose) were subjected to sodium borohydride (NaBH4) reduction in ambient conditions for 1 h yielding the corresponding sugar alcohols from fucose, l-rhamnose and xylose in essentially quantitative yields. Compared to original aldoses, apparent binding affinities were increased 4–25-fold. The chlorinated sweetener and colon permeability marker sucralose (Splenda), otherwise undetectable by boronic acids, was dechlorinated to a detectable derivative by reactive oxygen and hydroxide intermediates by the Fenton reaction or by H2O2 and UV light. This method is specific to sucralose as other common sugars, such as sucrose, do not contain any carbon-chlorine bonds. Significant fluorescence response was obtained for chemically modified sucralose with the 4,4′-o-BBV–HPTS probe system. This proof of principle can be applied to biomedical applications, such as gut permeability, malabsorption, etc. PMID:29130464
Electron paramagnetic resonance of deep boron in silicon carbide
NASA Astrophysics Data System (ADS)
Baranov, P. G.; Mokhov, E. N.
1996-04-01
In this article we report the first EPR observation of deep boron centres in silicon carbide. A direct identification of the boron atom involved in the defect centre, considered as deep boron, has been established by the presence of a hyperfine interaction with 0268-1242/11/4/005/img1 and 0268-1242/11/4/005/img2 nuclei in isotope-enriched 6H-SiC:B crystals. Deep boron centres were shown from EPR spectra to have axial symmetry along the hexagonal axis. A correspondence between the EPR spectra and the luminescence, ODMR and DLTS spectra of deep boron centres has been indicated. The structural model for a deep boron centre as a boron - vacancy pair is presented and the evidence for bistable behaviour of deep boron centres is discussed.
Method of manufacture of atomically thin boron nitride
Zettl, Alexander K
2013-08-06
The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.
Boron-coated straws as a replacement for 3He-based neutron detectors
NASA Astrophysics Data System (ADS)
Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.
2011-10-01
US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.
Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags
NASA Astrophysics Data System (ADS)
Jakobsson, Lars Klemet; Tangstad, Merete
2018-04-01
Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.
Boron removal from aqueous solution by direct contact membrane distillation.
Hou, Deyin; Wang, Jun; Sun, Xiangcheng; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing
2010-05-15
The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 microg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Koç, Cengiz
2007-02-01
Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity. Even though Boron concentration of river water is under 0.5 ppm limit value, Boron element will store in basin soils, decrease in crop yields, and occur problematic soils in basin.
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Boron exposure through drinking water during pregnancy and birth size.
Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie
2016-10-01
Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru
2015-04-01
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru
2015-01-01
Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713
Structure prediction of boron-doped graphene by machine learning
NASA Astrophysics Data System (ADS)
M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji
2018-06-01
Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.
Tabata, Ryo; Kamiya, Takehiro; Shigenobu, Shuji; Yamaguchi, Katsushi; Yamada, Masashi; Hasebe, Mitsuyasu; Fujiwara, Toru; Sawa, Shinichiro
2013-01-01
Next-generation sequencing (NGS) technologies enable the rapid production of an enormous quantity of sequence data. These powerful new technologies allow the identification of mutations by whole-genome sequencing. However, most reported NGS-based mapping methods, which are based on bulked segregant analysis, are costly and laborious. To address these limitations, we designed a versatile NGS-based mapping method that consists of a combination of low- to medium-coverage multiplex SOLiD (Sequencing by Oligonucleotide Ligation and Detection) and classical genetic rough mapping. Using only low to medium coverage reduces the SOLiD sequencing costs and, since just 10 to 20 mutant F2 plants are required for rough mapping, the operation is simple enough to handle in a laboratory with limited space and funding. As a proof of principle, we successfully applied this method to identify the CTR1, which is involved in boron-mediated root development, from among a population of high boron requiring Arabidopsis thaliana mutants. Our work demonstrates that this NGS-based mapping method is a moderately priced and versatile method that can readily be applied to other model organisms. PMID:23104114
Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel, D.D.; Coderre, J.A.; Chanana, A.D.
1996-12-31
Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released ismore » microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.« less
Mathematical and statistical analysis of the effect of boron on yield parameters of wheat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawashdeh, Hamzeh; Sala, Florin; Boldea, Marius
The main objective of this research is to investigate the effect of foliar applications of boron at different growth stages on yield and yield parameters of wheat. The contribution of boron in achieving yield parameters is described by second degree polynomial equations, with high statistical confidence (p<0.01; F theoretical < F calculated, according to ANOVA test, for Alfa = 0.05). Regression analysis, based on R{sup 2} values obtained, made it possible to evaluate the particular contribution of boron to the realization of yield parameters. This was lower for spike length (R{sup 2} = 0.812), thousand seeds weight (R{sup 2} =more » 0.850) and higher in the case of the number of spikelets (R{sup 2} = 0.936) and the number of seeds on a spike (R{sup 2} = 0.960). These results confirm that boron plays an important part in achieving the number of seeds on a spike in the case of wheat, as the contribution of this element to the process of flower fertilization is well-known. In regards to productivity elements, the contribution of macroelements to yield quantity is clear, the contribution of B alone being R{sup 2} = 0.868.« less