Science.gov

Sample records for boron carbon nitrogen

  1. Prediction of boron carbon nitrogen phase diagram

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  2. Boron and nitrogen-doped single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Azadi, Sam

    2006-10-01

    Boron nitride semiconducting zigzag single-walled carbon nanotube (SWCNT), BcbNcnC, as a potential candidate for making nanoelectronic devices is investigated by first-principle full potential density functional theory (DFT). In contrast to the previous DFT calculations, where just one boron and nitrogen doping configuration is considered, here for the average over all possible configurations density of states is calculated in terms of boron and nitrogen concentrations. For example in many body techniques (MBTs) [R. Moradian, Phys. Rev. B 89 (2004) 205425] it is found that semiconducting average gap, Eg, could be controlled by doping nitrogen and boron. But in contrast to MBTs where gap edge in the average density of states is sharp, the gap edge is smeared and impurity states appear in the SWCNT semiconducting gap.

  3. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  4. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  5. Predicted phase diagram of boron-carbon-nitrogen

    NASA Astrophysics Data System (ADS)

    Zhang, Hantao; Yao, Sanxi; Widom, Michael

    2016-04-01

    Noting the structural relationships between phases of carbon and boron carbide with phases of boron nitride and boron subnitride, we investigate their mutual solubilities using a combination of first-principles total energies supplemented with statistical mechanics to address finite temperatures. Thus we predict the solid-state phase diagram of boron-carbon-nitrogen (B-C-N). Owing to the large energy costs of substitution, we find that the mutual solubilities of the ultrahard materials diamond and cubic boron nitride are negligible, and the same for the quasi-two-dimensional materials graphite and hexagonal boron nitride. In contrast, we find a continuous range of solubility connecting boron carbide to boron subnitride at elevated temperatures. An electron-precise ternary compound B13CN consisting of B12 icosahedra with NBC chains is found to be stable at all temperatures up to melting. It exhibits an order-disorder transition in the orientation of NBC chains at approximately T =500 K. We also propose that the recently discovered binary B13N2 actually has composition B12.67N2 .

  6. Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.

    1996-01-01

    Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.

  7. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  8. Fabrication of particular structures of hexagonal boron nitride and boron-carbon-nitrogen layers by anisotropic etching

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Riteshkumar; Sharma, Subash; Shinde, Sachin M.; Sharma, Kamal P.; Thangaraja, Amutha; Kalita, Golap; Tanemura, Masaki

    2016-05-01

    Anisotropic etching of hexagonal boron nitride (h-BN) and boron-carbon-nitrogen (BCN) basal plane can be an exciting platform to develop well-defined structures with interesting properties. Here, we developed an etching process of atomically thin h-BN and BCN layers to fabricate nanoribbons (NRs) and other distinct structures by annealing in H2 and Ar gas mixture. BCN and h-BN films are grown on Cu foil by chemical vapor deposition (CVD) using solid camphor and ammonia borane as carbon, nitrogen and boron source, respectively. Formation of micron size well-defined etched holes and NRs are obtained in both h-BN and BCN layers by the post growth annealing process. The etching process of h-BN and BCN basal plane to fabricate NRs and other structures with pronounced edges can open up new possibilities in 2D hybrid materials.

  9. Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Liu, De-Sheng; Zhang, Ying; Wang, Pei-Ji; Zhang, Zhong

    2011-04-01

    Based on the non-equilibrium Green's function method and first-principles density functional theory calculations, we investigate the electronic transport properties of a nitrogen/boron-doped capped-single-walled carbon-nanotube-based molecular junction. Obvious rectifying behavior is observed and it is strongly dependent on the doping site. The best rectifying performance can be carried out when the nitrogen/boron atom dopes at a carbon site in the second layer. Moreover, the rectifying performance can be further improved by adjusting the distance between the C60 nanotube caps.

  10. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  11. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors.

    PubMed

    Sun, Li; Fu, Yu; Tian, Chungui; Yang, Ying; Wang, Lei; Yin, Jie; Ma, Jing; Wang, Ruihong; Fu, Honggang

    2014-06-01

    Separated boron and nitrogen porous graphitic carbon (BNGC) is fabricated by a facile hydrothermal coordination/ZnCl2-activation process from renewable and inexpensive nitrogen-containing chitosan. In this synthetic pathway, chitosan, which has a high nitrogen content, first coordinates with Fe(3+) ions to form chitosan-Fe that subsequently reacts with boric acid (boron source) to generate the BNGC precursor. After simultaneous carbonization and ZnCl2 activation followed by removal of the Fe catalyst, BNGC, containing isolated boron and nitrogen centers and having a high surface area of 1567 m(2)  g(-1) and good conductivity, can be obtained. Results indicate that use of chitosan as a nitrogen-containing carbon source effectively prevents nitrogen atoms from direct combination with boron atoms. In addition, the incorporation of Fe(3+) ions not only endows BNGC with high graphitization, but also favors for nitrogen fixation. Remarkably, the unique microstructure of BNGC enables its use as an advanced electrode material for energy storage. As electrode material for supercapacitors, BNGC shows a high capacitance of 313 F g(-1) at 1 A g(-1), and also long-term durability and coulombic efficiency of >99.5 % after 5000 cycles. Notably, in organic electrolytes, the energy density could be up to 50.1 Wh kg(-1) at a power density of 10.5 kW kg(-1). The strategy developed herein opens a new avenue to prepare BNGC without inactive BN bonds from commercially available chitosan for high-performance supercapacitors.

  12. Elementary reactions of nitrogen and oxygen with boron and carbon at high pressures and temperatures

    SciTech Connect

    Yoo, C.S.; Cynn, H.; Nicol, M.F.

    1997-08-01

    The direct elementary reactions among the first and second row elements often yield novel super hard, high energy density, and wide band-gap optical materials. The reactions of oxygen and nitrogen with boron and carbon have been investigated at high pressures and temperatures by using an integrated technique of diamond-anvil cell, laser-heating, x-ray diffraction, Raman spectroscopy. A wide range of products has been synthesized and characterized in-situ at high pressures, including {alpha}-CO{sub 2}, B{sub 2}0{sub 3}-I,B{sub 2}0{sub 3}-II, c-BN, h-BN, h{sup `}-B, amorphous carbon nitrides. The elementary reactions occur exothermically and result in highly polycrystallized products with an exception in carbon-nitrogen reactions. The implication of the elementary reactions to energetic materials applications is discussed.

  13. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Nazé, C.; Verdebout, S.; Godefroid, M.

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  14. Blending materials composed of boron, nitrogen and carbon to transform approaches to liquid hydrogen stores.

    PubMed

    Whittemore, Sean M; Bowden, Mark; Karkamkar, Abhijeet; Parab, Kshitij; Neiner, Doinita; Autrey, Tom; Ishibashi, Jacob S A; Chen, Gang; Liu, Shih-Yuan; Dixon, David A

    2016-04-14

    Mixtures of hydrogen storage materials containing the elements of boron, nitrogen, carbon, i.e., isomers of BN cyclopentanes are examined to find a 'fuel blend' that remains a liquid phase throughout hydrogen release, maximizes hydrogen storage density, minimizes impurities and remains thermally stable at ambient temperatures. We find that the mixture of ammonia borane dissolved in 3-methyl-1,2-dihydro-1,2-azaborolidine (compound B) provide a balance of these properties and provides ca. 5.6 wt% hydrogen. The two hydrogen storage materials decompose at a faster rate than either individually and products formed are a mixture of molecular trimers. Digestion of the product mixture formed from the decomposition of the AB + B fuel blend with methanol leads to the two corresponding methanol adducts of the starting material and not a complex mixture of adducts. The work shows the utility of using blends of materials to reduce volatile impurities and preserve liquid phase.

  15. Boron/nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction.

    PubMed

    Zehtab Yazdi, Alireza; Fei, Huilong; Ye, Ruquan; Wang, Gunuk; Tour, James; Sundararaj, Uttandaraman

    2015-04-15

    Bamboo structured nitrogen doped multiwalled carbon nanotubes have been helically unzipped, and nitrogen doped graphene oxide nanoribbons (CNx-GONRs) with a multifaceted microstructure have been obtained. CNx-GONRs have then been codoped with nitrogen and boron by simultaneous thermal annealing in ammonia and boron oxide atmospheres, respectively. The effects of the codoping time and temperature on the concentration of the dopants and their functional groups have been extensively investigated. X-ray photoelectron spectroscopy results indicate that pyridinic and BC3 are the main nitrogen and boron functional groups, respectively, in the codoped samples. The oxygen reduction reaction (ORR) properties of the samples have been measured in an alkaline electrolyte and compared with the state-of-the-art Pt/C (20%) electrocatalyst. The results show that the nitrogen/boron codoped graphene nanoribbons with helically unzipped structures (CNx/CBx-GNRs) can compete with the Pt/C (20%) electrocatalyst in all of the key ORR properties: onset potential, exchange current density, four electron pathway selectivity, kinetic current density, and stability. The development of such graphene nanoribbon-based electrocatalyst could be a harbinger of precious metal-free carbon-based nanomaterials for ORR applications.

  16. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor

    NASA Astrophysics Data System (ADS)

    Guo, Hongliang; Gao, Qiuming

    Boron and nitrogen co-doped porous carbons (BNCs) were prepared through a facile procedure using citric acid, boric acid and nitrogen as C, B and N precursors, respectively. The BNC samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen sorption at 77 K. Cyclic voltammetry and galvanostatic charge/discharge experiments were adopted to investigate their electrochemical behaviors. The BNC-9 and BNC-15 samples with high specific surface areas of 894 and 726 m 2 g -1 showed the large specific capacitance up to 268 and 173 F g -1, respectively, with the current of 0.1 A g -1. When the current was set as 1 A g -1, the energy densities were 3.8 and 3.0 Wh kg -1 and the power densities were 165 and 201 W kg -1 for BNC-9 and BNC-15, respectively. Thus, BNC-15 is more suitable to apply in high-power-demanded occasion, while BNC-9 tends to store more energy.

  17. Nitrogen-doped, boron-doped and undoped multiwalled carbon nanotube/polymer composites in WORM memory devices.

    PubMed

    Mamo, Messai A; Sustaita, Alan O; Tetana, Zikhona N; Coville, Neil J; Hümmelgen, Ivo A

    2013-03-29

    We report the preparation of write-once-read-many times memory devices using composites of carbon nanotubes and poly(vinyl phenol) sandwiched between Al electrodes. Three types of nanotubes (undoped multiwalled carbon nanotubes, nitrogen-doped multiwalled carbon nanotubes and boron-doped multiwalled carbon nanotubes) are investigated for this application. The OFF to ON state switching threshold is only slightly dependent on nanotube type, but the ON/OFF current ratio depends on both nanotube type and concentration and varies up to 10(6), decreasing for nanotube concentrations larger than 0.50 wt% in the composite.

  18. Nitrogen-doped, boron-doped and undoped multiwalled carbon nanotube/polymer composites in WORM memory devices

    NASA Astrophysics Data System (ADS)

    Mamo, Messai A.; Sustaita, Alan O.; Tetana, Zikhona N.; Coville, Neil J.; Hümmelgen, Ivo A.

    2013-03-01

    We report the preparation of write-once-read-many times memory devices using composites of carbon nanotubes and poly(vinyl phenol) sandwiched between Al electrodes. Three types of nanotubes (undoped multiwalled carbon nanotubes, nitrogen-doped multiwalled carbon nanotubes and boron-doped multiwalled carbon nanotubes) are investigated for this application. The OFF to ON state switching threshold is only slightly dependent on nanotube type, but the ON/OFF current ratio depends on both nanotube type and concentration and varies up to 106, decreasing for nanotube concentrations larger than 0.50 wt% in the composite.

  19. Chemisorption of Transition-Metal Atoms on Boron- and Nitrogen-Doped Carbon Nanotubes: Energetics and Geometric and Electronic Structures

    SciTech Connect

    An, Wei; Turner, C. H.

    2009-04-30

    The well-defined binding between transition-metals (TM) and the sidewall of carbon nanotubes (CNTs) plays a key role in the performance of CNT-based anoelectronics, as well as the stability of catalysts used in either heterogeneous catalysis or fuel-cell electrocatalysis. Spin-polarized density functional theory calculations demonstrate that either boron or nitrogen doping can increase the binding strength of TM atoms with singlewall carbon nanotubes (SWCNTs), and comparatively, boron doping is more effective. The binding nature can be identified as chemisorption, based on the magnitude of the binding energy and the formation of multiple bonds. The chemisorbed TM atoms can modify the electronic structure of the doped nanotubes in various ways, depending upon the TM and helicity of the CNT, rendering the TM/doped-SWCNT composite viable for a wide range of applications. A total of 11 technologically relevant TMs adsorbed on two distinct and stable doped-SWCNT models have been investigated in this study. The doping sites are arranged in either a locally concentrated or uniform fashion within semiconducting SWCNT(8,0) and metallic SWCNT(6,6). The results serve as a starting point for studying larger, more complex TM nanostructures anchored on the sidewall of boron- or nitrogen-doped CNTs.

  20. Adsorption properties of nitrogen dioxide on hybrid carbon and boron-nitride nanotubes.

    PubMed

    Liu, Haining; Turner, C Heath

    2014-11-01

    The properties of pristine carbon nanotubes (CNTs) can be modified in a number of different ways: covalent attachments, substitutional doping, induced defects, and non-covalent interactions with ligands. One unconventional approach is to combine CNTs with boron-nitride nanotubes (BNNTs) to form hybrid carbon and boron-nitride nanotube (CBNNT) materials. In this work, we perform a first-principles density functional theory study on the adsorption properties of NO2 on CBNNT heterostructures. It is found that the adsorption of NO2 is significantly increased on both zigzag CBNNT(8,0) and armchair CBNNT(6,6), as compared to either a pristine CNT or BNNT. For example, the chemisorption of NO2 on CNT(8,0) is found to be endothermic, while the chemisorption of NO2 on CBNNT(8,0) is an exothermic process with a very large binding energy of -27.74 kcal mol(-1). Furthermore, the binding of NO2 on both CBNNT(8,0) and CBNNT(6,6) induces an increase in the conductivity of the nanotube. These characteristics indicate that the CBNNT heterostructures may have significant potential as an NO2 sensor or as a catalyst for NO2 decomposition reactions. Our calculations provide critical information for further evaluation, such as molecular-level adsorption simulations and microkinetic studies. PMID:25242148

  1. A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon and nitrogen. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.

  2. Determination of the geographical origin of green coffee by principal component analysis of carbon, nitrogen and boron stable isotope ratios.

    PubMed

    Serra, Francesca; Guillou, Claude G; Reniero, Fabiano; Ballarin, Luciano; Cantagallo, Maria I; Wieser, Michael; Iyer, Sundaram S; Héberger, Károly; Vanhaecke, Frank

    2005-01-01

    In this study we show that the continental origin of coffee can be inferred on the basis of coupling the isotope ratios of several elements determined in green beans. The combination of the isotopic fingerprints of carbon, nitrogen and boron, used as integrated proxies for environmental conditions and agricultural practices, allows discrimination among the three continental areas producing coffee (Africa, Asia and America). In these continents there are countries producing 'specialty coffees', highly rated on the market that are sometimes mislabeled further on along the export-sale chain or mixed with cheaper coffees produced in other regions. By means of principal component analysis we were successful in identifying the continental origin of 88% of the samples analyzed. An intra-continent discrimination has not been possible at this stage of the study, but is planned in future work. Nonetheless, the approach using stable isotope ratios seems quite promising, and future development of this research is also discussed. PMID:15988730

  3. Effect of doping by boron, carbon, and nitrogen atoms on the magnetic and photocatalytic properties of anatase

    NASA Astrophysics Data System (ADS)

    Zainullina, V. M.; Zhukov, V. P.; Korotin, M. A.; Polyakov, E. V.

    2011-07-01

    The effect of doping of titanium dioxide with the anatase structure by boron, carbon, and nitrogen atoms on the magnetic and optical properties and the electronic spectrum of this compound has been investigated using the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) band-structure method in the local spin density approximation explicitly including Coulomb correlations (LSDA + U) in combination with the semiempirical extended Hückel theory (EHT) method. The LSDA + U calculations of the electronic structure, the imaginary part of the dielectric function, the total magnetic moments, and the magnetic moments at the impurity atoms have been carried out. The diagrams of the molecular orbitals of the clusters Ti3 X ( X = B, C, N) have been calculated and the pseudo-space images of the molecular orbitals of the clusters have been constructed. The effect of doping on the nature and origin of photocatalytic activity in the visible spectral range and the specific features of the generation of ferromagnetic interactions in doped anatase have been discussed based on the analysis of the obtained data. It has been shown that, in the sequence TiO2 - y N y → TiO2 - y C y → TiO2 - y B y ( y = 1/16), the photocatalytic activity can increase with the generation of electronic excitations with the participation of impurity bands. The calculated magnetic moments for boron and nitrogen atoms are equal to 1 μB, whereas the impurity carbon atoms are nonmagnetic.

  4. Belowground Carbon Allocation to Ectomycorrhizal Fungi Links Biogeochemical Cycles of Boron and Nitrogen

    NASA Astrophysics Data System (ADS)

    Lucas, R. W.; Högberg, P.; Ingri, J. N.

    2011-12-01

    Boron (B) is an essential micronutrient to most trees and represents an important limiting resource in some regions, deficient trees experiencing the loss of apical dominance, altered stem growth, and even tree death in extreme cases. Similar to the acquisition of most soil nutrients, B is likely supplied to host trees by mycorrhizal symbionts in exchange for recently fixed carbohydrates. In this way, belowground allocation of photosynthate, which drives the majority of biological processes belowground, links the biogeochemical cycles of B and nitrogen (N). Using a long-term N addition experiment in a Pinus sylvestris forest that has been ongoing for 41 years, we examined how the availability of inorganic N mediates the response of B isotopes in the tree needles, organic soil, and fungal pools in a boreal forest in northern Sweden. Using archived needle samples collected annually from the current year's needle crop, we observed δ11B to increase from 30.8 (0.5 se) to 41.8 (0.7 se)% in N fertilized plots from 1970 to 1979, a period of increasing B deficiency stress induced by N fertilization; the concentration of B in tree needles during 1979 dropping as low as 3.0 μg g-2. During the same period, B concentrations in tree needles from control plots remained relatively unchanged and δ11B remained at a steady state value of 34.1 (1.0 se)%. Following a distinct, large-scale, pulse labeling event in 1980 in which 2.5 kg ha-1 of isotopically distinct B was applied to all treatment and control plots to alleviate the N-induced B deficiency, concentrations of B in current needles increased immediately in all treatments, the magnitude of the response being dependent upon the N treatment. But unlike other pool dilution studies, δ11B of current tree needles did not return to pre-addition, steady-state levels. Instead, δ11B continued to decrease over time in both N addition and control treatments. This unexpected pattern has not been previously described but can be explained

  5. Isotopic composition of cosmic-ray boron and nitrogen

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  6. Tensile properties of a boron/nitrogen-doped carbon nanotube-graphene hybrid structure.

    PubMed

    Xia, Kang; Zhan, Haifei; Wei, Ye; Gu, Yuantong

    2014-01-01

    Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young's modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young's modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene-nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.

  7. Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

    PubMed Central

    Xia, Kang; Zhan, Haifei; Wei, Ye

    2014-01-01

    Summary Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials. PMID:24778956

  8. The stability and electronic structure of lithium adsorbed in triplet form of (5.0) carbon nanotubes and (5.0) boron nitrogen nanotubes: Density functional theory studies

    NASA Astrophysics Data System (ADS)

    Li, Ke Jing; Shao, Qing Yi; Zhang, Juan; Yao, Xin Hua

    2016-07-01

    Using density functional theory (DFT), we have investigated the stability and electronic structure of lithium (Li) adsorbed in triplet form of (5.0) carbon nanotubes (CNTs) and (5.0) boron nitrogen nanotubes (BNNTs). We have mainly found that three (5.0) tubes are covalently connected. The triplet form is an energetically stable semiconductor. Li atom can be chemically adsorbed in the triplet form of nanotubes (NTs). Meanwhile, upon the adsorption of Li, the triplet form convert into metal. Hence, the triplet form can improve reactivity and sensitivity of NTs to Li significantly.

  9. Tuning electronic properties of carbon nanotubes by Boron and Nitrogen doping

    NASA Astrophysics Data System (ADS)

    Chegel, Raad

    2016-10-01

    The electronic properties of pure and doped carbon nanotubes and NC3-, BC3-, NC- and BC-nanotubes are investigated by using tight binding theory. It was found that applying the external fields and doping change the band gap. The energy gap is reduced by B/N-doping and the reduction value is sensitive to the several parameters such as nanotube diameter and chirality, external field strength, electric field direction, impurity type and concentration. The direct N (B) substitution creates a new band above (below) the Fermi level and leads to creation of n-type (p-type) semiconductor. The external fields modify the band structure and convert the doped nanotube into metal. For both XC and XC3 nanotubes (X=B/N), the gap energy reduction shows identical dependence to electric field and the XC3 nanotubes show more sensitive behavior to electric field rather than XC nanotubes.

  10. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

    PubMed

    Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei

    2015-09-16

    An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1).

  11. In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Xia, Guanglin; Guo, Zaiping; Sun, Dalin; Li, Xingguo; Yu, Xuebin

    2016-08-01

    This paper reports the fabrication of three-dimensional porous carbon nanofibers network with high doping level of nitrogen (N, 5.17 at.%) and boron (B, 6.87 at.%) through a general electrospinning strategy followed by a calcination process. The employed ammonia borane (NH3BH3, denote as AB) not only functions as a porogen reagent to generate porous structures but also as the heteroatoms source to induce N and B co-doping. Such highly unique nanoarchitectures offer remarkably improved Li storage performance including high reversible capacity (∼910 mAh g-1 at a current density of 100 mA g-1) with good cycling and rate performances.

  12. In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Xia, Guanglin; Guo, Zaiping; Sun, Dalin; Li, Xingguo; Yu, Xuebin

    2016-08-01

    This paper reports the fabrication of three-dimensional porous carbon nanofibers network with high doping level of nitrogen (N, 5.17 at.%) and boron (B, 6.87 at.%) through a general electrospinning strategy followed by a calcination process. The employed ammonia borane (NH3BH3, denote as AB) not only functions as a porogen reagent to generate porous structures but also as the heteroatoms source to induce N and B co-doping. Such highly unique nanoarchitectures offer remarkably improved Li storage performance including high reversible capacity (∼910 mAh g-1 at a current density of 100 mA g-1) with good cycling and rate performances.

  13. Adsorption of CH4 on nitrogen- and boron-containing carbon models of coal predicted by density-functional theory

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Qiang; Xue, Ying; Tian, Zhi-Yue; Mo, Jing-Jing; Qiu, Nian-Xiang; Chu, Wei; Xie, He-Ping

    2013-11-01

    Graphene doped by nitrogen (N) and/or boron (B) is used to represent the surface models of coal with the structural heterogeneity. Through the density functional theory (DFT) calculations, the interactions between coalbed methane (CBM) and coal surfaces have been investigated. Several adsorption sites and orientations of methane (CH4) on graphenes were systematically considered. Our calculations predicted adsorption energies of CH4 on graphenes of up to -0.179 eV, with the strongest binding mode in which three hydrogen atoms of CH4 direct to graphene surface, observed for N-doped graphene, compared to the perfect (-0.154 eV), B-doped (-0.150 eV), and NB-doped graphenes (-0.170 eV). Doping N in graphene increases the adsorption energies of CH4, but slightly reduced binding is found when graphene is doped by B. Our results indicate that all of graphenes act as the role of a weak electron acceptor with respect to CH4. The interactions between CH4 and graphenes are the physical adsorption and slightly depend upon the adsorption sites on graphenes and the orientations of methane as well as the electronegativity of dopant atoms in graphene.

  14. Phenylene bridged boron-nitrogen containing dendrimers.

    PubMed

    Proń, Agnieszka; Baumgarten, Martin; Müllen, Klaus

    2010-10-01

    The synthesis and characterization of novel phenylene bridged boron-nitrogen containing π-conjugated dendrimers N3B6 and N3B3, with peripheral boron atoms and 1,3,5-triaminobenzene moiety as a core, are presented. UV-vis absorption and emission measurements reveal that the optical properties of the resulting compounds can be controlled by changing the donor/acceptor ratio: a 1:1 ratio results in a more efficient charge transfer than the 1:2 ratio. This was proven by the red shift of the emission maxima and the stronger solvatochromic effect in N3B3 compared to N3B6.

  15. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Verdebout, S.; Nazé, C.; Rynkun, P.; Godefroid, M.

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  16. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    PubMed

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating. PMID:26252873

  17. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    PubMed

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating.

  18. Carbon, oxygen, boron, hydrogen and nitrogen in the LEC growth of SI GaAs: a thermochemical approach

    NASA Astrophysics Data System (ADS)

    Korb, J.; Flade, T.; Jurisch, M.; Köhler, A.; Reinhold, Th; Weinert, B.

    1999-03-01

    The ChemSage code [Eriksson and Hack, Metall. Trans. B 12 (1990) 1013] to minimize the total Gibbs free energy was used to calculate phase equilibria in the complex thermochemical system representing LEC GaAs crystal growth which comprises the growth atmosphere, the liquid boron oxide, the GaAs melt and solid phases including the GaAs crystal. The behaviour of C, B, O, N and H in the crystal growth melt at 1509.42 K is investigated in dependence on relevant technological parameters.

  19. Boron and nitrogen doping in graphene antidot lattices

    NASA Astrophysics Data System (ADS)

    Brun, Søren J.; Pereira, Vitor M.; Pedersen, Thomas G.

    2016-06-01

    Bottom-up fabrication of graphene antidot lattices (GALs) has previously yielded atomically precise structures with subnanometer periodicity. Focusing on this type of experimentally realized GAL, we perform density functional theory calculations on the pristine structure as well as GALs with edge carbon atoms substituted with boron or nitrogen. We show that p - and n -type doping levels emerge with activation energies that depend on the level of hydrogenation at the impurity. Furthermore, a tight-binding parametrization together with a Green's function method are used to describe more dilute doping. Finally, random configurations of impurities in moderately doped systems are considered to show that the doping properties are robust against disorder.

  20. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity.

    PubMed

    Choi, Chang Hyuck; Park, Sung Hyeon; Woo, Seong Ihl

    2012-08-28

    N-doped carbon, a promising alternative to Pt catalyst for oxygen reduction reactions (ORRs) in acidic media, is modified in order to increase its catalytic activity through the additional doping of B and P at the carbon growth step. This additional doping alters the electrical, physical, and morphological properties of the carbon. The B-doping reinforces the sp(2)-structure of graphite and increases the portion of pyridinic-N sites in the carbon lattice, whereas P-doping enhances the charge delocalization of the carbon atoms and produces carbon structures with many edge sites. These electrical and physical alternations of the N-doped carbon are more favorable for the reduction of the oxygen on the carbon surface. Compared with N-doped carbon, B,N-doped or P,N-doped carbon shows 1.2 or 2.1 times higher ORR activity at 0.6 V (vs RHE) in acidic media. The most active catalyst in the reaction is the ternary-doped carbon (B,P,N-doped carbon), which records -6.0 mA/mg of mass activity at 0.6 V (vs RHE), and it is 2.3 times higher than that of the N-doped carbon. These results imply that the binary or ternary doping of B and P with N into carbon induces remarkable performance enhancements, and the charge delocalization of the carbon atoms or number of edge sites of the carbon is a significant factor in deciding the oxygen reduction activity in carbon-based catalysts. PMID:22769428

  1. Methods of forming boron nitride

    DOEpatents

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  2. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  3. Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction.

    PubMed

    Yao, Yunjin; Chen, Hao; Qin, Jiacheng; Wu, Guodong; Lian, Chao; Zhang, Jie; Wang, Shaobin

    2016-09-15

    Iron nanoparticles (NPs) encapsulated in B, N-codoped carbon nanotubes (Fe@C-BN) as heterogeneous Fenton-like catalysts were obtained by a simple and scalable pyrolysis method, and their performances were examined in the oxidative degradation of various organics in the presence of the different oxidants. The results showed that organic dyes can be effectively degraded by Fe@C-BN in the presence of peroxymonosulfate. Calcination temperature and mass of iron salt significantly affected the structures and performances of the catalysts. The effects of several reaction conditions, such as initial dye concentration, oxidant type (peroxymonosulfate, peroxydisulfate, and H2O2) and dosage, initial pH, inorganic anions, reaction temperature and dye types on oxidation as well as the stability of the composite were extensively evaluated in view of the practical applications. Through the investigation of reaction processes, HO(·) and SO4(·-) radicals were identified using quenching experiments. Owing to the synergistic effects between the iron NPs and B, N-doped carbon, Fe@C-BN catalysts intrinsically display an excellent catalytic activity for Fenton-like reaction. This study gives new insights into the design and preparation of iron NPs encapsulated in B, N-codoped carbon nanotubes as an effective strategy to enhance the overall catalytic activity.

  4. Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction.

    PubMed

    Yao, Yunjin; Chen, Hao; Qin, Jiacheng; Wu, Guodong; Lian, Chao; Zhang, Jie; Wang, Shaobin

    2016-09-15

    Iron nanoparticles (NPs) encapsulated in B, N-codoped carbon nanotubes (Fe@C-BN) as heterogeneous Fenton-like catalysts were obtained by a simple and scalable pyrolysis method, and their performances were examined in the oxidative degradation of various organics in the presence of the different oxidants. The results showed that organic dyes can be effectively degraded by Fe@C-BN in the presence of peroxymonosulfate. Calcination temperature and mass of iron salt significantly affected the structures and performances of the catalysts. The effects of several reaction conditions, such as initial dye concentration, oxidant type (peroxymonosulfate, peroxydisulfate, and H2O2) and dosage, initial pH, inorganic anions, reaction temperature and dye types on oxidation as well as the stability of the composite were extensively evaluated in view of the practical applications. Through the investigation of reaction processes, HO(·) and SO4(·-) radicals were identified using quenching experiments. Owing to the synergistic effects between the iron NPs and B, N-doped carbon, Fe@C-BN catalysts intrinsically display an excellent catalytic activity for Fenton-like reaction. This study gives new insights into the design and preparation of iron NPs encapsulated in B, N-codoped carbon nanotubes as an effective strategy to enhance the overall catalytic activity. PMID:27267476

  5. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives.

    PubMed

    Bonifazi, Davide; Fasano, Francesco; Lorenzo-Garcia, M Mercedes; Marinelli, Davide; Oubaha, Hamid; Tasseroul, Jonathan

    2015-10-25

    Discovered by Stock and Pohland in 1926, borazine is the isoelectronic and isostructural inorganic analogue of benzene, where the C[double bond, length as m-dash]C bonds are substituted by B-N bonds. The strong polarity of such heteroatomic bonds widens the HOMO-LUMO gap of the molecule, imparting strong UV-emitting/absorption and electrical insulating properties. These properties make borazine and its derivatives valuable molecular scaffolds to be inserted as doping units in graphitic-based carbon materials to tailor their optoelectronic characteristics, and specifically their semiconducting properties. By guiding the reader through the most significant examples in the field, in this feature paper we describe the past and recent developments in the organic synthesis and functionalisation of borazine and its derivatives. These boosted the production of a large variety of tailored derivatives, broadening their use in optoelectronics, H2 storage and supramolecular functional architectures, to name a few.

  6. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-27

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  7. Boron-Filled Hybrid Carbon Nanotubes

    PubMed Central

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  8. Boron-Filled Hybrid Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  9. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  10. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  11. Synthesis and characterization of co-deposited carbon nitride and boron materials

    SciTech Connect

    Bousetta, A.; Badi, N.; Bensaoula, A.

    1995-12-31

    Carbon boron nitride (CBN) thin films were grown on Si and NaCl at temperatures in the range of 100-400{degrees}C using electron-beam evaporation of graphite and boron assisted with electron cyclotron resonance (ECR) plasma generated nitrogen species. The effect of varying the boron flux on the compositional, structural, and electrical properties of the films was investigated using electron probe microanalysis (EPMA), Auger depth profiling (ADP), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and Hall measurements.

  12. Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

    SciTech Connect

    Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D; Stamler, T

    1999-02-08

    Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.

  13. Fabrication and characterization of carbon and boron carbide nanostructured materials

    NASA Astrophysics Data System (ADS)

    Reynaud, Sara

    , nanostructured BC compounds are fabricated by arc discharge technique using graphite or boron carbide electrodes submerged in liquid nitrogen, de-ionised water, or argon gas. Microscopic and spectroscopic investigation of the synthesized material confirms formation of various BC and carbon nanostructures. Specifically, arc discharge initiated in inert environment by applying low current leads to the formation of nanostructured BC without contaminants.

  14. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  15. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1996-12-03

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  16. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1998-07-14

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  17. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1998-07-14

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  18. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1996-12-03

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  19. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1997-12-02

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  20. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1997-12-02

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  1. Graphitic electrodes modified with boron and nitrogen for electrochemical energy storage enhancement

    NASA Astrophysics Data System (ADS)

    Xiong, Guoping; Paul, Rajib; Reifenberger, Ron; Fisher, Timothy

    2013-03-01

    Electrodes based on carbon nanomaterials (carbon nanotubes or graphitic nanopetals) have been modified with boron (B) and nitrogen (N) through a facile microwave heating cycle. During the microwave heating, the electrodes are immersed in a precursor solution consisting of urea and boric acid dissolved in either water or methanol. After microwave heating and overnight vacuum drying, the electrodes are again heated in nitrogen to remove unreacted chemicals and to form CxBN. Hydrogen plasma was then used to remove any residual boron oxide from the surface of the electrodes. Carbon nanotubes modified with B and N exhibited higher lithium storage capacity as compared to pure carbon nanotube electrodes. We note that the modification appears to produce a highly unexpected and substantial cycle-to-cycle improvement in battery capacity as the electrode cycles through hundreds of charge-discharge iterations. This process can be applied to other carbon-based electrodes, which themselves are recognized for their high performance, to add further improvements. AFOSR MURI No. 105800

  2. Nitrogen doping in carbon nanotubes.

    PubMed

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  3. Effects of carbon doping on the electronic properties of boron nitride nanotubes: Tight binding calculation

    NASA Astrophysics Data System (ADS)

    Chegel, Raad

    2016-10-01

    The electronic properties of pure and carbon doped zigzag and armchair Boron Nitride Nanotubes (BNNTs) have been investigated based on tight binding formalism. It was found that the band gap is reduced due to substitution of Boron or Nitrogen atoms by carbon atoms and the doping effects of B- and N-substituted BNNTs are different. The applied electric field converts the carbon doped BNNTs from semiconductor to metal. The gap energy reduction shows an identical dependence to electric field and doping for both armchair and zigzag carbon doped BNNTs. Our results indicate that the band gap of carbon doped BNNTs is a function of the Impurity concentration, electric field strength and the direction between the electric field and dopant location. The band gap for C-doped BNNTs with four carbon atoms decreases linearly but for two carbon atoms, it is constant at first then decreases linearly.

  4. Photoelectron spectra and electronic structure of nitrogen analogues of boron β-diketonates

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Borisenko, Aleksandr V.

    2016-07-01

    The electronic structure of the valence levels of seven nitrogen-containing boron complexes was investigated using methods of ultraviolet photoelectron spectroscopy and density functional theory. The ionization energies of π- and σ-levels were obtained from photoelectron spectra. The electronic structure of nitrogen-containing compounds was compared with the electronic structure of β-diketonates. It was shown the influence of various substituents on carbon and nitrogen atoms of six-membered ring on the electronic structure of complexes. The changes in the electronic structure after the substitution of atoms in condensed cycles have been identified. In order to compare the experimental vertical ionization energies IEi with Kohn-Sham orbital energies εi we used the analogue of Koopmans theorem and average amendment to the orbital energy of the electrons (δbari). For 26 electronic levels of seven studied complexes, the calculated values are in good accordance with experimental energy intervals between electron levels.

  5. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  6. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.

    PubMed

    Lazar, Petr; Zbořil, Radek; Pumera, Martin; Otyepka, Michal

    2014-07-21

    Boron and nitrogen doped graphenes are highly promising materials for electrochemical applications, such as energy storage, generation and sensing. The doped graphenes can be prepared by a broad variety of chemical approaches. The substitution of a carbon atom should induce n-type behavior in the case of nitrogen and p-type behavior in the case of boron-doped graphene; however, the real situation is more complex. The electrochemical experiments show that boron-doped graphene prepared by hydroboration reaction exhibits similar properties as the nitrogen doped graphene; according to theory, the electrochemical behavior of B and N doped graphenes should be opposite. Here we analyze the electronic structure of N/B-doped graphene (at ∼5% coverage) by theoretical calculations. We consider graphene doped by both substitution and addition reactions. The density of states (DOS) plots show that graphene doped by substitution of the carbon atom by N/B behaves as expected, i.e., as an n/p-doped material. N-doped graphene also has a lower value of the workfunction (3.10 eV) with respect to that of the pristine graphene (4.31 eV), whereas the workfunction of B-doped graphene is increased to the value of 5.57 eV. On the other hand, the workfunctions of graphene doped by addition of -NH2 (4.77 eV) and -BH2 (4.54 eV) groups are both slightly increased and therefore the chemical nature of the dopant is less distinguishable. This shows that mode of doping depends significantly on the synthesis method used, as it leads to different types of behaviour, and, in turn, different electronic and electrochemical properties of doped graphene, as observed in electrocatalytic experiments. This study has a tremendous impact on the design of doped graphene systems from the point of view of synthetic chemistry.

  7. Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O2 and CO: A density functional study

    NASA Astrophysics Data System (ADS)

    Abdel Aal, S.

    2016-01-01

    The adsorption behavior and electronic properties of CO and O2 molecules at the supported Pt and Eu atoms on (5,5) armchair SWCNT have been systematically investigated within density functional theory (DFT). Fundamental aspects such as adsorption energy, natural bond orbital (NBO), charge transfer, frontier orbitals and the projected density of states (PDOS) are elucidated to analyze the adsorption properties of CO and O2 molecules. The results reveal that B- and N-doping CNTs can enhance the binding strength and catalytic activity of Pt (Eu) anchored on the doped-CNT, where boron-doping is more effective. The electronic structures of supported metal are strongly influenced by the presence of gases. After adsorption of CO and O2, the changes in binding energy, charge transfer and conductance may lead to the different response in the metal-doped CNT-based sensors. It is expected that these results could provide helpful information for the design and fabrication of the CO and O2 sensing devices. The high catalytic activity of Pt supported at doped-CNT toward the interaction with CO and O2 may be attributed to the electronic resonance particularly among Pt-5d, CO-2π* and O2-2π* antibonding orbitals. In contrast to the supported Eu at doped-CNT, the Eu atom becomes more positively charged, which leads to weaken the CO adsorption and promote the O2 adsorption, consequently enhancing the activity for CO oxidation and alleviating the CO poisoning of the europium catalysts. A notable orbital hybridization and electrostatic interaction between these two species in adsorption process being an evidence of strong interaction. The electronic structure of O2 adsorbed on Eu-doped CNT resembles that of O2-, therefore the transferred charge weakens the O-O bonds and facilitates the dissociation process, which is the precondition for the oxygen reduction reaction (ORR).

  8. Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O2 and CO: A density functional study

    NASA Astrophysics Data System (ADS)

    Abdel Aal, S.

    2016-01-01

    The adsorption behavior and electronic properties of CO and O2 molecules at the supported Pt and Eu atoms on (5,5) armchair SWCNT have been systematically investigated within density functional theory (DFT). Fundamental aspects such as adsorption energy, natural bond orbital (NBO), charge transfer, frontier orbitals and the projected density of states (PDOS) are elucidated to analyze the adsorption properties of CO and O2 molecules. The results reveal that B- and N-doping CNTs can enhance the binding strength and catalytic activity of Pt (Eu) anchored on the doped-CNT, where boron-doping is more effective. The electronic structures of supported metal are strongly influenced by the presence of gases. After adsorption of CO and O2, the changes in binding energy, charge transfer and conductance may lead to the different response in the metal-doped CNT-based sensors. It is expected that these results could provide helpful information for the design and fabrication of the CO and O2 sensing devices. The high catalytic activity of Pt supported at doped-CNT toward the interaction with CO and O2 may be attributed to the electronic resonance particularly among Pt-5d, CO-2π* and O2-2π* antibonding orbitals. In contrast to the supported Eu at doped-CNT, the Eu atom becomes more positively charged, which leads to weaken the CO adsorption and promote the O2 adsorption, consequently enhancing the activity for CO oxidation and alleviating the CO poisoning of the europium catalysts. A notable orbital hybridization and electrostatic interaction between these two species in adsorption process being an evidence of strong interaction. The electronic structure of O2 adsorbed on Eu-doped CNT resembles that of O2‑, therefore the transferred charge weakens the O-O bonds and facilitates the dissociation process, which is the precondition for the oxygen reduction reaction (ORR).

  9. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  10. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  11. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  12. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the

  13. Carbon-rich icosahedral boron carbide designed from first principles

    SciTech Connect

    Jay, Antoine; Vast, Nathalie; Sjakste, Jelena; Duparc, Olivier Hardouin

    2014-07-21

    The carbon-rich boron-carbide (B{sub 11}C)C-C has been designed from first principles within the density functional theory. With respect to the most common boron carbide at 20% carbon concentration B{sub 4}C, the structural modification consists in removing boron atoms from the chains linking (B{sub 11}C) icosahedra. With C-C instead of C-B-C chains, the formation of vacancies is shown to be hindered, leading to enhanced mechanical strength with respect to B{sub 4}C. The phonon frequencies and elastic constants turn out to prove the stability of the carbon-rich phase, and important fingerprints for its characterization have been identified.

  14. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    SciTech Connect

    Vengosh, A. Hebrew Univ., Jerusalem ); Chivas, A.R.; McCulloch, M.T. ); Kolodny, Y.; Starinsky, A. )

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.

  15. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  16. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  17. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  18. Boron isotope fractionation in magma via crustal carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to ‑41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  19. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    SciTech Connect

    Peter C. Eklund; T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

    2011-05-01

    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  20. Effect of nitrogen on the growth of boron doped single crystal diamond

    DOE PAGESBeta

    Karna, Sunil; Vohra, Yogesh

    2013-11-18

    Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profilemore » of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. Furthermore, sharpening and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.« less

  1. Effect of nitrogen on the growth of boron doped single crystal diamond

    SciTech Connect

    Karna, Sunil; Vohra, Yogesh

    2013-11-18

    Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profile of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. Furthermore, sharpening and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.

  2. Ambient carbon dioxide capture by boron-rich boron nitride nanotube.

    PubMed

    Choi, Heechol; Park, Young Choon; Kim, Yong-Hyun; Lee, Yoon Sup

    2011-02-23

    Carbon dioxides (CO(2)) emitted from large-scale coal-fired power stations or industrial manufacturing plants have to be properly captured to minimize environmental side effects. From results of ab initio calculations using plane waves [PAW-PBE] and localized atomic orbitals [ONIOM(wB97X-D/6-31G*:AM1)], we report strong CO(2) adsorption on boron antisite (B(N)) in boron-rich boron nitride nanotube (BNNT). We have identified two adsorption states: (1) A linear CO(2) molecule is physically adsorbed on the B(N), showing electron donation from the CO(2) lone-pair states to the B(N) double-acceptor state, and (2) the physisorbed CO(2) undergoes a carboxylate-like structural distortion and C═O π-bond breaking due to electron back-donation from B(N) to CO(2). The CO(2) chemisorption energy on B(N) is almost independent of tube diameter and, more importantly, higher than the standard free energy of gaseous CO(2) at room temperature. This implies that boron-rich BNNT could capture CO(2) effectively at ambient conditions. PMID:21287992

  3. The atomic and electronic structure of nitrogen- and boron-doped phosphorene.

    PubMed

    Boukhvalov, Danil W

    2015-10-28

    First principles modeling of nitrogen- and boron-doped phosphorene demonstrates the tendency toward the formation of highly ordered structures. Nitrogen doping leads to the formation of -N-P-P-P-N- lines. Further transformation into -P-N-P-N- lines across the chains of phosphorene occurs with increasing band gap and increasing nitrogen concentration, which coincides with the decreasing chemical activity of N-doped phosphorene. In contrast to the case of nitrogen, boron atoms prefer to form -B-B- pairs with the further formation of -P-P-B-B-P-P- patterns along the phosphorene chains. The low concentration of boron dopants converts the phosphorene from a semiconductor into a semimetal with the simultaneous enhancement of its chemical activity. Co-doping of phosphorene by both boron and nitrogen starts from the formation of -B-N- pairs, which provides flat bands and further transformation of these pairs into hexagonal BN lines and ribbons across the phosphorene chains.

  4. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.

    PubMed

    Vikramaditya, Talapunur; Sumithra, Kanakamma

    2014-03-15

    We investigate the binding of ammonia on intrinsic and substitutionally doped semiconducting single-walled carbon nanotubes (SWCNTs) on the side walls using density functional calculations. Ammonia is found to be weakly physisorbed on intrinsic semiconducting nanotubes while on substitutional doping with boron its affinity is enhanced considerably reflected with increase in binding energies and charge transfer. This is attributed to the strong chemical interaction between electron rich nitrogen of ammonia and electron deficient boron of the doped SWCNT. On doping, the density of states are changed compared to the intrinsic case and additional levels are formed near the Fermi level leading to overlap of levels with that of ammonia indicating charge transfer. The doped SWCNTs thus are expected to be a potential candidate for detecting ammonia.

  5. Boron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  6. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  7. Imaging carbon and nitrogen concentrations for narcotics and explosives screening

    SciTech Connect

    Trower, W.P.

    1993-12-31

    The author describes a nuclear technique for imaging carbon and nitrogen concentrations with surface densities characteristics of bulk narcotics and concealed explosives, the Carbon and the Nitrogen Camera. The physics is rooted in the tightly bound carbon-12 nucleus to which its neighboring isobars, nitrogen-12 and boron-12, decay rapidly (11 and 20 ms), mostly to its ground state, by emitting energetic beta particles (E{sub {beta}}{sup max} {approximately} 13 and 17 MeV) all of which produce bremsstrahlung and some yield annihilate radiation. The signal, photons detected in the multiscalar mode, results from the reactions {sup 13}C({gamma},p){sup 12}{Beta} for the bulk narcotics application and {sup 14}N({gamma},2n){sup 12}N and 14N({gamma},2p){sup 12}{Beta} for explosives detection and are initiated by a stepped pulsed electron beam with energy of {approximately} 30 and {approximately} 50 MeV, respectively. Images of 180 {approximately} 5 cm{sup 2} pixels taken in {approximately} 7 seconds will be presented of the carbon in a kilo of cocaine and the nitrogen in 125 grams of SEMTEX.

  8. Residual stresses in boron/tungsten and boron/carbon fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1977-01-01

    Longitudinal residual stress distribution is determined for 102-micron diam B/W and B/C fibers. The 102-micron diam B/W fibers are deposited on a 12.7-micron diam tungsten wire resistively heated in a BCl3-H2 reactor. The 102-micron diam B/C fibers are made by deposition of boron on a pyrolytic graphite-coated carbon fiber. The longitudinal residual stress distribution is calculated from measurements of the change in length of the fiber produced by removal of the surface through electropolishing. It is found that for both types of fibers, the residual stress vary from a compressive stress at the surface to a tensile stress in the boron near the core. Closer to the core and in the core, significant differences in the residual stresses are observed for the B/W and B/C fibers.

  9. Sorption of boron trifluoride by activated carbons

    SciTech Connect

    Polevoi, A.S.; Petrenko, A.E.

    1988-01-10

    The sorption of born trifluoride on AG-3, SKT, SKT-3, SKT-7, SKT-4A, SKT-6A, and SKT-2B carbons was investigated. The sorption isotherms for both vapors and gas were determined volumetrically. The coefficients of two equations described the sorption of BF/sub 3/ in the sorption of BF/sub 3/ on active carbons. Heats of sorption of BF/sub 3/ on the activated carbons are shown and the sorption isotherms and temperature dependences of the equilibrium pressure of BF/sub 3/ for activated carbons were presented. The values of the heats of sorption indicated the weak character of the reaction of BF/sub 3/ with the surface of the carbons. The equations can be used for calculating the phase equilibrium of BF/sub 3/ on carbons in a wider range of temperatures and pressures.

  10. Investigating Carbonate System Perturbations across the Cretaceous-Palaeogene Transition using Boron Isotopes in Planktonic Foraminifera.

    NASA Astrophysics Data System (ADS)

    Henehan, M. J.; Hull, P. M.; Planavsky, N. J.; Huber, B. T.; Thomas, E.

    2014-12-01

    The interval spanning the latest Maastrichtian to the early Palaeocene has great potential in helping to elucidate the stabilising mechanisms on the Earth's carbonate system on both long and very short geological timescales, from the geologically-instantaneous production of sulphate-rich aerosols and nitrogen oxides from the K-Pg bolide impact to the relatively more gradual degassing from Deccan volcanism in the latest Maastrichtian. The extent to which ocean pH (and atmospheric CO2 concentrations) changed in response to these contrasting acidification pressures, and the timescales of their recovery, may provide unique insight into the efficiency of the Earth's oceans in buffering greenhouse gas increases (through carbonate dissolution, weathering-derived alkalinity flux, and biological carbon cycling). The boron isotope palaeo-pH proxy in planktic foraminifera is well suited to such investigations, but its application over this interval has been problematic, not least due to a scarcity of sample material and a near-complete turnover of planktonic foraminiferal species across the K-Pg boundary. To attempt to circumvent these issues, we investigate the biological influences on boron isotope signals in Maastrichtian and Danian planktonic foraminifera, with the goal of producing more accurate palaeo-pH reconstructions. With these findings in mind, we present preliminary constraints on ocean pH and carbonate system dynamics across this critical interval of geological time.

  11. Density of states of helically symmetric boron carbon nitride nanotubes.

    PubMed

    Carvalho, A C M; Bezerra, C G; Lawlor, J A; Ferreira, M S

    2014-01-01

    Motivated by the existence of helical wrapping patterns in composite nanotube systems, in this work we study the effects of the helical incorporation of carbon atoms in boron nitride nanotubes. We consider the substitutional carbon atoms distributed in stripes forming helical patterns along the nanotube axis. The density of states and energy band gap were calculated adopting Green function formalism by using the Rubio-Sancho technique in order to solve the matrix Dyson equation. We report the effects of the helical atomic distribution of carbon atoms on the behaviour of the density of states and the energy band gap. In particular, we show that the electronic energy band gap displays a non-monotonical dependence on the helical pattern, oscillating as a function of the helical angle θ.

  12. PAMELA measurements of the boron and carbon spectra

    NASA Astrophysics Data System (ADS)

    Mori, N.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-08-01

    The satellite-borne PAMELA experiment is aimed at precision measurements of the charged light component of the cosmic-ray spectrum, with a particular focus on antimatter. It consists of a magnetic spectrometer, a time-of-flight system, an electromagnetic calorimeter with a tail catcher scintillating layer, an anticoincidence system and a neutron detector. PAMELA has measured the absolute fluxes of boron and carbon and the B/C ratio, which plays a central role in galactic propagation studies in order to derive the injection spectra at sources from measurements at Earth. In this paper, the data analysis techniques and the final results are presented.

  13. Carbon nanotube quantum dots on hexagonal boron nitride

    SciTech Connect

    Baumgartner, A. Abulizi, G.; Gramich, J.; Schönenberger, C.; Watanabe, K.; Taniguchi, T.

    2014-07-14

    We report the fabrication details and low-temperature characteristics of carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.

  14. Nitrogen, phosphorus, carbon and population.

    PubMed

    Gilland, Bernard

    2015-01-01

    Population growth makes food production increase necessary; economic growth increases demand for animal products and livestock feed. As further increase of the cropland area is ecologically undesirable, it is necessary to increase crop yields; this requires, inter alia, more nitrogen and phosphorus fertiliser despite the environmental problems which this will exacerbate. It is probable that a satisfactory food supply and an environmentally benign agriculture worldwide cannot be achieved without reducing population to approximately three billion. The reduction could be achieved by 2200 if the total fertility rate--currently 2.5--declined to 1.5 as a world average by 2050, and remained at that level until 2200, but the probability of such a global fertility trajectory is close to zero. It will also be necessary to replace fossil energy by nuclear and renewable energy in order to stabilise atmospheric carbon dioxide concentration, but the phase-out cannot be completed until the 22nd century, when the atmospheric concentration will be approximately 50% above the 2015 level of 400 ppm. PMID:26790176

  15. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGESBeta

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; Zhou, Wu; Yang, Shubin; Ye, Gonglan; Liu, Zheng; Peng, Zhiwei; Lou, Jun; Vajtai, Robert; et al

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  16. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    SciTech Connect

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; Zhou, Wu; Yang, Shubin; Ye, Gonglan; Liu, Zheng; Peng, Zhiwei; Lou, Jun; Vajtai, Robert; Yakobson, Boris I.; Tour, James M.; Ajayan, Pulickel M.

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energy barriers of the rate-determining steps of the ORR reaction.

  17. Boron

    MedlinePlus

    ... and muscle coordination. Women sometimes use capsules containing boric acid, the most common form of boron, inside the vagina to treat yeast infections. People also apply boric acid to the skin as an astringent or to ...

  18. Determination of nitrogen in boron carbide by instrumental photon activation analysis.

    PubMed

    Merchel, Silke; Berger, Achim

    2007-05-01

    Boron carbide is widely used as industrial material, because of its extreme hardness, and as a neutron absorber. As part of a round-robin exercise leading to certification of a new reference material (ERM-ED102) which was demanded by the industry we analysed nitrogen in boron carbide by inert gas fusion analysis (GFA) and instrumental photon activation analysis (IPAA) using the 14N(gamma,n)13N nuclear reaction. The latter approach is the only non-destructive method among all the methods applied. By using photons with energy below the threshold of the 12C(gamma,n)11C reaction, we hindered activation of matrix and other impurities. A recently installed beam with a very low lateral activating flux gradient enabled us to homogeneously activate sample masses of approximately 1 g. Taking extra precautions, i.e. self-absorption correction and deconvolution of the complex decay curves, we calculated a nitrogen concentration of 2260+/-100 microg g-1, which is in good agreement with our GFA value of 2303+/-64 microg g-1. The values are the second and third highest of a rather atypical (non-S-shape) distribution of data of 14 round-robin participants. It is of utmost importance for the certification process that our IPAA value is the only one not produced by inert gas fusion analysis and, therefore, the only one which is not affected by a possible incomplete release of nitrogen from high-melting boron carbide.

  19. Preparation of nitrogen-doped carbon tubes

    SciTech Connect

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  20. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  1. Role of carbon in boron suboxide thin films

    NASA Astrophysics Data System (ADS)

    Music, Denis; Kugler, Veronika M.; Czigány, Zsolt; Flink, Axel; Werner, Oskar; Schneider, Jochen M.; Hultman, Lars; Helmersson, Ulf

    2003-07-01

    Boron suboxide thin films, with controlled carbon content, were grown by rf dual magnetron sputtering of boron and carbon targets in an argon-oxygen atmosphere. Film composition, structure, mechanical, and electrical properties were evaluated with x-ray photoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, nanoindentation, and high-frequency capacitance-voltage measurements. X-ray amorphous B-O-C films (O/B=0.02) showed an increase in density from 2.0 to 2.4 g/cm3 as C content was increased from 0 to 0.6 at. % and the film with the highest density had nanocrystalline inclusions. The density increase occurred most likely due to the formation of B-C bonds, which are shorter than B-B bonds. All measured material properties were found to depend strongly on the C content and thus film density. The elastic modulus increased from 188 to 281 GPa with the increasing C content, while the relative dielectric constant decreased from 19.2 to 0.9. Hence, B-O-C films show a potential for protective coatings and even for application in electronic and optical devices.

  2. Carbon Cost of Applying Nitrogen Fertilizer

    SciTech Connect

    Izaurralde, R Cesar C. ); Mcgill, William B.; Rosenberg, Norman J.

    2000-05-05

    When the addition of nitrogen (N) fertilizer leads to increased crop biomass, it also augments carbon (C)inputs to the soil and, hence often increases soil organic matter. Consequently, the efficient use of fertilizer N to increase crop production has also been found valuable for sequestering atmospheric carbon in soil.

  3. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.

  4. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Lu, Chunyuan; Dong, Qi; Tulugan, Kelimu; Park, Yeong Min; More, Mahendra A; Kim, Jaeho; Kim, Tae Gyu

    2016-02-01

    In this research, catalyst-free vertically aligned boron doped carbon nanowalls films were fabricated on silicon (100) substrates by MPECVD using feeding gases CH4, H2 and B2H6 (diluted with H2 to 5% vol) as precursors. The substrates were pre-seeded with nanodiamond colloid. The fabricated CNWs films were characterized by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The data obtained from SEM confirms that the CNWs films have different density and wall thickness. From Raman spectrum, a G peak around 1588 cm(-1) and a D band peak at 1362 cm(-1) were observed, which indicates a successful fabrication of CNWs films. The EDX spectrum of boron doped CNWs film shows the existence of boron and carbon. Furthermore, field emission properties of boron doped carbon nanowalls films were measured and field enhancement factor was calculated using Fowler-Nordheim plot. The result indicates that boron doped CNWs films could be potential electron emitting materials.

  5. Irradiation studies on carbon nanotube-reinforced boron carbide

    NASA Astrophysics Data System (ADS)

    Aitkaliyeva, Assel; McCarthy, Michael C.; Jeong, Hae-Kwon; Shao, Lin

    2012-02-01

    Radiation response of carbon nanotube (CNT) reinforced boron carbide composite has been studied for its application as a structural component in nuclear engineering. The composite was bombarded by 140 keV He ions at room temperature to a fluence ranging from 1 × 10 14 to 1 × 10 17 cm -2. Two-dimensional Raman mapping shows inhomogeneous distribution of CNTs, and was used to select regions of interest for damage characterization. For CNTs, the intensities ratio of D-G bands ( ID/ IG) increased with fluence up to a certain value, and decreased at the fluence of 5 × 10 16 cm -2. This fluence also corresponds to a trend break in the plot of FWHM (full width at half maximum) of G band vs. ID/ IG ratio, which indicates amorphization of CNTs. The study shows that Raman spectroscopy is a powerful tool to quantitatively characterize radiation damage in CNT-reinforced composites.

  6. Controlling the Bandgap of Boron Nitride Nanotubes with Carbon Doping

    NASA Astrophysics Data System (ADS)

    Mousavi, Hamze; Bagheri, Mehran

    2015-08-01

    This study explores the effects of doping by carbon (C) atoms on electronic properties of (10,10) and (16,0) boron nitride (BN) nanotubes (NTs). We exploit the random tight-binding model with Green's function technique and coherent potential approximation to show that the C dopant causes a decrease in the bandgap of the BN NTs, and their matching Van Hove singularities (VHS) in the density of states (DOS) are broadened. When the impurity concentration is large enough, the form of the DOS of the BN NTs becomes similar to that of metallic (10,10) and semiconducting (16,0) C NTs and their VHS get sharpened. This work might provide opportunities for creating new optoelectronic devices based on BN honeycomb nanosystems.

  7. Measurements of Increased Enthalpies of Adsorption for Boron-Doped Activated Carbons

    NASA Astrophysics Data System (ADS)

    Gillespie, Andrew; Beckner, Matthew; Chada, Nagaraju; Schaeperkoetter, Joseph; Singh, Anupam; Lee, Mark; Wexler, Carlos; Burress, Jacob; Pfeifer, Peter

    2013-03-01

    Boron-doping of activated carbons has been shown to increase the enthalpies of adsorption for hydrogen as compared to their respective undoped precursors (>10kJ/mol compared to ca. 5kJ/mol). This has brought significant interest to boron-doped carbons for their potential to improve hydrogen storage. Boron-doped activated carbons have been produced using a process involving the deposition of decaborane (B10H14) and high-temperature annealing resulting in boron contents up to 15%. In this talk, we will present a systematic study of the effect that boron content has on the samples' structure, hydrogen sorption, and surface chemistry. Measurements have shown a significant increase in the areal hydrogen excess adsorption and binding energy. Experimental enthalpies of adsorption will be presented for comparison to theoretical predictions. Additionally, samples have been characterized by thermal gravimetric analysis, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. TGA and GC-MS results investigated the decomposition of the decaborane in the carbon. Boron-carbon bonds are shown in the FTIR and XPS spectra, indicating that boron has been incorporated into the carbon matrix. Work supported by DOE-EERE, Award No. DE-FG36-08GO18142

  8. Ab initio modeling of graphene layer functionalized with boron and nitrogen

    SciTech Connect

    Woińska, Magdalena; Milowska, Karolina; Majewski, Jacek A.

    2013-12-04

    We present a computational study of the phenomenon of opening the band gap in graphene by means of functionalization with boron and nitrogen atoms. For most of the considered structures, we observe a nonzero energy gap with the width slightly dependent on the concentration of the substituent atoms. Additionally, elastic properties for graphene functionalized with B/N atoms for concentrations of 2% and 4% have been predicted. N-substitution almost does not influence the elastic moduli of graphene, while changes caused by B-substitution are more remarkable.

  9. Electron knock-on cross section of carbon and boron nitride nanotubes

    SciTech Connect

    Zobelli, A.; Gloter, A.; Colliex, C.; Ewels, C. P.; Seifert, G.

    2007-06-15

    We present a theoretical description of electron irradiation of single-walled carbon and boron nitride nanotubes. In a first step, the anisotropy of the atomic emission energy threshold is obtained within extended molecular-dynamics simulations based on the density-functional tight-binding method. In a second step, we numerically derive the total Mott cross section for different emission sites as a function of the incident electron energy. Two regimes are then described: at low irradiation energies (below 300 keV), the atoms are preferentially ejected from the upper and lower parts of the tube, while at high energies (above 300 keV), the atoms are preferentially ejected from the side walls. Typical values from a fraction of barn (at side wall for 150 keV electron) up to around 20 barn (for 1 MeV electrons) are obtained for the total cross section of knock-on processes for both C and BN nanotubes. These values are smaller than those previously reported using isotropic models and the main reasons for the discrepancies are discussed. Finally, in boron nitride nanotubes, we report that the emission energy threshold maps show boron sputtering to be more favorable for low irradiation energies, while nitrogen sputtering is more favorable at high energies. These calculations of the total knock-on cross section for various nanotubes can be used as a guideline for transmission electron microscopy experimentalists using high energy focused beams to shape nanotubes, and also more generally if electron irradiation is to be used to change nanotube properties such as their optical behavior or conductivity.

  10. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  11. Growth of crystals of several boron-carbon compositions by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kevill, D. N.; Rissmann, T. J.; Brewe, D.; Wood, C.

    1986-01-01

    Boron-carbon compounds have been deposited by the flow of carbon tetrachloride and boron trichloride, in the presence of a large excess of hydrogen, over a graphite surface maintained at 1000-1300 C. Deposits were formed on either an RF-heated disc or a tube or insert heated by a resistance furnace. Crystalline materials ranging in composition from B2C to B17C have been obtained.

  12. Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping

    SciTech Connect

    Wu, Yichao; Yu, Xuegong He, Hang; Chen, Peng; Yang, Deren

    2015-03-09

    We have investigated the influence of carbon co-doping on the formation of boron-oxygen defects in Czochralski silicon. It is found that carbon can effectively suppress the formation of boron-oxygen defects. Based on our experiments and first-principle theoretical calculations, it is believed that this effect is attributed to the formation of more energetically favorable carbon-oxygen complexes. Moreover, the diffusion of oxygen dimers in carbon co-doped silicon also becomes more difficult. All these phenomena should be associated with the tensile stress field induced by carbon doping in silicon.

  13. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system.

  14. Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes.

    PubMed

    Santosh, Mogurampelly; Maiti, Prabal K; Sood, A K

    2009-09-01

    Boron Nitride Nanotubes (BNNTs) have alternating boron and nitrogen atoms in graphite like network and are strongly polar in nature due to a large charge on boron and nitrogen atoms. Hence electrostatic interactions are expected to play an important role in determining the elastic properties of BNNTs. In the absence of specific partial atomic charge information for boron and nitrogen, we have studied the elastic properties BNNTs varying the partial atomic charges on boron and nitrogen. We have computed Young modulus (Y) and Shear modulus (G) of BNNT as a function of the tube radius and number of walls using molecular mechanics calculation. Our calculation shows that Young modulus of BNNTs increases with increase in magnitude of the partial atomic charge on B and N and can be larger than the Young modulus of CNTs of same radius. This is in contrast to the earlier finding that CNTs has the largest tensile strength (PRL, 80, 4502, 1998). Shear modulus, on the other hand depends weakly on the magnitude of partial atomic charge and is less than the shear modulus of the CNT The values obtained for Young modulus and Shear modulus are in excellent agreement with the available experimental results.

  15. Enhancement of electrical conductivity and electrochemical activity of hydrogenated amorphous carbon by incorporating boron atoms

    NASA Astrophysics Data System (ADS)

    Naragino, Hiroshi; Yoshinaga, Kohsuke; Nakahara, Akira; Tanaka, Sakuya; Honda, Kensuke

    2013-06-01

    Conductive boron-doped hydrogenated amorphous carbon (B-DLC) thin films were successfully synthesized with RF plasma-enhanced CVD method. By incorporating boron atoms in amorphous carbon, conduction types were changed from n- to p-type, and volume resistivity was decreased from 30.4 (non-doped) to 6.36 × 10-2 Ω cm (B/C = 2.500 atom%). B-DLC film with sp2/(sp2 + sp3) carbons of 75 atom% exhibited high resistance to electrochemically-induced corrosion in strong acid solution. Furthermore, it was clarified that boron atoms in DLC could enhance kinetics of hydrogen evolution during water electrolysis at B-DLC surface. B-DLC is, therefore, a promising electrode material for hydrogen production by increasing the concentration of boron atoms in B-DLC and enhancing the reactivity of H2 evolution.

  16. Boron carbide coating deposition on tungsten substrates from atomic fluxes of boron and carbon

    NASA Astrophysics Data System (ADS)

    Sadovskiy, Y.; Begrambekov, L.; Ayrapetov, A.; Gretskaya, I.; Grunin, A.; Dyachenko, M.; Puntakov, N.

    2016-09-01

    A device used for both coating deposition and material testing is presented in the paper. By using lock chambers, sputtering targets are easily exchanged with sample holder thus allowing testing of deposited samples with high power density electron or ion beams. Boron carbide coatings were deposited on tungsten samples. Methods of increasing coating adhesion are described in the paper. 2 μm boron carbide coatings sustained 450 heating cycles from 100 to 900 C. Ion beam tests have shown satisfactory results.

  17. Spanning graphene to carbon-nitride: A 2-D semiconductor alloy system of carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    Therrien, Joel; Li, Yancen; Schmidt, Daniel

    2014-03-01

    With the explosion of materials that form 2-D structures in the past few years, there have been a much more diverse ecosystem of combinations of characteristics to explore. Yet with the majority of materials investigated, the properties are fixed according to the composition of the material. Ideally, one wishes to have a tunable system similar to the semiconductor alloy systems, such as AlxGa1-xAs. There have been some theoretical studies of transition metal dichalogenides, none have been reported experimentally as of this writing. The tertianary alloy of BCN has been synthesized, however it was found that the boron had the tendency to cause phase segregation of the material into domains of graphene and boron nitride. Here we will report on the synthesis of non-phase seperated carbon-nitrogen 2D alloys ranging from graphene (Eg = 0 eV) to carbon-nitride, or melon, (Eg = 2.7 eV). We will report on synthesis methods and a summary of relevant electronic and material properties of selected alloys.

  18. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity.

    PubMed

    Polyakov, S N; Denisov, V N; Mavrin, B N; Kirichenko, A N; Kuznetsov, M S; Martyushov, S Yu; Terentiev, S A; Blank, V D

    2016-12-01

    The insufficient data on a structure of the boron-doped diamond (BDD) has frustrated efforts to fully understand the fascinating electronic properties of this material and how they evolve with doping. We have employed X-ray diffraction and Raman scattering for detailed study of the large-sized BDD single crystals. We demonstrate a formation of boron-carbon (B-C) nanosheets and bilayers in BDD with increasing boron concentration. An incorporation of two boron atoms in the diamond unit cell plays a key role for the B-C nanosheets and bilayer formation. Evidence for these B-C bilayers which are parallel to {111} planes is provided by the observation of high-order, super-lattice reflections in X-ray diffraction and Laue patterns. B-C nanosheets and bilayers minimize the strain energy and affect the electronic structure of BDD. A new shallow acceptor level associated with B-C nanosheets at ~37 meV and the spin-orbit splitting of the valence band of ~6 meV are observed in electronic Raman scattering. We identified that the superconducting transitions occur in the (111) BDD surfaces only. We believe that the origin of Mott and superconducting transitions is associated with the two-dimensional (2D) misfit layer structure of BDD. A model for the BDD crystal structure, based on X-ray and Raman data, is proposed and confirmed by density functional theoretical calculation. PMID:26754937

  19. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick; Lee, Mark W.; Jalistegi, Satish S.

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  20. Mechanical properties of hybrid boron nitride-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Wang, Chengyuan

    2016-04-01

    Hybrid boron nitride-carbon nanotubes (BN-CNTs) have attracted considerable attention in recent research. In this effort, molecular dynamics simulations were performed to study the fundamentals of BN-CNTs in tensile tests, i.e. Young’s modulus and fracture strength (strain). Particular attention was paid to the influence of the atomic structure, hybrid style, and BN concentration on the tensile properties. The morphological changes were also investigated for the BN-CNTs at the onset of fracture. It is noted that the Young’s modulus of BN-CNTs decreases almost linearly with increasing the BN concentration with a rate of change independent of the hybrid style. In contrast, the sensitivity of the fracture strength and fracture strain to the variation of BN concentration depends strongly on the hybrid style of BN-CNTs. These results are expected to significantly expand the knowledge of the elastic and fracture properties of novel nanostructures and facilitate their applications in bandgap-engineering.

  1. Pentagonal monolayer crystals of carbon, boron nitride, and silver azide

    SciTech Connect

    Yagmurcukardes, M. Senger, R. T.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F. M.

    2015-09-14

    In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2}), and silver azide (p-AgN{sub 3}) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN{sub 3} are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2} have negative Poisson's ratio values. On the other hand, the p-AgN{sub 3} has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B{sub 2}N{sub 4} are stable, but p-AgN{sub 3} and p-B{sub 4}N{sub 2} are vulnerable against vibrational excitations.

  2. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  3. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  4. Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials

    SciTech Connect

    Damle, A.

    2010-02-03

    The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated to determine optimum decomposition conditions in terms of temperature for decomposition, rate of hydrogen release, purity of hydrogen produced, thermal efficiency of decomposition, and regenerability of the decomposition products. The non-catalytic studies provide a base-line performance to evaluate catalytic decomposition. Utilization of solid phase catalysts mixed with ammonia-borane was explored for its potential to lower the decomposition temperature, to increase the rate of hydrogen release at a given temperature, to lead to decomposition products

  5. Radiochemistry of carbon, nitrogen and oxygen

    SciTech Connect

    Sajjad, M.; Lambrecht, R.M.

    1988-01-01

    The present monograph consists of two reviews. The first section deals with radiopharmaceutical and biomedical applications. The second section deals with analysis of carbon, nitrogen and oxygen in different materials by use of nuclear techniques. This monograph is published as part of our continuing effort to update, revise, and expand the previously published monographs to keep them current and relevant. 158 refs., 4 figs., 12 tabs.

  6. Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma `

    SciTech Connect

    Gleiman, S. S.; Phillips, J.

    2001-01-01

    We have developed a method for producing spherically-shaped, hexagonal phase boron nitride (hBN) particles of controlled diameter in the 10-100 micron size range. Specifically, platelet-shaped hBN particles are passed as an aerosol through a microwave-generated, atmospheric pressure, nitrogen plasma. In the plasma, agglomerates formed by collisions between input hBN particles, melt and forms spheres. We postulate that this unprecedented process takes place in the unique environment of a plasma containing a high N-atom concentration, because in such an environment the decomposition temperature can be raised above the melting temperature. Indeed, given the following relationship [1]: BN{sub (condensed)} {leftrightarrow} B{sub (gas)} + N{sub (gas)}. Standard equilibrium thermodynamics indicate that the decomposition temperature of hBN is increased in the presence of high concentrations of N atoms. We postulate that in our plasma system the N atom concentration is high enough to raise the decomposition temperature above the (undetermined) melting temperature. Keywords Microwave plasma, boron nitride, melting, spherical, thermodynamics, integrated circuit package.

  7. Understanding the Boron-Nitrogen Interaction and Its Possible Implications in Drug Design.

    PubMed

    Dong, Hao; Li, Wei; Sun, Jianwei; Li, Shuhua; Klein, Michael L

    2015-11-12

    2-Aminoethoxydiphenylborate (2-APB) is a broad-spectrum modulator of various membrane proteins. Specifically, it exhibits concentration dependent modulation of calcium signaling through store-operated calcium (SOC) channels: low micromolar concentration of 2-APB stimulates SOC entry while a higher concentration induces complete inhibition. Ab initio quantum chemical calculations show that the relative stability of the two major isomers of 2-APB (cyclic and extended) is about 8 kcal/mol. The dual functionality of 2-APB for SOC channels is thus likely associated with its ability to switch among isomeric forms, suited to different binding sites in the SOC channels with distinct binding affinities. Importantly, the moderate relative stability of different isomers results from a delicate balance between the intramolecular boron-nitrogen coordinate bond with strength about -45 kcal/mol and ring strain engendered by cyclic oligomerization. The synergistic effect of these two factors likely makes 2-APB an ideal dual effect drug.

  8. Photochemical depassivation of hydrogenated (100) nitrogen surface of cubic boron nitride

    SciTech Connect

    Komatsu, S.

    1997-07-01

    The passivation of nitrogen top-layered (100) surface of cBN by hydrogen was theoretically predicted to be related to the difficulty of chemical vapor deposition of cubic boron nitride recently. The possibility of photochemical depassivation of this surface was suggested by the anti-bonding nature of the surface H-N bonds at the lowest unoccupied molecular orbital; that was demonstrated by AM1 molecular orbital calculations using large cBN clusters such as B{sub 30}N{sub 32}H{sub 64}{sup (2+)} and B{sub 30}N{sub 32}H{sub 62}(2BH {sub 3}). {copyright} {ital 1997 Materials Research Society.}

  9. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis.

    PubMed

    Widory, David; Petelet-Giraud, Emmanuelle; Négrel, Philippe; Ladouche, Bernard

    2005-01-15

    Nitrate (NO3) is one of the world's major pollutants of drinking water resources. Although recent European Directives have reduced input from intensive agriculture, NO3 levels in groundwater are approaching the drinking water limit of 50 mg L(-1) almost everywhere. Determining the sources of groundwater contamination is an important first step toward improving its quality by emission control. It is with this aim that we review here the benefit of using a coupled isotopic approach (delta15N and delta11B), in addition to conventional hydrogeological analyses, to trace the origin of NO3 in water. The studied watersheds include both fractured bedrock and alluvial (subsurface and deep) hydrogeological contexts. The joint use of nitrogen and boron isotope systematics in each context deciphers the origin of NO3 in the groundwater and allows a semi-quantification of the contributions of the respective pollution sources (mineral fertilizers, wastewater, and animal manure).

  10. Carbon and nitrogen metabolism in Rhizobium.

    PubMed

    Poole, P; Allaway, D

    2000-01-01

    One of the paradigms of symbiotic nitrogen fixation has been that bacteroids reduce N2 to ammonium and secrete it without assimilation into amino acids. This has recently been challenged by work with soybeans showing that only alanine is excreted in 15N2 labelling experiments. Work with peas shows that the bacteroid nitrogen secretion products during in vitro experiments depend on the experimental conditions. There is a mixed secretion of both ammonium and alanine depending critically on the concentration of bacteroids and ammonium concentration. The pathway of alanine synthesis has been shown to be via alanine dehydrogenase, and mutation of this enzyme indicates that in planta there is likely to be mixed secretion of ammonium and alanine. Alanine synthesis directly links carbon catabolism and nitrogen assimilation in the bacteroid. There is now overwhelming evidence that the principal carbon sources of bacteroids are the C4-dicarboxylic acids. This is based on labelling and bacteroid respiration data, and mutation of both the dicarboxylic acid transport system (dct) and malic enzyme. L-malate is at a key bifurcation point in bacteroid metabolism, being oxidized to oxaloacetate and oxidatively decarboxylated to pyruvate. Pyruvate can be aminated to alanine or converted to acetyl-CoA where it either enters the TCA cycle by condensation with oxaloacetate or forms polyhydroxybutyrate (PHB). Thus regulation of carbon and nitrogen metabolism are strongly connected. Efficient catabolism of C4-dicarboxylates requires the balanced input and removal of intermediates from the TCA cycle. The TCA cycle in bacteroids may be limited by the redox state of NADH/NAD+ at the 2-ketoglutarate dehydrogenase complex, and a number of pathways may be involved in bypassing this block. These pathways include PHB synthesis, glutamate synthesis, glycogen synthesis, GABA shunt and glutamine cycling. Their operation may be critical in maintaining the optimum redox poise and carbon balance of

  11. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. PMID:22382070

  12. Residual stresses in boron/tungsten and boron/carbon fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1977-01-01

    By measuring the change in fracture stress of 203 micrometer diameter fibers of boron on tungsten (B/W) as a function of fiber diameter as reduced by chemical etching, it is shown that the flaws which limit B/W fiber strength are located at the surface and in the tungsten boride core. After etching to a diameter of 188 micrometers m virtually all fiber fractures were caused by core flaws, the average strength being 4.50 GN/sq m. If both the surface and core flaws are removed, the fracture strength, limited by flaws in the boron itself, is approximately 6.89 GN/sq m. This was measured on B/W fibers which were split longitudinally and had their cores removed by chemical etching. The longitudinal residual stress distribution was determined for 102 micrometer diameter B/W and B/C fibers.

  13. Study of the effect of nano-sized precipitates on the mechanical properties of boron-added low-carbon steels by neutron scattering techniques

    PubMed Central

    Seong, B. S.; Cho, Y. R.; Shin, E. J.; Kim, S. I.; Choi, S.-H.; Kim, H. R.; Kim, Y. J.

    2008-01-01

    Small-angle neutron scattering (SANS) and neutron powder diffraction (ND) techniques were used to study quantitatively the effect of nano-sized precipitates and boron addition on the mechanical properties of low-carbon steels. SANS was used to evaluate nano-sized precipitates, smaller than about 600 Å in diameter, and ND was used to determine the weight fraction of the cementite precipitates. Fine core–shell structured spherical precipitates with an average radius of ~50 Å, such as MnS and/or CuS, surrounded by BN layers were observed in the boron-added (BA) low-carbon steels; fine spherical precipitates with an average radius of ~48 Å were mainly observed in the boron-free (BF) low-carbon steels. In the BA steels, the number of boron precipitates, such as BN, Fe3(C,B) and MnS, surrounded by BN layers increased drastically at higher hot-rolling temperatures. The volume fraction of the fine precipitates of the BA steels was higher than that of the BF steels; this difference is related to the rapid growth of the BN layers on the MnS and CuS precipitates. Boron addition to low-carbon steels resulted in a reduction in strength and an improvement in elongation; this behaviour is related to the reduction of the solute carbon and the nitrogen contents in the ferrite matrix caused by the precipitation of BN, as well by the increase in the volume fraction of the cementites. PMID:19461851

  14. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    PubMed

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  15. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    PubMed

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors. PMID:23334699

  16. Investigation of the sensitivity, selectivity, and reversibility of the chemically-sensitive field-effect transistor (CHEMFET) to detect nitrogen dioxide, dimethyl methylphosphonate, and boron trifluoride. Master's thesis

    SciTech Connect

    Hauschild, N.T.

    1993-09-01

    This study investigated the sensitivity, selectivity, and reversibility of a chemically-sensitive field-effect transistor (CHEMFET) gas microsensor. Various physical operating parameters were tested to determine which produced the most significant sensitivity, selectivity, and reversibility which were computed from response changes generated from electrical conductivity modulations when exposed to challenge gases. The variable operating parameters included: thinfilm material, film thickness, challenge gas specie, challenge gas concentration, and operating temperature. Copper phthalocyanine and lead phthalocyanine were used as thin films to detect the following challenge gases: nitrogen dioxide, dimethyl methylphosphonate, boron trifluoride, methanol, carbon monoxide, vinyl chloride, and trichloroethylene. Tests revealed that copper phthalocyanine was the most sensitive to dimethyl methylphosphonate and boron trifluoride, whereas lead phthalocyanine was the most sensitive to the remaining challenge gases. The CHEMFET was selective to the binary challenge gas combinations. The films were most selective for nitrogen dioxide. The CHEMFET was fully reversibly, and the time duration for full reversibility increased with increasing challenge gas concentrations and increasing time of exposure.

  17. En Route to Stimuli-Responsive Boron-, Nitrogen-, and Sulfur-Doped Polycyclic Aromatic Hydrocarbons.

    PubMed

    Hertz, Valentin M; Massoth, Julian G; Bolte, Michael; Lerner, Hans-Wolfram; Wagner, Matthias

    2016-09-01

    Replacing both meso carbon atoms of the polycyclic aromatic hydrocarbon (PAH) bisanthene by boron atoms creates an efficient blue fluorophore with a strong electron-accepting character. The corresponding meso-B,S-doped bisanthene exhibits a solvent-dependent green-to-orange photoluminescence and undergoes a reversible reduction at E1/2 =-2.06 V (vs. FcH/FcH(+) ). After oxidation of the sulfur atom, the resulting sulfoxide emits in the blue range of the spectrum, shows only negligible solvatochromism, and a reversible redox transition at E1/2 =-1.74 V. Several related B, N- and B, S-containing PAHs have been prepared following the same modular synthetic procedure and are also described herein. In order to systematically compare their optoelectronic properties, all products have been investigated by cyclic voltammetry as well as UV/Vis absorption/emission spectroscopy.

  18. En Route to Stimuli-Responsive Boron-, Nitrogen-, and Sulfur-Doped Polycyclic Aromatic Hydrocarbons.

    PubMed

    Hertz, Valentin M; Massoth, Julian G; Bolte, Michael; Lerner, Hans-Wolfram; Wagner, Matthias

    2016-09-01

    Replacing both meso carbon atoms of the polycyclic aromatic hydrocarbon (PAH) bisanthene by boron atoms creates an efficient blue fluorophore with a strong electron-accepting character. The corresponding meso-B,S-doped bisanthene exhibits a solvent-dependent green-to-orange photoluminescence and undergoes a reversible reduction at E1/2 =-2.06 V (vs. FcH/FcH(+) ). After oxidation of the sulfur atom, the resulting sulfoxide emits in the blue range of the spectrum, shows only negligible solvatochromism, and a reversible redox transition at E1/2 =-1.74 V. Several related B, N- and B, S-containing PAHs have been prepared following the same modular synthetic procedure and are also described herein. In order to systematically compare their optoelectronic properties, all products have been investigated by cyclic voltammetry as well as UV/Vis absorption/emission spectroscopy. PMID:27514699

  19. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Lu, Chunyuan; Dong, Qi; Tulugan, Kelimu; Park, Yeong Min; More, Mahendra A; Kim, Jaeho; Kim, Tae Gyu

    2016-02-01

    In this research, catalyst-free vertically aligned boron doped carbon nanowalls films were fabricated on silicon (100) substrates by MPECVD using feeding gases CH4, H2 and B2H6 (diluted with H2 to 5% vol) as precursors. The substrates were pre-seeded with nanodiamond colloid. The fabricated CNWs films were characterized by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The data obtained from SEM confirms that the CNWs films have different density and wall thickness. From Raman spectrum, a G peak around 1588 cm(-1) and a D band peak at 1362 cm(-1) were observed, which indicates a successful fabrication of CNWs films. The EDX spectrum of boron doped CNWs film shows the existence of boron and carbon. Furthermore, field emission properties of boron doped carbon nanowalls films were measured and field enhancement factor was calculated using Fowler-Nordheim plot. The result indicates that boron doped CNWs films could be potential electron emitting materials. PMID:27433646

  20. Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?

    PubMed

    Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun

    2015-02-21

    Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.

  1. Electroextraction of boron from boron carbide scrap

    SciTech Connect

    Jain, Ashish; Anthonysamy, S.; Ghosh, C.; Ravindran, T.R.; Divakar, R.; Mohandas, E.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  2. Relationship between carbon and nitrogen mineralization in a subtropical soil

    NASA Astrophysics Data System (ADS)

    Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. β-1,4- Glucosaminidase, chitinase, acid phosphatase, β-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.

  3. Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Johnston, Norman J.; Marchello, Joseph M.

    2003-01-01

    A dry process has been invented as an improved means of manufacturing composite prepreg tapes that consist of high-temperature thermoplastic polyimide resin matrices reinforced with carbon and boron fibers. Such tapes are used (especially in the aircraft industry) to fabricate strong, lightweight composite-material structural components. The inclusion of boron fibers results in compression strengths greater than can be achieved by use of carbon fibers alone. The present dry process is intended to enable the manufacture of prepreg tapes (1) that contain little or no solvent; (2) that have the desired dimensions, fiber areal weight, and resin content; and (3) in which all of the fibers are adequately wetted by resin and the boron fibers are fully encapsulated and evenly dispersed. Prepreg tapes must have these properties to be useable in the manufacture of high-quality composites by automated tape placement. The elimination of solvent and the use of automated tape placement would reduce the overall costs of manufacturing.

  4. Re-calculating the pH record from boron isotopic composition of biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Paris, G.; Gaillardet, J.; Louvat, P.

    2010-12-01

    The boron isotopic composition of marine carbonates (δ11Bcarb, ‰) has been proposed as a seawater paleo-acidity proxy (Hemming and Hanson, 1992; Vengosh et al., 1991). This proxy has been extensively used to reconstruct seawater paleo-pH and eventually atmospheric pCO2 during recent times or over short time-scales. However, it requires the knowledge of seawater δ11B value. Boron has a residence time of 10-20 My in seawater, longer than the mixing time of the ocean. The boron isotopic composition of seawater (δ11Bsw) is thus homogeneous in the modern ocean, yet it is not known in the past even though reconstruction and modeling have been attempted that rely on many hypotheses (Lemarchand et al., 2002; Pearson and Palmer, 2000). The boron isotopic composition of Cenozoic evaporites has been recently reconstructed using the direct record of Cenozoic evaporites (Paris et al., 2010). This reconstruction suggests that δ11Bsw has significantly changed along the last 40 Ma, in agreement with other parameters of the oceanic chemical composition. The δ11Bsw change amplitude appears to be stronger than suggested by models. In this presentation, we explore the consequences of this reconstruction on paleo-pH calculation for the late Cenozoic from published boron isotope record in biogenic carbonates (Pearson and Palmer, 2000; Pearson et al., 2009; Seki et al., 2010; Spivack et al., 1993). It points out the inconsistency between different dataset, due to the techniques used for boron isotopic measurement. In conclusion, we suggest that the seawater pH variations are not known with a sufficient precision over the last 35 My and that seawater surface pH could have likely remained constant. Hemming, N.G., and Hanson, G.N. (1992), Boron isotopic composition and concentration in modern marine carbonates: Geochimica et Cosmochimica Acta, v. 56, p. 537-543. Lemarchand, D., et al. (2002), Boron isotope systematics in large rivers: implications for the marine boron budget and

  5. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT. PMID:27548011

  6. Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy.

    PubMed

    Xiong, Hejian; Wei, Xing; Zhou, Dongfang; Qi, Yanxin; Xie, Zhigang; Chen, Xuesi; Jing, Xiabin; Huang, Yubin

    2016-09-21

    Carboranes with rich boron content have showed significant applications in the field of boron neutron capture therapy. Biodegradable derivatives of carborane-conjugated polymers with well-defined structure and tunable loading of boron atoms are far less explored. Herein, a new family of amphiphilic carborane-conjugated polycarbonates was synthesized by ring-opening polymerization of a carborane-installed cyclic carbonate monomer. Catalyzed by TBD from a poly(ethylene glycol) macroinitiator, the polymerization proceeded to relatively high conversions (>65%), with low polydispersity in a certain range of molecular weight. The boron content was readily tuned by the feed ratio of the monomer and initiator. The resultant amphiphilic polycarbonates self-assembled in water into spherical nanoparticles of different sizes depending on the hydrophilic-to-hydrophobic ratio. It was demonstrated that larger nanoparticles (PN150) were more easily subjected to protein adsorption and captured by the liver, and smaller nanoparticles (PN50) were more likely to enter cancer cells and accumulate at the tumor site. PN50 with thermal neutron irradiation exhibited the highest therapeutic efficacy in vivo. The new synthetic method utilizing amphiphilic biodegradable boron-enriched polymers is useful for developing more-selective and -effective boron delivery systems for BNCT.

  7. In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants.

    PubMed

    Garrett, David J; Saunders, Alexia L; McGowan, Ceara; Specks, Joscha; Ganesan, Kumaravelu; Meffin, Hamish; Williams, Richard A; Nayagam, David A X

    2016-01-01

    Recently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo.

  8. In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants.

    PubMed

    Garrett, David J; Saunders, Alexia L; McGowan, Ceara; Specks, Joscha; Ganesan, Kumaravelu; Meffin, Hamish; Williams, Richard A; Nayagam, David A X

    2016-01-01

    Recently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo. PMID:25611731

  9. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  10. Growth Mechanisms of Vertically-aligned Carbon, Boron Nitride, and Zinc Oxide Nanotubes

    SciTech Connect

    Yap, Yoke Khin

    2009-07-07

    Nanotubes are one-dimensional nanomaterials with all atoms located near the surface. This article provides a brief review on the possible growth mechanisms of a series of inorganic nanotubes, in particular, vertically-aligned (VA) carbon nanotubes (CNTs), boron nitride nanotubes (BNNTs), and ZnO nanotubes (ZnO NTs).

  11. Boron Trifluoride Catalized Ring-Opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron trifluoride diethyl etherate (BF3.OEt2) catalyzed ring-opening polymerization of epoxidized soybean oil (ESO), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, differ...

  12. Synthesis and Functionalization of Carbon and Boron Nitride Nanomaterials and Their Applications

    NASA Astrophysics Data System (ADS)

    Erickson, Kristopher John

    Carbon and boron-nitride based nanomaterials possess many exciting properties making them suitable for numerous applications spanning from electronics to advanced composites. However, these materials when synthesized often differ significantly from the idealized crystals usually considered theoretically. A thorough understanding of the structure of the materials as synthesized and how the resultant materials can be utilized for specific application purposes is required such that these applications can be effectively realized. To this end, the synthesis and characterization of carbon and boron-nitride based nanomaterials is undertaken with specific application purposes in mind. As a potential scalable synthetic route for graphene, graphene oxide (GO) and reduced graphene oxide are synthesized and characterized using atomic resolution electron microscopy. This elucidates their underlying structures revealing that the reduced form of GO does not resemble pristine graphene. The long-standing debate over the structure of GO is successfully ended with this study given the direct observation of the atomic structure of this material. To develop advanced composite materials, the functionalization of carbon and boron nitride nanotubes is undertaken. The characterization of their functionalization and incorporation within composite materials, specifically within a Kevlar polymer matrix, is presented to allow for the development of composites with significantly enhanced mechanical properties. Given a significant body of theoretical work paired with a single previous synthetic success, the synthesis of boron nitride nanoribbons is outlined. The first scalable synthesis of boron nitride nanoribbons is demonstrated resulting in long, consistent width, narrow, few-layer boron nitride nanoribbons which could be ideal for addressing these theoretical considerations. To establish a method for the synthesis of thin hexagonal-boron nitride (h-BN), the design of a specialized CVD system

  13. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation.

    PubMed

    Zhang, Yu-qing; Liu, Yue-Jie; Liu, Yan-ling; Zhao, Jing-xiang

    2014-06-01

    The pristine boron nitride nanotube (BNNT) exhibits a poor chemical reactivity to some adsorbates, thus greatly limiting its application for the gas sensor. In the present work, using density functional theory (DFT) methods, we put forward a novel strategy to enhance the sensitivity of BNNT to nitrogen dioxide (NO2) by the encapsulation of a single Fe atom inside its cavity. The results suggest that the NO2 molecule can be only physically adsorbed on the pristine BNNT with a small adsorption energy (-0.10 eV). After the inclusion of the Fe atom inside BNNT (Fe@BNNT), the interaction of NO2 molecules with this tube is significantly enhanced, leading to a transformation from the physisorption of on pristine BNNT to the current chemisorption. Interestingly, up to five NO2 molecules can be adsorbed on this encapsulated BNNT along its circumference with the average adsorption energy of -0.52 eV, corresponding to a short recovery time (6 ms). Moreover, 0.38 electrons are transferred from the Fe@BNNT to the adsorbed NO2 molecules, which is enough to induce the obvious change of its electrical conductance. Thus, we predict that the encapsulation of Fe atom inside BNNT would greatly boosts its sensitivity to NO2 molecules, indicating its potential application as NO2 sensors. PMID:24837498

  14. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

    NASA Astrophysics Data System (ADS)

    Cheng, Yi-Han; Zhang, Chuan-Yu; Ren, Juan; Tong, Kai-Yu

    2016-10-01

    New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen ( h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the C n -BN ( n = 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96-13.59 Å by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped C n -intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10-21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (-80 °C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

  15. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  16. Connecting effect on the first hyperpolarizability of armchair carbon-boron-nitride heteronanotubes: pattern versus proportion.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2016-05-18

    Carbon-boron-nitride heteronanotubes (BNCNT) have attracted a lot of attention because of their adjustable properties and potential applications in many fields. In this work, a series of CA, PA and HA armchair BNCNT models were designed to explore their nonlinear optical (NLO) properties and provide physical insight into the structure-property relationships; CA, PA and HA represent the models that are obtained by doping the carbon segment into pristine boron nitride nanotube (BNNT) fragments circularly around the tube axis, parallel to the tube axis and helically to the tube axis, respectively. Results show that the first hyperpolarizability (β0) of an armchair BNCNT model is dramatically dependent on the connecting patterns of carbon with the boron nitride fragment. Significantly, the β0 value of PA-6 is 2.00 × 10(4) au, which is almost two orders of magnitude larger than those (6.07 × 10(2) and 1.55 × 10(2) au) of HA-6 and CA-6. In addition, the β0 values of PA and CA models increase with the increase in carbon proportion, whereas those of HA models show a different tendency. Further investigations on transition properties show that the curved charge transfer from N-connecting carbon atoms to B-connecting carbon atoms of PA models is essentially the origin of the big difference among these models. This new knowledge about armchair BNCNTs may provide important information for the design and preparation of advanced NLO nano-materials.

  17. Properties and electrochemical characteristics of boron-doped multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tsierkezos, Nikos G.; Ritter, Uwe; Nugraha Thaha, Yudi; Krischok, Stefan; Himmerlich, Marcel; Downing, Clive

    2015-10-01

    Boron-doped multi-walled carbon nanotubes were synthesized upon decomposition of ethyl alcohol and boric acid via chemical vapor deposition. The boron-doped nanotubes were treated with hydrochloric acid and were characterized by means of scanning electron and transmission electron microscopy in conjunction with energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. The electrochemistry of ferrocyanide/ferricyanide on boron-doped nanotubes was studied in temperature range of 283.15-303.15 K. The findings exhibit an improvement of films' current response and kinetics of electron transfer with the rise in temperature. The kinetics for electron transfer enhances and the redox process occurs slightly more spontaneously upon acid treatment.

  18. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  19. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  20. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    PubMed

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  1. Investigations on the system boron-carbon silicon

    NASA Technical Reports Server (NTRS)

    Kieffer, R.; Gugel, E.; Leimer, G.; Ettmayer, P.

    1983-01-01

    The above elements form with each other binary compounds which are very interesting from the point of view of their structure and their chemistry and which are important for technology. The present investigation is concerned with the three-component system and the behavior of the binary compounds occurring in it. Investigations employing various techniques, such as X-ray, chemical analysis, microscopy and fusion experiments showed that no ternary phase exists within the boundary of the ternary system. There is no compound with a higher abrasion capacity than boron carbide. The probable phase field divisions at two isothermic intersections and the fusion isotherms are indicated.

  2. Synergic nitrogen source route to inorganic fullerene-like boron nitride with vessel, hollow sphere, onion, and peanut nanostructures.

    PubMed

    Xu, Fen; Xie, Yi; Zhang, Xu; Zhang, Shuyuan; Liu, Xianming; Tian, Xiaobo

    2004-01-26

    In this paper we describe the large-scale synthesis of inorganic fullerene-like (IF-like) hexagonal boron nitride with vessel, hollow sphere, peanut, and onion structures by reacting BBr(3) with the synergic nitrogen sources NaNH(2) and NH(4)Cl at 400-450 degrees C for 6-12 h. The composition of products could be confirmed to be pure boron nitride with hexagonal structures by the XRD patterns and FT-IR, XPS, and EDXA spectra. The representative HRTEM images clearly reveal the layerlike features of the products. Here, the peanut-like structure of the IF-like BN is reported for the first time, and added to the list as one kind of new morphology of BN nanomaterials. The similarity in the structure between h-BN and graphite is responsible for the formation of IF-like BN with nanostructures of vessels, hollow spheres, peanuts, and onions. PMID:14731047

  3. Stable carbon isotope discrimination: an indicator of cumulative salinity and boron stress in Eucalyptus camaldulensis.

    PubMed

    Poss, J A; Grattan, S R; Suarez, D L; Grieve, C M

    2000-10-01

    Saplings of Eucalyptus camaldulensis Dehn. Clone 4544, irrigated with water of differing salinities (2 to 28 dS m-1) and boron concentrations (1 to 30 mg l-1), integrated the history of these stresses through the discrimination of stable isotopes of carbon in leaf and woody tissues. Carbon isotope discrimination (delta) was reduced primarily by salinity. Decreases in discrimination in response to boron stress were detected in the absence of salinity stress, but the decreases were significant only in leaf tissues with visible boron injury. Sapwood core samples indicated that salinity- and boron-induced reductions in delta increased with increasing tree age. Absolute values of delta varied with location of leaf or wood tissue, but relative effects of salinity on the relationship between delta and transpiration efficiency (W) were similar. In response to increasing salinity stress, relative decreases in delta paralleled relative decreases in biomass and both indices yielded similar salt tolerance model parameters. The strong correlations between delta, tree fresh weight, leaf area and W suggest that delta is a useful parameter for evaluating salt tolerance of eucalyptus PMID:11269964

  4. High quality boron carbon nitride/ZnO-nanorods p-n heterojunctions based on magnetron sputtered boron carbon nitride films

    SciTech Connect

    Qian, J. C.; Jha, S. K. E-mail: apwjzh@cityu.edu.hk; Wang, B. Q.; Jelenković, E. V.; Bello, I.; Klemberg-Sapieha, J. E.; Martinu, L.; Zhang, W. J. E-mail: apwjzh@cityu.edu.hk

    2014-11-10

    Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ∼1.0 eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of ±5 V.

  5. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    SciTech Connect

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  6. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  7. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.

  8. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration. PMID:25216023

  9. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    PubMed

    Zaehle, S

    2013-07-01

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  10. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    PubMed

    Zaehle, S

    2013-07-01

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing. PMID:23713123

  11. Measurement of Boron and Carbon Fluxes in Cosmic Rays with the PAMELA Experiment

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; Danilchenko, I. A.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Pizzolotto, C.; Ricci, M.; Ricciarini, S. B.; Rossetto, L.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2014-08-01

    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei as well as the B/C ratio from the PAMELA space experiment. The results span the range 0.44-129 GeV/n in kinetic energy for data taken in the period 2006 July to 2008 March.

  12. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment

    SciTech Connect

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Carbone, R.; Bogomolov, E. A.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Castellini, G.; Danilchenko, I. A.; and others

    2014-08-20

    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei as well as the B/C ratio from the PAMELA space experiment. The results span the range 0.44-129 GeV/n in kinetic energy for data taken in the period 2006 July to 2008 March.

  13. Report on carbon and nitrogen abundance studies

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1991-01-01

    The aim of the proposal was to determine the nitrogen to carbon abundance ratios from transition layer lines in stars with different T(sub eff) and luminosities. The equations which give the surface emission line fluxes and the measured ratio of the NV to CIV emission line fluxes are presented and explained. The abundance results are compared with those of photospheric abundance studies for stars in common with the photospheric investigations. The results show that the analyses are at least as accurate as the photospheric determinations. These studies can be extended to F and early G stars for which photospheric abundance determinations for giants are hard to do because molecular bands become too weak. The abundance determination in the context of stellar evolution is addressed. The N/C abundance ratio increases steeply at the point of evolution for which the convection zone reaches deepest. Looking at the evolution of the rotation velocities v sin i, a steep decrease in v sin i is related to the increasing depth of the convection zone. It is concluded that the decrease in v sin i for T(sub eff) less than or approximately = 5800 K is most probably due to the rearrangement of the angular momentum in the stars due to deep convective mixing. It appears that the convection zone is rotating with nearly depth independent angular momentum. Other research results and ongoing projects are discussed.

  14. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    PubMed

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  15. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  16. Connecting effect on the first hyperpolarizability of armchair carbon-boron-nitride heteronanotubes: pattern versus proportion.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2016-05-18

    Carbon-boron-nitride heteronanotubes (BNCNT) have attracted a lot of attention because of their adjustable properties and potential applications in many fields. In this work, a series of CA, PA and HA armchair BNCNT models were designed to explore their nonlinear optical (NLO) properties and provide physical insight into the structure-property relationships; CA, PA and HA represent the models that are obtained by doping the carbon segment into pristine boron nitride nanotube (BNNT) fragments circularly around the tube axis, parallel to the tube axis and helically to the tube axis, respectively. Results show that the first hyperpolarizability (β0) of an armchair BNCNT model is dramatically dependent on the connecting patterns of carbon with the boron nitride fragment. Significantly, the β0 value of PA-6 is 2.00 × 10(4) au, which is almost two orders of magnitude larger than those (6.07 × 10(2) and 1.55 × 10(2) au) of HA-6 and CA-6. In addition, the β0 values of PA and CA models increase with the increase in carbon proportion, whereas those of HA models show a different tendency. Further investigations on transition properties show that the curved charge transfer from N-connecting carbon atoms to B-connecting carbon atoms of PA models is essentially the origin of the big difference among these models. This new knowledge about armchair BNCNTs may provide important information for the design and preparation of advanced NLO nano-materials. PMID:27152376

  17. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes.

    PubMed

    Endo, Morinobu; Muramatsu, Hiroyuki; Hayashi, Takuya; Kim, Yoong-Ahm; Van Lier, Gregory; Charlier, Jean-Christophe; Terrones, Humberto; Terrones, Mauricio; Dresselhaus, Mildred S

    2005-06-01

    Here we demonstrate that the incorporation of boron (B) atoms between double-walled carbon nanotubes (DWNTs) during thermal annealing (1400-1600 degrees C) results in covalent nanotube "Y" junctions, DWNT coalescence, and the formation of flattened multiwalled carbon nanotubes (MWNTs). These processes occur via the merging of adjacent tubes, which is triggered by B interstitial atoms. We observe that B atom interstitials between DWNTs are responsible for the rapid establishment of covalent connections between neighboring tubes (polymerization), thereby resulting in the fast annealing of the carbon cylinders with B atoms embedded in the newly created carbon nanotube network. Once B is in the lattice, tube faceting (polygonization) starts to occur, and the electronic properties are expected to change dramatically. Therefore, B atoms indeed act as atomic nanotube fusers (or welders), and this process could now be used in assembling novel electronic nanotube devices, nanotube networks, carbon nanofoams and heterojunctions exhibiting p-type electronic properties.

  18. Microcystin Biosynthesis and mcyA Expression in Geographically Distinct Microcystis Strains under Different Nitrogen, Phosphorus, and Boron Regimes

    PubMed Central

    Srivastava, Ankita; Ko, So-Ra; Ahn, Chi-Yong; Ravi, Alok Kumar

    2016-01-01

    Roles of nutrients and other environmental variables in development of cyanobacterial bloom and its toxicity are complex and not well understood. We have monitored the photoautotrophic growth, total microcystin concentration, and microcystins synthetase gene (mcyA) expression in lab-grown strains of Microcystis NIES 843 (reference strain), KW (Wangsong Reservoir, South Korea), and Durgakund (Varanasi, India) under different nutrient regimes (nitrogen, phosphorus, and boron). Higher level of nitrogen and boron resulted in increased growth (avg. 5 and 6.5 Chl a mg/L, resp.), total microcystin concentrations (avg. 1.185 and 7.153 mg/L, resp.), and mcyA transcript but its expression was not directly correlated with total microcystin concentrations in the target strains. Interestingly, Durgakund strain had much lower microcystin content and lacked microcystin-YR variant over NIES 843 and KW. It is inferred that microcystin concentration and its variants are strain specific. We have also examined the heterotrophic bacteria associated with cyanobacterial bloom in Durgakund Pond and Wangsong Reservoir which were found to be enriched in Alpha-, Beta-, and Gammaproteobacteria and that could influence the bloom dynamics. PMID:27803926

  19. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater. PMID:22903335

  20. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater.

  1. Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Stewart, Derek

    2009-03-01

    We present first principles studies which determine dominant effects limiting the heat conduction in isotope-disordered boron nitride and carbon nanotubes [1]. Using an ab initio atomistic Green's function approach, we demonstrate that localization cannot be observed in the thermal conductivity measurements [1], and that diffusive scattering is the dominant mechanism which reduces the thermal conductivity [2]. We also give concrete predictions of the magnitude of the isotope effect on the thermal conductivities of carbon and boron nitride single-walled nanotubes [2]. We furthermore show that intershell scattering is not the main limiting mechanism for the heat flow through multi-walled boron nitride nanotubes [1], and that heat conduction restricted to a few shells leads to the low thermal conductivities experimentally measured [1]. We consequently successfully compare the results of our calculations [3] with the experimental measurements [1]. [1] C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 2006, 97, 085901. [2] I. Savic, N. Mingo, D. A. Stewart, Phys. Rev. Lett. 2008, 101, 165502. [3] I. Savic, D. A. Stewart, N. Mingo, to be published.

  2. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Kanjouri, Faramarz

    2016-11-01

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior such as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.

  3. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  4. Characterization of boron doped diamond-like carbon film by HRTEM

    NASA Astrophysics Data System (ADS)

    Li, X. J.; He, L. L.; Li, Y. S.; Yang, Q.; Hirose, A.

    2015-12-01

    Boron doped diamond-like carbon (B-DLC) film was synthesized on silicon (1 0 0) wafer by biased target ion beam deposition. High-resolution transmission electron microscopy (HRTEM) is employed to investigate the microstructure of the B-DLC thin film in cross-sectional observation. Many crystalline nanoparticles randomly dispersed and embedded in the amorphous matrix film are observed. Through chemical compositional analysis of the B-DLC film, some amount of O element is confirmed to be contained. And also, some nanoparticles with near zone axes are indexed, which are accordance with B2O phase. Therefore, the contained O element causing the B element oxidized is proposed, resulting in the formation of the nanoparticles. Our work indicates that in the B-DLC film a significant amount of the doped B element exists as boron suboxide nanoparticles.

  5. Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline.

    PubMed

    Lihareva, N; Kosturkova, P; Vakarelska, T

    2000-05-01

    Boron in tourmaline, a high refractory mineral with a high boron content (approximately 3%), can be determined after aqueous leaching of a sodium carbonate-zinc oxide melt. Boron is separated effectively from the major elements of matrix, such as silicon, calcium and magnesium and especially from iron, the main spectral interfering element. Measurements were performed by inductively coupled plasma atomic emission spectrometry. A determination limit of 4 microg/g could be achieved when 200 mg of sample are analyzed with a precision of 5.2% RSD. This method could be applied to the determination of fluorine in the same solution. PMID:11227440

  6. Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline.

    PubMed

    Lihareva, N; Kosturkova, P; Vakarelska, T

    2000-05-01

    Boron in tourmaline, a high refractory mineral with a high boron content (approximately 3%), can be determined after aqueous leaching of a sodium carbonate-zinc oxide melt. Boron is separated effectively from the major elements of matrix, such as silicon, calcium and magnesium and especially from iron, the main spectral interfering element. Measurements were performed by inductively coupled plasma atomic emission spectrometry. A determination limit of 4 microg/g could be achieved when 200 mg of sample are analyzed with a precision of 5.2% RSD. This method could be applied to the determination of fluorine in the same solution.

  7. Hydrothermal synthesis of highly nitrogen-doped carbon powder

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Hao, Yuan; Ma, Ying; Feng, Huixia

    2012-01-01

    Nitrogen-doped carbon powder (NCP) with high and controllable dopant concentration was facilely synthesized via hydrothermal treatment of sucrose under ammonia followed by calcination. The dopant concentration of the as-synthesized carbon powder can be easily adjusted in the range of 4.37-17.82 wt.% by careful choice of the reaction conditions. The precursor with high nitrogen content was prepared by aminization reaction between sucrose and ammonia in hydrothermal condition, amine groups are successfully introduced into the precursor molecule, which groups convert finally to pyridinic-like and graphitic-like structure in the followed heat-treatment process. Various techniques, including the elemental analysis, TG-DTA, XPS, XRD, SEM and FTIR, were employed to characterize and assess the compositional and structural properties of the precursor and final nitrogen-doped materials. The present work propose a novel method for synthesis of highly nitrogen-doped carbon materials.

  8. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution.

    PubMed

    Bo, Xiangjie; Guo, Liping

    2013-02-21

    Ordered mesoporous boron-doped carbons (BOMCs) were prepared by co-impregnation and carbonization of sucrose and 4-hydroxyphenylboronic acid into SBA-15 silica template. Nitrogen sorption, small angle X-ray diffraction (XRD), and transmission electron microscopy (TEM) reveals that BOMCs possess highly ordered mesoporous structure, uniform pore size distribution, and high surface area. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that B atoms can be successfully doped into the framework of OMCs. Due to the desirable characteristics of BOMCs, BOMCs are highly active, cheap, and selective metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline solution. Although B content is a key factor in determining ORR activity, the ORR activity of BOMCs is also dependent on the surface area. The high surface area of BOMCs facilitates the exposure of the active sites for ORR. BOMCs may be further exploited as potentially efficient and inexpensive metal-free ORR catalysts with good long-term stability in alkaline solution. PMID:23318553

  9. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P < 0.01). Nevertheless, it is not clear why AM hyphae responded differently to nitrogen fertilization in the different sites. Carbon stocks within

  10. Axial Chirality about Boron-Carbon Bond: Atropisomeric Azaborines.

    PubMed

    Mazzanti, Andrea; Mercanti, Elia; Mancinelli, Michele

    2016-06-01

    The preparation of atropisomeric 2,1-borazaronaphthalenes is described. Resolution of the atropisomeric pair was achieved by preparative Chiral Stationary Phase HPLC (CSP-HPLC). The absolute configuration of the stereogenic axis was derived from Time-Dependent DFT (TD-DFT) simulation of the Electronic Circular Dichroism spectra (ECD). X-ray diffraction and Dynamic NMR data allowed structural and dynamic comparison with the analogue isosteric carbon compounds. PMID:27203120

  11. Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    2007-01-01

    The term HYCARB denotes a hybrid composite of polyimide matrices reinforced with carbon and boron fibers. HYCARB and an improved process for fabricating dry HYCARB tapes have been invented in a continuing effort to develop lightweight, strong composite materials for aerospace vehicles. Like other composite tapes in this line of development, HYCARB tapes are intended to be used to build up laminated structures having possibly complex shapes by means of automated tow placement (ATP) - a process in which a computer-controlled multiaxis machine lays down prepreg tape or tows. The special significance of the present process for making dry HYCARB for ATP is that it contributes to the reduction of the overall cost of manufacturing boron-reinforced composite-material structures while making it possible to realize increased compression strengths. The present process for making HYCARB tapes incorporates a "wet to dry" process developed previously at Langley Research Center. In the "wet to dry" process, a flattened bundle of carbon fiber tows, pulled along a continuous production line between pairs of rollers, is impregnated with a solution of a poly(amide acid) in N-methyl-2-pyrrolidinone (NMP), then most of the NMP is removed by evaporation in hot air. In the present case, the polyamide acid is, more specifically, that of LaRC. IAX (or equivalent) thermoplastic polyimide, and the fibers are, more specifically, Manganite IM7 (or equivalent) polyacrylonitrile- based carbon filaments that have a diameter of 5.2 m and are supplied in 12,000-filament tows. The present process stands in contrast to a prior process in which HYCARB tape was made by pressing boron fibers into the face of a wet carbon-fiber/ poly(amide acid) prepreg tape . that is, a prepreg tape from which the NMP solvent had not been removed. In the present process, one or more layer(s) of side-by-side boron fibers are pressed between dry prepreg tapes that have been prepared by the aforementioned gwet to dry h

  12. Preparation of carbon nanoparticles and carbon nitride from high nitrogen compound

    DOEpatents

    Huynh, My Hang V.; Hiskey, Michael A.

    2009-09-01

    The high-nitrogen compound 3,6-di(azido)-1,2,4,5-tetrazine (DiAT) was synthesized by a relatively simple method and used as a precursor for the preparation of carbon nanospheres and nanopolygons, and nitrogen-rich carbon nitrides.

  13. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate.

    PubMed

    Yang, Zhi; Xu, Minghan; Liu, Yun; He, Fengjiao; Gao, Feng; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2014-01-01

    The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis.

  14. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid.

    PubMed

    Zohdi, Nima; Mahdavi, Fariba; Abdullah, Luqman Chuah; Choong, Thomas Sy

    2014-01-06

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water.

  15. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

    SciTech Connect

    Sumpter, Bobby G; Meunier, Vincent; Terrones Maldonado, Humberto; Terrones Maldonado, Mauricio; Ajayan, Pullikel M; Hashim, Daniel; Romo Herrera, Jose M; Cullen, David; Munoz-Sandoval, Emilio; Smith, David J; Vajtai, Robert; Roy, Ajit K; Ganguli, Sabyasachi; Kelkhoff, Doug; Suttle, Joesph; Lezzi, Peter; Hahm, Gwan; Narayanan, Narayanan

    2012-01-01

    The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapor deposition, which influences the formation of atomic-scale elbow junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the elbow junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material s ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use.

  16. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  17. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

    PubMed Central

    Hashim, Daniel P.; Narayanan, Narayanan T.; Romo-Herrera, Jose M.; Cullen, David A.; Hahm, Myung Gwan; Lezzi, Peter; Suttle, Joseph R.; Kelkhoff, Doug; Muñoz-Sandoval, E.; Ganguli, Sabyasachi; Roy, Ajit K.; Smith, David J.; Vajtai, Robert; Sumpter, Bobby G.; Meunier, Vincent; Terrones, Humberto; Terrones, Mauricio; Ajayan, Pulickel M.

    2012-01-01

    The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale “elbow” junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the “elbow” junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material’s ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use. PMID:22509463

  18. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides

    NASA Astrophysics Data System (ADS)

    Ma, Rongna; Hu, Junjie; Cai, Zongwei; Ju, Huangxian

    2014-02-01

    A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid (APBA) via an amide reaction. The introduction of PASE could bridge the MCNT and APBA, suppress the nonspecific adsorption and reduce the steric hindrance among the bound molecules. Due to the excellent structure of the MCNTs, the functionalization of PASE and then APBA on MCNTs was quite simple, specific and effective. The glycopeptides enrichment and separation with a magnetic field could be achieved by their reversible covalent binding with the boronic group of APBA-MCNTs. The exceptionally large specific surface area and the high density of boronic acid groups of APBA-MCNTs resulted in rapid and highly efficient enrichment of glycopeptides, even in the presence of large amounts of interfering nonglycopeptides. The functional MCNTs possessed high selectivity for enrichment of 21 glycopeptides from the digest of horseradish peroxidase demonstrated by MALDI-TOF mass spectrometric analysis showing more glycopeptides detected than the usual 9 glycopeptides with commercially available APBA-agarose. The proposed system showed better specificity for glycopeptides even in the presence of non-glycopeptides with 50 times higher concentration. The boronic acid functionalized MCNTs provide a promising selective enrichment platform for precise glycoproteomic analysis.A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid

  19. Effects of strain on carbon donors and acceptors in hexagonal boron nitride monolayers

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yoshitaka; Saito, Susumu

    2016-01-01

    We present first-principles density functional calculations that clarify the electronic properties of carbon defects in hexagonal boron nitride (h -BN) monolayers under biaxially applied strains. We find that strain can control the ionization energies of both donor and acceptor states. Furthermore, we also find that strain can lead to the dramatic change in conduction channel properties of donor states due to the interchange of the conduction-band-minimum state with the nearly-free-electron state. We also report the simulated scanning tunneling microscopy (STM) images of carbon defects in h -BN monolayers for experimental identification of those defects. We show that the STM images strongly reflect distinctive spatial distributions of local density of states around carbon defects depending on the substitution sites and thereby they could be identified by using STM experiments.

  20. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  1. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  2. Boron nitride: composition, optical properties and mechanical behavior

    SciTech Connect

    Pouch, J.J.; Alterovitz, S.A.; Miyoshi, K.; Warner, J.D.

    1987-04-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by x-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  3. Boron carbon nitride based metal-insulator-metal UV detectors for harsh environment applications.

    PubMed

    Prakash, Adithya; Nehate, Shraddha D; Sundaram, Kalpathy B

    2016-09-15

    A metal-insulator-metal (MIM) structure using boron carbon nitride (BCN) was tested for its UV detection capability. Since BCN is one of the hardest and chemically robust materials, it is expected to be a potential choice for a UV detector in extreme and harsh conditions. The BCN thin films were deposited using a dual target RF magnetron sputtering process. The optoelectronic performance of the BCN MIM devices were examined through UV photocurrent measurements. A UV photocurrent of two orders of magnitude higher with respect to dark current was achieved in the range of -3 to 3 V. PMID:27628369

  4. The deposition of boron nitride and carbon films on silica glass fibers

    SciTech Connect

    Smith, W.L.; Michalske, T.A.; Rye, R.R.

    1993-11-01

    A chemical vapor deposition technique is used to produce amorphous boron nitride and carbon thin films on high strength silica glass fibers. In this method, the fiber is drawn under ultra high vacuum conditions and low pressure process gases, in the presence of a hot tungsten filament, are used to grow films at low substrate temperatures. Films deposited with this technique do not degrade the intrinsic pristine strength of the silica fibers under dry conditions and, when stressed in chemically aggressive environments, act as effective barrier coatings.

  5. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-01-01

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  6. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-12-31

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  7. Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content.

    PubMed

    Fechler, Nina; Zussblatt, Niels P; Rothe, Regina; Schlögl, Robert; Willinger, Marc-Georg; Chmelka, Bradley F; Antonietti, Markus

    2016-02-10

    Mixtures of phenols/ketones and urea show eutectic behavior upon gentle heating. These mixtures possess liquid-crystalline-like phases that can be processed. The architecture of phenol/ketone acts as structure-donating motif, while urea serves as melting-point reduction agent. Condensation at elevated temperatures results in nitrogen-containing carbons with remarkably high nitrogen content of mainly pyrazinic nature. PMID:26178584

  8. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    PubMed Central

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  9. tert-Butanesulfinamides as Nitrogen Nucleophiles in Carbon-Nitrogen Bond Forming Reactions.

    PubMed

    Ramirez Hernandez, Johana; Chemla, Fabrice; Ferreira, Franck; Jackowski, Olivier; Oble, Julie; Perez-Luna, Alejandro; Poli, Giovanni

    2016-01-01

    The use of tert-butanesulfinamides as nitrogen nucleophiles in carbon-nitrogen bond forming reactions is reviewed. This field has grown in the shadow of the general interest in N-tert-butanesulfinyl imines for asymmetric synthesis and occupies now an important place in its own right in the chemistry of the chiral amine reagent tert-butanesulfinamide. This article provides an overview of the area and emphasizes recent contributions wherein the tert-butanesulfinamides act as chiral auxiliaries or perform as nitrogen donors in metal-catalyzed amination reactions. PMID:26931222

  10. Low-Temperature Activation of Ion-Implanted Boron and Nitrogen Ions in Cd x Hg1- x Te Heteroepitaxial Layers

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Talipov, N. Kh.

    2013-12-01

    Processes of electrical activation of ion-implanted boron and nitrogen atoms in Cd x Hg1- x Te (CMT) heteroepitaxial layers grown by methods of molecular-beam epitaxy (HEL CMT MBE) and liquid-phase epitaxy (LPE CMT) have been investigated; likewise in bulk crystals of CMT with low-temperature annealings under anodic oxide. The possibility has been demonstrated of using anodic oxide as an efficient mask for postimplantation annealings of p-type HEL CMT MBE in the temperature interval Т = 200-250°C without disruption of the composition of the variband layer or alteration of the electrophysical properties of the structure. It has been established that in HEL CMT MBE the efficiency of activation of boron as a slowly diffusing donor impurity is lowered with growth of the dose of the B+ ions and is increased by thermal cycling from Т = 77 K to room temperature. Implanted nitrogen, in contrast to boron, is a rapidly diffusing acceptor impurity in CMT, efficiently compensating both radiation donor centers and activated boron. The degree of electrical activation of nitrogen grows substantially upon thermal cycling. It has been shown that the mobility spectrum is an efficient method for monitoring the process of electrical activation of boron in p-type HEL CMT MBE. Mesa photodiodes based on activated boron in p-type HEL CMT MBE with long-wavelength photosensitivity boundary λc = 11 μm, prepared here for the first time, had a high maximum value of the product of the differential resistance by the area of the photodiode R d A = (6 - 8)ṡ102 Ωṡcm2, product R 0 A = 5 - 6 Ωṡcm2 (at zero bias), and a diffusion ledge on the inverse branch of the current-voltage ( I- V) characteristic out to a bias voltage of 1.3 V.

  11. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    PubMed

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon. PMID:25673416

  12. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    PubMed

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon.

  13. Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses

    NASA Astrophysics Data System (ADS)

    Gutjahr, Marcus; Bordier, Louise; Douville, Eric; Farmer, Jesse; Foster, Gavin L.; Hathorne, Ed; Hönisch, Bärbel; Lemarchand, Damien; Louvat, Pascale; McCulloch, Malcolm; Noireaux, Johanna; Pallavicini, Nicola; Rodushkin, Ilia; Roux, Philippe; Stewart, Joseph; Thil, François; You, Chen-Feng

    2014-05-01

    Boron consists of only of two isotopes with a relatively large mass difference (~10 %). It is also volatile in acidic media and prone to contamination during analytical treatment. Nevertheless, an increasing number of isotope laboratories are successfully using boron isotope compositions (expressed in δ11B) in marine biogenic carbonates to reconstruct seawater pH. Recent interlaboratory comparison efforts [1] highlighted the existence of a relatively high level of disagreement between laboratories when measuring such material, so in order to further strengthen the validity of this carbonate system proxy, appropriate reference materials need to be urgently characterised. We describe here the latest results of the Boron Isotope Intercomparison Project (BIIP) where we aim to characterise the boron isotopic composition of two marine carbonates: Japanese Geological Survey carbonate standard materials JCp-1 (coral porites) [2] and JCt-1 (Giant Clam) [3]. This boron isotope interlaboratory comparison study has two aims: (i) to assess to what extent chemical pre-treatment, aimed at removing organic material, can influence the resulting carbonate δ11B; (ii) to determine the isotopic composition of the two reference materials with a number of analytical techniques to provide the community with reference δ11B values for JCp-1 and JCt-1 and to further explore any differences related to analytical technique. In total eight isotope laboratories participated, of which one determined δ11B via negative thermal ionisation mass spectrometry (NTIMS) and seven used multi collector inductively coupled plasma mass spectrometry (MC-ICPMS). For the latter several different introduction systems and chemical purification methods were used. Overall the results are strikingly consistent between the participating labs. The oxidation of organic material slightly lowered the median δ11B by ~0.1 ‰ for both JCp-1 and JCt-1, while the mean δ11B of all labs for both standards was lowered by 0

  14. Electroanalytical performance of nitrogen-containing tetrahedral amorphous carbon thin-film electrodes.

    PubMed

    Yang, Xingyi; Haubold, Lars; DeVivo, Gabriel; Swain, Greg M

    2012-07-17

    Tetrahedral amorphous carbon (ta-C) consists of a mixture of sp(3)- and sp(2)-bonded carbon ranging from 60 to 40% (sp(3)/sp(3)+sp(2)) depending on the deposition conditions. The physical, chemical, and electrochemical properties depend on the sp(2)/sp(3) bonding ratio as well as the presence of incorporated impurities, such as hydrogen or nitrogen. The ability to grow ta-C at lower temperatures (25-100 °C) on a wider variety of substrates as compared to CVD diamond is an advantage of this material. Herein, we report on the structural and electrochemical properties of nitrogen-incorporated ta-C thin films (ta-C:N). The incorporation of nitrogen into the films decreases the electrical resistivity from 613 ± 60 (0 sccm N(2)) to 1.10 ± 0.07 Ω-cm (50 sccm N(2)), presumably by increasing the sp(2)-bonded carbon content and the connectedness of these domains. Similar to boron-doped diamond, these materials are characterized by a low background voltammetric current, a wide working potential window (~ 3 V), and relatively rapid electron-transfer kinetics for aqueous redox systems, including Fe(CN)(6)(-3/-4) and Ru(NH(3))(6)(+3/+2), without conventional pretreatment. Additionally, there is weak molecular adsorption of polar molecules (methylene blue) on the ta-C surface. Overall, the properties of the ta-C and ta-C:N electrodes are such that they could be excellent new choices for electroanalytical measurements.

  15. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Xu, Minghan; Liu, Yun; He, Fengjiao; Gao, Feng; Su, Yanjie; Wei, Hao; Zhang, Yafei

    2014-01-01

    The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis.The synthesis of water-soluble nitrogen-doped carbon dots has received great attention, due to their wide applications in oxygen reduction reaction, cell imaging, sensors, and drug delivery. Herein, nitrogen-doped, carbon-rich, highly photoluminescent carbon dots have been synthesized for the first time from ammonium citrate under hydrothermal conditions. The obtained nitrogen-doped carbon dots possess bright blue luminescence, short fluorescence lifetime, pH-sensitivity and excellent stability at a high salt concentration. They have potential to be used for pH sensors, cell imaging, solar cells, and photocatalysis. Electronic supplementary information (ESI) available: The curve of photoluminescence and absorbance of N-doped CDs and quinine sulfate, and the table showing XPS detailed information. See DOI: 10.1039/c3nr05380f

  16. Boron-doped few-walled carbon nanotubes: novel synthesis and properties

    NASA Astrophysics Data System (ADS)

    Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing

    2016-11-01

    Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes.

  17. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.

  18. Oxygen adsorption characteristics on hybrid carbon and boron-nitride nanotubes.

    PubMed

    Liu, Haining; Turner, C Heath

    2014-05-30

    In this work, first-principles density functional theory (DFT) is used to predict oxygen adsorption on two types of hybrid carbon and boron-nitride nanotubes (CBNNTs), zigzag (8,0), and armchair (6,6). Although the chemisorption of O2 on CBNNT(6,6) is calculated to be a thermodynamically unfavorable process, the binding of O2 on CBNNT(8,0) is found to be an exothermic process and can form both chemisorbed and physisorbed complexes. The CBNNT(8,0) has very different O2 adsorption properties compared with pristine carbon nanotubes (CNTs) and boron-nitride nanotube (BNNTs). For example, O2 chemisorption is significantly enhanced on CBNNTs, and O2 physisorption complexes also show stronger binding, as compared to pristine CNTs or BNNTs. Furthermore, it is found that the O2 adsorption is able to increase the conductivity of CBNNTs. Overall, these properties suggest that the CBNNT hybrid nanotubes may be useful as a gas sensor or as a catalyst for the oxygen reduction reaction. PMID:24659221

  19. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA. PMID:20402644

  20. Boron-doped few-walled carbon nanotubes: novel synthesis and properties.

    PubMed

    Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing

    2016-11-01

    Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes.

  1. Boron-doped few-walled carbon nanotubes: novel synthesis and properties.

    PubMed

    Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing

    2016-11-01

    Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes. PMID:27668662

  2. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment

    SciTech Connect

    Knops, J.M.H.; Tilman, D.

    2000-01-01

    The authors used two independent methods to determine the dynamics of soil carbon and nitrogen following abandonment of agricultural fields on a Minnesota sand plain. First, they used a chronosequence of 19 fields abandoned from 1927 to 1982 to infer soil carbon and nitrogen dynamics. Second, they directly observed dynamics of carbon and nitrogen over a 12-yr period in 1900 permanent plots in these fields. These observed dynamics were used in a differential equation model to predict soil carbon and nitrogen dynamics. The two methods yielded similar results. Resampling the 1,900 plots showed that the rates of accumulation of nitrogen and carbon over 12 yr depended on ambient carbon and nitrogen levels in the soil, with rates of accumulation declining at higher carbon and nitrogen levels. A dynamic model fitted to the observed rates of change predicted logistic dynamics for nitrogen and carbon accumulation. On average, agricultural practices resulted in a 75% loss of soil nitrogen and an 89% loss of soil carbon at the time of abandonment. Recovery to 95% of the preagricultural levels is predicted the soil carbon, nitrogen, and carbon:nitrogen ratio patterns observed in the chronosequence of old fields, suggesting that the chronosequence may be indicative of actual changes in soil carbon and nitrogen. Their results suggest that the rate of carbon accumulation was controlled by the rate of nitrogen accumulation, which in turn depended on atmospheric nitrogen deposition and symbiotic nitrogen fixation by legumes. Their data support the hypothesis that these abandoned fields initially retain essentially all nitrogen and have a closed nitrogen cycle. Multiple regression suggests that vegetation composition had a significant influence on the rates of accumulation of both nitrogen and carbon; legumes increased these rates, and C{sub 3} grasses and forbs decreased them. C{sub 4} grasses increased the C:N ratio of the soil organic matter and thereby increased the rate of

  3. Controlled route to the fabrication of carbon and boron nitride nanoscrolls: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Perim, Eric; Paupitz, Ricardo; Galvão, Douglas S.

    2013-02-01

    Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance.

  4. In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lin, Yi; Nunez, Jennifer Carpena; Siochi, Emilie J.; Wise, Kristopher E.; Connell, John W.; Smith, Michael W.

    2011-01-01

    To understand the mechanical properties of amorphous carbon (a-C)/boron nitride nanotube (BNNT) nanostructures, in situ mechanical tests are conducted inside a transmission electron microscope equipped with an integrated atomic force microscope system. The nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation. We demonstrate multiple in situ tensile, compressive, and lap shear tests with a-C/BNNT hybrid nanostructures. The tensile strength of the a-C/BNNT hybrid nanostructure is 5.29 GPa with about 90 vol% of a-C. The tensile strength and strain of the end-to-end joint structure with a-C welding is 0.8 GPa and 5.2% whereas the lap shear strength of the side-by-side joint structure with a-C is 0.25 GPa.

  5. Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene.

    PubMed

    Manna, Arun K; Pati, Swapan K

    2013-06-24

    First-principles DFT calculations are carried out to study the changes in structures and electronic properties of two-dimensional single-layer graphene in the presence of non-covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non-covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole-doped material. We also find changes in the graphene electronic band structures in the presence of these surface-decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re-hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene-fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole-transfer integral between graphene and C60 is larger than the electron-transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non-covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto-electronic devices.

  6. A mobile light source for carbon/nitrogen cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  7. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  8. Landscape controls on carbon and nitrogen cycling in boreal forests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change in the boreal forest biome is having a large impact on two of the main controllers of carbon (C) and nitrogen (N) cycling within this region: permafrost and fire. Permafrost, and its effects on soil drainage, controls the inputs and losses of C and N via net primary productivity (NP...

  9. Effect of glyphosate-boron application on seed composition and nitrogen metabolism in glyphosate-resistant soybean.

    PubMed

    Bellaloui, Nacer; Abbas, Hamed K; Gillen, Anne M; Abel, Craig A

    2009-10-14

    The objective of this study was to evaluate the effects of foliar application of glyphosate (Gly) alone, boron (B) alone, and Gly-B combined on seed composition and nitrogen metabolism in glyphosate-resistant soybean (Glycine max (L.) Merr.). No Gly and no B application plants were used as control (C). Results showed that Gly, Gly-B, or B applications increased protein, oleic acid, and total amino acid concentrations in seed. However, oil and linolenic acid concentrations decreased under those treatments compared with the nontreated control. Gly-B combined or B treatments increased B concentration in leaves and seed, nitrate reductase activity (NRA), and nitrogenase activity and resulted in a significant positive correlation between B concentration in leaves and NRA (r = 0.54; P < 0.0001) and B concentration in leaves and nitrogenase activity (r = 0.35; P = 0.005). The results suggest that Gly-B tank mixing may not antagonize B uptake and translocation to leaves and seeds, and the inhibitory effect of Gly on nutrient uptake and translocation may depend on the ion species and form of the nutrient mixed with Gly. These results demonstrate that Gly-B application alters seed composition, nitrogen metabolism, and B status in leaves and seed.

  10. Spatial heterogeneity of forest soil carbon and nitrogen controls nitrogen transformations and trace gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-scale spatial heterogeneity of soil nitrogen (N) and carbon (C) pools and net transformation processes in forested ecosystems are not well understood. Two forests in central Oregon (Black Butte and Santiam Pass) were used to test the hypothesis that spatial distribution of soil nutrients cont...

  11. Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater source

    USGS Publications Warehouse

    Repert, D.A.; Barber, L.B.; Hess, K.M.; Keefe, S.H.; Kent, D.B.; LeBlanc, D.R.; Smith, R.L.

    2006-01-01

    Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m-2) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m-2) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.

  12. Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater source.

    PubMed

    Repert, Deborah A; Barber, Larry B; Hess, Kathryn M; Keefe, Steffanie H; Kent, Douglas B; LeBlanc, Denis R; Smith, Richard L

    2006-02-15

    Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m(-2)) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m(-2)) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.

  13. Glacial-interglacial Changes in Ocean Carbon Chemistry constrained by Boron Isotopes, Trace Elements, and Modelling

    NASA Astrophysics Data System (ADS)

    Rae, J. W. B.; Adkins, J. F.; Foreman, A. D.; Charles, C.

    2014-12-01

    Deep ocean carbon storage and release is commonly invoked to explain glacial-interglacial CO2 cycles, but records of the carbonate chemistry of the glacial ocean have, until recently, been scarce. Here we present new boron isotope (δ11B) and trace metal data from benthic foraminifera from a suite of 15 cores from the South Atlantic from depths ranging from 1500 to 4000 m. These records show distinct changes in the water column depth structure of these tracers between the last glacial maximum (LGM) and late Holocene. Comparison of these paired trace element and isotope ratios reveals new insights to the shared and individual controls on tracers including Li/Ca, Sr/Ca, U/Ca, Mg/Li and δ11B. We further examine these data using a recently developed tracer fields modelling approach (Lund et al. 2011). This has previously been applied to δ18O data to investigate changes in circulation at the LGM. Here we extend this method to non-conservative isotopic and trace elemental tracers, allowing us to constrain the roles of circulation, the biological pump of organic carbon and CaCO3, and carbonate compensation, in setting deep ocean carbon storage at the LGM. Lund, D. C., J. F. Adkins, and R. Ferrari (2011), Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing, Paleoceanography, 26, PA1213, doi:10.1029/2010PA001938.

  14. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes?

    PubMed

    Chen, Ying; Wang, Hong-xia; Zhao, Jing-xiang; Cai, Qing-hai; Wang, Xiao-guang; Wang, Xuan-zhang

    2012-07-01

    Recently, the grafting of polymer chains onto nanotubes has attracted increasing attention as it can potentially be used to enhance the solubility of nanotubes and in the development of novel nanotube-based devices. In this article, based on density functional theory (DFT) calculations, we report the formation of trans-polyacetylene on single-walled carbon-doped boron nitride nanotubes (BNNTs) through their adsorption of a series of C(2)H(2) molecules. The results show that, rather than through [2 + 2] cycloaddition, an individualmolecule would preferentially attach to a carbon-doped BNNT via "carbon attack" (i.e., a carbon in the C(2)H(2) attacks a site on the BNNT). The adsorption energy gradually decreases with increasing tube diameter. The free radical of the carbon-doped BNNT is almost completely transferred to the carbon atom at the end of the adsorbed C(2)H(2) molecule. When another C(2)H(2) molecule approaches the carbon-doped BNNT, it is most energetically favorable for this C(2)H(2) molecule to be adsorbed at the end of the previously adsorbed C(2)H(2) molecule, and so on with extra C(2)H(2) molecules, leading to the formation of polyacetylene on the nanotube. The spin of the whole system is always localized at the tip of the polyacetylene formed, which initiates the adsorption of the incoming species. The present results imply that carbon-doped BNNT is an effective "metal-free" initiator for the formation of polyacetylene. PMID:22271098

  15. Effect of reaction conditions on methyl red degradation mediated by boron and nitrogen doped TiO2

    NASA Astrophysics Data System (ADS)

    Galenda, A.; Crociani, L.; Habra, N. El; Favaro, M.; Natile, M. M.; Rossetto, G.

    2014-09-01

    Nowadays the employment of renewable and sustainable energy sources, and solar light as main option, becomes an urgent need. Photocatalytic processes received great attention in wastewater treatment due to their cheapness, environmental compatibility and optimal performances. Despite the general low selectivity of the photocatalysts, an accurate optimisation of the operational parameters needs to be carried out in order to maximise the process yield. Because of this reason, the present contribution aims to deepen either the knowledge in boron and/or nitrogen doped TiO2-based systems and their employment in methyl red removal from aqueous solutions. The samples were obtained by coprecipitation and characterised by XRD, SEM, BET specific surface area, UV-vis and XPS techniques. The catalytic activity was for the first time carefully evaluated with respect to methyl red photodegradation in different conditions as a function of working pH, counter-ions and pre-adsorption time. An ad-hoc study was performed on the importance of the pre-adsorption of the dye, suggesting that an extended adsorption is useless for the catalyst photoactivity, while a partial coverage is preferable. The photocatalytic tests demonstrate the positive influence of boron doping in photo-activated reactions and the great importance of the operational parameters with respect to the simple methyl red bleaching rather than the overall pollutant mineralisation. It is proved, indeed, that different working pH, acidifying means and substrate pre-adsorption time can enhance or limit the catalyst performances with respect to the complete pollutant degradation rather than its partial breakage.

  16. [FTIR spectroscopic studies of inner stress on boron carbon nitride thin films].

    PubMed

    Wang, Yu-Xin; Zheng, Ya-Ru; Song, Zhe; Feng, Ke-Cheng; Zhao, Yong-Nian

    2008-07-01

    Boron carbon nitride thin films were deposited by radio frequency (RF) magnetron sputtering technique using a 50 mm-diameter composite target consisting of h-BN and graphite in an Ar-N2 gas mixture. The composite target was composed of two semi disks: one of h-BN and the other one of graphite. The distance between the target and the substrate was kept at 50 mm. The chamber base pressure was below 5 x 10(-4) Pa. During the deposition, the mixture of Ar (80%) and N2 (20%) was injected into the vacuum chamber and the total pressure was 1.3 Pa. The films were grown on silicon substrates at different deposition parameters, including sputtering power of 80-130 W, deposition temperature of 300-500 degrees C and deposition time of 1-4 h. The chemical bonding state of the samples was characterized by Fourier transform infrared absorption spectroscopy (FTIR). The results suggested that all of the films deposited at these deposition parameters are atomic-level hybrids composed of B, C and N atoms. Besides BN and carbons bonds, the boron carbide and carbon nitride bonds were formed in the BCN thin films. And the deposition parameters have important influences on the growth and inner stress of BCN thin films. That is the higher the sputtering power, the larger the inner stress; the higher or lower the deposition temperature, the larger the inner stress; the longer the deposition time, the larger the inner stress. So changing deposition parameters properly is a feasible method to relax the inner stress between the films and substrate. In the conditions of changing one parameter each time, the optimum deposition parameters to prepare BCN thin films with lower inner stress were obtained: sputtering power of 80 W, deposition temperature of 400 degrees C and deposition time of 2 h.

  17. Theoretical uncertainties in extracting cosmic-ray diffusion parameters: the boron-to-carbon ratio

    NASA Astrophysics Data System (ADS)

    Genolini, Yoann

    2016-05-01

    PAMELA and, more recently, AMS-02, are ushering us into a new era of greatly reduced statistical uncertainties in experimental measurements of cosmic ray fluxes. In particular, new determinations of traditional diagnostic tools such as the boron to carbon ratio (B/C) are expected to significantly reduce errors on cosmic-ray diffusion parameters, with important implications for astroparticle physics, ranging from inferring primary source spectra to indirect dark matter searches. It is timely to stress, however, that the conclusions inferred crucially depend on the framework in which the data are interpreted as well as on some nuclear input parameters. We aim at assessing the theoretical uncertainties affecting the outcome, with models as simple as possible while still retaining the key dependences. We compare different semi-analytical, two-zone model descriptions of cosmic ray transport in the Galaxy: infinite slab(lD), cylindrical symmetry (2D) with homogeneous sources, cylindrical symmetry (2D) with inhomogeneous source distribution. We tested for the effect of a primary source contamination in the boron flux by parametrically altering its flux. We also tested for nuclear cross-section uncertainties.

  18. Elastic properties of B-C-N films grown by N{sub 2}-reactive sputtering from boron carbide targets

    SciTech Connect

    Salas, E.; Jiménez Riobóo, R. J.; Jiménez-Villacorta, F.; Prieto, C.; Sánchez-Marcos, J.; Muñoz-Martín, A.; Prieto, J. E.; Joco, V.

    2013-12-07

    Boron-carbon-nitrogen films were grown by RF reactive sputtering from a B{sub 4}C target and N{sub 2} as reactive gas. The films present phase segregation and are mechanically softer than boron carbide films (a factor of more than 2 in Young's modulus). This fact can turn out as an advantage in order to select buffer layers to better anchor boron carbide films on substrates eliminating thermally induced mechanical tensions.

  19. Methods of detection and identificationoc carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhalivyan, Leonid Zavenovich; Brothers, Louis Joseph; Wilhide, Larry K

    2013-11-12

    Methods for detecting and identifying carbon- and/or nitrogen-containing materials are disclosed. The methods may comprise detection of photo-nuclear reaction products of nitrogen and carbon to detect and identify the carbon- and/or nitrogen-containing materials.

  20. Functionalization of carbon nanotubes via nitrogen glow discharge.

    PubMed

    Khare, Bishun; Wilhite, Patrick; Tran, Benjamin; Teixeira, Elico; Fresquez, Kenneth; Mvondo, Delphine Nna; Bauschlicher, Charles; Meyyappan, M

    2005-12-15

    We have exposed single-wall carbon nanotubes (SWCNTs) to microwave-generated N2 plasma with the aim to functionalize the nanotubes. The results strongly depend on the distance between the discharge source and the sample, since nitrogen atoms generated can be lost due to recombination. No functionalization was observed when this distance was 7.0 cm. At intermediate distances (2.5 cm), the incorporation of nitrogen and oxygen onto the SWCNT was observed, while, at short distances (1 cm), products containing CN were also observed. PMID:16375320

  1. Dual Catalysis Using Boronic Acid and Chiral Amine: Acyclic Quaternary Carbons via Enantioselective Alkylation of Branched Aldehydes with Allylic Alcohols.

    PubMed

    Mo, Xiaobin; Hall, Dennis G

    2016-08-31

    A ferrocenium boronic acid salt activates allylic alcohols to generate transient carbocations that react with in situ-generated chiral enamines from branched aldehydes. The optimized conditions afford the desired acyclic products embedding a methyl-aryl quaternary carbon center with up to 90% yield and 97:3 enantiomeric ratio, with only water as the byproduct. This noble-metal-free method complements alternative methods that are incompatible with carbon-halogen bonds and other sensitive functional groups. PMID:27518200

  2. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    NASA Astrophysics Data System (ADS)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical

  3. Carbon and Nitrogen Chemistry of Lodranites: Relationship to Acapulco?

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Franchi, I. A.; Pillinger, C. T.

    1993-07-01

    Recent studies on the mineralogy, petrology, and oxygen isotopic composition of lodranites and acapulcoites indicate that these meteorites are probably derived from a common parent body, but experienced different degrees of partial melting [1,2]. Ar-Ar chronometry implies that lodranites were heated ca. 100 degrees C higher than acapulcoites, and cooled more slowly [3], however measurement of nitrogen and xenon in Acapulco [4,5] shows that volatiles are not equilibrated between different phases within the meteorite, hence its thermal history has been complex. The aim of this study is to determine the carbon and nitrogen chemistry of lodranites, for comparison with Acapulco, to indicate the effect that differing thermal histories might have had on the volatile inventories of these meteorites. The carbon chemistry of Acapulco has been described previously [6]. The meteorite contains ca. 400 ppm indigenous carbon, distributed between two major phases: graphite and carbides. Graphite has been identified petrographically in Acapulco [7], where it is intimately associated with metal. In contrast, both Lodran and MAC 88177 contain much lower quantities of indigenous carbon: approximately 100 ppm and 38 ppm respectively, released in decreasing amounts up to 1200 degrees C. In Lodran, delta^13C rises almost monotonically, from -25 per mil at 600 degrees C to -12 per mil at 1200 degrees C; total delta^13C is ca. -23 per mil. Neither meteorite shows evidence for the occurrence of graphite. Nitrogen released by pyrolysis of Acapulco totals ca. 2.8 ppm [4,5], and is resolvable into two components, with delta^15N ca. +10 per mil and -120 per mil [8]. The first component is, as yet, unidentified, but the second is believed to be associated with the metal fraction [8]. The procedure used herein, of several combustion steps below 500 degrees C to remove contaminants, followed by high resolution combustion up to 1200 degrees C, would also resolve discrete nitrogen-bearing components

  4. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  5. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    DOE PAGESBeta

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; Hensley, Dale K.

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media withmore » pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  6. Simultaneous tracing of carbon and nitrogen isotopes in human cells.

    PubMed

    Nilsson, Roland; Jain, Mohit

    2016-05-24

    Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the metabolic network of living cells. However, most studies of mammalian cells have used (13)C-labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured with (13)C- and (15)N-labeled glucose and glutamine. To facilitate interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly consistent with known biochemical pathways. Whereas measured (13)C MIDs were informative for central carbon metabolism, (15)N isotopes provided evidence for nitrogen-carrying reactions in amino acid and nucleotide metabolism. This computational and experimental methodology expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic phenotypes in health and disease.

  7. Integrating the nitrogen cycle in carbon and GHG observation systems

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Brummer, C.

    2013-12-01

    Nitrogen is an important factor for the regulation of carbon and GHG fluxes within ecosystems and between ecosystems and the atmosphere. Nitrogen fertilization is important for high agricultural yields but also increases N2O emissions. In Germany, e.g., N2O emissions from agriculture comprise about 6 % of the total GHG inventory. Nitrogen deposition may enhance productivity of ecosystems (e.g. forests, natural grasslands or wetlands) but may also change community structure - in particular in ecosystems that are adapted to low nitrogen availability. It also can lead to increased N2O emissions. Global nitrogen fluxes due to the trade of agricultural products may concentrate nitrogen in specific areas (e.g. in areas with high animal stock). In these areas increased N2O emissions are to be expected. The Thünen Institute of Climate-Smart Agriculture drives parts of the German ICOS consortium with a special focus on agricultural sites or indirect effects of agriculture on GHG emissions. We propose a concept to integrate nitrogen into research infrastructures for GHG monitoring. A conceptual frame will identify the most important parameters of the N cycle. Data from the CarboEurope and NitroEurope core site Gebesee (crop) will be presented to show first integrative results.Finally, first experiences with new technologies will be presented, comprising quantum cascade laser measurements of N2O and ammonia used with eddy covariance (EC) and chambers and EC measurements of total reactive nitrogen with the TRANC methodology (Marx et al. 2012).

  8. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    SciTech Connect

    Singh, Ram Sevak

    2015-11-15

    Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to have metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.

  9. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  10. Chemically synthesized boron carbon oxynitride as a new cold cathode material

    NASA Astrophysics Data System (ADS)

    Banerjee, Diptonil; Maity, Supratim; Chattopadhyay, K. K.

    2015-11-01

    Synthesis of boron carbon oxynitride (BCNO) nanosheets at different temperature from amorphous to crystalline regime has been reported. The synthesis was done by a simple molten salt process using sodium borohydride and urea as precursors. Transmission electron microscopic study confirms the formation of sheet-like structure of the as-synthesized material. The performances of the as-synthesized BCNO nanosheets as cold cathode materials have been studied for the first time in the high vacuum electron field emission set up. It has been seen that the material gives considerable field emission current with turn on field as low as 2.95 V/μm with good stability and thus a new cold cathode material can be postulated.

  11. Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride

    PubMed Central

    Tang, Dai-Ming; Zhang, Li-Li; Liu, Chang; Yin, Li-Chang; Hou, Peng-Xiang; Jiang, Hua; Zhu, Zhen; Li, Feng; Liu, Bilu; Kauppinen, Esko I.; Cheng, Hui-Ming

    2012-01-01

    The growth of single-walled carbon nanotubes (SWCNTs) with predefined structure is of great importance for both fundamental research and their practical applications. Traditionally, SWCNTs are grown from a metal catalyst with a vapor-liquid-solid mechanism, where the catalyst is in liquid state with fluctuating structures, and it is intrinsically unfavorable for the structure control of SWCNTs. Here we report the heteroepitaxial growth of SWCNTs from a platelet boron nitride nanofiber (BNNF), which is composed of stacked (002) planes and is stable at high temperatures. SWCNTs are found to grow epitaxially from the open (002) edges of the BNNFs, and the diameters of the SWCNTs are multiples of the BN (002) interplanar distance. In situ transmission electron microscopy observations coupled with first principles calculations reveal that the growth of SWCNTs from the BNNFs follows a vapor-solid-solid mechanism. Our work opens opportunities for the control over the structure of SWCNTs by hetero-crystallographic epitaxy. PMID:23240076

  12. Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon

    SciTech Connect

    Dabrowski, J. Lippert, G.; Schroeder, T.; Lupina, G.

    2014-11-10

    Hexagonal boron nitride (h-BN) is an attractive substrate for graphene, as the interaction between these materials is weak enough for high carrier mobility to be retained in graphene but strong enough to allow for some epitaxial relationship. We deposited graphene on exfoliated h-BN by molecular beam epitaxy (MBE), we analyzed the atomistic details of the process by ab initio density functional theory (DFT), and we linked the DFT and MBE results by random walk theory. Graphene appears to nucleate around defects in virgin h-BN. The DFT analysis reveals that sticking of carbon to perfect h-BN is strongly reduced by desorption, so that pre-existing seeds are needed for the nucleation. The dominant nucleation seeds are C{sub N}C{sub B} and O{sub N}C{sub N} pairs and B{sub 2}O{sub 3} inclusions in the virgin substrate.

  13. Preparation and properties of dysprosium nanocapsules coated with boron, carbon, and dysprosium oxide

    SciTech Connect

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Skorvanek, I.; Kovac, J.; Zhang, M

    2004-06-08

    Boron-coated dysprosium/dysprosium oxide, carbon-coated dysprosium/DyC{sub 2}, and dysprosium oxide-coated dysprosium nanocapsules were prepared using an arc discharge method in diborane, methane, and argon, respectively. The magnetization of these nanocapsules has been measured at temperatures between 4 and 290 K, in applied fields up to 6 T. The transition temperature of nanocrystalline Dy from the helical phase to the ferromagnetic phase is much lower than that of bulk Dy. The linear temperature dependence of the inverse susceptibility of these nanocapsules, being a mixture of superparamagnetic Dy and paramagnetic dysprosium oxide or carbide, can be explained within the molecular field theory with magnetic moments with the total angular momentum J=15/2 and the Lande factor g=4/3. We discuss the relations between the structure and the magnetization of these nanocapsules.

  14. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  15. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    PubMed

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  16. Progress in instrumenting the nitrogen/carbon cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Saunders, A. W.; Shvedunov, V. I.

    1997-02-01

    We have imaged in the laboratory elemental nitrogen/carbon concentrations by inducing 14N(γ,2p)12B, 14N(γ,2n)12N, and 13C(γ,p)12B reactions and detecting resulting γ-rays with energies above ˜1 MeV during a ˜5 to 40 ms interval after irradiation. We are now developing instrumentation with which to capture these images in field deployable Nitrogen and Carbon Cameras. Here we describe our progress in developing suitable light sources (compact, mobile 70 MeV electron accelerators), detector materials (bright, dense, rugged scintillators and large, room temperature semiconductors), and arrays of detectors (densely packed, durable, and automated.)

  17. Carbon and nitrogen diagenesis in deep sea sediments

    NASA Astrophysics Data System (ADS)

    Waples, Douglas W.; Sloan, Jon R.

    1980-10-01

    The sections penetrated on Leg 58 of the Deep Sea Drilling Project represent periods of geologic time during which depositional conditions apparently remained quite constant, thus offering an unusual opportunity to study the effects of diagenesis on organic material. Organic carbon and nitrogen contents decrease monotonically with increasing depth of burial before levelling off at minimum values of about 0.05-0.10 and 0.01%, respectively. The depths at which minima are reached vary from site to site, but the ages of the sediments at the minima are all about 2-5 Myr. These data indicate that diagenetic transformations are responsible for the gradual depletion of organic carbon and nitrogen. If diagenesis is at least partly the result of microbial activity, then the role of bacterial ecosystems in deep water sediments is much greater than has previously been thought.

  18. Carbon and Nitrogen Content of Natural Planktonic Bacteria †

    PubMed Central

    Nagata, Toshi

    1986-01-01

    A method of estimating carbon and nitrogen content per unit of natural bacterial cell volume was developed. This method is based on the difference in the retentiveness of bacteria between two kinds of glass fiber filter, GF/C and GF/F (Whatman, Inc., Clifton, N.J.). Biovolume and biomass (carbon and nitrogen content) of bacteria which passed through the GF/C but not the GF/F filter were estimated with an epifluorescence microscopy and a CHN analyzer, respectively. From seasonal determinations of natural planktonic bacteria in epilimnetic waters of a mesotrophic lake, the conversion factors of 106 fg of C/μm3 and 25 fg of N/μm3 were derived as average values. By using these values, the contribution of bacteria to the biomass of lake plankton is discussed. PMID:16347114

  19. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?

    PubMed

    Dang, Chi V

    2010-10-01

    A cancer cell comprising largely of carbon, hydrogen, oxygen, phosphorus, nitrogen and sulfur requires not only glucose, which is avidly transported and converted to lactate by aerobic glycolysis or the Warburg effect, but also glutamine as a major substrate. Glutamine and essential amino acids, such as methionine, provide energy through the TCA cycle as well as nitrogen, sulfur and carbon skeletons for growing and proliferating cancer cells. The interplay between utilization of glutamine and glucose is likely to depend on the genetic make-up of a cancer cell. While the MYC oncogene induces both aerobic glycolysis and glutaminolysis, activated β-catenin induces glutamine synthesis in hepatocellular carcinoma. Cancer cells that have elevated glutamine synthetase can use glutamate and ammonia to synthesize glutamine and are hence not addicted to glutamine. As such, cancer cells have many degrees of freedom for re-programming cell metabolism, which with better understanding will result in novel therapeutic approaches.

  20. Effect of carbon monoxide and nitrogen dioxide on ICR mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Times to incapacitation and death and LC(50) values were determined for male ICR mice exposed to different concentration of carbon monoxide for 30 min and of nitrogen dioxide for 10 min in a 4.2 liter hemispherical chamber. The data indicate that ICR mice are more resistant to these two toxicants than Swiss albino mice. The carbon monoxide LC(50) for a 30-min exposure was about 8,000 ppm for ICR mice compared to 3,570 ppm for Swiss albino mice. The nitrogen dioxide LC(50) for a 10-min exposure was above 2,000 ppm for ICR mice compared to about 1,000 ppm for Swiss albino mice.

  1. Phase transitions of boron carbide: Pair interaction model of high carbon limit

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Huhn, W. P.; Widom, M.

    2015-09-01

    Boron Carbide exhibits a broad composition range, implying a degree of intrinsic substitutional disorder. While the observed phase has rhombohedral symmetry (space group R 3 bar m), the enthalpy minimizing structure has lower, monoclinic, symmetry (space group Cm). The crystallographic primitive cell consists of a 12-atom icosahedron placed at the vertex of a rhombohedral lattice, together with a 3-atom chain along the 3-fold axis. In the limit of high carbon content, approaching 20% carbon, the icosahedra are usually of type B11 Cp, where the p indicates the carbon resides on a polar site, while the chains are of type C-B-C. We establish an atomic interaction model for this composition limit, fit to density functional theory total energies, that allows us to investigate the substitutional disorder using Monte Carlo simulations augmented by multiple histogram analysis. We find that the low temperature monoclinic Cm structure disorders through a pair of phase transitions, first via a 3-state Potts-like transition to space group R3m, then via an Ising-like transition to the experimentally observed R 3 bar m symmetry. The R3m and Cm phases are electrically polarized, while the high temperature R 3 bar m phase is nonpolar.

  2. Vacancy Mediated Mechanism of Nitrogen Substitution in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Sadanadan, Bindu; Rao, Apparao M.

    2003-01-01

    Nitrogen substitution reaction in a graphene sheet and carbon nanotubes of different diameter are investigated using the generalized tight-binding molecular dynamics method. The formation of a vacancy in curved graphene sheet or a carbon nanotube is found to cause a curvature dependent local reconstruction of the surface. Our simulations and analysis show that vacancy mediated N substitution (rather than N chemisorption) is favored on the surface of nanotubes with diameter larger than 8 nm. This predicted value of the critical minimum diameter for N incorporation is confirmed by experimental results presented.

  3. Carbon, nitrogen, and oxygen abundances in Sirius and Vega

    SciTech Connect

    Lambert, D.L.; Roby, S.W.; Bell, R.A.

    1982-03-15

    Carbon, nitrogen, and oxygen abundances are obtained from C I, N I, and O I high excitation permitted lines in the spectra of the standard A star Vega and the ''hot'' Am star Sirius. Vega has normal abundances. Relative to Vega, Sirius is C deficient by 0.60 dex, N enhanced by 0.22 dex, and O deficient by 0.27 dex.

  4. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  5. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  6. Proton induced gamma-ray production cross sections and thick-target yields for boron, nitrogen and silicon

    NASA Astrophysics Data System (ADS)

    Marchand, Benoît; Mizohata, Kenichiro; Räisänen, Jyrki

    2016-07-01

    The excitation functions for the reactions 14N(p,p‧γ)14N, 28Si(p,p‧γ)28Si and 29Si(p,p‧γ)29Si were measured at an angle of 55° by bombarding a thin Si3N4 target with protons in the energy range of 3.6-6.9 MeV. The deduced γ-ray production cross section data is compared with available literature data relevant for ion beam analytical work. Thick-target γ-ray yields for boron, nitrogen and silicon were measured at 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 MeV proton energies utilizing thick BN and Si3N4 targets. The measured yield values are put together with available yield data found in the literature. The experimental yield data has been used to cross-check the γ-ray production cross section values by comparing them with calculated thick-target yields deduced from the present and literature experimental excitation curves. All values were found to be in reasonable agreement taking into account the experimental uncertainties.

  7. Electrical and Electrochemical Properties of Nitrogen-Containing Tetrahedral Amorphous Carbon (ta-C) Thin Films

    NASA Astrophysics Data System (ADS)

    Yang, Xingyi

    Tetrahedral amorphous carbon (ta-C) is a diamond-like carbon (DLC) material comprised of a mixture of sp2 (˜40%) and sp3-bonded (˜60%) carbon domains. The physicochemical structure and electrochemical properties depend strongly on the sp2/sp3 bonding ratio as well as the incorporation of impurities, such as hydrogen or nitrogen. The ability to grow ta-C films at lower temperatures (25-100 °C) on a wider variety of substrates is a potential advantage of these materials as compared with diamond films. In this project, the basic structural and electrochemical properties of nitrogen-incorporated ta-C thin films will be discussed. The major goal of this work was to determine if the ta-C:N films exhibit electrochemical properties more closely aligned with those of boron-doped diamond (sp 3 carbon) or glassy carbon (amorphous sp2 carbon). Much like diamond, ta-C:N thin-film electrodes are characterized by a low background voltammetric current, a wide working potential window, relatively rapid electron-transfer kinetics for aqueous redox systems, such as Fe(CN) 6-3/-4 and Ru(NH3)6+3/+2 , and weak adsorption of polar molecules from solution. For example, negligible adsorption of methylene blue was found on the ta-C:N films in contrast to glassy carbon; a surface on which this molecule strongly adsorbs. The film microstructure was studied with x-ray photoelectron microscopy (XPS), visible Raman spectroscopy and electron-energy loss spectroscopy (EELS); all of which revealed the sp2-bonded carbon content increased with increasing nitrogen. The electrical properties of ta-C:N films were studied by four-point probe resistance measurement and conductive-probe AFM (CP-AFM). The incorporation of nitrogen into ta-C films increased the electrical conductivity primarily by increasing the sp2-bonded carbon content. CP-AFM showed the distribution of the conductive sp2-carbon on the film surface was not uniform. These films have potential to be used in field emission area. The

  8. Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Huiqi; Ma, Canliang; Yang, Xueteng; Han, Tao; Tao, Zechao; Song, Yan; Liu, Zhanjun; Guo, Quangui; Liu, Lang

    2015-03-01

    A facile route, for the first time, was developed to fabricate boron-doped carbon fibers (BDCFs). Boron was doped into mesosphere pitch-based carbon fibers (CFs) by exposing the CFs in a vapor of boron by the decomposition of boron carbide. The microstructure of BDCFs was characterized by SEM, TEM, XRD and Raman spectroscopy. When used as anode materials for the lithium-ion batteries, BDCFs electrode exhibits an improved performance. Concretely, the specific capacity of BDCFs still had a value of over 400 mAh g-1 after 100 cycles. Moreover, BDCFs exhibits better rate capability and less hysteresis in comparison to the pristine CFs. Such enhanced lithium storage capability can be attributed to the improvement of graphitization properties and the high amount of defects induced by boron.

  9. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions.

    PubMed

    Larsson, C; von Stockar, U; Marison, I; Gustafsson, L

    1993-08-01

    Aerobic chemostat cultures of Saccharomyces cerevisiae were performed under carbon-, nitrogen-, and dual carbon- and nitrogen-limiting conditions. The glucose concentration was kept constant, whereas the ammonium concentration was varied among different experiments and different dilution rates. It was found that both glucose and ammonium were consumed at the maximal possible rate, i.e., the feed rate, over a range of medium C/N ratios and dilution rates. To a small extent, this was due to a changing biomass composition, but much more important was the ability of uncoupling between anabolic biomass formation and catabolic energy substrate consumption. When ammonium started to limit the amount of biomass formed and hence the anabolic flow of glucose, this was totally or at least partly compensated for by an increased catabolic glucose consumption. The primary response when glucose was present in excess of the minimum requirements for biomass production was an increased rate of respiration. The calculated specific oxygen consumption rate, at D = 0.07 h-1, was more than doubled when an additional nitrogen limitation was imposed on the cells compared with that during single glucose limitation. However, the maximum respiratory capacity decreased with decreasing nitrogen concentration. The saturation level of the specific oxygen consumption rate decreased from 5.5 to 6.0 mmol/g/h under single glucose limitation to about 4.0 mmol/g/h at the lowest nitrogen concentration tested. The combined result of this was that the critical dilution rate, i.e., onset of fermentation, was as low as 0.10 h-1 during growth in a medium with a low nitrogen concentration compared with 0.20 h-1 obtained under single glucose limitation.

  10. Methods of producing continuous boron carbide fibers

    SciTech Connect

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  11. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  12. Carbon and nitrogen assimilation in deep subseafloor microbial cells

    PubMed Central

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-01-01

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with 13C- and/or 15N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of 13C and/or 15N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10−18 mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds. PMID:21987801

  13. Preparation of a new sorbent based on boronate affinity monolith and evaluation of its extraction performance for nitrogen-containing pollutants.

    PubMed

    Hu, Hongyou; Zhang, Yu; Zhang, Yong; Huang, Xiaojia; Yuan, Dongxing

    2014-05-16

    In this study, a new boronate affinity sorbent based on poly(4-vinylphenylboronic acid-divinylbenzene) monolith (VPB-DB) was prepared and used as extractive medium of stir cake sorptive extraction (SCSE). The effect of the preparation parameters in the polymerization mixture on extraction performance was investigated thoroughly. The sorbent was characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The determination of 8 sulfonamides in environmental water samples with the combination of SCSE and high performance liquid chromatography tandem mass spectrometry detection was selected as a paradigm for the evaluation of extraction performance of poly(VPB-DB) monolith for nitrogen-containing pollutants. Under the optimal extraction conditions, the limits of detection (S/N=3) and limits of quantification (S/N=10) for the target analytes were 0.0012-0.010 and 0.0040-0.033μg/L, respectively. The method also showed good linearity, repeatability, recoveries and high feasibility. At the same time, aromatic amines, nitrophenols, amide herbicides and sudan dyes were also used to evaluate the extractive performance of the sorbent for nitrogen-containing compounds. Results well indicate that the interaction of boron-nitrogen coordination between sorbent and analytes plays a key role in the extraction of nitrogen-containing compounds. PMID:24713423

  14. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    PubMed

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution.

  15. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties.

    PubMed

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-06-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ∼4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (∼60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications. PMID:27227818

  16. Carbon- and crack-free growth of hexagonal boron nitride nanosheets and their uncommon stacking order.

    PubMed

    Khan, Majharul Haque; Casillas, Gilberto; Mitchell, David R G; Liu, Hua Kun; Jiang, Lei; Huang, Zhenguo

    2016-09-21

    The quality of hexagonal boron nitride nanosheets (h-BNNS) is often associated with the most visible aspects such as lateral size and thickness. Less obvious factors such as sheet stacking order could also have a dramatic impact on the properties of BNNS and therefore its applications. The stacking order can be affected by contamination, cracks, and growth temperatures. In view of the significance of chemical-vapour-decomposition (CVD) assisted growth of BNNS, this paper reports on strategies to grow carbon- and crack-free BNNS by CVD and describes the stacking order of the resultant BNNS. Pretreatment of the most commonly used precursor, ammonia borane, is necessary to remove carbon contamination caused by residual hydrocarbons. Flattening the Cu and W substrates prior to growth and slow cooling around the Cu melting point effectively facilitate the uniform growth of h-BNNS, as a result of a minimal temperature gradient across the Cu substrate. Confining the growth inside alumina boats effectively minimizes etching of the nanosheet by silica nanoparticles originating from the commonly used quartz reactor tube. h-BNNS grown on solid Cu surfaces using this method adopt AB, ABA, AC', and AC'B stacking orders, which are known to have higher energies than the most stable AA' configuration. These findings identify a pathway for the fabrication of high-quality h-BNNS via CVD and should spur studies on stacking order-dependent properties of h-BNNS. PMID:27455464

  17. Carbon- and crack-free growth of hexagonal boron nitride nanosheets and their uncommon stacking order.

    PubMed

    Khan, Majharul Haque; Casillas, Gilberto; Mitchell, David R G; Liu, Hua Kun; Jiang, Lei; Huang, Zhenguo

    2016-09-21

    The quality of hexagonal boron nitride nanosheets (h-BNNS) is often associated with the most visible aspects such as lateral size and thickness. Less obvious factors such as sheet stacking order could also have a dramatic impact on the properties of BNNS and therefore its applications. The stacking order can be affected by contamination, cracks, and growth temperatures. In view of the significance of chemical-vapour-decomposition (CVD) assisted growth of BNNS, this paper reports on strategies to grow carbon- and crack-free BNNS by CVD and describes the stacking order of the resultant BNNS. Pretreatment of the most commonly used precursor, ammonia borane, is necessary to remove carbon contamination caused by residual hydrocarbons. Flattening the Cu and W substrates prior to growth and slow cooling around the Cu melting point effectively facilitate the uniform growth of h-BNNS, as a result of a minimal temperature gradient across the Cu substrate. Confining the growth inside alumina boats effectively minimizes etching of the nanosheet by silica nanoparticles originating from the commonly used quartz reactor tube. h-BNNS grown on solid Cu surfaces using this method adopt AB, ABA, AC', and AC'B stacking orders, which are known to have higher energies than the most stable AA' configuration. These findings identify a pathway for the fabrication of high-quality h-BNNS via CVD and should spur studies on stacking order-dependent properties of h-BNNS.

  18. Carbon and nitrogen isotope studies in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-01-01

    The Phase II studies of the R4D Program on stream and watershed ecology reflect the accomplishments and accumulation of baseline information obtained during the past studies. Although our rough estimates indicate that nitrogen inputs to the watershed ba lance losses, the carbon fluxes suggest that they are not in equilibrium and that there is a net loss of carbon from the tundra ecosystem through respiration and transport out of the watershed via the stream system. Radiocarbon profiles of soil sections coupled with mass transport calculations revealed that peat accumulation has essentially ceased in the R4D watershed and appears to be in ablative loss. Thus the carbon flux measurements provide validation tests for the PLANTGRO and GAS-HYDRO models of the PHASE II studies. These findings are also important in the context of global CO[sub 2] increases from positive feedback mechanisms in peatlands associated with climatic warming in the subarctic regions.

  19. Carbon and nitrogen isotope studies in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-12-31

    The Phase II studies of the R4D Program on stream and watershed ecology reflect the accomplishments and accumulation of baseline information obtained during the past studies. Although our rough estimates indicate that nitrogen inputs to the watershed ba lance losses, the carbon fluxes suggest that they are not in equilibrium and that there is a net loss of carbon from the tundra ecosystem through respiration and transport out of the watershed via the stream system. Radiocarbon profiles of soil sections coupled with mass transport calculations revealed that peat accumulation has essentially ceased in the R4D watershed and appears to be in ablative loss. Thus the carbon flux measurements provide validation tests for the PLANTGRO and GAS-HYDRO models of the PHASE II studies. These findings are also important in the context of global CO{sub 2} increases from positive feedback mechanisms in peatlands associated with climatic warming in the subarctic regions.

  20. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives.

    PubMed

    Jaiswal, Vinay; Kalyani; Umrao, Sima; Rastogi, Rashmi B; Kumar, Rajesh; Srivastava, Anchal

    2016-05-11

    The microwave-synthesized reduced graphene oxide (MRG), boron-doped reduced graphene oxide (B-MRG), nitrogen-doped reduced graphene oxide (N-MRG), boron-nitrogen-co-doped reduced graphene oxide (B-N-MRG), and TiO2-reinforced B-N-MRG (TiO2-B-N-MRG) nanomaterials have been synthesized and characterized by various state-of-the-art techniques, like Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the tribological properties of prepared nanomaterials as antiwear additives in neutral paraffin oil have been evaluated using a four-ball machine at an optimized additive concentration (0.15% w/v). The tribological parameters, like mean wear scar diameter, coefficient of friction, and wear rates, revealed that these nanomaterials have potential to be developed as environmentally friendly sulfated-ash-, phosphorus-, and sulfur-free antiwear lubricant additives. The friction- and wear-reducing behavior of MRG increased upon successive doping of nitrogen, boron, and both nitrogen and boron. Among these additives, B-N-co-doped MRG shows superior tribological behavior in paraffin base oil. Besides this, the load-carrying properties of B-N-co-doped MRG have significantly improved after its reinforcement with TiO2 nanoparticles. A comparative study of the surface morphology of a lubricated track in the presence of various additives has been assessed by SEM and contact-mode atomic force microscopy. The X-ray photoelectron spectroscopy studies have proved that the excellent lubrication properties of TiO2-B-N-MRG are due to the in situ formation of a tribofilm composed of boron nitride, adsorbed graphene layers, and tribosintered TiO2 nanoparticles during the tribocontact. Being sulfur-, halogen-, and phosphorus-free, these graphene-based nanomaterials act as green antiwear additives, protecting interacting

  1. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups.

    PubMed

    Dong, Haifeng; Zhao, Yong; Tang, Yifan; Burkert, Seth C; Star, Alexander

    2015-05-27

    We demonstrate a facile synthesis of different nanostructures by oxidative unzipping of stacked nitrogen-doped carbon nanotube cups (NCNCs). Depending on the initial number of stacked-cup segments, this method can yield graphene nanosheets (GNSs) or hybrid nanostructures comprised of graphene nanoribbons partially unzipped from a central nanotube core. Due to the stacked-cup structure of as-synthesized NCNCs, preventing complete exposure of graphitic planes, the unzipping mechanism is hindered, resulting in incomplete unzipping; however, individual, separated NCNCs are completely unzipped, yielding individual nitrogen-doped GNSs. Graphene-based materials have been employed as electrocatalysts for many important chemical reactions, and it has been proposed that increasing the reactive edges results in more efficient electrocatalysis. In this paper, we apply these graphene conjugates as electrocatalysts for the oxygen reduction reaction (ORR) to determine how the increase in reactive edges affects the electrocatalytic activity. This investigation introduces a new method for the improvement of ORR electrocatalysts by using nitrogen dopants more effectively, allowing for enhanced ORR performance with lower overall nitrogen content. Additionally, the GNSs were functionalized with gold nanoparticles (GNPs), resulting in a GNS/GNP hybrid, which shows efficient surface-enhanced Raman scattering and expands the scope of its application in advanced device fabrication and biosensing.

  2. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    PubMed

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  3. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  4. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.

    PubMed

    Koven, Charles D; Lawrence, David M; Riley, William J

    2015-03-24

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw. PMID:25775603

  5. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Lawrence, David M.; Riley, William J.

    2015-03-01

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  6. Nanoscale High Energetic Materials: A Polymeric Nitrogen Chain N8 Confined inside a Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Abou-Rachid, Hakima; Hu, Anguang; Timoshevskii, Vladimir; Song, Yanfeng; Lussier, Louis-Simon

    2008-05-01

    We present a theoretical study of a new hybrid material, nanostructured polymeric nitrogen, where a polymeric nitrogen chain is encapsulated in a carbon nanotube. The electronic and structural properties of the new system are studied by means of ab initio electronic structure and molecular dynamics calculations. Finite temperature simulations demonstrate the stability of this nitrogen phase at ambient pressure and room temperature using carbon nanotube confinement. This nanostructured confinement may open a new path towards stabilizing polynitrogen or polymeric nitrogen at ambient conditions.

  7. Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1980-01-01

    The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.

  8. Hyperspectral Analysis of Soil Nitrogen, Carbon, Carbonate, and Organic Matter Using Regression Trees

    PubMed Central

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L. Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R2 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R2 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R2 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R2 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method. PMID:23112620

  9. Fabrication of boron articles

    DOEpatents

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  10. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.

    PubMed

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH3. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH3, leads to a low surface area down to 458 m(2)/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~4 at.% carbon atoms and part of oxygen function groups reacted with NH3. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g).

  11. A technique to measure heats of reaction of titanium-boron, aluminim-titanium-boron, and aluminum-titanium-boron-carbon powder blends

    NASA Astrophysics Data System (ADS)

    Baker, Andrew H.

    In this research, a modification to initiation aid ignition in bomb calorimetry that involves systemically blending levels of boron and potassium nitrate initiation aids with a bulk structural energetic elemental power blend is developed. A regression is used to estimate the nominal heat of reaction for the primary reaction. The technique is first applied to the synthesis of TiB 2 as a validation study to see if close proximity to literature values can be achieved. The technique is then applied to two systems of interest, Al-Ti-B, and Al-Ti-B4C. In all three investigations, x-ray diffraction is used to characterize the product phases of the reactions to determine the extent and identity of the product phases and any by-products that may have formed as a result of adding the initiation aid. The experimental data indicates the technique approximates the heat of reaction value for the synthesis of TiB2 from Ti-B powder blends and the formation of TiB2 is supported by volume fraction analysis by x-ray diffraction. Application to the Al-Ti-B and Al-Ti-B4C blends show some correlation with variation of the initiation aid, with x-ray diffraction showing the formation of equilibrium products. However, these blends require further investigation to resolve more complex interactions and rule out extraneous variables.

  12. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    PubMed

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  13. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    SciTech Connect

    Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Goddard, Caroline J. L.

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  14. Carbon doping induced peculiar transport properties of boron nitride nanoribbons p-n junctions

    SciTech Connect

    Liu, N.; Gao, G. Y.; Zhu, S. C.; Ni, Y.; Wang, S. L.; Yao, K. L.; Liu, J. B.

    2014-07-14

    By applying nonequilibrium Green's function combined with density functional theory, we investigate the electronic transport properties of carbon-doped p-n nanojunction based on hexagonal boron nitride armchair nanoribbons. The calculated I-V curves show that both the center and edge doping systems present obvious negative differential resistance (NDR) behavior and excellent rectifying effect. At low positive bias, the edge doping systems possess better NDR performance with larger peak-to-valley ratio (∼10{sup 5}), while at negative bias, the obtained peak-to-valley ratio for both of the edge and center doping systems can reach the order of 10{sup 7}. Meanwhile, center doping systems present better rectifying performance than the edge doping ones, and giant rectification ratio up to 10{sup 6} can be obtained in a wide bias range. These outstanding transport properties are explained by the evolution of the transmission spectra and band structures with applied bias, together with molecular projected self-consistent Hamiltonian eigenvalues and eigenstates.

  15. Gas uptake and thermal stability analysis of boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guan, Mengyu

    Carbon nanotubes (CNTs) exist in many forms and can have critical pore diameters on the angstrom length scale, making them suitable for molecular capture. By combining the porous structure of CNTs with the chemical stability of carbide and/or nitride materials, one can create a more robust, nanoporous material for gas capture in high temperature conditions. Boron nitride nanotubes (BNNTs) are more chemically and thermally robust than pure CNTs, and were synthesized using CNTs as a structural precursor. However, this reaction mechanism was found to be unfavorable to produce high-yield and purity BNNTs. Adsorption tests using gases of interest (N2, He) were performed on commercial CNTs and BNNTs to determine their porosity and gas uptake abilities. Their thermal stability and oxidation resistance when heated up to 1773 K in air was also studied using differential scanning calorimetry and thermogravimetric analysis. While the CNTs began to oxidize between 450 °C and 750 °C, depending on the nanotube diameter, the BNNTs remained stable up until 1000 °C.

  16. Theoretical investigation of methane adsorption onto boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Darvish Ganji, Masoud; Mirnejad, Amir; Najafi, Ali

    2010-08-01

    Methane adsorption onto single-wall boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) was studied using the density functional theory within the generalized gradient approximation. The structural optimization of several bonding configurations for a CH4 molecule approaching the outer surface of the (8,0) BNNT and (8,0) CNT shows that the CH4 molecule is preferentially adsorbed onto the CNT with a binding energy of -2.84 kcal mol-1. A comparative study of nanotubes with different diameters (curvatures) reveals that the methane adsorptive capability for the exterior surface increases for wider CNTs and decreases for wider BNNTs. The introduction of defects in the BNNT significantly enhances methane adsorption. We also examined the possibility of binding a bilayer or a single layer of methane molecules and found that methane molecules preferentially adsorb as a single layer onto either BNNTs or CNTs. However, bilayer adsorption is feasible for CNTs and defective BNNTs and requires binding energies of -3.00 and -1.44 kcal mol-1 per adsorbed CH4 molecule, respectively. Our first-principles findings indicate that BNNTs might be an unsuitable material for natural gas storage.

  17. Lattice mismatch induced curved configurations of hybrid boron nitride-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Jin

    2016-10-01

    A unique curved configuration is observed in freestanding hybrid boron nitride-carbon nanotubes (BN-CNTs) based on molecular dynamics simulations, which, in previous studies, was tacitly assumed as a straight configuration. The physical fundamentals of this phenomenon are explored by using the continuum mechanics theory, where the curved configuration of BN-CNTs is found to be induced by the bending effect due to the lattice mismatch between the C domain and the BN domain. In addition, our results show that the curvature of the curved BN-CNTs is determined by their radius and composition. The curvature of BN-CNTs decreases with growing radius of BN-CNTs and becomes ignorable when their radius is relatively large. A non-monotonic relationship is detected between the curvature and the composition of BN-CNTs. Specifically, the curvature of BN-CNTs increases with growing BN concentration when the molar fraction of BN atoms is smaller than a critical value 0.52, but decreases with growing BN concentration when the molar fraction of BN atoms is larger than this critical value.

  18. Semiconducting polymers with nanocrystallites interconnected via boron-doped carbon nanotubes.

    PubMed

    Yu, Kilho; Lee, Ju Min; Kim, Junghwan; Kim, Geunjin; Kang, Hongkyu; Park, Byoungwook; Ho Kahng, Yung; Kwon, Sooncheol; Lee, Sangchul; Lee, Byoung Hun; Kim, Jehan; Park, Hyung Il; Kim, Sang Ouk; Lee, Kwanghee

    2014-12-10

    Organic semiconductors are key building blocks for future electronic devices that require unprecedented properties of low-weight, flexibility, and portability. However, the low charge-carrier mobility and undesirable processing conditions limit their compatibility with low-cost, flexible, and printable electronics. Here, we present significantly enhanced field-effect mobility (μ(FET)) in semiconducting polymers mixed with boron-doped carbon nanotubes (B-CNTs). In contrast to undoped CNTs, which tend to form undesired aggregates, the B-CNTs exhibit an excellent dispersion in conjugated polymer matrices and improve the charge transport between polymer chains. Consequently, the B-CNT-mixed semiconducting polymers enable the fabrication of high-performance FETs on plastic substrates via a solution process; the μFET of the resulting FETs reaches 7.2 cm(2) V(-1) s(-1), which is the highest value reported for a flexible FET based on a semiconducting polymer. Our approach is applicable to various semiconducting polymers without any additional undesirable processing treatments, indicating its versatility, universality, and potential for high-performance printable electronics. PMID:25372930

  19. Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites.

    PubMed

    Agrawal, Richa; Nieto, Andy; Chen, Han; Mora, Maria; Agarwal, Arvind

    2013-11-27

    This study compares the damping behavior of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) as reinforcement in PLC, a biodegradable copolymer. The damping behavior of PLC composites reinforced with 2 wt % or 5 wt % nanotube filler is evaluated by nanodynamic mechanical analysis (NanoDMA). The addition of 2 wt % CNT leads to the greatest enhancement in damping (tan δ) behavior. This is attributed to pullout in CNTs because of lower interfacial shear strength with the polymer matrix and a more effective sword-in-sheath mechanism as opposed to BNNTs which have bamboo-like nodes. BNNTs however have a superior distribution in the PLC polymer matrix enabling higher contents of BNNT to further enhance the damping behavior. This is in contrast with CNTs which agglomerate at higher concentrations, thus preventing further improvement at higher concentrations. It is observed that for different compositions, tan δ values show no significant changes over varying dynamic loads or prolonged cycles. This shows the ability of nanotube mechanisms to function at varying strain rates and to survive long cycles. PMID:24236402

  20. Dibenzothiophene adsorption at boron doped carbon nanoribbons studied within density functional theory

    SciTech Connect

    López-Albarrán, P.; Navarro-Santos, P.; Garcia-Ramirez, M. A.; Ricardo-Chávez, J. L.

    2015-06-21

    The adsorption of dibenzothiophene (DBT) on bare and boron-doped armchair carbon nanoribbons (ACNRs) is being investigated in the framework of the density functional theory by implementing periodic boundary conditions that include corrections from dispersion interactions. The reactivity of the ACNRs is characterized by using the Fukui functions as well as the electrostatic potential as local descriptors. Non-covalent adsorption mechanism is found when using the local Perdew-Becke-Ernzerhof functional, regardless of the DBT orientation and adsorption location. The dispersion interactions addition is a milestone to describe the adsorption process. The charge defects introduced in small number (i.e., by doping with B atoms), within the ACNRs increases the selectivity towards sulfur mainly due to the charge depletion at B sites. The DBT magnitude in the adsorption energy shows non-covalent interactions. As a consequence, the configurations where the DBT is adsorbed on a BC{sub 3} island increase the adsorption energy compared to random B arrangements. The stability of these configurations can be explained satisfactorily in terms of dipole interactions. Nevertheless, from the charge-density difference analysis and the weak Bader charge-distribution interactions cannot be ruled out completely. This is why the electronic properties of the ribbons are analyzed in order to elucidate the key role played by the B and DBT states in the adsorbed configurations.

  1. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  2. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    DOE Data Explorer

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  3. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-05-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ~4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (~60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications.Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability

  4. Carbon, nitrogen, and phosphorus transport by world rivers

    SciTech Connect

    Meybeck, M.

    1982-04-01

    The various forms (dissolved and particulate, organic and inorganic) of carbon, nitrogen, and phosphorus in world rivers are reviewed from literature data. Natural levels are based mainly on major rivers for the subarctic and tropical zones which are still unpolluted and on smaller streams for the temperate zone. Atmospheric fallout is also reviewed. Natural contents of dissolved organic carbon (DOC) are mainly dependent on environmental conditions: DOC varies from 1 mg 1/sup -1/ in the mountainous alpine environments to 20 mg 1/sup -1/ in some taiga rivers. The world DOC average is 5.75 mg l/sup -1/. Nitrogen forms include dissolved organic nitrogen (DON), dissolved inorganic nitrogen (DIN = N - NH/sub 4//sup +/ + N - NO/sub 3//sup -/ + N - NO/sub 2//sup -/), and particulate organic nitrogen (PON). Natural levels are very low: DIN = 120 ..mu..g 1/sup -1/ of which only 15 percent is present as ammonia, and 1 percent as nitrite. Phosphorus is naturally present in very low amounts: around 10 ..mu..g 1/sup -1/ for P-PO/sub 4//sup 3/ and 25 ..mu..g 1/sup -1/ for total dissolved phosphorus (TDP which includes the organic form). The average nutrient content of rains has been estimated with a set of unpolluted stations: P - PO/sub 4/ = 5 ..mu..g 1/sup -1/, TDP = 10, N - NO/sub 2/ = 5, N - NH/sub 4/ = 225, DON = 225, and N - NO/sub 3/ = 175 ..mu..g 1/sup -1/. TOC levels are probably around several mg 1/sup -1/. These contents are very similar to those found in unpolluted rivers. Man's influence on surface waters has now greatly increased natural nutrient levels. Total dissolved P and N have globally increased by a factor of two and locally (Western Europe, North America) by factors of 10 to 50. These increases were found to be directly proportional to the watershed population and to its energy consumption.

  5. The boron-to-carbon ratio from the first cosmic ray energetics and mass balloon campaign

    NASA Astrophysics Data System (ADS)

    Conklin, Nicholas B.

    The Cosmic Ray Energetics and Mass (CREAM) project consists of a series of balloon campaigns intended to study the composition of high-energy cosmic-ray nuclei near the knee of the all-particle cosmic-ray spectrum. Since cosmic-ray nuclei at these energies are very rare, a large number of flights are required to obtain a statistically meaningful data set. Data from the first CREAM flight, which set a new endurance record of nearly 42 days that has only recently been broken, will be presented here, specifically, the ratio of boron nuclei, which are created by spallation of heavier nuclei en route from cosmic- ray acceleration sites, to carbon nuclei, which are predominantly of primary origin. This secondary-to-primary ratio is important for understanding models of cosmic-ray propagation, which state that the path length traversed by a cosmic ray before escaping the Galaxy is proportional to E -d , where E is the cosmic-ray energy. Data from the B/C ratio of the first CREAM flight indicate d ~ 0.5-0.6; this is consistent with many current propagation models and previous data at lower energies. The differential flux of carbon and oxygen nuclei is observed to obey a power law in energy with spectral index -2.6. The spectral index observed at earth will be a factor d steeper than that observed at cosmic-ray acceleration sites due to the energy dependence of cosmic-ray escape from the Galaxy. The expected power law index at cosmic ray acceleration sites is therefore ~ -2.0, which is consistent with the current theoretical understanding of cosmic-ray acceleration in supernova shocks.

  6. Synthesis, Characterization and Applications of New Nonmetallic Photocatalysts -- Resorcinol Formaldehyde Resin and Boron Carbon Oxynitride

    NASA Astrophysics Data System (ADS)

    Gu, Ting

    This thesis describes the synthesis, characterization and applications of two kinds of nonmetallic photocatalysts: resorcinol formaldehyde (RF) resin and boron carbon oxynitride (BCNO). Part I: Catalyst-free hydrothermal method was developed to synthesize RF resin. It started with a solution containing only resorcinol and formaldehyde. The products were characterized by transmission electron microscopy (TEM), Solid state 13C nuclear magnetic resonance (13C-NMR) spectrometer and UV-Visible absorption spectroscopy. The particle size (diameter: 100nm-4microm) of RF the spheres was controlled by changing the concentration of the reactants. With increasing particle size, visible light absorption of the product was also increased. These RF spheres could degrade Rhodamine B and generate OH radicals under visible light irradiation. Besides, highly concentrated starting reactants would form large macroporous gel instead of individual particles. This kind of gel could be easily shaped to dishes and tubes, which could be used in filtration and degradation of air pollutants. Part II: The BCNO was prepared by heating a mixture of boric acid, melamine and PEG in atmosphere. The optical properties of the products were measured by UV-Visible absorption spectroscopy with integrating sphere. The X-ray powder diffraction (XRD) patterns indicated that all BCNO compounds had the turbostratic boron nitride (t-BN) structure. Meanwhile, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrum (EELS) were used to determine the chemical composition of the catalyst. The BCNO could be identified as t-BN with N atoms partly substituted by O and C atoms. The degree of substitution affected its photocatalytic properties. Perdew--Burke--Ernzerhof (PBE) exchange model was introduced to simulate the density of state (DOS) of BCNO using these supercells. Simulation results indicated that C and O substitution induced occupied impurity states in the gap region which modified the band

  7. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes.

    PubMed

    Uslu, Bengi; Topal, Burcu Dogan; Ozkan, Sibel A

    2008-02-15

    The anodic behavior and determination of pefloxacin on boron-doped diamond and glassy carbon electrodes were investigated using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. In cyclic voltammetry, pefloxacin shows one main irreversible oxidation peak and additional one irreversible ill-defined wave depending on pH values for both electrodes. The results indicate that the process of pefloxacin is irreversible and diffusion controlled on boron-doped diamond electrode and irreversible but adsorption controlled on glassy carbon electrode. The peak current is found to be linear over the range of concentration 2x10(-6) to 2x10(-4)M in 0.5M H(2)SO(4) at about +1.20V (versus Ag/AgCl) for differential pulse and square wave voltammetric technique using boron-doped diamond electrode. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. Selectivity, precision and accuracy of the developed methods were also checked by recovery studies. The procedures were successfully applied to the determination of the drug in pharmaceutical dosage forms and humans serum samples with good recovery results. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and biological samples, respectively.

  8. Boron carbide as atomic oxygen protection for the Lexan-carbon filter on the ROSAT wide-field camera

    NASA Astrophysics Data System (ADS)

    Kent, Barry J.; Swinyard, Bruce M.; Maier, Hans-Joerg; Frischke, Dagmar

    1992-01-01

    The ROSAT Wide Field Camera, launched in June 1990, uses large area (50 cm2) thin film (typically 0.5 micrometers thick), band pass filters to select different extreme ultra violet wavelength bands. One of the filters consists of a substrate of the plastic polycarbonate, Lexan$DAG, interleaved with carbon and is thus susceptible to erosion by atomic oxygen in the ROSAT low earth orbit at 580 km altitude. The filter was protected against this erosion mechanism by using a thin overcoating of boron carbide. We describe the boron carbide coating process, the technique used to minimize the heat load on the fragile plastic foil, and the need for an additional adhesion layer of carbon. The chemical composition of the boron carbide as evaporated material on glass slides has been measured using several surface science techniques as well as by analysis of the soft x-ray and EUV transmission of sample foils and completed flight filters. Additionally, using ion and atomic oxygen sources, the effectiveness of the coating has been evaluated by laboratory measurements on sample foils.

  9. Exploring the Sensitivity of Terrestrial Carbon Sources and Sinks to Nitrogen Cycle Processes

    NASA Astrophysics Data System (ADS)

    Kheshgi, H. S.; Yang, X.; Jain, A.

    2009-12-01

    The sensitivity of terrestrial carbon sources and sinks to modeled nitrogen-cycle processes is explored and observational constraints considered to advance understanding of model differences and the uncertainty of CO2 projections. The magnitude of worldwide terrestrial carbon sources and sinks driven by changing climate and CO2 fertilization have been found to be attenuated by the dynamics of the nitrogen cycle, with the strength of this attenuation effect differing between coupled nitrogen-carbon-cycle models (Jain et al., GBC in press, 2009; Sokolov et al., J. of Climate, 2008; Thornton et al., GBC, 2007). In this study, a terrestrial nitrogen-carbon-cycle model (Yang et al., GBC in press, 2009) was used to evaluate how the nitrogen cycle influences terrestrial carbon sinks and sources in response to observation-based changes in atmospheric CO2, climate, nitrogen inputs, and land use over the 20th century and scenarios for these drivers over the 21st century. Modeled global carbon uptake by the terrestrial biosphere is found to be sensitive to, for example, the extent of nitrogen limitation in the tropics, the extent plant C/N ratio increase under nitrogen limitation and its consequent effects on productivity, and the change of rates of nitrogen inputs (e.g. biological nitrogen fixation and nitrogen deposition) and outputs (e.g. leaching and denitrification). Greater nitrogen limitation in tropical regions, reduced ability of plants to grow with increased C/N ratio, and decreased rates of nitrogen inputs and outputs (equal in equilibrium) each strengthen the nitrogen cycle’s effect of reducing carbon sinks and sources. Application of observation-based constraints to these nitrogen-cycle processes gives an estimate of the contribution of uncertainty in these processes to the uncertainty of CO2 projections.

  10. Nitrogen Attenuation of Terrestrial Carbon Cycle Response to Global Environmental Change

    NASA Astrophysics Data System (ADS)

    Jain, A.; Yang, X.; Kheshgi, H.; McGuire, A. D.; Post, W. M.

    2008-12-01

    The magnitude of worldwide terrestrial carbon sinks driven by CO2 fertilization are found to be attenuated by nitrogen dynamics. However, the terrestrial nitrogen cycle also has the potential to interact with carbon cycle responses to changes in climate, nitrogen inputs, and land use. In this study, a terrestrial carbon and nitrogen cycle model was used to evaluate how the nitrogen cycle influences the terrestrial carbon sinks in the 20th Century in response to changes in atmospheric CO2, climate, nitrogen inputs, and land use. Two series of simulations were performed. First, the model of the nitrogen cycle was fixed at the 1765 levels. Next, nitrogen availability was allowed to vary dynamically according to plant nitrogen supply and demand. These simulations were driven by a single driving variable. Comparisons of these applications of the model with a fully dynamic nitrogen cycle to applications in which nitrogen availability was fixed at 1765 levels revealed that in 1990s there was (1) a decreased sink associated with increasing atmospheric CO2, (2) a decreased source associated with changes in climate, (3) an increased sink associated with nitrogen inputs, and (4) an increased source associated with changes in land use. While the analysis for individual driving variables indicates that during the 1990s the role of the nitrogen cycle in changing atmospheric CO2, climate, nitrogen and land use counterbalance each other to some extent, model applications that simultaneously considered all of these effects indicate that the nitrogen and carbon cycles are in fact currently playing an important role in changing the terrestrial CO2 sinks at the global scale. Results indicate the importance of including the nitrogen cycle in coupled carbon-climate system models.

  11. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi

    2015-04-01

    Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the

  12. Effect of boron on the microstructure of low-carbon steel resistance seam welds

    SciTech Connect

    Babu, S.S.; Goodwin, G.M.; Rohde, R.J.; Sielen, B.

    1998-06-01

    Small levels of boron (20--40 wt ppm) in steel were found to have a large influence on the microstructure and hardness of resistance seam welds. The decomposition kinetics of austenite to ferrite were retarded and resulted in the formation of bainitic and martensitic microstructures in the weld metal. The welds with low and high boron concentrations showed large differences in hardness. This microstructure development is in agreement with theoretical calculations of time-temperature-transformation diagrams. This work stresses the importance of considering boron levels in steels on the weld properties.

  13. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    SciTech Connect

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu E-mail: zouguifu@suda.edu.cn; Gao, Peng; Zhang, Ke-Qin E-mail: zouguifu@suda.edu.cn; Du, Dezhuang; Guo, Jun

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  14. Soil nitrogen and carbon impacts of raising chickens on pasture

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Leach, A.; Tang, J.; Hastings, M. G.; Galloway, J. N.

    2014-12-01

    Chicken is the most consumed meat in the US, and production continues to intensify rapidly around the world. Chicken manure from confined feeding operations is typically applied in its raw form to nearby croplands, resulting in hotspots of soil nitrous oxide (N2O) emissions. Pasture-raised chicken is an alternative to industrial production and is growing in popularity with rising consumer demand for more humanely raised protein sources. In this agricultural model, manure is deposited directly onto grassland soils where it is thought to increase pools of soil carbon and nitrogen. The fate of manure nitrogen from pasture-raised chicken production remains poorly understood. We conducted a controlled, replicated experiment on a permaculture farm in Charlottesville, Virginia (Timbercreek Organics) in which small chicken coops (10 ft x 12 ft) were moved daily in a pasture. We measured manure deposition rates, soil inorganic nitrogen pools, soil moisture, and soil N2O and CO2 emissions. Measurements were made for the 28-day pasture life of three separate flocks of chickens in the spring, summer, and fall. Each flock consisted of approximately 200-300 chickens occupying three to five coops (~65 chickens/coop). Measurements were also made in paired ungrazed control plots. Manure deposition rates were similar across flocks and averaged 1.5 kgdrywt ha-1 during the spring grazing event and 4.0 kgdrywt ha-1 during the summer and fall grazing events. Manure deposition was relatively constant over the four weeks pasture-lifetime of the chickens. Compared to control plots, grazed areas exhibited higher soil N2O and CO2 fluxes. The magnitude of these fluxes diminished significantly over the four-week span. Soil gas fluxes significantly increased following rainfall events. For a given rainfall event, higher fluxes were observed from transects that were grazed more recently. Soil gaseous reactive nitrogen losses were less in this pasture system compared to cultivated field amended

  15. Atmospheric nitrogen deposition promotes carbon loss from peat bogs.

    PubMed

    Bragazza, Luca; Freeman, Chris; Jones, Timothy; Rydin, Håkan; Limpens, Juul; Fenner, Nathalie; Ellis, Tim; Gerdol, Renato; Hájek, Michal; Hájek, Tomás; Iacumin, Paola; Kutnar, Lado; Tahvanainen, Teemu; Toberman, Hannah

    2006-12-19

    Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from approximately 0.2 to 2 g.m(-2).yr(-1). We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased N availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.

  16. First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics

    NASA Astrophysics Data System (ADS)

    Huang, Meng-Li; Wang, Chong-Yu

    2016-10-01

    The effects of boron and carbon on the structural, elastic, and electronic properties of both Ni solution and Ni3Al intermetallics are investigated using first-principles calculations. The results agree well with theoretical and experimental data from previous studies and are analyzed based on the density of states and charge density. It is found that both boron and carbon are inclined to occupy the Ni-rich interstices in Ni3Al, which gives rise to a cubic interstitial phase. In addition, the interstitial boron and carbon have different effects on the elastic moduli of Ni and Ni3Al. The calculation results for the G/B and Poisson’s ratios further demonstrate that interstitial boron and carbon can both reduce the brittleness of Ni, thereby increasing its ductility. Meanwhile, boron can also enhance the ductility of the Ni3Al while carbon hardly has an effect on its brittleness or ductility. Project supported by the National Basic Research Program of China (Grant No. 2011CB606402).

  17. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-09-01

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere. PMID:21886160

  18. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-08-31

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.

  19. Does canopy nitrogen uptake enhance carbon sequestration by trees?

    PubMed

    Nair, Richard K F; Perks, Micheal P; Weatherall, Andrew; Baggs, Elizabeth M; Mencuccini, Maurizio

    2016-02-01

    Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1)  yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies.

  20. Does canopy nitrogen uptake enhance carbon sequestration by trees?

    PubMed

    Nair, Richard K F; Perks, Micheal P; Weatherall, Andrew; Baggs, Elizabeth M; Mencuccini, Maurizio

    2016-02-01

    Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1)  yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies. PMID:26391113

  1. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes.

    PubMed

    Sharifi, Tiva; Hu, Guangzhi; Jia, Xueen; Wågberg, Thomas

    2012-10-23

    Heat treating nitrogen-doped multiwalled carbon nanotubes containing up to six different types of nitrogen functionalities transforms particular nitrogen functionalities into other types which are more catalytically active toward oxygen reduction reactions (ORR). In the first stage, the unstable pyrrolic functionalities transform into pyridinic functionalities followed by an immediate transition into quaternary center and valley nitrogen functionalities. By measuring the electrocatalytic oxidation reduction current for the different samples, we achieve information on the catalytic activity connected to each type of nitrogen functionality. Through this, we conclude that quaternary nitrogen valley sites, N-Q(valley), are the most active sites for ORR in N-CNTs. The number of electrons transferred in the ORR is determined from ring disk electrode and rotating ring disk electrode measurements. Our measurements indicate that the ORR processes proceed by a direct four-electron pathway for the N-Q(valley) and the pyridinic sites while it proceeds by an indirect two-electron pathway via hydrogen peroxide at the N-Q(center) sites. Our study gives both insights on the mechanism of ORR on different nitrogen functionalities in nitrogen-doped carbon nanostructures and it proposes how to treat samples to maximize the catalytic efficiency of such samples.

  2. Transport and Optical Investigations of Substitutional and Trapped Nitrogen in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Qajar, Ali; Ma, Danhao; Rajagopalan, Ramakrishnan; Adu, Kofi; Sumanasekera, Gamini

    2015-03-01

    Multiwall carbon nanotubes that contain nitrogen were synthesized using acetonitrile as the precursor and ferrocene as the catalysis. X-ray photoelectron spectroscopy detected ~ 2 atomic% nitrogen in the carbon nanotubes with ~ 1 atomic% of the nitrogen as substitutionally doped in the carbon nanotubes skeletal structure and 1 atomic% present as gaseous nitrogen trapped inside the nanotubes. Investigation of the temperature dependent transport properties (thermoelectric power and resistivity) and the phonon modes of the CNTs and the trapped gaseous nitrogen are used to further substantiate the XPS results. High pressure adsorption of CO2 at room temperature also confirmed no porosity accessible for CO2 molecules. Transmission electron microscopy (TEM) showed presence of corrugations and wisps in the carbon nanotubes framework attributed to the curvature induced by nitrogen atoms. This Work is Supported by Penn State Altoona Undergraduate Research Sponsored Program and Penn State Materials Research Institute, University Park.

  3. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    SciTech Connect

    Tamilarasan, P.; Ramaprabhu, Sundara

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  4. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  5. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  6. Controlling the volumetric parameters of nitrogen-doped carbon nanotube cups.

    PubMed

    Allen, Brett L; Keddie, Matthew B; Star, Alexander

    2010-07-01

    Analogous to multiwalled carbon nanotubes, nitrogen-doped carbon nanotube cups (NCNCs) have been synthesized with defined volumetric parameters (diameter and segment lengths) by controlling the catalyst particle size and the concentration of nitrogen precursor utilized in the chemical vapor deposition (CVD) reaction, allowing for tailored interior cavity space of cross-linked NCNCs, i.e. nanocapsules.

  7. Device for detection and identification of carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  8. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  9. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    SciTech Connect

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; Boguslawski, Piotr; Bernholc, J.

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is a deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.

  10. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    DOE PAGESBeta

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; Oak Ridge National Lab.; Boguslawski, Piotr; Univ. of Warsaw; Bernholc, J.; Oak Ridge National Lab.

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less

  11. Low Carbon Costs of Nitrogen Fixation in Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Gei, M. G.; Powers, J. S.

    2015-12-01

    Legume tree species with the ability to fix nitrogen (N) are highly diverse and widespread across tropical forests but in particular in the dry tropics. Their ecological success in lower latitudes has been called a "paradox": soil N in the tropics is thought to be high, while acquiring N through fixation incurs high energetic costs. However, the long held assumptions that N fixation is limited by photosynthate and that N fixation penalizes plant productivity have rarely been tested, particularly in legume tree species. We show results from three different experiments where we grew eleven species of tropical dry forest legumes. We quantified plant biomass and N fixation using nodulation and the 15N natural isotope abundance (Ndfa or nitrogen derived from fixation). These data show little evidence for costs of N fixation in seedlings grown under different soil fertility, light regimes, and with different microbial communities. Seedling productivity did not incur major costs because of N fixation: indeed, the average slope between Ndfa and biomass was positive (range in slopes: -0.03 to 0.3). Moreover, foliar N, which varied among species, was tightly constrained and not correlated with Ndfa. This finding implies that legume species have a target N that does not change depending on N acquisition strategies. The process of N fixation in tropical legumes may be more carbon efficient than previously thought. This view is more consistent with the hyperabundance of members of this family in tropical ecosystems.

  12. Carbon Accumulation and Nitrogen Pool Recovery during Transitions from Savanna to Forest in Central Brazil

    NASA Astrophysics Data System (ADS)

    Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.

    2014-12-01

    The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical

  13. Particulate organic carbon and nitrogen export from major Arctic rivers

    NASA Astrophysics Data System (ADS)

    McClelland, J. W.; Holmes, R. M.; Peterson, B. J.; Raymond, P. A.; Striegl, R. G.; Zhulidov, A. V.; Zimov, S. A.; Zimov, N.; Tank, S. E.; Spencer, R. G. M.; Staples, R.; Gurtovaya, T. Y.; Griffin, C. G.

    2016-05-01

    Northern rivers connect a land area of approximately 20.5 million km2 to the Arctic Ocean and surrounding seas. These rivers account for ~10% of global river discharge and transport massive quantities of dissolved and particulate materials that reflect watershed sources and impact biogeochemical cycling in the ocean. In this paper, multiyear data sets from a coordinated sampling program are used to characterize particulate organic carbon (POC) and particulate nitrogen (PN) export from the six largest rivers within the pan-Arctic watershed (Yenisey, Lena, Ob', Mackenzie, Yukon, Kolyma). Together, these rivers export an average of 3055 × 109 g of POC and 368 × 109 g of PN each year. Scaled up to the pan-Arctic watershed as a whole, fluvial export estimates increase to 5767 × 109 g and 695 × 109 g of POC and PN per year, respectively. POC export is substantially lower than dissolved organic carbon export by these rivers, whereas PN export is roughly equal to dissolved nitrogen export. Seasonal patterns in concentrations and source/composition indicators (C:N, δ13C, Δ14C, δ15N) are broadly similar among rivers, but distinct regional differences are also evident. For example, average radiocarbon ages of POC range from ~2000 (Ob') to ~5500 (Mackenzie) years before present. Rapid changes within the Arctic system as a consequence of global warming make it challenging to establish a contemporary baseline of fluvial export, but the results presented in this paper capture variability and quantify average conditions for nearly a decade at the beginning of the 21st century.

  14. Modelling carbon and nitrogen turnover in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  15. Novel Tool for Simultaneous Carbon and Nitrogen Stable Isotope Analyses in Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Federherr, E.; Schmidt, T. C.; Cerli, C.; Kalbitz, K.; Kupka, H. J.; Lange, L.; Dunsbach, R.; Panetta, R. J.; Kasson, A.

    2014-12-01

    Investigation of transformation and transport processes of carbon and nitrogen in ecosystems plays an important role to understand and predict their dynamics and role in biogeochemistry. Consequently, suitable and accurate methods for concentration as well as stable isotopic composition analysis of carbon and nitrogen in waters and aqueous solutions play a significant role. Traditionally dissolved carbon and nitrogen stable isotope analysis (SIA) is performed using either offline sample preparation followed by elemental analysis isotope ratio mass spectrometry (EA/IRMS) or modified wet chemical oxidation based device coupled to IRMS. Recently we presented a high temperature combustion system (HTC), which significantly improves upon these methods for dissolved organic carbon (DOC) SIA. The analysis of δ15N of dissolved nitrogen still has large limitations. Its low concentration makes EA/IRMS laborious, time and sample consuming. Systems based on wet chemical oxidation-IRMS bare the risk of sensitivity loss as well as of fractionation due to incomplete mineralization. In addition, the high solubility of molecular nitrogen in water remains a technical challenge, as it requires additional separation steps to distinguish between physically dissolved nitrogen and bound nitrogen. Further development of our HTC system lead to the implementation of the δ15N determination which now coupled, into a novel total organic carbon (TOC) analyzing system, especially designed for SIA of both, carbon and nitrogen. Integrated, innovative purge and trap technique (peak focusing) for nitrogen with aluminosilicate adsorber and peltier element based cooling system, in combination with high injection volume (up to 3 mL) as well as favorable carrier gas flow significantly improves sensitivity. Down to 1ppm and less total nitrogen can be measured with precision of ≤ 0.5‰. To lower the background caused by physically dissolved nitrogen new, membrane-vacuum based, degasser was designed

  16. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    PubMed

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  17. Nitrogen and Carbon Budgets for Three Boreal Forest Watersheds

    NASA Astrophysics Data System (ADS)

    Petrone, K. C.; Hinzman, L. D.; Jones, J. B.

    2001-12-01

    We examined the annual export of dissolved C, N and major cations and anions during the 1998-1999 and 2000-2001 water years in the Caribou Poker Creeks Research Watershed (CPCRW) in interior Alaska. During the 2000-2001 water year three different watersheds underlain by 3, 18 and 50% permafrost were examined while only the medium (18%) permafrost watershed was examined during 1998-1999. Inputs were calculated from an on-site National Atmospheric Deposition Program (NADP) station. Total inorganic nitrogen wet deposition for the 1998-1999 water year was 0.2 kg ha-1yr-1. Annual N export from the stream for this period was 1.1 kg ha-1yr-1 of which 70% was inorganic N. Carbon export as dissolved organic carbon (DOC) was 7.5 kg ha-1yr-1. Concentrations of DOC increased with discharge while nitrate showed positive and negative relationships with discharge, depending on season and the contributing area for peak flow. For the 1998-1999 budget, N export was greater than precipitation inputs, suggesting either that the watershed is a net source for N or we are missing an important N input. Further examination of the 2000-2001 season for watersheds with varying permafrost coverage will allow us do determine if this N balance persists.

  18. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  19. Elevated CO2 influences microbial carbon and nitrogen cycling

    PubMed Central

    2013-01-01

    Background Elevated atmospheric CO2 (eCO2) has been shown to have significant effects on terrestrial ecosystems. However, little is known about its influence on the structure, composition, and functional potential of soil microbial communities, especially carbon (C) and nitrogen (N) cycling. A high-throughput functional gene array (GeoChip 3.0) was used to examine the composition, structure, and metabolic potential of soil microbial communities from a grassland field experiment after ten-year field exposure to ambient and elevated CO2 concentrations. Results Distinct microbial communities were established under eCO2. The abundance of three key C fixation genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide dehydrogenase (CODH) and propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), significantly increased under eCO2, and so did some C degrading genes involved in starch, cellulose, and hemicellulose. Also, nifH and nirS involved in N cycling were significantly stimulated. In addition, based on variation partitioning analysis (VPA), the soil microbial community structure was largely shaped by direct and indirect eCO2-driven factors. Conclusions These findings suggest that the soil microbial community structure and their ecosystem functioning for C and N cycling were altered dramatically at eCO2. This study provides new insights into our understanding of the feedback response of soil microbial communities to elevated CO2 and global change. PMID:23718284

  20. Method 440.0 Determination of Carbon and Nitrogen in Sediments and Particulatesof Estuarine/Coastal Waters Using Elemental Analysis

    EPA Science Inventory

    Elemental analysis is used to determine particulate carbon (PC) and particulate nitrogen (PN) in estuarine and coastal waters and sediment. The method measures the total carbon and nitrogen irrespective of source (inorganic or organic).

  1. Importance of Nitrogen Availability on Land Carbon Sequestration in Northern Eurasia during the 21st Century

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Melillo, J. M.; Monier, E.; Sokolov, A. P.; Lu, X.; Zhuang, Q.

    2015-12-01

    Atmospheric nitrogen deposition, nitrogen fixation, and the application of nitrogen fertilizers provide subsidies to land ecosystems that can increase nitrogen availability for vegetation production and thereby influence land carbon dynamics. In addition, enhanced decomposition of soil organic matter (SOM) from warming soils and permafrost degradation may also increase nitrogen availability in Northern Eurasia. Here, we examine how changes in nitrogen availability may influence land carbon dynamics in Northern Eurasia during the 21st century by comparing results for a "business as usual" scenario (the IPCC Representative Concentration Pathways or RCP 8.5) and a stabilization scenario (RCP 4.5) between a version of the Terrestrial Ecosystem Model that does not consider the effects of atmospheric nitrogen deposition, nitrogen fixation and soil thermal dynamics on land carbon dynamics (TEM 4.4) and a version that does consider these dynamics (TEM 6.0). In these simulations, atmospheric nitrogen deposition, nitrogen fixation, and fertilizer applications provide an additional 3.3 Pg N (RCP 4.5) to 3.9 Pg N (RCP 8.5) to Northern Eurasian ecosystems over the 21st century. Land ecosystems retain about 38% (RCP4.5) to 48% (RCP 8.5) of this nitrogen subsidy. Net nitrogen mineralization estimated by TEM 6.0 provide an additional 1.0 Pg N to vegetation than estimated by TEM 4.4 over the 21st century from enhanced decomposition of SOM including SOM formerly protected by permafrost. The enhanced nitrogen availability in TEM 6.0 allows Northern Eurasian ecosystems to sequester 1.8x (RCP 8.5) to 2.4x (RCP 4.5) more carbon over the 21st century than estimated by TEM 4.4. Our results indicate that consideration of nitrogen subsidies and soil thermal dynamics have a large influence on how simulated land carbon dynamics in Northern Eurasia will respond to future changes in climate, atmospheric chemistry, and disturbances.

  2. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  3. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-01-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.

  4. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

    DOE PAGESBeta

    Jian, Siyang; Li, Jianwei; Chen, Ji; Wang, Gangsheng; Mayes, Melanie A.; Dzantor, Kudjo E.; Hui, Dafeng; Luo, Yiqi

    2016-07-08

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less

  5. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells.

    PubMed

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-12-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.

  6. Nitrogen-doped carbon nanotube as a potential metal-free catalyst for CO oxidation.

    PubMed

    Lin, I-Hsiang; Lu, Yu-Huan; Chen, Hsin-Tsung

    2016-04-28

    We elucidate the possibility of nitrogen-doped carbon nanotube as a robust catalyst for CO oxidation. We have performed first-principles calculations considering the spin-polarization effect to demonstrate the reaction of CO oxidation catalyzed by the nitrogen-doped carbon nanotube. The calculations show that O2 species can be partially reduced with charge transfer from the nitrogen-doped carbon nanotube and directly chemisorbed on the C-N sites of the nitrogen-doped carbon nanotube. The partially reduced O2 species at the C-N sites can further directly react with a CO molecule via the Eley-Rideal mechanism with the barriers of 0.45-0.58 eV for the different diameter of nanotube. Ab initio molecular dynamics (AIMD) simulations were performed and showed that the oxidation of CO occurs by the Eley-Rideal mechanism. The relationship between the curvature and reactivity of the nitrogen doped carbon nanotube was also unraveled. It appears that the barrier height of the rate-limiting step depends on the curvature of the nitrogen-doped carbon nanotube in the trend of (3,3)-NCNT < (4,4)-NCNT < (5,5)-NCNT (decreases with increased curvature). Using this relationship, we can predict the barriers for other N-doped carbon nanotubes with different tube diameters. Our results reveal that the nitrogen doped carbon nanomaterials can be a good, low-cost, and metal-free catalyst for CO oxidation.

  7. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    PubMed

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  8. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  9. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence.

    PubMed

    Gilson, Angélique; Barthes, Laure; Delpierre, Nicolas; Dufrêne, Éric; Fresneau, Chantal; Bazot, Stéphane

    2014-07-01

    Forest productivity declines with tree age. This decline may be due to changes in metabolic functions, resource availability and/or changes in resource allocation (between growth, reproduction and storage) with tree age. Carbon and nitrogen remobilization/storage processes are key to tree growth and survival. However, studies of the effects of tree age on these processes are scarce and have not yet considered seasonal carbon and nitrogen variations in situ. This study was carried out in a chronosequence of sessile oak (Quercus petraea Liebl.) for 1 year to survey the effects of tree age on the seasonal changes of carbon and nitrogen compounds in several tree compartments, focusing on key phenological stages. Our results highlight a general pattern of carbon and nitrogen function at all tree ages, with carbon reserve remobilization at budburst for growth, followed by carbon reserve formation during the leafy season and carbon reserve use during winter for maintenance. The variation in concentrations of nitrogen compounds shows less amplitude than that of carbon compounds. Storage as proteins occurs later, and mainly depends on leaf nitrogen remobilization and root uptake in autumn. We highlight several differences between tree age groups, in particular the loss of carbon storage function of fine and medium-sized roots with tree ageing. Moreover, the pattern of carbon compound accumulation in branches supports the hypothesis of a preferential allocation of carbon towards growth until the end of wood formation in juvenile trees, at the expense of the replenishment of carbon stores, while mature trees start allocating carbon to storage right after budburst. Our results demonstrate that at key phenological stages, physiological and developmental functions differ with tree age, and together with environmental conditions, influence the carbon and nitrogen concentration variations in sessile oaks. PMID:25122620

  10. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.

    PubMed

    Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng

    2016-05-23

    Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen.

  11. Boron Nitride Nanotube: Synthesis and Applications

    NASA Technical Reports Server (NTRS)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  12. Nitrogen management and the future of food: lessons from the management of energy and carbon.

    PubMed

    Socolow, R H

    1999-05-25

    The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.

  13. Stable carbon isotope evidence for nitrogenous fertilizer impact on carbonate weathering in a small agricultural watershed.

    PubMed

    Brunet, F; Potot, C; Probst, A; Probst, J-L

    2011-10-15

    The isotopic signature of Dissolved Inorganic Carbon (DIC), δ(13)C(DIC), has been investigated in the surface waters of a small agricultural catchment on calcareous substratum, Montoussé, located at Auradé (south-west France). The Montoussé catchment is subjected to intense farming (wheat/sunflower rotation) and a moderated application of nitrogenous fertilizers. During the nitrification of the NH(4)(+), supplied by fertilization, nitrate and H(+) ions are produced in the soil. This anthropogenic acidity is combined with the natural acidity due to carbonic acid in weathering processes. From an isotopic point of view, with 'natural weathering', using carbonic acid, δ(13)C(DIC) is intermediate between the δ(13)C of soil CO(2) produced by organic matter oxidation and that of the carbonate rocks, while it has the same value as the carbonates when carbonic acid is substituted by another acid like nitric acid derived from nitrogen fertilizer. The δ(13)C(DIC) values range from -17.1‰ to -10.7‰ in Montoussé stream waters. We also measured the δ(13)C of calcareous molassic deposits (average -7.9‰) and of soil organic carbon (between -24.1‰ and -26‰) to identify the different sources of DIC and to estimate their contribution. The δ(13) C(DIC) value indicates that weathering largely follows the carbonic acid pathway at the springs (sources of the stream). At the outlet of the basin, H(+) ions, produced during the nitrification of N-fertilizer, also contribute to weathering, especially during flood events. This result is illustrated by the relationship between δ(13)C(DIC) and the molar ratio NO(3)(-)/(Ca(2+) + Mg(2+)). Consequently, when the contribution of nitrate increases, the δ(13)C(DIC) increases towards the calcareous end-member. This new isotopic result provides evidence for the direct influence of nitrogen fertilizer inputs on weathering, CO(2) consumption and base cation leaching and confirms previous results obtained using the chemistry of the

  14. Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups.

    PubMed

    Allen, Brett L; Kichambare, Padmakar D; Star, Alexander

    2008-09-23

    Isolated, carbon nanotube cups with diameters of 12-40 nm have been synthesized by chemical vapor deposition through incorporation of nitrogen atoms into graphitic carbon structure and subsequent mechanical separation. Incorporation of nitrogen affords carbon nanotube cups with a unique composition comprising multiwalled, graphitic lattice with nitrogen groups on the exterior rim and hollow interior cavities. These nanostructures demonstrate the ability to participate in hydrogen bonding because of nitrogen functionalities on their open edges. Furthermore, reaction with these nitrogen functionalities results in the coupling of gold nanoparticles (GNPs) to the open rim of carbon nanotube cups. Through atomic force microscopy manipulation and adhesion force measurements, we compare the mobility of these structures on a hydrophilic surface before and after GNP coupling. Understanding of these forces will aid in useful nanostructure assembly for energy and biomedical applications.

  15. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  16. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  17. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  18. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  19. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  20. Aerosol water soluble organic nitrogen and carbon over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pollard, Liam; Baker, Alex; Jickels, Tim

    2014-05-01

    Nitrogen is a limiting or co-limiting nutrient in large parts of the world's oceans particularly in oligotrophic regions such as gyres. In the open ocean there are two pathways by which new nutrient nitrogen can enter the oligotrophic system: biological nitrogen fixation and atmospheric deposition. Aerosol matter contributes to the latter route via dry and wet deposition, therefore it is important to understand and quantify the nitrogen containing material in aerosols and establish its major sources. Until recently, the organic nitrogen component of aerosol nitrogen was largely ignored, however, it is now known to contribute between 25-30 % of total water soluble nitrogen in aerosols, globally. This organic nitrogen is known to be chemically complex, shows high spatial and temporal variability and a large proportion of it has been shown to be bioavailable. It is important that this material is further quantified and characterised (including its carbon component) to determine its biogeochemical impact. Data gathered from fine and coarse mode aerosol samples collected on three Atlantic cruises (AMT21, AMT22 and ANT26-4) will be presented. Bulk and water soluble organic carbon and nitrogen data will be shown alongside major ion and inorganic nitrogen data. Potential sources of organic nitrogen and carbon material will be evaluated using a combination of inter-component correlations with known tracers and air-parcel back trajectories, allowing estimates of the anthropogenic impact on nutrient deposition to the remote Atlantic Ocean to be made.

  1. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    NASA Astrophysics Data System (ADS)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  2. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization

    SciTech Connect

    Yap, Yoke Khin

    2013-03-14

    Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy's Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories and Los

  3. Carbon and nitrogen abundance variations in globular cluster red giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  4. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn; Kunets, Vasyl P.; Trigwell, Steven; Couraud, Arthur; Rioux, Julien; Boyer, Cyril; Nteziyaremye, Valens; Dervishi, Enkeleda; Biris, Alexandru R.; Salamo, Gregory J.; Viswanathan, Tito; Biris, Alexandru S.

    2011-01-01

    A simple and easily processible photovoltaic device has been developed based on boron-doped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The SWNTs were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis, transmission electron microscopy, and x-ray photoelectron spectroscopy. The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection, and transportation while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.

  5. Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine.

    PubMed

    Enache, T A; Oliveira-Brett, A M

    2011-04-01

    The electrochemical oxidation behaviour at boron doped diamond and glassy carbon electrodes of the sulphur-containing amino acids cysteine and methionine, using cyclic and differential pulse voltammetry over a wide pH range, was compared. The oxidation reactions of these amino acids are irreversible, diffusion-controlled pH dependent processes, and occur in a complex cascade mechanism. The amino acid cysteine undergoes similar three consecutive oxidation reactions at both electrodes. The first step involves the oxidation of the sulfhydryl group with radical formation, that undergoes nucleophilic attack by water to give an intermediate species that is oxidized in the second step to cysteic acid. The oxidation of the sulfhydryl group leads to a disulfide bridge between two similar cysteine moieties forming cysteine. The subsequent oxidation of cystine occurs at a higher potential, due to the strong disulfide bridge covalent bond. The electro-oxidation of methionine at a glassy carbon electrode occurs in two steps, corresponding to the formation of sulfoxide and sulfone, involving the adsorption and protonation/deprotonation of the thiol group, followed by electrochemical oxidation. Methionine undergoes a one-step oxidation reaction at boron doped diamond electrodes due to the negligible adsorption, and the oxidation also leads to the formation of methionine sulfone. PMID:21377428

  6. Influence of cubic boron nitride grinding on the fatigue strengths of carbon steels and a nickel-base superalloy

    SciTech Connect

    Kawagoishi, N.; Chen, Q.; Kondo, E.; Goto, M.; Nisitani, H.

    1999-04-01

    The influence of cubic boron nitride (CBN) grinding on fatigue strength was investigated on an annealed carbon steel, a quenched and tempered carbon steel at room temperature, and a nickel-base superalloy, Inconel 718, at room temperature and 500 C. The results were discussed from several viewpoints, including surface roughness, residual stress, and work hardening or softening due to CBN grinding. The fatigue strength increased upon CBN grinding at room temperature, primarily because of the generation of compressive residual stress in the surface region. However, in the case of Inconel 718, this marked increase in the fatigue strength tended to disappear at the elevated temperature due to the release of compressive residual stress and the decrease of crack growth resistance at an elevated temperature.

  7. Boron isotope systematics during magma-carbonate interaction: an experimental study from Merapi (Indonesia) and Vesuvius (Italy)

    NASA Astrophysics Data System (ADS)

    Deegan, F. M.; Jolis, E. M.; Troll, V. R.; Freda, C.; Whitehouse, M.

    2011-12-01

    Carbonate assimilation is increasingly recognized as an important process affecting the compositional evolution of magma and its inherent ability to erupt explosively due to release of carbonate-derived CO2 [e.g., 1, 2, 3]. In order to gain insights into this process, we performed short time-scale carbonate dissolution experiments in silicate melt using natural starting materials from Merapi and Vesuvius volcanoes at magmatic pressure and temperature [2, 4]. The experiments enable us to resolve in detail the timescales, textures and chemical features of carbonate assimilation. Three compositionally distinct glass domains have been defined: i) Ca-normal glass, similar in composition to the starting material; ii) Ca-rich, contaminated glass; and iii) a diffusional glass interface between the Ca-normal and Ca-rich glass, characterized by steady interchange between SiO2 and CaO. Here we present new boron isotope data for the experimental products obtained by SIMS. The glasses show distinct and systematic variation in their δ11B (%) values. The contaminated glasses generally show extremely negative δ11B values (down to -41 %) relative to both the uncontaminated experimental glass and fresh arc volcanics (-7 to +7 % [5]). Considering that carbonates have δ11B values of +9 to +26 [6], the data cannot be explained by simple mixing processes between the end-members alone. This implies that the δ11B of the original contaminant was drastically modified before being incorporated into the melt, which can be explained by B isotope fractionation during breakdown and degassing of the carbonate. Our data represents the first B isotope analyses of experimental products of carbonate assimilation. They provide novel and well constrained insights into the behavior of boron upon degassing of carbonate. This, in turn, has implications for both i) late stage contamination and volatile addition to hazardous volcanic systems located over carbonate basement (cf. [7]) and ii) studies of

  8. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    NASA Astrophysics Data System (ADS)

    Ombaka, L. M.; Ndungu, P. G.; Omondi, B.; McGettrick, J. D.; Davies, M. L.; Nyamori, V. O.

    2016-03-01

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF3 and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF3 catalyst indicates that steric factors influence the X-ray structure of 1,1‧-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF3 catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and are less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF3 and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF3 catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials.

  9. Functionalization of nitrogen-doped carbon nanotubes with gallium to form Ga-CNx-multi-wall carbon nanotube hybrid materials

    NASA Astrophysics Data System (ADS)

    Simmons, Trevor J.; Hashim, Daniel P.; Zhan, Xiaobo; Bravo-Sanchez, Mariela; Hahm, Myung Gwan; López-Luna, Edgar; Linhardt, Robert J.; Ajayan, Pulickel M.; Navarro-Contreras, Hugo; Vidal, Miguel A.

    2012-08-01

    In an effort to combine group III-V semiconductors with carbon nanotubes, a simple solution-based technique for gallium functionalization of nitrogen-doped multi-wall carbon nanotubes has been developed. With an aqueous solution of a gallium salt (GaI3), it was possible to form covalent bonds between the Ga3+ ion and the nitrogen atoms of the doped carbon nanotubes to form a gallium nitride-carbon nanotube hybrid at room temperature. This functionalization was evaluated by x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy

  10. Production of Aligned Carbon Nanotube Films and Nitrogen Doped Carbon Nanotube Films from the Pyrolysis of Styrene

    NASA Astrophysics Data System (ADS)

    Jin, Yi Zheng; Hsu, Wen Kuang; Zhu, Yan Qiu; Watts, Paul C. P.; Chueh, Yu Lun; Chou, Li Jen; Kroto, Harold W.; Walton, David R. M.

    2004-09-01

    Styrene is used as a carbon source in a CVD process to obtain aligned carbon nanotube films. Changing the carrier gas from argon to ammonia introduces nitrogen into the tubes. SEM, TEM and HRTEM show the well-aligned structures, which appear to exist as macrobundles. EELS analyses have verified the existence of 3.3 wt.% nitrogen in the tube. Irradiation experiments show that this technique can be used to manipulate NCNTs.

  11. Identification of nitrogen dopants in single-walled carbon nanotubes by scanning tunneling microscopy.

    PubMed

    Tison, Yann; Lin, Hong; Lagoute, Jérôme; Repain, Vincent; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Henrard, Luc; Zheng, Bing; Susi, Toma; Kauppinen, Esko I; Ducastelle, François; Loiseau, Annick

    2013-08-27

    Using scanning tunnelling microscopy and spectroscopy, we investigated the atomic and electronic structure of nitrogen-doped single walled carbon nanotubes synthesized by chemical vapor deposition. The insertion of nitrogen in the carbon lattice induces several types of point defects involving different atomic configurations. Spectroscopic measurements on semiconducting nanotubes reveal that these local structures can induce either extended shallow levels or more localized deep levels. In a metallic tube, a single doping site associated with a donor state was observed in the gap at an energy close to that of the first van Hove singularity. Density functional theory calculations reveal that this feature corresponds to a substitutional nitrogen atom in the carbon network.

  12. Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron-nitrogen by a non-contact approach

    NASA Astrophysics Data System (ADS)

    Pan, Shun-Hsien; Medina, Henry; Wang, Sheng-Bo; Chou, Li-Jen; Wang, Zhiming M.; Chen, Kuei-Hsien; Chen, Li-Chyong; Chueh, Yu-Lun

    2014-07-01

    Boron and nitrogen co-doping has been shown to be an effective way to induce a band gap in graphene for electrical applications but only a few theoretical studies have been done to understand the elastic and mechanical properties of the modified graphene. Until now, no experimental assessment of the mechanical modulus of boron-nitrogen-doped graphene (BNG) has been reported in the literature. Here, we demonstrate a novel non-contact approach to determine the in-plane stiffness of BNG at low BN concentrations. The in-plane stiffness of BNG with 2 at% BN concentration was estimated to be about 309 N m-1, which is lower than that of pristine graphene, in good agreement with some theoretical studies. Moreover, we correlated the conductivity of BNG with induced strain and found the BNG to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable material than graphene for strain sensor applications.Boron and nitrogen co-doping has been shown to be an effective way to induce a band gap in graphene for electrical applications but only a few theoretical studies have been done to understand the elastic and mechanical properties of the modified graphene. Until now, no experimental assessment of the mechanical modulus of boron-nitrogen-doped graphene (BNG) has been reported in the literature. Here, we demonstrate a novel non-contact approach to determine the in-plane stiffness of BNG at low BN concentrations. The in-plane stiffness of BNG with 2 at% BN concentration was estimated to be about 309 N m-1, which is lower than that of pristine graphene, in good agreement with some theoretical studies. Moreover, we correlated the conductivity of BNG with induced strain and found the BNG to be more sensitive than pristine graphene in response to externally applied strain. This result indicates that BNG is a more suitable material than graphene for strain sensor applications. Electronic supplementary

  13. Nitrogen-enriched carbon from melamine resins with superior oxygen reduction reaction activity.

    PubMed

    Zhong, Hexiang; Zhang, Huamin; Liu, Sisi; Deng, Chengwei; Wang, Meiri

    2013-05-01

    Catalytic carbon: Nitrogen-doped porous carbon (CN(x)) electrocatalysts are derived from inexpensive melamine formaldehyde resins. These potential PEMFC catalysts are synthesized by using a facile method, which yields materials that contain a meso- and macroporous structure. The carbon-based materials display attractive catalytic activity toward ORR and superior stability compared to a commercial Pt-based catalyst.

  14. Carbon: nitrogen stoichiometry following afforestation: a global synthesis

    PubMed Central

    Xu, Xia; Li, Dejun; Cheng, Xiaoli; Ruan, Honghua; Luo, Yiqi

    2016-01-01

    Though carbon (C): nitrogen (N) stoichiometry has been widely studied in terrestrial ecosystems, little is known about its variation following afforestation. By synthesizing the results of 53 studies, we examined temporal and spatial variation in C: N ratios and in N-C scaling relationships of both the organic and the mineral soil horizons. Results showed that C: N ratios remained constant in the mineral horizon but significantly decreased in the organic horizon over the age sequence following afforestation. Among different climate zones, C: N ratios of the organic and the mineral horizons increased and decreased, respectively, with increasing mean annual temperature (MAT) (decreasing latitude). Pasture exhibited higher C: N ratios than cropland in the organic horizon while C: N of the mineral horizon did not change much among different land use types. For both the organic and the mineral horizons, hardwoods exhibited lower C: N ratios than pine and softwoods. Additionally, N and C in general scaled isometrically in both the organic and the mineral horizons over the age sequence and among different climate zones, land use types, and plantation species following afforestation. Our results suggest that C and N may remain coupled following afforestation. PMID:26743490

  15. Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri.

    PubMed

    Bougoure, Jeremy J; Brundrett, Mark C; Grierson, Pauline F

    2010-06-01

    *Rhizanthella gardneri is a rare and fully subterranean orchid that is presumably obligately mycoheterotrophic. R. gardneri is thought to be linked via a common mycorrhizal fungus to co-occurring autotrophic shrubs, but there is no experimental evidence to support this supposition. *We used compartmentalized microcosms to investigate the R. gardneri tripartite relationship. (13)CO(2) was applied to foliage of Melaleuca scalena plants and [(13)C-(15)N]glycine was fed to the common mycorrhizal fungus, and both sources traced to R. gardneri plants. *In our microcosm trial, up to 5% of carbon (C) fed as (13)CO(2) to the autotrophic shrub was transferred to R. gardneri. R. gardneri also readily acquired soil C and nitrogen (N), where up to 6.2% of C and 22.5% of N fed as labelled glycine to soil was transferred via the fungus to R. gardneri after 240 h. *Our study confirms that R. gardneri is mycoheterotrophic and acquires nutrients via mycorrhizal fungus connections from an ectomycorrhizal autotrophic shrub and directly from the soil via the same fungus. This connection with a specific fungus is key to explaining why R. gardneri occurs exclusively under certain Melaleuca species at a very limited number of sites in Western Australia.

  16. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1979-01-01

    The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.

  17. Carbon and Nitrogen cycling in a permafrost soil profile

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Schaedel, C.; Mack, M. C.; Schuur, E.

    2015-12-01

    In high latitude ecosystems, active layer soils thaw during the growing season and are situated on top of perennially frozen soils (permafrost). Permafrost affected soil profiles currently store a globally important pool of carbon (1330-1580 PgC) due to cold temperatures constraining the decomposition of soil organic matter. With global warming, however, seasonal thaw is expected to increase in speed and extend to deeper portions of the soil profile. As permafrost soils become part of the active layer, carbon (C) and nitrogen (N) previously stored in soil organic matter will be released via decomposition. In this experiment, the dynamic relationship between N mineralization, C mineralization, and C quality was investigated in moist acidic tundra soils. Soils from the active layer surface down through the permafrost (80cm) were incubated aerobically at 15°C for 225 days. Carbon dioxide fluxes were fit with a two pool exponential decay model so that the size and turnover of both the quickly decomposing C pool (Cfast) and the slowly decomposing C pool (Cslow) could be assessed. Soil extractions with 2M KCl were performed at six time points throughout the incubation so that dissolve inorganic N (DIN) and dissolved organic C (DOC) could be measured. DIN was readily extractable from deep permafrost soils throughout the incubation (0.05 mgN/g dry soil) but in active layer soils DIN was only produced after Cfast had been depleted. In contrast, active layer soils had high levels of DOC (0.65 mgC/g dry soil) throughout the incubation but in permafrost soils, DOC became depleted as Cfast reduced in size. The strong contrasts between the C and N cycling in active layer soils versus permafrost soils suggest that the deeper thaw will dramatically increase N availability in these soil profiles. Plants and soil microbes in the tundra are currently N limited so our findings imply that deepening thaw will 1) provide N necessary for increased plant growth and 2) stimulate losses of

  18. Modeling the above and below ground carbon and nitrogen stocks in northern high latitude terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    ElMasri, B.; Jain, A. K.

    2012-12-01

    Climate change is expected to cause warming in the northern high latitudes, but it is still uncertain what the respond of the northern high latitudes ecosystem will be to such warming. One of the biggest scientific questions is to determine whether northern high latitude ecosystem are or will act as a terrestrial carbon sink or source. Therefore, it is essential to understand and quantify the biogeochemical cycle of the northern high latitude ecosystems in order to predict their respond to climate change. Using a land surface model, the Integrated Science Assessment Model (ISAM) with its coupled carbon-nitrogen cycle, we provide a detail quantification of the carbon and nitrogen in the vegetation pools and the soil carbon for the northern high latitude ecosystems. We focus on soil carbon and vegetation carbon and nitrogen, though we provide results for gross primary production (GPP), autotrophic respiration (Ra), net primary production (NPP), net ecosystem exchange (NEE), and heterotrophic respiration (Rh). In addition, we examine the effect of nitrogen limitation on the carbon fluxes and soil carbon. We present the results for several flux tower sites representative of the tundra and the boreal ecosystems as well as for the northern high latitude region. Our results provide a comprehensive assessment of below and above ground carbon and nitrogen pools in the northern high latitude and the model calibrated parameters can be used to improve the results of other land surface models.

  19. How can carbon favor planar multi-coordination in boron-based clusters? Global structures of CB(x)E(y)(2-) (E = Al, Ga, x + y = 4).

    PubMed

    Cui, Zhong-hua; Sui, Jing-jing; Ding, Yi-hong

    2015-12-21

    With the high preference in forming multi-center bonding, boron has been a miracle ligand in constructing diverse planar multi-coordinate (pM) (tetra/hyper) species. Unfortunately, the boron ligand usually dislikes encompassing a pM carbon (pMC) due to the high competition with pM boron (pMB), which makes the realization of boron-based pMC very difficult and quite challenging. Herein, we propose a strategy that by means of cooperative doping and charge-compensation, we can successfully improve and tune the stability of pMC relative to pMB for CB4(2-). In the free CBxEy(2-) (E = Al/Ga) species, ptC is thermodynamically less stable than the global ptB in mono- and di-substituted systems, in agreement with the results of Boldyrev and Wang. However, the thermodynamic preference of pMC increases along with the Al/Ga-doping. The pMC species can be further stabilized by the introduction of the alkaline-earth counterion (Mg(2+)). CB2E2Mg (E = Al, Ga) designed in the present study represents the first successful design of a boron-based planar penta-coordinate carbon (ppC) structures as the global minima. The strategy proposed in this study should be useful in the manipulation of competition between exotic pMC and pMB in B-based systems. PMID:26574884

  20. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping.

    PubMed

    Yang, Yuling; Li, Xiaoyi; Jiang, Jinliang; Du, Huailiang; Zhao, Lina; Zhao, Yuliang

    2010-10-26

    To establish ways to control the performance of artificial water channels is a big challenge. With molecular dynamics studies, we found that water flow inside the water channels of carbon nanotubes (CNTs) can be controlled by reducing or intensifying interaction energy between water molecules and the wall of the CNTs channel. A way of example toward this significant goal was demonstrated by the doping of nitrogen into the wall of CNTs. Different ratios of nitrogen doping result in different controllable water performance which is dominated mainly through a gradient of van der Waals forces created by the heteroatom doping in the wall of CNTs. Further results revealed that the nitrogen-doped CNT channels show less influence on the integrality of biomembrane than the pristine one, while the nitrogen-doped double-walled carbon nanotube exhibits fewer disturbances to the cellular membrane integrality than the nitrogen-doped single-walled carbon nanotube when interacting with biomembranes.

  1. α-ketoglutarate coordinates carbon and nitrogen utilization via Enzyme I inhibition

    PubMed Central

    Doucette, Christopher D; Schwab, David J; Wingreen, Ned S; Rabinowitz, Joshua D

    2011-01-01

    Microbes survive in a variety of nutrient environments by modulating their intracellular metabolism. Balanced growth requires coordinated uptake of carbon and nitrogen, the primary substrates for biomass production. The mechanisms that balance carbon and nitrogen uptake are, however, poorly understood. We find in Escherichia coli that a sudden increase in nitrogen availability results in an almost immediate increase in glucose uptake. The concentrations of known glycolytic intermediates and regulators, however, remain homeostatic. Instead, we find that α-ketoglutarate, which accumulates in nitrogen limitation, directly blocks glucose uptake by inhibiting Enzyme I, the first step of the phosphotransferase system (PTS). This enables rapid modulation of glycolytic flux without marked concentration changes in glycolytic intermediates by simultaneously accelerating glucose import and consumption of the terminal glycolytic intermediate phosphoenolpyruvate. Quantitative modeling shows that this previously unidentified regulatory connection is in principle sufficient to coordinate carbon and nitrogen utilization. PMID:22002719

  2. Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Chun; Wei, Zidong; Hu, Baoshan; Chen, Siguo; Li, Li; Guo, Lin; Ding, Wei; Liu, Xiao; Ji, Weijia; Wang, Xiaopei

    2012-10-01

    The aligned nitrogen-doped carbon nanotubes (NCNT) with bamboo-like structure are synthesized via thermal chemical vapor deposition using melamine and urea as different nitrogen precursors. Meanwhile, ferrocene is used as catalyst and carbon precursor. The resulting NCNT with melamine (M-NCNT) have shown superior ORR performance in terms of limiting current density and number of electrons transferred. Further characterizations by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy illustrated higher nitrogen content and more defects in M-NCNT compared to that in NCNT with urea (U-NCNT), which indicate the important role of the nitrogen precursor in nitrogen content and structure of NCNT. It is concluded that higher nitrogen content and more defects of NCNT lead to high performance of ORR.

  3. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  4. Superior critical current density obtained in MgB2 bulks via employing carbon-coated boron and minor Cu addition

    NASA Astrophysics Data System (ADS)

    Peng, Junming; Liu, Yongchang; Ma, Zongqing; Shahriar Al Hossain, M.; Xin, Ying; Jin, Jianxun

    2016-09-01

    High performance Cu doped MgB2 bulks were prepared by an in-situ method with carbon-coated amorphous boron as precursor. It was found that the usage of carbon-coated boron in present work leads to the formation of uniformly refined MgB2 grains, as well as a high level of homogeneous carbon doping in the MgB2 samples, which significantly enhance the Jc in both Cu doped and undoped bulks compared to MgB2 bulks with normal amorphous boron precursor. Moreover, minor Cu can service as activator, and thus facilitates the growth of MgB2 grains and improves crystallinity and grain connectivity, which can bring about the excellent critical current density (Jc) at self fields and low fields (the best values are 7 × 105 A/cm2 at self fields, and 1 × 105 A/cm2 at 2 T, 20 K, respectively). Simultaneously, minor Cu addition can reduce the amount of MgO impurity significantly, also contributing to the improvement of Jc at low fields. Our work suggests that Cu-activated sintering combined with employment of carbon-coated amorphous boron as precursor could be a promising technique to produce practical MgB2 bulks or wires with excellent Jc on an industrial scale.

  5. Pore size analysis of activated carbons from argon and nitrogen porosimetry using density functional theory

    SciTech Connect

    Dombrowski, R.J.; Hyduke, D.R.; Lastoskie, C.M.

    2000-05-30

    The authors present isotherms calculated from density functional theory for the adsorption of argon in model slit-shaped carbon pores at 77 K. The model isotherms are used to interpret experimental argon uptake measurements and to obtain the pore size distributions of several porous carbons. A similar set of density measurements and to obtain the pore size distributions of several porous carbons. A similar set of density functional theory isotherms, previously reported for nitrogen adsorption on carbon slit pores at 77 K, are used to determine pore size distributions for the same set of carbons. The pore size distribution maxima, mean pore widths, and specific pore volumes measured using the two different probe gases are all found to agree to within approximately 8% on average. Some of the differences in the pore size distributions obtained from argon and nitrogen porosimetry may be attributable to quadrupolar interactions of the nitrogen molecules with functional groups on the carbon surface.

  6. Exports of carbon and nitrogen from river basins in Canada's Atlantic Provinces

    NASA Astrophysics Data System (ADS)

    Clair, T. A.; Pollock, T. L.; Ehrman, J. M.

    1994-12-01

    The loss of carbon and organic nitrogen from the terrestrial ecosystem via streams and rivers is dependent on a number of factors such as basin vegetation, geography, geology, climate, and hydrology. We studied the export of dissolved carbon and nitrogen from 26 rivers varying in size from 45 to 92,500 km2 located in Atlantic Canada. Twenty-four of the basins studied were free of significant anthropogenic activity and were covered with coniferous and mixed hardwood forests. Our results showed that total organic carbon loss from the region, normalized for area, was approximately 29 kg ha-1 yr-1, while inorganic C was considerably lower at 4.3 kg ha-1 yr-1. We developed predictive statistical models using total precipitation, basin size, and basin slope to predict the export of organic carbon and nitrogen. Our results suggest that increases in regional precipitation will most likely increase the loss of organic carbon and nitrogen from terrestrial systems. We also found that inorganic carbon and nitrogen were not influenced by precipitation. Inorganic carbon seemed more influenced by geology, and inorganic nitrogen seemed more influenced by basin slope.

  7. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Fu, Fei-Xue; Webb, Eric A.; Walworth, Nathan; Tagliabue, Alessandro

    2013-09-01

    Much of the bioavailable nitrogen that supports open ocean food webs and biogeochemical cycles is fixed from the atmosphere by marine cyanobacteria of the genera Trichodesmium and Crocosphaera. In previous experiments carried out with a limited set of cyanobacterial isolates, rates of cyanobacterial nitrogen fixation were shown to increase with carbon dioxide concentrations. Here, we report results from a series of laboratory experiments in which we grew seven strains of Trichodesmium and Crocosphaera from the Atlantic and Pacific oceans under a wide range of carbon dioxide concentrations, and monitored rates of nitrogen fixation and growth. We document large, strain-specific differences in the relationship between nitrogen fixation and carbon dioxide concentration, suggesting that individual strains within each genus are adapted to grow and fix nitrogen at different concentrations of carbon dioxide. We apply kinetic constants from the individual carbon dioxide response curves to an illustrative biogeochemical model of the ocean in 2100, which suggests that strains adapted to high carbon dioxide concentrations could potentially be favoured in a future acidified ocean. We suggest that surface ocean carbon dioxide concentrations could constitute a previously unrecognized selective force that shapes the community composition and diversity of nitrogen-fixing cyanobacteria.

  8. Boron Clusters Come of Age

    ERIC Educational Resources Information Center

    Grimes, Russell N.

    2004-01-01

    Boron is the only element other than carbon that can build molecules of unlimited size by covalently boding to itself, a property known as catenation. In contrast to the chains and rings favored by carbon, boron arguably adopts a cluster motif that is reflected in the various forms of the pure element and in the huge area of polyhedral borane…

  9. Controlling the volumetric parameters of nitrogen-doped carbon nanotube cups

    NASA Astrophysics Data System (ADS)

    Allen, Brett L.; Keddie, Matthew B.; Star, Alexander

    2010-07-01

    Analogous to multiwalled carbon nanotubes, nitrogen-doped carbon nanotube cups (NCNCs) have been synthesized with defined volumetric parameters (diameter and segment lengths) by controlling the catalyst particle size and the concentration of nitrogen precursor utilized in the chemical vapor deposition (CVD) reaction, allowing for tailored interior cavity space of cross-linked NCNCs, i.e. nanocapsules.Analogous to multiwalled carbon nanotubes, nitrogen-doped carbon nanotube cups (NCNCs) have been synthesized with defined volumetric parameters (diameter and segment lengths) by controlling the catalyst particle size and the concentration of nitrogen precursor utilized in the chemical vapor deposition (CVD) reaction, allowing for tailored interior cavity space of cross-linked NCNCs, i.e. nanocapsules. Electronic supplementary information (ESI) available: AFM and DLS of FeNPs, high-resolution TEM and EELS analysis, and TEM of statistical distributions. See DOI: 10.1039/c0nr00043d

  10. Independently Controlled Carbon and Nitrogen Potential: A New Approach to Carbonitriding Process

    NASA Astrophysics Data System (ADS)

    Winter, Karl-Michael

    2013-07-01

    Recent research projects show that retained austenite, if stabilized by nitrogen, has a positive influence on the fatigue strength of work pieces. The combined diffusion profile of carbon and nitrogen applied in a carbonitriding process plays a major role, besides the process temperature. Yet today, only the carbon potential is somehow controlled and even this is not easy to achieve. This paper will present a new system able to measure and control both the carbon potential and the nitrogen potential independently. The knowledge of the activities of nitrogen and carbon in iron and the effect of alloying elements on such activities as well as the solubilities offers a way to apply the potentials on real steels.

  11. STABLE ISOTOPIC EVIDENCE OF CARBON AND NITROGEN USE IN CULTURED ECTOMYCORRHIZAL AND SAPROTROPHIC FUNGI

    EPA Science Inventory

    Stable isotopes in sporocarps have proven useful for inferring ectomycorrhizal or saprotrophic status and understanding carbon (C) and nitrogen (N) utilization. However, greater understanding of processes producing isotopic concentrations is needed. We measured natural abundanc...

  12. Biological cycling of carbon and nitrogen to reduce agricultural pollution by nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon and nitrogen are two key elements of global significance, playing large roles in the production of food, feed, fiber, and fuel for human existence, as well as providing numerous other ecosystem services. Although nitrogen is often a limiting element in natural systems, it can become a pollut...

  13. Graphitic and pyridinic nitrogen in carbon nanotubes: energetic and polarization aspects

    NASA Astrophysics Data System (ADS)

    Sedelnikova, Olga V.; Bulusheva, Lyubov G.; Okotrub, Alexander V.

    2016-03-01

    The incorporation of nitrogen atoms into carbon nanotube (CNT) walls occurs mainly via bonding with three or two carbon atoms, and the obtained configurations are referred to as graphitic and pyridinic nitrogen forms. Here, we evaluate the energy of formation of these nitrogen defects in an armchair (6,6) CNT and the static polarizability of the obtained nitrogen-containing carbon (CNx) nanotubes using a dispersion-corrected hybrid functional. The calculations showed that the graphitic nitrogen atoms prefer to be in the pentagonal rings located at a nanotube cap. The CNx nanotubes with such nitrogen impurities have enhanced polarizability as compared to their nondoped counterparts. The formation of the pyridinic nitrogen defect requires ˜7.1 eV however, if the CNT already contains a vacancy, this energy reduces to ˜0.2 eV. The presence of pyridinic nitrogen atoms in CNx nanotubes should not increase the polarization response. Our results suggest that the electromagnetic properties of CNx nanotubes can be tuned by interconverting between graphitic and pyridinic nitrogen forms.

  14. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen - Preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1980-01-01

    The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.

  15. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J; Bradford, Mark A

    2015-04-01

    Understanding the role of soil microbial communities in coupled carbon and nitrogen cycles has become an area of great interest as we strive to understand how global change will influence ecosystem function. In this endeavor, microbially explicit decomposition models are being adopted because they include microbial stoichiometry- and biomass-mediated mechanisms that may be important in shaping ecosystem response to environmental change. Yet there has been a dearth of empirical tests to verify the predictions of these models and hence identify potential improvements. We measured the response of soil microbes to multiple rates of carbon and nitrogen amendment in experimental microcosms, and used the respiration and nitrogen mineralization responses to assess a well-established, single-pool, microbial decomposition model. The model generally predicted the empirical trends in carbon and nitrogen fluxes, but failed to predict the empirical trends in microbial biomass. Further examination of this discontinuity indicated that the model successfully predicted carbon and nitrogen cycling because stoichiometry overrode microbial biomass as a regulator of cycling rates. Stoichiometric control meant that the addition of carbon generally increased respiration and decreased nitrogen mineralization, whereas nitrogen had the opposite effects. Biomass only assumed importance as a control on cycling rates when stoichiometric ratios of resource inputs were a close match to those of the microbial biomass. Our work highlights the need to advance our understanding of the stoichiometric demands of microbial biomass in order to better understand biogeochemical cycles in the face of changing organic- and inorganic-matter inputs to terrestrial ecosystems. PMID:26230033

  16. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J; Bradford, Mark A

    2015-04-01

    Understanding the role of soil microbial communities in coupled carbon and nitrogen cycles has become an area of great interest as we strive to understand how global change will influence ecosystem function. In this endeavor, microbially explicit decomposition models are being adopted because they include microbial stoichiometry- and biomass-mediated mechanisms that may be important in shaping ecosystem response to environmental change. Yet there has been a dearth of empirical tests to verify the predictions of these models and hence identify potential improvements. We measured the response of soil microbes to multiple rates of carbon and nitrogen amendment in experimental microcosms, and used the respiration and nitrogen mineralization responses to assess a well-established, single-pool, microbial decomposition model. The model generally predicted the empirical trends in carbon and nitrogen fluxes, but failed to predict the empirical trends in microbial biomass. Further examination of this discontinuity indicated that the model successfully predicted carbon and nitrogen cycling because stoichiometry overrode microbial biomass as a regulator of cycling rates. Stoichiometric control meant that the addition of carbon generally increased respiration and decreased nitrogen mineralization, whereas nitrogen had the opposite effects. Biomass only assumed importance as a control on cycling rates when stoichiometric ratios of resource inputs were a close match to those of the microbial biomass. Our work highlights the need to advance our understanding of the stoichiometric demands of microbial biomass in order to better understand biogeochemical cycles in the face of changing organic- and inorganic-matter inputs to terrestrial ecosystems.

  17. Simultaneous inhibition of carbon and nitrogen mineralization in a forest soil by simulated acid precipitation

    SciTech Connect

    Klein, T.M.; Novick, N.J.; Kreitinger, J.P.; Alexander, M.

    1984-06-01

    One method to simulate the long-term exposure of soil to acid rain involves the addition of single doses of concentrated acid. The inhibition of carbon mineralization accompanied by a stimulation of nitrogen mineralization may result from this severe, unnatural treatment. The present study was designed to determine whether the inhibition of carbon mineralization and the accompanying enhanced nitrogen mineralization would occur when soils are treated with more dilute acid for long periods of time, as takes place in nature.

  18. Infrared spectrum of the complex of formaldehyde with carbon dioxide in argon and nitrogen matrices

    NASA Technical Reports Server (NTRS)

    Van Der Zwet, G. P.; Allamandola, Louis J.; Baas, F.; Greenberg, J. M.

    1989-01-01

    The complex of formaldehyde with carbon dioxide has been studied by infrared spectroscopy in argon and nitrogen matrices. The shifts relative to the free species show that the complex is weak and similar in argon and nitrogen. The results give evidence for T-shaped complexes, which are isolated in several configurations. Some evidence is also presented which indicates that, in addition to the two well-known sites in argon, carbon dioxide can be trapped in a third site.

  19. Chemistry and biology of boron.

    PubMed

    Loomis, W D; Durst, R W

    1992-04-01

    Boron is an essential nutrient for certain organisms, notably vascular plants and diatoms. Cyanobacteria require boron for formation of nitrogen-fixing heterocysts and boron may be beneficial to animals. Boron deficiency in plants produces manifold symptoms: many functions have been postulated. Deficiency symptoms first appear at growing points, within hours in root tips and within minutes or seconds in pollen tube tips, and are characterized by cell wall abnormalities. Boron-deficient tissues are brittle or fragile, while plants grown on high boron levels may have unusually flexible or resilient tissues. Borate forms cyclic diesters with appropriate diols or polyols. The most stable are formed with cis-diols on a furanoid ring. Two compounds have this structure physiologically: ribose in ribonucleotides and RNA, and apiose in the plant cell wall. Germanium can substitute for boron in carrot cell cultures. Both boron and germanium are localized primarily in the cell wall. We postulate that borate-apiofuranose ester cross-links are the auxin-sensitive acid-growth link in vascular plants, that the cyanobacterial heterocyst envelope depends on borate cross-linking of mannopyranose and/or galactopyranose residues in a polysaccharide-lipid environment, and that boron in diatoms forms ester cross-links in the polysaccharide cell wall matrix rather than boron-silicon interactions. Complexing of ribonucleotides is probably a factor in boron toxicity. PMID:1605832

  20. Textural properties of raw carbon nanotubes by nitrogen adsorption and mercury porosimetry

    NASA Astrophysics Data System (ADS)

    Bossuot, Ch.; Bister, G.; Fonseca, A.; Nagy, J. B.; Pirard, J.-P.

    2001-11-01

    A sample of raw material made by catalytic decomposition of methane and containing a fraction of single-wall carbon nanotubes (SWNTs) was studied. Interpretation of mercury porosimetry and nitrogen adsorption-desorption isotherms was difficult because the purity of carbon nanotubes, thermogravimetry revealed, was rather poor. Indeed, the raw material was made up by carbon soot, graphitic disordered carbon, damaged nanotubes, SWNTs and catalyst residues. The raw material was mainly microporous with some mesopores.

  1. Modifications of multi-wall carbon nanotubes with B-containing vapor and their effects on the properties of boron carbide matrix nanocomposites.

    PubMed

    Herth, S; Miranda, D; Doremus, R H; Siegel, R W

    2008-06-01

    Multi-wall carbon nanotubes were modified by heating them together with elemental boron powder. B4C crystals grew on the surfaces of the nanotubes, and electron diffraction patterns showed an orientation dependence of the surface B4C and the underlying carbon in the nanotubes. There was no reaction of the nanotubes with solid B2O3 alone. Composites of the modified nanotubes in a B4C matrix showed a small increase of density over sintered B4C.

  2. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode.

    PubMed

    Deng, Chunyan; Chen, Jinhua; Chen, Xiaoli; Xiao, Chunhui; Nie, Lihua; Yao, Shouzhuo

    2008-03-14

    Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.

  3. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region.

  4. Nitrogen Deposition Enhances Carbon Sequestration by Plantations in Northern China

    PubMed Central

    Du, Zhihong; Wang, Wei; Zeng, Wenjing; Zeng, Hui

    2014-01-01

    Nitrogen (N) deposition and its ecological effects on forest ecosystems have received global attention. Plantations play an important role in mitigating climate change through assimilating atmospheric CO2. However, the mechanisms by which increasing N additions affect net ecosystem production (NEP) of plantations remain poorly understood. A field experiment was initialized in May 2009, which incorporated additions of four rates of N (control (no N addition), low-N (5 g N m−2 yr−1), medium-N (10 g N m−2 yr−1), and high-N (15 g N m−2 yr−1)) at the Saihanba Forestry Center, Hebei Province, northern China, a locality that contains the largest area of plantations in China. Net primary production (NPP), soil respiration, and its autotrophic and heterotrophic components were measured. Plant tissue carbon (C) and N concentrations (including foliage, litter, and fine roots), microbial biomass, microbial community composition, extracellular enzyme activities, and soil pH were also measured. N addition significantly increased NPP, which was associated with increased litter N concentrations. Autotrophic respiration (AR) increased but heterotrophic respiration (HR) decreased in the high N compared with the medium N plots, although the HR in high and medium N plots did not significantly differ from that in the control. The increased AR may derive from mycorrhizal respiration and rhizospheric microbial respiration, not live root respiration, because fine root biomass and N concentrations showed no significant differences. Although the HR was significantly suppressed in the high-N plots, soil microbial biomass, composition, or activity of extracellular enzymes were not significantly changed. Reduced pH with fertilization also could not explain the pattern of HR. The reduction of HR may be related to altered microbial C use efficiency. NEP was significantly enhanced by N addition, from 149 to 426.6 g C m−2 yr−1. Short-term N addition may significantly enhance the

  5. Syntheses with stable isotopes of carbon, nitrogen, and oxygen

    SciTech Connect

    Ott, D.G.

    1981-01-01

    Methods, techniques, ideas, information, and references to prepare compounds labeled with stable isotopes of carbon, nitrogen, and oxygen are presented, which can be used in selecting or devising synthetic schemes. By studying and comparing methods that other investigators have applied to problems in isotopic labeling, the task of deciding on suitable syntheses for incorporating isotopes into various other compounds can be considerably simplified. The major portion of the book is devoted to synthetic procedures that have been used for preparation of specific labeled compounds. The descriptions are often given in sufficient detail that they can be applied or modified without necessity for recourse to the original literature. Methods can be compared, feasibility for extensions to other isotope isomers or to related compounds can be assessed, and requirements for apparatus, materials, time, effort, and skills can be evaluated. Additional methods and speculations are presented for a number of other compounds whose syntheses are not given in detail. A few biosynthetic preparations, which afford specific products in good isotopic yield, are described; certain other applications of biological methods are considered briefly. Arrangement of the procedures into chapters according to functional groups is somewhat arbitrary; that is, not all preparations of carboxylic acids will be found in the chapter dealing with acids and derivatives; certain alcohols appear as components in multistep syntheses in the chapter on hydrocarbons; some compounds could just as well have been placed elsewhere; and so on. Thus it is important to use the index. Following the introductory chapter, the contents of this book are as follows: (1) acids, anhydrides, amids, esters, and nitriles; (2) aldehydes and ketones; (3) alcohols, ethers, and phenols; (4) amines, and hydrocarbons; (5) heterocyclic compounds; and (6) other compounds.

  6. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. PMID:25711504

  7. Impacts of Invasive Pests on Forest Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Lovett, G. M.; Crowley, K. F.

    2014-12-01

    Forests of the U.S. have been subject to repeated invasions of destructive insects and diseases imported from other continents. Like other disturbances, these pests can produce short-term ecosystem effects due to tree mortality, but unlike other disturbances, they often target individual species and therefore can cause long-term species change in the forest. Because tree species vary in their influence on carbon (C) and nitrogen (N) cycles, pest-induced species change can radically alter the biogeochemistry of a forest. In this paper we use both data and modeling to examine how pest-induced species change may alter the C and N cycling in forests of the eastern U.S. We describe a new forest ecosystem model that distinguishes individual tree species and allows species composition to shift over the course of the model run. Results indicate that the mortality of eastern hemlock (Tsuga canadensis) by hemlock woolly adelgid and its replacement by faster-growing species such as black birch (Betula lenta) will reduce forest floor C stocks but increase productivity as the birch become established. Decline of American beech (Fagus grandifolia) from beech bark disease and its replacement by sugar maple (Acer saccharum) is likely to decrease soil C storage and increase N leaching from the ecosystem. Responses to other invasive pests will also be discussed. The magnitude of these species-specific effects on C and N cycling is in many cases larger than direct effects expected from changes in climate and atmospheric N deposition, indicating that species change should be included in models that predict forest ecosystem function under future environmental conditions.

  8. Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.

    PubMed

    Thomsson, Elisabeth; Gustafsson, Lena; Larsson, Christer

    2005-06-01

    Anaerobic starvation conditions are frequent in industrial fermentation and can affect the performance of the cells. In this study, the anaerobic carbon or nitrogen starvation response of Saccharomyces cerevisiae was investigated for cells grown in anaerobic carbon or nitrogen-limited chemostat cultures at a dilution rate of 0.1 h(-1) at pH 3.25 or 5. Lactic or benzoic acid was present in the growth medium at different concentrations, resulting in 16 different growth conditions. At steady state, cells were harvested and then starved for either carbon or nitrogen for 24 h under anaerobic conditions. We measured fermentative capacity, glucose uptake capacity, intracellular ATP content, and reserve carbohydrates and found that the carbon, but not the nitrogen, starvation response was dependent upon the previous growth conditions. All cells subjected to nitrogen starvation retained a large portion of their initial fermentative capacity, independently of previous growth conditions. However, nitrogen-limited cells that were starved for carbon lost almost all their fermentative capacity, while carbon-limited cells managed to preserve a larger portion of their fermentative capacity during carbon starvation. There was a positive correlation between the amount of glycogen before carbon starvation and the fermentative capacity and ATP content of the cells after carbon starvation. Fermentative capacity and glucose uptake capacity were not correlated under any of the conditions tested. Thus, the successful adaptation to sudden carbon starvation requires energy and, under anaerobic conditions, fermentable endogenous resources. In an industrial setting, carbon starvation in anaerobic fermentations should be avoided to maintain a productive yeast population.

  9. Starvation Response of Saccharomyces cerevisiae Grown in Anaerobic Nitrogen- or Carbon-Limited Chemostat Cultures

    PubMed Central

    Thomsson, Elisabeth; Gustafsson, Lena; Larsson, Christer

    2005-01-01

    Anaerobic starvation conditions are frequent in industrial fermentation and can affect the performance of the cells. In this study, the anaerobic carbon or nitrogen starvation response of Saccharomyces cerevisiae was investigated for cells grown in anaerobic carbon or nitrogen-limited chemostat cultures at a dilution rate of 0.1 h−1 at pH 3.25 or 5. Lactic or benzoic acid was present in the growth medium at different concentrations, resulting in 16 different growth conditions. At steady state, cells were harvested and then starved for either carbon or nitrogen for 24 h under anaerobic conditions. We measured fermentative capacity, glucose uptake capacity, intracellular ATP content, and reserve carbohydrates and found that the carbon, but not the nitrogen, starvation response was dependent upon the previous growth conditions. All cells subjected to nitrogen starvation retained a large portion of their initial fermentative capacity, independently of previous growth conditions. However, nitrogen-limited cells that were starved for carbon lost almost all their fermentative capacity, while carbon-limited cells managed to preserve a larger portion of their fermentative capacity during carbon starvation. There was a positive correlation between the amount of glycogen before carbon starvation and the fermentative capacity and ATP content of the cells after carbon starvation. Fermentative capacity and glucose uptake capacity were not correlated under any of the conditions tested. Thus, the successful adaptation to sudden carbon starvation requires energy and, under anaerobic conditions, fermentable endogenous resources. In an industrial setting, carbon starvation in anaerobic fermentations should be avoided to maintain a productive yeast population. PMID:15932996

  10. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Yaling; Feng, Xiaoting; Zhang, Feng; Yang, Yongzhen; Liu, Xuguang

    2016-11-01

    To investigate the effect of reaction temperature and nitrogen doping on the structure and fluorescence properties of carbon dots (CDs), six kinds of nitrogen-doped CDs (NCDs) were synthesized at reaction temperatures of 120, 140, 160, 180, 200 and 220 °C, separately, by using citric acid as carbon source and ammonia solution as nitrogen source. Nitrogen-free CDs (N-free CDs-180) was also prepared at 180 °C by using citric acid as the only carbon source for comparison. Results show that reaction temperature has obvious effect on carbonization degree, quantum yield (QY), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectra but less effect on functional groups, nitrogen doping degree and fluorescence lifetime of NCDs. Compared with N-free CDs-180, NCDs-180 possesses enchanced QY and longer fluorescence lifetime. Doping nitrogen has obvious effect on UV-vis absorption and PL spectra but less effect on particles sizes and carbonization degree. The formation mechanism of NCDs is explored: QY of NCDs depends largely on the number of fluorescent polymer chains (FPC), the competition between FPC formation on the surface of NCDs and carbon core growth leads to the change in number of FPC, and consequently to the NCDs with highest QY at appropriate hydrothermal temperature.

  11. Land Cover Differences in Soil Carbon and Nitrogen at Fort Benning, Georgia

    SciTech Connect

    Garten Jr., C.T.

    2004-02-09

    Land cover characterization might help land managers assess the impacts of management practices and land cover change on attributes linked to the maintenance and/or recovery of soil quality. However, connections between land cover and measures of soil quality are not well established. The objective of this limited investigation was to examine differences in soil carbon and nitrogen among various land cover types at Fort Benning, Georgia. Forty-one sampling sites were classified into five major land cover types: deciduous forest, mixed forest, evergreen forest or plantation, transitional herbaceous vegetation, and barren land. Key measures of soil quality (including mineral soil density, nitrogen availability, soil carbon and nitrogen stocks, as well as properties and chemistry of the O-horizon) were significantly different among the five land covers. In general, barren land had the poorest soil quality. Barren land, created through disturbance by tracked vehicles and/or erosion, had significantly greater soil density and a substantial loss of carbon and nitrogen relative to soils at less disturbed sites. We estimate that recovery of soil carbon under barren land at Fort Benning to current day levels under transitional vegetation or forests would require about 60 years following reestablishment of vegetation. Maps of soil carbon and nitrogen were produced for Fort Benning based on a 1999 land cover map and field measurements of soil carbon and nitrogen stocks under different land cover categories.

  12. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    NASA Astrophysics Data System (ADS)

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; McGuire, A. David; Post, Wilfred; Kicklighter, David

    2009-12-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr-1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr-1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr-1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr-1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources

  13. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    SciTech Connect

    Jain, Atul; Yang, Xiaojuan; Kheshgi, Haroon; Mcguire, David; Post, Wilfred M

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and

  14. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    USGS Publications Warehouse

    Jain, A.A.; Yang, Xiaojuan; Kheshgi, H.; McGuire, Anthony; Post, W.; Kicklighter, David W.

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon

  15. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation

    PubMed Central

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-01-01

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7–overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement. PMID:27293103

  16. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    PubMed

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-01-01

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement. PMID:27293103

  17. Effect of deposition temperature on boron-doped carbon coatings deposited from a BCl 3-C 3H 6-H 2 mixture using low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yongsheng; Zhang, Litong; Cheng, Laifei; Yang, Wenbin; Xu, Yongdong

    2009-08-01

    A mixture of propylene, hydrogen and boron trichloride was used to fabricate boron-doped carbon coatings by using low pressure chemical vapor deposition ( LPCVD) technique. Effect of deposition temperature on deposition rate, morphologies, compositions and bonding states of boron-doped carbon coatings was investigated. Below 1273 K, the deposition rate is controlled by reaction dynamics. The deposition rate increases with increasing deposition temperature. The activation energy is 208.74 kJ/mol. Above 1273 K, the deposition rate decreases due to smaller critical radius rc and higher nuclei formation rate J with increasing temperature. Scanning electron microscopy shows that the structure changes from glass-like to nano-laminates with increasing deposition temperature. The boron concentration decreases with increasing deposition temperature, corresponding with increasing carbon concentration. The five types of bonding states are B-C, B-sub-C, BC 2O, BCO 2 and B-O. B-sub-C and BC 2O are the main bonding states. The reactions are dominant at all temperatures, in which the B-sub-C and PyC are formed.

  18. Nitrogen-Containing Analog of Dibenzoylmethanate of Boron Difluoride: Luminescence, Structure, Quantum Chemical Modeling, and Delay Fluorescence.

    PubMed

    Fedorenko, Elena V; Тretyakova, Galina O; Mirochnik, Anatolii G; Beloliptsev, Anton Yu; Svistunova, Irina V; Sazhnikov, Viacheslav A; Atabekyan, Levon S

    2016-09-01

    Boron difluoride of 3-amino-1,3-diphenyl-2-propene-1-onate (1) has been synthesized and its crystal structure has been determined. The comparative studies of 1 and its oxygen analog 1,3-diphenyl-1,3-dionate (dibenzoylmethanate) of boron difluoride (2) have been performed using the methods of stationary and time-resolved spectroscopy and quantum chemical modeling. It was established that at the transition from solutions to crystals, a bathochromic shift of the spectra and a significant increase of luminescence intensity of 1 take place. The luminescent properties of solutions of 1 and 2 are similar. The peculiarities of crystal packings of 1 and 2 are responsible for differences in crystals luminescent properties. For crystals of 2, one observes the luminescence of J-aggregates and excimers, while for 1, in which a dimer is an elementary structural fragment, only the excimer luminescence is registered. A delayed excimer fluorescence of the P-type was observed for crystals of 1 and 2 at room temperature. The intensity of the delayed fluorescence of 1 is 300-fold higher than that of 2. Graphical Abstract Luminescence of J-aggregates and the formation of excimers in crystals of 1 and 2. PMID:27422696

  19. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    SciTech Connect

    Thornton, Peter E; Doney, Scott C.; Lindsay, Keith; Moore, Jefferson Keith; Mahowald, Natalie; Randerson, James T; Fung, Inez; Lamarque, Jean-Francois H; Feddema, Johan J.

    2009-01-01

    Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO{sub 2} fertilization, and increased carbon uptake associated with warming of the climate system. The balance of these two opposing effects is to reduce the fraction of anthropogenic CO{sub 2} predicted to be sequestered in land ecosystems. The primary mechanism responsible for increased land carbon storage under radiatively forced climate change is shown to be fertilization of plant growth by increased mineralization of nitrogen directly associated with increased decomposition of soil organic matter under a warming climate, which in this particular model results in a negative gain for the climate-carbon feedback. Estimates for the land and ocean sink fractions of recent anthropogenic emissions are individually within the range of observational estimates, but the combined land plus ocean sink fractions produce an airborne fraction which is too high compared to observations. This bias is likely due in part to an underestimation of the ocean sink fraction. Our results show a significant growth in the airborne fraction of anthropogenic CO{sub 2} emissions over the coming century, attributable in part to a steady decline in the ocean sink fraction. Comparison to experimental studies on the fate of radio-labeled nitrogen tracers in temperate forests indicates that the model representation of competition between plants and microbes for new mineral nitrogen resources is reasonable. Our results suggest a weaker dependence of net land carbon flux on soil moisture changes in tropical regions, and a stronger positive growth response to warming in those regions, than predicted by a similar AOGCM implemented without land carbon-nitrogen interactions. We expect that the between-model uncertainty in predictions of future atmospheric CO{sub 2} concentration and

  20. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

    NASA Astrophysics Data System (ADS)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin

    2016-06-01

    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  1. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  2. [Simultaneous removal of carbon and nitrogen from organic-rich wastewater with Anammox].

    PubMed

    Chen, Chongjun; Zhu, Weijing; Huang, Xiaoxiao; Wu, Weixiang

    2014-12-01

    In order to simultaneously remove carbon and nitrogen from organic-rich wastewater, we used an up-flow anaerobic sludge bed/blanket (UASB) reactor that was started up with anammox with high concentration of carbon and nitrogen by gradually raising the organic loading of influent. We optimized the removal of nitrogen and carbon when the chemical oxygen demand (COD) concentration varied from 172 to 620 mg/L. During the entire experiment, the ammonium and total nitrogen removal efficiency was higher than 85%, while the average COD removal efficiency was 56.6%. The high concentration of organic matter did not restrain the activity of anammox bacteria. Based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and tapping sequencing analyses, the Planctomycete, Proteobacteria, Chloroflexi, Chlorobi bacteria are detected in the UASB reactor, which indicated complex removal pathway of carbon and nitrogen coexisted in the reactor. However, a part of Planctomycete which referred to anammox bacteria could tolerate a high content of organic carbon, and it provided help for high performance of nitrogen removal in UASB reactor.

  3. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    Elbert, Wolfgang; Weber, Bettina; Burrows, Susannah; Steinkamp, Jörg; Büdel, Burkhard; Andreae, Meinrat O.; Pöschl, Ulrich

    2012-07-01

    Many terrestrial surfaces, including soils, rocks and plants, are covered by photoautotrophic communities, capable of synthesizing their own food from inorganic substances using sunlight as an energy source. These communities, known as cryptogamic covers, comprise variable proportions of cyanobacteria, algae, fungi, lichens and bryophytes, and are able to fix carbon dioxide and nitrogen from the atmosphere. However, their influence on global and regional biogeochemical cycling of carbon and nitrogen has not yet been assessed. Here, we analyse previously published data on the spatial coverage of cryptogamic communities, and the associated fluxes of carbon and nitrogen, in different types of ecosystem across the globe. We estimate that globally, cryptogamic covers take up around 3.9 Pg carbon per year, corresponding to around 7% of net primary production by terrestrial vegetation. We derive a nitrogen uptake by cryptogamic covers of around 49 Tg per year, suggesting that cryptogamic covers account for nearly half of the biological nitrogen fixation on land. We suggest that nitrogen fixation by cryptogamic covers may be crucial for carbon sequestration by plants.

  4. Carbon and nitrogen balance of leaf-eating sesarmid crabs ( Neoepisesarma versicolor) offered different food sources

    NASA Astrophysics Data System (ADS)

    Thongtham, Nalinee; Kristensen, Erik

    2005-10-01

    Carbon and nitrogen budgets for the leaf-eating crab, Neoepisesarma versicolor, were established for individuals living on pure leaf diets. Crabs were fed fresh (green), senescent (yellow) and partly degraded (brown) leaves of the mangrove tree Rhizophora apiculata. Ingestion, egestion and metabolic loss of carbon and nitrogen were determined from laboratory experiments. In addition, bacterial abundance in various compartments of the crabs' digestive tract was enumerated after dissection of live individuals. Ingestion and egestion rates (in terms of dry weight) were highest, while the assimilation efficiency was poorest for crabs fed on brown leaves. The low assimilation efficiency was more than counteracted by the high ingestion rate providing more carbon for growth than for crabs fed green and yellow leaves. In any case, the results show that all types of leaves can provide adequate carbon while nitrogen was insufficient to support both maintenance (yellow leaves) and growth (green, yellow and brown leaves). Leaf-eating crabs must therefore obtain supplementary nitrogen by other means in order to meet their nitrogen requirement. Three hypotheses were evaluated: (1) crabs supplement their diet with bacteria and benthic microalgae by ingesting own faeces and/or selective grazing at the sediment surface; (2) assimilation of symbiotic nitrogen-fixing bacteria in the crabs' own intestinal system; and (3) nitrogen storage following occasional feeding on animal tissues (e.g. meiofauna and carcasses). It appears that hypothesis 1 is of limited importance for N. versicolor since faeces and sediment can only supply a minor fraction of the missing nitrogen due to physical constraints on the amount of material the crabs can consume. Hypothesis 2 can be ruled out because tests showed no nitrogen fixation activity in the intestinal system of N. versicolor. It is therefore likely that leaf-eating crabs provide most of their nitrogen requirement from intracellular deposits

  5. Nitrogen management and the future of food: Lessons from the management of energy and carbon

    PubMed Central

    Socolow, Robert H.

    1999-01-01

    The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized. PMID:10339531

  6. Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering

    SciTech Connect

    Abrasonis, G.; Gago, R.; Jimenez, I.; Kreissig, U.; Kolitsch, A.; Moeller, W.

    2005-10-01

    Carbon (C) and carbon nitride (CN{sub x}) films were grown on Si(100) substrates by direct ion-beam sputtering (IBS) of a carbon target at different substrate temperatures (room temperature-450 deg. C) and Ar/N{sub 2} sputtering gas mixtures. Additionally, the effect of concurrent nitrogen-ion assistance during the growth of CN{sub x} films by IBS was also investigated. The samples were analyzed by elastic recoil detection analysis (ERDA) and x-ray absorption near-edge spectroscopy (XANES). The ERDA results showed that significant nitrogen amount (up to 20 at. %) was incorporated in the films, without any other nitrogen source but the N{sub 2}-containing sputtering gas. The nitrogen concentration is proportional to the N{sub 2} content in the sputtering beam and no saturation limit is reached under the present working conditions. The film areal density derived from ERDA revealed a decrease in the amount of deposited material at increasing growth temperature, with a correlation between the C and N losses. The XANES results indicate that N atoms are efficiently incorporated into the carbon network and can be found in different bonding environments, such as pyridinelike, nitrilelike, graphitelike, and embedded N{sub 2} molecules. The contribution of molecular and pyridinelike nitrogen decreases when the temperature increases while the contribution of the nitrilelike nitrogen increases. The concurrent nitrogen ion assistance resulted in the significant increase of the nitrogen content in the film but it induced a further reduction of the deposited material. Additionally, the assisting ions inhibited the formation of the nitrilelike configurations while promoting nitrogen environments in graphitelike positions. The nitrogen incorporation and release mechanisms are discussed in terms of film growth precursors, ion bombardment effects, and chemical sputtering.

  7. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-10-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates

  8. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-04-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates

  9. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    SciTech Connect

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn; Kunets, Vasyl P.; Trigwell, Steven; Couraud, Arthur; Rioux, Julien; Boyer, Cyril; Nteziyaremye, Valens; Dervishi, Enkeleda; Biris, Alexandru R.; Salamo, Gregory J.; Viswanathan, Tito; Biris, Alexandru S.

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, while the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.

  10. Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions

    DOE PAGESBeta

    Saini, Viney; Li, Zhongrui; Bourdo, Shawn; Kunets, Vasyl P.; Trigwell, Steven; Couraud, Arthur; Rioux, Julien; Boyer, Cyril; Nteziyaremye, Valens; Dervishi, Enkeleda; et al

    2011-01-13

    A simple and easily processible photovoltaic device has been developed based on borondoped single-walled carbon nanotubes (B-SWNTs) and n-type silicon (n-Si) heterojunctions. The single-walled carbon nanotubes (SWNTs) were substitutionally doped with boron atoms by thermal annealing, in the presence of B2O3. The samples used for these studies were characterized by Raman spectroscopy, thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). The fully functional solar cell devices were fabricated by airbrush deposition that generated uniform B-SWNT films on top of the n-Si substrates. The carbon nanotube films acted as exciton-generation sites, charge collection and transportation, whilemore » the heterojunctions formed between B-SWNTs and n-Si acted as charge dissociation centers. The current-voltage characteristics in the absence of light and under illumination, as well as optical transmittance spectrum are reported here. It should be noted that the device fabrication process can be made amenable to scalability by depositing direct and uniform films using airbrushing, inkjet printing, or spin-coating techniques.« less

  11. Substantial increment in critical parameters of MgB2 superconductor by boron site nano-carbon substitution

    NASA Astrophysics Data System (ADS)

    Mudgel, Monika; Awana, V. P. S.; Bhalla, G. L.; Kishan, H.

    2010-12-01

    This paper deals with the determination of critical properties of MgB2 along with the impact of carbon substitution on critical parameters. The change in lattice parameters and decrease of transition temperature, Tc confirms the successful substitution by carbon at boron site. The magneto transport measurements up to 140 kOe are carried out to determine upper critical field (Hc2). The upper critical field values, Hc2 are obtained from ρ-T(H) data based upon the criterion of 90% of normal resistivity. The Ginzburg Landau theory (GL equation) is applied to the ρ-T(H) data which accounts for the temperature dependence behavior of Hc2 in the low temperature high field region along with the determination of Hc(0) value. The Hc(0) value of about 300 kOe is obtained for the carbon doped sample while the same is just near to 160 kOe for the pure MgB2 sample.

  12. Modeling of carbon and nitrogen gaseous emissions from cattle manure compost windrows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Windrow composting of cattle manure is a significant source of gaseous emissions, which include ammonia (NH3) and the greenhouse gases (GHGs) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). A manure compost model was developed to simulate carbon (C) and nitrogen (N) processes includ...

  13. Coupling of Carbon Monoxide with Nitrogen Monoxide at a Frustrated Lewis Pair Template.

    PubMed

    Ye, Ke-Yin; Kehr, Gerald; Daniliuc, Constantin G; Liu, Lei; Grimme, Stefan; Erker, Gerhard

    2016-08-01

    Coupling of carbon monoxide with nitrogen monoxide was achieved at a frustrated Lewis pair template. This unique reaction uses hydride as an auxiliary, which reductively activates carbon monoxide at the frustrated Lewis pair. The CO/NO coupling reaction then takes place through a pathway involving a radical reaction in which the hydrogen atom auxiliary is eventually removed again.

  14. Photoluminescence properties of thermographic phosphors YAG:Dy and YAG:Dy, Er doped with boron and nitrogen

    NASA Astrophysics Data System (ADS)

    Chepyga, Liudmyla M.; Jovicic, Gordana; Vetter, Andreas; Osvet, Andres; Brabec, Christoph J.; Batentschuk, Miroslaw

    2016-08-01

    This paper investigates Dy3+-doped and Dy3+, Er3+-co-doped yttrium aluminum garnets (YAG) with the admixture of boron nitride with the aim of using them as efficient thermographic phosphors at high temperatures. The phosphors were synthesized using a conventional high-temperature solid-state method. The influence of two fluxes, B2O3 and LiF/NH4F, and the effect of activator and coactivator concentrations were investigated. Additionally, the effect of B3+ and N3- substituting for Al3+ and O2- ions, respectively, in the YAG:Dy3+ co-doped with Er3+ was studied for the first time. The changes in the host lattice led to a much stronger photoluminescence compared with the samples without B3+ and N3- substitution. The admixture of BN also improves the thermal sensitivity of the YAG:Dy and YAG:Dy, Er thermographic phosphors.

  15. Nitrogen, Carbon, and Sulfur Metabolism in Natural Thioploca Samples

    PubMed Central

    Otte, Sandra; Kuenen, J. Gijs; Nielsen, Lars P.; Paerl, Hans W.; Zopfi, Jakob; Schulz, Heide N.; Teske, Andreas; Strotmann, Bettina; Gallardo, Victor A.; Jørgensen, Bo B.

    1999-01-01

    Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min−1 mg of protein−1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min−1 mg of protein−1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min−1 mg of protein−1 and could be increased to 10.7 nmol min−1 mg of protein−1 after the trichomes were starved for 45 h. Incorporation of 14CO2 was at a rate of 0.4 to 0.8 nmol min−1 mg of protein−1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min−1 mg of protein−1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples. PMID:10388716

  16. Nitrogen and carbon interactions in controlling terrestrial greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Ineson, Phil; Toet, Sylvia; Christiansen, Jesper

    2016-04-01

    The increased input of N to terrestrial systems may have profound impacts on net greenhouse gas (GHGs) fluxes and, consequently, our future climate; however, fully capturing and quantifying these interactions under field conditions urgently requires new, more efficient, measurement approaches. We have recently developed and deployed a novel system for the automation of terrestrial GHG flux measurements at the chamber and plot scales, using the approach of 'flying' a single measurement chamber to multiple points in an experimental field arena. As an example of the value of this approach, we shall describe the results from a field experiment investigating the interactions between increasing inorganic nitrogen (N) and carbon (C) additions on net ecosystem exchanges of N2O, CH4 and CO2, enabling the simultaneous application of 25 treatments, replicated five times in a fully replicated block field design. We will describe how the ability to deliver automated GHG flux measurements, highly replicated in space and time, has revealed hitherto unreported findings on N and C interactions in field soil. In our experiments we found insignificant N2O fluxes from bare field soil, even at very high inorganic N addition rates, but the interactive addition of even small amounts of available C resulted in very large and rapid N2O fluxes. The SkyGas experimental system enabled investigation of the underlying interacting response surfaces on the fluxes of the major soil-derived GHGs (CO2, CH4 and N2O) to increasing N and C inputs, and revealed unexpected interactions. In addition to these results we will also discuss some of the technical problems which have been overcome in developing these 'flying' systems and the potential of the systems for automatically screening the impacts of large numbers of treatments on GHG fluxes, and other ecosystem responses, under field conditions. We describe here technological advances that can facilitate the development of more robust GHG mitigation

  17. Effect of shoot removal on remobilization of carbon and nitrogen during regrowth of nitrogen-fixing alfalfa.

    PubMed

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Aldasoro, Joseba; Arrese-Igor, Cesar; Nogués, Salvador

    2015-01-01

    The contribution of carbon and nitrogen reserves to regrowth following shoot removal has been studied in the past. However, important gaps remain in understanding the effect of shoot cutting on nodule performance and its relevance during regrowth. In this study, isotopic labelling was conducted at root and canopy levels with both (15) N2 and (13) C-depleted CO2 on exclusively nitrogen-fixing alfalfa plants. As expected, our results indicate that the roots were the main sink organs before shoots were removed. Seven days after regrowth the carbon and nitrogen stored in the roots was invested in shoot biomass formation and partitioned to the nodules. The large depletion in nodule carbohydrate availability suggests that root-derived carbon compounds were delivered towards nodules in order to sustain respiratory activity. In addition to the limited carbohydrate availability, the upregulation of nodule peroxidases showed that oxidative stress was also involved during poor nodule performance. Fourteen days after cutting, and as a consequence of the stimulated photosynthetic and N2 -fixing machinery, availability of Cnew and Nnew strongly diminished in the plants due to their replacement by C and N assimilated during the post-labelling period. In summary, our study indicated that during the first week of regrowth, root-derived C and N remobilization did not overcome C- and N-limitation in nodules and leaves. However, 14 days after cutting, leaf and nodule performance were re-established.

  18. The Modification of Polyurethane Foams Using New Boroorganic Polyols (II) Polyurethane Foams from Boron-Modified Hydroxypropyl Urea Derivatives

    PubMed Central

    2014-01-01

    The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams' properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen. PMID:24587721

  19. Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts.

    PubMed

    Han, Qing; Wang, Bing; Gao, Jian; Qu, Liangti

    2016-08-26

    An interconnected framework of mesoporous graphitic-C3 N4 nanofibers merged with in situ incorporated nitrogen-rich carbon has been prepared. The unique composition and structure of the nanofibers as well as strong coupling between the components endow them with efficient light-harvesting properties, improved charged separation, and a multidimensional electron transport path that enhance the performance of hydrogen production. The as-obtained catalyst exhibits an extremely high hydrogen-evolution rate of 16885 μmol h(-1)  g(-1) , and a remarkable apparent quantum efficiency of 14.3 % at 420 nm without any cocatalysts, which is much higher than most reported g-C3 N4 -based photocatalysts even in the presence of Pt-based cocatalysts.

  20. Synthesis of Cubic Boron Nitride Nanoparticles from Boron Oxide, Melamine and NH3 by Non-Transferred Ar-N2 Thermal Plasma.

    PubMed

    Ko, Eun Ha; Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2015-11-01

    Cubic boron nitride (c-BN) which is has extremely high hardness and thermal conductivity comparable to the diamond was synthesized in nanoparticle form by using non-transferred thermal plasma. The input power of arc plasma was fixed at 13.5 kW and the operating pressure was also fixed at atmospheric pressure. Boron oxide (B2O3) and melamine (C3H6N6) were used as raw materials for the sources of boron and nitrogen. Ammonia gas (NH3) was additionally injected to plasma jet as reactive gas providing additional nitrogen. Decomposed B2O3 and C3H6N6 enhance reactivity for synthesizing c-BN with exothermic reactions between carbon, hydrogen and oxygen. Products were collected from the inner wall of reactor. In X-ray diffraction and scanning electron microscope measurements, the collected powder was confirmed as c-BN nanoparticles which have crystalline size smaller than 150 nm.

  1. [Occurrence of carbon monoxide, carbon dioxide and nitrogen oxides during the use of gas stoves].

    PubMed

    Prescher, K E

    1982-01-01

    The concentrations of carbon monoxide, carbon dioxide, nitrogen monoxide and nitrogen dioxide arising from gas burning have been measured under experimental and field conditions. In the test room propane, butane and town-gas have been burned, whereas in the apartments investigated only town-gas has been used. The most important influence on the concentration of the four substances arises from the changes in the burning conditions of the flame. Laboratory experiments have been carried out in the test room with open flames and with an aluminum block or a kettle on the flame. The following results have been obtained: (a) for CO the lowest concentration is obtained with open flames irrespective of the type of gas burned. Higher concentrations have been found with aluminum blocks, whereas the highest concentrations were associated with the use of kettles and pots, (b) the experimental conditions have only a small influence on the CO2 concentration, (c) NO concentrations are influenced by the gas type and by the experimental conditions. They are low with kettles but high with open flames, (d) NO2 concentrations are less influenced by the experimental conditions than are NO concentrations. The results of more than 1000 paired determinations of NO2 in kitchen and other rooms are presented. The concentrations which have been measured using diffusion tubes according to Palmes which were exposed for 48 h, were highest in kitchens of dwellings fully equipped with gas devices (heating, cooking, warming water). The mean value of the concentrations was about 50 micrograms/m3, whereas the mean for dwellings without any gas device has been found to be lower than 20 micrograms/m3. PMID:6820854

  2. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  3. Carbon and Nitrogen Provisions Alter the Metabolic Flux in Developing Soybean Embryos1[W][OA

    PubMed Central

    Allen, Doug K.; Young, Jamey D.

    2013-01-01

    Soybean (Glycine max) seeds store significant amounts of their biomass as protein, levels of which reflect the carbon and nitrogen received by the developing embryo. The relationship between carbon and nitrogen supply during filling and seed composition was examined through a series of embryo-culturing experiments. Three distinct ratios of carbon to nitrogen supply were further explored through metabolic flux analysis. Labeling experiments utilizing [U-13C5]glutamine, [U-13C4]asparagine, and [1,2-13C2]glucose were performed to assess embryo metabolism under altered feeding conditions and to create corresponding flux maps. Additionally, [U-14C12]sucrose, [U-14C6]glucose, [U-14C5]glutamine, and [U-14C4]asparagine were used to monitor differences in carbon allocation. The analyses revealed that: (1) protein concentration as a percentage of total soybean embryo biomass coincided with the carbon-to-nitrogen ratio; (2) altered nitrogen supply did not dramatically impact relative amino acid or storage protein subunit profiles; and (3) glutamine supply contributed 10% to 23% of the carbon for biomass production, including 9% to 19% of carbon to fatty acid biosynthesis and 32% to 46% of carbon to amino acids. Seed metabolism accommodated different levels of protein biosynthesis while maintaining a consistent rate of dry weight accumulation. Flux through ATP-citrate lyase, combined with malic enzyme activity, contributed significantly to acetyl-coenzyme A production. These fluxes changed with plastidic pyruvate kinase to maintain a supply of pyruvate for amino and fatty acids. The flux maps were independently validated by nitrogen balancing and highlight the robustness of primary metabolism. PMID:23314943

  4. Nitrogen restrictions buffer modeled interactions of water with the carbon cycle

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyuan; Gerber, Stefan

    2016-01-01

    Terrestrial carbon and water cycles are coupled at multiple spatiotemporal scales and are crucial to carbon sequestration. Water related climate extremes, such as drought and intense precipitation, can substantially affect the carbon cycle. Meanwhile, nitrogen is a limiting resource to plant and has therefore the potential to alter the coupling of water and carbon cycles on land. Here we assess the effect of nitrogen limitation on the response of the terrestrial carbon cycle to moisture anomalies using Geophysical Fluid Dynamics Laboratory's land surface model LM3V-N. We analyzed the response of three central carbon fluxes: net primary productivity (NPP), heterotrophic respiration (Rh), and net ecosystem productivity (NEP, the difference between NPP and Rh) and how these fluxes were altered under anomalies of the standardized precipitation and evapotranspiration index (SPEI). We found that globally, the correlations between each of the carbon flux and SPEI depended on the timescale and a strong legacy effect of SPEI anomalies on Rh. Consideration of nitrogen constraints reduced anomalies in carbon fluxes in response to extreme dry/wet events. This nitrogen-induced buffer constrained the growth of plants under wet extremes and allowed for enhanced growth during droughts. Extra gain of soil moisture from the downregulation of canopy transpiration by nitrogen limitation and shifts in the relative importance of water and nitrogen limitation during dry/wet extreme events are possible mechanisms contributing to the buffering of modeled NPP and NEP. Responses of Rh to moisture anomalies were much weaker compared to NPP, and N buffering effects were less evident.

  5. Alterations in internal partitioning of carbon in soybean plants in response to nitrogen stress

    NASA Technical Reports Server (NTRS)

    Rufty, T. W. Jr; Raper, C. D. Jr; Huber, S. C.

    1984-01-01

    Alterations in internal partitioning of carbon were evaluated in plants exposed to limited nitrogen supply. Vegetative, nonnodulated soybean plants (Glycine max (L.) Merrill, 'Ransom') were grown for 21 days with 1.0 mM NO3- and then exposed to solutions containing 1.0, 0.1, or 0.0 mM NO3- for a 25-day treatment period. In nitrogen-limited plants, there were decreases in emergence of new leaves and in the expansion rate and final area at full expansion of individual leaves. As indicated by alterations in accumulation of dry weight, a larger proportion of available carbon in the plant was partitioned to the roots with decreased availability of nitrogen. Partitioning of reduced nitrogen to the root also was increased and, in plants devoid of an external supply, considerable redistribution of reduced nitrogen from leaves to the root occurred. The general decrease in growth potential and sink strength for nutrients in leaves of nitrogen-limited plants suggested that factors other than simply availability of nitrogen likely were involved in the restriction of growth in the leaf canopy and the associated increase in carbon allocation to the roots.

  6. Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films

    PubMed Central

    Tzeng, Yonhua; Yeh, Shoupu; Fang, Wei Cheng; Chu, Yuehchieh

    2014-01-01

    Nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) and multi-layer-graphene-like hybrid carbon films have been synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) on oxidized silicon which is pre-seeded with diamond nanoparticles. MPECVD of N-UNCD on nanodiamond seeds produces a base layer, from which carbon structures nucleate and grow perpendicularly to form standing carbon platelets. High-resolution transmission electron microscopy and Raman scattering measurements reveal that these carbon platelets are comprised of ultrananocrystalline diamond embedded in multilayer-graphene-like carbon structures. The hybrid carbon films are of low electrical resistivity. UNCD grains in the N-UNCD base layer and the hybrid carbon platelets serve as high-density diamond nuclei for the deposition of an electrically insulating UNCD film on it. Biocompatible carbon-based heaters made of low-resistivity hybrid carbon heaters encapsulated by insulating UNCD for possible electrosurgical applications have been demonstrated. PMID:24681781

  7. [Release and supplement of carbon, nitrogen and phosphorus from jellyfish (Nemopilema nomurai) decomposition in seawater].

    PubMed

    Qu, Chang-feng; Song, Jin-ming; Li, Ning; Li, Xue-gang; Yuan, Hua-mao; Duan, Li-qin

    2016-01-01

    Abstract: Jellyfish bloom has been increasing in Chinese seas and decomposition after jellyfish bloom has great influences on marine ecological environment. We conducted the incubation of Nemopilema nomurai decomposing to evaluate its effect on carbon, nitrogen and phosphorus recycling of water column by simulated experiments. The results showed that the processes of jellyfish decomposing represented a fast release of biogenic elements, and the release of carbon, nitrogen and phosphorus reached the maximum at the beginning of jellyfish decomposing. The release of biogenic elements from jellyfish decomposition was dominated by dissolved matter, which had a much higher level than particulate matter. The highest net release rates of dissolved organic carbon and particulate organic carbon reached (103.77 ± 12.60) and (1.52 ± 0.37) mg · kg⁻¹ · h⁻¹, respectively. The dissolved nitrogen was dominated by NH₄⁺-N during the whole incubation time, accounting for 69.6%-91.6% of total dissolved nitrogen, whereas the dissolved phosphorus was dominated by dissolved organic phosphorus during the initial stage of decomposition, being 63.9%-86.7% of total dissolved phosphorus and dominated by PO₄³⁻-P during the late stage of decomposition, being 50.4%-60.2%. On the contrary, the particulate nitrogen was mainly in particulate organic nitrogen, accounting for (88.6 ± 6.9) % of total particulate nitrogen, whereas the particulate phosphorus was mainly in particulate. inorganic phosphorus, accounting for (73.9 ±10.5) % of total particulate phosphorus. In addition, jellyfish decomposition decreased the C/N and increased the N/P of water column. These indicated that jellyfish decomposition could result in relative high carbon and nitrogen loads.

  8. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    PubMed

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P < 0.05); (2) the long-term application of NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01). PMID:25338383

  9. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    PubMed

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P < 0.05); (2) the long-term application of NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01).

  10. [Release and supplement of carbon, nitrogen and phosphorus from jellyfish (Nemopilema nomurai) decomposition in seawater].

    PubMed

    Qu, Chang-feng; Song, Jin-ming; Li, Ning; Li, Xue-gang; Yuan, Hua-mao; Duan, Li-qin

    2016-01-01

    Abstract: Jellyfish bloom has been increasing in Chinese seas and decomposition after jellyfish bloom has great influences on marine ecological environment. We conducted the incubation of Nemopilema nomurai decomposing to evaluate its effect on carbon, nitrogen and phosphorus recycling of water column by simulated experiments. The results showed that the processes of jellyfish decomposing represented a fast release of biogenic elements, and the release of carbon, nitrogen and phosphorus reached the maximum at the beginning of jellyfish decomposing. The release of biogenic elements from jellyfish decomposition was dominated by dissolved matter, which had a much higher level than particulate matter. The highest net release rates of dissolved organic carbon and particulate organic carbon reached (103.77 ± 12.60) and (1.52 ± 0.37) mg · kg⁻¹ · h⁻¹, respectively. The dissolved nitrogen was dominated by NH₄⁺-N during the whole incubation time, accounting for 69.6%-91.6% of total dissolved nitrogen, whereas the dissolved phosphorus was dominated by dissolved organic phosphorus during the initial stage of decomposition, being 63.9%-86.7% of total dissolved phosphorus and dominated by PO₄³⁻-P during the late stage of decomposition, being 50.4%-60.2%. On the contrary, the particulate nitrogen was mainly in particulate organic nitrogen, accounting for (88.6 ± 6.9) % of total particulate nitrogen, whereas the particulate phosphorus was mainly in particulate. inorganic phosphorus, accounting for (73.9 ±10.5) % of total particulate phosphorus. In addition, jellyfish decomposition decreased the C/N and increased the N/P of water column. These indicated that jellyfish decomposition could result in relative high carbon and nitrogen loads. PMID:27228622

  11. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yu, Peng; Zhao, Lu; Tian, Chungui; Zhao, Dongdong; Zhou, Wei; Yin, Jie; Wang, Ruihong; Fu, Honggang

    2014-06-01

    B,N-codoped carbon nanostructures (BNCS) can serve as alternative low-cost metal-free electrocatalysts for oxygen reduction reactions (ORR). However, the compensation effect between the p- (B atoms) and n-type (N atoms) dopants would make the covalent boron-nitride (BN) easily formed during the synthesis of BNCS, leading to a unsatisfactory ORR activity. Therefore, it has been challenging to develop facile and rapid synthetic strategies for highly active BNCS without forming the direct covalent BN. Here, a facile method is developed to prepare B and N isolate-doped graphitic nanosheets (BNGS) by using iron species for saving N element and simultaneous doping the B element from nitrogen-containing ion-exchanged resins (NR). The resulting BNGS exhibits much more onset potential (Eonset) compared with the B-doped graphitic carbon nanosheets (BGS), N-doped graphitic carbon nanosheets (NGS), as well as B,N-codoped disorder carbon (BNC). Moreover, the BNGS shows well methanol tolerance propery and excellent stability (a minimal loss of activity after 5,000 potential cycles) compared to that of commercial Pt/C catalyst. The goog performance for BNGS towards ORR is attributed to the synergistic effect between B and N, and the well electrons transport property of graphitic carbon in BNGS.

  12. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction

    PubMed Central

    Wang, Lei; Yu, Peng; Zhao, Lu; Tian, Chungui; Zhao, Dongdong; Zhou, Wei; Yin, Jie; Wang, Ruihong; Fu, Honggang

    2014-01-01

    B,N-codoped carbon nanostructures (BNCS) can serve as alternative low-cost metal-free electrocatalysts for oxygen reduction reactions (ORR). However, the compensation effect between the p- (B atoms) and n-type (N atoms) dopants would make the covalent boron-nitride (BN) easily formed during the synthesis of BNCS, leading to a unsatisfactory ORR activity. Therefore, it has been challenging to develop facile and rapid synthetic strategies for highly active BNCS without forming the direct covalent BN. Here, a facile method is developed to prepare B and N isolate-doped graphitic nanosheets (BNGS) by using iron species for saving N element and simultaneous doping the B element from nitrogen-containing ion-exchanged resins (NR). The resulting BNGS exhibits much more onset potential (Eonset) compared with the B-doped graphitic carbon nanosheets (BGS), N-doped graphitic carbon nanosheets (NGS), as well as B,N-codoped disorder carbon (BNC). Moreover, the BNGS shows well methanol tolerance propery and excellent stability (a minimal loss of activity after 5,000 potential cycles) compared to that of commercial Pt/C catalyst. The goog performance for BNGS towards ORR is attributed to the synergistic effect between B and N, and the well electrons transport property of graphitic carbon in BNGS. PMID:24898033

  13. [Effects of nitrogen and carbon addition and arbuscular mycorrhiza on alien invasive plant Ambrosia artemisiifolia].

    PubMed

    Huang, Dong; Sang, Wei-guo; Zhu, Li; Song, Ying-ying; Wang, Jin-ping

    2010-12-01

    A greenhouse control experiment was conducted to explore the effects of nitrogen and carbon addition and arbuscular mycorrhiza (AM) on the growth of alien invasive plant Ambrosia artemisiifolia (common ragweed). Nitrogen addition had no significant effects on the morphological indices, biomass and its allocation, and absolute growth rate of A. artemisiifolia, but increased the nitrogen content in the aboveground and underground parts of the plant significantly. Carbon addition increased the content of soil available nitrogen. In this case, the biomass allocation in root system for nutrient (nitrogen) absorption promoted, resulting in a remarkable decrease of branch number, total leaf area, specific leaf area (SLA), and leaf mass ratio. As a result, the total biomass decreased significantly. The symbiosis of A. artemisiifolia and AM fungi had great influence on the common ragweed's soil nitrogen acclimation, which enhanced its resource-capture by the increase of SLA, and this effect was more significant when the soil nitrogen content was low. AM fungi played an important role in the growth of A. artemisiifolia in low-nitrogen environment.

  14. Carbon and nitrogen isotopic signatures and nitrogen profile to identify adulteration in organic fertilizers.

    PubMed

    Verenitch, Sergei; Mazumder, Asit

    2012-08-29

    Recently it has been shown that stable isotopes of nitrogen can be used to discriminate between organic and synthetic fertilizers, but the robustness of the approach is questionable. This work developed a comprehensive method that is far more robust in identifying an adulteration of organic nitrogen fertilizers. Organic fertilizers of various types (manures, composts, blood meal, bone meal, fish meal, products of poultry and plant productions, molasses and seaweed based, and others) available on the North American market were analyzed to reveal the most sensitive criteria as well as their quantitative ranges, which can be used in their authentication. Organic nitrogen fertilizers of known origins with a wide δ(15)N range between -0.55 and 28.85‰ (n = 1258) were characterized for C and N content, δ(13)C, δ(15)N, viscosity, pH, and nitrogen profile (urea, ammonia, organic N, water insoluble N, and NO3). A statistically significant data set of characterized unique organic nitrogen fertilizers (n = 335) of various known origins has been assembled. Deliberately adulterated samples of different types of organic fertilizers mixed with synthetic fertilizers at a wide range of proportions have been used to develop the quantitative critical characteristics of organic fertilizers as the key indicators of their adulteration. Statistical analysis based on the discriminant functions of the quantitative critical characteristics of organic nitrogen fertilizers from 14 different source materials revealed a very high average rate of correct classification. The developed methodology has been successfully used as a source identification tool for numerous commercial nitrogen fertilizers available on the North American market.

  15. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles.

  16. Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands

    NASA Astrophysics Data System (ADS)

    McKenna, O. P.; Sala, O. E.

    2014-12-01

    Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic

  17. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor

    PubMed Central

    Chen, Daoqian; Wang, Shiwen; Xiong, Binglin; Cao, Beibei; Deng, Xiping

    2015-01-01

    Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence. PMID:26317421

  18. Carbon/Nitrogen Imbalance Associated with Drought-Induced Leaf Senescence in Sorghum bicolor.

    PubMed

    Chen, Daoqian; Wang, Shiwen; Xiong, Binglin; Cao, Beibei; Deng, Xiping

    2015-01-01

    Drought stress triggers mature leaf senescence, which supports plant survival and remobilization of nutrients; yet leaf senescence also critically decreases post-drought crop yield. Drought generally results in carbon/nitrogen imbalance, which is reflected in the increased carbon:nitrogen (C:N) ratio in mature leaves, and which has been shown to be involved in inducing leaf senescence under normal growth conditions. Yet the involvement of the carbon/nitrogen balance in regulation of drought-induced leaf senescence is unclear. To investigate the role of carbon/nitrogen balance in drought-induced senescence, sorghum seedlings were subjected to a gradual soil drought treatment. Leaf senescence symptoms and the C:N ratio, which was indicated by the ratio of non-structural carbohydrate to total N content, were monitored during drought progression. In this study, leaf senescence developed about 12 days after the start of drought treatment, as indicated by various senescence symptoms including decreasing photosynthesis, photosystem II photochemistry efficiency (Fv/Fm) and chlorophyll content, and by the differential expression of senescence marker genes. The C:N ratio was significantly enhanced 10 to 12 days into drought treatment. Leaf senescence occurred in the older (lower) leaves, which had higher C:N ratios, but not in the younger (upper) leaves, which had lower C:N ratios. In addition, a detached leaf assay was conducted to investigate the effect of carbon/nitrogen availability on drought-induced senescence. Exogenous application of excess sugar combined with limited nitrogen promoted drought-induced leaf senescence. Thus our results suggest that the carbon/nitrogen balance may be involved in the regulation of drought-induced leaf senescence. PMID:26317421

  19. Adsorption of carbon monoxide on boroxol-ring-doped zigzag boron nitride nanotube: Electronic study via DFT

    NASA Astrophysics Data System (ADS)

    Zahedi, Ehsan; Yari, Maryam; Bahmanpour, Hooman

    2016-04-01

    Previous works have already demonstrated that reactivity and sensitivity of boron nitride nanotubes (BNNTs) toward gas molecules can be modified by impurity. In this work, three nitrogen atoms of BNNT (7,0) are replaced with oxygen to study the adsorption of CO molecule through the surface of boroxol ring with different adsorption patterns, including side-on and end-on. All calculations have been done using the DFT-B3LYP/6-31G * level of theory, and their electronic energies are corrected by gCP and D3 correction terms. The calculated binding energies are large, which indicates that CO molecule undergoes chemical adsorption. NBO results showed that the charge transfer occurs from the tube to the gas molecule, which can slightly change the electronic properties of the tube. Density of state (DOS) and partial DOS (PDOS) analysis revealed that adsorption of CO molecule on the boroxol ring position is covalent in nature. The Laplacian of electron density, Lagrangian kinetic energy density, Hamiltonian kinetic energy density, and potential energy density at bond critical points between the tube and CO indicate that the interaction between the tube and CO molecule is covalent in nature. Topological analysis of the electron localization function shows that electrons in the new formed bonds are approximately localized, meaning that the nature of the adsorption process is chemical covalent.

  20. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination.

    PubMed

    Ji, Hanxu; Zhou, Feng; Gu, Jiangjiang; Shu, Chen; Xi, Kai; Jia, Xudong

    2016-01-01

    Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O₂. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors. PMID:27153071

  1. Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination

    PubMed Central

    Ji, Hanxu; Zhou, Feng; Gu, Jiangjiang; Shu, Chen; Xi, Kai; Jia, Xudong

    2016-01-01

    Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan, glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots can enhance the electrocatalytic activity toward the reduction of O2. The specific amino-carboxyl reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor responds efficiently to the presence of glucose in serum samples over the concentration range from 1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and stability, and is highly selective for glucose determination under physiological conditions. These results indicate that N-doped quantum dots represent a novel candidate material for the construction of electrochemical biosensors. PMID:27153071

  2. Economy of water, carbon, and nitrogen in the developing cowpea fruit.

    PubMed

    Peoples, M B; Pate, J S; Atkins, C A; Murray, D R

    1985-01-01

    The nutritional economy of the fruit of cowpea (Vigna unguiculata (L.) Walp cv Vita 3) was assessed quantitatively from intake and utilization of carbon, nitrogen, and water. Fruits failed to make net gains of CO(2) from the atmosphere during daytime, although pod photosynthesis did play a role in the fruit's carbon economy by refixing a proportion of the fruit's respired CO(2). Of every 100 units by weight of carbon entering the fruit, 70.4 were finally incorporated into seeds, 10.3 remained as nonmobilizable material in pod walls, and the remaining 19.3 were lost in fruit respiration. Phloem supplied 97% of the fruit's carbon and 72% of its nitrogen. The xylem contribution of nitrogen occurred mainly in early growth. Ninety-six% of the fruit's nitrogen was incorporated into seeds, approximately 10% of this mobilized from the senescing pod. The mean transpiration ratio of the fruit was very low-8 milliliters water transpired per gram dry matter accumulated. Models of carbon, nitrogen, and water flow were constructed for the two consecutive 11 day periods of fruit development, and indicated a considerably greater entry of water through xylem and phloem than could be accounted for in changes in fruit tissue water and transpiration loss. This discrepancy was greater in the second half of fruit growth and was interpreted as evidence that a significant fraction of the water entering the fruit through phloem cycled back to the parent plant via the xylem.

  3. Synthesis of Low-Density, Carbon-Doped, Porous Hexagonal Boron Nitride Solids.

    PubMed

    Gautam, Chandkiram; Tiwary, Chandra Sekhar; Jose, Sujin; Brunetto, Gustavo; Ozden, Sehmus; Vinod, Soumya; Raghavan, Prasanth; Biradar, Santoshkumar; Galvao, Douglas Soares; Ajayan, Pulickel M

    2015-12-22

    Here, we report the scalable synthesis and characterization of low-density, porous, three-dimensional (3D) solids consisting of two-dimensional (2D) hexagonal boron nitride (h-BN) sheets. The structures are synthesized using bottom-up, low-temperature (∼300 °C), solid-state reaction of melamine and boric acid giving rise to porous and mechanically stable interconnected h-BN layers. A layered 3D structure forms due to the formation of h-BN, and significant improvements in the mechanical properties were observed over a range of temperatures, compared to graphene oxide or reduced graphene oxide foams. A theoretical model based on Density Functional Theory (DFT) is proposed for the formation of h-BN architectures. The material shows excellent, recyclable absorption capacity for oils and organic solvents. PMID:26580810

  4. Phase Transitions of Boron Carbide: Pair Interaction Model of High Carbon Limit

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Widom, Michael; Huhn, William; Gao, Qin

    2015-03-01

    Boron carbide is a structure that exhibits a broad composition range, implying a degree of intrinsic substitutional disorder. While the observed symmetry is rhombohedral, the enthalpy minimizing structure has lower, monoclinic, symmetry. With high melting temperature, it is difficult to experimentally study its phase transition at low temperature and there is discrepancy among different research groups. Moreover, the widely-accepted phase diagram suggests substitutional disorder at low temperature, implying a non vanishing entropy. Here we use computational method to study its phase transition. We implement a pair interaction model and fit to a database of structural energies. Utilizing histogram methods to analyze Monte Carlo simulations of this model, we investigate the symmetry-restoring phase transition that explains the observed rhombohedral symmetry at high temperatures.

  5. [Effects of eutrophic nitrogen nutrition on carbon balance capacity of Liquidambar formosana seedlings under low light].

    PubMed

    Wang, Chuan-Hua; Li, Jun-Qing; Yang, Ying

    2011-12-01

    To investigate the effects of atmospheric nitrogen deposition on the seedlings regeneration of Liquidambar formosana, a greenhouse experiment was conducted, in which, the low light- and nitrogen supplies were controlled similar to those in typical L. formosana secondary forests, with the effects of different light- and nitrogen supply on the L. formosana seedlings survival, leaf functional traits, biomass allocation, and gas exchange studied. The whole plant light compensation point (LCP(whoIe-plant)) of the seedlings was estimated with a whole plant carbon balance model, and then compared with the understory photosynthetic active radiance (PAR) of the typical secondary forests. Under 3.0% and 6.0% of full sunlight, eutrophic nitrogen supply led to a decrease of seedlings survival (shade tolerance) and specific leaf area (SLA), but had no obvious effects on the seedlings biomass allocation. At eutrophic nitrogen supply, light intensity had significant effects on the leaf area based maximum assimilation rate, whereas increasing nitrogen supply under low light induced the increase of leaf mass based dark respiration rate. Both light intensity and nitrogen supply had significant effects on the mass based leaf respiration rate, and the interaction of light and nitrogen had significant effects on the mass based stem respiration rate. Increasing nitrogen supply increased the LCP(wholeplant), under 3.0%, 6.0%, and 12.0% of full sunlight, but decreased the LCP(whoIe-plant) under 25.0% of full sunlight. The decrease of the seedlings shade tolerance induced by the increasing nitrogen supply under low light was correlated with the variations of the seedlings carbon balance capacity. Under the background of elevated atmospheric nitrogen deposition, the maintenance of L. formosana populations in China would more depend on disturbances and gap regeneration, and the population dynamics would be deeply affected.

  6. Preferred orientation in carbon and boron nitride: Does a thermodynamic theory of elastic strain energy get it right. [C; BN

    SciTech Connect

    McCarty, K.F. )

    1999-09-01

    We address whether the elastic strain-energy theory (minimizing the Gibbs energy of a stressed crystal) of McKenzie and co-workers [D. R. McKenzie and M. M. M. Bilek, J. Vac. Sci. Technol. A [bold 16], 2733 (1998)] adequately explains the preferred orientation observed in carbon and BN films. In the formalism, the Gibbs energy of the cubic materials diamond and cubic boron includes the strain that occurs when the phases form, through specific structural transformations, from graphitic precursors. This treatment violates the requirement of thermodynamics that the Gibbs energy be a path-independent, state function. If the cubic phases are treated using the same (path-independent) formalism applied to the graphitic materials, the crystallographic orientation of lowest Gibbs energy is not that observed experimentally. For graphitic (hexagonal) carbon and BN, an elastic strain approach seems inappropriate because the compressive stresses in energetically deposited films are orders of magnitude higher than the elastic limit of the materials. Furthermore, using the known elastic constants of either ordered or disordered graphitic materials, the theory does not predict the orientation observed by experiment. [copyright] [ital 1999 American Vacuum Society.

  7. Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Mir, Showkat H.; Chakraborty, Sudip; Jha, Prakash C.; Wärnâ, John; Soni, Himadri; Jha, Prafulla K.; Ahuja, Rajeev

    2016-08-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) have been envisaged on a two-dimensional (2D) boron sheet through electronic structure calculations based on a density functional theory framework. To date, boron sheets are the lightest 2D material and, therefore, exploring the catalytic activity of such a monolayer system would be quite intuitive both from fundamental and application perspectives. We have functionalized the boron sheet (BS) with different elemental dopants like carbon, nitrogen, phosphorous, sulphur, and lithium and determined the adsorption energy for each case while hydrogen and oxygen are on top of the doping site of the boron sheet. The free energy calculated from the individual adsorption energy for each functionalized BS subsequently guides us to predict which case of functionalization serves better for the HER or the OER.

  8. Nitrogen-boron coordination versus OH∙∙∙N hydrogen bonding in pyridoxaboroles - aza analogues of benzoxaboroles.

    PubMed

    Steciuk, I; Durka, K; Gontarczyk, K; Dąbrowski, M; Luliński, S; Woźniak, K

    2015-10-01

    Pyridoxaboroles - fused heterocyclic systems composed of pyridine and five-membered oxaborole rings - have been obtained for the first time from simple halopyridines. Thus, 6-butyl-2-(3'-bromo-4'-pyridyl)-(N-B)-1,3,6,2-dioxazaborocan obtained from 3-bromopyridine was converted into a lithio derivative by Br/Li exchange using nBuLi/THF at -85 °C. This intermediate was trapped with benzaldehydes to give the corresponding pyridoxaboroles after hydrolysis. The use of chlorodiphenylsilane as an electrophile gave rise to a related pyridosiloxaborole. The fluorinated pyridoxaborole was obtained by deprotonation of α-(2-methoxyphenyl)-2-fluoro-4-iodopyridylmethanol with NaH and consecutive iodine-lithium exchange/boronation followed by hydrolysis. Single-crystal X-ray analysis of pyridino[4,3-c]-1,3-dihydro-1-hydroxy-3-mesityl[2,1]oxaborole revealed the formation of a unique 1D coordination polymer based on N-B dative bonds between monomeric molecules. In contrast, the crystal structure of 2-fluoropyridino[4,3-c]-1,3-dihydro-1-hydroxy-3-(2'-methoxyphenyl)[2,1]oxaborole features an infinite H-bonded chain as the main structural motif. The presented considerations are quantified in terms of various computational methods (single molecule and dimer energy calculations, electron density topology, NBO analyses) providing a comprehensive picture of the structural properties of pyridoxaboroles. PMID:26328873

  9. Nitrogen-boron coordination versus OH∙∙∙N hydrogen bonding in pyridoxaboroles - aza analogues of benzoxaboroles.

    PubMed

    Steciuk, I; Durka, K; Gontarczyk, K; Dąbrowski, M; Luliński, S; Woźniak, K

    2015-10-01

    Pyridoxaboroles - fused heterocyclic systems composed of pyridine and five-membered oxaborole rings - have been obtained for the first time from simple halopyridines. Thus, 6-butyl-2-(3'-bromo-4'-pyridyl)-(N-B)-1,3,6,2-dioxazaborocan obtained from 3-bromopyridine was converted into a lithio derivative by Br/Li exchange using nBuLi/THF at -85 °C. This intermediate was trapped with benzaldehydes to give the corresponding pyridoxaboroles after hydrolysis. The use of chlorodiphenylsilane as an electrophile gave rise to a related pyridosiloxaborole. The fluorinated pyridoxaborole was obtained by deprotonation of α-(2-methoxyphenyl)-2-fluoro-4-iodopyridylmethanol with NaH and consecutive iodine-lithium exchange/boronation followed by hydrolysis. Single-crystal X-ray analysis of pyridino[4,3-c]-1,3-dihydro-1-hydroxy-3-mesityl[2,1]oxaborole revealed the formation of a unique 1D coordination polymer based on N-B dative bonds between monomeric molecules. In contrast, the crystal structure of 2-fluoropyridino[4,3-c]-1,3-dihydro-1-hydroxy-3-(2'-methoxyphenyl)[2,1]oxaborole features an infinite H-bonded chain as the main structural motif. The presented considerations are quantified in terms of various computational methods (single molecule and dimer energy calculations, electron density topology, NBO analyses) providing a comprehensive picture of the structural properties of pyridoxaboroles.

  10. Carbon and nitrogen mineralization are decoupled in organo-mineral fractions

    NASA Astrophysics Data System (ADS)

    Bimüller, Carolin; Mueller, Carsten W.; von Lützow, Margit; Kreyling, Olivia; Kölbl, Angelika; Haug, Stephan; Schloter, Michael; Kögel-Knabner, Ingrid

    2015-04-01

    To improve our comprehension how carbon and nitrogen mineralization are linked in soils, we used a controlled laboratory mineralization approach and compared carbon and nitrogen dynamics in the bulk soil and in soil fractions. Topsoil of a Rendzic Leptosol from a beech forest site near Tuttlingen, Germany, was fractionated into three particle size classes: sand (2000 to 20 µm), silt (20 to 2 µm), and clay (< 2 µm). Bulk soil and particle size fractions were incubated for 40 weeks allowing periodic destructive sampling. We monitored carbon and nitrogen mineralization dynamics, and assessed carbon respiration as well as nitrogen mineralization and microbial biomass carbon and nitrogen contents. Soil organic matter in the incubated fractions was considered by a subsequent density fractionation. The chemical composition of selected samples was qualitatively evaluated by 13C-NMR spectroscopy. When summing up the mineralization rates of the single fractions, the values for respired carbon equaled the bulk soil, whereas the mathematical recombination of mineral nitrogen in all fractions was significantly less than in bulk soil. Hence, carbon mineralization was not affected by the damage of the aggregated soil structure via fractionation, whereas nitrogen mineralization was reduced. Fractionation increased the surface area providing accessory mineral surfaces, which allowed new binding of especially nitrogen-rich compounds, besides ammonium fixation via cation exchange. Density fractionation revealed that organic matter in the sand fraction contained mainly particulate organic matter present as light material comprising partly decomposed plant remnants. The organic matter in the clay fraction was mostly adsorbed on mineral surfaces. Organic matter in the sand and in the clay fraction was dominated by O/N-alkyl C indicating low recalcitrance, but the C/N ratio of organic matter narrowed with decreasing particle size. These results also imply that the C/N ratio as well as

  11. Whole-ecosystem exposure to elevated carbon dioxide increases total ecosystem carbon and nitrogen in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Evans, R. D.; Koyama, A.; Sonderegger, D.; Charlet, D.; Newingham, B. A.; Fenstermaker, L.; Ogle, K.; Smith, S. D.; Nowak, R.

    2011-12-01

    Arid ecosystems are predicted to be among the most responsive to global change and their response is globally significant considering their extensive spatial coverage. Although carbon cycling in arid lands is an important component of the global carbon budget, there is substantial uncertainty about the potential impacts of global change drivers, such as elevated CO2, on arid land carbon budgets. Studies suggest that productivity may be stimulated by elevated CO2 directly due to enhanced plant water-use efficiency. The indirect impacts of elevated CO2 on ecosystem productivity may also be constrained by available nitrogen, but little is known about how the importance of the nitrogen constraint or how the nitrogen cycle may be affected by global change drivers. Here we present the carbon and nitrogen mass budgets of a Mojave Desert ecosystem after ten years of exposure to elevated CO2. The Nevada Desert Free-Air Carbon Enrichment Facility (FACE) was established in 1997 to evaluate the response of an intact Mojave Desert ecosystem to elevated CO2. The CO2 concentration of the atmosphere in the elevated treatment was maintained at 513 uL/L until harvest in 2007. At harvest time, all aboveground biomass for 2/3 of each plot was harvested and soils and roots were removed down to 1 m depth and analyzed for total carbon and nitrogen. We observed significantly greater carbon (10,800 versus 9,200 kg C/ha, P=0.004) and nitrogen (1,400 versus 1,100 kg N/ha, P=0.002) in elevated compared to ambient CO2 treatments. Differences between treatments were due solely to greater C and N in soils across all cover types, and no differences were observed in above and belowground plant biomass. Companion research shows that increased soil C was from increased root exudation, microbial residues, and episodic increased litter input under elevated CO2, and these increased C inputs in turn stimulated production of inorganic nitrogen. Results from the Nevada Desert FACE Facility demonstrate

  12. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Lin, Tianquan; Chen, I.-Wei; Liu, Fengxin; Yang, Chongyin; Bi, Hui; Xu, Fangfang; Huang, Fuqiang

    2015-12-01

    Carbon-based supercapacitors can provide high electrical power, but they do not have sufficient energy density to directly compete with batteries. We found that a nitrogen-doped ordered mesoporous few-layer carbon has a capacitance of 855 farads per gram in aqueous electrolytes and can be bipolarly charged or discharged at a fast, carbon-like speed. The improvement mostly stems from robust redox reactions at nitrogen-associated defects that transform inert graphene-like layered carbon into an electrochemically active substance without affecting its electric conductivity. These bipolar aqueous-electrolyte electrochemical cells offer power densities and lifetimes similar to those of carbon-based supercapacitors and can store a specific energy of 41 watt-hours per kilogram (19.5 watt-hours per liter).

  13. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGESBeta

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  14. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    SciTech Connect

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; Huang, Jingsong

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap is distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.

  15. Enhanced tunnel transport in disordered carbon superlattice structures incorporated with nitrogen

    NASA Astrophysics Data System (ADS)

    Katkov, Mikhail V.; Bhattacharyya, Somnath

    2012-06-01

    The possibility for enhanced tunnel transport through the incorporation of nitrogen in a quasi-one dimensional superlattice structure of amorphous carbon (a -C) made of sp2-C and sp3-C rich phases is shown by using a tight-binding model. The proposed superstructure can be described by a set of disordered graphite-like carbon clusters (acting as quantum wells) separated by a thin layer of diamond-like carbon (barriers) where the variation of the width and depth of the carbon clusters significantly control the electron transmission peaks. A large structural disorder in the pure carbon system, introduced through the variation of the bond length and associated deformation potential for respective carbon phases, was found to suppress the sharp features of the transmission coefficients. A small percentage of nitrogen addition to the carbon clusters can produce a distinct transmission peak at the low energy; however, it can be practically destroyed due to increase of the level of disorder of carbon sites. Whereas pronounced resonance peaks, both for C and N sites can be achieved through controlling the arrangement of the nitrogen sites of increased concentration within the disordered sp2-C clusters. The interplay of disorder associated with N and C sites illustrated the tunable nature of resistance of the structures as well as their characteristic times.

  16. Interactions of Carbon Gain and Nitrogen Addition in a Temperate Forest

    NASA Astrophysics Data System (ADS)

    Bazzaz, F. A.

    2001-12-01

    In plants, carbon and nitrogen are intimately related. The plant gains carbon using nitrogen because it is a major constituent of both the light reaction (chlorophyll) and dark reaction (Rubisco and PEP carboxylase). The plant also gains more nitrogen by using carbon to grow roots that can forage for nitrogen, especially the less mobile (NH4+). Rising CO2 and increased nitrogen deposition are important elements of global change, both of which may affect ecosystem structure and function. They may cause a particularly large shift in species composition in systems where contrasting groups of species co-occur, e.g. evergreen coniferous and deciduous broad-leaved tree species. We studied the impact of nitrogen deposition in a mixed forest in central Massachusetts (Harvard Forest). We found that the early-successional broad-leaved species, yellow birch (Betula alleghaniensis) and red maple (Acer rubrum), both showed large increases in biomass, while the late successional species sugar maple (Acer saccharum) and all the coniferous species, hemlock (Tsuga canadensis), red spruce (Picea rubens) and white pine (Pinus strobus), only showed slight increases. As a result, when these species wre grown together, there was a decrease in species diversity. There was a significant correlation between species growth rate and the growth enhancement following nitrogen addition. We used SORTIE, a spatially explicit forest model to speculate about the future of this community. In both hemlock and red oak stands, nitrogen deposition led to shift in forest composition towards further dominance of young forests by yellow birch. We conclude that seedling physiological and demographic responses to increased nitrogen availability will scale up to exaggerate successional dynamics in mixed temperate forests in the future

  17. Atomic configuration of nitrogen-doped single-walled carbon nanotubes.

    PubMed

    Arenal, Raul; March, Katia; Ewels, Chris P; Rocquefelte, Xavier; Kociak, Mathieu; Loiseau, Annick; Stéphan, Odile

    2014-10-01

    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first-principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighboring local lattice distortion such as Stone-Thrower-Wales defects. We also show that the largest fraction of nitrogen amount is found in poly aromatic species that are adsorbed on the surface of the nanotube walls. The stability under the electron beam of these nanotubes has been studied in two different cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures.

  18. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    PubMed

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs.

  19. Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance

    PubMed Central

    Hulicova-Jurcakova, Denisa; Seredych, Mykola; Lu, Gao Qing; Kodiweera, N.K.A.C.; Stallworth, Phillip E.; Greenbaum, Steven; Bandosz, Teresa J.

    2009-01-01

    Micro/mesoporous activated carbons containing oxygen and phosphorus heteroatoms were modified by incorporation of nitrogen using melamine and urea precursors. The surface chemistry was analyzed by the means of elemental analysis, XPS, and 31P MAS NMR. The results indicate that upon the incorporation of nitrogen at high temperatures not only new species involving carbon/nitrogen/oxygen are formed but also the phosphorous environment is significantly altered. Both urea and melamine precursors have similar effects on formation of P–N and P–C bonds. These compounds, although present in small but measurable quantities seem to affect the performance of carbons in electrochemical capacitors. With an increase in the heterogeneity of phosphorus containing species and with a decrease in the content pyrophosphates the capacitance increases and the retention ratio of the capacitor is improved. PMID:20354586

  20. The reactivity of lattice carbon and nitrogen species in molybdenum (oxy)carbonitrides prepared by single-source routes

    SciTech Connect

    AlShalwi, M.; Hargreaves, J.S.J.; Liggat, J.J.; Todd, D.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Molybdenum (oxy)carbonitrides have been prepared from single source routes. Black-Right-Pointing-Pointer Nitrogen species are more reactive than carbon species within the carbonitrides. Black-Right-Pointing-Pointer The reactivity of nitrogen species is a function of carbonitride composition. -- Abstract: Molybdenum (oxy)carbonitrides of different compositions have been prepared from hexamethylenetetramine molybdate and ethylenediamine molybdate precursors and the reactivity of the lattice carbon and nitrogen species within them has been determined by temperature programmed reduction and thermal volatilisation studies. Nitrogen is found to be much more reactive than carbon and the nature of its reactivity is influenced by composition with the presence of carbon enhancing the reactivity of nitrogen. The difference in reactivity observed indicates that molybdenum carbonitrides are not suitable candidates as reagents for which the simultaneous loss of nitrogen and carbon from the lattice would be desirable.

  1. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal--Strategies and issues.

    PubMed

    Kumar, Mathava; Lin, Jih-Gaw

    2010-06-15

    The discovery of anaerobic ammonium oxidation (anammox) has greatly improved the understanding of the nitrogen cycle. Anammox provides great promise for the removal of nitrogen from wastewater, containing high concentration of ammonium. However, the presence of organic carbon is considered as unfavorable to this autotrophic process, i.e. anammox. Most of the real wastewaters contain both organic carbon and nitrogen. Under this circumstance, several processes have been established primarily for the complete removal of organic carbon. Subsequently, the wastewater containing no or low organic carbon and nitrogen is treated via a variety of nitrogen removal processes. The co-existence of anammox and denitrification could be useful for the simultaneous removal of nitrogen and organic carbon in a single system rather than a sequential chain of treatment. This review addresses the microbiology, strategies, consequences and the future research challenges in the co-existence of anammox and denitrification.

  2. Physisorbed o-carborane onto lyso-phosphatidylcholine-functionalized, single-walled carbon nanotubes: a potential carrier system for the therapeutic delivery of boron.

    PubMed

    Yannopoulos, S N; Zouganelis, G D; Nurmohamed, S; Smith, J R; Bouropoulos, N; Calabrese, G; Fatouros, D G; Tsibouklis, J

    2010-02-26

    A combination of data from ICP-MS, Raman spectroscopy, UV-vis spectrometry, atomic force microscopy, zeta-potential measurements and gel electorphoresis studies has shown that o-carborane may be immobilized on stable aqueous dispersions of lyso-phosphatidylcholine-functionalized single-walled carbon nanotubes, which in turn indicates the potential of such structures for deployment as carrier vehicles in boron neutron capture therapy.

  3. Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel

    SciTech Connect

    Mavila Chathoth, Suresh; He, Lilin; Mamontov, Eugene; Melnichenko, Yuri B

    2012-01-01

    The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

  4. Fivefold twinned boron carbide nanowires.

    PubMed

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  5. Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Long, Chao; Zhuang, Jianle; Xiao, Yong; Zheng, Mingtao; Hu, Hang; Dong, Hanwu; Lei, Bingfu; Zhang, Haoran; Liu, Yingliang

    2016-04-01

    Owing to its abundant nitrogen content, silk cocoon is a promising precursor for the synthesis of Nitrogen-doped porous carbon (N-PC). Using a simple staged KOH activation, the prepared sample displays particular nanostructure with ultrahigh specific surface area (3841 m2 g-1) and appropriate pore size, providing favorable pathways for transportation and penetration of electrolyte ions. Additionally, the doped nitrogen atoms ensure the samples with pseudocapacitive behavior. Those special characteristics endow N-PCs with high capacity, low resistance, and long-term stability, indicating a wonderful potential for application in energy-storage devices.

  6. A search for correlatable, isotopically light carbon and nitrogen components in lunar soils and breccias

    NASA Astrophysics Data System (ADS)

    Norris, S. J.; Swart, P. K.; Wright, I. P.; Grady, M. M.; Pillinger, C. T.

    1983-11-01

    Using stepped heating extraction techniques, determinations of carbon and nitrogen content and delta C-13 and delta N-15 values have been obtained for selected lunar soils and breccias. Only nitrogen data have been gathered for representative splits separated by size, density and magnetic properties from 12023. A plot of the total delta C-13 (after terrestrial contamination is removed) versus delta N-15 values for bulk samples reveals little evidence for a correlation between isotopically light carbon and isotopically light nitrogen of putative ancient solar wind origin. Soil 12023 is used to examine the current interpretation for the stepped release profile of nitrogen from bulk lunar samples. Mature agglutinates, postulated by previous workers to be the host of the light nitrogen, are shown to have a very constant delta N-15 value which is heavy rather than light. The actual host of the light nitrogen in 12023 has not been identified. The lowest values encountered during the study were found associated with the finest soil, but none of these was as low as for some temperature steps of the bulk soil. Interpretations regarding the origin of light nitrogen, if it is not present in agglutinates, await the results of more definitive efforts to identify the host phase.

  7. [Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Duan, Xiao-Nan; Zheng, Hua

    2008-10-01

    With reference to the situation of nitrogen fertilization in 2003 and the recommendations from agricultural experts on fertilization to different crops, two scenarios, namely, 'current situation' and 'fertilization as recommended', were set for estimating the current and potential carbon sequestration of China's cropland soil under nitrogen fertilization. After collecting and analyzing the typical data from the long-term agricultural experiment stations all over China, and based on the recent studies of soil organic matter and nutrient dynamics, we plotted China into four agricultural regions, and estimated the carbon sequestration rate and potential of cropland soil under the two scenarios in each province of China. Meanwhile, with the data concerning fossil fuel consumption for fertilizer production and nitrogen fertilization, the greenhouse gas leakage caused by nitrogen fertilizer production and application was estimated with the help of the parameters given by domestic studies and IPCC. We further proposed that the available carbon sequestration potential of cropland soil could be taken as the criterion of the validity and availability of carbon sequestration measures. The results showed that the application of synthetic nitrogen fertilizer could bring about a carbon sequestration potential of 21.9 Tg C x a(-1) in current situation, and 30.2 Tg C x a(-1) with fertilization as recommended. However, under the two scenarios, the greenhouse gas leakage caused by fertilizer production and application would reach 72.9 Tg C x a(-1) and 91.4 Tg C x a(-1), and thus, the actual available carbon sequestration potential would be -51.0 Tg C x a(-1) and -61.1 Tg C x a(-1), respectively. The situation was even worse under the 'fertilization as recommended' scenario, because the increase in the amount of nitrogen fertilization would lead to 10. 1 Tg C x a(-1) or more net greenhouse gas emission. All these results indicated that the application of synthetic nitrogen fertilizer

  8. Benthic biogeochemical cycling, nutrient stoichiometry, and carbon and nitrogen mass balances in a eutrophic freshwater bay

    USGS Publications Warehouse

    Klump, J.V.; Fitzgerald, S.A.; Waplesa, J.T.

    2009-01-01

    Green Bay, while representing only ,7% of the surface area and ??1.4% of the volume of Lake Michigan, contains one-third of the watershed of the lake, and receives approximately one-third of the total nutrient loading to the Lake Michigan basin, largely from the Fox River at the southern end of the bay. With a history of eutrophic conditions dating back nearly a century, the southern portion of the bay behaves as an efficient nutrient and sediment trap, sequestering much of the annual carbon and nitrogen input within sediments accumulating at up to 1 cm per year. Depositional fluxes of organic matter varied from ??0.1 mol C m-2 yr-1 to >10 mol C m-2 yr-1 and were both fairly uniform in stoichiometric composition and relatively labile. Estimates of benthic recycling derived from pore-water concentration gradients, whole-sediment incubation experiments, and deposition-burial models of early diagenesis yielded an estimated 40% of the carbon and 50% of the nitrogen recycled back into the overlying water. Remineralization was relatively rapid with ??50% of the carbon remineralized within <15 yr of deposition, and a mean residence time for metabolizable carbon and nitrogen in the sediments of 20 yr. On average, organic carbon regeneration occurred as 75% CO2, 15% CH4, and 10% dissolved organic carbon (DOC). Carbon and nitrogen budgets for the southern bay were based upon direct measurements of inputs and burial and upon estimates of export and production derived stoichiometrically from a coupled phosphorus budget. Loadings of organic carbon from rivers were ??3.7 mol m-2 yr-1, 80% in the form of DOC and 20% as particulate organic carbon. These inputs were lost through export to northern Green Bay and Lake Michigan (39%), through sediment burial (26%), and net CO2 release to the atmosphere (35%). Total carbon input, including new production, was 4.54 mol m-2 C yr-1, equivalent to ??10% of the gross annual primary production. Nitrogen budget terms were less well quantified

  9. Effect of nitrogen-containing groups on enhanced capacitive behaviors of multi-walled carbon nanotubes

    SciTech Connect

    Kim, Ji-Il; Park, Soo-Jin

    2011-08-15

    In this work, electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) are studied in supercapacitors. Nitrogen and oxygen functional groups containing MWNTs are prepared by urea and acidic treatments, respectively. The surface properties of the MWNTs are confirmed by X-ray photoelectron spectroscopy (XPS) and zeta-potential measurements. The textural properties are characterized by N{sub 2} adsorption/desorption isotherm at 77 K using the BET eqaution, BJH method, and HK method. The electrochemical properties of the MWNTs are accumulated by cyclic voltammetry, impedance spectra, and charge-discharge cycling performance in 1 M H{sub 2}SO{sub 4} at room temperature. As a result, the functionalized MWNTs lead to an increase in capacitance as compared with pristine MWNTs. It suggests that the pyridinic and pyridinic-N-oxides nitrogen species have effects on the specific capacitance due to the positive charge, and thus an improved electron transfer at high current loads results, the most important functional groups affecting capacitive behaviors. - Graphical Abstract: The N{sub 1s} spectra of nitrogen functionalized multi-walled carbon nanotubes are measured by X-ray photoelectron spectroscopy. Highlights: > Facile method of increasing elemental composition of nitrogen functional groups on carbon materials. > Increased specific capacitance multi-walled carbon nanotubes (MWNTs) for electrode materials as high as general chemical activation process. > Enhanced capacitive behaviors via introducing pyridinic and pyridinic-N-oxides nitrogen species onto the MWNTs. > Improvement of electron transfer at high current loads.

  10. Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications.

    PubMed

    Xu, Yang; Wu, Ming; Liu, Yang; Feng, Xi-Zeng; Yin, Xue-Bo; He, Xi-Wen; Zhang, Yu-Kui

    2013-02-11

    Carbon dots (Cdots) are an important probe for imaging and sensing applications because of their fluorescence property, good biocompatibility, and low toxicity. However, complex procedures and strong acid treatment are often required and Cdots suffer from low photoluminescence (PL) emission. Herein, a facile and general strategy using carbonization of precursors and then extraction with solvents is proposed for the preparation of nitrogen-doped Cdots (N-Cdots) with 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA), L-histidine, and L-arginine as precursor models. After they are heated, the precursors become carbonized. Nitrogen-doped Cdots are subsequently extracted into N,N'-dimethylformamide (DMF) from the carbogenic solid. A core-shell structure of Cdots with a carbon core and the oxygen-containing shell was observed. Nitrogen has different forms in N-Cdots and oxidized N-Cdots. The doped nitrogen and low oxidation level in N-Cdots improve their emission significantly. The N-Cdots show an emission with a nitrogen-content-dependent intensity and Cdot-size-dependent emission-peak wavelength. Imaging of HeLa cells, a human cervical cancer cell line, and HepG2 cells, a human hepatocellular liver carcinoma line, was observed with high resolution using N-Cdots as a probe and validates their use in imaging applications and their multicolor property in the living cell system.

  11. Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge.

    PubMed

    Chen, Yinguang; Zheng, Xiong; Feng, Leiyu; Yang, Hong

    2013-01-01

    Carbon, nitrogen, and phosphorus need to be recovered to reduce the environmental impact of waste activated sludge (WAS). In this study the improved short-chain fatty acid (SCFA) production from WAS by the addition of kitchen waste to adjust the ratio of carbon to nitrogen (C/N), and the efficient recovery of nitrogen and phosphorus from the fermentation liquid were reported. Firstly, the optimum conditions for SCFA production were found to be pH 8, temperature 35 °C, C/N ratio 21 mg-C/1 mg-N, and fermentation time 6 d, using the response surface methodology. After alkaline fermentation, the struvite precipitation method was applied to efficiently and simultaneously recover the released ammonia and phosphorus from the fermentation liquid. Finally, the fermentation liquid was used as the additional carbon source for biological nitrogen and phosphorus removal. It was observed that, compared with acetic acid, the use of fermentation liquid as carbon source showed greater removal efficiencies of total nitrogen and total phosphorus.

  12. Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.

  13. Effects of nitrogen substitutional doping on the electronic transport of carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Hu, Huifang; Zeng, Hui; Zhou, Zhipeng; Yang, Weiwei; Peng, Ping

    2008-01-01

    We have studied the effects of nitrogen substitutional doping on the transport properties of single-wall carbon nanotube (8, 0) using density functional theory and non-equilibrium Green's functions. The results reveal that the nanotube changes from the semiconducting to the quasi-metallic state because of the dopants, and their structures strongly dominate their electrical properties. Our calculations indicate that transport properties of the doped nanotubes are sensitive not only to the concentration of nitrogen atoms but also to their distribution. The doping effects on the electronic transport of the carbon nanotube are discussed.

  14. Carbon and nitrogen isotopic anomalies in an anhydrous interplanetary dust particle.

    PubMed

    Floss, Christine; Stadermann, Frank J; Bradley, John; Dai, Zu Rong; Bajt, Sasa; Graham, Giles

    2004-02-27

    Because hydrogen and nitrogen isotopic anomalies in interplanetary dust particles have been associated with carbonaceous material, the lack of similar anomalies in carbon has been a major conundrum. We report here the presence of a 13C depletion associated with a 15N enrichment in an anhydrous interplanetary dust particle. Our observations suggest that the anomalies are carried by heteroatomic organic compounds. Theoretical models indicate that low-temperature formation of organic compounds in cold interstellar molecular clouds can produce carbon and nitrogen fractionations, but it remains to be seen whether the specific effects observed here can be reproduced.

  15. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  16. [Dynamics of carbon and nitrogen storage of Cupressus chengiana plantations in the arid valley of Minjiang River, Southwest China].

    PubMed

    Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she

    2015-04-01

    The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.

  17. Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range

    PubMed Central

    Vieira, Simone A; Alves, Luciana F; Duarte-Neto, Paulo J; Martins, Susian C; Veiga, Larissa G; Scaranello, Marcos A; Picollo, Marisa C; Camargo, Plinio B; do Carmo, Janaina B; Neto, Eráclito Sousa; Santos, Flavio A M; Joly, Carlos A; Martinelli, Luiz A

    2011-01-01

    We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (CAGB) varied along the elevation range from approximately 110 to 150 Mg·ha−1, and nitrogen aboveground stock (NAGB), varied from approximately 1.0 to 1.9 Mg·ha−1. The carbon belowground stock (CBGB) and the nitrogen belowground stock (NBGB) were significantly higher than the AGB and varied along the elevation range from approximately 200–300 Mg·ha−1, and from 14 to 20 Mg·ha−1, respectively. Finally, the total carbon stock (CTOTAL) varied from approximately 320 to 460 Mg·ha−1, and the nitrogen total stock (NTOTAL) from approximately 15 to 22 Mg·ha−1. Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha−1 and 1 Mg·ha−1 of carbon and nitrogen, respectively. PMID:22393511

  18. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    PubMed

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). PMID:25458677

  19. Tungsten nitride nanocrystals on nitrogen-doped carbon black as efficient electrocatalysts for oxygen reduction reactions.

    PubMed

    Dong, Youzhen; Li, Jinghong

    2015-01-11

    The direct synthesis of tungsten nitride (WN) nanoparticles on nitrogen-doped carbon black (N-carbon black) was achieved through facile nucleation and growth of WN nanoparticles on simultaneously generated N-carbon black under ammonia annealing. As a noble-metal-free catalyst, the WN/N-carbon black hybrid exhibited excellent performance in ORR, coupled with superior methanol tolerance and long-term stability in comparison to commercial Pt/C catalysts, through an efficient four-electron-dominant ORR process.

  20. Tungsten nitride nanocrystals on nitrogen-doped carbon black as efficient electrocatalysts for oxygen reduction reactions.

    PubMed

    Dong, Youzhen; Li, Jinghong

    2015-01-11

    The direct synthesis of tungsten nitride (WN) nanoparticles on nitrogen-doped carbon black (N-carbon black) was achieved through facile nucleation and growth of WN nanoparticles on simultaneously generated N-carbon black under ammonia annealing. As a noble-metal-free catalyst, the WN/N-carbon black hybrid exhibited excellent performance in ORR, coupled with superior methanol tolerance and long-term stability in comparison to commercial Pt/C catalysts, through an efficient four-electron-dominant ORR process. PMID:25413157