Science.gov

Sample records for boron carbon nitrogen

  1. Prediction of boron carbon nitrogen phase diagram

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  2. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  3. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  4. Predicted phase diagram of boron-carbon-nitrogen

    NASA Astrophysics Data System (ADS)

    Zhang, Hantao; Yao, Sanxi; Widom, Michael

    2016-04-01

    Noting the structural relationships between phases of carbon and boron carbide with phases of boron nitride and boron subnitride, we investigate their mutual solubilities using a combination of first-principles total energies supplemented with statistical mechanics to address finite temperatures. Thus we predict the solid-state phase diagram of boron-carbon-nitrogen (B-C-N). Owing to the large energy costs of substitution, we find that the mutual solubilities of the ultrahard materials diamond and cubic boron nitride are negligible, and the same for the quasi-two-dimensional materials graphite and hexagonal boron nitride. In contrast, we find a continuous range of solubility connecting boron carbide to boron subnitride at elevated temperatures. An electron-precise ternary compound B13CN consisting of B12 icosahedra with NBC chains is found to be stable at all temperatures up to melting. It exhibits an order-disorder transition in the orientation of NBC chains at approximately T =500 K. We also propose that the recently discovered binary B13N2 actually has composition B12.67N2 .

  5. Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.

    1996-01-01

    Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.

  6. Boron/Carbon/Silicon/Nitrogen Ceramics And Precursors

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore; Hsu, Ming TA; Chen, Timothy S.

    1996-01-01

    Ceramics containing various amounts of boron, carbon, silicon, and nitrogen made from variety of polymeric precursors. Synthesized in high yield from readily available and relatively inexpensive starting materials. Stable at room temperature; when polymerized, converted to ceramics in high yield. Ceramics resist oxidation and other forms of degradation at high temperatures; used in bulk to form objects or to infiltrate other ceramics to obtain composites having greater resistance to oxidation and high temperatures.

  7. Graphene-like Boron-Carbon-Nitrogen Monolayers.

    PubMed

    Beniwal, Sumit; Hooper, James; Miller, Daniel P; Costa, Paulo S; Chen, Gang; Liu, Shih-Yuan; Dowben, Peter A; Sykes, E Charles H; Zurek, Eva; Enders, Axel

    2017-03-28

    A strategy to synthesize a 2D graphenic but ternary monolayer containing atoms of carbon, nitrogen, and boron, h-BCN, is presented. The synthesis utilizes bis-BN cyclohexane, B2N2C2H12, as a precursor molecule and relies on thermally induced dehydrogenation of the precursor molecules and the formation of an epitaxial monolayer on Ir(111) through covalent bond formation. The lattice mismatch between the film and substrate causes a strain-driven periodic buckling of the film. The structure of the film and its corrugated morphology is discussed based on comprehensive data from molecular-resolved scanning tunneling microscopy imaging, X-ray photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. First-principles calculations further predict a direct electronic band gap that is intermediate between gapless graphene and insulating h-BN.

  8. Boron nitride converted carbon fiber

    SciTech Connect

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  9. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  10. Boron and Nitrogen Doped Single walled Carbon Nanotubes as Possible Dilute Magnetic Semiconductors

    PubMed Central

    2007-01-01

    The structure of single walled armchair and zig-zag carbon nanotubes having 70 atoms and two carbons replaced by boron or nitrogen is obtained at minium energy using HF/6-31G* molecular orbital theory. The calculations show that the ground state of the zig-zag tubes is a triplet state while for the armchair tubes it is a singlet. In the zig-zag tubes the density of states at the Fermi level is greater for the spin down states compared to the spin up state indicating that the doped tubes could be ferromagnetic.

  11. Elementary reactions of nitrogen and oxygen with boron and carbon at high pressures and temperatures

    SciTech Connect

    Yoo, C.S.; Cynn, H.; Nicol, M.F.

    1997-08-01

    The direct elementary reactions among the first and second row elements often yield novel super hard, high energy density, and wide band-gap optical materials. The reactions of oxygen and nitrogen with boron and carbon have been investigated at high pressures and temperatures by using an integrated technique of diamond-anvil cell, laser-heating, x-ray diffraction, Raman spectroscopy. A wide range of products has been synthesized and characterized in-situ at high pressures, including {alpha}-CO{sub 2}, B{sub 2}0{sub 3}-I,B{sub 2}0{sub 3}-II, c-BN, h-BN, h{sup `}-B, amorphous carbon nitrides. The elementary reactions occur exothermically and result in highly polycrystallized products with an exception in carbon-nitrogen reactions. The implication of the elementary reactions to energetic materials applications is discussed.

  12. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Nazé, C.; Verdebout, S.; Godefroid, M.

    2014-09-15

    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  13. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    SciTech Connect

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer; Bengu, Erman; Kulakci, Mustafa; Turan, Rasit; Gulseren, Oguz

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantation were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.

  14. Synthesis of boron/nitrogen-incorporated diamond-like carbon films by pulsed laser deposition using nitrogen gas and a boron-containing graphite target

    NASA Astrophysics Data System (ADS)

    Nakazawa, Hideki; Osozawa, Ryoichi; Mohnai, Yusuke; Nara, Yuki

    2017-10-01

    We have deposited boron/nitrogen-incorporated diamond-like carbon (B–N-DLC) films by pulsed laser deposition (PLD) using N2 gas and a B-containing graphite target, and compared the mechanical, tribological, electrical, and surface properties of the B–N-DLC films with those of pure DLC, boron-incorporated DLC (B-DLC), and nitrogen-incorporated DLC (N-DLC) films prepared by PLD. The B-DLC film had a much higher critical load than the pure DLC. The critical load of the B–N-DLC films became maximum at an optimum N2 pressure, which was higher than those of the pure DLC, B-DLC, and N-DLC films. The friction property in air was degraded by the N incorporation, whereas the B incorporation did not have a significant effect on the friction coefficient. The B–N-DLC films deposited at higher N2 pressures exhibited superhydrophilic wetting properties. The B–N-DLC films prepared at moderate N2 pressures had resistivities much less than that of the pure DLC film.

  15. Cluster Based Reaction Probabilities for Boron with Oxygen, Hydrogen, Water, Nitrogen, Nitrous Oxide, Carbon Dioxide, Carbon Monoxide, Methane, Tetrafluoromethane, and Silane

    DTIC Science & Technology

    1989-10-28

    measured for reactions of boron cluster ions with the gases in question. We present both total reaction probabilities and also the branching fractions...Water, Nitrogen, Nitrous Oxide, Carbon Dioxide, Carbon Monoxide, Methane, Tetrafluoromethane , and Silane Paul A. Hintz, Stephen A. Ruatta, and Scott...detailed study of boron cluster ion reaction dynamics, we have tried to present our cross section measurements in a form most useful to combustion

  16. Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor

    NASA Astrophysics Data System (ADS)

    Guo, Hongliang; Gao, Qiuming

    Boron and nitrogen co-doped porous carbons (BNCs) were prepared through a facile procedure using citric acid, boric acid and nitrogen as C, B and N precursors, respectively. The BNC samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen sorption at 77 K. Cyclic voltammetry and galvanostatic charge/discharge experiments were adopted to investigate their electrochemical behaviors. The BNC-9 and BNC-15 samples with high specific surface areas of 894 and 726 m 2 g -1 showed the large specific capacitance up to 268 and 173 F g -1, respectively, with the current of 0.1 A g -1. When the current was set as 1 A g -1, the energy densities were 3.8 and 3.0 Wh kg -1 and the power densities were 165 and 201 W kg -1 for BNC-9 and BNC-15, respectively. Thus, BNC-15 is more suitable to apply in high-power-demanded occasion, while BNC-9 tends to store more energy.

  17. Single-Walled Carbon Nanotubes Doped With Nitrogen and Boron: A Route to Control Their Electronic Properties (abstract)

    NASA Astrophysics Data System (ADS)

    Ayala, Paola

    2009-04-01

    The various issues related to the synthesis of nitrogen and boron-doped nanotubes are addressed. This is mainly inspired in the possible applications such structures can have. The practical background lies in the fact that defined n- and p-doping of carbon nanotubes can be achieved by substituting carbon atoms from the tube walls by heteroatoms such as boron or nitrogen. This is far from been a triviality because we must keep in mind that if carbon nanotubes are to be used as future building blocks in nanocomposites and nanoelectronic devices, it is imperative to fine tune their wall reactivity, mechanical strength, and electronic band gap by controlling the amount of foreign atoms inserted into the tube lattices. A complete picture of the dependence on the combined synthesis parameters is established and a fundamental insight into the formation of nitrogen- and boron-doped single-walled carbon nanotubes and other structures (coproducts) is provided. As a pioneering idea of this whole work, the use of a nondiluted liquid feedstock in chemical vapor deposition methods is emphasized. The effects of the reaction atmosphere and the catalyst pretreatment as either favoring or disfavoring agents toward the synthesis of doped nanotubes is presented.

  18. Chemisorption of Transition-Metal Atoms on Boron- and Nitrogen-Doped Carbon Nanotubes: Energetics and Geometric and Electronic Structures

    SciTech Connect

    An, Wei; Turner, C. H.

    2009-04-30

    The well-defined binding between transition-metals (TM) and the sidewall of carbon nanotubes (CNTs) plays a key role in the performance of CNT-based anoelectronics, as well as the stability of catalysts used in either heterogeneous catalysis or fuel-cell electrocatalysis. Spin-polarized density functional theory calculations demonstrate that either boron or nitrogen doping can increase the binding strength of TM atoms with singlewall carbon nanotubes (SWCNTs), and comparatively, boron doping is more effective. The binding nature can be identified as chemisorption, based on the magnitude of the binding energy and the formation of multiple bonds. The chemisorbed TM atoms can modify the electronic structure of the doped nanotubes in various ways, depending upon the TM and helicity of the CNT, rendering the TM/doped-SWCNT composite viable for a wide range of applications. A total of 11 technologically relevant TMs adsorbed on two distinct and stable doped-SWCNT models have been investigated in this study. The doping sites are arranged in either a locally concentrated or uniform fashion within semiconducting SWCNT(8,0) and metallic SWCNT(6,6). The results serve as a starting point for studying larger, more complex TM nanostructures anchored on the sidewall of boron- or nitrogen-doped CNTs.

  19. Nitrogen- and boron-co-doped core-shell carbon nanoparticles as efficient metal-free catalysts for oxygen reduction reactions in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhong, Shengkui; Zhou, Lihua; Wu, Ling; Tang, Lianfeng; He, Qiyi; Ahmed, Jalal

    2014-12-01

    The most severe bottleneck hindering the widespread application of fuel cell technologies is the difficulty in obtaining an inexpensive and abundant oxygen reduction reaction (ORR) catalyst. The concept of a heteroatom-doped carbon-based metal-free catalyst has recently attracted interest. In this study, a metal-free carbon nanoparticles-based catalyst hybridized with dual nitrogen and boron components was synthesized to catalyze the ORR in microbial fuel cells (MFCs). Multiple physical and chemical characterizations confirmed that the synthetic method enabled the incorporation of both nitrogen and boron dopants. The electrochemical measurements indicated that the co-existence of nitrogen and boron could enhance the ORR kinetics by reducing the overpotential and increasing the current density. The results from the kinetic studies indicated that the nitrogen and boron induced an oxygen adsorption mechanism and a four-electron-dominated reaction pathway for the as-prepared catalyst that was very similar to those induced by Pt/C. The MFC results showed that a maximum power density of ∼642 mW m-2 was obtained using the as-prepared catalyst, which is comparable to that obtained using expensive Pt catalyst. The prepared nitrogen- and boron-co-doped carbon nanoparticles might be an alternative cathode catalyst for MFC applications if large-scale applications and price are considered.

  20. A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon and nitrogen. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.

  1. Effect of doping by boron, carbon, and nitrogen atoms on the magnetic and photocatalytic properties of anatase

    NASA Astrophysics Data System (ADS)

    Zainullina, V. M.; Zhukov, V. P.; Korotin, M. A.; Polyakov, E. V.

    2011-07-01

    The effect of doping of titanium dioxide with the anatase structure by boron, carbon, and nitrogen atoms on the magnetic and optical properties and the electronic spectrum of this compound has been investigated using the ab initio tight-binding linear muffin-tin orbital (TB-LMTO) band-structure method in the local spin density approximation explicitly including Coulomb correlations (LSDA + U) in combination with the semiempirical extended Hückel theory (EHT) method. The LSDA + U calculations of the electronic structure, the imaginary part of the dielectric function, the total magnetic moments, and the magnetic moments at the impurity atoms have been carried out. The diagrams of the molecular orbitals of the clusters Ti3 X ( X = B, C, N) have been calculated and the pseudo-space images of the molecular orbitals of the clusters have been constructed. The effect of doping on the nature and origin of photocatalytic activity in the visible spectral range and the specific features of the generation of ferromagnetic interactions in doped anatase have been discussed based on the analysis of the obtained data. It has been shown that, in the sequence TiO2 - y N y → TiO2 - y C y → TiO2 - y B y ( y = 1/16), the photocatalytic activity can increase with the generation of electronic excitations with the participation of impurity bands. The calculated magnetic moments for boron and nitrogen atoms are equal to 1 μB, whereas the impurity carbon atoms are nonmagnetic.

  2. Blending materials composed of boron, nitrogen and carbon to transform approaches to liquid hydrogen stores

    SciTech Connect

    Whittemore, Sean M.; Bowden, Mark; Karkamkar, Abhijeet; Parab, Kshitij; Neiner, Doinita; Autrey, Tom; Ishibashi, Jacob S. A.; Chen, Gang; Liu, Shih-Yuan; Dixon, David A.

    2015-12-02

    Energy storage remains a key challenge for the advancement of fuel cell applications. Because of this, hydrogen has garnered much research attention for its potential as an energy carrier. This can be attributed to its abundance from non-petroleum sources, and its energy conversion efficiency. Our group, among others, has been studying the use of ammonia borane as a chemical hydrogen storage material for the past several years. Ammonia borane (AB, NH3BH3), a solid state complex composed of the light weight main group elements of nitrogen and boron, is isoelectronic with ethane and as such is an attractive hydrogen storage material with a high gravimetric capacity of H2 (19.6 wt%). However, the widespread use of AB as a chemical hydrogen storage material has been stalled by some undesirable properties and reactivity. Most notably, AB is a solid and this presents compatibility issues with the existing liquid fuel infrastructure. The thermal release of H2 from AB also results in the formation of volatile impurities (borazine and ammonia) that are detrimental to operation of the fuel cell. Additionally, the major products in the spent fuel are polyborazylene and amine borane oligomers that present challenges in regenerating AB. This research was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  3. Synthesis of thin films in boron-carbon-nitrogen ternary system by microwave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kukreja, Ratandeep Singh

    The Boron Carbon Nitorgen (B-C-N) ternary system includes materials with exceptional properties such as wide band gap, excellent thermal conductivity, high bulk modulus, extreme hardness and transparency in the optical and UV range that find application in most fields ranging from micro-electronics, bio-sensors, and cutting tools to materials for space age technology. Interesting materials that belong to the B-C-N ternary system include Carbon nano-tubes, Boron Carbide, Boron Carbon Nitride (B-CN), hexagonal Boron Nitride ( h-BN), cubic Boron Nitride (c-BN), Diamond and beta Carbon Nitride (beta-C3N4). Synthesis of these materials requires precisely controlled and energetically favorable conditions. Chemical vapor deposition is widely used technique for deposition of thin films of ceramics, metals and metal-organic compounds. Microwave plasma enhanced chemical vapor deposition (MPECVD) is especially interesting because of its ability to deposit materials that are meta-stable under the deposition conditions, for e.g. diamond. In the present study, attempt has been made to synthesize beta-carbon nitride (beta-C3N4) and cubic-Boron Nitride (c-BN) thin films by MPECVD. Also included is the investigation of dependence of residual stress and thermal conductivity of the diamond thin films, deposited by MPECVD, on substrate pre-treatment and deposition temperature. Si incorporated CNx thin films are synthesized and characterized while attempting to deposit beta-C3N4 thin films on Si substrates using Methane (CH4), Nitrogen (N2), and Hydrogen (H2). It is shown that the composition and morphology of Si incorporated CNx thin film can be tailored by controlling the sequence of introduction of the precursor gases in the plasma chamber. Greater than 100mum size hexagonal crystals of N-Si-C are deposited when Nitrogen precursor is introduced first while agglomerates of nano-meter range graphitic needles of C-Si-N are deposited when Carbon precursor is introduced first in the

  4. Transport Properties of p-n Junctions Formed in Boron/Nitrogen Doped Carbon Nanotubes and Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Vasiliev, Igor

    2014-03-01

    We apply ab initio computational methods based on density functional theory to study the transport properties of p-n junctions made of single-walled carbon nanotubes and graphene nanoribbons. The p-n junctions are formed by doping the opposite ends of carbon nanostructures with boron and nitrogen atoms. Our calculations are carried out using the SIESTA electronic structure code combined with the generalized gradient approximation for the exchange-correlation functional. The transport properties are calculated using a self-consistent nonequilibrium Green's function method implemented in the TranSIESTA package. The modeled nanoscale p-n junctions exhibit linear I-V characteristics in the forward bias and nonlinear I-V characteristics with a negative differential resistance in the reverse bias. The computed transmission spectra and the I-V characteristics of the p-n junctions are compared to the results of other theoretical studies and to the available experimental data. Supported by NMSU GREG Award and by NSF CHE-1112388.

  5. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye.

    PubMed

    Jahan, Shanaz; Mansoor, Farrukh; Naz, Shagufta; Lei, Jianping; Kanwal, Shamsa

    2013-11-05

    Current research efforts have demonstrated the facile hydrothermal oxidative synthetic route to develop highly fluorescent boron/nitrogen co-doped carbon nanodots (CNDs). During this process, N-(4-hydroxyphenyl)glycine served as a source of N doping and a carbon precursor as well, while boric acid H3BO3 is used as an oxidizing agent in the N2 environment. Surface passivation through ultrasonic treatment of CNDs was performed to induce modifications by using various surface passivating agents. Polyethyleneimine (PEI) remarkably enhanced the fluorescence performance and monodispersity of polymerized carbon nanodots (P-CNDs) in aqueous phase with an enhanced quantum yield of 23.71%, along with an increase in size from ~3 nm to ~200 nm. For characterization of CNDs and P-CNDs, UV, infrared, photoluminescence, transmission electron microscopy, x-ray photoelectron spectra, and atomic force microscopy techniques were utilized. Application potentials of synthesized P-CNDs were developed via introduction of protoporphyrin (PPD, a photosensitizer) which has great doping affinity with polymer PEI to switch-off the fluorescence of P-CNDs, leading to the production of dye-doped nanoprobes. Fluorescence resonance energy transfer (FRET) was also observed during dye-doping, and PPD was detected with a limit of detection (LOD, 3σ) of 15 pM. The fluorescence recovery of this switched-off nanoprobe was made possible by using Sudan red III (carcinogenic dye), which was oxidized by PPD doped in P-CNDs. Sudan red III was detected in the concentration range of 9.9 pM-0.37 nM. Meanwhile, it was also confirmed that the dye-doped nanoprobe is highly selective and exceptionally sensitive to detect this carcinogenic agent in commercial products with a LOD (3σ) of 90 fM.

  6. Characterizing the Interaction of Pt and PtRu Clusters with Boron-Doped, Nitrogen-Doped, and Activated Carbon: Density Functional Theory Calculations and Parameterization

    SciTech Connect

    Acharya, Chethan K.; Sullivan, Daniel I.; Turner, C. H.

    2008-09-04

    Previous density functional theory calculations of Pt and PtRu clusters on carbon supports have shown that the adsorption energies of these metal clusters increase substantially with substitutional boron defects in the carbon lattice. Here, the stability of metal clusters is further probed with substitutional nitrogen defects and surface functional groups. Also, the dynamics of Pt and Ru atoms on pure and boron-doped carbon are studied as a function of temperature using ab initio molecular dynamics (AIMD) simulations. Although the time scale accessible is limited, the AIMD simulations show reduced mobility on the boron-doped surface. In order to calculate additional dynamic properties of the systems, such as diffusion coefficients, the motion of the metal clusters should be studied for much longer periods of time, which can be accomplished by performing classical molecular dynamics (MD) simulations. Thus, we have parametrized our electronic structure calculations to an analytical Lennard-Jones (LJ) potential function, which will enable much longer time and length scales to be simulated in future investigations.

  7. Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Gao, Guoying; Kutana, Alex; Wang, Yanchao; Zou, Xiaolong; Tse, John S.; Yakobson, Boris I.; Li, Hongdong; Liu, Hanyu; Ma, Yanming

    2015-07-01

    The search for new candidate semiconductors with direct band gaps of ~1.4 eV has attracted significant attention, especially among the two-dimensional (2D) materials, which have become potential candidates for next-generation optoelectronics. Herein, we systematically studied 2D Bx/2Nx/2C1-x (0 < x < 1) compounds in particular focus on the four stoichiometric Bx/2Nx/2C1-x (x = 2/3, 1/2, 2/5 and 1/3) using a recently developed global optimization method (CALYPSO) in conjunction with density functional theory. Furthermore, we examine more stoichiometries by the cluster expansion technique based on a hexagonal lattice. The results reveal that all monolayer Bx/2Nx/2C1-x stoichiometries adopt a planar honeycomb character and are dynamically stable. Remarkably, electronic structural calculations show that most of Bx/2Nx/2C1-x phases possess direct band gaps within the optical range, thereby they can potentially be used in high-efficiency conversion of solar energy to electric power, as well as in p-n junction photovoltaic modules. The present results also show that the band gaps of Bx/2Nx/2C1-x can be widely tuned within the optical range by changing the concentration of carbon, thus allowing the fast development of band gap engineered materials in optoelectronics. These new findings may enable new approaches to the design of microelectronic devices.The search for new candidate semiconductors with direct band gaps of ~1.4 eV has attracted significant attention, especially among the two-dimensional (2D) materials, which have become potential candidates for next-generation optoelectronics. Herein, we systematically studied 2D Bx/2Nx/2C1-x (0 < x < 1) compounds in particular focus on the four stoichiometric Bx/2Nx/2C1-x (x = 2/3, 1/2, 2/5 and 1/3) using a recently developed global optimization method (CALYPSO) in conjunction with density functional theory. Furthermore, we examine more stoichiometries by the cluster expansion technique based on a hexagonal lattice. The

  8. Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps.

    PubMed

    Zhang, Miao; Gao, Guoying; Kutana, Alex; Wang, Yanchao; Zou, Xiaolong; Tse, John S; Yakobson, Boris I; Li, Hongdong; Liu, Hanyu; Ma, Yanming

    2015-07-28

    The search for new candidate semiconductors with direct band gaps of ∼1.4 eV has attracted significant attention, especially among the two-dimensional (2D) materials, which have become potential candidates for next-generation optoelectronics. Herein, we systematically studied 2D B(x)/2N(x/2)C(1-x) (0 < x < 1) compounds in particular focus on the four stoichiometric B(x)/2N(x/2)C(1-x) (x = 2/3, 1/2, 2/5 and 1/3) using a recently developed global optimization method (CALYPSO) in conjunction with density functional theory. Furthermore, we examine more stoichiometries by the cluster expansion technique based on a hexagonal lattice. The results reveal that all monolayer B(x)/2N(x/2)C(1-x) stoichiometries adopt a planar honeycomb character and are dynamically stable. Remarkably, electronic structural calculations show that most of B(x)/2N(x/2)C(1-x) phases possess direct band gaps within the optical range, thereby they can potentially be used in high-efficiency conversion of solar energy to electric power, as well as in p-n junction photovoltaic modules. The present results also show that the band gaps of B(x)/2N(x/2)C(1-x) can be widely tuned within the optical range by changing the concentration of carbon, thus allowing the fast development of band gap engineered materials in optoelectronics. These new findings may enable new approaches to the design of microelectronic devices.

  9. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

    PubMed

    Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei

    2015-09-16

    An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1).

  10. In situ fabrication of three-dimensional nitrogen and boron co-doped porous carbon nanofibers for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Xia, Guanglin; Guo, Zaiping; Sun, Dalin; Li, Xingguo; Yu, Xuebin

    2016-08-01

    This paper reports the fabrication of three-dimensional porous carbon nanofibers network with high doping level of nitrogen (N, 5.17 at.%) and boron (B, 6.87 at.%) through a general electrospinning strategy followed by a calcination process. The employed ammonia borane (NH3BH3, denote as AB) not only functions as a porogen reagent to generate porous structures but also as the heteroatoms source to induce N and B co-doping. Such highly unique nanoarchitectures offer remarkably improved Li storage performance including high reversible capacity (∼910 mAh g-1 at a current density of 100 mA g-1) with good cycling and rate performances.

  11. Phenylene bridged boron-nitrogen containing dendrimers.

    PubMed

    Proń, Agnieszka; Baumgarten, Martin; Müllen, Klaus

    2010-10-01

    The synthesis and characterization of novel phenylene bridged boron-nitrogen containing π-conjugated dendrimers N3B6 and N3B3, with peripheral boron atoms and 1,3,5-triaminobenzene moiety as a core, are presented. UV-vis absorption and emission measurements reveal that the optical properties of the resulting compounds can be controlled by changing the donor/acceptor ratio: a 1:1 ratio results in a more efficient charge transfer than the 1:2 ratio. This was proven by the red shift of the emission maxima and the stronger solvatochromic effect in N3B3 compared to N3B6.

  12. Hyperfine structures and Landé g{sub J}-factors for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    SciTech Connect

    Verdebout, S.; Nazé, C.; Rynkun, P.; Godefroid, M.

    2014-09-15

    Energy levels, hyperfine interaction constants, and Landé g{sub J}-factors are reported for n=2 states in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations. Valence, core–valence, and core–core correlation effects are taken into account through single and double-excitations from multireference expansions to increasing sets of active orbitals. A systematic comparison of the calculated hyperfine interaction constants is made with values from the available literature.

  13. Producing carbon stripper foils containing boron

    SciTech Connect

    Stoner, J. O. Jr.

    2012-12-19

    Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.

  14. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    PubMed

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating.

  15. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity.

    PubMed

    Choi, Chang Hyuck; Park, Sung Hyeon; Woo, Seong Ihl

    2012-08-28

    N-doped carbon, a promising alternative to Pt catalyst for oxygen reduction reactions (ORRs) in acidic media, is modified in order to increase its catalytic activity through the additional doping of B and P at the carbon growth step. This additional doping alters the electrical, physical, and morphological properties of the carbon. The B-doping reinforces the sp(2)-structure of graphite and increases the portion of pyridinic-N sites in the carbon lattice, whereas P-doping enhances the charge delocalization of the carbon atoms and produces carbon structures with many edge sites. These electrical and physical alternations of the N-doped carbon are more favorable for the reduction of the oxygen on the carbon surface. Compared with N-doped carbon, B,N-doped or P,N-doped carbon shows 1.2 or 2.1 times higher ORR activity at 0.6 V (vs RHE) in acidic media. The most active catalyst in the reaction is the ternary-doped carbon (B,P,N-doped carbon), which records -6.0 mA/mg of mass activity at 0.6 V (vs RHE), and it is 2.3 times higher than that of the N-doped carbon. These results imply that the binary or ternary doping of B and P with N into carbon induces remarkable performance enhancements, and the charge delocalization of the carbon atoms or number of edge sites of the carbon is a significant factor in deciding the oxygen reduction activity in carbon-based catalysts.

  16. Methods of forming boron nitride

    DOEpatents

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  17. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  18. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-27

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  19. Boron-Filled Hybrid Carbon Nanotubes

    PubMed Central

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  20. Chemical and photoluminescence analyses of new carbon-based boron oxynitride phosphors

    SciTech Connect

    Wang, Wei-Ning; Kaihatsu, Yutaka; Iskandar, Ferry; Okuyama, Kikuo

    2009-11-15

    Analyses of newly developed carbon-based boron oxynitride phosphors using an electron energy-loss spectrometer and a spectroflurophotometer were carried out. The results showed that the prepared phosphor powder has covalently bonded boron, nitrogen, and oxygen atoms with a soft carbon framework. Photoluminescence characterization revealed that the resultant phosphor has a direct bandgap transition with defect broadened band edges, resulting in a high quantum efficiency, because the atomic distances of the phosphor are smaller than those of conventional carbon-based boron nitride compounds, which have an indirect bandgap transition and a low quantum efficiency. The atomic distances of the phosphor are smaller owing to the presence of oxygen atoms, which have a higher electron affinity and a smaller covalent bond radius compared with boron, carbon and nitrogen.

  1. Energetics of Boron Doping of Carbon Pores

    NASA Astrophysics Data System (ADS)

    Wexler, Carlos; St. John, Alexander; Connolly, Matthew

    2014-03-01

    Carbon-based materials show promise, given their light weight, large surface areas and low cost for storage of hydrogen and other gases, e.g., for energy applications. Alas, the interaction of H2 and carbon, 4-5kJ/mol, is insufficient for room-temperature operation. Boron doping of carbon materials could raise the binding energy of H2 to 12-15kJ/mol. The nature of the incorporation of boron into a carbon structure has not been studied so far. In this talk we will address the energetics of boron incorporation into a carbon matrix via adsorption and decomposition of decaborane by first principles calculations. These demonstrate: (a) A strong adsorption of decaborane to carbon (70-80kJ/mol) resulting in easy incorporation of decaborane, sufficient for up to 10-20% B:C at low decaborane vapour pressures. (b) Identification that boron acts as an electron acceptor when incorporated substitutionally into a graphene-like material, as expected due to its valence. (c) The electrostatic field near the molecule is responsible for ca. 2/3 of the enhancement of the H2-adsorbent interaction in aromatic compounds such as pyrene, coronene and ovalene. Supported by DOE DE-FG36-08GO18142, ACS-PRF 52696-ND5, and NSF 1069091.

  2. New nanoforms of carbon and boron nitride

    NASA Astrophysics Data System (ADS)

    Pokropivny, V. V.; Ivanovskii, A. L.

    2008-10-01

    Data on new carbon nanostructures including those based on fullerenes, nanotubes as well monolithic diamond-like nanoparticles, nanofibres, various nanocomposites, etc., published in the last decade are generalised. The experimental and theoretical data on their atomic and electronic structures, the nature of chemical bonds and physicochemical properties are discussed. These data are compared with the results obtained in studies of nanoforms of boron nitride, an isoelectronic analogue of carbon. Potential fields of applications of the new nanostructures are considered.

  3. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  4. Energy Landscape of Fullerene Materials: A Comparison of Boron to Boron Nitride and Carbon

    NASA Astrophysics Data System (ADS)

    de, Sandip; Willand, Alexander; Amsler, Maximilian; Pochet, Pascal; Genovese, Luigi; Goedecker, Stefan

    2011-06-01

    Using the minima hopping global geometry optimization method on the density functional potential energy surface we show that the energy landscape of boron clusters is glasslike. Larger boron clusters have many structures which are lower in energy than the cages. This is in contrast to carbon and boron nitride systems which can be clearly identified as structure seekers. The differences in the potential energy landscape explain why carbon and boron nitride systems are found in nature whereas pure boron fullerenes have not been found. We thus present a methodology which can make predictions on the feasibility of the synthesis of new nanostructures.

  5. Tribological properties of nitrogen implanted and boron implanted steels

    SciTech Connect

    Kern, K.T.; Walter, K.C.; Griffin, A.J. Jr.; Kung, H.; Lu, Y.; Nastasi, M.; Tesmer, J.R.; Fayeulle, S.

    1996-06-01

    Samples of a steel with high chrome content was implanted separately with 75 keV nitrogen ions and with 75 keV boron ions. Implanted doses of each ion species were 2-, 4-, and 8 {times} 10{sup 17}/cm{sup 2}. Retained doses were measured using resonant non-Rutherford Backscattering Spectrometry. Tribological properties were determined using a pin-on-disk test with a 6-mm diameter ruby pin with a velocity of 0.94 m/min. Testing was done at 10% humidity with a load of 377 g. Wear rate and coefficient of friction were determined from these tests. While reduction in the wear rate for nitrogen implanted materials was observed, greater reduction (more than an order of magnitude) was observed for boron implanted materials. In addition, reduction in the coefficient of friction for high-dose boron implanted materials was observed. Nano-indentation revealed a hardened layer near the surface of the material. Results from grazing incidence x-ray diffraction suggest the formation of Fe{sub 2}N and Fe{sub 3}N in the nitrogen implanted materials and Fe{sub 3}B in the boron implanted materials. Results from transmission electron microscopy will be presented.

  6. Formation of boron nitride and boron carbide composite by nitrogen implantation at elevated temperature

    NASA Astrophysics Data System (ADS)

    Yu, N.; Romero-Borja, F.; Zhang, Z. H.; Cui, X. T.; Liu, J. R.; Wood, L. T.; Chu, W. K.; Marton, D.; Rabalais, J. W.; Forster, K. M.; Reeber, R. R.

    1993-09-01

    Boron carbide (B4C) is a wear resistant material with hardness slightly less than that of diamond. It has an excellent strength to weight ratio and relatively high toughness under controlled processing. These essential mechanical properties make B4C an ideal candidate for cutting tool and bearing applications. We will demonstrate that hexagonal boron nitride (h-BN), a good solid lubricant, can be formed on B4C surfaces through high temperature (850 °C) nitrogen ion implantation. The formation of composite B4C and h-BN on the B4C surface can potentially reduce surface friction coefficients, making the material more attractive for tribological applications.

  7. Order-disorder transition in a two-dimensional boron-carbon-nitride alloy

    NASA Astrophysics Data System (ADS)

    Lu, Jiong; Zhang, Kai; Feng Liu, Xin; Zhang, Han; Chien Sum, Tze; Castro Neto, Antonio H.; Loh, Kian Ping

    2013-10-01

    Two-dimensional boron-carbon-nitride materials exhibit a spectrum of electronic properties ranging from insulating to semimetallic, depending on their composition and geometry. Detailed experimental insights into the phase separation and ordering in such alloy are currently lacking. Here we report the mixing and demixing of boron-nitrogen and carbon phases on ruthenium (0001) and found that energetics for such processes are modified by the metal substrate. The brick-and-mortar patchwork observed of stoichiometrically percolated hexagonal boron-carbon-nitride domains surrounded by a network of segregated graphene nanoribbons can be described within the Blume-Emery-Griffiths model applied to a honeycomb lattice. The isostructural boron nitride and graphene assumes remarkable fluidity and can be exchanged entirely into one another by a catalytically assistant substitution. Visualizing the dynamics of phase separation at the atomic level provides the premise for enabling structural control in a two-dimensional network for broad nanotechnology applications.

  8. Order-disorder transition in a two-dimensional boron-carbon-nitride alloy.

    PubMed

    Lu, Jiong; Zhang, Kai; Liu, Xin Feng; Zhang, Han; Sum, Tze Chien; Castro Neto, Antonio H; Loh, Kian Ping

    2013-01-01

    Two-dimensional boron-carbon-nitride materials exhibit a spectrum of electronic properties ranging from insulating to semimetallic, depending on their composition and geometry. Detailed experimental insights into the phase separation and ordering in such alloy are currently lacking. Here we report the mixing and demixing of boron-nitrogen and carbon phases on ruthenium (0001) and found that energetics for such processes are modified by the metal substrate. The brick-and-mortar patchwork observed of stoichiometrically percolated hexagonal boron-carbon-nitride domains surrounded by a network of segregated graphene nanoribbons can be described within the Blume-Emery-Griffiths model applied to a honeycomb lattice. The isostructural boron nitride and graphene assumes remarkable fluidity and can be exchanged entirely into one another by a catalytically assistant substitution. Visualizing the dynamics of phase separation at the atomic level provides the premise for enabling structural control in a two-dimensional network for broad nanotechnology applications.

  9. First Principles Atomistic Model for Carbon-Doped Boron Suboxide

    DTIC Science & Technology

    2014-09-01

    First Principles Atomistic Model for Carbon-Doped Boron Suboxide by Amol B Rahane, Jennifer S Dunn, and Vijay Kumar ARL-TR-7106...2014 First Principles Atomistic Model for Carbon-Doped Boron Suboxide Amol B Rahane Dr Vijay Kumar Foundation 1969 Sector 4 Gurgaon...Final 3. DATES COVERED (From - To) October 2013–July 2014 4. TITLE AND SUBTITLE First Principles Atomistic Model for Carbon-Doped Boron Suboxide

  10. Nitrogen implantation effects on the chemical bonding and hardness of boron and boron nitride coatings

    SciTech Connect

    Anders, S; Felter, T; Hayes, J; Jankowski, A F; Patterson, R; Poker, D; Stamler, T

    1999-02-08

    Boron nitride (BN) coatings are deposited by the reactive sputtering of fully dense, boron (B) targets utilizing an argon-nitrogen (Ar-N{sub 2}) reactive gas mixture. Near-edge x-ray absorption fine structure analysis reveals features of chemical bonding in the B 1s photoabsorption spectrum. Hardness is measured at the film surface using nanoindentation. The BN coatings prepared at low, sputter gas pressure with substrate heating are found to have bonding characteristic of a defected hexagonal phase. The coatings are subjected to post-deposition nitrogen (N{sup +} and N{sub 2}{sup +}) implantation at different energies and current densities. The changes in film hardness attributed to the implantation can be correlated to changes observed in the B 1s NEXAFS spectra.

  11. Influence of dopants, particularly carbon, on β-rhombohedral boron

    NASA Astrophysics Data System (ADS)

    Werheit, H.; Flachbart, K.; Pristáš, G.; Lotnyk, D.; Filipov, V.; Kuhlmann, U.; Shitsevalova, N.; Lundström, T.

    2017-09-01

    Due to the high affinity of carbon to boron, the preparation of carbon-free boron is problematic. Even high-purity (6 N) β-rhombohedral boron contains 30-60 ppm of C. Hence, carbon affects the boron physical properties published so far more or less significantly. We studied well-defined carbon-doped boron samples based on pure starting material carefully annealed with up to about 1% C, thus assuring homogeneity. We present and discuss their electrical conductivity, optical absorption, luminescence and phonon spectra. Earlier attempts of other authors to determine the conductivity of C-doped boron are revised. Our results allow estimating the effects of oxygen and iron doping on the electrical conductivity using results taken from literature. Discontinuities at low T impair the electronic properties.

  12. Synthesis and Characterization of a Boron-Nitrogen-Boron Zigzag-Edged Benzo[fg]tetracene Motif.

    PubMed

    Fingerle, Michael; Maichle-Mössmer, Cäcilia; Schundelmeier, Simon; Speiser, Bernd; Bettinger, Holger F

    2017-09-01

    The boron-nitrogen-boron (BNB) zigzag edged benzo[fg]tetracene is accessible from 4-butyl-2,6-diphenylaniline in four steps in good yields. The two mesityl groups stabilize the boron centers toward nucleophilic attack and result in two enantiomeric forms in the solid state. The title compound has a large optical gap, shows blue fluorescence, and is quite resistant toward oxidation and reduction.

  13. Fabrication and characterization of carbon and boron carbide nanostructured materials

    NASA Astrophysics Data System (ADS)

    Reynaud, Sara

    , nanostructured BC compounds are fabricated by arc discharge technique using graphite or boron carbide electrodes submerged in liquid nitrogen, de-ionised water, or argon gas. Microscopic and spectroscopic investigation of the synthesized material confirms formation of various BC and carbon nanostructures. Specifically, arc discharge initiated in inert environment by applying low current leads to the formation of nanostructured BC without contaminants.

  14. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  15. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1996-12-03

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  16. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1998-07-14

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  17. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, A.J.; Akinc, M.

    1997-12-02

    A titanium silicide material based on Ti{sub 5}Si{sub 3} intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 C. Boron is added to a Ti{sub 5}Si{sub 3} base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end. 3 figs.

  18. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1996-12-03

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  19. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1998-07-14

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  20. Carbon or boron modified titanium silicide

    DOEpatents

    Thom, Andrew J.; Akinc, Mufit

    1997-12-02

    A titanium silicide material based on Ti.sub.5 Si.sub.3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000.degree. C. Boron is added to a Ti.sub.5 Si.sub.3 base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

  1. Nitrogen doping in carbon nanotubes.

    PubMed

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  2. Photoelectron spectra and electronic structure of nitrogen analogues of boron β-diketonates

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Borisenko, Aleksandr V.

    2016-07-01

    The electronic structure of the valence levels of seven nitrogen-containing boron complexes was investigated using methods of ultraviolet photoelectron spectroscopy and density functional theory. The ionization energies of π- and σ-levels were obtained from photoelectron spectra. The electronic structure of nitrogen-containing compounds was compared with the electronic structure of β-diketonates. It was shown the influence of various substituents on carbon and nitrogen atoms of six-membered ring on the electronic structure of complexes. The changes in the electronic structure after the substitution of atoms in condensed cycles have been identified. In order to compare the experimental vertical ionization energies IEi with Kohn-Sham orbital energies εi we used the analogue of Koopmans theorem and average amendment to the orbital energy of the electrons (δbari). For 26 electronic levels of seven studied complexes, the calculated values are in good accordance with experimental energy intervals between electron levels.

  3. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    USDA-ARS?s Scientific Manuscript database

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  4. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  5. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  6. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.

    PubMed

    Lazar, Petr; Zbořil, Radek; Pumera, Martin; Otyepka, Michal

    2014-07-21

    Boron and nitrogen doped graphenes are highly promising materials for electrochemical applications, such as energy storage, generation and sensing. The doped graphenes can be prepared by a broad variety of chemical approaches. The substitution of a carbon atom should induce n-type behavior in the case of nitrogen and p-type behavior in the case of boron-doped graphene; however, the real situation is more complex. The electrochemical experiments show that boron-doped graphene prepared by hydroboration reaction exhibits similar properties as the nitrogen doped graphene; according to theory, the electrochemical behavior of B and N doped graphenes should be opposite. Here we analyze the electronic structure of N/B-doped graphene (at ∼5% coverage) by theoretical calculations. We consider graphene doped by both substitution and addition reactions. The density of states (DOS) plots show that graphene doped by substitution of the carbon atom by N/B behaves as expected, i.e., as an n/p-doped material. N-doped graphene also has a lower value of the workfunction (3.10 eV) with respect to that of the pristine graphene (4.31 eV), whereas the workfunction of B-doped graphene is increased to the value of 5.57 eV. On the other hand, the workfunctions of graphene doped by addition of -NH2 (4.77 eV) and -BH2 (4.54 eV) groups are both slightly increased and therefore the chemical nature of the dopant is less distinguishable. This shows that mode of doping depends significantly on the synthesis method used, as it leads to different types of behaviour, and, in turn, different electronic and electrochemical properties of doped graphene, as observed in electrocatalytic experiments. This study has a tremendous impact on the design of doped graphene systems from the point of view of synthetic chemistry.

  7. Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O2 and CO: A density functional study

    NASA Astrophysics Data System (ADS)

    Abdel Aal, S.

    2016-01-01

    The adsorption behavior and electronic properties of CO and O2 molecules at the supported Pt and Eu atoms on (5,5) armchair SWCNT have been systematically investigated within density functional theory (DFT). Fundamental aspects such as adsorption energy, natural bond orbital (NBO), charge transfer, frontier orbitals and the projected density of states (PDOS) are elucidated to analyze the adsorption properties of CO and O2 molecules. The results reveal that B- and N-doping CNTs can enhance the binding strength and catalytic activity of Pt (Eu) anchored on the doped-CNT, where boron-doping is more effective. The electronic structures of supported metal are strongly influenced by the presence of gases. After adsorption of CO and O2, the changes in binding energy, charge transfer and conductance may lead to the different response in the metal-doped CNT-based sensors. It is expected that these results could provide helpful information for the design and fabrication of the CO and O2 sensing devices. The high catalytic activity of Pt supported at doped-CNT toward the interaction with CO and O2 may be attributed to the electronic resonance particularly among Pt-5d, CO-2π* and O2-2π* antibonding orbitals. In contrast to the supported Eu at doped-CNT, the Eu atom becomes more positively charged, which leads to weaken the CO adsorption and promote the O2 adsorption, consequently enhancing the activity for CO oxidation and alleviating the CO poisoning of the europium catalysts. A notable orbital hybridization and electrostatic interaction between these two species in adsorption process being an evidence of strong interaction. The electronic structure of O2 adsorbed on Eu-doped CNT resembles that of O2-, therefore the transferred charge weakens the O-O bonds and facilitates the dissociation process, which is the precondition for the oxygen reduction reaction (ORR).

  8. Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates

    NASA Astrophysics Data System (ADS)

    Han, Weiqiang; Redlich, Philipp; Ernst, Frank; Rühle, Manfred

    1999-09-01

    A method is described to synthesize silicon carbide (SiC)-filled boron nitride (BN) nanotubes (NT) simultaneously in high yield by using carbon nanotubes (CNTs) as templates. This method combines both carbon nanotube-substitution reaction and confined reaction. Through the CNT-substitution reaction, CNTs react with boron oxide vapor in the presence of nitrogen gas to form BN NTs, whose diameters and lengths are similar to those of the starting CNTs. The formation of the SiC filling is proceeded by the penetration of SiO vapor into the cavity of the nanotubes and subsequent reaction of SiO vapor with the inner carbon layers or volatile carbon mono-oxide in the interior to form SiC nanowires. The filled length can be up to the entire length of the nanotubes. SiC-filled (BN)xCy nanotubes also form in the product.

  9. Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms.

    PubMed

    Wu, Wen-Jie; Chi, Wei-Jie; Li, Quan-Song; Li, Ze-Sheng

    2017-06-01

    One of the most important aims in the development of high-energy materials is to improve their stability and thus ensure that they are safe to manufacture and transport. In this work, we theoretically investigated open-chain N4B2 isomers using density functional theory in order to find the best way of stabilizing nitrogen-rich molecules. The results show that the boron atoms in these isomers are aligned linearly with their neighboring atoms, which facilitates close packing in the crystals of these materials. Upon comparing the energies of nine N4B2 isomers, we found that the structure with alternating N and B atoms had the lowest energy. Structures with more than one nitrogen atom between two boron atoms had higher energies. The energy of N4B2 increases by about 50 kcal/mol each time it is rearranged to include an extra nitrogen atom between the two boron atoms. More importantly, our results also show that boron atoms stabilize nitrogen-rich molecules more efficiently than carbon atoms do. Also, the combustion of any isomer of N4B2 releases more heat than the corresponding isomer of N4C2 does under well-oxygenated conditions. Our study suggests that the three most stable N4B2 isomers (BN13, BN24, and BN34) are good candidates for high-energy molecules, and it outlines a new strategy for designing stable boron-containing high-energy materials. Graphical abstract The structural characteristics, thermodynamic stabilities, and exothermic properties of nitrogen-rich N4B2 isomers were investigated by means of density functional theory.

  10. A computational study of carbon dioxide adsorption on solid boron.

    PubMed

    Sun, Qiao; Wang, Meng; Li, Zhen; Du, Aijun; Searles, Debra J

    2014-07-07

    Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results indicate CO2 capture on the boron phases is a kinetically and thermodynamically feasible process, and therefore from this perspective these boron materials are predicted to be good candidates for CO2 capture.

  11. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  12. Effect of boron on carbon-fiber microstructure and reactivity

    SciTech Connect

    Jones, L.E.

    1987-01-01

    A mesophase pitch P55 and a PAN T-300 carbon filter were substitutionally doped with boron at concentration levels ranging from 4 x 10/sup -5/ to 0.05 B/C atom ratio. Boron enhanced graphitization in these fibers at concentrations greater than 2 x 10/sup -4/ B/C. Below this concentration level, the microstructure of the pitch P55 fiber was unaffected. High concentrations of boron were found to modulate the (001) diffraction profiles in both fibers. This indicated the presence of two separate graphite fractions in the same fiber (one fraction was much more turbostratic than the other). The presence of boron was also found to increase the L/sub c/ and decrease the L/sub a/ dimensions of the more graphitic fractions of the fiber structure. The decrease in the L/sub a/ is the result of an increase in tilt boundaries along the a direction, parallel to the fiber axis. The presence of boron inhibits fiber gasification. The cause of gasification inhibition at high boron concentrations is related to changes in the fiber microstructure; however, there is a pronounced effect of specific-site blockage by an oxide of boron that develops on the surface during gasification. At relatively low boron concentrations, decrease in the reactivity of the fiber was correlated to changes in fiber electronic structure which, in turn, influences the chemistry of the active surface sites.

  13. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the

  14. Superiority of boron, nitrogen and iron ternary doped carbonized graphene oxide-based catalysts for oxygen reduction in microbial fuel cells.

    PubMed

    Cao, Chun; Wei, Liling; Wang, Gang; Shen, Jianquan

    2017-03-09

    The exploration of highly active and cost-effective catalysts for the oxygen reduction reaction is vitally important to facilitate the improvement of metal-air batteries and fuel cells. Herein, super-active catalysts made from an interesting metal-polymer network (MPN) that consist of Fe-Nx-C, B-N and Fe3O4/Fe3C alloys were prepared via facile one-pot carbonization. The achieved catalysts possessed an amazing porous structure that was derived from the MPN with the assistance of a "bubble-template". Remarkably, the content of highly active Fe-Nx-C can be regulated by introducing graphene, and the ORR activity of the catalyst was enhanced dramatically with an increase in the Fe3O4/Fe3C alloy content. The most active BNFe-C-G2 catalyst exhibited superior ORR activity/stability, and was then employed as an air cathode electrocatalyst in a microbial fuel cell. The results showed that the output voltage and power density of BNFe-C-G2 were significantly improved to 575 ± 11 mV and 1046.2 ± 35 mW m(-2), respectively. These values are 4.5% and 44.44% higher than those of commercial Pt/C. Thus, due to the synergistic electrocatalysis of the Fe-Nx-C, B-N and Fe3O4/Fe3C alloys, the super-active and low-cost BNFe-C-G2 material should be a promising ORR catalyst for application in biofuel cells, and in many other energy conversion and storage devices.

  15. Electrical contact to carbon nanotubes encapsulated in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Huang, Jhao-Wun; Pan, Cheng; Tran, Son; Taniguchi, Takashi; Bockrath, Marc; Lau, Jeanie

    2015-03-01

    Hexagonal boron nitride has been an excellent platform for low dimensional materials. We have fabricated ultra clean single-walled carbon nanotube(SWNT) devices encapsulated in hexagonal boron nitride by a dry transfer technique. Contacts to the SWNTs were made by reactive ion etching to expose the ends of SWNTs, followed by metal deposition. Ohmic contacts to SWNTs were achieved. We will discuss the quality of the contacts using different combinations of metals and present latest transport data.

  16. Present state of boron-carbon thermoelectric materials

    NASA Technical Reports Server (NTRS)

    Elsner, N. B.; Reynolds, G. H.

    1983-01-01

    Boron-carbon p-type thermoelectric materials show promise for use in advanced thermal-to-electric space power conversion systems. Here, recent data on the thermoelectric properties of boron-carbon materials, such as B9C, B13C2, B15C2, and B4C, are reviewed. In particular, attention is given to the effect of the compositional homogeneity and residual impurity content on the Seeback coefficient, electrical resistivity, and thermal conductivity of these materials. The effect of carbon content for a given level of impurity and degree of homogeneity is also discussed.

  17. Possible n/p-type conductivity of two-dimensional graphene oxide by boron and nitrogen doping: Evaluated via constrained excitation

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Han, Dong; Li, Xian-Bin; Xie, Sheng-Yi; Chen, Nian-Ke; Tian, Wei Quan; Zhang, Shengbai; Sun, Hong-Bo

    2016-11-01

    As the first-principles calculations using the supercell approximation give widely scattered results in a two-dimensional charged system, making the evaluation of defect ionization energy difficult, here an alternative constrained excitation is applied to overcome this problem for defect analysis. As an example in graphene oxide with 50% oxygen coverage (according to the popular epoxy-chain-plus-hydroxyl-chain model), the structures, stabilities, and electronic properties of nitrogen and boron dopants are investigated. Generally, boron prefers to replace carbon in the sp3 region as an acceptor while nitrogen has a tendency to substitute the sp2 carbon close to the boundary between the sp2 region and the sp3 region as a donor. Their ionization energies are 0.24-0.42 eV for boron and 0.32-0.67 eV for nitrogen. However, a special case of nitrogen doped in the boundary-sp3 carbon can change to be an acceptor with the assistance of its neighboring (epoxy) oxygen "Lift-off," leading to the shallowest ionization energy of 0.12 eV and the best candidate for p-type conductivity. The present study offers the detailed pictures of boron and nitrogen defects in graphene oxide for the potential n- and p-type conductivity.

  18. Electrical Characterization of Boron-Carbon Thin Films

    NASA Astrophysics Data System (ADS)

    Diaz, Manuel; Adenwalla, Shireen

    2004-03-01

    P-N junction diodes of boron-carbide and silicon have been previously fabricated and used in thermal neutron detection [1, 2]. However, the relation between the structure and electronic behavior of the boron-carbon layer are not fully understood. Thin films of p-type boron-carbon were deposited on Al2O3 substrates using plasma-enhanced chemical vapor deposition (PECVD), approximately 300 nm thick. The precursor compound used was Orthocarborane (closo-1,2-dicarbadodecaborane; C_2B_10H_12). Transport measurements of boron-carbon films on Al_2O3 were performed over a wide range of temperatures (20 K to 500 K). The resistivity at room temperature was found to be approximately 10000 ohm cm, and the temperature dependence showed a linear increase with temperature Analysis of the resistivity revealed the boron-carbon films to be a highly-doped degenerate semiconductor [2]. We discuss the relationship between structure and doping levels in this semiconducting material. [1] Adenwalla, S; Welsch, P; Harken A; Brand, JI; Sezer, A; Robertson, BW; Applied Physics Letters 79(26): 4357-4359 (2001) [2] Robertson, BW; Adenwalla, S; Harken A; Welsch, P; Brand, JI; Dowben, PA; Claasen, JP; Applied Physics Letters 80(19): 3644-3646 (2002) [3] Ashcroft, Neil W., & Mermin, N. David 1976, in Solid State Physics, ed. Thomson (New York: Thomson), 561-585

  19. Carbon-rich icosahedral boron carbide designed from first principles

    SciTech Connect

    Jay, Antoine; Vast, Nathalie; Sjakste, Jelena; Duparc, Olivier Hardouin

    2014-07-21

    The carbon-rich boron-carbide (B{sub 11}C)C-C has been designed from first principles within the density functional theory. With respect to the most common boron carbide at 20% carbon concentration B{sub 4}C, the structural modification consists in removing boron atoms from the chains linking (B{sub 11}C) icosahedra. With C-C instead of C-B-C chains, the formation of vacancies is shown to be hindered, leading to enhanced mechanical strength with respect to B{sub 4}C. The phonon frequencies and elastic constants turn out to prove the stability of the carbon-rich phase, and important fingerprints for its characterization have been identified.

  20. Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates

    SciTech Connect

    Vengosh, A. Hebrew Univ., Jerusalem ); Chivas, A.R.; McCulloch, M.T. ); Kolodny, Y.; Starinsky, A. )

    1991-10-01

    The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.

  1. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  2. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  3. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    SciTech Connect

    Peter C. Eklund; T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

    2011-05-01

    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  4. Effect of nitrogen on the growth of boron doped single crystal diamond

    SciTech Connect

    Karna, Sunil; Vohra, Yogesh

    2013-11-18

    Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profile of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. Furthermore, sharpening and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.

  5. Effect of nitrogen on the growth of boron doped single crystal diamond

    DOE PAGES

    Karna, Sunil; Vohra, Yogesh

    2013-11-18

    Boron-doped single crystal diamond films were grown homoepitaxially on synthetic (100) Type Ib diamond substrates using microwave plasma assisted chemical vapor deposition. A modification in surface morphology of the film with increasing boron concentration in the plasma has been observed using atomic force microscopy. Use of nitrogen during boron doping has been found to improve the surface morphology and the growth rate of films but it lowers the electrical conductivity of the film. The Raman spectra indicated a zone center optical phonon mode along with a few additional bands at the lower wavenumber regions. The change in the peak profilemore » of the zone center optical phonon mode and its downshift were observed with the increasing boron content in the film. Furthermore, sharpening and upshift of Raman line was observed in the film that was grown in presence of nitrogen along with diborane in process gas.« less

  6. Field emission properties of carbon nanotubes coated with boron nitride.

    PubMed

    Park, Noejung; Han, Seungwu; Ihm, Jisoon

    2003-01-01

    Field emission properties of carbon nanotubes coated with a single layer of boron nitride are calculated using the first-principles pseudopotential method. At lower bias voltage, the emission current of the coated nanotube is comparable to that of the bare carbon nanotube and is dominated by the contribution from localized states at the tip of the tube. At higher voltage, newly generated hybridized states between the carbon nanotube tip and the even-membered boron nitride rings contribute significantly to the emission current because they experience a low tunneling barrier compared with the bare carbon nanotube case. Our results suggest that the insulator coating can, besides protecting the nanotube tip from the attack of gas molecules, substantially enhance the field emission current.

  7. Electron transport in HBr adsorbed boron doped carbon nanotube

    NASA Astrophysics Data System (ADS)

    Srivastava, Reena; Shahzad Khan, Md.; Shrivastava, Sadhna; Srivastava, Anurag

    2017-01-01

    A 10,0 pristine as well as boron doped zigzag single walled carbon nanotube has been analyzed as possible HBr sensor using DFT based ab-initio approach. The variation in band structures, Mulliken charge, NBO charge, binding energy and conductance variation has been analyzed. The CNT observes a lowering of bandgap in presence of HBr molecule near its surface and reduces the metallicity of Boron doped CNT. The B-CNT shows semiconducting to metallic transition and on introducing the HBr molecule near the surface, changes its conductance drastically. Strong physisorption is observed for HBr over B-CNT surface as a consequence of electrostatic interaction.

  8. Nature of boron and nitrogen superficial segregation on the Fe-Ni 36 alloys

    SciTech Connect

    Saindrenan, G.; Roptin, D.; Mostefa, L.B. )

    1989-05-01

    In a recent paper, the authors reported the parameters of sulfur bulk diffusion in a Fe-Ni 36 alloy. They were determined by the exploitation of the superficial segregation kinetics obtained by AES studies. The authors have also reported that neither boron nor nitrogen are observed on the free surface of the as received alloys during the various heat treatments up to 1000{degrees}C, but they are observed in the 600--900{degrees}C range, if the material is prior annealed at 1000{degrees}C. The boron and nitrogen elements are shown to cosegregate on the free surface and the observed energy shift (7 eV) of the auger boron peak suggests a strong binding of this element. When the annealing temperature approaches 900{degrees}C these elements disappear from the surface leaving only sulfur strongly segregated at all temperatures studied. Otherwise, working on the Ni{sub 3}Al, another research effort interpreted the boron behavior as indicating that it tends to segregate only to the defective free surface (after ion bombardment) and attribute the absence of boron on the well annealed surfaces to the highly ordered nature and good crystallinity of the near surface regions. The purpose of this paper is to clarify the nature of the superficial cosegregation of boron and nitrogen and the surface layer on the Fe-Ni alloy using AES results and according to Fowler's thermodynamic model.

  9. Investigating controls on boron isotope ratios in shallow marine carbonates

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.

    2017-01-01

    The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives

  10. Suppression of oxidation enhanced boron diffusion in silicon by carbon implantation and characterization of MOSFETs with carbon implanted channels

    SciTech Connect

    Ban, I.; Oeztuerk, M.C.; Demirlioglu, E.

    1996-12-31

    Scaling of MOSFETs into the deep submicron regime requires shallow doping profiles with abrupt doping transitions in the MOSFET active region. In NMOS transistors with boron doped channels, oxidation enhanced diffusion is a key contributor to boron profile broadening. Starting from the arguments presented in several recent reports on the role of carbon in silicon as a sink for self-interstitials, we have explored the feasibility of using carbon in the MOSFET in the active region to retard boron diffusion during gate oxidation. MOSFETs with carbon and boron implanted channels have been fabricated. Boron diffusion, activation, and critical electrical parameters such as subthreshold swing, threshold voltage, and off-state leakage current have been evaluated as a function of the carbon dose. We have shown that carbon can effectively suppress boron diffusion during gate oxidation. However, at dose levels around 10{sup 14}cm{sup -2} carbon results in poor boron activation and degradation in MOSFET performance.

  11. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  12. Imaging carbon and nitrogen concentrations for narcotics and explosives screening

    SciTech Connect

    Trower, W.P.

    1993-12-31

    The author describes a nuclear technique for imaging carbon and nitrogen concentrations with surface densities characteristics of bulk narcotics and concealed explosives, the Carbon and the Nitrogen Camera. The physics is rooted in the tightly bound carbon-12 nucleus to which its neighboring isobars, nitrogen-12 and boron-12, decay rapidly (11 and 20 ms), mostly to its ground state, by emitting energetic beta particles (E{sub {beta}}{sup max} {approximately} 13 and 17 MeV) all of which produce bremsstrahlung and some yield annihilate radiation. The signal, photons detected in the multiscalar mode, results from the reactions {sup 13}C({gamma},p){sup 12}{Beta} for the bulk narcotics application and {sup 14}N({gamma},2n){sup 12}N and 14N({gamma},2p){sup 12}{Beta} for explosives detection and are initiated by a stepped pulsed electron beam with energy of {approximately} 30 and {approximately} 50 MeV, respectively. Images of 180 {approximately} 5 cm{sup 2} pixels taken in {approximately} 7 seconds will be presented of the carbon in a kilo of cocaine and the nitrogen in 125 grams of SEMTEX.

  13. Boron

    USDA-ARS?s Scientific Manuscript database

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  14. Boron aggregation in the ground states of boron-carbon fullerenes

    NASA Astrophysics Data System (ADS)

    Mohr, Stephan; Pochet, Pascal; Amsler, Maximilian; Schaefer, Bastian; Sadeghi, Ali; Genovese, Luigi; Goedecker, Stefan

    2014-01-01

    We present unexpected structural motifs for boron-carbon nanocages of the stoichiometries B12C48 and B12C50, based on first-principles calculations. These configurations are distinct from those proposed so far because the boron atoms are not isolated and distributed over the entire surface of the cages, but rather aggregate at one location to form a patch. Our putative ground state of B12C48 is 1.8 eV lower in energy than the previously proposed ground state and violates all the suggested empirical rules for constructing low-energy fullerenes. The B12C50 configuration is energetically even more favorable than B12C48, showing that structures derived from the C60 buckminsterfullerene are not necessarily magic sizes for heterofullerenes.

  15. Magnetism of single-walled silicon carbide nanotubes doped by boron, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Maghnaoui, Ahmed; Boufelfel, Ahmed

    2012-09-01

    We calculated, using spin polarized density functional theory, the electronic properties of zigzag (10,0) and armchair (6,6) semiconductor silicon carbide nanotubes (SiCNTs) doped once at the time with boron, nitrogen, and oxygen. We have looked at the two possible scenarios where the guest atom X (B, N, O), replaces the silicon XSi, or the carbon atom XC, in the unit cell. We found that in the case of one atom B @ SiCNT replacing a carbon atom position annotated by BC exhibits a magnetic moment of 1 μB/cell in both zigzag and armchair nanotubes. Also, B replacing Si, (BSi), induce a magnetic moment of 0.46 μB/cell in the zigzag (10,0) but no magnetic moment in armchair (6,6). For N substitution; (NC) and (NSi) each case induce a magnetic moment of 1 μB/cell in armchair (6,6), while NSi give rise to 0.75 μB/cell in zigzag (10,0) and no magnetic moment for NC. In contrast the case of OC and OSi did not produce any net magnetic moment in both zigzag and armchair geometries.

  16. Sorption of boron trifluoride by activated carbons

    SciTech Connect

    Polevoi, A.S.; Petrenko, A.E.

    1988-01-10

    The sorption of born trifluoride on AG-3, SKT, SKT-3, SKT-7, SKT-4A, SKT-6A, and SKT-2B carbons was investigated. The sorption isotherms for both vapors and gas were determined volumetrically. The coefficients of two equations described the sorption of BF/sub 3/ in the sorption of BF/sub 3/ on active carbons. Heats of sorption of BF/sub 3/ on the activated carbons are shown and the sorption isotherms and temperature dependences of the equilibrium pressure of BF/sub 3/ for activated carbons were presented. The values of the heats of sorption indicated the weak character of the reaction of BF/sub 3/ with the surface of the carbons. The equations can be used for calculating the phase equilibrium of BF/sub 3/ on carbons in a wider range of temperatures and pressures.

  17. Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study. Phase I

    NASA Technical Reports Server (NTRS)

    Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.

    2012-01-01

    The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content

  18. The ternary system uranium-boron-carbon

    NASA Astrophysics Data System (ADS)

    Rogl, Peter; Bauer, Josef; Debuigne, Jean

    1989-04-01

    Phase equilibria in the ternary system U-B-C have been established by means of X-ray, metallographic and melting point analyses in the temperature range from 1000 ° C to melting. Three ternary compounds were found to exist: besides the well known monoboroncarbide UBC two new uranium boroncarbides, UB 2C and "U 5B 2C 7". Ternary phase equilibria are characterized by the incompatibility of uranium metal with boroncarbide B 4C and by the incompatibility of elemental boron and uranium carbides; an isothermal section of the system U-B-C at 1600° C is presented. At high temperatures the crystal structure of UB 2C was found to be isotypic with the homologous compound ThB 2C; at temperatures below (1675 ± 25)°C h-UB 2C transforms into a low temperature modification with a new (unknown) structure type. The crystal structure of "U 5B 2C 7" is closely related to the structure type of Ho 5B 2C 6-7 as a derivative of La 52C 6 Employing the Pirani-technique, congruent melting was revealed for UBC and UB 2C at (2144 ± 25)°C and (2282 ± 30)°C respectively. Using the clear-cross principle in studying possible phase reactions, the thermodynamic stabilities of UBC, UB 2C and U 5B 2C 7 were estimated.

  19. Investigating Carbonate System Perturbations across the Cretaceous-Palaeogene Transition using Boron Isotopes in Planktonic Foraminifera.

    NASA Astrophysics Data System (ADS)

    Henehan, M. J.; Hull, P. M.; Planavsky, N. J.; Huber, B. T.; Thomas, E.

    2014-12-01

    The interval spanning the latest Maastrichtian to the early Palaeocene has great potential in helping to elucidate the stabilising mechanisms on the Earth's carbonate system on both long and very short geological timescales, from the geologically-instantaneous production of sulphate-rich aerosols and nitrogen oxides from the K-Pg bolide impact to the relatively more gradual degassing from Deccan volcanism in the latest Maastrichtian. The extent to which ocean pH (and atmospheric CO2 concentrations) changed in response to these contrasting acidification pressures, and the timescales of their recovery, may provide unique insight into the efficiency of the Earth's oceans in buffering greenhouse gas increases (through carbonate dissolution, weathering-derived alkalinity flux, and biological carbon cycling). The boron isotope palaeo-pH proxy in planktic foraminifera is well suited to such investigations, but its application over this interval has been problematic, not least due to a scarcity of sample material and a near-complete turnover of planktonic foraminiferal species across the K-Pg boundary. To attempt to circumvent these issues, we investigate the biological influences on boron isotope signals in Maastrichtian and Danian planktonic foraminifera, with the goal of producing more accurate palaeo-pH reconstructions. With these findings in mind, we present preliminary constraints on ocean pH and carbonate system dynamics across this critical interval of geological time.

  20. How to efficiently tune the biradicaloid nature of acenes by chemical doping with boron and nitrogen.

    PubMed

    Pinheiro, Max; Ferrão, Luiz F A; Bettanin, Fernanda; Aquino, Adélia J A; Machado, Francisco B C; Lischka, Hans

    2017-07-26

    Acenes are fascinating polyaromatic compounds that combine impressive semiconductor properties with an open-shell character by varying their molecular sizes. However, the increasing chemical instabilities related to their biradicaloid structures pose a great challenge for synthetic chemistry. Modifying the π-bond topology through chemical doping allows modulation of the electronic properties of graphene-related materials. In spite of the practical importance of these techniques, remarkably little is known about the basic question - the extent of the radical character created or quenched thereby. In this work, we report a high-level computational study on two acene oligomers doubly-doped with boron and nitrogen, respectively. These calculations demonstrate precisely which the chemical route is in order to either quench or enhance the radical character. Moving the dopants from the terminal rings to the central ones leads to a remarkable variation in the biradicaloid character (and thereby also in the chemical stability). This effect is related to a π-charge transfer involving the dopants and the radical carbon centers at the zigzag edges. This study also provides specific guidelines for a rational design of large polyaromatic compounds with enhanced chemical stability.

  1. Phase diagram of boron carbide with variable carbon composition

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Gao, Qin; Widom, Michael

    2017-02-01

    Boron carbide exhibits intrinsic substitutional disorder over a broad composition range. The structure consists of 12-atom icosahedra placed at the vertices of a rhombohedral lattice, together with a 3-atom chain along the threefold axis. In the high-carbon limit, one or two carbon atoms can replace boron atoms on the icosahedra while the chains are primarily of type C-B-C. We fit an interatomic pair interaction model to density-functional-theory total energies to investigate the substitutional carbon disorder. Monte Carlo simulations with sampling improved by replica exchange and augmented by two-dimensional multiple histogram analysis predict three phases. The low-temperature, high-carbon-composition monoclinic C m structure disorders through a pair of phase transitions, first via an Ising-like transition to a monoclinic centrosymmetric state with space group C 2 /m , then via a first-order three-state Potts-like transition to the experimentally observed rhombohedral R 3 ¯m symmetry.

  2. Effect of Carbon Doping on the Electronic Structure and Elastic Properties of Boron Suboxide

    DTIC Science & Technology

    2015-06-01

    of Boron Suboxide by Amol B Rahane, Jennifer S Dunn, and Vijay Kumar Approved for public release; distribution unlimited...Laboratory Effect of Carbon Doping on the Electronic Structure and Elastic Properties of Boron Suboxide by Amol B Rahane and Vijay Kumar Dr...SUBTITLE Effect of Carbon Doping on the Electronic Structure and Elastic Properties of Boron Suboxide 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  3. The role of substitutional boron in carbon oxidation: Inhibitor and catalyst!

    SciTech Connect

    Radovic, L.R.; Karra, M.; Thrower, P.A.

    1996-10-01

    Boron is considered to be one of the very few promising candidates for chemical protection of carbon/carbon composite materials against oxidation. The conventional wisdom is that boron inhibits carbon oxidation. Its inhibiting effect can be manifested in three different ways: (1) Substitutional boron enhances the graphitization of carbon. (2) As the surface carbon atoms are consumed, substitutional boron forms an oxide surface film, which acts as an O{sub 2} diffusion harrier and an active site blocker. (3) Substitutional boron redistributes the {pi} electrons in the basal plane (graphene layer), lowers the Fermi level of carbon, and hence presumably inhibits the desorption of CO and CO{sub 2}. This last mode of inhibition is of great fundamental interest; it had not been verified in the past. Upon closer examination of some early studies, its closer scrutiny is wan-anted. We provide such a scrutiny in the present communication. Three widely differing carbon materials were used: a heat-treated ({open_quote}graphitized{close_quote}) carbon black (Graphon), Saran char and a glassy carbon. Boron was introduced substitutionally into the quasi-graphitic lattice by heating these carbons, physically mixed with boron powder. Isothermal carbon oxidation experiments were performed. In selected cases, the reactive surface area of the carbons was determined.

  4. Density of states of helically symmetric boron carbon nitride nanotubes.

    PubMed

    Carvalho, A C M; Bezerra, C G; Lawlor, J A; Ferreira, M S

    2014-01-08

    Motivated by the existence of helical wrapping patterns in composite nanotube systems, in this work we study the effects of the helical incorporation of carbon atoms in boron nitride nanotubes. We consider the substitutional carbon atoms distributed in stripes forming helical patterns along the nanotube axis. The density of states and energy band gap were calculated adopting Green function formalism by using the Rubio-Sancho technique in order to solve the matrix Dyson equation. We report the effects of the helical atomic distribution of carbon atoms on the behaviour of the density of states and the energy band gap. In particular, we show that the electronic energy band gap displays a non-monotonical dependence on the helical pattern, oscillating as a function of the helical angle θ.

  5. PAMELA measurements of the boron and carbon spectra

    NASA Astrophysics Data System (ADS)

    Mori, N.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-08-01

    The satellite-borne PAMELA experiment is aimed at precision measurements of the charged light component of the cosmic-ray spectrum, with a particular focus on antimatter. It consists of a magnetic spectrometer, a time-of-flight system, an electromagnetic calorimeter with a tail catcher scintillating layer, an anticoincidence system and a neutron detector. PAMELA has measured the absolute fluxes of boron and carbon and the B/C ratio, which plays a central role in galactic propagation studies in order to derive the injection spectra at sources from measurements at Earth. In this paper, the data analysis techniques and the final results are presented.

  6. Theoretical Compton profile of diamond, boron nitride and carbon nitride

    NASA Astrophysics Data System (ADS)

    Aguiar, Julio C.; Quevedo, Carlos R.; Gomez, José M.; Di Rocco, Héctor O.

    2017-09-01

    In the present study, we used the generalized gradient approximation method to determine the electron wave functions and theoretical Compton profiles of the following super-hard materials: diamond, boron nitride (h-BN), and carbon nitride in its two known phases: βC3N4 and gC3N4 . In the case of diamond and h-BN, we compared our theoretical results with available experimental data. In addition, we used the Compton profile results to determine cohesive energies and found acceptable agreement with previous experiments.

  7. Carbon nanotube quantum dots on hexagonal boron nitride

    SciTech Connect

    Baumgartner, A. Abulizi, G.; Gramich, J.; Schönenberger, C.; Watanabe, K.; Taniguchi, T.

    2014-07-14

    We report the fabrication details and low-temperature characteristics of carbon nanotube (CNT) quantum dots on flakes of hexagonal boron nitride (hBN) as substrate. We demonstrate that CNTs can be grown on hBN by standard chemical vapor deposition and that standard scanning electron microscopy imaging and lithography can be employed to fabricate nanoelectronic structures when using optimized parameters. This proof of concept paves the way to more complex devices on hBN, with more predictable and reproducible characteristics and electronic stability.

  8. Nitrogen, phosphorus, carbon and population.

    PubMed

    Gilland, Bernard

    2015-01-01

    Population growth makes food production increase necessary; economic growth increases demand for animal products and livestock feed. As further increase of the cropland area is ecologically undesirable, it is necessary to increase crop yields; this requires, inter alia, more nitrogen and phosphorus fertiliser despite the environmental problems which this will exacerbate. It is probable that a satisfactory food supply and an environmentally benign agriculture worldwide cannot be achieved without reducing population to approximately three billion. The reduction could be achieved by 2200 if the total fertility rate--currently 2.5--declined to 1.5 as a world average by 2050, and remained at that level until 2200, but the probability of such a global fertility trajectory is close to zero. It will also be necessary to replace fossil energy by nuclear and renewable energy in order to stabilise atmospheric carbon dioxide concentration, but the phase-out cannot be completed until the 22nd century, when the atmospheric concentration will be approximately 50% above the 2015 level of 400 ppm.

  9. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGES

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  10. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    SciTech Connect

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; Zhou, Wu; Yang, Shubin; Ye, Gonglan; Liu, Zheng; Peng, Zhiwei; Lou, Jun; Vajtai, Robert; Yakobson, Boris I.; Tour, James M.; Ajayan, Pulickel M.

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energy barriers of the rate-determining steps of the ORR reaction.

  11. Convert Graphene Sheets to Boron Nitride and Boron Nitride-Carbon Sheets via a Carbon-Substitution-Reaction

    SciTech Connect

    Han, W.; Yu, H.-G.; Liu. Z.

    2011-05-16

    Here we discuss our synthesis of highly crystalline pure boron nitride (BN) and BN-carbon (BN-C) sheets by using graphene sheets as templates via a carbon-substitution reaction. Typically, these sheets are several micrometers wide and have a few layers. The composition ratios of BN-C sheets can be controlled by the post-treatment (remove carbon by oxidation) temperature. We also observed pure BN and BN-C nanoribbons. We characterized the BN-C sheets via Raman spectroscopy and density functional theory calculations. The results reveal that BN-C sheets with an armchair C-BN chain, and embedded C{sub 2} or C{sub 6} units in BN-dominated regions energetically are the most favorable.

  12. Convert Graphene Sheets to Boron Nitride and Boron Nitride-carbon Sheets via a Carbon-substitution Reaction

    SciTech Connect

    W Han; H Yu; Z Liu

    2011-12-31

    Here we discuss our synthesis of highly crystalline pure boron nitride (BN) and BN-carbon (BN-C) sheets by using graphene sheets as templates via a carbon-substitution reaction. Typically, these sheets are several micrometers wide and have a few layers. The composition ratios of BN-C sheets can be controlled by the post-treatment (remove carbon by oxidation) temperature. We also observed pure BN and BN-C nanoribbons. We characterized the BN-C sheets via Raman spectroscopy and density functional theory calculations. The results reveal that BN-C sheets with an armchair C-BN chain, and embedded C2 or C6 units in BN-dominated regions energetically are the most favorable.

  13. Boron

    MedlinePlus

    ... body handles other minerals such as magnesium and phosphorus. It also seems to increase estrogen levels in ... happens in men.PhosphorusSupplemental boron might reduce blood phosphorus levels in some people.

  14. Determination of nitrogen in boron carbide by instrumental photon activation analysis.

    PubMed

    Merchel, Silke; Berger, Achim

    2007-05-01

    Boron carbide is widely used as industrial material, because of its extreme hardness, and as a neutron absorber. As part of a round-robin exercise leading to certification of a new reference material (ERM-ED102) which was demanded by the industry we analysed nitrogen in boron carbide by inert gas fusion analysis (GFA) and instrumental photon activation analysis (IPAA) using the 14N(gamma,n)13N nuclear reaction. The latter approach is the only non-destructive method among all the methods applied. By using photons with energy below the threshold of the 12C(gamma,n)11C reaction, we hindered activation of matrix and other impurities. A recently installed beam with a very low lateral activating flux gradient enabled us to homogeneously activate sample masses of approximately 1 g. Taking extra precautions, i.e. self-absorption correction and deconvolution of the complex decay curves, we calculated a nitrogen concentration of 2260+/-100 microg g-1, which is in good agreement with our GFA value of 2303+/-64 microg g-1. The values are the second and third highest of a rather atypical (non-S-shape) distribution of data of 14 round-robin participants. It is of utmost importance for the certification process that our IPAA value is the only one not produced by inert gas fusion analysis and, therefore, the only one which is not affected by a possible incomplete release of nitrogen from high-melting boron carbide.

  15. Preparation of nitrogen-doped carbon tubes

    DOEpatents

    Chung, Hoon Taek; Zelenay, Piotr

    2015-12-22

    A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.

  16. Carbon Cost of Applying Nitrogen Fertilizer

    SciTech Connect

    Izaurralde, R Cesar C. ); Mcgill, William B.; Rosenberg, Norman J.

    2000-05-05

    When the addition of nitrogen (N) fertilizer leads to increased crop biomass, it also augments carbon (C)inputs to the soil and, hence often increases soil organic matter. Consequently, the efficient use of fertilizer N to increase crop production has also been found valuable for sequestering atmospheric carbon in soil.

  17. TCAD modeling and simulation of boron deactivation in NMOS carbon-implanted channel

    NASA Astrophysics Data System (ADS)

    Mok, K. R. C.; Benistant, F.; Teo, R. S.; Chu, S.

    2009-06-01

    Carbon co-implant is well known to suppress boron transient enhanced diffusion (TED) in silicon. The modeling of carbon-interstitial clusters (CICs) has been extensively studied and is now widely used in Technology Computer Aided Design (TCAD). It has already been reported in literature that carbon implant in the channel of NMOS transistor is highly effective for the suppression of oxidation-enhanced diffusion (OED) of boron while leading to poor boron activation. In order to account for this deactivation, we need to consider that the active boron equilibrium concentration is modified by the presence of carbon in non-amorphized silicon region with high concentration of interstitials. In this paper, for the first time, we show the effective TCAD modeling of boron deactivation in the presence of carbon in a NMOS transistor. The model is based on boron-carbon-interstitial clusters formed in the non-amorphized silicon region, thereby reducing active boron concentration. The model can be applied to accurately predict variations of threshold voltage as a function of channel length for NMOS devices with carbon implanted into the channel or halo regions. The tool used in this work is a commercial simulator based on the continuum approach.

  18. Cubic boron nitride thin film growth by boron and nitrogen ion implantation

    SciTech Connect

    Eyhusen, S.; Ronning, C.; Hofsaess, H.

    2005-08-01

    Cubic boron nitride (c-BN) thin films were deposited on silicon substrates using mass separated ion beam deposition (MSIBD). In order to investigate the influence of the ion energy on the growth of c-BN films, {sup 11}B{sup +} and {sup 14}N{sup +} ions were implanted into c-BN with ion energies ranging from 5 keV to 43 keV and substrate temperatures (T{sub S}) from room temperature (RT) to 250 deg. C. A systematic study on the interplay of E{sub ion} and T{sub S} has revealed a characteristic energy-dependent temperature threshold for c-BN growth. This behavior is explained by dynamic annealing of defects caused by a penetrating ion in a collision cascade. In this picture, the suppression of defect accumulation that is crucial for maintaining cubic phase formation is attributed to temperature-driven back diffusion and subsequent annihilation of B and N interstitial recoils. The model is confirmed by analyzing the depth profile of implanted, isotopically pure {sup 10}B, and its application for both c-BN nucleation and growth is discussed.

  19. Characteristic Study of Boron Doped Carbon Nanowalls Films Deposited by Microwave Plasma Enhanced Chemical Vapor Deposition.

    PubMed

    Lu, Chunyuan; Dong, Qi; Tulugan, Kelimu; Park, Yeong Min; More, Mahendra A; Kim, Jaeho; Kim, Tae Gyu

    2016-02-01

    In this research, catalyst-free vertically aligned boron doped carbon nanowalls films were fabricated on silicon (100) substrates by MPECVD using feeding gases CH4, H2 and B2H6 (diluted with H2 to 5% vol) as precursors. The substrates were pre-seeded with nanodiamond colloid. The fabricated CNWs films were characterized by Scanning Electron Microscopy (SEM) and Raman Spectroscopy. The data obtained from SEM confirms that the CNWs films have different density and wall thickness. From Raman spectrum, a G peak around 1588 cm(-1) and a D band peak at 1362 cm(-1) were observed, which indicates a successful fabrication of CNWs films. The EDX spectrum of boron doped CNWs film shows the existence of boron and carbon. Furthermore, field emission properties of boron doped carbon nanowalls films were measured and field enhancement factor was calculated using Fowler-Nordheim plot. The result indicates that boron doped CNWs films could be potential electron emitting materials.

  20. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition (CVD) of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented to show how the principal residual stresses and the filament elongation vary as the parameters defining deposition strain and creep are varied. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. This comparison requires that for good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and that the build-up of residual stresses is limited by significant boron and carbon creep rates.

  1. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.

  2. Production and Characterization of Novel Boron-Carbon Molecules.

    NASA Astrophysics Data System (ADS)

    Larson, C. William; Sheehy, Jeffrey A.; Mills, Jeffrey D.

    1998-03-01

    A family of B_jC_i-j (i=3-12; j=0-2) molecules is identified through matrix-isolation spectroscopy and ab initio calculations. Highly atomized boron/carbon mixtures (B/C ≈1/3) are produced by resistively heating the refractory powders to ≈3000 K in a Presilla oven and co-condensing the resultant vapor with argon onto a 10 K substrate. Experiments are performed with the ^11B/^10B isotope ratio ranging between 4.0 and 0.25. Fourier transform infrared spectra of initially deposited and annealed samples are reported; atoms, dimers, and trimers are depleted upon annealing as larger clusters become more prominent. With the exception of the triatomic molecules, which are symmetric triangles, all the identified clusters are linear, with boron atoms capping their ends. Density-functional and coupled-cluster calculations of harmonic frequencies, infrared intensities, and isotopic shifts are compared with the measured data to assign the spectra and to obtain absolute cluster distributions. Yields follow the order BC_i-1 >= Ci >= B_2C_i-2 for clusters with the same number of atoms, and the yields of three-, six-, nine-, and twelve-atom molecules are enhanced over statistical predictions. These observations are consistent with a condensation model where atoms, dimers, and trimers are mobile during annealing, and where the B_2C_i-2 clusters are inert to further condensation.

  3. Effect of Nitrogen Post-Doping on a Commercial Platinum-Ruthenium/Carbon Anode Catalyst

    DTIC Science & Technology

    2014-02-15

    5e17], boron [15,16], phosphorus [16], sulfur [17], iodine [18], and fluorine [18] can effectively change the physical, chemi- cal and electronic...abundance, accessibility, low health risk , and prom- ising results [7,20e23]. Noble-metal nanoparticle catalysts sup- ported on nitrogen-modified carbon...oxide species. XPS also shows that the post-doped materials are more deficient in metallic Ru components when compared to the unmodifiedmaterial. This

  4. Effect of dissolved organic carbon in recycled wastewaters on boron adsorption by soils

    USDA-ARS?s Scientific Manuscript database

    In areas of water scarcity, recycled municipal wastewaters are being used as water resources for non-potable applications, especially for irrigation. Such wastewaters often contain elevated levels of dissolved organic carbon (DOC) and solution boron (B). Boron adsorption was investigated on eight ...

  5. Microwave-assisted boron and nitrogen co-doped reduced graphene oxide as a transparent conductive electrode

    NASA Astrophysics Data System (ADS)

    Umrao, Sima; Mishra, Himanshu; Srivastava, Anchal; Lee, Sungjoo

    2017-07-01

    A crystalline Boron (B)- and Nitrogen (N)-co-doped microwave-assisted reduced graphene oxide (BNMRGO) film was investigated as a potential transparent conducting electrode (TCE) material. X-ray diffraction results revealed the good crystallinity of the BNMRGO film, and the presence of a (0004) reflection plane indicated the formation of a few small domains of hexagonal boron nitride in the microwave assisted reduced graphene oxide (MRGO) sheets under the co-doping process. Raman and X-ray photoelectron spectroscopic results indicated a reduction of sp3 carbon centers upon co-doping. The ID/IG ratio decreased after co-doping from 0.89 to 0.24, indicating a low average defect density of ˜1.01 × 1010 cm-2. Optoelectronic characterization of the BNMRGO film on a glass substrate revealed a high optical transparency of 82% at 550 nm and a low sheet resistance (Rsh) of 355 Ω/sq, which was lower than that observed from the MRGO sheets (Rsh = 719 Ω/sq). BNMRGO provided a ratio between the direct conductivity (σdc) to the optical conductivity (σoc), that is, the figure of merit of a TCE material, of 5.96. Overall, this work paves the way toward developing a manufacturable TCE.

  6. Porous boron-doped diamond/carbon nanotube electrodes.

    PubMed

    Zanin, H; May, P W; Fermin, D J; Plana, D; Vieira, S M C; Milne, W I; Corat, E J

    2014-01-22

    Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension of nanodiamond in methanol causing them to clump together into "teepee" or "honeycomb" structures. These nanostructured CNT/BDD composite electrodes have been extensively characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. Not only do these electrodes possess the excellent, well-known characteristics associated with BDD (large potential window, chemical inertness, low background levels), but also they have electroactive areas and double-layer capacitance values ∼450 times greater than those for the equivalent flat BDD electrodes.

  7. Electrochemical behavior of nitrogen gas species adsorbed onto boron-doped diamond (BDD) electrodes.

    PubMed

    Manzo-Robledo, A; Lévy-Clément, C; Alonso-Vante, N

    2007-11-06

    The adsorption of nitrogen species, in neutral electrolyte solutions, onto boron-doped diamond (BDD) electrode surfaces from dissolved NO2, NO, and N2O gases was induced at 0 V/SCE. Modified BDD electrode surfaces showed a different electrochemical response toward the hydrogen evolution reaction than did a nonmodified electrode surface in electrolyte base solution. The formation of molecular hydrogen and nitrogen gaseous species was confirmed by the online differential electrochemical mass spectrometry (DEMS) technique. Among the three nitrogen oxides gases, NO2 substantially modifies the electrolyte via hydrolysis leading to the formation of NO3- and its adsorption on the BDD electrode surface. The BDD/(NO3-) interface was the only N2O and N2 species generating system.

  8. Next Generation Carbon-Nitrogen Dynamics Model

    NASA Astrophysics Data System (ADS)

    Xu, C.; Fisher, R. A.; Vrugt, J. A.; Wullschleger, S. D.; McDowell, N. G.

    2012-12-01

    Nitrogen is a key regulator of vegetation dynamics, soil carbon release, and terrestrial carbon cycles. Thus, to assess energy impacts on the global carbon cycle and future climates, it is critical that we have a mechanism-based and data-calibrated nitrogen model that simulates nitrogen limitation upon both above and belowground carbon dynamics. In this study, we developed a next generation nitrogen-carbon dynamic model within the NCAR Community Earth System Model (CESM). This next generation nitrogen-carbon dynamic model utilized 1) a mechanistic model of nitrogen limitation on photosynthesis with nitrogen trade-offs among light absorption, electron transport, carboxylation, respiration and storage; 2) an optimal leaf nitrogen model that links soil nitrogen availability and leaf nitrogen content; and 3) an ecosystem demography (ED) model that simulates the growth and light competition of tree cohorts and is currently coupled to CLM. Our three test cases with changes in CO2 concentration, growing temperature and radiation demonstrate the model's ability to predict the impact of altered environmental conditions on nitrogen allocations. Currently, we are testing the model against different datasets including soil fertilization and Free Air CO2 enrichment (FACE) experiments across different forest types. We expect that our calibrated model will considerably improve our understanding and predictability of vegetation-climate interactions.itrogen allocation model evaluations. The figure shows the scatter plots of predicted and measured Vc,max and Jmax scaled to 25 oC (i.e.,Vc,max25 and Jmax25) at elevated CO2 (570 ppm, test case one), reduced radiation in canopy (0.1-0.9 of the radiation at the top of canopy, test case two) and reduced growing temperature (15oC, test case three). The model is first calibrated using control data under ambient CO2 (370 ppm), radiation at the top of the canopy (621 μmol photon/m2/s), the normal growing temperature (30oC). The fitted model

  9. Synthesis and Raman Characterization of Boron Doped Single Walled Carbon Nanotubes (SWNTs)

    NASA Astrophysics Data System (ADS)

    McGuire, K.; Gothard, N.; Gai, P. L.; Chao, S. G.; Dresselhaus, M. S.; Rao, A. M.

    2003-11-01

    Boron-doped SWNTs were prepared by pulsed laser vaporization of carbon targets containing boron with concentrations ranging between 0.5 - 10 at%. As-prepared samples were characterized using Raman spectroscopy and HRTEM measurements. Above a threshold boron concentration of 3 at%, the growth of SWNT bundles ceases due to the low solubility of boron in carbon at ˜1200 ^oC. Interestingly, a few ˜0.5 nm diameter single walled tubes are found, along with nanographitic material in the soot generated from a target with a boron concentration of ˜7 at%. As expected, the intensity of the ˜1350 cm-1 D-band increases with increasing boron concentration due to boron substitution into the honeycomb lattice. Both the radial breathing mode and tangential G- bands were observed in the Raman spectra in samples with <3 at % boron at ˜186 cm-1 and ˜1591 cm-1, respectively. Implications of boron doping in the nanotube shell will be discussed.

  10. Synthesis and Raman Characterization of Boron Doped Single Walled Carbon Nanotubes (SWNTs)

    NASA Astrophysics Data System (ADS)

    McGuire, K.; Gothard, N.; Gai, P. L.; Chou, S. G.; Dresselhaus, M. S.; Rao, A. M.

    2003-03-01

    Boron-doped SWNTs were prepared by pulsed laser vaporization of carbon targets containing boron with concentrations ranging between 0.5 - 10 at%. As-prepared samples were characterized using Raman spectroscopy and HRTEM measurements. Above a threshold boron concentration of 3 at%, the growth of SWNT bundles ceases due to the low solubility of boron in carbon at ˜1200 ^oC. Interestingly, a few ˜0.5 nm diameter single walled tubes are found, along with nanographitic material in the soot generated from a target with a boron concentration of ˜7 at%. As expected, the intensity of the ˜1350 cm-1 D-band increases with increasing boron concentration due to boron substitution into the honeycomb lattice. Both the radial breathing mode and tangential G- bands were observed in the Raman spectra in samples with <3 at % boron at ˜186 cm-1 and ˜1591 cm-1, respectively. Implications of boron doping in the nanotube shell will be discussed.

  11. Stability and molecular properties of the boron-nitrogen alternating analogs of azulene and naphthalene: a computational study.

    PubMed

    Catão, Anderson José Lopes; López-Castillo, Alejandro

    2017-04-01

    In this work, the spectroscopic information, stability and aromaticity of the boron-nitrogen azulene and naphthalene molecules are provided by the use of CC2 (geometry optimization, dipole moment, UV-vis spectrum calculations) and DFT (vibrational spectrum and NMR calculations) methodologies. One isomer of the investigated boron-nitrogen naphthalene (boroazanaphthalene) and two isomers of boron-nitrogen azulene, 1,3,4,6,8-pentaaza-2,3a,5,7,8a-pentaboraazulene (BN-azulene) and 2,3a,5,7,8a-pentaaza-1,3,4,6,8- pentaboraazulene (NB-azulene), are stable systems. However, these molecules have different properties, i.e., different stability, dipole moment, and aromaticity based on the NICS approach. BN-naphthalene has a high dipole moment magnitude showing high polar character, while naphthalene is apolar. BN- and NB-azulene are weakly polar, while ordinary azulene is highly polar in character. Also, substitution of C atoms by B and N atoms decreases the aromaticity. In the case of NB-azulene, the seven-membered ring has anti-aromaticity behavior while both rings of BN-azulene exhibit aromaticity. We expect that the new theoretical data provided in this work will be useful in identifying and characterizing experimentally the compounds investigated, and in helping our understanding of the chemistry of boron-nitrogen molecules. Graphical abstract Boron-nitrogen alternating analogs of azulene. Spectral distinction between isomers.

  12. Electron knock-on cross section of carbon and boron nitride nanotubes

    SciTech Connect

    Zobelli, A.; Gloter, A.; Colliex, C.; Ewels, C. P.; Seifert, G.

    2007-06-15

    We present a theoretical description of electron irradiation of single-walled carbon and boron nitride nanotubes. In a first step, the anisotropy of the atomic emission energy threshold is obtained within extended molecular-dynamics simulations based on the density-functional tight-binding method. In a second step, we numerically derive the total Mott cross section for different emission sites as a function of the incident electron energy. Two regimes are then described: at low irradiation energies (below 300 keV), the atoms are preferentially ejected from the upper and lower parts of the tube, while at high energies (above 300 keV), the atoms are preferentially ejected from the side walls. Typical values from a fraction of barn (at side wall for 150 keV electron) up to around 20 barn (for 1 MeV electrons) are obtained for the total cross section of knock-on processes for both C and BN nanotubes. These values are smaller than those previously reported using isotropic models and the main reasons for the discrepancies are discussed. Finally, in boron nitride nanotubes, we report that the emission energy threshold maps show boron sputtering to be more favorable for low irradiation energies, while nitrogen sputtering is more favorable at high energies. These calculations of the total knock-on cross section for various nanotubes can be used as a guideline for transmission electron microscopy experimentalists using high energy focused beams to shape nanotubes, and also more generally if electron irradiation is to be used to change nanotube properties such as their optical behavior or conductivity.

  13. Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts

    NASA Astrophysics Data System (ADS)

    Rosolen, J. Mauricio; Tronto, Simone; Marchesin, Marcel S.; Almeida, Erica C.; Ferreira, Neidenei G.; Patrick Poá, C. H.; Silva, S. Ravi P.

    2006-02-01

    The electron field emission of carbon nanotube (CNT)/boron-doped diamond (BDD)/carbon felt electrodes (CNT/BDD/felt) have been investigated. The composite electrode was initially prepared with the growth of BDD on carbon felt and the subsequent growth of CNT by chemical decomposition of methanol. The composite electrodes were characterised using scanning electron microscopy and transmission electron microscopy. For the CNT/BDD/felt samples, the electron field emission was observed at macroscopic fields as low as 1.1Vμm-1. The emission current versus time plot shows significant potential for future field emission applications.

  14. Worldwide organic soil carbon and nitrogen data

    SciTech Connect

    Zinke, P.J.; Stangenberger, A.G.; Post, W.M.; Emanual, W.R.; Olson, J.S.

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  15. Electrochemical wastewater treatment: influence of the type of carbon and of nitrogen on the organic load removal.

    PubMed

    Fernandes, Annabel; Coelho, João; Ciríaco, Lurdes; Pacheco, Maria José; Lopes, Ana

    2016-12-01

    Boron-doped diamond (BDD) and Ti/Pt/PbO2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH4(+), which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals.

  16. Gap state related blue light emitting boron-carbon core shell structures

    SciTech Connect

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Akshay; Kumar, Manjeet; Bala, Rajni; Thakur, Anup

    2016-05-06

    Boron-carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  17. Gap state related blue light emitting boron-carbon core shell structures

    NASA Astrophysics Data System (ADS)

    Singh, Paviter; Kaur, Manpreet; Singh, Bikramjeet; Kaur, Gurpreet; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2016-05-01

    Boron- carbon core shell structures have been synthesized by solvo-thermal synthesis route. The synthesized material is highly pure. X-ray diffraction analysis confirms the reduction of reactants in to boron and carbon. Scanning Electron Microscopy (SEM) analysis showed that the shell is uniform with average thickness of 340 nm. Photo luminescence studies showed that the material is blue light emitting with CIE color coordinates: x=0.16085, y=0.07554.

  18. Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping

    SciTech Connect

    Wu, Yichao; Yu, Xuegong He, Hang; Chen, Peng; Yang, Deren

    2015-03-09

    We have investigated the influence of carbon co-doping on the formation of boron-oxygen defects in Czochralski silicon. It is found that carbon can effectively suppress the formation of boron-oxygen defects. Based on our experiments and first-principle theoretical calculations, it is believed that this effect is attributed to the formation of more energetically favorable carbon-oxygen complexes. Moreover, the diffusion of oxygen dimers in carbon co-doped silicon also becomes more difficult. All these phenomena should be associated with the tensile stress field induced by carbon doping in silicon.

  19. Carbon-assisted chemical vapor deposition of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Ismach, Ariel; Chou, Harry; Mende, Patrick; Dolocan, Andrei; Addou, Rafik; Aloni, Shaul; Wallace, Robert; Feenstra, Randall; Ruoff, Rodney S.; Colombo, Luigi

    2017-06-01

    We show that in a low-pressure chemical vapor deposition (CVD) system, the residual oxygen and/or air play a crucial role in the mechanism of the growth of hexagonal boron nitride (h-BN) films on Ni foil ‘enclosures’. Hexagonal-BN films grow on the Ni foil surface via the formation of an intermediate boric-oxide (BO x ) phase followed by a thermal reduction of the BO x by a carbon source (either amorphous carbon powder or methane), leading to the formation of single- and bi-layer h-BN. Low energy electron microscopy (LEEM) and diffraction (LEED) were used to map the number of layers over large areas; Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), x-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) were used to characterize the structure and physical quality of the ultra-thin h-BN film. The growth procedure reported here leads to a better understanding and control of the synthesis of ultra-thin h-BN films.

  20. Isothermal superplastic boronizing of high carbon and low alloy steels

    SciTech Connect

    Xu, C.H.; Gao, W.; Xi, J.K.

    1996-02-01

    Superplasticity has been developed rapidly since the 1960`s. Superplasticity and superplastic deformation technique of steel and ferrous alloys offer a new method of forming complex parts for industrial applications, such as dies and gears. On the other hand, boronizing has long been used to improve the surface properties of dies and tools because boride has high hardness, good wear resistance, and good corrosion and oxidation resistance. Superplastic boronizing, a new technique, is the processes that combines boronizing with superplastic deformation. Because two processes become one, energy and time can be saved. In the present paper, the superplastic boronizing processes for commercial 0.9C-1Si-1Cr-Fe and 1C-1Cr-Fe steels are described first. Then, the microstructure and properties of specimens produced by using superplastic and conventional boronizing are compared. Finally, a physical model for superplastic boronizing processes is suggested.

  1. Nitrogen activated-carbon sorption compressor

    NASA Astrophysics Data System (ADS)

    Tzabar, Nir; Grossman, Gershon

    2012-06-01

    Joule-Thomson (JT) sorption cryocooling is the most mature technology for cooling from a normal Room-Temperature (RT) down to temperatures below 100 K in the absence of moving parts. Therefore, high reliability and no vibrations are attainable, in comparison with other cryocoolers. Nitrogen is usually used as the working fluid for cooling to temperatures between 80 and 100 K and activated carbons are the best adsorbent for this purpose. In this paper we present the development of a sorption compressor for nitrogen with a commercial Chemviron pelleted activated carbon. The development consists of sorption measurements that we performed for characterizing the adsorption of nitrogen on the selected adsorbent, and the compressor experimental results are compared with equilibrium condition analysis and numerical heat transfer analysis predictions

  2. Soil warming, carbon-nitrogen interactions, and forest carbon budgets.

    PubMed

    Melillo, Jerry M; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-06-07

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon-nitrogen interactions in atmosphere-ocean-land earth system models to accurately simulate land feedbacks to the climate system.

  3. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity.

    PubMed

    Polyakov, S N; Denisov, V N; Mavrin, B N; Kirichenko, A N; Kuznetsov, M S; Martyushov, S Yu; Terentiev, S A; Blank, V D

    2016-12-01

    The insufficient data on a structure of the boron-doped diamond (BDD) has frustrated efforts to fully understand the fascinating electronic properties of this material and how they evolve with doping. We have employed X-ray diffraction and Raman scattering for detailed study of the large-sized BDD single crystals. We demonstrate a formation of boron-carbon (B-C) nanosheets and bilayers in BDD with increasing boron concentration. An incorporation of two boron atoms in the diamond unit cell plays a key role for the B-C nanosheets and bilayer formation. Evidence for these B-C bilayers which are parallel to {111} planes is provided by the observation of high-order, super-lattice reflections in X-ray diffraction and Laue patterns. B-C nanosheets and bilayers minimize the strain energy and affect the electronic structure of BDD. A new shallow acceptor level associated with B-C nanosheets at ~37 meV and the spin-orbit splitting of the valence band of ~6 meV are observed in electronic Raman scattering. We identified that the superconducting transitions occur in the (111) BDD surfaces only. We believe that the origin of Mott and superconducting transitions is associated with the two-dimensional (2D) misfit layer structure of BDD. A model for the BDD crystal structure, based on X-ray and Raman data, is proposed and confirmed by density functional theoretical calculation.

  4. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity

    NASA Astrophysics Data System (ADS)

    Polyakov, S. N.; Denisov, V. N.; Mavrin, B. N.; Kirichenko, A. N.; Kuznetsov, M. S.; Martyushov, S. Yu; Terentiev, S. A.; Blank, V. D.

    2016-01-01

    The insufficient data on a structure of the boron-doped diamond (BDD) has frustrated efforts to fully understand the fascinating electronic properties of this material and how they evolve with doping. We have employed X-ray diffraction and Raman scattering for detailed study of the large-sized BDD single crystals. We demonstrate a formation of boron-carbon (B-C) nanosheets and bilayers in BDD with increasing boron concentration. An incorporation of two boron atoms in the diamond unit cell plays a key role for the B-C nanosheets and bilayer formation. Evidence for these B-C bilayers which are parallel to {111} planes is provided by the observation of high-order, super-lattice reflections in X-ray diffraction and Laue patterns. B-C nanosheets and bilayers minimize the strain energy and affect the electronic structure of BDD. A new shallow acceptor level associated with B-C nanosheets at 37 meV and the spin-orbit splitting of the valence band of 6 meV are observed in electronic Raman scattering. We identified that the superconducting transitions occur in the (111) BDD surfaces only. We believe that the origin of Mott and superconducting transitions is associated with the two-dimensional (2D) misfit layer structure of BDD. A model for the BDD crystal structure, based on X-ray and Raman data, is proposed and confirmed by density functional theoretical calculation.

  5. Carbon consequences of a nitrogen fixation feedback

    NASA Astrophysics Data System (ADS)

    Levy, J.; Medvigy, D.; Hedin, L.; Batterman, S. A.; Xu, X.

    2014-12-01

    Tropical forests constitute a globally important carbon sink but it is unclear how their productivity and carbon storage depend upon nutrients. There is increasing evidence of an ecosystem carbon-nitrogen feedback mechanism, by which symbiotic dinitrogen (N2) fixing trees can provide the nitrogen needed to maintain high rates of forest biomass growth following disturbance. Field-based evaluation of this feedback is difficult, however, as the expected effects on forest carbon stores would emerge very slowly, over decades to centuries of ecological succession. Moreover, there is no known way to inhibit the fixation process in trees without causing structural damage and perturbing the carbon cycle. Coupled land biogeochemistry-vegetation models offer a way to examine the role of feedbacks that unfold over successional time. However, it is unclear how the process of nitrogen fixation ought to be represented in models so that they can capture the potential effect of fixation on the long-term forest carbon sink. In this study, we integrate a newly developed individual-based model with field observations across Panamanian tropical forests to address: 1) whether N2 fixation enhances tropical forest carbon storage; 2) whether models must resolve fixation at the individual plant level to capture the fixation feedback; and 3) whether fixation interacts with plant functional types (i.e., early, mid, vs. late succession) to determine the carbon sink? We find that forests that have fixation recover faster and store more carbon in the long term than forests without fixation. This results in 94-118% more plant carbon stored by 30 years and an additional 13 tons C ha -1 stored over 300 years when compared to forests without fixation. Additionally, resolving fixation at the individual plant level is necessary to capture nitrogen dynamics over time and is particularly important for modeling succession and disturbance events. Finally, we find that the overall fixation effect is the

  6. Modeling the suppression of boron transient enhanced diffusion in silicon by substitutional carbon incorporation

    SciTech Connect

    Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.

    2001-08-15

    Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank--Turnbull reactions. This study of boron TED reduction in Si{sub 1-x-y}Ge{sub x}C{sub y} during 750{sup o}C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {l_brace}311{r_brace} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank--Turnbull reaction, and a carbon interstitial-carbon substitutional (C{sub i}C{sub s}) pairing reaction that successfully simulates carbon suppression of boron TED at 750{sup o}C for anneal times ranging from 10 s to 60 min. {copyright} 2001 American Institute of Physics.

  7. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick; Lee, Mark W.; Jalistegi, Satish S.

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  8. Deposition of boron doped diamond and carbon nanomaterials on graphite foam electrodes

    NASA Astrophysics Data System (ADS)

    Marton, Marian; Vojs, Marian; Kotlár, Mário; Michniak, Pavol; Vančo, Ľubomír; Veselý, Marian; Redhammer, Robert

    2014-09-01

    Boron doped diamond (BDD) has remarkable physical and chemical properties, that makes it an attractive material for electrochemical applications. In this study, deposition process of BDD on porous carbon foam electrodes was performed by HFCVD method. After depositions, the substrates were not homogenously covered by the BDD thin film only. Depending on the deposition temperature, foam porosity and distance from heated filaments, different carbon nanomaterials were synthesized. The boron doped diamond, graphite nanosheets, carbon nanowalls and its composites occurred on the foams outer and inner surfaces. Two new observed types of carbon structures, the carbon nanowalls - boron doped diamond composite and graphite nanotips are analyzed and described. Analyses were made by SEM and Raman spectroscopy. The influence of deposition conditions on the growth process is discussed.

  9. Elemental Boron for Efficient Carbon Dioxide Reduction under Light Irradiation.

    PubMed

    Liu, Guigao; Meng, Xianguang; Zhang, Huabin; Zhao, Guixia; Pang, Hong; Wang, Tao; Li, Peng; Kako, Tetsuya; Ye, Jinhua

    2017-03-24

    The photoreduction of CO2 is attractive for the production of renewable fuels and the mitigation of global warming. Herein, we report an efficient method for CO2 reduction over elemental boron catalysts in the presence of only water and light irradiation through a photothermocatalytic process. Owing to its high solar-light absorption and effective photothermal conversion, the illuminated boron catalyst experiences remarkable self-heating. This process favors CO2 activation and also induces localized boron hydrolysis to in situ produce H2 as an active proton source and electron donor for CO2 reduction as well as boron oxides as promoters of CO2 adsorption. These synergistic effects, in combination with the unique catalytic properties of boron, are proposed to account for the efficiency of the CO2 reduction. This study highlights the promise of photothermocatalytic strategies for CO2 conversion and also opens new avenues towards the development of related solar-energy utilization schemes.

  10. Pentagonal monolayer crystals of carbon, boron nitride, and silver azide

    SciTech Connect

    Yagmurcukardes, M. Senger, R. T.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F. M.

    2015-09-14

    In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2}), and silver azide (p-AgN{sub 3}) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN{sub 3} are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B{sub 2}N{sub 4} and p-B{sub 4}N{sub 2} have negative Poisson's ratio values. On the other hand, the p-AgN{sub 3} has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B{sub 2}N{sub 4} are stable, but p-AgN{sub 3} and p-B{sub 4}N{sub 2} are vulnerable against vibrational excitations.

  11. Pentagonal monolayer crystals of carbon, boron nitride, and silver azide

    NASA Astrophysics Data System (ADS)

    Yagmurcukardes, M.; Sahin, H.; Kang, J.; Torun, E.; Peeters, F. M.; Senger, R. T.

    2015-09-01

    In this study, we present a theoretical investigation of structural, electronic, and mechanical properties of pentagonal monolayers of carbon (p-graphene), boron nitride (p-B2N4 and p-B4N2), and silver azide (p-AgN3) by performing state-of-the-art first principles calculations. Our total energy calculations suggest feasible formation of monolayer crystal structures composed entirely of pentagons. In addition, electronic band dispersion calculations indicate that while p-graphene and p-AgN3 are semiconductors with indirect bandgaps, p-BN structures display metallic behavior. We also investigate the mechanical properties (in-plane stiffness and the Poisson's ratio) of four different pentagonal structures under uniaxial strain. p-graphene is found to have the highest stiffness value and the corresponding Poisson's ratio is found to be negative. Similarly, p-B2N4 and p-B4N2 have negative Poisson's ratio values. On the other hand, the p-AgN3 has a large and positive Poisson's ratio. In dynamical stability tests based on calculated phonon spectra of these pentagonal monolayers, we find that only p-graphene and p-B2N4 are stable, but p-AgN3 and p-B4N2 are vulnerable against vibrational excitations.

  12. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  13. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  14. Acrylonitrile, an advantageous precursor to synthesize nitrogen doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Aguilar-Elguézabal, A.; Román-Aguirre, M.; De la Torre, L.; Zaragoza, E. A.

    2017-05-01

    The nitrogen doped carbon nanotubes present specific characteristics that offer better performance than pure carbon nanotubes for application like biomedicine, hydrogen adsorption and electrocataytic devices. This work present a simple method to obtain well-aligned nitrogen doped multi wall carbon nanotubes, which present open channels with diameter around 50 nm. These carbon nanotubes are obtained using acrylonitrile as carbon and nitrogen source, which offers some advantages on the use of other precursors like ammonia, pyridine, benzylamine, acetonitrile or melamine.

  15. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    USDA-ARS?s Scientific Manuscript database

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  16. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2014-12-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B/Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32-, and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the boron isotopic composition and B/Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B/Ca increases with increasing BOH4-/HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B/Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B/Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  17. Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials

    SciTech Connect

    Damle, A.

    2010-02-03

    The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated to determine optimum decomposition conditions in terms of temperature for decomposition, rate of hydrogen release, purity of hydrogen produced, thermal efficiency of decomposition, and regenerability of the decomposition products. The non-catalytic studies provide a base-line performance to evaluate catalytic decomposition. Utilization of solid phase catalysts mixed with ammonia-borane was explored for its potential to lower the decomposition temperature, to increase the rate of hydrogen release at a given temperature, to lead to decomposition products

  18. Performance of boron/carbon first wall materials under fusion relevant conditions

    NASA Astrophysics Data System (ADS)

    Linke, J.; Bolt, H.; Doerner, R.; Grübmeier, H.; Hirooka, Y.; Hoven, H.; Mingam, C.; Schulze, H.; Seki, M.; Wallura, E.; Weber, T.; Winter, J.

    1990-12-01

    The conditioning of the plasma facing wall in thermonuclear confinement experiments has been performed very successfully by the application of amorphous boron containing hydrogenated carbon films. Boronization leads to tokamak discharges with significantly reduced oxygen and carbon contaminations. For high heat flux components (especially in future quasi-stationary confinement experiments) new boron/carbon materials have to be developed: monolithic tiles of boronated graphites which can be brazed to watercooled substrates or thick B 4C-coatings on graphite or high-Z coolant tubes. A variety of bulk materials (boronated graphites with boron contents in the range from 3 to 30%, so-called coat mix material on the basis of B 4C) and coatings (amorphous B/C films, thick B 4C layers applied by LPPS or CVD methods) were characterized systematically. In addition the behaviour of these materials was investigated under thermal loads; erosion and disruption simulation experiments were performed in electron and ion beam high heat flux test facilities. Physical and chemical sputtering of the coat-mix-material was studied in the PISCES-B facility in dependence on the hydrogen ions fluence.

  19. Soil Carbon and Nitrogen Cycle Modeling

    NASA Astrophysics Data System (ADS)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  20. Radiochemistry of carbon, nitrogen and oxygen

    SciTech Connect

    Sajjad, M.; Lambrecht, R.M.

    1988-01-01

    The present monograph consists of two reviews. The first section deals with radiopharmaceutical and biomedical applications. The second section deals with analysis of carbon, nitrogen and oxygen in different materials by use of nuclear techniques. This monograph is published as part of our continuing effort to update, revise, and expand the previously published monographs to keep them current and relevant. 158 refs., 4 figs., 12 tabs.

  1. Osbornite (TiN) and boron nitride nanoinclusions in coesite from Tibet: a first record of nitrogen in a terrestrial ultrahigh pressure environment

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, L.; Wirth, R.; Yang, J.; Hutcheon, I.; Weber, P.; Green, H. W.

    2007-12-01

    We report here discovery of nitrides in podiform chromitite of the Luobusa ophiolite, Tibet, representing the mantle section of a ¡°fossil¡± fragment of oceanic crust which marks the Early Tertiary (~65Ma) suture zone between Asia and India. Nanometric crystals of TiN and BN are included in coesite which, together with kyanite, TiO2-II and several other still unidentified phases rim a FeTi-alloy pellet; this sample, together with an OsIr alloy pellet containing microdiamond were extracted from the massive chromitite (Yang et al., Geology, 2007). Both TiN and BN form bright-grey-contrast particles in secondary-electron scanning electron microscope imaging. Several focused ion beam foils were prepared for a transmission electron microscope (TEM) and a nano secondary ion mass spectrometry (nanoSIMS) studies. Because energy dispersive X-ray spectra (EDS) of boron and nitrogen K-lines have overlaps with each other and with Ti L-lines, we have used electron energy loss spectroscopy (EELS) in TEM to determine the presence of boron and nitrogen K-edges and to separate them from Ti L-lines. Electron diffraction patterns identify the cubic boron nitride (c-BN) structure. TiN is stoichiometric (Ti=77.20wt%; N=22.80wt%) and is also cubic. Both phases contain trace carbon. Osbornite, is usually found only in meteorites, although it also has been reported as inclusions in carbonado diamonds and as inclusion in a corundum grain from lamproitic breccia in the Asov block, Eastern-European platform, Ukraine. Until now, boron nitride was known only as an industrial compound, with both hexagonal and cubic structures. With the nanoSIMS Cameca-50 using the Cs beam we have measured nitrogen and carbon isotopes in both the TiN and c-BN inclusions: δ 15N= +(6-10) ‰ and δ 13C= (+1) ¨C (-10) ‰. The results show that both minerals are characterized by δ 15N similar to crustal rocks involved in the subduction process and their δ 13C values suggest mixture of heavy (mantle) and

  2. Carbon and fluorine co-implantation for boron diffusion suppression in extremely ultra shallow junctions

    NASA Astrophysics Data System (ADS)

    Miakonkikh, Andrey V.; Rogozhin, Aleksander E.; Rudakov, Valeriy I.; Rudenko, Konstantin V.; Lukichev, Vladimir F.

    2014-12-01

    Formation of ultra shallow p+-junctions in silicon by plasma immersion ion implantation were investigated. The effect of carbon and fluorine coimplantation were studied experimentally. Dependence of this effect from carbon concentration was studied, as well as positive role of multistep annealing for pure boron implanted samples.

  3. Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma `

    SciTech Connect

    Gleiman, S. S.; Phillips, J.

    2001-01-01

    We have developed a method for producing spherically-shaped, hexagonal phase boron nitride (hBN) particles of controlled diameter in the 10-100 micron size range. Specifically, platelet-shaped hBN particles are passed as an aerosol through a microwave-generated, atmospheric pressure, nitrogen plasma. In the plasma, agglomerates formed by collisions between input hBN particles, melt and forms spheres. We postulate that this unprecedented process takes place in the unique environment of a plasma containing a high N-atom concentration, because in such an environment the decomposition temperature can be raised above the melting temperature. Indeed, given the following relationship [1]: BN{sub (condensed)} {leftrightarrow} B{sub (gas)} + N{sub (gas)}. Standard equilibrium thermodynamics indicate that the decomposition temperature of hBN is increased in the presence of high concentrations of N atoms. We postulate that in our plasma system the N atom concentration is high enough to raise the decomposition temperature above the (undetermined) melting temperature. Keywords Microwave plasma, boron nitride, melting, spherical, thermodynamics, integrated circuit package.

  4. Carbon and nitrogen in ALH 84001

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Wright, I. P.; Douglas, C.; Pillinger, C. T.

    1994-07-01

    Reclassification of ALH 84001 as an orthopyroxenite related to SNCs brings the total number of martian meteorites to 10. Preliminary descriptions of ALH 84001 and the more detailed analysis that followed highlighted the presence of abundant Fe, Mg-carbonates distributed heterogeneously throughout the specimen. Previous studies of SNCs identified four discrete carbon-bearing components: materials that combusted at temperatures usually associated with organics, carbonates, magmatic carbon, and trapped martian atmospheric carbon dioxide. The isotopic compositions of these species are distinctive, and have been used to constrain the operation of martian surficial processes. Given the relatively high carbonate abundance in ALH 84001, detailed isotopic analyses of the specimen will undoubtedly provide further information on the formation mechanisms of these minerals. Nitrogen analysis could identify the presence of any N-bearing salts and trapped atmospheric species. This abstract reports the first results from analysis of carbon in ALH 84001. A high-resolution stepped combustion of 5.099 mg of powdered ALH 84001 was performed. The most outstanding feature of the analysis was the release of almost 50% of the total C across a narrow temperature range from 450-525 C, with (delta)C-13 is approximately +40%. The enrichment C-13 in carbonates from ALH 84001 indicates beyond any doubt that these salts are truly indigenous to the meteorite, rather than an Antarctic weathering product. Wright et al. defined a linear relationship between yield and C isotopic composition of carbonate in SNCs; the datum from ALH 84001 extends this association. For the carbonate to be formed by interaction of martian atmospheric CO2 with regolith material, reaction would need to have occurred at temperatures around 100 C. Such a high temperature is unlikely on the martian surface, and therefore the carbonates more probably formed in a hydrothermal environment.

  5. The electronic structure of graphene tuned by hexagonal boron nitrogen layers: Semimetal-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Yang; Chen, Qing-Yuan; Ma, Tai; He, Yao; Cao, Chao

    2016-05-01

    The electronic structure of graphene and hexagonal boron nitrogen (G/h-BN) systems have been carefully investigated using the pseudo-potential plane-wave within density functional theory (DFT) framework. We find that the stacking geometries and interlayer distances significantly affect the electronic structure of G/h-BN systems. By studying four stacking geometries, we conclude that the monolayer G/h-BN systems should possess metallic electronic properties. The monolayer G/h-BN systems can be transited from metallicity to semiconductor by increasing h-BN layers. It reveals that the alteration of interlayer distances 2.50-3.50 Å can obtain the metal-semiconductor-semimetal variation and a tunable band gap for G/h-BN composite systems. The band dispersion along K-H direction is analogous to the band of rhombohedral graphite when the G/h-BN systems are semiconducting.

  6. Cryogenic Adsorption of Nitrogen and Carbon Dioxide in Activated Carbon

    NASA Astrophysics Data System (ADS)

    Shen, Fuzhi; Liu, Huiming; Xu, Dong; Zhang, Hengcheng; Lu, Junfeng; Li, Laifeng

    2017-09-01

    Activated carbon have been used for a long time at low temperature for cryogenic applications. The knowledge of adsorption characteristics of activated carbon at cryogenic temperature is essential for some specific applications. However, such experimental data are very scare in the literature. In order to measure the adsorption characteristics of activated carbon under variable cryogenic temperatures, an adsorption measurement device was presented. The experiment system is based on the commercially available PCT-pro adsorption analyzer coupled to a two-stage Gifford McMahon refrigerator, which allows the sample to be cooled to 4.2K. Cryogenic environment can be maintained steadily without the cryogenic liquid through the cryocooler and temperature can be controlled precisely between 5K and 300K by the temperature controller. Adsorption measurements were performed in activated carbon for carbon dioxide and nitrogen and the adsorption isotherm were obtained.

  7. Linking Carbon and Boron-Nitride Nanotubes: Heterojunction Energetics and Band Gap Tuning

    SciTech Connect

    An, Wei; Turner, C. H.

    2010-08-05

    We investigate the energetics of forming heteronanotubes, which are combinations of pure carbon nanotube (CNT) segments and boron-nitride nanotube (BNNT)segments. Our density functional theory calculations predict that the adverse impacts of heterojunctions on the nanotube stability can be minimized if the CNTand/or the BNNT building block segments are sufficiently large along the axial direction (corresponding to circular junctions). As such, carbon-boron-nitride heteronanotubes can be thermodynamically competitive in stability, as compared to pure CNTs and BNNTs of similar geometry, and this is in good agreement with previous experimental observations. In addition, we find that the highest occupied crystal orbital/lowest unoccupied crystal orbital (HOCO-LUCO) gap of carbon-boron-nitride heteronanotubes can be significantly tuned by modifying the CNT and BNNT combinations, the tube chirality, or the junction geometry (i.e., circular or linear).

  8. Electronic Energy Loss of the Partially Stripped Boron-Like and Carbon-Like Fast Ions

    NASA Astrophysics Data System (ADS)

    Gümüs, H.; Özalp, C.; Köroglu, A.

    2001-04-01

    An analytical formula of the electronic stopping power expression in this study was derived for swift boron-like and carbon-like ions by using first-order perturbation theory and frozen-charge-state model. The Hartree-- Fock--Slater determinant was used for the description of the bound electrons attached to ions in the ground state and orbital-screening parameter was determined by variational method. The calculated ground state energies in this study were compared with the results of Clementi--Roetti and they are in good agreement with 5%. It has been observed that the difference of energy loss for boron-like and carbon-like projectiles in a frozen-charge state increases as an atomic number increases. Furthermore, the analytical expression of the effective charge of boron-like and carbon-like projectiles was derived.

  9. Nitrogen and Carbon Dynamics Across Trophic Levels Along an Atmospheric Nitrogen Deposition Gradient

    NASA Astrophysics Data System (ADS)

    Wissinger, B. D.; Bell, M. D.; Newingham, B. A.

    2011-12-01

    Atmospheric nitrogen deposition has altered soil biogeochemical processes and plant communities across the United States. Prior investigations have demonstrated these alterations; however, little is known about the effects of elevated nitrogen on higher trophic levels. Building upon previous research that revealed an atmospheric nitrogen deposition gradient from the San Bernardino Mountains through Joshua Tree National Park in California, we investigated atmospheric nitrogen and its effects on soils, plants, and harvester ants. We measured nitrogen and carbon concentrations, along with carbon and nitrogen stable isotopes, across trophic levels at eighteen urban and unpopulated sites along the deposition gradient. Carbon and nitrogen attributes were determined in atmospheric nitric acid, soil, Larrea tridentata and Ambrosia dumosa leaves, seeds from selected plant species, and ants. We predicted carbon and nitrogen ratios and isotopes to change in areas with higher nitrogen deposition and vary along the deposition gradient. Nitrogen (p=0.02) and carbon (p=0.05) concentrations, as well as C:N ratios (p=<0.001), significantly differed in Messor pergandei individuals among sites; however, no correlation was found between these carbon and nitrogen attributes and the nitrogen deposition gradient (%N r2=0.02, %C r2=0.007, C:N r2=0.02). The δ15N and δ13C values of the ants, leaf tissues, and seeds measured across the gradient follow similar patterns with r2 values all below 0.20. Our results suggest the current and previous rates of nitrogen deposition in this area are not enough to modify nitrogen and carbon concentrations and isotope values. Compensatory nitrogen cycling processes in the soil may reduce the effects of increased nitrogen on plants and thus higher trophic levels. Nitrogen and carbon dynamics across trophic levels might change after longer ecosystem exposure to elevated nitrogen; however, other abiotic and biotic factors are likely driving current

  10. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  11. Nickel cobaltite nanosheets strongly anchored on boron and nitrogen co-doped graphene for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinyan; Xia, Xifeng; Liu, Peng; Lei, Wu; Ouyang, Yu; Hao, Qingli

    2017-08-01

    Strongly coupled boron and nitrogen co-doped graphene (BN-G) hybrids with nickel cobaltite (NiCo2O4) nanosheets (NCO/BN-G) were fabricated by a facile soft-chemical method for asymmetric supercapacitors with high-performance. The strong interaction between BN-G and NiCo2O4 nanosheets are explored by various techniques. The effect of heteroatom doping on electrochemical properties of the hybrids is systematically investigated. The strong synergistic effect between NiCo2O4 and BN-G leads to a specific capacitance of 106.5 mA h g-1 at the current density of 0.5 A g-1 and capacitance retention of 96.8% after 10 000 cycles at 5 A g-1, much better than those of the pure NiCo2O4 and its hybrid with N-doped graphene. Moreover, an asymmetric supercapacitor device, assembled with NCO/BN-G and activated carbon (NCO/BN-G//AC), exhibits a maximum energy density of 45.6 Wh kg-1 and an excellent cycling stability. The improved electrochemical performance of the NCO/BN-G hybrid is attributed to the good conductivity of BN-G and the synergistic effect between NiCo2O4 nanosheets and BN-G combined together through a plane-to-plane contact mode.

  12. Study of the effect of nano-sized precipitates on the mechanical properties of boron-added low-carbon steels by neutron scattering techniques

    PubMed Central

    Seong, B. S.; Cho, Y. R.; Shin, E. J.; Kim, S. I.; Choi, S.-H.; Kim, H. R.; Kim, Y. J.

    2008-01-01

    Small-angle neutron scattering (SANS) and neutron powder diffraction (ND) techniques were used to study quantitatively the effect of nano-sized precipitates and boron addition on the mechanical properties of low-carbon steels. SANS was used to evaluate nano-sized precipitates, smaller than about 600 Å in diameter, and ND was used to determine the weight fraction of the cementite precipitates. Fine core–shell structured spherical precipitates with an average radius of ~50 Å, such as MnS and/or CuS, surrounded by BN layers were observed in the boron-added (BA) low-carbon steels; fine spherical precipitates with an average radius of ~48 Å were mainly observed in the boron-free (BF) low-carbon steels. In the BA steels, the number of boron precipitates, such as BN, Fe3(C,B) and MnS, surrounded by BN layers increased drastically at higher hot-rolling temperatures. The volume fraction of the fine precipitates of the BA steels was higher than that of the BF steels; this difference is related to the rapid growth of the BN layers on the MnS and CuS precipitates. Boron addition to low-carbon steels resulted in a reduction in strength and an improvement in elongation; this behaviour is related to the reduction of the solute carbon and the nitrogen contents in the ferrite matrix caused by the precipitation of BN, as well by the increase in the volume fraction of the cementites. PMID:19461851

  13. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    PubMed

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  15. Residual stresses in boron/tungsten and boron/carbon fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1977-01-01

    By measuring the change in fracture stress of 203 micrometer diameter fibers of boron on tungsten (B/W) as a function of fiber diameter as reduced by chemical etching, it is shown that the flaws which limit B/W fiber strength are located at the surface and in the tungsten boride core. After etching to a diameter of 188 micrometers m virtually all fiber fractures were caused by core flaws, the average strength being 4.50 GN/sq m. If both the surface and core flaws are removed, the fracture strength, limited by flaws in the boron itself, is approximately 6.89 GN/sq m. This was measured on B/W fibers which were split longitudinally and had their cores removed by chemical etching. The longitudinal residual stress distribution was determined for 102 micrometer diameter B/W and B/C fibers.

  16. Marcell peatland carbon and nitrogen dynamics

    EPA Pesticide Factsheets

    This dataset include US Forest Service (contact Dr. Stephen Sebestyen at USFS) long-term precipitation, atmospheric deposition, and hydrologic data for the years 2010-2013. The dataset also includes unique (never before collected) data on ammonification, denitrification, microbial enzyme activity, and nitrification. These data will be useful for long-term trend analyses and for further investigations on carbon and nitrogen cycling in peatlands.This dataset is associated with the following publication:Hill , B., T. Jicha , L. Lehto, C. Elonen , S. Sebestyen , and R. Kolka. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 550: 880-892, (2016).

  17. Electroextraction of boron from boron carbide scrap

    SciTech Connect

    Jain, Ashish; Anthonysamy, S.; Ghosh, C.; Ravindran, T.R.; Divakar, R.; Mohandas, E.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  18. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode.

    PubMed

    Xing, Xuan; Zhu, Xiuping; Li, Hongna; Jiang, Yi; Ni, Jinren

    2012-01-01

    Nitrogen-heterocyclic compounds (NHCs) are toxic and bio-refractory contaminants widely spread in environment. This study investigated electrochemical degradation of NHCs at boron-doped diamond (BDD) anode with particular attention to the effect of different number and position of nitrogen atoms in molecular structure. Five classical NHCs with similar structures including indole (ID), quinoline (QL), isoquinoline (IQL), benzotriazole (BT) and benzimidazole (BM) were selected as the target compounds. Results of bulk electrolysis showed that degradation of all NHCs was fit to a pseudo first-order equation. The five compounds were degraded with the following sequence: ID>QL>IQL>BT>BM in terms of their rates of oxidation. Quantum chemical calculation was combined with experimental results to describe the degradation character of NHCs at BDD anode. A linear relationship between degradation rate and delocalization energy was observed, which demonstrated that electronic charge was redistributed through the conjugation system and accumulated at the active sites under the attack of hydroxyl radicals produced at BDD anode. Moreover, atom charge was calculated by semi empirical PM3 method and active sites of NHCs were identified respectively. Analysis of intermediates by GC-MS showed agreement with calculation results. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Multicolor Nitrogen-Doped Carbon Dots for Live Cell Imaging.

    PubMed

    Du, Fengyi; Li, Jianan; Hua, Ye; Zhang, Miaomiao; Zhou, Zhou; Yuan, Jing; Wang, Jun; Peng, Wanxin; Zhang, Li; Xia, Sheng; Wang, Dongqing; Yang, Shiming; Xu, Wenrong; Gong, Aihua; Shao, Qixiang

    2015-05-01

    Doping carbon dots with nitrogen atoms considerably enhances their fluorescence properties. However, the mechanism by which the carbon dots are doped is not fully understood. We developed a facile bottom-up hydrothermal carbonization (HTC) process that uses glucose and glycine as precursors for the synthesis of photoluminescent nitrogen-doped carbon dots. The as-prepared nitrogen-doped carbon dots were mono-dispersed spherical particles with a diameter of -2.8 nm. The doped nitrogen atoms assumed pyridinic type and pyrrolic type configurations to participate in the nanocrystal structure of the carbon dots. It appeared that the nitrogen doping introduces a new internal structure. The aqueous solution of nitrogen-doped carbon dots showed excitation wavelength-dependent multicolor photoluminescence. Further, these nitrogen-doped carbon dots readily entered the cytoplasm of A549 cancer cells and showed no significant cytotoxicity. The internalized nitrogen-doped carbon dots were localized to the cell membrane and cytoplasm, particularly around the nucleus. Further, the as-prepared, biocompatible, nitrogen-doped carbon dots demonstrated the potential to be used as fluorescent probes for multicolor live cell labeling, tracking, and imaging.

  20. A Facile Synthesis and Photoluminescence Properties of Boron Carbon Oxynitride (BCNO) Phosphor Materials for Security Ink Application

    NASA Astrophysics Data System (ADS)

    Nuryantini, A. Y.; Nuryadin, B. W.; Mahen, E. C. S.; Sawitri, A.

    2017-02-01

    A facile synthesis of rare-earth free using boron carbon oxynitride (BCNO) phosphor material for security ink has been investigate. BCNO were synthesize by low temperature microwave heating methods, with H3BO3, citric acid and urea to be used as boron, carbon and nitrogen source, respectively. Then, the BCNO nanocrystals were disperse in water-polymer based solution until they became evenly spreading and turn into security ink without rare earth metals. The photoluminescence (PL) and UV-Visible spectroscopy were use to characterize the optical properties of BCNO and the security ink. The characterization results showed that BCNO and the security ink had similar PL properties (PL Peak and PL Peak Intensity). In addition, the UV-Vis spectra proved that the security ink had electronic properties such as being semiconductors based phosphor materials. The results indicate that BCNO phosphor material can be potentially be developed as rare-earth free security inks, and other applications such as optoelectronic, white LED, lighting, etc.

  1. Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Johnston, Norman J.; Marchello, Joseph M.

    2003-01-01

    A dry process has been invented as an improved means of manufacturing composite prepreg tapes that consist of high-temperature thermoplastic polyimide resin matrices reinforced with carbon and boron fibers. Such tapes are used (especially in the aircraft industry) to fabricate strong, lightweight composite-material structural components. The inclusion of boron fibers results in compression strengths greater than can be achieved by use of carbon fibers alone. The present dry process is intended to enable the manufacture of prepreg tapes (1) that contain little or no solvent; (2) that have the desired dimensions, fiber areal weight, and resin content; and (3) in which all of the fibers are adequately wetted by resin and the boron fibers are fully encapsulated and evenly dispersed. Prepreg tapes must have these properties to be useable in the manufacture of high-quality composites by automated tape placement. The elimination of solvent and the use of automated tape placement would reduce the overall costs of manufacturing.

  2. Re-calculating the pH record from boron isotopic composition of biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Paris, G.; Gaillardet, J.; Louvat, P.

    2010-12-01

    The boron isotopic composition of marine carbonates (δ11Bcarb, ‰) has been proposed as a seawater paleo-acidity proxy (Hemming and Hanson, 1992; Vengosh et al., 1991). This proxy has been extensively used to reconstruct seawater paleo-pH and eventually atmospheric pCO2 during recent times or over short time-scales. However, it requires the knowledge of seawater δ11B value. Boron has a residence time of 10-20 My in seawater, longer than the mixing time of the ocean. The boron isotopic composition of seawater (δ11Bsw) is thus homogeneous in the modern ocean, yet it is not known in the past even though reconstruction and modeling have been attempted that rely on many hypotheses (Lemarchand et al., 2002; Pearson and Palmer, 2000). The boron isotopic composition of Cenozoic evaporites has been recently reconstructed using the direct record of Cenozoic evaporites (Paris et al., 2010). This reconstruction suggests that δ11Bsw has significantly changed along the last 40 Ma, in agreement with other parameters of the oceanic chemical composition. The δ11Bsw change amplitude appears to be stronger than suggested by models. In this presentation, we explore the consequences of this reconstruction on paleo-pH calculation for the late Cenozoic from published boron isotope record in biogenic carbonates (Pearson and Palmer, 2000; Pearson et al., 2009; Seki et al., 2010; Spivack et al., 1993). It points out the inconsistency between different dataset, due to the techniques used for boron isotopic measurement. In conclusion, we suggest that the seawater pH variations are not known with a sufficient precision over the last 35 My and that seawater surface pH could have likely remained constant. Hemming, N.G., and Hanson, G.N. (1992), Boron isotopic composition and concentration in modern marine carbonates: Geochimica et Cosmochimica Acta, v. 56, p. 537-543. Lemarchand, D., et al. (2002), Boron isotope systematics in large rivers: implications for the marine boron budget and

  3. Relationship between carbon and nitrogen mineralization in a subtropical soil

    NASA Astrophysics Data System (ADS)

    Li, Qianru; Sun, Yue; Zhang, Xinyu; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    In most soils, more than 90% nitrogen is bonded with carbon in organic forms. This indicates that carbon mineralization should be closely coupled with nitrogen mineralization, showing a positive correlation between carbon and nitrogen mineralization. To test this hypothesis above, we conducted an incubation using a subtropical soil for 10 days at 15 °C and 25 °C. 13C-labeled glucose and 15N-labeled ammonium or nitrate was used to separate CO2 and mineral N released from mineralization of soil organic matter and added glucose or inorganic nitrogen. Phospholipid fatty acid (PLFA) and four exoenzymes (i.e. β-1,4- Glucosaminidase, chitinase, acid phosphatase, β-1,4-N- acetyl glucosamine glycosidase) were also analyzed to detect change in microbial activities during the incubation. Our results showed that CO2 release decreased with increasing nitrogen mineralization rates. Temperature did not change this relationship between carbon and nitrogen mineralization. Although some changes in PLFA and the four exoenzymes were observed, these changes did not contribute to changes in carbon and nitrogen mineralization. These findings indicates that carbon and nitrogen mineralization in soil are more complicated than as previously expected. Future investigation should focus on why carbon and nitrogen mineralization are coupled in a negative correlation not in a positive correlation in many soils for a better understanding of carbon and nitrogen transformation during their mineralization.

  4. Ambient Carbon Dioxide Capture Using Boron-Rich Porous Boron Nitride: A Theoretical Study.

    PubMed

    Li, Lanlan; Liu, Yan; Yang, Xiaojing; Yu, Xiaofei; Fang, Yi; Li, Qiaoling; Jin, Peng; Tang, Chengchun

    2017-05-10

    The development of highly efficient sorbent materials for CO2 capture under ambient conditions is of great importance for reducing the impact of CO2 on the environment and climate change. In this account, strong CO2 adsorption on a boron antisite (BN) in boron-rich porous boron nitrides (p-BN) was developed and studied. The results indicated that the material achieved larger adsorption energies of 2.09 eV (201.66 kJ/mol, PBE-D). The electronic structure calculations suggested that the introduction of BN in p-BN induced defect electronic states in the energy gap region, which strongly impacted the adsorption properties of the material. The bonding between the BN defect and the CO2 molecule was clarified, and it was found that the electron donation first occurred from CO2 to the BN double-acceptor state then, followed by electron back-donation from BN to CO2 accompanied by the formation of a BN-C bond. The thermodynamic properties indicated that the adsorption of CO2 on the BN defect to form anionic CO2(δ-) species was spontaneous at temperatures below 350 K. Both the large adsorption energies and the thermodynamic properties ensured that p-BN with a BN defect could effectively capture CO2 under ambient conditions. Finally, to evaluate the energetic stability, the defect formation energies were estimated. The formation energy of the BN defects was found to strongly depend on the chemical environment, and the selection of different reactants (B or N sources) would achieve the goal of reducing the formation energy. These findings provided a useful guidance for the design and fabrication of a porous BN sorbent for CO2 capture.

  5. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  6. Growth Mechanisms of Vertically-aligned Carbon, Boron Nitride, and Zinc Oxide Nanotubes

    SciTech Connect

    Yap, Yoke Khin

    2009-07-07

    Nanotubes are one-dimensional nanomaterials with all atoms located near the surface. This article provides a brief review on the possible growth mechanisms of a series of inorganic nanotubes, in particular, vertically-aligned (VA) carbon nanotubes (CNTs), boron nitride nanotubes (BNNTs), and ZnO nanotubes (ZnO NTs).

  7. Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities.

    PubMed

    Lei, Weiwei; Qin, Si; Liu, Dan; Portehault, David; Liu, Zongwen; Chen, Ying

    2013-01-14

    Few-layered boron carbon nitride nanosheets are synthesized by a simple and environmentally friendly process. The BCN nanosheets have 2-6 atomic layers with high surface area and show enhanced storage performance in lithium batteries, as well as a stable capacity of ~100 mA h g(-1) at 2 A g(-1) for 5000 cycles.

  8. Boron Trifluoride Catalized Ring-Opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    USDA-ARS?s Scientific Manuscript database

    Boron trifluoride diethyl etherate (BF3.OEt2) catalyzed ring-opening polymerization of epoxidized soybean oil (ESO), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, differ...

  9. Synthesis and Functionalization of Carbon and Boron Nitride Nanomaterials and Their Applications

    NASA Astrophysics Data System (ADS)

    Erickson, Kristopher John

    Carbon and boron-nitride based nanomaterials possess many exciting properties making them suitable for numerous applications spanning from electronics to advanced composites. However, these materials when synthesized often differ significantly from the idealized crystals usually considered theoretically. A thorough understanding of the structure of the materials as synthesized and how the resultant materials can be utilized for specific application purposes is required such that these applications can be effectively realized. To this end, the synthesis and characterization of carbon and boron-nitride based nanomaterials is undertaken with specific application purposes in mind. As a potential scalable synthetic route for graphene, graphene oxide (GO) and reduced graphene oxide are synthesized and characterized using atomic resolution electron microscopy. This elucidates their underlying structures revealing that the reduced form of GO does not resemble pristine graphene. The long-standing debate over the structure of GO is successfully ended with this study given the direct observation of the atomic structure of this material. To develop advanced composite materials, the functionalization of carbon and boron nitride nanotubes is undertaken. The characterization of their functionalization and incorporation within composite materials, specifically within a Kevlar polymer matrix, is presented to allow for the development of composites with significantly enhanced mechanical properties. Given a significant body of theoretical work paired with a single previous synthetic success, the synthesis of boron nitride nanoribbons is outlined. The first scalable synthesis of boron nitride nanoribbons is demonstrated resulting in long, consistent width, narrow, few-layer boron nitride nanoribbons which could be ideal for addressing these theoretical considerations. To establish a method for the synthesis of thin hexagonal-boron nitride (h-BN), the design of a specialized CVD system

  10. In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants.

    PubMed

    Garrett, David J; Saunders, Alexia L; McGowan, Ceara; Specks, Joscha; Ganesan, Kumaravelu; Meffin, Hamish; Williams, Richard A; Nayagam, David A X

    2016-01-01

    Recently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo.

  11. BON-BONs: cyclic molecules with a boron-oxygen-nitrogen backbone. Computational studies of their thermodynamic properties.

    PubMed

    Lawong, Aloysus K; Ball, David W

    2012-04-01

    Although they were first reported in 1963, molecules with a boron-oxygen-nitrogen dimeric backbone do not seem to have been investigated seriously in terms of thermodynamic properties. Here we report on the calculated structures and properties, including thermodynamics, of several so-called "BON-BON" molecules. With the popularity of nitrogen-containing substituents on new high-energy materials, nitro-substituted BON-BONs were a focus of our investigation. A total of 42 BON-BON molecules were evaluated, and thermochemical analysis shows a decrease in the specific enthalpy of combustion or decomposition with increasing NO(2) content, consistent with other systems.

  12. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, Leon

    1994-01-01

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film.

  13. Method of chemical vapor deposition of boron nitride using polymeric cyanoborane

    DOEpatents

    Maya, L.

    1994-06-14

    Polymeric cyanoborane is volatilized, decomposed by thermal or microwave plasma energy, and deposited on a substrate as an amorphous film containing boron, nitrogen and carbon. Residual carbon present in the film is removed by ammonia treatment at an increased temperature, producing an adherent, essentially stoichiometric boron nitride film. 11 figs.

  14. Theoretical study of boron nitride nanotubes with defects in nitrogen-rich synthesis.

    PubMed

    Kang, Hong Seok

    2006-03-16

    On the basis of calculations using the density functional theory, it is shown that BNNT synthesis could produce tubes deprived of one (B1 hole) or two (B2 hole) boron atoms under the condition where nitrogen atoms exist in excess throughout this study. The relative populations of various isomers of defective tubes will depend on the chirality of the tube. Interestingly, calculations show that B2 holes are much more favored than B1 holes, particularly in armchair tubes. Electronic properties are modified in such a way that the band gap is decreased through the introduction of defect states inside the gap. Magnetic properties will also be dependent on the chirality. The majority of armchair tubes with B2 holes will be nonmagnetic, while the majority of zigzag tubes with defects will exhibit magnetism. Contrary to the case of defect-free BNNT, the defective tubes are expected to be easily subject to reduction by accommodating excess electrons in the presence of Li atoms. In addition, the defect sites will show a higher affinity toward hydrogenation than the defect-free sites.

  15. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

    NASA Astrophysics Data System (ADS)

    Cheng, Yi-Han; Zhang, Chuan-Yu; Ren, Juan; Tong, Kai-Yu

    2016-10-01

    New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen ( h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the C n -BN ( n = 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96-13.59 Å by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped C n -intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10-21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (-80 °C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

  16. First principles calculations of a H2 molecule inside boron-nitrogen nanotubes

    NASA Astrophysics Data System (ADS)

    Belmiloud, Yamina; Djitli, Wassila; Abdeldjebar, Hasnia; Abdelatif, Mohamed Lamine; Tangour, Bahoueddine; Brahimi, Meziane

    2017-01-01

    DFT/B3LYP and CAM-B3LYP/6-311G(d,p) calculations have been performed to study a H2 molecule inside boron-nitrogen nanotubes (BNNT) (2,2), (3,3), (4,4) and (5,5). H2 is introduced perpendicular and parallel to the axis of nanotubes. The main difference relatively to CNTs is the disappearance of the Hsbnd H bond activation zone in the BNNTs because of the absence of interactions between the π electrons and hydrogen. The most important phenomenon is the shortening of the Hsbnd H bond by the interaction of the hydrogen with the repulsive zone of the van der Waals potential of the BNNT walls. This led to the appearance of a dipole moment in the inclusion complex H2@BNNT. The most important consequence of the existence of this dipole moment is that the IR activation of the Hsbnd H vibration becomes intense. This vibration frequency may be used for detecting or assaying the H2 contained in the nanotubes or to deduce BNNT's diameter. In this work we have examined also the consequence of the BNNT flattening on bandgap, our results show that flattening causes the reduction of a BNNT bandgap.

  17. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  18. Properties and electrochemical characteristics of boron-doped multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tsierkezos, Nikos G.; Ritter, Uwe; Nugraha Thaha, Yudi; Krischok, Stefan; Himmerlich, Marcel; Downing, Clive

    2015-10-01

    Boron-doped multi-walled carbon nanotubes were synthesized upon decomposition of ethyl alcohol and boric acid via chemical vapor deposition. The boron-doped nanotubes were treated with hydrochloric acid and were characterized by means of scanning electron and transmission electron microscopy in conjunction with energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. The electrochemistry of ferrocyanide/ferricyanide on boron-doped nanotubes was studied in temperature range of 283.15-303.15 K. The findings exhibit an improvement of films' current response and kinetics of electron transfer with the rise in temperature. The kinetics for electron transfer enhances and the redox process occurs slightly more spontaneously upon acid treatment.

  19. Equilibration of the terrestrial water, nitrogen, and carbon cycles.

    PubMed

    Schimel, D S; Braswell, B H; Parton, W J

    1997-08-05

    Recent advances in biologically based ecosystem models of the coupled terrestrial, hydrological, carbon, and nutrient cycles have provided new perspectives on the terrestrial biosphere's behavior globally, over a range of time scales. We used the terrestrial ecosystem model Century to examine relationships between carbon, nitrogen, and water dynamics. The model, run to a quasi-steady-state, shows strong correlations between carbon, water, and nitrogen fluxes that lead to equilibration of water/energy and nitrogen limitation of net primary productivity. This occurs because as the water flux increases, the potentials for carbon uptake (photosynthesis), and inputs and losses of nitrogen, all increase. As the flux of carbon increases, the amount of nitrogen that can be captured into organic matter and then recycled also increases. Because most plant-available nitrogen is derived from internal recycling, this latter process is critical to sustaining high productivity in environments where water and energy are plentiful. At steady-state, water/energy and nitrogen limitation "equilibrate," but because the water, carbon, and nitrogen cycles have different response times, inclusion of nitrogen cycling into ecosystem models adds behavior at longer time scales than in purely biophysical models. The tight correlations among nitrogen fluxes with evapotranspiration implies that either climate change or changes to nitrogen inputs (from fertilization or air pollution) will have large and long-lived effects on both productivity and nitrogen losses through hydrological and trace gas pathways. Comprehensive analyses of the role of ecosystems in the carbon cycle must consider mechanisms that arise from the interaction of the hydrological, carbon, and nutrient cycles in ecosystems.

  20. Effect of carbon species on the reduction and melting behavior of boron-bearing iron concentrate/carbon composite pellets

    NASA Astrophysics Data System (ADS)

    Wang, Guang; Ding, Yin-gui; Wang, Jing-song; She, Xue-feng; Xue, Qing-guo

    2013-06-01

    Iron nugget and boron-rich slag can be obtained in a short time through high-temperature reduction of boronbearing iron concentrate by carbonaceous material, both of which are agglomerated together as a carbon composite pellet. This is a novel flow sheet for the comprehensive utilization of boron-bearing iron concentrate to produce a new kind of man-made boron ore. The effect of reducing agent species (i.e., carbon species) on the reduction and melting process of the composite pellet was investigated at a laboratory scale in the present work. The results show that, the reduction rate of the composite pellet increases from bituminite, anthracite, to coke at temperatures ranging from 950 to 1300°C. Reduction temperature has an important effect on the microstructure of reduced pellets. Carbon species also affects the behavior of reduced metallic iron particles. The anthracite-bearing composite pellet melts faster than the bituminitebearing composite pellet, and the coke-bearing composite pellet cannot melt due to the high fusion point of coke ash. With anthracite as the reducing agent, the recovery rates of iron and boron are 96.5% and 95.7%, respectively. This work can help us get a further understanding of the new process mechanism.

  1. 0V Bias Neutron Detection of Boron-Carbon Films

    NASA Astrophysics Data System (ADS)

    Day, Ellen; Adenwalla, Shireen

    2004-03-01

    The development of boron rich solid state neutron detectors has recently become a reality due to the development of a plasma enhanced chemical vapor deposition (PECVD) method that results in the growth of semiconducting boron carbide films [1]. Boron-carbide/silicon heterojunction diodes have been fabricated and shown to be real time, solid-state neutron detectors [2, 3]. Earlier devices demonstrated neutron detection but required an external bias. Initial experiments in self-biasing with these devices indicate that self-biased heterojunction diodes are also capable of neutron detection, the advantage of which is a lower noise peak. A well thermalized 5 Ci Pu-Be source is used which produces a thermal neutron flux of 13.6E3 n/sec on the small area(13 mm2) detector. Self-biased results display the characteristic pulse height spectra peaks associated with the neutron-10B capture interaction daughter products. The results are compared to externally biased and previously published results. This work is partially founded by the State of Nebraska and U.S. Department of Energy National Nuclear Security Administration Office of Nonproliferation Research and Engineering [NA-22] through Pacific Northwest National Laboratory. [1] Lee, S; Mazurowski, J; Ramsmeyer, G; Dowben, P; Journal of Applied Physics 72(10): 4925-4933 (1992) [2] Adenwalla, S; Welsch, P; Harken A; Brand, JI; Sezer, A; Robertson, BW; Applied Physics Letters 79(26): 4357-4359 (2001) [3] Robertson, BW; Adenwalla, S; Harken A; Welsch, P; Brand, JI; Dowben, PA; Claasen, JP; Applied Physics Letters 80(19): 3644-3646 (200

  2. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    PubMed

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  3. Investigations on the system boron-carbon silicon

    NASA Technical Reports Server (NTRS)

    Kieffer, R.; Gugel, E.; Leimer, G.; Ettmayer, P.

    1983-01-01

    The above elements form with each other binary compounds which are very interesting from the point of view of their structure and their chemistry and which are important for technology. The present investigation is concerned with the three-component system and the behavior of the binary compounds occurring in it. Investigations employing various techniques, such as X-ray, chemical analysis, microscopy and fusion experiments showed that no ternary phase exists within the boundary of the ternary system. There is no compound with a higher abrasion capacity than boron carbide. The probable phase field divisions at two isothermic intersections and the fusion isotherms are indicated.

  4. Record critical current density in bulk MgB2 using carbon-coated amorphous boron with optimum sintering conditions

    NASA Astrophysics Data System (ADS)

    Muralidhar, M.; Higuchi, M.; Diko, P.; Jirsa, M.; Murakami, M.

    2017-07-01

    We report on the synthesis and characterization of a sintered bulk MgB2 material produced at an optimized sintering temperature with a varying content of carbon-encapsulated amorphous boron. A series of MgB2 bulks was prepared with 0%, 1.5%, 2.8%, 7.3%, 12% and 16.5% of carbon-encapsulated boron. In the samples with 12% of carbon-encapsulated boron, Mg and MgB2C2 formation was observed. Tc was around 38.4 K for the pure MgB2 and decreased with increasing carbon content up to 25 K for 16.5 % of carbon-encapsulated boron. The highest Jc values of 470 kA/cm2 and 310 kA/cm2, in the self-field and 1 T, respectively, were achieved at 20 K, in the MgB2 sample with 1.5% of carbon-encapsulated boron. It proved that the optimized sintering conditions together with the appropriate amount of the carbon-coated boron were able to bring critical current performance of bulk MgB2 material up to the level necessary for real technical applications.

  5. Kinetic Monte Carlo study on the suppression of boron transient enhanced diffusion with carbon pre-implant.

    PubMed

    Park, Soon-Yeol; Sung, Kun-Sik; Won, Taeyoung

    2011-07-01

    We report our kinetic Monte Carlo (kMC) study of the effect of carbon co-implantation on the pre-amorphization implant (PAI) process. We employed the BCA (binary collision approximation) approach for the acquisition of the initial as-implanted dopant profile and the kMC method for the simulation of the diffusion process during the annealing. The simulation results implied that carbon co-implantation suppress boron diffusion due to recombination with interstitials. Also, we could compare boron diffusion with carbon diffusion by calculating the reaction of carbon atoms with interstitials, and we found that boron diffusion was affected by the carbon co-implantation energy by enhancing the trapping of interstitials between boron atoms and interstitials. Our KMC simulation implies that the probability of boron's encounterance with interstitial is reduced due to the carbon trapping between boron and an interstitial and that the effectiveness of co-implanted carbon as a interstitial trap is maximized at an implantation energy of 3 keV.

  6. Nitrogen and carbon storage in alpine plants.

    PubMed

    Monson, Russell K; Rosenstiel, Todd N; Forbis, Tara A; Lipson, David A; Jaeger, Charles H

    2006-02-01

    Alpine plants offer unique opportunities to study the processes and economics of nutrient storage. The short alpine growing season forces rapid completion of plant growth cycles, which in turn causes competition between vegetative and reproductive growth sinks during the early part of the growing season. Mobilization of stored nitrogen and carbon reserves facilitates competing sinks and permits successful completion of reproduction before the onset of winter stress. We discuss the theoretical framework for assessing the costs and benefits of nutrient storage in alpine plants in order to lay the foundation for interpretation of observations. A principal point that has emerged from past theoretical treatments is the distinction between reserve storage, defined as storage that occurs with a cost to growth, and resource accumulation, defined as storage that occurs when resource supply exceeds demand, and thus when there is no cost to growth. We then discuss two case studies, one already published and one not yet published, pertaining to the storage and utilization of nitrogen and carbon compounds in alpine plants from Niwot Ridge, Colorado. In the first case, we tested the hypothesis that the seasonal accumulation of amino acids in the rhizome of N-fertilized plants of Bistorta bistortoides provides an advantage to the plant by not imposing a cost to growth at the time of accumulation, but providing a benefit to growth when the accumulated N is remobilized. We show that, as predicted, there is no cost during N accumulation but, not as predicted, there is no benefit to future growth. In the presence of N accumulation, reliance on stored N for growth increases, but reliance on current-season, soil-derived N decreases; thus the utilization of available N in this species is a 'zero sum' process. Inherent meristematic constraints to growth cause negative feedback that limits the utilization of accumulated N and precludes long-term advantages to this form of storage. In the

  7. Electromagnetic properties of phosphate composite materials with boron-containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Plyushch, A. O.; Sokol, A. A.; Lapko, K. N.; Kuzhir, P. P.; Fedoseeva, Yu. V.; Romanenko, A. I.; Anikeeva, O. B.; Bulusheva, L. G.; Okotrub, A. V.

    2014-12-01

    The possibility of developing electromagnetic composite materials based on unfired heat-resistant mechanically strong phosphate ceramics has been studied. Boron-containing multiwalled carbon nanotubes and onion-like particles (B-MWCNTs) synthesized by electric-arc evaporation of a graphite rod enriched with boron are used as a functional additive to the phosphate matrix. According to transmission electron microscopy, the average nanoparticle length is ˜100 nm. According to X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the boron content in B-MWCNT walls is less than 1 at %, and substitution of carbon atoms with boron leads to the formation of acceptor states in the conduction band. An increase in the electromagnetic response of phosphate ceramics by ˜53 and ˜13-15% for 1.5 wt % B-MWCNT additive is detected in quasi-static and gigahertz ranges, respectively. It is assumed that a stronger effect can be achieved using longer B-MWCNTs than those formed under electric arc conditions.

  8. How Bedrock Nitrogen Influences Carbon Storage

    NASA Astrophysics Data System (ADS)

    Rios, C.; Mitchell, S. A.

    2016-12-01

    The purpose of this research is to examine how trees, specifically Douglas fir (Pseudotsuga menziesii) responds at sites with high amounts of nitrogen (N) from rocks. In forests where Douglas firs are found, their growth is usually limited by the amount of N available to them. By providing the trees with more N from the rocks, the trees can consume more carbon (C) from the atmosphere. This explores carbon sequestration, capturing C from the atmosphere in the biomass of the trees and reducing the amount of CO2 in the atmosphere. My hypothesis is that trees with access to more N from the rocks, which acts like a fertilizer, will be larger and capture more C from the atmosphere storing it as biomass. We will be collecting measurements from 12 sites in northern California. The sites range from 60 to 1000 parts per million (ppm) of N in the rocks. We will use the diameter at breast height (DBH) measurements to calculate the leaf area index (LAI), which tells us how much C the trees are holding per acre. Contributing to the research will also be the counting tree rings which indicate the age of trees, so we may also see if trees are able to see if trees with more N are growing more annually. The larger amount of N taken from the bedrock resulted in more CO2 taken from the atmosphere as biomass. This resulted in more photosynthetic vegetation per unit area which means the trees are more productive. Carbon stored at these sites helps to slow the effects of increasing atmospheric CO2.

  9. High quality boron carbon nitride/ZnO-nanorods p-n heterojunctions based on magnetron sputtered boron carbon nitride films

    SciTech Connect

    Qian, J. C.; Jha, S. K. E-mail: apwjzh@cityu.edu.hk; Wang, B. Q.; Jelenković, E. V.; Bello, I.; Klemberg-Sapieha, J. E.; Martinu, L.; Zhang, W. J. E-mail: apwjzh@cityu.edu.hk

    2014-11-10

    Boron carbon nitride (BCN) films were synthesized on Si (100) and fused silica substrates by radio-frequency magnetron sputtering from a B{sub 4}C target in an Ar/N{sub 2} gas mixture. The BCN films were amorphous, and they exhibited an optical band gap of ∼1.0 eV and p-type conductivity. The BCN films were over-coated with ZnO nanorod arrays using hydrothermal synthesis to form BCN/ZnO-nanorods p-n heterojunctions, exhibiting a rectification ratio of 1500 at bias voltages of ±5 V.

  10. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    SciTech Connect

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  11. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  12. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  13. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment

    SciTech Connect

    Adriani, O.; Bongi, M.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Carbone, R.; Bogomolov, E. A.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Castellini, G.; Danilchenko, I. A.; and others

    2014-08-20

    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei as well as the B/C ratio from the PAMELA space experiment. The results span the range 0.44-129 GeV/n in kinetic energy for data taken in the period 2006 July to 2008 March.

  14. Microstructure development in hot-pressed silicon carbide: Effects of aluminum, boron, and carbon additives

    SciTech Connect

    Zhang, Xiao Feng; Yang, Qing; De Jonghe, Lutgard C.

    2002-12-18

    SiC was hot-pressed with aluminum, boron, and carbon additives. The Al content was modified either to obtain SiC samples containing a continuous Al gradient, or to vary the average Al content. In both cases, dramatic changes in microstructure, phase composition, and grain boundary structure were observed as a result of the Al variation. Similar processing and characterization were done with modified boron and carbon average contents. The systematic experiments allowed identification of the roles of Al, B, and C in developing grain morphology and phase composition. The experiments also clarified the mechanical property responses to microstructural modification. Tailoring of the SiC microstructure to suit different applications would be possible.

  15. Nitrogen controls the lability of Alaska Arctic soil carbon

    NASA Astrophysics Data System (ADS)

    Ziolkowski, L. A.; Li, H.

    2016-12-01

    Warming of Arctic soils is causing a large pool of once frozen carbon to become increasingly susceptible to microbial degradation and therefore additional atmospheric carbon dioxide emissions. The microbial degradation of soil carbon is typically studied by measuring carbon dioxide fluxes in laboratory-based incubations or in chambers at the soil surface, with each approach having its limitations. Hypotheses for the factors controlling the fate of soil carbon include temperature and the soil carbon to nitrogen content. However, the amount of soil carbon being used by microbes and what factors are controlling the depth dependent degradation remain unknown. Here we show that the amount of soil carbon being consumed by the microbes is a function of the relative soil nitrogen content rather than soil composition or age. By measuring the radiocarbon content of the soil organic carbon and the lipid membranes of the viable microbial community, we calculated the amount of soil carbon being consumed by the microbes along a transect of active layer soil cores from three tundra and one boreal sites in northern Alaska. We found that while the bulk organic carbon at all sites was progressively older with depth, the age of carbon in the microbes was more variable. Our results indicate that the nitrogen content was a major driver in the microbial usage of soil carbon, and was decoupled from both the soil carbon content and the microbial community composition. The greatest difference in radiocarbon content between soil organic carbon and microbes was observed at the depth of lowest nitrogen content, just below the organic-mineral soil boundary. These results suggest that the depth dependent nitrogen content may regulate the degradation of old, permafrost carbon and therefore potential limit climate feedbacks from Arctic soil degradation.

  16. Intercropping enhances soil carbon and nitrogen.

    PubMed

    Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; Zhang, Fu-Suo; Van Der Werf, Wopke

    2015-04-01

    Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration. © 2014 John Wiley & Sons Ltd.

  17. Terrestrial nitrogen-carbon cycle interactions at the global scale.

    PubMed

    Zaehle, S

    2013-07-05

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.

  18. An Alternative Explanation of the Varying Boron-to-carbon Ratio in Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2017-06-01

    It is suggested that the decline with energy of the boron-to-carbon abundance ratio in Galactic cosmic rays is due, in part, to a correlation between the maximum energy attainable by shock acceleration in a given region of the Galactic disk and the grammage traversed before escape. In this case the energy dependence of the escape rate from the Galaxy may be less than previously thought and the spectrum of antiprotons becomes easier to understand.

  19. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    PubMed

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  20. Design and reactions of a carbon Lewis base/boron Lewis acid frustrated Lewis pair.

    PubMed

    Möricke, Jennifer; Wibbeling, Birgit; Daniliuc, Constantin G; Kehr, Gerald; Erker, Gerhard

    2017-08-28

    The conjugated dienamine 4 selectively adds Piers' borane [HB(C6F5)2] to give the enamine/borane system 5, which features a boratirane structure by internal enamine carbon Lewis base to boron Lewis acid interaction. Compound 5 behaves as a C/B frustrated Lewis pair and undergoes typical addition reactions to benzaldehyde, several nitriles and to sulfur dioxide.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).

  1. Boron-Doped Graphite for High Work Function Carbon Electrode in Printable Hole-Conductor-Free Mesoscopic Perovskite Solar Cells.

    PubMed

    Duan, Miao; Tian, Chengbo; Hu, Yue; Mei, Anyi; Rong, Yaoguang; Xiong, Yuli; Xu, Mi; Sheng, Yusong; Jiang, Pei; Hou, Xiaomeng; Zhu, Xiaotong; Qin, Fei; Han, Hongwei

    2017-09-20

    Work function of carbon electrodes is critical in obtaining high open-circuit voltage as well as high device performance for carbon-based perovskite solar cells. Herein, we propose a novel strategy to upshift work function of carbon electrode by incorporating boron atom into graphite lattice and employ it in printable hole-conductor-free mesoscopic perovskite solar cells. The high-work-function boron-doped carbon electrode facilitates hole extraction from perovskite as verified by photoluminescence. Meanwhile, the carbon electrode is endowed with an improved conductivity because of a higher graphitization carbon of boron-doped graphite. These advantages of the boron-doped carbon electrode result in a low charge transfer resistance at carbon/perovskite interface and an extended carrier recombination lifetime. Together with the merit of both high work function and conductivity, the power conversion efficiency of hole-conductor-free mesoscopic perovskite solar cells is increased from 12.4% for the pristine graphite electrode-based cells to 13.6% for the boron-doped graphite electrode-based cells with an enhanced open-circuit voltage and fill factor.

  2. Report on carbon and nitrogen abundance studies

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1991-01-01

    The aim of the proposal was to determine the nitrogen to carbon abundance ratios from transition layer lines in stars with different T(sub eff) and luminosities. The equations which give the surface emission line fluxes and the measured ratio of the NV to CIV emission line fluxes are presented and explained. The abundance results are compared with those of photospheric abundance studies for stars in common with the photospheric investigations. The results show that the analyses are at least as accurate as the photospheric determinations. These studies can be extended to F and early G stars for which photospheric abundance determinations for giants are hard to do because molecular bands become too weak. The abundance determination in the context of stellar evolution is addressed. The N/C abundance ratio increases steeply at the point of evolution for which the convection zone reaches deepest. Looking at the evolution of the rotation velocities v sin i, a steep decrease in v sin i is related to the increasing depth of the convection zone. It is concluded that the decrease in v sin i for T(sub eff) less than or approximately = 5800 K is most probably due to the rearrangement of the angular momentum in the stars due to deep convective mixing. It appears that the convection zone is rotating with nearly depth independent angular momentum. Other research results and ongoing projects are discussed.

  3. Boron supercapacitors

    DOE PAGES

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; ...

    2016-11-16

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  4. Boron supercapacitors

    SciTech Connect

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; Jiang, De -en

    2016-11-16

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our work suggests that 2D boron sheets are promising electrodes for supercapacitor applications.

  5. Semi-metallic to semiconducting transition in graphene nanosheet with site specific co-doping of boron and nitrogen

    NASA Astrophysics Data System (ADS)

    Nath, Palash; Sanyal, Dirtha; Jana, Debnarayan

    2014-02-01

    Present work reports the modifications of band structure and density of states of graphene nanosheet by substitutional co-doping of boron (B) and nitrogen (N) in the pristine graphene system. Using ab-initio density functional theory (DFT) we show that the doping position plays an important key role to determine the band-gap in the graphene system. Co-doping of B and N at different sub-lattice positions in the planar graphene structure results different modifications in the band structure and density of states (DOS). Particular choice of sub-lattice doping position of B and N yields a finite value of band gap.

  6. Boron Isotopes in Benthic Foraminifera by MC-ICPMS: Unlocking the Ocean's Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Rae, J. W.; Foster, G. L.; Schmidt, D. N.; Elliott, T. R.

    2008-12-01

    The cause of glacial-interglacial CO2 cycles has been described as the "holy grail" of climate science. All models currently proposed invoke changes in deep ocean carbon storage, but the mechanisms by which this took place remain unclear. Proxies for two components of the ocean carbonate system would allow us to fully reconstruct ocean carbonate equilibria and trace the spatial and temporal pattern of glacial carbon storage, providing valuable constraints on the causal mechanisms of atmospheric CO2 change. The theory behind the boron isotope pH proxy is well understood, but its reliability has been questioned, primarily due to uncertainty in the fractionation factor between boron species in seawater, and analytical difficulties associated with negative thermal ionisation (NTIMS) measurements. We have developed a new technique for boron isotopic analysis by multicollector inductively coupled plasma mass spectrometry (MC- ICPMS), which overcomes many of the problems associated with NTIMS measurements. Our method is precise (better than 0.25%, or ~0.02 pH units, on full procedural replicates at 95% confidence), rapid (allowing duplicate measurement of 10-20 samples per analytical session), and has small sample size requirements of ~10 ng boron (~0.5 mg foraminiferal tests). As MC-ICPMS analysis requires separation of boron prior to measurement, any bias between samples and standards with different matrices is also removed. Recent experimental work has also improved uncertainty in the isotopic fractionation factor (now measured at 1.0272 ±0.0006 [1]), providing a powerful independent means to test the behaviour of the foram-based δ11B proxy, and its ability to provide absolute pH values. We have measured δ11B in several species of benthic foraminifera from a range of core-top samples. In contrast to previous studies, we find a very close match between foraminiferal δ11B values and the δ11B of seawater B(OH)4- - predicted using the recently determined fractionation

  7. Nitrogen/Sulfur-Codoped Carbon Materials from Chitosan for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Mei; Han, Xianlong; Chang, Xiaoqing; Yin, Wenchao; Ma, Jingyun

    2016-08-01

    d-Methionine and chitosan have been used for fabrication of nitrogen/sulfur-codoped carbon materials by a hydrothermal process followed by carbonization at 750°C for 3 h. The as-prepared carbon materials showed enhanced electrochemical performance, combining electrical double-layer capacitance with pseudocapacitance owing to the doping with sulfur and nitrogen. The specific capacitance of the obtained carbon material reached 135 F g-1 at current density of 1 A g-1, which is much higher than undoped chitosan (67 F g-1). The capacitance retention of the carbon material was almost 97.2% after 5000 cycles at current density of 1 A g-1. With such improved electrochemical performance, the nitrogen/sulfur-codoped carbon material may have promising potential for use in energy-storage electrodes of supercapacitors.

  8. Novel molecular sources for dispersing boron in carbon-carbon composites. Final report, 8 September 1992-7 September 1994

    SciTech Connect

    Chen, P.S.; Stevens, W.C.

    1993-11-07

    Improving the oxidation resistance of carbon-carbon composites is key to extending the applications of this material system into higher temperature regimes. While molecularly dispersed boron, through addition of carborane, helps to provide oxidation protection to phenolic derived carbon, the moisture affinity of the boria seriously affects composite performance. Substitution of furfuryl and pitch as the resin precursors significantly improved the moisture resistance of the carbon matrix material by stabilizing the boron at low temperatures and minimizing premature boria formation. Carborane addition to a commercial furfuryl/pitch blend (Kaiser Code88A) yielded a carbon char with reduced moisture affinity and improved oxidation resistance. Mechanical properties of the Code88A matrix composites were not significantly affected by the addition of carborane. Although sample size limitations in testing detracted from the demonstration of success, data suggests that the oxidation resistance of carbon-carbons can be significantly enhanced via this approach without detriment to the physical attributes and moisture resistance of the composite.

  9. Nitrogen fixation and carbon metabolism in legume nodules.

    PubMed

    Garg, Neera; Singla, Ranju; Geetanjali

    2004-02-01

    A large amount of energy is utilized by legume nodules for the fixation of nitrogen and assimilation of fixed nitrogen (ammonia) into organic compounds. The source of energy is provided in the form of photosynthates by the host plant. Phosphoenol pyruvate carboxylase (PEPC) enzyme, which is responsible for carbon dioxide fixation in C4 and crassulacean acid metabolism plants, has also been found to play an important role in carbon metabolism in legume root nodule. PEPC-mediated CO2 fixation in nodules results in the synthesis of C4 dicarboxylic acids, viz. aspartate, malate, fumarate etc. which can be transported into bacteroids with the intervention of dicarboxylate transporter (DCT) protein. PEPC has been purified from the root nodules of few legume species. Information on the relationship between nitrogen fixation and carbon metabolism through PEPC in leguminous plants is scanty and incoherent. This review summarizes the various aspects of carbon and nitrogen metabolism in legume root nodules.

  10. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes.

    PubMed

    Endo, Morinobu; Muramatsu, Hiroyuki; Hayashi, Takuya; Kim, Yoong-Ahm; Van Lier, Gregory; Charlier, Jean-Christophe; Terrones, Humberto; Terrones, Mauricio; Dresselhaus, Mildred S

    2005-06-01

    Here we demonstrate that the incorporation of boron (B) atoms between double-walled carbon nanotubes (DWNTs) during thermal annealing (1400-1600 degrees C) results in covalent nanotube "Y" junctions, DWNT coalescence, and the formation of flattened multiwalled carbon nanotubes (MWNTs). These processes occur via the merging of adjacent tubes, which is triggered by B interstitial atoms. We observe that B atom interstitials between DWNTs are responsible for the rapid establishment of covalent connections between neighboring tubes (polymerization), thereby resulting in the fast annealing of the carbon cylinders with B atoms embedded in the newly created carbon nanotube network. Once B is in the lattice, tube faceting (polygonization) starts to occur, and the electronic properties are expected to change dramatically. Therefore, B atoms indeed act as atomic nanotube fusers (or welders), and this process could now be used in assembling novel electronic nanotube devices, nanotube networks, carbon nanofoams and heterojunctions exhibiting p-type electronic properties.

  11. Preparation of boron doped diamond modified by iridium for electroreduction of carbon dioxide (CO2)

    NASA Astrophysics Data System (ADS)

    Ichzan, A. M.; Gunlazuardi, J.; Ivandini, T. A.

    2017-04-01

    Electroreduction of carbon dioxide (CO2) at iridium oxide-modified boron-doped diamond (IrOx-BDD) electrodes in aqueous electrolytes was studied by voltammetric method. The aim of this study was to find out the catalytic effect of IrOx to produce fine chemicals contained of two or more carbon atoms (for example acetic acid) in high percentage. Characterization using FE-SEM and XPS indicated that IrO2 can be deposited at BDD electrode, whereas characterization using cyclic voltammetry indicated that the electrode was applicable to be used as working electrode for CO2 electroreduction.

  12. Carbon and nitrogen partitioning in peach/plum grafts.

    PubMed

    Moing, A; Gaudillère, J P

    1992-01-01

    Modifications in root-shoot relationships induced by graft incompatibility were studied in peach/plum graft combinations by means of carbohydrate and nitrogen analyses and isotope labeling. Mobilization of stored carbon, phloem transport of carbon, and mobilization, assimilation and distribution of nitrogen were studied in one compatible peach/plum graft (Prunus persica L. Batsch cv. springtime grafted on Prunus cerasifera L. Ehrh cv. myrobalan P 2032) and one incompatible graft (Prunus persica L. Batsch cv. Springtime grafted on Prunus cerasifera L. Ehrh cv. myrobalan P 18) for 89 days after grafting. Carbon and nitrogen reserves were mobilized in the rootstock in both graft combinations during the first 78 days following grafting. After that, sorbitol concentration was lower in the roots of the incompatible graft than in the roots of the compatible graft, whereas soluble sugars and starch accumulated in the peach scion of the incompatible graft. In both graft types, carbon was allocated mainly to the scion. Labeling with (13)CO(2) from 78 to 81 days after grafting showed that carbon partitioning among the different plant organs was only slightly affected by graft incompatibility. Carbohydrate concentrations provided indirect evidence that carbon transfer to the roots was hindered in the incompatible graft. Labeling with (15)NO(3) showed that nitrogen distribution and the rate of nitrogen assimilation were similar in the two graft combinations from 57 to 78 days after grafting. Nitrogen assimilation in the incompatible graft ceased 78 days after grafting, whereas it continued in the compatible graft.

  13. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater.

  14. Magnetism and structure of graphene nanodots with interiors modified by boron, nitrogen, and charge.

    PubMed

    Philpott, Michael R; Kawazoe, Yoshiyuki

    2012-08-07

    The properties (geometry, spin, and charge distribution) of a series of flat hexagonal zigzag edged graphene nanodots (GNDs), with interiors modified by centrally located substituent atoms boron and nitrogen and by positive and negative charge, have been calculated using ab initio density functional theory. The doped series X-GND has the stoichiometry C(6m(2)-1)XH(6m), zigzag size index m = 2, 4, 6, 8, 10 and substituent X = B or N. The undoped parents C(6m(2))H(6m) with m ≤ 8 have spin paired ground states and the parent m = 10 has a spin polarized singlet ground state with edges that alternate α- and β-spin. The spin on the substituent atom decreases to zero with size index m and magnetization builds on the edges of all the X-GND. This demonstrates translocation of substituent spin and a proximity or directional effect for small m as the edges show different degrees of magnetization. For the largest X-GND (m = 10) the magnetization on edges resembles the calculated triplet S = 1(a) configuration of the parent (four edge spins up and two down) and has a higher apparent symmetry than the C(2v) point group of X-GND. For charged (m = 10) GNDs the edge magnetization has strength comparable to the parent on two parallel edges and weak on the other four in a perimeter pattern that resembles the triplet S = 1(b) configuration of the undoped parent and not the ground configuration of the isoelectronic X-GND molecule. Many of the results can be interpreted by simple Kekulé valence bond structures for an unpaired spin on a network where the substituent site group symmetry is not compatible with the perimeter. A deeper understanding is provided by the properties of the Kohn-Sham orbitals. The calculations of the X-doped GNDs reveal limitations in the use of the hex-radical hypothesis of the parent ground state to systems where foreign atoms lower symmetry and perturb the π- and σ-bond manifolds.

  15. Magnetism and structure of graphene nanodots with interiors modified by boron, nitrogen, and charge

    NASA Astrophysics Data System (ADS)

    Philpott, Michael R.; Kawazoe, Yoshiyuki

    2012-08-01

    The properties (geometry, spin, and charge distribution) of a series of flat hexagonal zigzag edged graphene nanodots (GNDs), with interiors modified by centrally located substituent atoms boron and nitrogen and by positive and negative charge, have been calculated using ab initio density functional theory. The doped series X-GND has the stoichiometry C_{6m2-1}XH6m, zigzag size index m = 2, 4, 6, 8, 10 and substituent X = B or N. The undoped parents C_{6m2}H6m with m ⩽ 8 have spin paired ground states and the parent m = 10 has a spin polarized singlet ground state with edges that alternate α- and β-spin. The spin on the substituent atom decreases to zero with size index m and magnetization builds on the edges of all the X-GND. This demonstrates translocation of substituent spin and a proximity or directional effect for small m as the edges show different degrees of magnetization. For the largest X-GND (m = 10) the magnetization on edges resembles the calculated triplet S = 1(a) configuration of the parent (four edge spins up and two down) and has a higher apparent symmetry than the C2v point group of X-GND. For charged (m = 10) GNDs the edge magnetization has strength comparable to the parent on two parallel edges and weak on the other four in a perimeter pattern that resembles the triplet S = 1(b) configuration of the undoped parent and not the ground configuration of the isoelectronic X-GND molecule. Many of the results can be interpreted by simple Kekulacute{e} valence bond structures for an unpaired spin on a network where the substituent site group symmetry is not compatible with the perimeter. A deeper understanding is provided by the properties of the Kohn-Sham orbitals. The calculations of the X-doped GNDs reveal limitations in the use of the hex-radical hypothesis of the parent ground state to systems where foreign atoms lower symmetry and perturb the π- and σ-bond manifolds.

  16. Structural, electronic and magnetic properties of carbon doped boron nitride nanowire: Ab initio study

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Kanjouri, Faramarz

    2016-11-01

    Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior such as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.

  17. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling

    PubMed Central

    Mooshammer, Maria; Wanek, Wolfgang; Hämmerle, Ieda; Fuchslueger, Lucia; Hofhansl, Florian; Knoltsch, Anna; Schnecker, Jörg; Takriti, Mounir; Watzka, Margarete; Wild, Birgit; Keiblinger, Katharina M; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2014-01-01

    Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N taken up between growth and the release of inorganic N to the environment (that is, N mineralization), and is thus central to our understanding of N cycling. Here we report empirical evidence that microbial decomposer communities in soil and plant litter regulate their NUE. We find that microbes retain most immobilized organic N (high NUE), when they are N limited, resulting in low N mineralization. However, when the metabolic control of microbial decomposers switches from N to C limitation, they release an increasing fraction of organic N as ammonium (low NUE). We conclude that the regulation of NUE is an essential strategy of microbial communities to cope with resource imbalances, independent of the regulation of microbial carbon use efficiency, with significant effects on terrestrial N cycling. PMID:24739236

  18. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling.

    PubMed

    Mooshammer, Maria; Wanek, Wolfgang; Hämmerle, Ieda; Fuchslueger, Lucia; Hofhansl, Florian; Knoltsch, Anna; Schnecker, Jörg; Takriti, Mounir; Watzka, Margarete; Wild, Birgit; Keiblinger, Katharina M; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2014-04-16

    Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N taken up between growth and the release of inorganic N to the environment (that is, N mineralization), and is thus central to our understanding of N cycling. Here we report empirical evidence that microbial decomposer communities in soil and plant litter regulate their NUE. We find that microbes retain most immobilized organic N (high NUE), when they are N limited, resulting in low N mineralization. However, when the metabolic control of microbial decomposers switches from N to C limitation, they release an increasing fraction of organic N as ammonium (low NUE). We conclude that the regulation of NUE is an essential strategy of microbial communities to cope with resource imbalances, independent of the regulation of microbial carbon use efficiency, with significant effects on terrestrial N cycling.

  19. Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline.

    PubMed

    Lihareva, N; Kosturkova, P; Vakarelska, T

    2000-05-01

    Boron in tourmaline, a high refractory mineral with a high boron content (approximately 3%), can be determined after aqueous leaching of a sodium carbonate-zinc oxide melt. Boron is separated effectively from the major elements of matrix, such as silicon, calcium and magnesium and especially from iron, the main spectral interfering element. Measurements were performed by inductively coupled plasma atomic emission spectrometry. A determination limit of 4 microg/g could be achieved when 200 mg of sample are analyzed with a precision of 5.2% RSD. This method could be applied to the determination of fluorine in the same solution.

  20. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  1. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  2. Microcystin Biosynthesis and mcyA Expression in Geographically Distinct Microcystis Strains under Different Nitrogen, Phosphorus, and Boron Regimes

    PubMed Central

    Srivastava, Ankita; Ko, So-Ra; Ahn, Chi-Yong; Ravi, Alok Kumar

    2016-01-01

    Roles of nutrients and other environmental variables in development of cyanobacterial bloom and its toxicity are complex and not well understood. We have monitored the photoautotrophic growth, total microcystin concentration, and microcystins synthetase gene (mcyA) expression in lab-grown strains of Microcystis NIES 843 (reference strain), KW (Wangsong Reservoir, South Korea), and Durgakund (Varanasi, India) under different nutrient regimes (nitrogen, phosphorus, and boron). Higher level of nitrogen and boron resulted in increased growth (avg. 5 and 6.5 Chl a mg/L, resp.), total microcystin concentrations (avg. 1.185 and 7.153 mg/L, resp.), and mcyA transcript but its expression was not directly correlated with total microcystin concentrations in the target strains. Interestingly, Durgakund strain had much lower microcystin content and lacked microcystin-YR variant over NIES 843 and KW. It is inferred that microcystin concentration and its variants are strain specific. We have also examined the heterotrophic bacteria associated with cyanobacterial bloom in Durgakund Pond and Wangsong Reservoir which were found to be enriched in Alpha-, Beta-, and Gammaproteobacteria and that could influence the bloom dynamics. PMID:27803926

  3. Microcystin Biosynthesis and mcyA Expression in Geographically Distinct Microcystis Strains under Different Nitrogen, Phosphorus, and Boron Regimes.

    PubMed

    Srivastava, Ankita; Ko, So-Ra; Ahn, Chi-Yong; Oh, Hee-Mock; Ravi, Alok Kumar; Asthana, Ravi Kumar

    2016-01-01

    Roles of nutrients and other environmental variables in development of cyanobacterial bloom and its toxicity are complex and not well understood. We have monitored the photoautotrophic growth, total microcystin concentration, and microcystins synthetase gene (mcyA) expression in lab-grown strains of Microcystis NIES 843 (reference strain), KW (Wangsong Reservoir, South Korea), and Durgakund (Varanasi, India) under different nutrient regimes (nitrogen, phosphorus, and boron). Higher level of nitrogen and boron resulted in increased growth (avg. 5 and 6.5 Chl a mg/L, resp.), total microcystin concentrations (avg. 1.185 and 7.153 mg/L, resp.), and mcyA transcript but its expression was not directly correlated with total microcystin concentrations in the target strains. Interestingly, Durgakund strain had much lower microcystin content and lacked microcystin-YR variant over NIES 843 and KW. It is inferred that microcystin concentration and its variants are strain specific. We have also examined the heterotrophic bacteria associated with cyanobacterial bloom in Durgakund Pond and Wangsong Reservoir which were found to be enriched in Alpha-, Beta-, and Gammaproteobacteria and that could influence the bloom dynamics.

  4. Characterization of boron doped diamond-like carbon film by HRTEM

    NASA Astrophysics Data System (ADS)

    Li, X. J.; He, L. L.; Li, Y. S.; Yang, Q.; Hirose, A.

    2015-12-01

    Boron doped diamond-like carbon (B-DLC) film was synthesized on silicon (1 0 0) wafer by biased target ion beam deposition. High-resolution transmission electron microscopy (HRTEM) is employed to investigate the microstructure of the B-DLC thin film in cross-sectional observation. Many crystalline nanoparticles randomly dispersed and embedded in the amorphous matrix film are observed. Through chemical compositional analysis of the B-DLC film, some amount of O element is confirmed to be contained. And also, some nanoparticles with near zone axes are indexed, which are accordance with B2O phase. Therefore, the contained O element causing the B element oxidized is proposed, resulting in the formation of the nanoparticles. Our work indicates that in the B-DLC film a significant amount of the doped B element exists as boron suboxide nanoparticles.

  5. Spectroscopic investigation of nitrogen-functionalized carbon materials

    SciTech Connect

    Wood, Kevin N.; Christensen, Steven T.; Nordlund, Dennis; Dameron, Arrelaine A.; Ngo, Chilan; Dinh, Huyen; Gennett, Thomas; O'Hayre, Ryan; Pylypenko, Svitlana

    2016-04-07

    Carbon materials are used in a diverse set of applications ranging from pharmaceuticals to catalysis. Nitrogen modification of carbon powders has shown to be an effective method for enhancing both surface and bulk properties of as-received material for a number of applications. Unfortunately, control of the nitrogen modification process is challenging and can limit the effectiveness and reproducibility of N-doped materials. Additionally, the assignment of functional groups to specific moieties on the surface of nitrogen-modified carbon materials is not straightforward. Herein, we complete an in-depth analysis of functional groups present at the surface of ion-implanted Vulcan and Graphitic Vulcan through the use of X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS). Our results show that regardless of the initial starting materials used, nitrogen ion implantation conditions can be tuned to increase the amount of nitrogen incorporation and to obtain both similar and reproducible final distributions of nitrogen functional groups. The development of a well-controlled/reproducible nitrogen implantation pathway opens the door for carbon supported catalyst architectures to have improved numbers of nucleation sites, decreased particle size, and enhanced catalyst-support interactions.

  6. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.

    PubMed

    Bukata, Andrew R; Kyser, T Kurtis

    2007-02-15

    Increasing anthropogenic pollution from urban centers and fossil fuel combustion can impact the carbon and nitrogen cycles in forests. To assess the impact of twentieth century anthropogenic pollution on forested system carbon and nitrogen cycles, variations in the carbon and nitrogen isotopic compositions of tree-rings were measured. Individual annual growth rings in trees from six sites across Ontario and one in New Brunswick, Canada were used to develop site chronologies of tree-ring delta 15N and delta 13C values. Tree-ring 615N values were approximately 0.5% per hundred higher and correlated with contemporaneous foliar samples from the same tree, but not with delta 15N values of soil samples. Temporal trends in carbon and nitrogen isotopic compositions of these tree-rings are consistent with increasing anthropogenic influence on both the carbon and nitrogen cycles since 1945. Tree-ring delta 13C values and delta 15N values are correlated at both remote and urban-proximal sites, with delta 15N values decreasing since 1945 and converging on 1% per hundred at urban-proximal sites and decreasing but not converging on a single delta 15N value in remote sites. These results indicate that temporal trends in tree-ring nitrogen and carbon isotopic compositions record the regional extent of pollution.

  7. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P < 0.01). Nevertheless, it is not clear why AM hyphae responded differently to nitrogen fertilization in the different sites. Carbon stocks within

  8. Fabrication of Polyimide-Matrix/Carbon and Boron-Fiber Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    2007-01-01

    The term HYCARB denotes a hybrid composite of polyimide matrices reinforced with carbon and boron fibers. HYCARB and an improved process for fabricating dry HYCARB tapes have been invented in a continuing effort to develop lightweight, strong composite materials for aerospace vehicles. Like other composite tapes in this line of development, HYCARB tapes are intended to be used to build up laminated structures having possibly complex shapes by means of automated tow placement (ATP) - a process in which a computer-controlled multiaxis machine lays down prepreg tape or tows. The special significance of the present process for making dry HYCARB for ATP is that it contributes to the reduction of the overall cost of manufacturing boron-reinforced composite-material structures while making it possible to realize increased compression strengths. The present process for making HYCARB tapes incorporates a "wet to dry" process developed previously at Langley Research Center. In the "wet to dry" process, a flattened bundle of carbon fiber tows, pulled along a continuous production line between pairs of rollers, is impregnated with a solution of a poly(amide acid) in N-methyl-2-pyrrolidinone (NMP), then most of the NMP is removed by evaporation in hot air. In the present case, the polyamide acid is, more specifically, that of LaRC. IAX (or equivalent) thermoplastic polyimide, and the fibers are, more specifically, Manganite IM7 (or equivalent) polyacrylonitrile- based carbon filaments that have a diameter of 5.2 m and are supplied in 12,000-filament tows. The present process stands in contrast to a prior process in which HYCARB tape was made by pressing boron fibers into the face of a wet carbon-fiber/ poly(amide acid) prepreg tape . that is, a prepreg tape from which the NMP solvent had not been removed. In the present process, one or more layer(s) of side-by-side boron fibers are pressed between dry prepreg tapes that have been prepared by the aforementioned gwet to dry h

  9. Preparation of carbon nanoparticles and carbon nitride from high nitrogen compound

    DOEpatents

    Huynh, My Hang V [Los Alamos, NM; Hiskey, Michael A [Los Alamos, NM

    2009-09-01

    The high-nitrogen compound 3,6-di(azido)-1,2,4,5-tetrazine (DiAT) was synthesized by a relatively simple method and used as a precursor for the preparation of carbon nanospheres and nanopolygons, and nitrogen-rich carbon nitrides.

  10. Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms.

    PubMed

    Qu, Konggang; Zheng, Yao; Zhang, Xianxi; Davey, Ken; Dai, Sheng; Qiao, Shi Zhang

    2017-07-25

    Dual heteroatom-doped carbon materials are efficient electrocatalysts via a synergistic effect. With nitrogen as the primary dopant, boron, sulfur, and phosphorus can be used as secondary elements for co-doped carbons. However, evaluation and analysis of the promotional effect of B, P, and S to N-doped carbons has not been widely researched. Here we report a robust platform that is constructed through polydopamine to prepare N,B-, N,P-, and N,S-co-doped carbon nanosheets, characterized by similar N species content and efficient B, P, and S doping. Systematic investigation reveals S to have the greatest promotional effect in hydrogen evolution reactions (HER) followed by P and that B decreases the activity of N-doped carbons. Experimental and theoretical analyses show the secondary heteroatom promotional effect is impacted by the intrinsic structures and extrinsic surface areas of both materials, i.e., electronic structures exclusively determine the catalytic activity of active sites, while large surface areas optimize apparent HER performance.

  11. Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa

    NASA Astrophysics Data System (ADS)

    Howes, Ella L.; Kaczmarek, Karina; Raitzsch, Markus; Mewes, Antje; Bijma, Nienke; Horn, Ingo; Misra, Sambuddha; Gattuso, Jean-Pierre; Bijma, Jelle

    2017-01-01

    In order to fully constrain paleo-carbonate systems, proxies for two out of seven parameters, plus temperature and salinity, are required. The boron isotopic composition (δ11B) of planktonic foraminifera shells is a powerful tool for reconstructing changes in past surface ocean pH. As B(OH)4- is substituted into the biogenic calcite lattice in place of CO32-, and both borate and carbonate ions are more abundant at higher pH, it was suggested early on that B / Ca ratios in biogenic calcite may serve as a proxy for [CO32-]. Although several recent studies have shown that a direct connection of B / Ca to carbonate system parameters may be masked by other environmental factors in the field, there is ample evidence for a mechanistic relationship between B / Ca and carbonate system parameters. Here, we focus on investigating the primary relationship to develop a mechanistic understanding of boron uptake. Differentiating between the effects of pH and [CO32-] is problematic, as they co-vary closely in natural systems, so the major control on boron incorporation remains unclear. To deconvolve the effects of pH and [CO32-] and to investigate their impact on the B / Ca ratio and δ11B, we conducted culture experiments with the planktonic foraminifer Orbulina universa in manipulated culture media: constant pH (8.05), but changing [CO32-] (238, 286 and 534 µmol kg-1 CO32-) and at constant [CO32-] (276 ± 19.5 µmol kg-1) and varying pH (7.7, 7.9 and 8.05). Measurements of the isotopic composition of boron and the B / Ca ratio were performed simultaneously using a femtosecond laser ablation system coupled to a MC-ICP-MS (multiple-collector inductively coupled plasma mass spectrometer). Our results show that, as expected, δ11B is controlled by pH but it is also modulated by [CO32-]. On the other hand, the B / Ca ratio is driven by [HCO3-], independently of pH. This suggests that B / Ca ratios in foraminiferal calcite can possibly be used as a second, independent, proxy for

  12. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  13. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  14. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

    PubMed Central

    Hashim, Daniel P.; Narayanan, Narayanan T.; Romo-Herrera, Jose M.; Cullen, David A.; Hahm, Myung Gwan; Lezzi, Peter; Suttle, Joseph R.; Kelkhoff, Doug; Muñoz-Sandoval, E.; Ganguli, Sabyasachi; Roy, Ajit K.; Smith, David J.; Vajtai, Robert; Sumpter, Bobby G.; Meunier, Vincent; Terrones, Humberto; Terrones, Mauricio; Ajayan, Pulickel M.

    2012-01-01

    The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale “elbow” junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the “elbow” junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material’s ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use. PMID:22509463

  15. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  16. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

    NASA Astrophysics Data System (ADS)

    Hashim, Daniel P.; Narayanan, Narayanan T.; Romo-Herrera, Jose M.; Cullen, David A.; Hahm, Myung Gwan; Lezzi, Peter; Suttle, Joseph R.; Kelkhoff, Doug; Muñoz-Sandoval, E.; Ganguli, Sabyasachi; Roy, Ajit K.; Smith, David J.; Vajtai, Robert; Sumpter, Bobby G.; Meunier, Vincent; Terrones, Humberto; Terrones, Mauricio; Ajayan, Pulickel M.

    2012-04-01

    The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapour deposition, which influences the formation of atomic-scale ``elbow'' junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the ``elbow'' junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material's ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use.

  17. Shock-induced polymorphic transition in quartz, carbon, and boron nitride

    SciTech Connect

    Ahrens, T.J.; Tan, H.

    1990-01-01

    A theory describing the polymorphism induced by shock waves in silicates, oxides, sulfides, and many inorganic solids is presented. Shock wave experiments conducted on these and other materials indicate that many transformations to high-pressure phases are triggered via the production of shear bands and, in some cases, formation of high-density amorphous phases. Shock states in the mixed phase regimes, of quartz, carbon, and boron nitride, are quantitatively described in terms of the properties of both their low- and high-pressure phases. Good agreement between the calculated results and measured Hugoniot data in the mixed phase regime is obtained. By fitting the pressures of the onset of the phase transition from graphite to diamond, and associating its triggering with crossing the extension of the metastable melting line of graphite, we obtain a similar shaped curve to the metastable melting line obtained by Bundy. Similarly, the transition from quartz to stishovite is associated with the metastable melting line of coesite. The present theory, when fit to the onset of the mixed phase regime of graphite like boron nitride transforming to cubic boron nitride Hugoniot, predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  18. Search for Superconductivity in Carbon Nanotubes Doped by Boron Ion Implantation

    NASA Astrophysics Data System (ADS)

    Cornell, Nicholas; Kutsenov, Alex; Howard, Austin; Mayo, Nathaniel; Galstayan, Eduard; Chu, Wei Kan; Freyhardt, Herbert; Zakhidov, Anvar; Wang, Xuemei; University of Texas at Dallas Team; University of Houston Team

    2011-03-01

    The boron doping of single wall carbon nanotubes(CNT) by laser ablation synthesis has been reported to create superconducting B-CNTs with Tc's ranging from 12-19 Kelvin, depending on CNT inter-tube connection strength. We attempt to create boron doped multiwall CNT by ion implantation doping. Ion doping of boron(B) was performed at 60keV and 20keV, and low temperature transport combined with SQUID and ESR/LFMA was used in searching for SC. We have found that R(T) strongly depends on the metallic contact geometry. With thin film contacts on CNT sheets the R(T) shows no SC signatures, while when an Ag or Au paste penetrates the highly porous network of B doped multiwall CNT then R(T) drops and curvature changes are observed resembling SC transitions with Tc depending on B concentration and metallic electrode distances. We discuss these results in terms of possible SC in hybride ``metal-CNT'' system in which metal was predicted to supress phase fluctuation in one dimensional CNT network.

  19. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions

    SciTech Connect

    Sumpter, Bobby G; Meunier, Vincent; Terrones Maldonado, Humberto; Terrones Maldonado, Mauricio; Ajayan, Pullikel M; Hashim, Daniel; Romo Herrera, Jose M; Cullen, David; Munoz-Sandoval, Emilio; Smith, David J; Vajtai, Robert; Roy, Ajit K; Ganguli, Sabyasachi; Kelkhoff, Doug; Suttle, Joesph; Lezzi, Peter; Hahm, Gwan; Narayanan, Narayanan

    2012-01-01

    The establishment of covalent junctions between carbon nanotubes (CNTs) and the modification of their straight tubular morphology are two strategies needed to successfully synthesize nanotube-based three-dimensional (3D) frameworks exhibiting superior material properties. Engineering such 3D structures in scalable synthetic processes still remains a challenge. This work pioneers the bulk synthesis of 3D macroscale nanotube elastic solids directly via a boron-doping strategy during chemical vapor deposition, which influences the formation of atomic-scale elbow junctions and nanotube covalent interconnections. Detailed elemental analysis revealed that the elbow junctions are preferred sites for excess boron atoms, indicating the role of boron and curvature in the junction formation mechanism, in agreement with our first principle theoretical calculations. Exploiting this material s ultra-light weight, super-hydrophobicity, high porosity, thermal stability, and mechanical flexibility, the strongly oleophilic sponge-like solids are demonstrated as unique reusable sorbent scaffolds able to efficiently remove oil from contaminated seawater even after repeated use.

  20. Laser surface alloying of commercially pure titanium with boron and carbon

    NASA Astrophysics Data System (ADS)

    Makuch, N.; Kulka, M.; Dziarski, P.; Przestacki, D.

    2014-06-01

    Laser surface alloying with boron and carbon was applied to produce the composite layers, reinforced by the hard ceramic phases (titanium borides and titanium carbides), on commercially pure titanium. The external cylindrical surface of substrate material was coated by paste containing boron, boron and graphite, or graphite. Then, the laser re-melting was carried out with using the continuous-wave CO2 laser. This enabled the formation of laser-borided, laser-borocarburized, and laser-carburized layers. The microstructure or the re-melted zone consisted of the hard ceramic phases (TiB+TiB2, TiB+TiB2+TiC, or TiC) located in the eutectic mixture of Tiα'-phase with borides, borides and carbides, or carbides, respectively. All the composite layers were characterized by the sufficient cohesion. The significant increase in microhardness and in wear resistance of all the laser-alloyed layers was observed in comparison with commercially pure titanium. The percentage of hard ceramic phases in more plastic eutectic mixture influenced the measured microhardness values. The dominant wear mechanism (abrasive or adhesive) depended on the method of laser alloying, and the type of test used. The wear tests for longer duration, without the change in the counter specimen, created the favourable conditions for adhesive wear, while during the shorter tests the abrasive wear dominated, as a rule.

  1. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides

    NASA Astrophysics Data System (ADS)

    Ma, Rongna; Hu, Junjie; Cai, Zongwei; Ju, Huangxian

    2014-02-01

    A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid (APBA) via an amide reaction. The introduction of PASE could bridge the MCNT and APBA, suppress the nonspecific adsorption and reduce the steric hindrance among the bound molecules. Due to the excellent structure of the MCNTs, the functionalization of PASE and then APBA on MCNTs was quite simple, specific and effective. The glycopeptides enrichment and separation with a magnetic field could be achieved by their reversible covalent binding with the boronic group of APBA-MCNTs. The exceptionally large specific surface area and the high density of boronic acid groups of APBA-MCNTs resulted in rapid and highly efficient enrichment of glycopeptides, even in the presence of large amounts of interfering nonglycopeptides. The functional MCNTs possessed high selectivity for enrichment of 21 glycopeptides from the digest of horseradish peroxidase demonstrated by MALDI-TOF mass spectrometric analysis showing more glycopeptides detected than the usual 9 glycopeptides with commercially available APBA-agarose. The proposed system showed better specificity for glycopeptides even in the presence of non-glycopeptides with 50 times higher concentration. The boronic acid functionalized MCNTs provide a promising selective enrichment platform for precise glycoproteomic analysis.A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid

  2. A molecular dynamics study on the vibration of carbon and boron nitride double-walled hybrid nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.

    2015-09-01

    Synthesis of hybrid nanotubes to overcome the drawbacks of individual pure nanotubes in order to apply them in novel nanodevices has attracted great interest of researchers. To this end, pure single- and double-walled boron nitride nanotubes together with carbon and boron nitride double-walled hybrid nanotubes are simulated through molecular dynamics simulations in order to study their vibrational behavior. The natural frequency of nanotubes is computed, and the effects of geometrical parameters and boundary conditions on the natural frequency are investigated. According to the generated results, the natural frequency of boron nitride nanotubes is higher than that of their carbon counterpart and nanotubes with clamped boundary conditions possess the highest natural frequency compared to other types of boundary conditions. Also, the natural frequency of double-walled hybrid nanotubes is found to be between those of pure double-walled boron nitride and carbon nanotubes with small lengths. It is found that the natural frequency of double-walled hybrid nanotubes is less sensitive to length increase compared to pure double-walled carbon and boron nitride ones, leading to higher frequencies at greater lengths. Finally, to study the variation in natural frequency with the length, a rational curve is fitted to each data set and the corresponding constants are computed.

  3. How does the boron concentration affect hydrogen storage in lithium decorated zero- and two-dimensional boron-carbon compounds?

    PubMed

    Ye, Xiao-Juan; Liu, Chun-Sheng; Jia, Ran; Zeng, Zhi; Zhong, Wei

    2013-02-21

    A balance between the hydrogen capacity and reversibility is a big challenge in the search for hydrogen storage materials. Using van der Waals-corrected density functional theory, we perform a detailed study of the hydrogen molecules adsorption on lithium (Li) decorated zero- and two-dimensional boron-carbon (B-C) compounds. It is found that not only the Li bond strength but also the number of adsorbed hydrogen molecules depends on the B concentration. First, the binding of Li on the B-C compounds strengthens with the increase of the B concentration due to the stronger hybridization between the lowest unoccupied molecular orbitals of the B-C compounds and Li 2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Second, higher B concentration results in weaker electric field produced by the charge transfer from Li to the B-C compounds. Therefore, one Li atom can adsorb up to 5H(2) molecules with the B concentration less than 50%. In contrast, the adsorption number of H(2) molecules is reduced to 4 when the B concentration is greater than or equal to 50%. Third, using a statistical model parametrized by the results of ab initio calculations, the adsorption and desorption of molecular hydrogens are calculated at ambient temperature and pressure. We find that the usable number of adsorbed H(2) per Li under ambient conditions decreases with the increase of B concentration. These results can serve as a guide in the design of new hydrogen storage materials based on B-C compounds.

  4. Cyanobacterial blooms: carbon and nitrogen limitation have opposite effects on the buoyancy of oscillatoria.

    PubMed

    Klemer, A R; Feuillade, J; Feuillade, M

    1982-03-26

    Gas vacuolation in Oscillatoria rubescens decreased with increased nitrogen limitation and increased with transitions from nitrogen to inorganic carbon limitation. Gas vacuoles consist of protein vesicles that can accumulate in carbon- limited but not in unenriched nitrogen-limited cells. Nitrogen limitation is a factor in the formation of deep population maxima; carbon limitation can promote surface blooms.

  5. Carbon doping induced giant low bias negative differential resistance in boron nitride nanoribbon

    NASA Astrophysics Data System (ADS)

    Liu, N.; Liu, J. B.; Gao, G. Y.; Yao, K. L.

    2014-06-01

    By applying nonequilibrium Green's function combined with density functional theory, we investigated the electronic transport properties of carbon-doped armchair boron nitride nanoribbons. Obvious negative differential resistance (NDR) behavior with giant peak-to-valley ratio up to the order of 104-106 is found by tuning the doping position and concentration. Especially, with the reduction of doping concentration, NDR peak position can enter into mV bias range and even can be expected lower than mV bias. The negative differential resistance behavior is explained by the evolution of the transmission spectra and band structures with applied bias.

  6. The deposition of boron nitride and carbon films on silica glass fibers

    SciTech Connect

    Smith, W.L.; Michalske, T.A.; Rye, R.R.

    1993-11-01

    A chemical vapor deposition technique is used to produce amorphous boron nitride and carbon thin films on high strength silica glass fibers. In this method, the fiber is drawn under ultra high vacuum conditions and low pressure process gases, in the presence of a hot tungsten filament, are used to grow films at low substrate temperatures. Films deposited with this technique do not degrade the intrinsic pristine strength of the silica fibers under dry conditions and, when stressed in chemically aggressive environments, act as effective barrier coatings.

  7. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-01-01

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  8. Carbon and nitrogen isotope studies in an arctic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-12-31

    This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

  9. Soil warming, carbon–nitrogen interactions, and forest carbon budgets

    PubMed Central

    Melillo, Jerry M.; Butler, Sarah; Johnson, Jennifer; Mohan, Jacqueline; Steudler, Paul; Lux, Heidi; Burrows, Elizabeth; Bowles, Francis; Smith, Rose; Scott, Lindsay; Vario, Chelsea; Hill, Troy; Burton, Andrew; Zhou, Yu-Mei; Tang, Jim

    2011-01-01

    Soil warming has the potential to alter both soil and plant processes that affect carbon storage in forest ecosystems. We have quantified these effects in a large, long-term (7-y) soil-warming study in a deciduous forest in New England. Soil warming has resulted in carbon losses from the soil and stimulated carbon gains in the woody tissue of trees. The warming-enhanced decay of soil organic matter also released enough additional inorganic nitrogen into the soil solution to support the observed increases in plant carbon storage. Although soil warming has resulted in a cumulative net loss of carbon from a New England forest relative to a control area over the 7-y study, the annual net losses generally decreased over time as plant carbon storage increased. In the seventh year, warming-induced soil carbon losses were almost totally compensated for by plant carbon gains in response to warming. We attribute the plant gains primarily to warming-induced increases in nitrogen availability. This study underscores the importance of incorporating carbon–nitrogen interactions in atmosphere–ocean–land earth system models to accurately simulate land feedbacks to the climate system. PMID:21606374

  10. Landscape level differences in soil carbon and nitrogen: Implications for soil carbon sequestration

    NASA Astrophysics Data System (ADS)

    Garten, Charles T.; Ashwood, Tom L.

    2002-12-01

    The objective of this research was to understand how land cover and topography act, independently or together, as determinants of soil carbon and nitrogen storage over a complex terrain. Such information could help to direct land management for the purpose of carbon sequestration. Soils were sampled under different land covers and at different topographic positions on the mostly forested 14,000 ha Oak Ridge Reservation in Tennessee, USA. Most of the soil carbon stock, to a 40-cm soil depth, was found to reside in the surface 20 cm of mineral soil. Surface soil carbon and nitrogen stocks were partitioned into particulate (≥53 μm) and mineral-associated organic matter (<53 μm). Generally, soils under pasture had greater nitrogen availability, greater carbon and nitrogen stocks, and lower C:N ratios than soils under transitional vegetation and forests. The effects of topography were usually secondary to those of land cover. Because of greater soil carbon stocks, and greater allocation of soil carbon to mineral-associated organic matter (a long-term pool), we conclude that soil carbon sequestration, but not necessarily total ecosystem carbon storage, is greater under pastures than under forests. The implications of landscape-level variation in soil carbon and nitrogen for carbon sequestration are discussed at several different levels: (1) nitrogen limitations to soil carbon storage; (2) controls on soil carbon turnover as a result of litter chemistry and soil carbon partitioning; (3) residual effects of past land use history; and (4) statistical limitations to the quantification of soil carbon stocks.

  11. Functions of autophagy in plant carbon and nitrogen metabolism.

    PubMed

    Ren, Chenxia; Liu, Jingfang; Gong, Qingqiu

    2014-01-01

    Carbon and nitrogen are essential components for plant growth. Although models of plant carbon and nitrogen metabolisms have long been established, certain gaps remain unfilled, such as how plants are able to maintain a flexible nocturnal starch turnover capacity over various light cycles, or how nitrogen remobilization is achieved during the reproductive growth stage. Recent advances in plant autophagy have shed light on such questions. Not only does autophagy contribute to starch degradation at night, but it participates in the degradation of chloroplast proteins and even chloroplasts after prolonged carbon starvation, thus help maintain the free amino acid pool and provide substrate for respiration. The induction of autophagy under these conditions may involve transcriptional regulation. Large-scale transcriptome analyses revealed that ATG8e belongs to a core carbon signaling response shared by Arabidopsis accessions, and the transcription of Arabidopsis ATG7 is tightly co-regulated with genes functioning in chlorophyll degradation and leaf senescence. In the reproductive phase, autophagy is essential for bulk degradation of leaf proteins, thus contributes to nitrogen use efficiency (NUE) both under normal and low-nitrogen conditions.

  12. Carbon and Nitrogen Cycling in a Shallow Coastal Tidal Basin

    NASA Astrophysics Data System (ADS)

    Hohn, S.; Voelker, C. D.; van Beusekom, J.; Schartau, M.

    2008-12-01

    The biogeochemical fluxes of carbon and nitrogen are tightly coupled via the production of biomass. The degree of this coupling is known to vary under different environmental conditions. Nitrogen limitation of phytoplankton organisms leads to increased C:N biomass ratios whereas light limitation at nutrient replete conditions causes a decrease in intracellular C:N ratios. The biogeochemical fluxes of carbon and nitrogen within and between a shallow coastal tidal basin in the danish-german Wadden Sea, the List tidal basin, and the adjacent North Sea are calculated with an ecosystem model that allows for variable C:N ratios in phytoplankton biomass. Differences in plankton C:N biomass ratios between both water boxes affect the net transport budgets of carbon and nitrogen between the North Sea and the List tidal basin and may also change the sign of the C:N ratio of biomass exchange, i.e. leading to net nitrogen export and net import of carbon into the tidal basin over an annual cycle. Benthic filterfeeding organisms consume phytoplankton biomass and release fresh nutrients to the water column. In the List tidal basin, the promoting effect on primary production due to nutrient release by benthic filterfeeders is found to outweigh the limiting effect due to grazing pressure on phytoplankton biomass.

  13. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.

    PubMed

    Martínez-Botí, M A; Marino, G; Foster, G L; Ziveri, P; Henehan, M J; Rae, J W B; Mortyn, P G; Vance, D

    2015-02-12

    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon.

  14. Low-Temperature Activation of Ion-Implanted Boron and Nitrogen Ions in Cd x Hg1- x Te Heteroepitaxial Layers

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Talipov, N. Kh.

    2013-12-01

    Processes of electrical activation of ion-implanted boron and nitrogen atoms in Cd x Hg1- x Te (CMT) heteroepitaxial layers grown by methods of molecular-beam epitaxy (HEL CMT MBE) and liquid-phase epitaxy (LPE CMT) have been investigated; likewise in bulk crystals of CMT with low-temperature annealings under anodic oxide. The possibility has been demonstrated of using anodic oxide as an efficient mask for postimplantation annealings of p-type HEL CMT MBE in the temperature interval Т = 200-250°C without disruption of the composition of the variband layer or alteration of the electrophysical properties of the structure. It has been established that in HEL CMT MBE the efficiency of activation of boron as a slowly diffusing donor impurity is lowered with growth of the dose of the B+ ions and is increased by thermal cycling from Т = 77 K to room temperature. Implanted nitrogen, in contrast to boron, is a rapidly diffusing acceptor impurity in CMT, efficiently compensating both radiation donor centers and activated boron. The degree of electrical activation of nitrogen grows substantially upon thermal cycling. It has been shown that the mobility spectrum is an efficient method for monitoring the process of electrical activation of boron in p-type HEL CMT MBE. Mesa photodiodes based on activated boron in p-type HEL CMT MBE with long-wavelength photosensitivity boundary λc = 11 μm, prepared here for the first time, had a high maximum value of the product of the differential resistance by the area of the photodiode R d A = (6 - 8)ṡ102 Ωṡcm2, product R 0 A = 5 - 6 Ωṡcm2 (at zero bias), and a diffusion ledge on the inverse branch of the current-voltage ( I- V) characteristic out to a bias voltage of 1.3 V.

  15. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    NASA Astrophysics Data System (ADS)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected

  16. Boron-doped few-walled carbon nanotubes: novel synthesis and properties

    NASA Astrophysics Data System (ADS)

    Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing

    2016-11-01

    Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes.

  17. Ignition relevant ablator response of boron carbide and high-density carbon driven by multiple shocks

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.; Baker, Kevin; Celliers, Peter; Dittrich, Tom; Moore, Alastair; Wu, Kuang Jen; Kervin, Peggy; Hurricane, Omar

    2013-10-01

    The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The current ablation material, a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile. In an effort to evaluate the performance of other possible ablators that could be suitable for achieving self-propagating fusion burn we have inferred the ablation performance of two possible ablators, boron carbide and high-density carbon, by measuring the shock speed of induced shocks while subjecting the ablators to a multiple-shock inducing radiation drive environment similar to a generic three-shock ignition drive. We present the platform used, velocity measurements used to infer the ablation response, and matching simulations to show the relative performance of boron carbide and high-density carbon with a general comparison to current performance of the currently used glow-discharge polymer ablator. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-ABS-640519.

  18. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.

  19. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system

    NASA Astrophysics Data System (ADS)

    Rae, James W. B.; Foster, Gavin L.; Schmidt, Daniela N.; Elliott, Tim

    2011-02-01

    Accurate records of the state of the ocean carbonate system are critical for understanding past changes in pCO 2, ocean acidification and climate. The chemical principles underlying the proxy of oceanic pH provided by the boron isotope ratio of foraminiferal carbonate are relatively well understood, but the proxy's reliability has been questioned. We present 76 new Multi-Collector Inductively-Coupled Plasma Mass Spectrometry (MC-ICPMS) δ11B measurements on a range of benthic foraminifera from 23 late-Holocene samples from the Atlantic that reaffirm the utility of the δ11B-pH proxy. Our boron isotope measurements on ~ 10 benthic foraminifera tests typically yield a precision of ~ ± 0.25‰ at 2 s.d. (equivalent to ~ ± 0.03 pH units). δ11B values of epifaunal species are within analytical uncertainty of those predicted from a simple model assuming sole incorporation of B(OH) 4- from seawater and no vital effects, using the independently determined fractionation factor of 1.0272 between 11B/ 10B of aqueous boron species. Infaunal foraminifera are consistent with this model, but record the combined effects of lower pore-water δ11B and pH. No influence of partial dissolution or shell size on δ11B is observed. We have also measured the B/Ca ratios of the same samples. For individual Cibicidoides species, B/Ca shows a good correlation with Δ[CO 32-], but the B/Ca of different co-occurring species morphotypes varies considerably. These effects are not seen in δ11B, which may therefore provide a more robust proxy of the ocean carbonate system. Whilst in theory δ11B and B/Ca can be combined to provide a quantitative reconstruction of alkalinity and dissolved inorganic carbonate (DIC), in practice this is precluded by propagated uncertainties. δ11B data give significant constraints on foraminifera calcification mechanisms, and seem most simply explained by incorporation of B(OH) 4- into a HCO 3- pool, which is then completely incorporated in foraminiferal CaCO 3

  20. In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lin, Yi; Nunez, Jennifer Carpena; Siochi, Emilie J.; Wise, Kristopher E.; Connell, John W.; Smith, Michael W.

    2011-01-01

    To understand the mechanical properties of amorphous carbon (a-C)/boron nitride nanotube (BNNT) nanostructures, in situ mechanical tests are conducted inside a transmission electron microscope equipped with an integrated atomic force microscope system. The nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation. We demonstrate multiple in situ tensile, compressive, and lap shear tests with a-C/BNNT hybrid nanostructures. The tensile strength of the a-C/BNNT hybrid nanostructure is 5.29 GPa with about 90 vol% of a-C. The tensile strength and strain of the end-to-end joint structure with a-C welding is 0.8 GPa and 5.2% whereas the lap shear strength of the side-by-side joint structure with a-C is 0.25 GPa.

  1. Controlled route to the fabrication of carbon and boron nitride nanoscrolls: A molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Perim, Eric; Paupitz, Ricardo; Galvão, Douglas S.

    2013-02-01

    Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance.

  2. In Situ Mechanical Property Measurements of Amorphous Carbon-Boron Nitride Nanotube Nanostructures

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Lin, Yi; Nunez, Jennifer Carpena; Siochi, Emilie J.; Wise, Kristopher E.; Connell, John W.; Smith, Michael W.

    2011-01-01

    To understand the mechanical properties of amorphous carbon (a-C)/boron nitride nanotube (BNNT) nanostructures, in situ mechanical tests are conducted inside a transmission electron microscope equipped with an integrated atomic force microscope system. The nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation. We demonstrate multiple in situ tensile, compressive, and lap shear tests with a-C/BNNT hybrid nanostructures. The tensile strength of the a-C/BNNT hybrid nanostructure is 5.29 GPa with about 90 vol% of a-C. The tensile strength and strain of the end-to-end joint structure with a-C welding is 0.8 GPa and 5.2% whereas the lap shear strength of the side-by-side joint structure with a-C is 0.25 GPa.

  3. Superior Current Carrying Capacity of Boron Nitride Encapsulated Carbon Nanotubes with Zero-Dimensional Contacts.

    PubMed

    Huang, Jhao-Wun; Pan, Cheng; Tran, Son; Cheng, Bin; Watanabe, Kenji; Taniguchi, Takashi; Lau, Chun Ning; Bockrath, Marc

    2015-10-14

    We report fabrication and characterization of hexagonal boron nitride (hBN)-encapsulated carbon nanotube (CNT) field effect transistors, which are coupled to electrical leads via zero-dimensional contacts. Device quality is attested by the ohmic contacts and observation of Coulomb blockade with a single periodicity in small bandgap semiconducing nanotubes. Surprisingly, hBN-encapsulated CNT devices demonstrate significantly enhanced current carrying capacity; a single-walled CNT can sustain >180 μA current or, equivalently, a current density of ∼2 × 10(10) A/cm(2), which is a factor of 6-7 higher than devices supported on SiO2 substrates. Such dramatic enhancement of current carrying capacity arises from the high thermal conductivity of hBN and lower hBN-CNT interfacial thermal resistance and has implications for carbon electronic applications.

  4. Terrestrial carbon-nitrogen interactions across time-scales

    NASA Astrophysics Data System (ADS)

    Zaehle, Sönke; Sickel, Kerstin

    2017-04-01

    Through its role in forming amino acids, nitrogen (N) plays a fundamental role in terrestrial biogeochemistry, affecting for instance the photosynthetic rate of a leaf, and the amount of leaf area of a plant; with further consequences for quasi instantaneous terrestrial biophysical properties and fluxes. Because of the high energy requirements of transforming atmospheric N2 to biologically available form, N is generally thought to be limiting terrestrial productivity. Experimental evidence and modelling studies suggest that in temperate and boreal ecosystems, this N-"limitation" affects plant production at scales from days to decades, and potentially beyond. Whether these interactions play a role at longer timescales, such as during the transition from the last glacial maximum to the holocene, is currently unclear. To address this question, we present results from a 22000 years long simulation with dynamic global vegetation model including a comprehensive treatment of the terrestrial carbon and nitrogen balance and their interactions (using the OCN-DGVM) driven by monthly, transient climate forcing obtained from the CESM climate model (TRACE). OCN couples carbon and nitrogen processes at the time-scale of hours, but simulates a comprehensive nitrogen balance as well as vegetation dynamics with time-scales of centuries and beyond. We investigate in particular, whether (and at with time scale) carbon-nitrogen interactions cause important lags in the response of the terrestrial biosphere to changed climate, and which processes (such as altered N inputs from fixation or altered losses through leaching and denitrification) contribute to these lags.

  5. Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater source

    USGS Publications Warehouse

    Repert, D.A.; Barber, L.B.; Hess, K.M.; Keefe, S.H.; Kent, D.B.; LeBlanc, D.R.; Smith, R.L.

    2006-01-01

    Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m-2) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m-2) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.

  6. A mobile light source for carbon/nitrogen cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  7. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  8. Stable carbon, nitrogen and sulfur isotopes in non-carbonate fractions of cold-seep carbonates

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Peng, Yongbo; Peckmann, Jörn; Roberts, Harry; Chen, Duofu

    2017-04-01

    Sulfate-driven anaerobic oxidation of methane (AOM) supports chemosynthesis-based communities and limits the release of methane from marine sediments. This process promotes the formation of carbonates close to the seafloor along continental margins. The geochemical characteristics of the carbonate minerals of these rocks are increasingly understood, questions remain about the geochemical characteristics of the non-carbonate fractions. Here, we report stable carbon, nitrogen and sulfur isotope patterns in non-carbonate fractions of seep carbonates. The authigenic carbonates were collected from three modern seep provinces (Black Sea, Gulf of Mexico, and South China Sea) and three ancient seep deposits (Marmorito, northern Italy, Miocene; SR4 deposit of the Lincoln Creek Formation and Whiskey Creek, western Washington, USA, Eocene to Oligocene). The δ13C values of non-carbonate fractions range from ˜-25‰ to -80‰ VPDB. These values indicate that fossil methane mixed with varying amounts of pelagic organic matter is the dominant source of carbon in these fractions. The relatively small offset between the δ34S signatures of the non-carbonate fractions and the respective sulfide minerals suggests that locally produced hydrogen sulfide is the main source of sulfur in seep environments. The δ15N values of the non-carbonate fractions are generally lower than the corresponding values of deep-sea sediments, suggesting that organic nitrogen is mostly of a local origin. This study reveals the potential of using δ13C, δ15N, δ34S values to discern seep and non-seep deposits. In cases where δ13Ccarbonate values are only moderately low due to mixing processes and lipid biomarkers have been erased in the course of burial, it is difficult to trace back AOM owing to the lack of other records. This problem is even more pronounced when authigenic carbonate is not available in ancient seep environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support

  9. Glacial-interglacial Changes in Ocean Carbon Chemistry constrained by Boron Isotopes, Trace Elements, and Modelling

    NASA Astrophysics Data System (ADS)

    Rae, J. W. B.; Adkins, J. F.; Foreman, A. D.; Charles, C.

    2014-12-01

    Deep ocean carbon storage and release is commonly invoked to explain glacial-interglacial CO2 cycles, but records of the carbonate chemistry of the glacial ocean have, until recently, been scarce. Here we present new boron isotope (δ11B) and trace metal data from benthic foraminifera from a suite of 15 cores from the South Atlantic from depths ranging from 1500 to 4000 m. These records show distinct changes in the water column depth structure of these tracers between the last glacial maximum (LGM) and late Holocene. Comparison of these paired trace element and isotope ratios reveals new insights to the shared and individual controls on tracers including Li/Ca, Sr/Ca, U/Ca, Mg/Li and δ11B. We further examine these data using a recently developed tracer fields modelling approach (Lund et al. 2011). This has previously been applied to δ18O data to investigate changes in circulation at the LGM. Here we extend this method to non-conservative isotopic and trace elemental tracers, allowing us to constrain the roles of circulation, the biological pump of organic carbon and CaCO3, and carbonate compensation, in setting deep ocean carbon storage at the LGM. Lund, D. C., J. F. Adkins, and R. Ferrari (2011), Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing, Paleoceanography, 26, PA1213, doi:10.1029/2010PA001938.

  10. High-Temperature Superconductivity in Boron-Doped Q-Carbon.

    PubMed

    Bhaumik, Anagh; Sachan, Ritesh; Narayan, Jagdish

    2017-06-27

    We report high-temperature superconductivity in B-doped amorphous quenched carbon (Q-carbon). This phase is formed after nanosecond laser melting of B-doped amorphous carbon films in a super-undercooled state and followed by rapid quenching. Magnetic susceptibility measurements show the characteristics of type-II Bardeen-Cooper-Schrieffer superconductivity with a superconducting transition temperature (Tc) of 36.0 ± 0.5 K for 17.0 ± 1.0 atom % boron concentration. This value is significantly higher than the best experimentally reported Tc of 11 K for crystalline B-doped diamond. We argue that the quenching from metallic carbon liquid leads to a stronger electron-phonon coupling due to close packing of carbon atoms with higher density of states at the Fermi level. With these results, we propose that the non-equilibrium undercooling-assisted synthesis method can be used to fabricate highly doped materials that provide greatly enhanced superconducting properties.

  11. Elastic properties of B-C-N films grown by N{sub 2}-reactive sputtering from boron carbide targets

    SciTech Connect

    Salas, E.; Jiménez Riobóo, R. J.; Jiménez-Villacorta, F.; Prieto, C.; Sánchez-Marcos, J.; Muñoz-Martín, A.; Prieto, J. E.; Joco, V.

    2013-12-07

    Boron-carbon-nitrogen films were grown by RF reactive sputtering from a B{sub 4}C target and N{sub 2} as reactive gas. The films present phase segregation and are mechanically softer than boron carbide films (a factor of more than 2 in Young's modulus). This fact can turn out as an advantage in order to select buffer layers to better anchor boron carbide films on substrates eliminating thermally induced mechanical tensions.

  12. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes?

    PubMed

    Chen, Ying; Wang, Hong-xia; Zhao, Jing-xiang; Cai, Qing-hai; Wang, Xiao-guang; Wang, Xuan-zhang

    2012-07-01

    Recently, the grafting of polymer chains onto nanotubes has attracted increasing attention as it can potentially be used to enhance the solubility of nanotubes and in the development of novel nanotube-based devices. In this article, based on density functional theory (DFT) calculations, we report the formation of trans-polyacetylene on single-walled carbon-doped boron nitride nanotubes (BNNTs) through their adsorption of a series of C(2)H(2) molecules. The results show that, rather than through [2 + 2] cycloaddition, an individualmolecule would preferentially attach to a carbon-doped BNNT via "carbon attack" (i.e., a carbon in the C(2)H(2) attacks a site on the BNNT). The adsorption energy gradually decreases with increasing tube diameter. The free radical of the carbon-doped BNNT is almost completely transferred to the carbon atom at the end of the adsorbed C(2)H(2) molecule. When another C(2)H(2) molecule approaches the carbon-doped BNNT, it is most energetically favorable for this C(2)H(2) molecule to be adsorbed at the end of the previously adsorbed C(2)H(2) molecule, and so on with extra C(2)H(2) molecules, leading to the formation of polyacetylene on the nanotube. The spin of the whole system is always localized at the tip of the polyacetylene formed, which initiates the adsorption of the incoming species. The present results imply that carbon-doped BNNT is an effective "metal-free" initiator for the formation of polyacetylene.

  13. Unravelling nitrogen deposition effects on carbon cycling in forests

    NASA Astrophysics Data System (ADS)

    Luyssaert, S.; Inglima, I.; Ceulemans, R.; Ciais, P.; Dolman, H. A.; Grace, J.; Hollmén, J.; Law, B. E.; Matteucci, G.; Papale, D.; Piao, S. L.; Reichstein, M.; Schulze, E. D.; Sulkava, M.; Tang, J.; Janssens, I. A.

    2007-12-01

    Nitrogen (N) limitation constrains forest productivity over large areas. Where N is suboptimal, provision of N through fertilization or atmospheric deposition stimulates gross primary productivity (GPP) directly or by enabling forests to benefit from increased atmospheric CO2. Nitrogen deposition also enhances carbon sequestration, but the mechanisms via which this stimulation occurs have so far not been unravelled. Here we analyze observations from 133 forests to decipher how it influences the fate of the absorbed carbon. We find that N-deposition stimulate GPP which, in turn, results in an increase in biomass production (NPP). Whilst the increase in woody biomass production is proportional to the increase in GPP, a disproportional high amount of carbon is used for the production short-lived tissues such as roots and foliage, thereby increasing carbon-inputs to the soil. Nitrogen deposition also strongly retarded heterotrophic respiration and the associated carbon-losses from the soil. Thus, N-deposition strengthened the CO2 sink in the boreal and temperate regions, which are typically N-limited. A future shift in N-deposition towards tropical regions will not necessarily result in a similar increased sink-strength, because these regions are typically not N-limited but suffer from phosphorus, potassium and molybdenum deficiencies.

  14. Suppression of boron deactivation and diffusion in preamorphized silicon after nonmelt laser annealing by carbon co-implantation

    NASA Astrophysics Data System (ADS)

    Poon, Chyiu Hyia; See, Alex; Tan, Yunling; Zhou, Meisheng; Gui, Dong

    2008-04-01

    For preamorphized boron-implanted samples subjected to nonmelt laser spike annealing (LSA), increasing the LSA temperature at temperatures below 1250 °C results in negligible sheet resistance changes due to the formation of inactive boron-interstitial clusters (BICs). These clusters, which are evidenced as a kink in the boron profile beyond the amorphous/crystalline interface, result chiefly from the inadequate removal of end-of-range (EOR) defects. When the LSA temperature is elevated beyond 1250 °C, sheet resistance improvement takes place due to the increase in active boron dose from the dissolution of the BIC at higher temperatures. Cluster dissolution also gives rise to a supersaturation of silicon interstitials that deepen the junctions as a result of transient enhanced diffusion (TED). With an additional post-LSA treatment, severe deactivation, especially at lower LSA temperatures, and further TED is observed. Two concurrent mechanisms, namely, boron clustering (which gives rise to deactivation and sheet resistance degradation) and dissolution of the BIC (which gives rise to TED) formed during the LSA step, are believed to take place during the post-LSA thermal budget. As the LSA temperature increases, TED from the as-LSA profile upon rapid thermal annealing (RTA) is significantly reduced as a result of the improved effectiveness of the EOR defect dissolution during the higher temperature LSA step. When carbon co-implantation is performed, deactivation and TED is successfully suppressed with the reduction in free silicon interstitial concentration due to the formation of complexes of carbon and silicon interstitials. The amount of deactivation upon RTA becomes independent of LSA temperature for the carbon-implanted samples, largely because boron clustering becomes limited by the small concentration of free silicon interstitials present instead of the LSA temperatures used.

  15. Carbon and nitrogen cycling in thermally heated sediments

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Burton, M.; Vennelakanti, S.; Havig, J. R.; Shock, E.

    2009-12-01

    Hydrothermally heated sediment environments, such as are found in abundance throughout Yellowstone National Park, host fully functional microbial ecosystems. As with any ecosystem, both sources and sinks of carbon, nitrogen, and a myriad of other nutrients and energy-driving factors must be supplied. While we know microbial communities in hydrothermal environments can be surprisingly diverse, we know little about basic ecological functions such as carbon and nitrogen cycling. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in sediments and biofilms across a temperature and chemical gradient at this location revealed that the four best studied carbon fixation pathways [Calvin, reverse tricarboxylic acid, acetyl-CoA, 3-hydroxypropionate cycles] may all be functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Microcosm experiments using biofilms from this hot spring as inoculae with 13C labeled carbon substrates indicate heterotrophic growth [2]. In addition, metagenomic analysis of environmental DNA has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [3]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [4, 5]. Of particular interest is the role of individuals in carbon and nitrogen cycling as environmental conditions suitable for chemosynthetic and photosynthetic growth vary. This study explores the diversity of cbbM/cbbL [Calvin cycle], aclB/oor/porA [rTCA cycle], nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. The transition of genetic diversity within sediments and biofilms is focused on the chemosynthetic

  16. Enhanced Field Emission from a Carbon Nanotube Array Coated with a Hexagonal Boron Nitride Thin Film.

    PubMed

    Yang, Xiaoxia; Li, Zhenjun; He, Feng; Liu, Mingju; Bai, Bing; Liu, Wei; Qiu, Xiaohui; Zhou, Hang; Li, Chi; Dai, Qing

    2015-08-12

    A high-quality field emission electron source made of a highly ordered array of carbon nanotubes (CNTs) coated with a thin film of hexagonal boron nitride (h-BN) is fabricated using a simple and scalable method. This method offers the benefit of reproducibility, as well as the simplicity, safety, and low cost inherent in using B(2)O(3) as the boron precursor. Results measured using h-BN-coated CNT arrays are compared with uncoated control arrays. The optimal thickness of the h-BN film is found to be 3 nm. As a result of the incorporation of h-BN, the turn-on field is found to decrease from 4.11 to 1.36 V μm(-1), which can be explained by the significantly lower emission barrier that is achieved due to the negative electron affinity of h-BN. Meanwhile, the total emission current is observed to increase from 1.6 to 3.7 mA, due to a mechanism that limits the self-current of any individual emitting tip. This phenomenon also leads to improved emission stability and uniformity. In addition, the lifetime of the arrays is improved as well. The h-BN-coated CNT array-based field emitters proposed in this work may open new paths for the development of future high-performance vacuum electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Theoretical uncertainties in extracting cosmic-ray diffusion parameters: the boron-to-carbon ratio

    NASA Astrophysics Data System (ADS)

    Genolini, Yoann

    2016-05-01

    PAMELA and, more recently, AMS-02, are ushering us into a new era of greatly reduced statistical uncertainties in experimental measurements of cosmic ray fluxes. In particular, new determinations of traditional diagnostic tools such as the boron to carbon ratio (B/C) are expected to significantly reduce errors on cosmic-ray diffusion parameters, with important implications for astroparticle physics, ranging from inferring primary source spectra to indirect dark matter searches. It is timely to stress, however, that the conclusions inferred crucially depend on the framework in which the data are interpreted as well as on some nuclear input parameters. We aim at assessing the theoretical uncertainties affecting the outcome, with models as simple as possible while still retaining the key dependences. We compare different semi-analytical, two-zone model descriptions of cosmic ray transport in the Galaxy: infinite slab(lD), cylindrical symmetry (2D) with homogeneous sources, cylindrical symmetry (2D) with inhomogeneous source distribution. We tested for the effect of a primary source contamination in the boron flux by parametrically altering its flux. We also tested for nuclear cross-section uncertainties.

  18. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    PubMed

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  19. Fabrication and characterization of thermomechanically processed sulfur and boron doped amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Carlson, Lonnie

    Small scale, high power density, reliable, and long-life power supplies would be useful or even critical for space missions or the growing number of microdetectors, microsensors, and miniature vehicles. Alpha or beta particle voltaic devices could satisfy these requirements but have been shown to degrade quickly due to radiation damage. Amorphous carbon (a-C) PN junctions or PIN devices could provide radiation hardness and sufficiently high efficiency. As the range of alpha and beta particles in a-C is ˜20-120microm, much thicker films than are typical are needed to maximize collection of the particle energy. In this work, the fabrication of thermomechanically processed p- and n-type doped a-C films were investigated as a first step in the future development of radiation hard voltaic devices. Boron carbide (B4C) powder was mixed with a-C nanopowders as a possible p-type dopant with sulfur powder utilized as a possible n-type dopant. Doping levels of 2.5at%, 5.0at%, and 10.0at% were investigated for both dopants with films pressed at 109°C over a pressure range of 0.3-5.0GPa. Initial attempts to fabricate rectifying PN junctions and PIN devices was unsuccessful. Bonding properties were characterized using Raman spectroscopy with electronic properties primarily assessed using the van der Pauw method. Undoped a-C and boron-doped films were found to be slightly p-type with sulfur-doped films converting to n-type. All films were found to consist almost entirely of nano-graphitic sp2 rings with only slight changes in disorder at different pressures. Sulfur doped films were less brittle which is indicative of crosslinking. Boron doping did not significantly change the film electronic properties and is not an effective dopant at these temperatures and pressures. Sulfur doping had a greater effect and could likely be utilized as basis for an n-type material in a device. Initial irradiation studies using alpha particles showed that boron and undoped films became more p

  20. Methods of detection and identificationoc carbon- and nitrogen-containing materials

    SciTech Connect

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhalivyan, Leonid Zavenovich; Brothers, Louis Joseph; Wilhide, Larry K

    2013-11-12

    Methods for detecting and identifying carbon- and/or nitrogen-containing materials are disclosed. The methods may comprise detection of photo-nuclear reaction products of nitrogen and carbon to detect and identify the carbon- and/or nitrogen-containing materials.

  1. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  2. Carbon and nitrogen assimilation in deep subseafloor microbial cells.

    PubMed

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-11-08

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with (13)C- and/or (15)N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of (13)C and/or (15)N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10(-18) mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds.

  3. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  4. Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging

    NASA Astrophysics Data System (ADS)

    Bartelmess, Juergen; de Luca, Elisa; Signorelli, Angelo; Baldrighi, Michele; Becce, Michele; Brescia, Rosaria; Nardone, Valentina; Parisini, Emilio; Echegoyen, Luis; Pompa, Pier Paolo; Giordani, Silvia

    2014-10-01

    Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical studies due to their low toxicity, efficient cellular uptake and low fluorescence quenching of attached probes.Carbon nano-onions (CNOs) are an exciting class of carbon nanomaterials, which have recently demonstrated a facile cell-penetration capability. In the present work, highly fluorescent boron dipyrromethene (BODIPY) dyes were covalently attached to the surface of CNOs. The introduction of this new carbon nanomaterial-based imaging platform, made of CNOs and BODIPY fluorophores, allows for the exploration of synergetic effects between the two building blocks and for the elucidation of its performance in biological applications. The high fluorescence intensity exhibited by the functionalized CNOs translates into an excellent in vitro probe for the high resolution imaging of MCF-7 human breast cancer cells. It was also found that the CNOs, internalized by the cells by endocytosis, localized in the lysosomes and did not show any cytotoxic effects. The presented results highlight CNOs as excellent platforms for biological and biomedical

  5. Reduction of nitrogen- and carbon-based pollutants

    SciTech Connect

    Bowers, W.E.

    1990-05-22

    This patent describes a process for educing the concentration of nitrogen oxides in an oxygen-rich effluent from the combustion of a carbonaceous fuel. It comprises: injecting a solution comprising at least one additive compound selected from the group consisting of guanidine, guanidine carbonate, biguanide, guanylurea sulfate, melamine, dicyandiamide, biuret, 1,1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, and dimethyl urea, at a concentration and a temperature effective to achieve reduction in nitrogen oxide levels in the effluent.

  6. Carbon and nitrogen source effects on basidiomycetes exopolysaccharide production.

    PubMed

    Elisashvili, V I; Kachlishvili, E T; Wasser, S P

    2009-01-01

    The capability to synthesize the extracellular polysaccharide (EPS) is widespread among eight mushroom species which accumulated 0.6-2.2 g/l of EPS in submerged cultivation. Glucose, maltose, and mannitol were the most appropriate carbon sources for biomass and EPS production. Organic nitrogen sources appeared to be the most suitable nitrogen sources for biomass and EPS accumulation. The cultivation process in shake flasks was successfully reproduced in a laboratory fermentor with enhanced EPS production. The highest yield of EPS (3.8-4.0 g/l) was achieved in cultivation of Agaricus nevoi and Inonotus levis.

  7. Carbon and Nitrogen Chemistry of Lodranites: Relationship to Acapulco?

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Franchi, I. A.; Pillinger, C. T.

    1993-07-01

    Recent studies on the mineralogy, petrology, and oxygen isotopic composition of lodranites and acapulcoites indicate that these meteorites are probably derived from a common parent body, but experienced different degrees of partial melting [1,2]. Ar-Ar chronometry implies that lodranites were heated ca. 100 degrees C higher than acapulcoites, and cooled more slowly [3], however measurement of nitrogen and xenon in Acapulco [4,5] shows that volatiles are not equilibrated between different phases within the meteorite, hence its thermal history has been complex. The aim of this study is to determine the carbon and nitrogen chemistry of lodranites, for comparison with Acapulco, to indicate the effect that differing thermal histories might have had on the volatile inventories of these meteorites. The carbon chemistry of Acapulco has been described previously [6]. The meteorite contains ca. 400 ppm indigenous carbon, distributed between two major phases: graphite and carbides. Graphite has been identified petrographically in Acapulco [7], where it is intimately associated with metal. In contrast, both Lodran and MAC 88177 contain much lower quantities of indigenous carbon: approximately 100 ppm and 38 ppm respectively, released in decreasing amounts up to 1200 degrees C. In Lodran, delta^13C rises almost monotonically, from -25 per mil at 600 degrees C to -12 per mil at 1200 degrees C; total delta^13C is ca. -23 per mil. Neither meteorite shows evidence for the occurrence of graphite. Nitrogen released by pyrolysis of Acapulco totals ca. 2.8 ppm [4,5], and is resolvable into two components, with delta^15N ca. +10 per mil and -120 per mil [8]. The first component is, as yet, unidentified, but the second is believed to be associated with the metal fraction [8]. The procedure used herein, of several combustion steps below 500 degrees C to remove contaminants, followed by high resolution combustion up to 1200 degrees C, would also resolve discrete nitrogen-bearing components

  8. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions.

    PubMed

    Kurai, Tomohiro; Wakayama, Masataka; Abiko, Tomomi; Yanagisawa, Shuichi; Aoki, Naohiro; Ohsugi, Ryu

    2011-10-01

    The excessive application of nitrogen fertilizer to maximize crop yields causes negative environmental effects such as pollution and ecological imbalance. To overcome this problem, researchers have attempted to improve the nitrogen assimilation capacity of crops. Maize Dof1 (ZmDof1) is a plant-specific transcription factor shown to promote nitrogen assimilation in Arabidopsis thaliana (Arabidopsis) even under nitrogen-deficient conditions. The present study examines the effect of the introduction of the ZmDof1 gene on carbon and nitrogen assimilation in rice. ZmDof1 induced the expression of phosphoenolpyruvate carboxylase (PEPC) genes in transgenic rice plants and transactivated the PEPC promoters in protoplast transient assays, showing similar effects in rice as in Arabidopsis. Transgenic rice expressing ZmDof1 and grown in the presence of 360 μm (nitrogen-sufficient) or 90 μm (nitrogen-deficient) of nitrogen concentrations showed modulation of metabolite content and gene expression associated with the anaplerotic pathway for the TCA cycle, suggesting an increased carbon flow towards nitrogen assimilation. Furthermore, increases in carbon and nitrogen amounts per seedling were found in Dof1 rice grown under nitrogen-deficient conditions. Nitrogen deficiency also resulted in the predominant distribution of nitrogen to roots, accompanied by significant increases in root biomass and modification of the shoot-to-root ratio. Measurement of the CO₂ gas exchange rate showed a significant increase in the net photosynthesis rate in Dof1 rice under nitrogen-deficient conditions. Taken these together, the present study displayed that ZmDof1 expression in rice could induce gene expressions such as PEPC genes, modulate carbon and nitrogen metabolites, increase nitrogen assimilation and enhance growth under low-nitrogen conditions. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell

  9. A convenient catalytic approach to synthesize straight boron nitride nanotubes using synergic nitrogen source

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Xu, Liqiang; Fang, Zengli; Sheng, Daopeng; Guo, Qingfeng; Ren, Zeyu; Wang, Kang; Qian, Yitai

    2007-06-01

    Straight boron nitride nanotubes (BNNTs) with pure hexagonal phase were conveniently prepared by heating the mixture of Mg(BO 2) 2 · H 2O, NH 4Cl, NaN 3 and Mg powder in an autoclave at 600 °C for 20-60 h. These BNNTs had diameters mainly ranging 30-300 nm and lengths up to ˜5 μm, and a majority of them had at least one closed end. Besides the traditional end tips, additional cone-like tips were frequently found to be attached on the BNNTs. The effects of temperature, reactants and the possible mechanism of the catalytic formation of the BNNTs are discussed.

  10. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    DOE PAGES

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; ...

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media withmore » pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  11. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    SciTech Connect

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; Hensley, Dale K.

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media with pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.

  12. Simultaneous tracing of carbon and nitrogen isotopes in human cells

    PubMed Central

    Nilsson, Roland; Jain, Mohit

    2016-01-01

    Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the metabolic network of living cells. However, most studies of mammalian cells have used 13C-labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured with 13C- and 15N-labeled glucose and glutamine. To facilitate interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly consistent with known biochemical pathways. Whereas measured 13C MIDs were informative for central carbon metabolism, 15N isotopes provided evidence for nitrogen-carrying reactions in amino acid and nucleotide metabolism. This computational and experimental methodology expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic phenotypes in health and disease. PMID:27098229

  13. Simultaneous tracing of carbon and nitrogen isotopes in human cells.

    PubMed

    Nilsson, Roland; Jain, Mohit

    2016-05-24

    Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across the metabolic network of living cells. However, most studies of mammalian cells have used (13)C-labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly understood metabolic pathways. Here, we demonstrate the use of high-resolution mass spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured with (13)C- and (15)N-labeled glucose and glutamine. To facilitate interpretation of the complex isotopomer data generated, we extend current methods for metabolic flux analysis to handle multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly consistent with known biochemical pathways. Whereas measured (13)C MIDs were informative for central carbon metabolism, (15)N isotopes provided evidence for nitrogen-carrying reactions in amino acid and nucleotide metabolism. This computational and experimental methodology expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important to understanding metabolic phenotypes in health and disease.

  14. Preparation and properties of dysprosium nanocapsules coated with boron, carbon, and dysprosium oxide

    SciTech Connect

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Skorvanek, I.; Kovac, J.; Zhang, M

    2004-06-08

    Boron-coated dysprosium/dysprosium oxide, carbon-coated dysprosium/DyC{sub 2}, and dysprosium oxide-coated dysprosium nanocapsules were prepared using an arc discharge method in diborane, methane, and argon, respectively. The magnetization of these nanocapsules has been measured at temperatures between 4 and 290 K, in applied fields up to 6 T. The transition temperature of nanocrystalline Dy from the helical phase to the ferromagnetic phase is much lower than that of bulk Dy. The linear temperature dependence of the inverse susceptibility of these nanocapsules, being a mixture of superparamagnetic Dy and paramagnetic dysprosium oxide or carbide, can be explained within the molecular field theory with magnetic moments with the total angular momentum J=15/2 and the Lande factor g=4/3. We discuss the relations between the structure and the magnetization of these nanocapsules.

  15. Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation.

    PubMed

    Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri

    2010-10-06

    We report on post-synthesis carbon doping of individual boron nitride nanotubes (BNNTs) via in situ electron-beam irradiation inside an energy-filtering 300 keV high-resolution transmission electron microscope. The substitution of C for B and N atoms in the honeycomb lattice was demonstrated through electron energy loss spectroscopy, spatially resolved energy-filtered elemental mapping, and in situ electrical measurements. Substitutional C doping transformed BNNTs from electrical insulators to conductors. In comparison with the existing post-synthesis doping methods for nanoscale materials (e.g., ion implantation and diffusion), the discovered electron-beam-induced doping is a well-controlled, little-damaging, room-temperature, and simple strategy that is expected to demonstrate great promise for post-synthesis doping of diverse nanomaterials in the future.

  16. Suppression of boron diffusion using carbon co-implantation in DRAM

    SciTech Connect

    Lee, Suk Hun; Park, Se Geun; Kim, Shin Deuk; Jung, Hyuck-Chai; Kim, Il Gweon; Kang, Dong-Ho; Kim, Dae Jung; Lee, Kyu Pil; Choi, Joo Sun; Baek, Jung-Woo; Choi, Moonsuk; Park, Yongkook; Choi, Changhwan; Park, Jin-Hong

    2016-10-15

    Highlights: • The impact of Ge + C co-implantation on dopant diffusion was investigated. • DIBL and V{sub TH} variation was improved by Ge + C co-implantation. • The V{sub TH} mismatch and the write characteristics were improved in the DRAM device. - Abstract: In this paper, germanium pre-amorphization implantation (PAI) and carbon co-implantation (Ge + C co-IIP) were applied to suppress boron diffusion. The corresponding characteristics were investigated in terms of the dopant diffusion, device performance, and its application to dynamic random access memory (DRAM). A shallow dopant profile was indicated and the threshold voltage (V{sub TH}) was reduced by approximately 45 mV by Ge + C co-IIP. In the DRAM device, the V{sub TH} mismatch of the sense amplifier NMOS pairs was reduced by approximately 15% and the write characteristics were improved two-fold.

  17. Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon

    SciTech Connect

    Dabrowski, J. Lippert, G.; Schroeder, T.; Lupina, G.

    2014-11-10

    Hexagonal boron nitride (h-BN) is an attractive substrate for graphene, as the interaction between these materials is weak enough for high carrier mobility to be retained in graphene but strong enough to allow for some epitaxial relationship. We deposited graphene on exfoliated h-BN by molecular beam epitaxy (MBE), we analyzed the atomistic details of the process by ab initio density functional theory (DFT), and we linked the DFT and MBE results by random walk theory. Graphene appears to nucleate around defects in virgin h-BN. The DFT analysis reveals that sticking of carbon to perfect h-BN is strongly reduced by desorption, so that pre-existing seeds are needed for the nucleation. The dominant nucleation seeds are C{sub N}C{sub B} and O{sub N}C{sub N} pairs and B{sub 2}O{sub 3} inclusions in the virgin substrate.

  18. Chemically synthesized boron carbon oxynitride as a new cold cathode material

    NASA Astrophysics Data System (ADS)

    Banerjee, Diptonil; Maity, Supratim; Chattopadhyay, K. K.

    2015-11-01

    Synthesis of boron carbon oxynitride (BCNO) nanosheets at different temperature from amorphous to crystalline regime has been reported. The synthesis was done by a simple molten salt process using sodium borohydride and urea as precursors. Transmission electron microscopic study confirms the formation of sheet-like structure of the as-synthesized material. The performances of the as-synthesized BCNO nanosheets as cold cathode materials have been studied for the first time in the high vacuum electron field emission set up. It has been seen that the material gives considerable field emission current with turn on field as low as 2.95 V/μm with good stability and thus a new cold cathode material can be postulated.

  19. Carbon doping induced peculiar transport properties of boron nitride nanoribbons p-n junctions

    NASA Astrophysics Data System (ADS)

    Liu, N.; Gao, G. Y.; Zhu, S. C.; Ni, Y.; Wang, S. L.; Liu, J. B.; Yao, K. L.

    2014-07-01

    By applying nonequilibrium Green's function combined with density functional theory, we investigate the electronic transport properties of carbon-doped p-n nanojunction based on hexagonal boron nitride armchair nanoribbons. The calculated I-V curves show that both the center and edge doping systems present obvious negative differential resistance (NDR) behavior and excellent rectifying effect. At low positive bias, the edge doping systems possess better NDR performance with larger peak-to-valley ratio (˜105), while at negative bias, the obtained peak-to-valley ratio for both of the edge and center doping systems can reach the order of 107. Meanwhile, center doping systems present better rectifying performance than the edge doping ones, and giant rectification ratio up to 106 can be obtained in a wide bias range. These outstanding transport properties are explained by the evolution of the transmission spectra and band structures with applied bias, together with molecular projected self-consistent Hamiltonian eigenvalues and eigenstates.

  20. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study

    SciTech Connect

    Singh, Ram Sevak

    2015-11-15

    Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes (CNTs and BNNTs) is systematically studied using first principle calculations based on density functional theory. Energy band structures and density of states of optimized zigzag (5, 0), armchair (3, 3), and chiral (4, 2) structures of CNT and BNNT are calculated. Oxygen doping in zigzag CNT exhibits a reduction in metallicity with opening of band gap in near-infrared region while metallicity is enhanced in armchair and chiral CNTs. Unlike oxygen-doped CNTs, energy bands are drastically modulated in oxygen-doped zigzag and armchair BNNTs, showing the nanotubes to have metallic behaviour. Furthermore, oxygen impurity in chiral BNNT induces narrowing of band gap, indicating a gradual modification of electronic band structure. This study underscores the understanding of different electronic properties induced in CNTs and BNNTs under oxygen doping, and has potential in fabrication of various nanoelectronic devices.

  1. Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong

    Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.

  2. Thermal Conductivity Enhancement of Coaxial Carbon@Boron Nitride Nanotube Arrays.

    PubMed

    Jing, Lin; Samani, Majid Kabiri; Liu, Bo; Li, Hongling; Tay, Roland Yingjie; Tsang, Siu Hon; Cometto, Olivier; Nylander, Andreas; Liu, Johan; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2017-05-03

    We demonstrate the thermal conductivity enhancement of the vertically aligned carbon nanotube (CNT) arrays (from ∼15.5 to 29.5 W/mK, ∼90% increase) by encapsulating outer boron nitride nanotube (BNNT, 0.97 nm-thick with ∼3-4 walls). The heat transfer enhancement mechanism of the coaxial C@BNNT was further revealed by molecular dynamics simulations. Because of their highly coherent lattice structures, the outer BNNT serves as additional heat conducting path without impairing the thermal conductance of inner CNT. This work provides deep insights into tailoring the heat transfer of arbitrary CNT arrays and will enable their broader applications as thermal interface material.

  3. Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride

    PubMed Central

    Tang, Dai-Ming; Zhang, Li-Li; Liu, Chang; Yin, Li-Chang; Hou, Peng-Xiang; Jiang, Hua; Zhu, Zhen; Li, Feng; Liu, Bilu; Kauppinen, Esko I.; Cheng, Hui-Ming

    2012-01-01

    The growth of single-walled carbon nanotubes (SWCNTs) with predefined structure is of great importance for both fundamental research and their practical applications. Traditionally, SWCNTs are grown from a metal catalyst with a vapor-liquid-solid mechanism, where the catalyst is in liquid state with fluctuating structures, and it is intrinsically unfavorable for the structure control of SWCNTs. Here we report the heteroepitaxial growth of SWCNTs from a platelet boron nitride nanofiber (BNNF), which is composed of stacked (002) planes and is stable at high temperatures. SWCNTs are found to grow epitaxially from the open (002) edges of the BNNFs, and the diameters of the SWCNTs are multiples of the BN (002) interplanar distance. In situ transmission electron microscopy observations coupled with first principles calculations reveal that the growth of SWCNTs from the BNNFs follows a vapor-solid-solid mechanism. Our work opens opportunities for the control over the structure of SWCNTs by hetero-crystallographic epitaxy. PMID:23240076

  4. Evaluation of a boron-nitrogen, phosphate-free fire-retardant treatment. Part I, Testing of Douglas-fir plywood per ASTM Standard D 5516-96

    Treesearch

    Jerrold E. Winandy; Michael J. Richards

    2003-01-01

    The objective of this work was to evaluate (a) the effects of a new boron– nitrogen, phosphate-free fire-retardant (FR) formulation on the initial strength of Douglas-fir AB-grade plywood and (b) the potential of this FR treatment to experience subsequent thermal degradation In-service when exposed to elevated temperatures. Test Method ASTM D 5516 was generally...

  5. Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt.% carbon steels

    NASA Astrophysics Data System (ADS)

    Seol, J. B.; Lim, N. S.; Lee, B. H.; Renaud, L.; Park, C. G.

    2011-06-01

    The grain boundary segregation of boron atoms in high strength low alloy steels containing 50 ppm boron was accomplished using atom probe tomography (APT) and nano-beam secondary ion mass spectroscopy (SIMS). The formation of boro-carbides under an excessive addition of boron to the steels was identified through the SIMS and TEM. The APT was performed in order to evaluate the composition of the alloying elements, such as, boron and carbon, segregated at prior austenite grain boundaries. The boron contents at the prior austenite grain boundaries were approximately 1.7 ± 0.2 at.%, which was approximately 70 times more than the amount of boron added to the steels.

  6. Integrating the nitrogen cycle in carbon and GHG observation systems

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Brummer, C.

    2013-12-01

    Nitrogen is an important factor for the regulation of carbon and GHG fluxes within ecosystems and between ecosystems and the atmosphere. Nitrogen fertilization is important for high agricultural yields but also increases N2O emissions. In Germany, e.g., N2O emissions from agriculture comprise about 6 % of the total GHG inventory. Nitrogen deposition may enhance productivity of ecosystems (e.g. forests, natural grasslands or wetlands) but may also change community structure - in particular in ecosystems that are adapted to low nitrogen availability. It also can lead to increased N2O emissions. Global nitrogen fluxes due to the trade of agricultural products may concentrate nitrogen in specific areas (e.g. in areas with high animal stock). In these areas increased N2O emissions are to be expected. The Thünen Institute of Climate-Smart Agriculture drives parts of the German ICOS consortium with a special focus on agricultural sites or indirect effects of agriculture on GHG emissions. We propose a concept to integrate nitrogen into research infrastructures for GHG monitoring. A conceptual frame will identify the most important parameters of the N cycle. Data from the CarboEurope and NitroEurope core site Gebesee (crop) will be presented to show first integrative results.Finally, first experiences with new technologies will be presented, comprising quantum cascade laser measurements of N2O and ammonia used with eddy covariance (EC) and chambers and EC measurements of total reactive nitrogen with the TRANC methodology (Marx et al. 2012).

  7. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  8. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  9. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  10. Production and Characterization of Bulk MgB2 Material made by the Combination of Crystalline and Carbon Coated Amorphous Boron Powders

    NASA Astrophysics Data System (ADS)

    Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.

    2017-07-01

    The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.

  11. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    PubMed

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  12. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Jun-Sheng; Zhang, Chang-Rui; Li, Bin

    2011-06-01

    Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 °C-1000 °C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 °C, the deposition rate reached a maximum (2.5 μm/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 °C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 °C, while hexagonal BN coatings were deposited above 1100 °C. A penetration of carbon element from the fibers to the coatings was observed.

  13. Phase transitions of boron carbide: Pair interaction model of high carbon limit

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Huhn, W. P.; Widom, M.

    2015-09-01

    Boron Carbide exhibits a broad composition range, implying a degree of intrinsic substitutional disorder. While the observed phase has rhombohedral symmetry (space group R 3 bar m), the enthalpy minimizing structure has lower, monoclinic, symmetry (space group Cm). The crystallographic primitive cell consists of a 12-atom icosahedron placed at the vertex of a rhombohedral lattice, together with a 3-atom chain along the 3-fold axis. In the limit of high carbon content, approaching 20% carbon, the icosahedra are usually of type B11 Cp, where the p indicates the carbon resides on a polar site, while the chains are of type C-B-C. We establish an atomic interaction model for this composition limit, fit to density functional theory total energies, that allows us to investigate the substitutional disorder using Monte Carlo simulations augmented by multiple histogram analysis. We find that the low temperature monoclinic Cm structure disorders through a pair of phase transitions, first via a 3-state Potts-like transition to space group R3m, then via an Ising-like transition to the experimentally observed R 3 bar m symmetry. The R3m and Cm phases are electrically polarized, while the high temperature R 3 bar m phase is nonpolar.

  14. Effect of carbon monoxide and nitrogen dioxide on ICR mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Times to incapacitation and death and LC(50) values were determined for male ICR mice exposed to different concentration of carbon monoxide for 30 min and of nitrogen dioxide for 10 min in a 4.2 liter hemispherical chamber. The data indicate that ICR mice are more resistant to these two toxicants than Swiss albino mice. The carbon monoxide LC(50) for a 30-min exposure was about 8,000 ppm for ICR mice compared to 3,570 ppm for Swiss albino mice. The nitrogen dioxide LC(50) for a 10-min exposure was above 2,000 ppm for ICR mice compared to about 1,000 ppm for Swiss albino mice.

  15. Transesterification of triglycerides using nitrogen-functionalized carbon nanotubes.

    PubMed

    Villa, Alberto; Tessonnier, Jean-Philippe; Majoulet, Olivier; Su, Dang Sheng; Schlögl, Robert

    2010-02-22

    Nitrogen-functionalized carbon nanotubes were synthesized by grafting amino groups to the surface of the nanotubes. The nanotubes exhibited promising results in the base-catalyzed liquid phase transesterification of glyceryl tributyrate with methanol, which is a model reaction for the production of biodiesel. The concentration of the active sites and the reaction parameters, such as temperature and glyceryl tributyrate to methanol ratio, were shown to significantly affect catalytic performance. The grafting technique employed allowed for design and control of the active sites. As a consequence, it was possible to design a nitrogen-functionalized carbon nanotube catalyst with a few strong, basic groups. This might be of interest for carbohydrate conversion reactions where strong basic sites are required but the pH of the solution should remain mild to avoid the degradation of the reactants and/or products.

  16. Effect of carbon monoxide and nitrogen dioxide on ICR mice

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Times to incapacitation and death and LC(50) values were determined for male ICR mice exposed to different concentration of carbon monoxide for 30 min and of nitrogen dioxide for 10 min in a 4.2 liter hemispherical chamber. The data indicate that ICR mice are more resistant to these two toxicants than Swiss albino mice. The carbon monoxide LC(50) for a 30-min exposure was about 8,000 ppm for ICR mice compared to 3,570 ppm for Swiss albino mice. The nitrogen dioxide LC(50) for a 10-min exposure was above 2,000 ppm for ICR mice compared to about 1,000 ppm for Swiss albino mice.

  17. Carbon and Nitrogen Content of Natural Planktonic Bacteria †

    PubMed Central

    Nagata, Toshi

    1986-01-01

    A method of estimating carbon and nitrogen content per unit of natural bacterial cell volume was developed. This method is based on the difference in the retentiveness of bacteria between two kinds of glass fiber filter, GF/C and GF/F (Whatman, Inc., Clifton, N.J.). Biovolume and biomass (carbon and nitrogen content) of bacteria which passed through the GF/C but not the GF/F filter were estimated with an epifluorescence microscopy and a CHN analyzer, respectively. From seasonal determinations of natural planktonic bacteria in epilimnetic waters of a mesotrophic lake, the conversion factors of 106 fg of C/μm3 and 25 fg of N/μm3 were derived as average values. By using these values, the contribution of bacteria to the biomass of lake plankton is discussed. PMID:16347114

  18. Worldwide Organic Soil Carbon and Nitrogen Data (1986) (NDP-018)

    DOE Data Explorer

    Zinke, P. J. [Univ. of California, Berkeley, CA (United States); Stangenberger, A. G. [Univ. of California, Berkeley, CA (United States); Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Emanuel, W. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olson, J. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Millemann, R. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1986-01-01

    This data base was begun with the collection and analysis of soil samples from California. Additional data came from soil surveys of Italy, Greece, Iran, Thailand, Vietnam, various tropical Amazonian areas, and U.S. forests and from the soil-survey literature. The analyzed samples were collected at uniform soil-depth increments and included bulk-density determinations. The data on each sample are soil profile number; soil profile carbon content; soil profile nitrogen content; sampling site latitude and longitude; site elevation; profile literature reference source; and soil profile codes for Holdridge life zone, Olson ecosystem type, and parent material. These data may be used to estimate the size of the soil organic carbon and nitrogen pools at equilibrium with natural soil-forming factors.

  19. Electrical and Electrochemical Properties of Nitrogen-Containing Tetrahedral Amorphous Carbon (ta-C) Thin Films

    NASA Astrophysics Data System (ADS)

    Yang, Xingyi

    Tetrahedral amorphous carbon (ta-C) is a diamond-like carbon (DLC) material comprised of a mixture of sp2 (˜40%) and sp3-bonded (˜60%) carbon domains. The physicochemical structure and electrochemical properties depend strongly on the sp2/sp3 bonding ratio as well as the incorporation of impurities, such as hydrogen or nitrogen. The ability to grow ta-C films at lower temperatures (25-100 °C) on a wider variety of substrates is a potential advantage of these materials as compared with diamond films. In this project, the basic structural and electrochemical properties of nitrogen-incorporated ta-C thin films will be discussed. The major goal of this work was to determine if the ta-C:N films exhibit electrochemical properties more closely aligned with those of boron-doped diamond (sp 3 carbon) or glassy carbon (amorphous sp2 carbon). Much like diamond, ta-C:N thin-film electrodes are characterized by a low background voltammetric current, a wide working potential window, relatively rapid electron-transfer kinetics for aqueous redox systems, such as Fe(CN) 6-3/-4 and Ru(NH3)6+3/+2 , and weak adsorption of polar molecules from solution. For example, negligible adsorption of methylene blue was found on the ta-C:N films in contrast to glassy carbon; a surface on which this molecule strongly adsorbs. The film microstructure was studied with x-ray photoelectron microscopy (XPS), visible Raman spectroscopy and electron-energy loss spectroscopy (EELS); all of which revealed the sp2-bonded carbon content increased with increasing nitrogen. The electrical properties of ta-C:N films were studied by four-point probe resistance measurement and conductive-probe AFM (CP-AFM). The incorporation of nitrogen into ta-C films increased the electrical conductivity primarily by increasing the sp2-bonded carbon content. CP-AFM showed the distribution of the conductive sp2-carbon on the film surface was not uniform. These films have potential to be used in field emission area. The

  20. Vacancy Mediated Mechanism of Nitrogen Substitution in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Sadanadan, Bindu; Rao, Apparao M.

    2003-01-01

    Nitrogen substitution reaction in a graphene sheet and carbon nanotubes of different diameter are investigated using the generalized tight-binding molecular dynamics method. The formation of a vacancy in curved graphene sheet or a carbon nanotube is found to cause a curvature dependent local reconstruction of the surface. Our simulations and analysis show that vacancy mediated N substitution (rather than N chemisorption) is favored on the surface of nanotubes with diameter larger than 8 nm. This predicted value of the critical minimum diameter for N incorporation is confirmed by experimental results presented.

  1. Nitrogen-doped carbon dots as multifunctional fluorescent probes

    NASA Astrophysics Data System (ADS)

    Du, Fengyi; Jin, Xin; Chen, Junhui; Hua, Ye; Cao, Mulan; Zhang, Lirong; Li, Jianan; Zhang, Li; Jin, Jie; Wu, Chaoyang; Gong, Aihua; Xu, Wenrong; Shao, Qixiang; Zhang, Miaomiao

    2014-11-01

    Highly fluorescent nitrogen-doped carbon dots (NCDs) were prepared through the hydrothermal carbonization of citric acid and ammonium acetate. The resulting NCDs were quasi-spherical particles with an average diameter of approximately 2.1 nm. They exhibited excellent photoluminescent properties and had favorable solubility in water. Furthermore, the NCDs had low cytotoxicity and were readily integrated with cytoplasm. This makes them particularly suitable for multicolor bioimaging. Most importantly, NCDs internalized by cancer cells can be detected at four channels simultaneously with flow cytometry, which further demonstrates that the NCDs can be used as multifunctional fluorescent probes for biomedical applications.

  2. Forest defoliator pests alter carbon and nitrogen cycles

    PubMed Central

    Grüning, Maren; Simon, Judy; Reinhardt, Annett-Barbara; Lamersdorf, Norbert; Thies, Carsten

    2016-01-01

    Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests (Quercus petraea L.) that were heavily infested by the leaf herbivores winter moth (Operophtera brumata L.) and mottled umber (Erannis defoliaria L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha−1 and 319 kg N ha−1, respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback. PMID:27853551

  3. Forest defoliator pests alter carbon and nitrogen cycles.

    PubMed

    L-M-Arnold, Anne; Grüning, Maren; Simon, Judy; Reinhardt, Annett-Barbara; Lamersdorf, Norbert; Thies, Carsten

    2016-10-01

    Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests (Quercus petraea L.) that were heavily infested by the leaf herbivores winter moth (Operophtera brumata L.) and mottled umber (Erannis defoliaria L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha(-1) and 319 kg N ha(-1), respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback.

  4. Methods of producing continuous boron carbide fibers

    SciTech Connect

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  5. Characteristics of boron doped mesophase pitch-based carbon fibers as anode materials for lithium secondary cells

    SciTech Connect

    Tamaki, Toshio; Kawamura, Toshifumi; Yamazaki, Yoshinori

    1998-07-01

    Mesophase pitch-based Carbon Fibers(MCF) have been investigated as anode materials for lithium secondary cells by examining their physical and electrochemical properties. Discharge capacity and initial charge-discharge efficiency of the materials were studied in relation to the heat treatment temperatures of MCF. MCF heat treated at about 3,000 C gave high discharge capacity over 310mAh/g, good efficiency (93%) and superior current capability of 600mA/g (6mA/cm2). On the other hand, to improve the battery capacity, Boron was doped to the fiber about several {degree} by adding B{sub 4}C to the pre-carbonized milled fibers and then heat-treated up to 3,000 C in Ar. Then heat treated at 2,500 C under vacuum condition to remove remained B{sub 4}C. The structure of Boron-doped fibers was characterized and compared with that of non-doped standard fibers, and also Li ion battery performances are evaluated. The Boron-doped MCF indicated improvement in graphitization and increased discharge capacity as high as 360mAh/g. The voltammograms of both fibers are different from each other. The cell mechanism is discussed based on the unique structure of Boron-doping to the MCF is very effective for the battery performance.

  6. Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants

    PubMed Central

    Palenchar, Peter M; Kouranov, Andrei; Lejay, Laurence V; Coruzzi, Gloria M

    2004-01-01

    Background Carbon and nitrogen are two signals that influence plant growth and development. It is known that carbon- and nitrogen-signaling pathways influence one another to affect gene expression, but little is known about which genes are regulated by interactions between carbon and nitrogen signaling or the mechanisms by which the different pathways interact. Results Microarray analysis was used to study global changes in mRNA levels due to carbon and nitrogen in Arabidopsis thaliana. An informatic analysis using InterAct Class enabled us to classify genes on the basis of their responses to carbon or nitrogen treatments. This analysis provides in vivo evidence supporting the hypothesis that plants have a carbon/nitrogen (CN)-sensing/regulatory mechanism, as we have identified over 300 genes whose response to combined CN treatment is different from that expected from expression values due to carbon and nitrogen treatments separately. Metabolism, energy and protein synthesis were found to be significantly affected by interactions between carbon and nitrogen signaling. Identified putative cis-acting regulatory elements involved in mediating CN-responsive gene expression suggest multiple mechanisms for CN responsiveness. One mechanism invokes the existence of a single CN-responsive cis element, while another invokes the existence of cis elements that promote nitrogen-responsive gene expression only when present in combination with a carbon-responsive cis element. Conclusion This study has allowed us to identify genes and processes regulated by interactions between carbon and nitrogen signaling and take a first step in uncovering how carbon- and nitrogen-signaling pathways interact to regulate transcription. PMID:15535867

  7. Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells.

    PubMed

    Zheng, Xiaoli; Chen, Haining; Li, Qiang; Yang, Yinglong; Wei, Zhanhua; Bai, Yang; Qiu, Yongcai; Zhou, Dan; Wong, Kam Sing; Yang, Shihe

    2017-04-12

    Compared to the conventional perovskite solar cells (PSCs) containing hole-transport materials (HTM), carbon materials based HTM-free PSCs (C-PSCs) have often suffered from inferior power conversion efficiencies (PCEs) arising at least partially from the inefficient hole extraction at the perovskite-carbon interface. Here, we show that boron (B) doping of multiwalled carbon nanotubes (B-MWNTs) electrodes are superior in enabling enhanced hole extraction and transport by increasing work function, carrier concentration, and conductivity of MWNTs. The C-PSCs prepared using the B-MWNTs as the counter electrodes to extract and transport hole carriers have achieved remarkably higher performances than that with the undoped MWNTs, with the resulting PCE being considerably improved from 10.70% (average of 9.58%) to 14.60% (average of 13.70%). Significantly, these cells show negligible hysteretic behavior. Moreover, by coating a thin layer of insulating aluminum oxide (Al2O3) on the mesoporous TiO2 film as a physical barrier to substantially reduce the charge losses, the PCE has been further pushed to 15.23% (average 14.20%). Finally, the impressive durability and stability of the prepared C-PSCs were also testified under various conditions, including long-term air exposure, heat treatment, and high humidity.

  8. Graphene/nitrogen-functionalized graphene quantum dot hybrid broadband photodetectors with a buffer layer of boron nitride nanosheets.

    PubMed

    Tetsuka, Hiroyuki; Nagoya, Akihiro; Tamura, Shin-Ichi

    2016-12-01

    A high performance hybrid broadband photodetector with graphene/nitrogen-functionalized graphene quantum dots (NGQDs@GFET) is developed using boron nitride nanosheets (BN-NSs) as a buffer layer to facilitate the separation and transport of photoexcited carriers from the NGQD absorber. The NGQDs@GFET photodetector with the buffer layer of BN-NSs exhibits enhanced photoresponsivity and detectivity in the deep ultraviolet region of ca. 2.3 × 10(6) A W(-1) and ca. 5.5 × 10(13) Jones without the application of a backgate voltage. The high level of photoresponsivity persists into the near-infrared region (ca. 3.4 × 10(2) A W(-1) and 8.0 × 10(9) Jones). In addition, application in flexible photodetectors is demonstrated by the construction of a structure on a polyethylene terephthalate (PET) substrate. We further show the feasibility of using our flexible photodetectors towards the practical application of infrared photoreflectors. Together with the potential application of flexible photodetectors and infrared photoreflectors, the proposed hybrid photodetectors have potential for use in future graphene-based optoelectronic devices.

  9. Proton induced gamma-ray production cross sections and thick-target yields for boron, nitrogen and silicon

    NASA Astrophysics Data System (ADS)

    Marchand, Benoît; Mizohata, Kenichiro; Räisänen, Jyrki

    2016-07-01

    The excitation functions for the reactions 14N(p,p‧γ)14N, 28Si(p,p‧γ)28Si and 29Si(p,p‧γ)29Si were measured at an angle of 55° by bombarding a thin Si3N4 target with protons in the energy range of 3.6-6.9 MeV. The deduced γ-ray production cross section data is compared with available literature data relevant for ion beam analytical work. Thick-target γ-ray yields for boron, nitrogen and silicon were measured at 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 MeV proton energies utilizing thick BN and Si3N4 targets. The measured yield values are put together with available yield data found in the literature. The experimental yield data has been used to cross-check the γ-ray production cross section values by comparing them with calculated thick-target yields deduced from the present and literature experimental excitation curves. All values were found to be in reasonable agreement taking into account the experimental uncertainties.

  10. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants

    PubMed Central

    Cambui, Camila Aguetoni; Gruffman, Linda; Palmroth, Sari; Oren, Ram; Näsholm, Torgny

    2016-01-01

    Abstract The importance of organic nitrogen (N) for plant nutrition and productivity is increasingly being recognized. Here we show that it is not only the availability in the soil that matters, but also the effects on plant growth. The chemical form of N taken up, whether inorganic (such as nitrate) or organic (such as amino acids), may significantly influence plant shoot and root growth, and nitrogen use efficiency (NUE). We analysed these effects by synthesizing results from multiple laboratory experiments on small seedlings (Arabidopsis, poplar, pine and spruce) based on a tractable plant growth model. A key point is that the carbon cost of assimilating organic N into proteins is lower than that of inorganic N, mainly because of its carbon content. This carbon bonus makes it more beneficial for plants to take up organic than inorganic N, even when its availability to the roots is much lower – up to 70% lower for Arabidopsis seedlings. At equal growth rate, root:shoot ratio was up to three times higher and nitrogen productivity up to 20% higher for organic than inorganic N, which both are factors that may contribute to higher NUE in crop production. PMID:27241731

  11. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  12. Carbon and Nitrogen Accumulation Rates in Salt Marshes in Oregon, USA

    EPA Science Inventory

    Two important ecosystem services of wetlands are carbon sequestration and filtration of nutrients and particulates. We quantified the carbon and nitrogen accumulation rates in salt marshes at 135 plots distributed across eight estuaries located in Oregon, USA. Net carbon and ...

  13. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    PubMed

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution.

  14. [Effects of chlorimuron-ethyl and urea on soil microbial biomass carbon and nitrogen and soil inorganic nitrogen].

    PubMed

    Tan, Huan-Bo; Li, Xin-Yu; Zhang, Hui-Wen; Li, Xu; Xu, Ming-Kai

    2012-08-01

    A microcosm experiment was conducted to study the effects of different concentration chlorimuron-ethyl (20, 200, and 2000 microg x kg(-1) soil) and its combination with urea (120 mg x kg(-1) soil) on the dynamic changes of soil microbial biomass carbon and nitrogen and soil nitrate nitrogen and ammonium nitrogen. Applying chlorimuron-ethyl alone decreased the soil microbial biomass carbon and nitrogen throughout the experiment period (60 days), and the decrement increased with increasing chlorimuron-ethyl concentration. Chlorimuron-ethyl had little effects on the soil ammonium nitrogen and nitrite nitrogen in the early period of the experiment, but increased the soil ammonium nitrogen in the mid-period (15 d) and the soil nitrate nitrogen in the late period (after 30 days) significantly. Both urea addition and its combination with chlorimuron-ethyl increased the soil microbial biomass carbon and nitrogen obviously in a short time, but the effect of combined addition of urea and chlorimuron-ethyl weakened then. Applying urea and its combination with chlorimuron-ethyl resulted in a lasting increase of soil nitrate nitrogen and ammonium nitrogen.

  15. Properties of nitrogen-doped amorphous hydrogenated carbon films

    SciTech Connect

    Amir, O.; Kalish, R. )

    1991-11-01

    Nitrogen-containing hydrogenated amorphous carbon (a-C:H(N)) films are grown from a dc plasma of a N{sub 2}+C{sub 6}H{sub 6} gas mixture. By varying the N{sub 2} fraction in this mixture films with different amounts of N are produced. The actual amount of nitrogen in the {ital a}-C:H(N) films is determined by nuclear reaction analysis and by Auger electron spectroscopy profiling. The nitrogen concentration in the films grows exponentially with nitrogen content in the gas mixture reaching concentrations as high as 10 at.% for the films grown from a N{sub 2}-rich gas mixture (N{sub 2}/(N{sub 2}+C{sub 6}H{sub 6})=0.75). The electrical and structural properties of the N{sub 2}-doped films are studied by performing electrical conductivity, thermopower (TP), optical absorption, and electron-paramagnetic resonance measurements. Films with low ({lt}1 at.%) nitrogen content exhibit fairly high resistivities, have an optical gap of 1 eV, are rich with dangling bonds (5{times}10{sup 20} cm{sup {minus}3}) and their thermopower is positive and in the mV/K regime, indicating conductivity in the valence band tail. However, with increased N doping, the resistivity decreases and the optical band gap shrinks and reached zero for the highest doped film. The TPs for films containing more than 1 at.% are in the {mu}V/K range, indicating hopping conductivity around the Fermi level. The results of all measurements are consistent with the model of Robertson for the electrical structure of amorphous hydrogenated carbon and for the proposed doping mechanism in this material.

  16. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation.

    PubMed

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor

    2008-11-21

    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  17. Carbon- and crack-free growth of hexagonal boron nitride nanosheets and their uncommon stacking order.

    PubMed

    Khan, Majharul Haque; Casillas, Gilberto; Mitchell, David R G; Liu, Hua Kun; Jiang, Lei; Huang, Zhenguo

    2016-09-21

    The quality of hexagonal boron nitride nanosheets (h-BNNS) is often associated with the most visible aspects such as lateral size and thickness. Less obvious factors such as sheet stacking order could also have a dramatic impact on the properties of BNNS and therefore its applications. The stacking order can be affected by contamination, cracks, and growth temperatures. In view of the significance of chemical-vapour-decomposition (CVD) assisted growth of BNNS, this paper reports on strategies to grow carbon- and crack-free BNNS by CVD and describes the stacking order of the resultant BNNS. Pretreatment of the most commonly used precursor, ammonia borane, is necessary to remove carbon contamination caused by residual hydrocarbons. Flattening the Cu and W substrates prior to growth and slow cooling around the Cu melting point effectively facilitate the uniform growth of h-BNNS, as a result of a minimal temperature gradient across the Cu substrate. Confining the growth inside alumina boats effectively minimizes etching of the nanosheet by silica nanoparticles originating from the commonly used quartz reactor tube. h-BNNS grown on solid Cu surfaces using this method adopt AB, ABA, AC', and AC'B stacking orders, which are known to have higher energies than the most stable AA' configuration. These findings identify a pathway for the fabrication of high-quality h-BNNS via CVD and should spur studies on stacking order-dependent properties of h-BNNS.

  18. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Treesearch

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  19. Effect of a nitrogen-carbon interaction on terrestrial carbon fluxes estimated by biosphere model

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Yamaguchi, Y.

    2007-12-01

    It is important for the global warming to accurately understand the terrestrial carbon fluxes at global scale. Estimating spatial and temporal patterns in the carbon fluxes, recently, many global biosphere models were proposed and developed. However, since the model analyses have always some uncertainties. One of the major uncertainties is an effect of nitrogen cycle on the carbon cycle, as nitrogen largely controls carbon dynamics as plant and soil microbe nutrients. A goal of this study is to investigate the effect of terrestrial carbon-nitrogen interaction on NPP using new biosphere model. Firstly, a new nitrogen cycle model was constructed including twelve main nitrogen flows (nitrogen fixation, deposition, nitrifications, volatilization, nitrate leaching, plant uptake, allocation, translocation, retranslocation, soil organic and inorganic nitrogen dynamics), and fourteen pools (three biomass, four litter fall, five soil organic, and two inorganic). Secondly, the nitrogen model was integrated to the existing biosphere model, BEAMS (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data) [Sasai et al., 2005, 2007]. The new biosphere model was run for 20 years (1982-2001) at a global scale. The inputs datasets used were NCEP/NCAR re-analysis and fPAR/LAI based on NOAA/AVHRR produced by Boston University. The two-dimensional distributions of monthly GPP and NPP were calculated. And, the GPP estimates by the original and new BEAMS were compared with ground measurements at flux-tower sites. We compared seasonal changes in GPP between the new model and eddy covariance measurements at flux sites. As a result, the GPP estimates had good agreement with the GPP measurements (r2 = 0.91). In view of a comparison in GPP between the measurements and the original BEAMS (r2 = 0.84), the new model is better than the original BEAMS. Especially, we could observe an indisputable improvement of the new model on a seasonal change in the growing

  20. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  1. Chemical analysis of impurity boron atoms in diamond using soft X-ray emission spectroscopy.

    PubMed

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D

    2008-07-01

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  2. Carbon and nitrogen abundances determined from transition layer lines

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1992-01-01

    The possibility of determining relative carbon, nitrogen, and silicon abundances from the emission-line fluxes in the lower transition layers between stellar chromospheres and coronae is explored. Observations for main-sequence and luminosity class IV stars with presumably solar element abundances show that for the lower transition layers Em = BT sup -gamma. For a given carbon abundance the constants gamma and B in this relation can be determined from the C II and C IV emission-line fluxes. From the N V and S IV lines, the abundances of these elements relative to carbon can be determined from their surface emission-line fluxes. Ratios of N/C abundances determined in this way for some giants and supergiants agree within the limits of errors with those determined from molecular bands. For giants, an increase in the ratio of N/C at B-V of about 0.8 is found, as expected theoretically.

  3. Carbon and nitrogen isotope studies in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-01-01

    The Phase II studies of the R4D Program on stream and watershed ecology reflect the accomplishments and accumulation of baseline information obtained during the past studies. Although our rough estimates indicate that nitrogen inputs to the watershed ba lance losses, the carbon fluxes suggest that they are not in equilibrium and that there is a net loss of carbon from the tundra ecosystem through respiration and transport out of the watershed via the stream system. Radiocarbon profiles of soil sections coupled with mass transport calculations revealed that peat accumulation has essentially ceased in the R4D watershed and appears to be in ablative loss. Thus the carbon flux measurements provide validation tests for the PLANTGRO and GAS-HYDRO models of the PHASE II studies. These findings are also important in the context of global CO[sub 2] increases from positive feedback mechanisms in peatlands associated with climatic warming in the subarctic regions.

  4. Carbon and nitrogen isotope studies in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1989-12-31

    The Phase II studies of the R4D Program on stream and watershed ecology reflect the accomplishments and accumulation of baseline information obtained during the past studies. Although our rough estimates indicate that nitrogen inputs to the watershed ba lance losses, the carbon fluxes suggest that they are not in equilibrium and that there is a net loss of carbon from the tundra ecosystem through respiration and transport out of the watershed via the stream system. Radiocarbon profiles of soil sections coupled with mass transport calculations revealed that peat accumulation has essentially ceased in the R4D watershed and appears to be in ablative loss. Thus the carbon flux measurements provide validation tests for the PLANTGRO and GAS-HYDRO models of the PHASE II studies. These findings are also important in the context of global CO{sub 2} increases from positive feedback mechanisms in peatlands associated with climatic warming in the subarctic regions.

  5. Nitrogen Doped Carbon Nanotubes from Organometallic Compounds: A Review

    PubMed Central

    Nxumalo, Edward N.; Coville, Neil J.

    2010-01-01

    Nitrogen doped carbon nanotubes (N-CNTs) have become a topic of increased importance in the study of carbonaceous materials. This arises from the physical and chemical properties that are created when N is embedded in a CNT. These properties include modified chemical reactivity and modified conductivity and mechanical properties. A range of methodologies have been devised to synthesize N-CNTs. One of the procedures uses a floating catalyst in which an organometallic complex is decomposed in the gas phase in the presence of a nitrogen containing reactant to give N-CNTs. Most studies have been limited to ferrocene, ring substituted ferrocene and Fe(CO)5. This review covers the synthesis (and properties) of N-CNTs and other shaped carbon nanomaterials (SCNMs) produced using organometallic complexes. It summarizes the effects that physical parameters such as temperature, pressure, gas flow rates, type and concentration of N source etc. have on the N-CNT type, size and yields as well as the nitrogen content incorporated into the tubes that are produced from organometallic complexes. Proposed growth models for N-CNT synthesis are also reported.

  6. Carbon cycling by cellulose-fermenting nitrogen-fixing bacteria

    NASA Astrophysics Data System (ADS)

    Leschine, S. B.; Canale-Parola, E.

    The most abundant organic materials on Earth are plant polysaccharides such as cellulose and hemicelluloses. Inasmuch as vast quantities of these polymers are present in anaerobic environments (e.g., in soils and sediments), anaerobic microorganisms that ferment plant polysaccharides play a central role in carbon cycling on the planet as a source of CO2 and, indirectly, of CH4. Cellulose-fermenting bacteria from soil and pond sediment were isolated in a medium (incubated in N2) which lacked a source of combined nitrogen. The isolates had the ability to utilize atmospheric N2 as the nitrogen source for cell growth. Nitrogenase (the enzyme which catalyzes the reduction of N2 to ammonia) was demonstrated by means of the acetylene reduction test in these isolates and in several previously described anaerobic cellulolytic bacteria isolated from various natural environments. Thus, cellulose-fermenting bacteria that fix N2 may be widespread and may play a role in nitrogen cycling as well as in carbon cycling on a global scale. Knowledge of the physiology and ecology of these organisms is crucial to detailing the mechanisms producing local sources and sinks of atmospheric gases, interpreting data obtained using space-based sensors, and understanding the effects of atmospheric warming on fermentations as major sources of CO2 and CH4.

  7. The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration

    PubMed Central

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency. PMID:24987690

  8. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    PubMed

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  9. Oxidative unzipping of stacked nitrogen-doped carbon nanotube cups.

    PubMed

    Dong, Haifeng; Zhao, Yong; Tang, Yifan; Burkert, Seth C; Star, Alexander

    2015-05-27

    We demonstrate a facile synthesis of different nanostructures by oxidative unzipping of stacked nitrogen-doped carbon nanotube cups (NCNCs). Depending on the initial number of stacked-cup segments, this method can yield graphene nanosheets (GNSs) or hybrid nanostructures comprised of graphene nanoribbons partially unzipped from a central nanotube core. Due to the stacked-cup structure of as-synthesized NCNCs, preventing complete exposure of graphitic planes, the unzipping mechanism is hindered, resulting in incomplete unzipping; however, individual, separated NCNCs are completely unzipped, yielding individual nitrogen-doped GNSs. Graphene-based materials have been employed as electrocatalysts for many important chemical reactions, and it has been proposed that increasing the reactive edges results in more efficient electrocatalysis. In this paper, we apply these graphene conjugates as electrocatalysts for the oxygen reduction reaction (ORR) to determine how the increase in reactive edges affects the electrocatalytic activity. This investigation introduces a new method for the improvement of ORR electrocatalysts by using nitrogen dopants more effectively, allowing for enhanced ORR performance with lower overall nitrogen content. Additionally, the GNSs were functionalized with gold nanoparticles (GNPs), resulting in a GNS/GNP hybrid, which shows efficient surface-enhanced Raman scattering and expands the scope of its application in advanced device fabrication and biosensing.

  10. Theoretical uncertainties in extracting cosmic-ray diffusion parameters: the boron-to-carbon ratio

    NASA Astrophysics Data System (ADS)

    Genolini, Y.; Putze, A.; Salati, P.; Serpico, P. D.

    2015-08-01

    Context. PAMELA and, more recently, AMS-02, are ushering us into a new era of greatly reduced statistical uncertainties in experimental measurements of cosmic-ray fluxes. In particular, new determinations of traditional diagnostic tools such as the boron-to-carbon ratio (B/C) are expected to significantly reduce errors on cosmic-ray diffusion parameters, with important implications for astroparticle physics, ranging from inferring primary source spectra to indirect dark matter searches. Aims: It is timely to stress, however, that the conclusions obtained crucially depend on the framework in which the data are interpreted as well as on some nuclear input parameters. We aim at assessing the theoretical uncertainties affecting the outcome, with models as simple as possible while still retaining the key dependencies. Methods: We compared different semi-analytical, two-zone model descriptions of cosmic-ray transport in the Galaxy: infinite slab(1D), cylindrical symmetry (2D) with homogeneous sources, cylindrical symmetry (2D) with inhomogeneous source distribution. We tested for the effect of a primary source contamination in the boron flux by parametrically altering its flux. We also tested for nuclear cross-section uncertainties. All hypotheses were compared by χ2 minimisation techniques to preliminary results from AMS-02. Results: We find that the main theoretical bias on the determination of the diffusion coefficient index δ (up to a factor two) is represented by the assumption that no injection of boron takes place at the source. The next most important uncertainty is represented by cross-section uncertainties, which reach ± 20% in δ. As a comparison, nuclear uncertainties are more important than the shift in the best-fit when introducing a convective wind of velocity ≲30 km s-1, with respect to a pure diffusive baseline model. Perhaps surprisingly, homogeneous 1D vs. 2D performances are similar in determining diffusion parameters. An inhomogeneous source

  11. [Effects of different applied nitrogen forms on pakchoi (Brassica chinensis) growth and its carbon and nitrogen accumulation].

    PubMed

    Wang, Xiao-Li; Yang, Dan-Ni; Huang, Dan-Feng

    2012-04-01

    A hydroponic experiment was conducted to study the effects of different applied nitrogen forms, i.e., ammonium, nitrate, glycine, glutamine, alanine, bovine serum albumin (BSA), mixture of glycine and nitrate, and mixture of BSA and nitrate, on the growth and carbon and nitrogen accumulation of pakchoi (Brassica chinensis). The significant differences were observed in the B. chinensis dry mass, fresh mass, carbon and nitrogen accumulation, and soluble protein, soluble sugar, and free amino acid contents among different treatments. In treatment nitrate, the fresh mass and dry mass of B. chinensis shoot and root were the highest; in treatment glycine, the root growth and the carbon and nitrogen accumulation of B. chinensis were promoted obviously; among the treatments glycine, glutamine, and alanine, treatment glutamine was more beneficial to the shoot growth and nitrogen accumulation. The nutritional effect of the applied nitrogen forms was in the order of nitrate, glutamine > mixture of glycine and nitrate, mixture of BSA and nitrate, glycine, ammonium > alanine, BSA, zero nitrogen. It was suggested that organic nitrogen could be used as a source of nitrogen nutrition for B. chinensis growth, and different nitrogen forms could have different physiological effects onthe B. chinensis plants.

  12. Finite element investigation of the vibrational behavior of concentric multi-walled boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Nikkar, A.

    2017-02-01

    This paper concerns the vibrational behavior of concentric double-walled and triple-walled carbon and boron nitride nanotubes using the finite element method. Armchair and zigzag nanotubes with different lengths and diameters are considered. Moreover, different boundary conditions are applied on the nanotubes. It is observed that in double-walled nanotubes, when the inner and outer layers are respectively from boron nitride and carbon, the frequencies are larger than those in the reverse arrangement. Investigating the effect of diameter on the first 10 natural frequencies of double-walled and triple-walled nanotubes showed that nanotubes with larger diameters possess smaller frequencies. The effect of diameter is more significant for higher modes. Finally, comparisons are made between the vibrational behavior of concentric carbon and boron nitride double-walled and triple-walled nanotubes. Considering the effect of vacancy defect on the vibrational characteristics of the nanotubes revealed that when all of the walls of the nanotubes are defective, the largest diminish occurs for the fundamental natural frequencies.

  13. Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics.

    PubMed

    Koven, Charles D; Lawrence, David M; Riley, William J

    2015-03-24

    Permafrost soils contain enormous amounts of organic carbon whose stability is contingent on remaining frozen. With future warming, these soils may release carbon to the atmosphere and act as a positive feedback to climate change. Significant uncertainty remains on the postthaw carbon dynamics of permafrost-affected ecosystems, in particular since most of the carbon resides at depth where decomposition dynamics may differ from surface soils, and since nitrogen mineralized by decomposition may enhance plant growth. Here we show, using a carbon-nitrogen model that includes permafrost processes forced in an unmitigated warming scenario, that the future carbon balance of the permafrost region is highly sensitive to the decomposability of deeper carbon, with the net balance ranging from 21 Pg C to 164 Pg C losses by 2300. Increased soil nitrogen mineralization reduces nutrient limitations, but the impact of deep nitrogen on the carbon budget is small due to enhanced nitrogen availability from warming surface soils and seasonal asynchrony between deeper nitrogen availability and plant nitrogen demands. Although nitrogen dynamics are highly uncertain, the future carbon balance of this region is projected to hinge more on the rate and extent of permafrost thaw and soil decomposition than on enhanced nitrogen availability for vegetation growth resulting from permafrost thaw.

  14. Structural and electrical characterization of boron-containing diamond-like carbon films deposited by femtosecond pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Sikora, A.; Berkesse, A.; Bourgeois, O.; Garden, J.-L.; Guerret-Piécourt, C.; Rouzaud, J.-N.; Loir, A.-S.; Garrelie, F.; Donnet, C.

    2009-10-01

    The present study investigates the influence of the incorporation of boron in Diamond-Like Carbon (DLC) films deposited by femtosecond laser ablation, on the structure and electrical properties of the coatings within the temperature range 70-300 K. Doping with boron has been performed by ablating alternatively graphite and boron targets. The film structure and composition have been highlighted by coupling Atomic Force Microscopy (AFM), Scanning Electron Microscopy equipped with a field emission gun (SEM-FEG) and High Resolution Transmission Electron Microscopy (HRTEM). Boron dilution ranges between 2 and 8% and appears as nanometer size clusters embedded in the DLC matrix. Typical resistivity values are 100 W cm for pure a-C films, down to few W cm for a-C:B films at room temperature. The resistance decreases exponentially when the temperature increases in the range 70-300 K. The results are discussed considering the classical model of hopping conduction in thin films. Some coatings show temperature coefficients of resistance (TCR) as high as 3.85%. TCRs decrease when the doping increases. Such high values of TCR may have interests in the use of these films as thermometer elements in micro and nanodevices.

  15. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair.

    PubMed

    Gao, Chengde; Feng, Pei; Peng, Shuping; Shuai, Cijun

    2017-10-01

    The high brittleness and low strength of bioactive ceramics have severely restricted their application in bone repair despite the fact that they have been regarded as one of the most promising biomaterials. In the last few years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have gained increasing attention owing to their favorable biocompatibility, large surface specific area and super mechanical properties. These qualities make LDNs potential nanofillers in reinforcing bioactive ceramics. In this review, the types, characteristics and applications of the commonly used LDNs in ceramic composites are summarized. In addition, the fabrication methods for LDNs/ceramic composites, such as hot pressing, spark plasma sintering and selective laser sintering, are systematically reviewed and compared. Emphases are placed on how to obtain the uniform dispersion of LDNs in a ceramic matrix and maintain the structural stability of LDNs during the high-temperature fabrication process of ceramics. The reinforcing mechanisms of LDNs in ceramic composites are then discussed in-depth. The in vitro and in vivo studies of LDNs/ceramic in bone repair are also summarized and discussed. Finally, new developments and potential applications of LDNs/ceramic composites are further discussed with reference to experimental and theoretical studies. Despite bioactive ceramics having been regarded as promising biomaterials, their high brittleness and low strength severely restrict their application in bone scaffolds. In recent years, low-dimensional nanomaterials (LDNs), including carbon nanotubes, graphene and boron nitride nanotubes, have shown great potential in reinforcing bioactive ceramics owing to their unique structures and properties. However, so far it has been difficult to maintain the structural stability of LDNs during fabrication of LDNs/ceramic composites, due to the lengthy, high-temperature process involved. This review

  16. Facile Aqueous Route to Nitrogen-Doped Mesoporous Carbons.

    PubMed

    Zhang, Jianan; Song, Yang; Kopeć, Maciej; Lee, Jaejun; Wang, Zongyu; Liu, Siyuan; Yan, Jiajun; Yuan, Rui; Kowalewski, Tomasz; Bockstaller, Michael R; Matyjaszewski, Krzysztof

    2017-09-20

    An aqueous-based approach for the scalable synthesis of nitrogen-doped porous carbons with high specific surface area (SSA) and high nitrogen content is presented. Low molecular weight polyacrylonitrile (PAN) is solubilized in water in the presence of ZnCl2 that also acts as a volatile porogen during PAN pyrolysis to form mesoporous structures with significantly increased SSA. By templating with commercial SiO2 nanoparticles, nanocellulose fillers or filter paper, nanocarbons with SSA = 1776, 1366, and 1501 m(2)/g, respectively and 10 wt % N content were prepared. The materials formed by this benign process showed excellent catalytic activity in oxygen reduction reaction via the four-electron mechanism.

  17. Liquid Phase Sintering of Boron-Containing Powder Metallurgy Steel with Chromium and Carbon

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Wei; Fan, Yu-Chi; Huang, Her-Yueh; Cai, Wen-Zhang

    2015-11-01

    Liquid phase sintering is an effective method to improve the densification of powder metallurgy materials. Boron is an excellent alloying element for liquid phase sintering of Fe-based materials. However, the roles of chromium and carbon, and particularly that of the former, on liquid phase sintering are still undetermined. This study demonstrated the effects of chromium and carbon on the microstructure, elemental distribution, boride structure, liquid formation, and densification of Fe-B-Cr and Fe-B-Cr-C steels during liquid phase sintering. The results showed that steels with 0.5 wt pct C densify faster than those without 0.5 wt pct C. Moreover, although only one liquid phase forms in Fe-B-Cr steel, adding 0.5 wt pct C reduces the formation temperature of the liquid phase by about 50 K (°C) and facilitates the formation of an additional liquid, resulting in better densification at 1473 K (1200 °C). In both Fe-B-Cr and Fe-B-Cr-C steels, increasing the chromium content from 1.5 to 3 wt pct raises the temperature of liquid formation by about 10 K (°C). Thermodynamic simulations and experimental results demonstrated that carbon atoms dissolved in austenite facilitate the eutectic reaction and reduce the formation temperature of the liquid phase. In contrast, both chromium and molybdenum atoms dissolved in austenite delay the eutectic reaction. Furthermore, the 3Cr-0.5Mo additive in the Fe-0.4B steel does not change the typical boride structure of M2B. With the addition of 0.5 wt pct C, the crystal structure is completely transformed from M2B boride to M3(B,C) boro-carbide.

  18. Carbon and Boron Nitride Nanocomposites for Electrically and/or Thermally Conductive Materials

    NASA Astrophysics Data System (ADS)

    Anderson, Ankoma Dihon, Sr.

    Herein, we report research centered on the use of single walled carbon nanotubes (SWNTs) for their electrical conductivity (EC) , or more specifically the harvesting of metallic-SWNTs for their extremely high EC, and on the exploitation of carbon and boron nitride nano-fillers for polymeric composites of high thermal conductivity (TC). SWNTs as produced are a mixture of both metallic and semiconducting components , which are distinctively different in electrical conductivity and many other aspects. Thus post-production separation of -SWNTs from their mixtures in the as-produced samples is necessary. As a result, my dissertation is formatted as such: the first chapter is a detailed review of Metallic Single Walled Carbon Nanotubes for electrically conductive materials and devices; the second chapter is primarily focused on the separation of SWNTs into their respective metallic and semiconducting components using non-covalent functionalization and solubilization. The method exploits the selectivity between metallic- and semiconducting-SWNTs in their non-covalent interactions with planar aromatic molecules or moieties, which with the different solubility characteristics enable convenient solution-phase separation. Lastly, my focus will center on the development of lightweight composites to be utilized in two categories: one for ultra-high TC and the other for materials of high TC but no EC. Therefore, the development of such materials is highly dependent on the selection of nano-scale fillers and their configurations in various matrices and thus the interfacial properties. For example, those flexible composites of high TC consist of two components, one of those of extremely high TC (coupled), and the other of high TC but no EC (decoupled), which are both based on the use of GNs and BNNs as nanofillers, respectively. Hence, reported herein is the exploitation of various mechanisms that dictate TC and EC in nanocomposite materials to achieve a high TC/EC ratio.

  19. Statistical models for carbon-nitrogen film growth

    PubMed

    Aarao Reis FD; Franceschini

    2000-04-01

    We studied models of deposition and erosion, with two species of particles, that represent quantitatively many features of amorphous carbon-nitrogen film grown under plasma enhanced chemical vapor deposition. In the original model, the columns of the deposit are independent, and particles C and N are released with probabilities p and 1-p, respectively. An incident C particle always aggregates upon contact with the surface. An N particle annihilates with a top C particle with probability q and aggregates with probability 1-q. An N particle always annihilates with a top N. A critical line separates the regimes of growth (p>q/2) and erosion (pnitrogen atmospheres. In order to represent the blocking of surface bonds by hydrogen atoms, we considered a second model in which any aggregation process is accepted with probability alpha, otherwise it is rejected. For q=0.25 and alpha=0.3, the rxx(N) curve agrees with data from films grown in methane-nitrogen and methane-ammonia atmospheres. The fitting values of q and alpha were inferred from related experiments. In order to test the influence of lattice structure and spatial correlations, we also studied those models in simple cubic lattices, considering that the aggregation must satisfy the restricted solid-on-solid model conditions for the difference of heights in neighboring columns, while the erosion is random. We obtained similar results for rxx(N) curves, confirming the validity of those models to represent the kinetics of amorphous films growth. It was also observed that the surface roughness increases with x(N), which agrees qualitatively with several experiments on carbon-nitrogen films growth with ion bombardment.

  20. Fabrication of boron articles

    DOEpatents

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  1. Local atomic and electronic structure of boron chemical doping in monolayer graphene.

    PubMed

    Zhao, Liuyan; Levendorf, Mark; Goncher, Scott; Schiros, Theanne; Pálová, Lucia; Zabet-Khosousi, Amir; Rim, Kwang Taeg; Gutiérrez, Christopher; Nordlund, Dennis; Jaye, Cherno; Hybertsen, Mark; Reichman, David; Flynn, George W; Park, Jiwoong; Pasupathy, Abhay N

    2013-10-09

    We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film.

  2. Hyperspectral analysis of soil nitrogen, carbon, carbonate, and organic matter using regression trees.

    PubMed

    Gmur, Stephan; Vogt, Daniel; Zabowski, Darlene; Moskal, L Monika

    2012-01-01

    The characterization of soil attributes using hyperspectral sensors has revealed patterns in soil spectra that are known to respond to mineral composition, organic matter, soil moisture and particle size distribution. Soil samples from different soil horizons of replicated soil series from sites located within Washington and Oregon were analyzed with the FieldSpec Spectroradiometer to measure their spectral signatures across the electromagnetic range of 400 to 1,000 nm. Similarity rankings of individual soil samples reveal differences between replicate series as well as samples within the same replicate series. Using classification and regression tree statistical methods, regression trees were fitted to each spectral response using concentrations of nitrogen, carbon, carbonate and organic matter as the response variables. Statistics resulting from fitted trees were: nitrogen R(2) 0.91 (p < 0.01) at 403, 470, 687, and 846 nm spectral band widths, carbonate R(2) 0.95 (p < 0.01) at 531 and 898 nm band widths, total carbon R(2) 0.93 (p < 0.01) at 400, 409, 441 and 907 nm band widths, and organic matter R(2) 0.98 (p < 0.01) at 300, 400, 441, 832 and 907 nm band widths. Use of the 400 to 1,000 nm electromagnetic range utilizing regression trees provided a powerful, rapid and inexpensive method for assessing nitrogen, carbon, carbonate and organic matter for upper soil horizons in a nondestructive method.

  3. First-principles study on atomistic and electronic structures of boron-nitrogen and boron-phosphorous nanoribbons, nanorings, and nanotubes

    NASA Astrophysics Data System (ADS)

    Matsunaga, Youkie; Sano, Kohei; Takeda, Kyozaburo

    2017-06-01

    We computationally study the atomistic and electronic structures of boron-phosphorous (BP) nanoribbons (NRBs), nanorings (NRGs), and nanotubes (NTBs) by comparison with similar boron-nitride (BN) nanostructures. We consider polyacene (PAC)-type NRBs. First-principles calculations demonstrate that BN PAC-type finite NRBs conserve the flatness of the NRB plane whereas BP NRBs result in bendings along the NRB plane. Rolling of an NRB (head to tail) produces an NRG. Accordingly, a specific NRG with a “magic ring number” is produced in the BP system whereas BN-NRGs freely produced various ring numbers as well as cyclacene systems. Stacking of NRGs further produces an NTB whose electronic characteristics are determined by the chiral index. However, the band-edge states of heteroatom NTBs are controlled by the difference in the on-site energies rather than by the chiral index.

  4. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    PubMed

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  5. A Computational Investigation of the Nitrogen-Boron Interaction in o-(N,N-Dialkylaminomethyl)arylboronate Systems

    PubMed Central

    Larkin, Joseph D.; Fossey, John S.; James, Tony D.; Brooks, Bernard R.; Bock, Charles W.

    2014-01-01

    o-(N,N-Dialkylaminomethyl)arylboronate systems are an important class of compounds in diol-sensor development. We report results from a computational investigation of fourteen o-(N,N-dialkylaminomethyl)arylboronates using second-order Møller-Plesset (MP2) perturbation theory. Geometry optimizations were performed at the MP2/cc-pVDZ level and followed by single-point calculations at the MP2/aug-cc-pVDZ(cc-pVTZ) levels. These results are compared to those from density functional theory (DFT) at the PBE1PBE(PBE1PBE-D)/6-311++G(d,p)(aug-cc-pVDZ) levels, as well as to experiment. Results from continuum PCM and CPCM solvation models were employed to assess the effects of a bulk aqueous environment. Although the behaviour of o-(N,N-dialkylaminomethyl) free acid and ester proved to be complicated, we were able to extract some important trends from our calculations: 1) for the free acids the intramolecular hydrogen-bonded B-O-H⋯N seven-membered ring conformers 12 and 16 are found to be slightly lower in energy than the dative-bonded N→B five-membered ring conformers 10 and 14 while conformers 13 and 17, with no direct boron-nitrogen interaction, are significantly higher in energy than 12 and 16; 2) for the esters where no intramolecular B-O-H⋯N bonded form is possible, the N→B conformers 18 and 21 are significantly lower in energy than the no-interaction forms 20 and 23; 3) H2O insertion reactions into the N→B structures 10, 14, 18, and 21 leading to the seven-membered intermolecular hydrogen-bonded B⋯OH2⋯N ring structures 11, 15, 19, and 22 are all energetically favorable. PMID:21050022

  6. Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance.

    PubMed

    Zhai, Yunbo; Xu, Bibo; Zhu, Yun; Qing, Renpeng; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2016-04-01

    Nitrogen doped porous activated carbon was prepared by annealing treatment of Camellia oleifera shell activated carbon under NH3. We found that nitrogen content of activated carbon up to 10.43 at.% when annealed in NH3 at 800 °C. At 600 °C or above, the N-doped carbon further reacts with NH3, leads to a low surface area down to 458 m(2)/g and low graphitization degree. X-ray photoelectron spectroscope (XPS) analysis indicated that the nitrogen functional groups on the nitrogen-doped activated carbons (NACs) were mostly in the form of pyridinic nitrogen. We discovered that the oxygen groups and carbon atoms at the defect and edge sites of graphene play an important role in the reaction, leading to nitrogen atoms incorporated into the lattice of carbon. When temperatures were lower than 600 °C the nitrogen atoms displaced oxygen groups and formed nitrogen function groups, and when temperatures were higher than 600 °C and ~4 at.% carbon atoms and part of oxygen function groups reacted with NH3. When compared to pure activated carbon, the nitrogen doped activated carbon shows nearly four times the capacitance (191 vs 51 F/g). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Gas and aerosol fluxes. [emphasizing sulfur, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1980-01-01

    The development of remote sensing techniques to address the global need for accurate distribution and flux determinations of both man made and natural materials which affect the chemical composition of the atmosphere, the heat budget of the Earth, and the depletion, of stratospheric ozone is considered. Specifically, trace gas fluxes, sea salt aerosol production, and the effect of sea surface microlayer on gas and aerosol fluxes are examined. Volatile sulfur, carbon, nitrogen, and halocarbon compounds are discussed including a statement of the problem associated with each compound or group of compounds, a brief summary of current understanding, and suggestions for needed research.

  8. Stable Isotope Values of Nitrogen and Carbon in Particulate ...

    EPA Pesticide Factsheets

    Data set from “Patterns in stable isotope values of nitrogen and carbon in particulate matter from the Northwest Atlantic Continental Shelf, from the Gulf of Maine to Cape Hatteras” by Oczkowski et al. These are the data upon which all results and conclusion are made. Publishing the data allow for use by wider audience. Stable isotope dynamics on the shelf can inform both nearshore and open ocean research efforts, providing an important link along the marine continuum. To our knowledge, this data set is unique in its spatial coverage and variables measured.

  9. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency.

    PubMed

    Ogunwande, G A; Osunade, J A; Adekalu, K O; Ogunjimi, L A O

    2008-11-01

    The study was undertaken to investigate the effects of carbon to nitrogen (C:N) ratio and turning frequency (TF) on the loss of total nitrogen (TN) during composting of chicken litter (a mixture of chicken manure, waste feed, feathers and sawdust) with a view to producing good quality compost. Carbon to nitrogen ratios of 20:1, 25:1 and 30:1 and TF of 2, 4 and 6 days were experimented. The initial physico-chemical properties of the litter were determined. During the composting process, moisture level in the piles was periodically replenished to 55% and the temperature, pH and TN of the chicken litter were periodically monitored. Also, the dry matter (DM), total carbon (TC), total phosphorus (P) and total potassium (K) were examined at the end of composting. The results showed that both C:N ratio and TF had significant (p < or = 0.05) effect on pile temperature, pH changes, TN, TC, P and K losses while DM was only affected (p < or = 0.05) by C:N ratio. All treatments reached maturation at about 87 days as indicated by the decline of pile temperatures to near ambient temperature. Losses of TN, which were largely attributed to volatilization of ammonia (NH3), were highest within the first 28 days when the pile temperatures and pH values were above 33 degrees C and 7.7, respectively. Moisture loss increased as C:N ratio and TF increased. In conclusion, the treatment with a combination of 4 days TF and C:N ratio 25:1 (T4R25) had the minimum TN loss (70.73% of the initial TN) and this indicated the most efficient combination.

  10. Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration

    Treesearch

    E. M. Stacy; S. C. Hart; C. T. Hunsaker; D. W. Johnson; A. A. Berhe

    2015-01-01

    Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual...

  11. Optimizing boron junctions through point defect and stress engineering using carbon and germanium co-implants

    SciTech Connect

    Moroz, Victor; Oh, Yong-Seog; Pramanik, Dipu; Graoui, Houda; Foad, Majeed A.

    2005-08-01

    We report the fabrication of p{sup +}/n junctions using Ge{sup +}, C{sup +}, and B{sup +} co-implantation and a spike anneal. The best junction exhibits a depth of 26 nm, vertical abruptness of 3 nm/decade, and sheet resistance of 520 Ohm/square. The junction location is defined by where the boron concentration drops to 10{sup 18} cm{sup -3}. These junctions are close to the International Technology Roadmap specifications for the 65 nm technology node and are achieved by careful engineering of amorphization, stresses, and point defects. Advanced simulation of boron diffusion is used to understand and optimize the process window. The simulations show that the optimum process completely suppresses the transient-enhanced diffusion of boron and the formation of boron-interstitial clusters. This increases the boron solubility to 20% above the equilibrium solid-state solubility.

  12. Nitrogen-assisted Three-phase Equilibrium in Hydrate Systems Composed of Water, Methane, Carbon Dioxide, and Nitrogen

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2016-12-01

    Guest molecule exchange is a new and promising methane hydrate production technique in which methane gas is produced by injection of another gas without requiring depressurization or thermal stimulation. The technique is generally associated with injection of carbon dioxide, but injection of nitrogen and carbon dioxide mixtures are the most efficient and economical. However, thermodynamic behavior of injection mixtures is poorly understood, and it is unclear how nitrogen affects the exchange process. Here, we describe thermodynamic stability of hydrate systems that contain water, methane, carbon dioxide, and nitrogen. We present a series of ternary and quaternary phase diagrams and show the impact nitrogen has on hydrate stability. Our results demonstrate that nitrogen can either stabilize hydrate, de-stabilize hydrate, or produce three-phase equilibrium (gas, water, and hydrate) depending on its relative abundance. At low abundance nitrogen forms hydrate and directly contributes to the exchange process. At high abundance nitrogen de-stabilizes hydrate akin to traditional hydrate inhibitors, such as salt, alcohol, or mono-ethylene glycol. We show how the dual properties of nitrogen lead to three-phase equilibrium and how three-phase equilibrium may explain much of the behavior observed in methane production from nitrogen-rich injections. We apply our analysis to laboratory experiments and the methane hydrate field test on the northern Alaskan slope at Ignik Sikumi. These results can be extended to analyze dynamic evolution of mixed hydrate systems.

  13. Decoupling of soil carbon and nitrogen turnover partly explains increased net ecosystem production in response to nitrogen fertilization

    PubMed Central

    Ehtesham, Emad; Bengtson, Per

    2017-01-01

    During the last decade there has been an ongoing controversy regarding the extent to which nitrogen fertilization can increase carbon sequestration and net ecosystem production in forest ecosystems. The debate is complicated by the fact that increased nitrogen availability caused by nitrogen deposition has coincided with increasing atmospheric carbon dioxide concentrations. The latter could further stimulate primary production but also result in increased allocation of carbon to root exudates, which could potentially ‘prime’ the decomposition of soil organic matter. Here we show that increased input of labile carbon to forest soil caused a decoupling of soil carbon and nitrogen cycling, which was manifested as a reduction in respiration of soil organic matter that coincided with a substantial increase in gross nitrogen mineralization. An estimate of the magnitude of the effect demonstrates that the decoupling could potentially result in an increase in net ecosystem production by up to 51 kg C ha−1 day−1 in nitrogen fertilized stands during peak summer. Even if the effect is several times lower on an annual basis, the results still suggest that nitrogen fertilization can have a much stronger influence on net ecosystem production than can be expected from a direct stimulation of primary production alone. PMID:28406242

  14. Decoupling of soil carbon and nitrogen turnover partly explains increased net ecosystem production in response to nitrogen fertilization

    NASA Astrophysics Data System (ADS)

    Ehtesham, Emad; Bengtson, Per

    2017-04-01

    During the last decade there has been an ongoing controversy regarding the extent to which nitrogen fertilization can increase carbon sequestration and net ecosystem production in forest ecosystems. The debate is complicated by the fact that increased nitrogen availability caused by nitrogen deposition has coincided with increasing atmospheric carbon dioxide concentrations. The latter could further stimulate primary production but also result in increased allocation of carbon to root exudates, which could potentially ‘prime’ the decomposition of soil organic matter. Here we show that increased input of labile carbon to forest soil caused a decoupling of soil carbon and nitrogen cycling, which was manifested as a reduction in respiration of soil organic matter that coincided with a substantial increase in gross nitrogen mineralization. An estimate of the magnitude of the effect demonstrates that the decoupling could potentially result in an increase in net ecosystem production by up to 51 kg C ha-1 day-1 in nitrogen fertilized stands during peak summer. Even if the effect is several times lower on an annual basis, the results still suggest that nitrogen fertilization can have a much stronger influence on net ecosystem production than can be expected from a direct stimulation of primary production alone.

  15. [Effects of simulated nitrogen deposition on biomass of wetland plant and soil active carbon pool].

    PubMed

    Dou, Jing-xin; Liu, Jing-shuang; Wang, Yang; Zhao, Guang-ying

    2008-08-01

    A simulation study was made on the responses of biomass of Deyeuxia angustifolia and soil active carbon pool in Sanjiang Plain of Northeast China to simulated nitrogen deposition. Two water conditions (W1: non-flooded, W2: flooded) and four N treatments (equivalent to 0, 1, 3, 5 g N x m(-2) x a(-1) nitrogen deposition rate) were installed. The results showed that under effects of nitrogen deposition, the total biomass, above-ground biomass, and root biomass of D. angustifolia were higher than the control, and the increment of root biomass was the highest. Both the carbon content and its allocation proportion in D. angustifolia root increased significantly, while the carbon content in above-ground part decreased dramatically (P < 0.05). Nitrogen deposition also had significant effects on soil active carbon pools, and the contents of various fractions in the carbon pool were the highest in treatment 5 g N x m(-2) x a(-1). The responses of various fractions in soil active carbon pool to nitrogen deposition followed the sequence of carbohydrate carbon > labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between nitrogen deposition and flooded water condition facilitated the release of soil active carbon. Regression analysis indicated that there were significant correlations between soil active carbon pools and plant indices of D. angustifolia. Nitrogen deposition could enhance the biomass of D. angustifoliat and soil active carbon content.

  16. Gas uptake and thermal stability analysis of boron nitride and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guan, Mengyu

    Carbon nanotubes (CNTs) exist in many forms and can have critical pore diameters on the angstrom length scale, making them suitable for molecular capture. By combining the porous structure of CNTs with the chemical stability of carbide and/or nitride materials, one can create a more robust, nanoporous material for gas capture in high temperature conditions. Boron nitride nanotubes (BNNTs) are more chemically and thermally robust than pure CNTs, and were synthesized using CNTs as a structural precursor. However, this reaction mechanism was found to be unfavorable to produce high-yield and purity BNNTs. Adsorption tests using gases of interest (N2, He) were performed on commercial CNTs and BNNTs to determine their porosity and gas uptake abilities. Their thermal stability and oxidation resistance when heated up to 1773 K in air was also studied using differential scanning calorimetry and thermogravimetric analysis. While the CNTs began to oxidize between 450 °C and 750 °C, depending on the nanotube diameter, the BNNTs remained stable up until 1000 °C.

  17. Pressure-induced superconductivity in thin films of boron-doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Haruyama, Junji; Nakamura, Jin; Reppert, Jason; Rao, Apparao; Sano, Hirotaka; Iye, Yasuhiro

    2010-03-01

    We have reported that thin films of slightly boron-doped single-walled carbon nanotubes (B-SWNTs) can be superconductor at Tc of 12K [1]. Here, based on this, we show creation of paperlike thin film (Buckypaper) consisting of pseudo-two-dimensional network of B-SWNTs within weakly intertube van der Waals coupling (IVDWC) state. It was formed by sufficiently dissolving as-grown ropes of B-SWNTs and densely assembling them on silicon substrate. We find that superconducting transition temperature Tc of 8 K under absent pressure can be induced up to 19 K by applying a small pressure to the film and that a frequency in the radial breathing phonon drastically increases with applying pressure [2]. Discussion about IVDWC and distribution of B-SWNTs diameter imply the strong correlation. References [1] N. Murata, J. Haruyama, J. Reppert, A. M. Rao, T. Koretsune, S. Saito, Phys. Rev. Lett. 101, 027002 (2008) [2] J. Nakamura, J. Haruyama, M. Tachibana, J. Reppert,A. Rao, H. Sano, Y. Iye et al., Appl.Phys.Lett. 95, 142503 (2009)

  18. Semiconducting polymers with nanocrystallites interconnected via boron-doped carbon nanotubes.

    PubMed

    Yu, Kilho; Lee, Ju Min; Kim, Junghwan; Kim, Geunjin; Kang, Hongkyu; Park, Byoungwook; Ho Kahng, Yung; Kwon, Sooncheol; Lee, Sangchul; Lee, Byoung Hun; Kim, Jehan; Park, Hyung Il; Kim, Sang Ouk; Lee, Kwanghee

    2014-12-10

    Organic semiconductors are key building blocks for future electronic devices that require unprecedented properties of low-weight, flexibility, and portability. However, the low charge-carrier mobility and undesirable processing conditions limit their compatibility with low-cost, flexible, and printable electronics. Here, we present significantly enhanced field-effect mobility (μ(FET)) in semiconducting polymers mixed with boron-doped carbon nanotubes (B-CNTs). In contrast to undoped CNTs, which tend to form undesired aggregates, the B-CNTs exhibit an excellent dispersion in conjugated polymer matrices and improve the charge transport between polymer chains. Consequently, the B-CNT-mixed semiconducting polymers enable the fabrication of high-performance FETs on plastic substrates via a solution process; the μFET of the resulting FETs reaches 7.2 cm(2) V(-1) s(-1), which is the highest value reported for a flexible FET based on a semiconducting polymer. Our approach is applicable to various semiconducting polymers without any additional undesirable processing treatments, indicating its versatility, universality, and potential for high-performance printable electronics.

  19. Dibenzothiophene adsorption at boron doped carbon nanoribbons studied within density functional theory

    SciTech Connect

    López-Albarrán, P.; Navarro-Santos, P.; Garcia-Ramirez, M. A.; Ricardo-Chávez, J. L.

    2015-06-21

    The adsorption of dibenzothiophene (DBT) on bare and boron-doped armchair carbon nanoribbons (ACNRs) is being investigated in the framework of the density functional theory by implementing periodic boundary conditions that include corrections from dispersion interactions. The reactivity of the ACNRs is characterized by using the Fukui functions as well as the electrostatic potential as local descriptors. Non-covalent adsorption mechanism is found when using the local Perdew-Becke-Ernzerhof functional, regardless of the DBT orientation and adsorption location. The dispersion interactions addition is a milestone to describe the adsorption process. The charge defects introduced in small number (i.e., by doping with B atoms), within the ACNRs increases the selectivity towards sulfur mainly due to the charge depletion at B sites. The DBT magnitude in the adsorption energy shows non-covalent interactions. As a consequence, the configurations where the DBT is adsorbed on a BC{sub 3} island increase the adsorption energy compared to random B arrangements. The stability of these configurations can be explained satisfactorily in terms of dipole interactions. Nevertheless, from the charge-density difference analysis and the weak Bader charge-distribution interactions cannot be ruled out completely. This is why the electronic properties of the ribbons are analyzed in order to elucidate the key role played by the B and DBT states in the adsorbed configurations.

  20. Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes.

    PubMed

    Wei, Xianlong; Wang, Ming-Sheng; Bando, Yoshio; Golberg, Dmitri

    2011-04-26

    Substitutional carbon doping of the honeycomb-like boron nitride (BN) lattices in two-dimensional (nanosheets) and one-dimensional (nanoribbons and nanotubes) nanostructures was achieved via in situ electron beam irradiation in an energy-filtering 300 kV high-resolution transmission electron microscope using a C atoms feedstock intentionally introduced into the microscope. The C substitutions for B and N atoms in the honeycomb lattices were demonstrated through electron energy loss spectroscopy, spatially resolved energy-filtered elemental mapping, and in situ electrical measurements. The preferential doping was found to occur at the sites more vulnerable to electron beam irradiation. This transformed BN nanostructures from electrical insulators to conductors. It was shown that B and N atoms in a BN nanotube could be nearly completely replaced with C atoms via electron-beam-induced doping. The doping mechanism was proposed to rely on the knockout ejections of B and N atoms and subsequent healing of vacancies with supplying C atoms.

  1. Lattice mismatch induced curved configurations of hybrid boron nitride-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Jin

    2016-10-01

    A unique curved configuration is observed in freestanding hybrid boron nitride-carbon nanotubes (BN-CNTs) based on molecular dynamics simulations, which, in previous studies, was tacitly assumed as a straight configuration. The physical fundamentals of this phenomenon are explored by using the continuum mechanics theory, where the curved configuration of BN-CNTs is found to be induced by the bending effect due to the lattice mismatch between the C domain and the BN domain. In addition, our results show that the curvature of the curved BN-CNTs is determined by their radius and composition. The curvature of BN-CNTs decreases with growing radius of BN-CNTs and becomes ignorable when their radius is relatively large. A non-monotonic relationship is detected between the curvature and the composition of BN-CNTs. Specifically, the curvature of BN-CNTs increases with growing BN concentration when the molar fraction of BN atoms is smaller than a critical value 0.52, but decreases with growing BN concentration when the molar fraction of BN atoms is larger than this critical value.

  2. Prediction of superhard cubic boron-carbon nitride through first principles.

    PubMed

    Yuge, Koretaka

    2009-10-14

    Superhard cubic boron-carbon nitride (c-BNC) in terms of bulk modulus along a composition range of (BN)((1-x))(C(2))(x) (0≤x≤1) is systematically explored by Monte Carlo simulations and cluster expansion techniques based on first-principles calculation. Bulk moduli for the c-BNC ordered structures are reasonably expanded up to quadruplet clusters, indicating that dependence of the bulk modulus on atomic arrangements is not simply attributed to pairwise interactions. A negative correlation can be seen between bulk modulus and formation energies, which is consistent with previous theoretical works. Monte Carlo simulation reveals that all the ordered structures with the highest bulk modulus at each composition exhibit a strong preference of neighboring B-N and C-C atoms, which is consistent with the bond counting rule previously suggested. A composition dependence of these ordered structures can be observed. At a BN-rich composition of x = 0.25, C atoms form a nearest-neighbor network with a hexagonal cluster shape, while at equiatomic and diamond-rich compositions of x = 0.5 and 0.75, B and N atoms form nearest-neighbor networks with a planar shape. At x = 0.875, c-BNC ordered structure with neighboring B and N atoms forming a stereoscopic shape exhibit the highest bulk modulus of 459.3 GPa, which is ∼0.6% smaller than that of diamond.

  3. Composition-dependent buckling behaviour of hybrid boron nitride-carbon nanotubes.

    PubMed

    Zhang, Jin; Meguid, S A

    2015-05-21

    The buckling of hybrid boron nitride-carbon nanotubes (BN-CNTs) with various BN compositions and locations of the BN domain is investigated using molecular dynamics. We find that BN-CNTs with large BN composition (>38%) only undergo local shell-like buckling in their BN domain. Although similar local shell-like buckling can occur in BN-CNTs with a relatively small BN composition, it can transfer to the global column-like buckling of the whole BN-CNT with increasing strains. The critical strains for local shell-like and global column-like buckling decrease with increasing BN composition. In addition, critical strains and buckling modes of the global column-like buckling of BN-CNTs also strongly depend on the location of their BN domain. As a possible application of the buckling of BN-CNTs, we demonstrate that the BN-CNT can serve as a water channel integrated with a local natural valve using the local buckling of its BN domain.

  4. Carbon doping induced peculiar transport properties of boron nitride nanoribbons p-n junctions

    SciTech Connect

    Liu, N.; Gao, G. Y.; Zhu, S. C.; Ni, Y.; Wang, S. L.; Yao, K. L.; Liu, J. B.

    2014-07-14

    By applying nonequilibrium Green's function combined with density functional theory, we investigate the electronic transport properties of carbon-doped p-n nanojunction based on hexagonal boron nitride armchair nanoribbons. The calculated I-V curves show that both the center and edge doping systems present obvious negative differential resistance (NDR) behavior and excellent rectifying effect. At low positive bias, the edge doping systems possess better NDR performance with larger peak-to-valley ratio (∼10{sup 5}), while at negative bias, the obtained peak-to-valley ratio for both of the edge and center doping systems can reach the order of 10{sup 7}. Meanwhile, center doping systems present better rectifying performance than the edge doping ones, and giant rectification ratio up to 10{sup 6} can be obtained in a wide bias range. These outstanding transport properties are explained by the evolution of the transmission spectra and band structures with applied bias, together with molecular projected self-consistent Hamiltonian eigenvalues and eigenstates.

  5. Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites.

    PubMed

    Agrawal, Richa; Nieto, Andy; Chen, Han; Mora, Maria; Agarwal, Arvind

    2013-11-27

    This study compares the damping behavior of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) as reinforcement in PLC, a biodegradable copolymer. The damping behavior of PLC composites reinforced with 2 wt % or 5 wt % nanotube filler is evaluated by nanodynamic mechanical analysis (NanoDMA). The addition of 2 wt % CNT leads to the greatest enhancement in damping (tan δ) behavior. This is attributed to pullout in CNTs because of lower interfacial shear strength with the polymer matrix and a more effective sword-in-sheath mechanism as opposed to BNNTs which have bamboo-like nodes. BNNTs however have a superior distribution in the PLC polymer matrix enabling higher contents of BNNT to further enhance the damping behavior. This is in contrast with CNTs which agglomerate at higher concentrations, thus preventing further improvement at higher concentrations. It is observed that for different compositions, tan δ values show no significant changes over varying dynamic loads or prolonged cycles. This shows the ability of nanotube mechanisms to function at varying strain rates and to survive long cycles.

  6. Dibenzothiophene adsorption at boron doped carbon nanoribbons studied within density functional theory

    NASA Astrophysics Data System (ADS)

    López-Albarrán, P.; Navarro-Santos, P.; Garcia-Ramirez, M. A.; Ricardo-Chávez, J. L.

    2015-06-01

    The adsorption of dibenzothiophene (DBT) on bare and boron-doped armchair carbon nanoribbons (ACNRs) is being investigated in the framework of the density functional theory by implementing periodic boundary conditions that include corrections from dispersion interactions. The reactivity of the ACNRs is characterized by using the Fukui functions as well as the electrostatic potential as local descriptors. Non-covalent adsorption mechanism is found when using the local Perdew-Becke-Ernzerhof functional, regardless of the DBT orientation and adsorption location. The dispersion interactions addition is a milestone to describe the adsorption process. The charge defects introduced in small number (i.e., by doping with B atoms), within the ACNRs increases the selectivity towards sulfur mainly due to the charge depletion at B sites. The DBT magnitude in the adsorption energy shows non-covalent interactions. As a consequence, the configurations where the DBT is adsorbed on a BC3 island increase the adsorption energy compared to random B arrangements. The stability of these configurations can be explained satisfactorily in terms of dipole interactions. Nevertheless, from the charge-density difference analysis and the weak Bader charge-distribution interactions cannot be ruled out completely. This is why the electronic properties of the ribbons are analyzed in order to elucidate the key role played by the B and DBT states in the adsorbed configurations.

  7. A technique to measure heats of reaction of titanium-boron, aluminim-titanium-boron, and aluminum-titanium-boron-carbon powder blends

    NASA Astrophysics Data System (ADS)

    Baker, Andrew H.

    In this research, a modification to initiation aid ignition in bomb calorimetry that involves systemically blending levels of boron and potassium nitrate initiation aids with a bulk structural energetic elemental power blend is developed. A regression is used to estimate the nominal heat of reaction for the primary reaction. The technique is first applied to the synthesis of TiB 2 as a validation study to see if close proximity to literature values can be achieved. The technique is then applied to two systems of interest, Al-Ti-B, and Al-Ti-B4C. In all three investigations, x-ray diffraction is used to characterize the product phases of the reactions to determine the extent and identity of the product phases and any by-products that may have formed as a result of adding the initiation aid. The experimental data indicates the technique approximates the heat of reaction value for the synthesis of TiB2 from Ti-B powder blends and the formation of TiB2 is supported by volume fraction analysis by x-ray diffraction. Application to the Al-Ti-B and Al-Ti-B4C blends show some correlation with variation of the initiation aid, with x-ray diffraction showing the formation of equilibrium products. However, these blends require further investigation to resolve more complex interactions and rule out extraneous variables.

  8. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    SciTech Connect

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  9. Nitrogen controlled iron catalyst phase during carbon nanotube growth

    SciTech Connect

    Bayer, Bernhard C.; Baehtz, Carsten; Kidambi, Piran R.; Weatherup, Robert S.; Caneva, Sabina; Cabrero-Vilatela, Andrea; Hofmann, Stephan; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Goddard, Caroline J. L.

    2014-10-06

    Close control over the active catalyst phase and hence carbon nanotube structure remains challenging in catalytic chemical vapor deposition since multiple competing active catalyst phases typically co-exist under realistic synthesis conditions. Here, using in-situ X-ray diffractometry, we show that the phase of supported iron catalyst particles can be reliably controlled via the addition of NH{sub 3} during nanotube synthesis. Unlike polydisperse catalyst phase mixtures during H{sub 2} diluted nanotube growth, nitrogen addition controllably leads to phase-pure γ-Fe during pre-treatment and to phase-pure Fe{sub 3}C during growth. We rationalize these findings in the context of ternary Fe-C-N phase diagram calculations and, thus, highlight the use of pre-treatment- and add-gases as a key parameter towards controlled carbon nanotube growth.

  10. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  11. Novel Molecular Sources for Dispersing Boron in Carbon-Carbon Composites.

    DTIC Science & Technology

    1993-11-07

    moisture affinity of the boria seriously affects composite performance. Substitution of furfuryl and pitch as the resin precursors significantly improved...addition to a commercial furfuryl /pitch blend (Kaiser Code88A) yielded a carbon char with reduced moisture affinity and improved oxidation resistance

  12. Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Huang, Jingfeng; Tan, Dunlin; Zhang, Bowei; Teo, Edwin Hang Tong; Tok, Alfred Iing Yoong

    2016-05-01

    Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability. CNT arrays are grown using a commercially available thermal chemical vapor deposition (TCVD) technique and an outer BNNT with a wall thickness up to 1.37 nm is introduced by a post-growth TCVD treatment. Importantly, compared to the as-grown CNT arrays which deform almost plastically upon compression, the coaxial C@BNNT arrays exhibit an impressive ~4-fold increase in compressive strength with nearly full recovery after the first compression cycle at a 50% strain (76% recovery maintained after 10 cycles), as well as a significantly high and persistent energy dissipation ratio (~60% at a 50% strain after 100 cycles), attributed to the synergistic effect between the CNT and outer BNNT. Additionally, the as-prepared C@BNNT arrays show an improved structural stability in air at elevated temperatures, attributing to the outstanding thermal stability of the outer BNNT. This work provides new insights into tailoring the mechanical and thermal behaviours of arbitrary CNT arrays which enables a broader range of applications.Vertically aligned carbon nanotube (CNT) arrays have aroused considerable interest because of their remarkable mechanical properties. However, the mechanical behaviour of as-synthesized CNT arrays could vary drastically at a macro-scale depending on their morphologies, dimensions and array density, which are determined by the synthesis method. Here, we demonstrate a coaxial carbon@boron nitride nanotube (C@BNNT) array with enhanced compressive strength and shape recoverability

  13. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes.

    PubMed

    Uslu, Bengi; Topal, Burcu Dogan; Ozkan, Sibel A

    2008-02-15

    The anodic behavior and determination of pefloxacin on boron-doped diamond and glassy carbon electrodes were investigated using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. In cyclic voltammetry, pefloxacin shows one main irreversible oxidation peak and additional one irreversible ill-defined wave depending on pH values for both electrodes. The results indicate that the process of pefloxacin is irreversible and diffusion controlled on boron-doped diamond electrode and irreversible but adsorption controlled on glassy carbon electrode. The peak current is found to be linear over the range of concentration 2x10(-6) to 2x10(-4)M in 0.5M H(2)SO(4) at about +1.20V (versus Ag/AgCl) for differential pulse and square wave voltammetric technique using boron-doped diamond electrode. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. Selectivity, precision and accuracy of the developed methods were also checked by recovery studies. The procedures were successfully applied to the determination of the drug in pharmaceutical dosage forms and humans serum samples with good recovery results. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and biological samples, respectively.

  14. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several

  15. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

    SciTech Connect

    Jian, Siyang; Li, Jianwei; Chen, Ji; Wang, Gangsheng; Mayes, Melanie A.; Dzantor, Kudjo E.; Hui, Dafeng; Luo, Yiqi

    2016-07-08

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, the proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.

  16. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

    SciTech Connect

    Jian, Siyang; Li, Jianwei; Chen, Ji; Wang, Gangsheng; Mayes, Melanie A.; Dzantor, Kudjo E.; Hui, Dafeng; Luo, Yiqi

    2016-07-08

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, the proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.

  17. Synthesis, Characterization and Applications of New Nonmetallic Photocatalysts -- Resorcinol Formaldehyde Resin and Boron Carbon Oxynitride

    NASA Astrophysics Data System (ADS)

    Gu, Ting

    This thesis describes the synthesis, characterization and applications of two kinds of nonmetallic photocatalysts: resorcinol formaldehyde (RF) resin and boron carbon oxynitride (BCNO). Part I: Catalyst-free hydrothermal method was developed to synthesize RF resin. It started with a solution containing only resorcinol and formaldehyde. The products were characterized by transmission electron microscopy (TEM), Solid state 13C nuclear magnetic resonance (13C-NMR) spectrometer and UV-Visible absorption spectroscopy. The particle size (diameter: 100nm-4microm) of RF the spheres was controlled by changing the concentration of the reactants. With increasing particle size, visible light absorption of the product was also increased. These RF spheres could degrade Rhodamine B and generate OH radicals under visible light irradiation. Besides, highly concentrated starting reactants would form large macroporous gel instead of individual particles. This kind of gel could be easily shaped to dishes and tubes, which could be used in filtration and degradation of air pollutants. Part II: The BCNO was prepared by heating a mixture of boric acid, melamine and PEG in atmosphere. The optical properties of the products were measured by UV-Visible absorption spectroscopy with integrating sphere. The X-ray powder diffraction (XRD) patterns indicated that all BCNO compounds had the turbostratic boron nitride (t-BN) structure. Meanwhile, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrum (EELS) were used to determine the chemical composition of the catalyst. The BCNO could be identified as t-BN with N atoms partly substituted by O and C atoms. The degree of substitution affected its photocatalytic properties. Perdew--Burke--Ernzerhof (PBE) exchange model was introduced to simulate the density of state (DOS) of BCNO using these supercells. Simulation results indicated that C and O substitution induced occupied impurity states in the gap region which modified the band

  18. Determinism of carbon and nitrogen reserve accumulation in legume seeds.

    PubMed

    Munier-Jolain, Nathalie; Larmure, Annabelle; Salon, Christophe

    2008-10-01

    In legume plants, the determination of individual seed weight is a complex phenomenon that depends on two main factors. The first one corresponds to the number of cotyledon cells, which determines the potential seed weight as the cotyledon cell number is related to seed growth rate during seed filling. Since cell divisions take place between flowering and the beginning of seed filling, any stress occurring before the beginning of seed filling can affect individual seed growth rate (C and N reserve accumulation in seeds), and thus individual seed weights. The second factor concerns carbon and nitrogen supply to the growing seed to support reserve accumulation. Grain legume species produce protein-rich seeds involving high requirement of nitrogen. Since seed growth rate as determined by cotyledon cell number is hardly affected by photoassimilate availability during the filling period, a reduction of photosynthetic activity caused by nitrogen remobilization in leaves (e.g., remobilization of essential proteins involved in photosynthesis) can lead to shorten the duration of the filling period, and by that can provoke a limitation of individual seed weights. Accordingly, any biotic or abiotic stress during seed filling causing a decrease in photosynthetic activity should lead to a reduction of the duration of seed filling.

  19. Carbon, nitrogen, and phosphorus transport by world rivers

    SciTech Connect

    Meybeck, M.

    1982-04-01

    The various forms (dissolved and particulate, organic and inorganic) of carbon, nitrogen, and phosphorus in world rivers are reviewed from literature data. Natural levels are based mainly on major rivers for the subarctic and tropical zones which are still unpolluted and on smaller streams for the temperate zone. Atmospheric fallout is also reviewed. Natural contents of dissolved organic carbon (DOC) are mainly dependent on environmental conditions: DOC varies from 1 mg 1/sup -1/ in the mountainous alpine environments to 20 mg 1/sup -1/ in some taiga rivers. The world DOC average is 5.75 mg l/sup -1/. Nitrogen forms include dissolved organic nitrogen (DON), dissolved inorganic nitrogen (DIN = N - NH/sub 4//sup +/ + N - NO/sub 3//sup -/ + N - NO/sub 2//sup -/), and particulate organic nitrogen (PON). Natural levels are very low: DIN = 120 ..mu..g 1/sup -1/ of which only 15 percent is present as ammonia, and 1 percent as nitrite. Phosphorus is naturally present in very low amounts: around 10 ..mu..g 1/sup -1/ for P-PO/sub 4//sup 3/ and 25 ..mu..g 1/sup -1/ for total dissolved phosphorus (TDP which includes the organic form). The average nutrient content of rains has been estimated with a set of unpolluted stations: P - PO/sub 4/ = 5 ..mu..g 1/sup -1/, TDP = 10, N - NO/sub 2/ = 5, N - NH/sub 4/ = 225, DON = 225, and N - NO/sub 3/ = 175 ..mu..g 1/sup -1/. TOC levels are probably around several mg 1/sup -1/. These contents are very similar to those found in unpolluted rivers. Man's influence on surface waters has now greatly increased natural nutrient levels. Total dissolved P and N have globally increased by a factor of two and locally (Western Europe, North America) by factors of 10 to 50. These increases were found to be directly proportional to the watershed population and to its energy consumption.

  20. Nitrogen-Containing Carbon Nanotube Synthesized from Polymelem and Activated Carbon Derived from Polymer Blend

    NASA Astrophysics Data System (ADS)

    Qin, Nan

    Polymelem possesses a polymeric structure of heptazine (C6N 7) rings connected by amine bridges and our study has demonstrated that it is a promising precursor for the synthesis of nitrogen-containing carbon materials. Nitrogen-containing carbon nanotube (NCNT) was produced by pyrolyzing polymelem as a dual source of carbon and nitrogen with Raney nickel in a high pressure stainless steel cell. Activated carbon was produced from poly(ether ether ketone)/poly(ether imide) (PEEK/PEI blend) and incorporated with polymelem to enhance the hydrogen adsorption. Polymelem was successfully synthesized by pyrolyzing melamine at 450--650 °C and its structure was elucidated by 13C solid state NMR, FTIR, and XRD. The molecular weight determined by a novel LDI MS equipped with a LIFT mode illuminated that polymelem has both linear and cyclic connectivity with a degree of polymerization of 2--5 depending on the synthesis temperature. The decomposition products of polymelem were determined to be cyanoamide, dicyanoamide, and tricyanoamine. Tricyanoamine is the smallest carbon nitride molecule and has been experimentally confirmed for the first time in this study. When polymelem was decomposed in the presence of Raney nickel, homogenous NCNT with nitrogen content of ˜ 4--19 atom% was produced. A mechanism based on a detail analysis of the TEM images at different growth stages proposed that the NCNT propagated via a tip-growth mechanism originating at the nano-domains within the Raney nickel, and was accompanied with the aggregation of the nickel catalysts. Such NCNT exhibited a cup-stack wall structure paired with a compartmental feature. The nitrogen content, tube diameter and wall thickness greatly depended on synthesis conditions. The activated carbon derived from PEEK/PEI blend demonstrated a surface area up to ˜3000 m2/g, and average pore size of < 20 A. Such activated carbon exhibited a hydrogen storage capacity of up to 6.47 wt% at 40 bar, 77 K. The activated carbon has

  1. [XPS and Raman spectral analysis of nitrogenated tetrahedral amorphous carbon (ta-C : N) films with different nitrogen content].

    PubMed

    Chen, Wang-Shou; Zhu, Jia-Qi; Han, Jie-Cai; Tian, Gui; Tan, Man-Lin

    2009-01-01

    Nitrogenated tetrahedral amorphous carbon (ta-C : N) films were prepared on the polished C--Si substrates by introducing highly pure nitrogen gas into the cathode region and the depositing chamber synchronously using filtered cathodic vacuum arc (FCVA) technology. The nitrogen content in the films was controlled by changing the flow rate of nitrogen gas. The configuration of ta-C : N films was investigated by means of X-ray photoelectron spectroscopy (XPS) and visible Raman spectroscopy. It was shown that the nitrogen content in the films increased from 0.84 at% to 5.37 at% monotonously when the nitrogen flow rate was varied from 2 seem to 20 sccm. The peak position of C (1s) core level moved towards higher binding energy with the increase in nitrogen content. The shift of C (1s) peak position could be ascribed to the chemical bonding between carbon and nitrogen atoms even though more three-fold coordinated sp2 configuration as in graphite was formed when the films were doped with more nitrogen atoms. Additionally, the half width of C(1s) peak gradually was also broadened with increasing nitrogen content. In order to discover clearly the changing regularities of the microstructure of the films, the XPS C(1s) spectra and Raman spectra were deconvoluted using a Gaussian-Lorentzian mixed lineshape. It was shown that the tetrahedral hybridization component was still dominant even though the ratio of sp2/sp3 obtained from C(1s) spectra rose with the increase in nitrogen content. The Raman measurements demonstrated that the G peak position shifted towards higher frequency from 1,561 to 1,578 cm(-1) and the ratio of ID/IG also rose with the increase in nitrogen content. Both results indicated that the graphitizing tendency could occur with the increase in nitrogen content in the films.

  2. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    SciTech Connect

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu E-mail: zouguifu@suda.edu.cn; Gao, Peng; Zhang, Ke-Qin E-mail: zouguifu@suda.edu.cn; Du, Dezhuang; Guo, Jun

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  3. First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics

    NASA Astrophysics Data System (ADS)

    Huang, Meng-Li; Wang, Chong-Yu

    2016-10-01

    The effects of boron and carbon on the structural, elastic, and electronic properties of both Ni solution and Ni3Al intermetallics are investigated using first-principles calculations. The results agree well with theoretical and experimental data from previous studies and are analyzed based on the density of states and charge density. It is found that both boron and carbon are inclined to occupy the Ni-rich interstices in Ni3Al, which gives rise to a cubic interstitial phase. In addition, the interstitial boron and carbon have different effects on the elastic moduli of Ni and Ni3Al. The calculation results for the G/B and Poisson’s ratios further demonstrate that interstitial boron and carbon can both reduce the brittleness of Ni, thereby increasing its ductility. Meanwhile, boron can also enhance the ductility of the Ni3Al while carbon hardly has an effect on its brittleness or ductility. Project supported by the National Basic Research Program of China (Grant No. 2011CB606402).

  4. Nitrogen-Doped Carbon as a Cathode Material for Lithium-air Batteries (Postprint)

    DTIC Science & Technology

    2010-04-01

    carbon for oxygen reduction was examined in 0.1 M KOH using cyclic voltammetry. These studies indicate that the nitrogen functionality on carbon...doped carbon and commercial carbon for oxygen reduction was examined in 0.1 M KOH using cyclic voltammetry. These studies indicate that the nitrogen...Kuboki, T. Okuyama , T. Ohsaki, and N. Takami, J. Power Sources, 146, (2005) 766. [6] S. D. Beattie, D.M. Manolescu, and S.L. Blair, “High- capacity

  5. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  6. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  7. Nutrient constraints on terrestrial carbon fixation: The role of nitrogen.

    PubMed

    Coskun, Devrim; Britto, Dev T; Kronzucker, Herbert J

    2016-09-20

    Carbon dioxide (CO2) concentrations in the earth's atmosphere are projected to rise from current levels near 400ppm to over 700ppm by the end of the 21st century. Projections over this time frame must take into account the increases in total net primary production (NPP) expected from terrestrial plants, which result from elevated CO2 (eCO2) and have the potential to mitigate the impact of anthropogenic CO2 emissions. However, a growing body of evidence indicates that limitations in soil nutrients, particularly nitrogen (N), the soil nutrient most limiting to plant growth, may greatly constrain future carbon fixation. Here, we review recent studies about the relationships between soil N supply, plant N nutrition, and carbon fixation in higher plants under eCO2, highlighting key discoveries made in the field, particularly from free-air CO2 enrichment (FACE) technology, and relate these findings to physiological and ecological mechanisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. A global perspective on belowground carbon dynamics under nitrogen enrichment.

    PubMed

    Liu, Lingli; Greaver, Tara L

    2010-07-01

    Nitrogen (N) effects on ecosystem carbon (C) budgets are critical to understand as C sequestration is considered as a mechanism to offset anthropogenic CO(2) emissions. Interactions between aboveground C and N cycling are more clearly characterized than belowground processes. Through synthesizing data from multiple terrestrial ecosystems, we quantified the responses of belowground C cycling under N addition. We found that N addition increased litter input from aboveground (+20%) but not from fine root. N addition inhibited microbial activity as indicated by a reduction in microbial respiration (-8%) and microbial biomass carbon (-20%). Although soil respiration was not altered by N addition, dissolved organic carbon concentration was increased by 18%, suggesting C leaching loss may increase. N addition increased the C content of the organic layer (+17%) but not the mineral soil layer. Overall, our meta-analysis indicates that N addition will increase short term belowground C storage by increasing C content of organic layer. However, it is difficult to predict the response of long term C sequestration since there is no significant change in mineral soil C content.

  9. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Joo Jeong, Yeon; Islam, Mohammad F.

    2015-07-01

    Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL-1, which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ~7 mg mL-1 (volume fraction ~0.005) followed by coatings of SWCNT networks with 6-8 mg mL-1 of h-BN (volume fraction ~0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ~100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor.Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of

  10. Soil nitrogen and carbon impacts of raising chickens on pasture

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Leach, A.; Tang, J.; Hastings, M. G.; Galloway, J. N.

    2014-12-01

    Chicken is the most consumed meat in the US, and production continues to intensify rapidly around the world. Chicken manure from confined feeding operations is typically applied in its raw form to nearby croplands, resulting in hotspots of soil nitrous oxide (N2O) emissions. Pasture-raised chicken is an alternative to industrial production and is growing in popularity with rising consumer demand for more humanely raised protein sources. In this agricultural model, manure is deposited directly onto grassland soils where it is thought to increase pools of soil carbon and nitrogen. The fate of manure nitrogen from pasture-raised chicken production remains poorly understood. We conducted a controlled, replicated experiment on a permaculture farm in Charlottesville, Virginia (Timbercreek Organics) in which small chicken coops (10 ft x 12 ft) were moved daily in a pasture. We measured manure deposition rates, soil inorganic nitrogen pools, soil moisture, and soil N2O and CO2 emissions. Measurements were made for the 28-day pasture life of three separate flocks of chickens in the spring, summer, and fall. Each flock consisted of approximately 200-300 chickens occupying three to five coops (~65 chickens/coop). Measurements were also made in paired ungrazed control plots. Manure deposition rates were similar across flocks and averaged 1.5 kgdrywt ha-1 during the spring grazing event and 4.0 kgdrywt ha-1 during the summer and fall grazing events. Manure deposition was relatively constant over the four weeks pasture-lifetime of the chickens. Compared to control plots, grazed areas exhibited higher soil N2O and CO2 fluxes. The magnitude of these fluxes diminished significantly over the four-week span. Soil gas fluxes significantly increased following rainfall events. For a given rainfall event, higher fluxes were observed from transects that were grazed more recently. Soil gaseous reactive nitrogen losses were less in this pasture system compared to cultivated field amended

  11. Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes.

    PubMed

    Jeong, Yeon Joo; Islam, Mohammad F

    2015-08-14

    Lightweight porous ceramic materials that can recover their shapes after mechanical deformation have numerous applications. However, these types of materials tend to be highly fragile and often crack when compressed. Here, we report on the fabrication and characterization of highly porous, freestanding composites of hexagonal boron nitride (h-BN) and single-walled carbon nanotubes (SWCNTs) of density 13-15 mg mL(-1), which corresponds to a volume fraction of 0.009, that were mechanically robust and recovered their original shape even after uniaxially compressing them by more than 50%. We made these porous elastomeric composites using a solution based assembly process that involved first shaping SWCNTs into porous networks of density ∼7 mg mL(-1) (volume fraction ∼0.005) followed by coatings of SWCNT networks with 6-8 mg mL(-1) of h-BN (volume fraction ∼0.003-0.004). The h-BN coating strengthened the underlying SWCNT networks, likely via reinforcement of the nodes between the SWCNTs, resulting in an increase in Young's modulus by ∼100% compared to that of SWCNT networks alone. Surprisingly, SWCNT networks, which were initially highly fragile, became elastomeric after h-BN coating, even though porous structures solely from h-BN are very brittle. Our fabrication approach preserves the morphology of the underlying networks, allowing for fabrication of various shapes and sizes of porous composites of h-BN and SWCNTs. Finally, our fabrication scheme is robust and facile for the preparation of porous composites of diverse ceramic materials and SWCNTs using the appropriate ceramic-precursor.

  12. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-08-31

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.

  13. Synthesis of microporous boron-substituted carbon (b/c) materials using polymeric precursors for hydrogen physisorption.

    PubMed

    Chung, T C Mike; Jeong, Youmi; Chen, Qiang; Kleinhammes, Alfred; Wu, Yue

    2008-05-28

    This paper discusses a new synthesis route to prepare microporous boron substituted carbon (B/C) materials that show a significantly higher hydrogen binding energy and physisorption capacity, compared with the corresponding carbonaceous (C) materials. The chemistry involves a pyrolysis of the designed boron-containing polymeric precursors, which are the polyaddition and polycondensation adducts between BCl3 and phenylene diacetylene and lithiated phenylene diacetylene, respectively. During pyrolysis, most of the boron moieties were transformed into a B-substituted C structure, and the in situ formed LiCl byproduct created a microporous structure. The microporous B/C material with B content > 7% and surface area > 700 m2/g has been prepared, which shows a reversible hydrogen physisorption capacity of 0.6 and 3.2 wt % at 293 and 77 K, respectively, under 40 bar of hydrogen pressure. The physisorption results were further warranted by absorption isotherms indicating a binding energy of hydrogen molecules of approximately 11 kJ/mol, significantly higher than the 4 kJ/mol reported on most graphitic surfaces.

  14. Sub-ambient carbon dioxide adsorption properties of nitrogen doped graphene

    SciTech Connect

    Tamilarasan, P.; Ramaprabhu, Sundara

    2015-04-14

    Carbon dioxide adsorption on carbon surface can be enhanced by doping the surface with heterogeneous atoms, which can increase local surface affinity. This study presents the carbon dioxide adsorption properties of nitrogen doped graphene at low pressures (<100 kPa). Graphene was exposed to nitrogen plasma, which dopes nitrogen atoms into carbon hexagonal lattice, mainly in pyridinic and pyrrolic forms. It is found that nitrogen doping significantly improves the CO{sub 2} adsorption capacity at all temperatures, due to the enrichment of local Lewis basic sites. In general, isotherm and thermodynamic parameters suggest that doped nitrogen sites have nearly same adsorption energy of surface defects and residual functional groups. The isosteric heat of adsorption remains in physisorption range, which falls with surface coverage, suggesting the distribution of magnitude of adsorption energy. The absolute values of isosteric heat and entropy of adsorption are slightly increased upon nitrogen doping.

  15. Device for detection and identification of carbon- and nitrogen-containing materials

    SciTech Connect

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  16. Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos

    USDA-ARS?s Scientific Manuscript database

    Soybeans store approximately 40% of their biomass in the form of protein. Protein concentrations reflect the carbon and nitrogen levels received by the developing embryo. The relationship between carbon and nitrogen supply and seed composition during filling was examined through a series of embryo c...

  17. Development and evaluation of the carbon-nitrogen cycle module for the GPFARM-Range model

    USDA-ARS?s Scientific Manuscript database

    Rangelands cover approximately 50% of the terrestrial surface of the earth. The soil carbon and nitrogen storage and turnover in rangeland systems are becoming increasingly important for sustainable grazing management and adaptations to climate change. In this study, a carbon-nitrogen (C-N) cycle m...

  18. Nitrogen fixation by microbial cultures with sodium salt of organic acids as carbon source.

    PubMed

    Bahadur, K; Tripathi, P

    1976-01-01

    The best source of carbon, when used as the sodium salt of organic acids, is sodium salicylate which shows highest nitrogen fixation and also appreciably large amounts of nitrogen fixed per g carbon consumed. Next in order is sodium benzoate, then oxalate. Sodium citrate is followed by sowium acetate in the order of decreasing efficiency.

  19. Carbon Accumulation and Nitrogen Pool Recovery during Transitions from Savanna to Forest in Central Brazil

    NASA Astrophysics Data System (ADS)

    Pellegrini, A.; Hoffmann, W. A.; Franco, A. C.

    2014-12-01

    The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to firedriven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate : ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical

  20. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil.

    PubMed

    Pellegrini, Adam F A; Hoffmann, William A; Franco, Augusto C

    2014-02-01

    The expansion of tropical forest into savanna may potentially be a large carbon sink, but little is known about the patterns of carbon sequestration during transitional forest formation. Moreover, it is unclear how nutrient limitation, due to extended exposure to fire-driven nutrient losses, may constrain carbon accumulation. Here, we sampled plots that spanned a woody biomass gradient from savanna to transitional forest in response to differential fire protection in central Brazil. These plots were used to investigate how the process of transitional forest formation affects the size and distribution of carbon (C) and nitrogen (N) pools. This was paired with a detailed analysis of the nitrogen cycle to explore possible connections between carbon accumulation and nitrogen limitation. An analysis of carbon pools in the vegetation, upper soil, and litter shows that the transition from savanna to transitional forest can result in a fourfold increase in total carbon (from 43 to 179 Mg C/ha) with a doubling of carbon stocks in the litter and soil layers. Total nitrogen in the litter and soil layers increased with forest development in both the bulk (+68%) and plant-available (+150%) pools, with the most pronounced changes occurring in the upper layers. However, the analyses of nitrate concentrations, nitrate:ammonium ratios, plant stoichiometry of carbon and nitrogen, and soil and foliar nitrogen isotope ratios suggest that a conservative nitrogen cycle persists throughout forest development, indicating that nitrogen remains in low supply relative to demand. Furthermore, the lack of variation in underlying soil type (>20 cm depth) suggests that the biogeochemical trends across the gradient are driven by vegetation. Our results provide evidence for high carbon sequestration potential with forest encroachment on savanna, but nitrogen limitation may play a large and persistent role in governing carbon sequestration in savannas or other equally fire-disturbed tropical

  1. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin

    NASA Astrophysics Data System (ADS)

    Tsubouchi, Naoto; Nishio, Megumi; Mochizuki, Yuuki

    2016-05-01

    The present work focuses on the role of nitrogen in the development of pores in activated carbon produced from lignin by K2CO3 activation, employing a fixed bed reactor under a high-purity He stream at temperatures of 500-900 °C. The specific surface area and pore volume obtained by activation of lignin alone are 230 m2/g and 0.13 cm3/g at 800 °C, and 540 m2/g and 0.31 cm3/g at 900 °C, respectively. Activation of a mixture of lignin and urea provides a significant increase in the surface area and volume, respectively reaching 3300-3400 m2/g and 2.0-2.3 cm3/g after holding at 800-900 °C for 1 h. Heating a lignin/urea/K2CO3 mixture leads to a significant decrease in the yield of released N-containing gases compared to the results for urea alone and a lignin/urea mixture, and most of the nitrogen in the urea is retained in the solid phase. X-ray photoelectron spectroscopy and X-ray diffraction analyses clearly show that part of the remaining nitrogen is present in heterocyclic structures (for example, pyridinic and pyrrolic nitrogen), and the rest is contained as KOCN at ≤600 °C and as KCN at ≥700 °C, such that the latter two compounds can be almost completely removed by water washing. The fate of nitrogen during heating of lignin/urea/K2CO3 and role of nitrogen in pore development in activated carbon are discussed on the basis of the results mentioned above.

  2. Computational study of boron nitride nanotube synthesis: How catalyst morphology stabilizes the boron nitride bond

    NASA Astrophysics Data System (ADS)

    Riikonen, S.; Foster, A. S.; Krasheninnikov, A. V.; Nieminen, R. M.

    2009-10-01

    In an attempt to understand why catalytic methods for the growth of boron nitride nanotubes work much worse than for their carbon counterparts, we use first-principles calculations to study the energetics of elemental reactions forming N2 , B2 , and BN molecules on an iron catalyst. We observe that the local morphology of a step edge present in our nanoparticle model stabilizes the boron nitride molecule with respect to B2 due to the ability of the step edge to offer sites with different coordination simultaneously for nitrogen and boron. Our results emphasize the importance of atomic steps for a high yield chemical vapor deposition growth of BN nanotubes and may outline new directions for improving the efficiency of the method.

  3. Nitrogen and carbon oxides chemistry in the HRS retorting process

    SciTech Connect

    Reynolds, J.G.

    1993-11-12

    The HRS Oil Shale Retort process consists of a pyrolysis section which converts kerogen of the shale to liquid and gaseous products, and a combustion section which burns residual carbon on the shale to heat the process. Average gas concentrations of selected gas phase species were determined from data measured at several placed on the combustion system of the Lawrence Livermore National Laboratory Hot-Recycled-Solids Retort Pilot Plant for representative rich and lean shale runs. The data was measured on-line and in real time by on-line meters (CO{sub 2}, CO, O{sub 2}), mass spectrometry (CO{sub 2}, O{sub 2}, H{sub 2}O, NO, CH{sub 4}, SO{sub 2}, N{sub 2} and Ar), and Fourier transform infrared spectroscopy (CO{sub 2}, CO, H{sub 2}O, NO, N{sub 2}O, NO{sub 2}, CH{sub 4}, SO{sub 2}, NH{sub 3}, and HCN). For both the rich and leans shale runs, the Lift-Pipe Combustor (LFT) exhibited gas concentrations (sampled at the exit of the LFT) indicative of incomplete combustion and oxidation; the Delayed-Fall Combustor (DFC) exhibited gas concentrations (sampled at the annulus and the exit of the DFC) indicative of much more complete combustion and oxidation. The Fluidized-Bed Combustor exhibited gas concentrations which were controlled to a large extent by the injection atmosphere of the FBC. High levels of nitrogen oxides and low levels of CO were detected when full air injection was used, while high levels of CO and low levels of nitrogen-oxides were detected with partial N{sub 2} injection. Sequential sampling limitations and nitrogen balances are also discussed.

  4. Ab initio calculations of ten carbon/nitrogen cubanoids

    SciTech Connect

    Engelke, R. )

    1993-04-07

    The results of a uniform set of ab initio quantum-chemical calculations for 10 carbon/nitrogen cubanoids are presented. There are 22 possible C/N cubanoids with formulas (CH)[sub 8[minus]n]N[sub n], where 0 [le] n [le] 8. We give results for one cubanoid for each value of n; for n = 4 both the T[sub d] and C[sub 4v] structures are discussed. The geometries were optimized on the RHF/6-31G*//RHF/6-31G* energy hypersurfaces, and the stationary points so obtained were characterized by vibrational analyses. The effect of electron correlation on the energies of these structures is examined via MP2/6-31G*//RHF/6-31G* theory. All 10 structures are predicted to be stable molecules, and the vibrational analyses indicate that their geometries are well-defined by the RHF/6-31G*//energy hypersurfaces. Heats of formation are predicted via appropriate isodesmic reactions. All the structures are found to have large positive [delta]H[sub f]'s. Perhaps the most interesting result obtained is that the high-energy content of the nitrogen-rich cubanoids is not primarily due to bond strain, but rather to the high-energy content of the NN single bond. Comparisons of the ab initio [delta]H[sub f] values with semiempirical AM1, PM3, and MNDO predictions are made. If they can be synthesized and have reasonable kinetic stability, the C/N cubanoids containing four or more nitrogen atoms are likely to be important energetic materials. A brief discussion is given of the potential of these materials as propellants and explosives. 22 refs., 5 figs., 4 tabs.

  5. Carbon, nitrogen, and oxygen abundances in G and K giants

    NASA Astrophysics Data System (ADS)

    Ries, L. M.

    The abundance of carbon, nitrogen, and oxygen were determined in 32 bright G and K giants in order to test theoretical predictions of nucleosynthesis and convective mixing in evolved stars. Atmospheric parameters were determined from lines of neutral and ionized iron measured from photographic plates taken with the coude spectrograph on a 2.1 m telescope. These were supplemented by spectra obtained with the coude Reticon on the 2.7 m telescope. Excitation temperatures were determined using a curve of growth technique on the neutral iron lines. Empirical solar oscillator strengths were used. Lineblanketed model atmospheres provides the calibration with effective temperature ionization equilibrium yielded the gravity, while the microturbulence was found by demanding that the iron abundance be independent of line strength.

  6. [Stable isotopes of carbon and nitrogen in soil ecological studies].

    PubMed

    Tiunov, A V

    2007-01-01

    The development of stable isotope techniques is one of the main methodological advances in ecology of the last decades of the 20th century. Many biogeochemical processes are accompanied by changes in the ratio between stable isotopes of carbon and nitrogen (12C/13C and 14N/15N), which allows different ecosystem components and different ecosystems to be distinguished by their isotopic composition. Analysis of isotopic composition makes it possible to trace matter and energy flows through biological systems and to evaluate the rate of many ecological processes. The main concepts and methods of stable isotope ecology and patterns of stable isotope fractionation during organic matter decomposition are considered with special emphasis on the fractionation of isotopes in food chains and the use of stable isotope studies of trophic relationships between soil animals in the field.

  7. A Science Plan for Integrated Studies of Coupled Biosphere-Atmosphere Carbon and Nitrogen Cycles

    NASA Astrophysics Data System (ADS)

    Carroll, M.; Bertman, S. B.; Guenther, A.; Holland, E. A.; Shepson, P. B.; Sparks, J. P.

    2003-12-01

    Human activities, such as the burning of fossil fuels and the use of nitrogen fertilizers, have approximately doubled levels of reactive nitrogen in the biosphere. This perturbation has the potential to alter fundamental processes in terrestrial ecosystems where composition, diversity, and productivity are largely controlled by the availability of nitrogen. A variety of theoretical and experimental studies indicate that nitrogen inputs have a direct impact on fluxes of carbon into ecosystems controlling both CO2 assimilation and the exchange of carbon-based trace gases. In some systems, plant growth and carbon storage appear to be enhanced by nitrogen addition. In contrast, other systems exhibit stagnant or declining plant growth with nitrogen addition as the ecosystem becomes N-saturated and susceptible to stressors such as soil acidification and ozone damage. The magnitudes of the nitrogen and carbon responses appear to depend directly on the pathway and magnitude of nitrogen flux into ecosystems. However, the pathway of nitrogen entry into ecosystems, the chemical species of that nitrogen and its level of incorporation into plant and soil biomass pools are poorly understood in many, if not all, ecosystems. A workshop was held in Boulder, Colorado, in November 2003 to develop a science plan to address the critical need to integrate leaf-level plant physiology, ecosystem, and atmospheric chemistry perspectives to determine the fate of nitrogen and thus carbon in terrestrial systems. Participants brought expertise in plant physiological ecology, biochemistry, soil microbiology, biogeochemistry, atmospheric chemistry, biosphere/atmosphere fluxes, and integrated modeling. On behalf of all participants, we present here the prioritized results of the workshop; including gaps in understanding, technological challenges of integrating biological, ecosystem and atmospheric compartments of carbon and nitrogen cycling, feedbacks in carbon and nitrogen cycle coupling that are

  8. Low Carbon Costs of Nitrogen Fixation in Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Gei, M. G.; Powers, J. S.

    2015-12-01

    Legume tree species with the ability to fix nitrogen (N) are highly diverse and widespread across tropical forests but in particular in the dry tropics. Their ecological success in lower latitudes has been called a "paradox": soil N in the tropics is thought to be high, while acquiring N through fixation incurs high energetic costs. However, the long held assumptions that N fixation is limited by photosynthate and that N fixation penalizes plant productivity have rarely been tested, particularly in legume tree species. We show results from three different experiments where we grew eleven species of tropical dry forest legumes. We quantified plant biomass and N fixation using nodulation and the 15N natural isotope abundance (Ndfa or nitrogen derived from fixation). These data show little evidence for costs of N fixation in seedlings grown under different soil fertility, light regimes, and with different microbial communities. Seedling productivity did not incur major costs because of N fixation: indeed, the average slope between Ndfa and biomass was positive (range in slopes: -0.03 to 0.3). Moreover, foliar N, which varied among species, was tightly constrained and not correlated with Ndfa. This finding implies that legume species have a target N that does not change depending on N acquisition strategies. The process of N fixation in tropical legumes may be more carbon efficient than previously thought. This view is more consistent with the hyperabundance of members of this family in tropical ecosystems.

  9. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    SciTech Connect

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; Boguslawski, Piotr; Bernholc, J.

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is a deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.

  10. Theory of nitrogen doping of carbon nanoribbons: Edge effects

    DOE PAGES

    Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; ...

    2012-01-01

    Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less

  11. Boron Isotopes Analyses of Carbonates, Phosphates and Silicates by Laser Ablation MC-ICP-MS: the Influence of Sample Matrix

    NASA Astrophysics Data System (ADS)

    Gerdes, A.

    2013-12-01

    Methods for in-situ analyses of boron isotopes by laser ablation MC-ICP-MS, although presented by 3 labs over the last years, are still not routinely applied despite of the growing interest in B isotopes, e.g. in palaeoclimate research. This study evaluates the ability to analyse boron isotopes by laser ablation at levels down to 0.2 ppm in biogenic carbonates as well as in various minerals (e.g., calcit, garnet, cpx, apatite, hematite, quartz, diamond ...) and natural and synthetic glass (NIST, USGS, and MPI-DING). Mounted and polished samples were ablated in a two-volume Helix cell using a RESOlution 193nm Excimer laser coupled to a Thermo-Finnigan Neptune (No. 1, build in 2000). Due to high sensitivity isotope signals were detected using Faraday collectors (1011 Ohm resistors). Analyses were performed as static spots over 25s with diameters of 235 to 7 μm depending on boron concentration, which yield typical 11B signals of about 0.04 (≤ 1ppm; e.g., cherts) to >0.6 V (3wt.%; tourmaline). Therefore, sample amount consumed during analyses range from 1 nanogram to 10 microgram with total analysed B content in the range of 5 to 1000 picogram. For correction of drift and mass fractionation soda-lime glass NIST-612 or NIST-610 were analysed every 30min. The applied method yields for various materials a typical analytical precision and reproducibility (1σ) of the 11B/10B of about 0.5‰ or better at boron concentration of more than 2 ppm. The effect of various parameters such as gas background, surface contamination, cross contamination, spot size, laser energy, and depth drilling will be discussed briefly. However, crucial for in-situ analyse is the evaluation of the accuracy and the influence of the sample matrix on it. Approaches to test this are still hampered by the lack of well-characterized low-B (e.g. <20ppm) reference materiel of different sample matrix. Nevertheless, in contrast to previous studies an effect of sample matrix on the boron isotope ratio was

  12. Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas.

    PubMed

    Martin, F; Ramstedt, M; Söderhäll, K

    1987-01-01

    The literature concerning the metabolism of carbon and nitrogen compounds in ectomycorrhizal associations of trees is reviewed. The absorption and translocation of mineral ions by the mycelia require an energy source and a reductant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid and carbohydrate syntheses during the growth of the mycelia. Competition for photosynthates occurs between the fungal cells and the various vegetative sinks in the host tree. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolites between the various sites of utilization are only poorly understood. Both ascomycetous and basidiomycetous ectomycorrhizal fungi synthesize and some, if not all, accumulate mannitol, trehalose and triglycerides. The fungal strains employ the Embden--Meyerhof pathway of glucose catabolism and the key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, transaldolase and transketolase). Anaplerotic CO2 fixation, via pyruvate carboxylase and/or phosphoenolpyruvate carboxykinase, provides high pools of amino acids. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The ectomycorrhizas are thought to contain the Embden--Meyerhof pathway, the pentose phosphate pathway and the tricarboxylic acid cycle, which provide the carbon skeletons for the assimilation of ammonia into amino acids. The main route of assimilation of ammonia appears to be through the glutamine synthetase-glutamate synthase cycle in the ectomycorrhizas. Glutamate dehydrogenase plays a minor role in this process. Glutamate dehydrogenase and glutamine synthetase are present in free-living ectomycorrhizal fungi and they participate in the assimilation of ammonia and the synthesis

  13. [Effect of carbon and nitrogen sources on the deoxyribonuclease activity of actinomycetes (author's transl)].

    PubMed

    Wlachow, S S

    1980-01-01

    The amount of the deoxyribonucleases produced by several Actinomyces species in a fluid medium varies considerably, depending on the type of the carbon and nitrogen sources added to the medium. Starch effects the enzyme biosynthesis most favourably of all tested carbon sources. The nitrates are more suitable as nitrogen sources than the ammonia compounds. Highest biosynthesis of deoxyribonucleases is observed on media containing organic nitrogen. Nutrient medium of optimum content may be found for each producer, ensuring maximum biosynthesis of deoxyribonucleases.

  14. Particulate organic carbon and nitrogen export from major Arctic rivers

    NASA Astrophysics Data System (ADS)

    McClelland, J. W.; Holmes, R. M.; Peterson, B. J.; Raymond, P. A.; Striegl, R. G.; Zhulidov, A. V.; Zimov, S. A.; Zimov, N.; Tank, S. E.; Spencer, R. G. M.; Staples, R.; Gurtovaya, T. Y.; Griffin, C. G.

    2016-05-01

    Northern rivers connect a land area of approximately 20.5 million km2 to the Arctic Ocean and surrounding seas. These rivers account for ~10% of global river discharge and transport massive quantities of dissolved and particulate materials that reflect watershed sources and impact biogeochemical cycling in the ocean. In this paper, multiyear data sets from a coordinated sampling program are used to characterize particulate organic carbon (POC) and particulate nitrogen (PN) export from the six largest rivers within the pan-Arctic watershed (Yenisey, Lena, Ob', Mackenzie, Yukon, Kolyma). Together, these rivers export an average of 3055 × 109 g of POC and 368 × 109 g of PN each year. Scaled up to the pan-Arctic watershed as a whole, fluvial export estimates increase to 5767 × 109 g and 695 × 109 g of POC and PN per year, respectively. POC export is substantially lower than dissolved organic carbon export by these rivers, whereas PN export is roughly equal to dissolved nitrogen export. Seasonal patterns in concentrations and source/composition indicators (C:N, δ13C, Δ14C, δ15N) are broadly similar among rivers, but distinct regional differences are also evident. For example, average radiocarbon ages of POC range from ~2000 (Ob') to ~5500 (Mackenzie) years before present. Rapid changes within the Arctic system as a consequence of global warming make it challenging to establish a contemporary baseline of fluvial export, but the results presented in this paper capture variability and quantify average conditions for nearly a decade at the beginning of the 21st century.

  15. Modelling carbon and nitrogen turnover in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.

    2009-04-01

    Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative

  16. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    EPA Pesticide Factsheets

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  17. Irrigating grazed pasture decreases soil carbon and nitrogen stocks.

    PubMed

    Mudge, Paul L; Kelliher, Francis M; Knight, Trevor L; O'Connell, Denis; Fraser, Scott; Schipper, Louis A

    2017-02-01

    The sustainability of using irrigation to produce food depends not only on the availability of sufficient water, but also on the soil's 'response' to irrigation. Stocks of carbon (C) and nitrogen (N) are key components of soil organic matter (SOM), which is important for sustainable agricultural production. While there is some information about the effects of irrigation on soil C stocks in cropping systems, there is a paucity of such studies in pastoral food production systems. For this study, we sampled soils from 34 paired, irrigated and unirrigated pasture sites across New Zealand (NZ) and analysed these for total C and N. On average, irrigated pastures had significantly (P < 0.05) less soil carbon (C) and nitrogen (N) than adjacent unirrigated pastures, with differences of 6.99 t C ha(-1) and 0.58 t N ha(-1) in the uppermost 0.3 m. Differences in C and N tended to occur throughout the soil profile, so the cumulative differences increased with depth, and the proportion of the soil C lost from deeper horizons was large. There were no relationships between differences in soil C and N stocks and the length of time under irrigation. This study suggests SOM will decrease when pastures under a temperate climate are irrigated. On this basis, increasing the area of temperate pasture land under irrigation would result in more CO2 in the atmosphere and may directly and indirectly increase N leaching to groundwater. Given the large and increasing area of land being irrigated both in NZ and on a global scale, there is an urgent need to determine whether the results found in this study are also applicable in other regions and under different land management systems (e.g. arable).

  18. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    PubMed

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  19. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent

    NASA Astrophysics Data System (ADS)

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-01

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  20. Effect of carbon and nitrogen on grain boundary segregation in irradiated stainless steels

    NASA Astrophysics Data System (ADS)

    Kano, F.; Fukuya, K.; Hamada, S.; Miwa, Y.

    1998-10-01

    SUS304 stainless steels with carbon contents of 0.052%, 0.019% and 0.004% and SUS316L stainless steels with nitrogen contents of 0.095%, 0.032% and 0.003% were irradiated with 12 MeV Ni ions at 573 K to a dose of 1 dpa at 1 μm depth. Microstructure and grain boundary chemical composition were investigated using a transmission electron microscope with a field-emission-gun (FE-TEM) at the probe size of 0.5 nm. The number density of dislocation loop was higher as the carbon content was higher and was almost independent of nitrogen content. With increasing carbon and nitrogen content, the degree of Cr depletion and Si/Ni segregation was decreased. Both carbon and nitrogen suppressed the Cr depletion and Si/Ni segregation. The suppression effect of carbon was larger than that of nitrogen.

  1. [Influence of soluble carbon and nitrogen on ammonia volatilization from different thermal zones soil].

    PubMed

    Zhu, Xia; Han, Xiao-zeng; Qiao, Yun-fa; Wang, Shou-yu; Li, Xiao-hui; Yan, Jun

    2009-12-01

    A static absorption method was used to study the influence of soluble carbon and nitrogen on ammonia volatilization from different thermal zone soils, such as black soil, red soil and cinnamon soil, performed in laboratory. Results showed that nitrogen application enhanced ammonia volatilization significantly. The amount of ammonia volatilization in cinnamon soil ranged from 14.3 to 7.37 mg x kg(-1), which in black soil from 1.52 to 1.11 mg x kg(-1) and from 0.998 to 0.402 mg x kg(-1) in red soil applied with only nitrogen or nitrogen amended with soluble carbon. Moreover, soluble carbon decreased ammonia volatilization caused by nitrogen, and amounts of decrease were 27.0%, 48.5%, 60.0% in black soil, cinnamon soil and red soil separately. The amount of ammonia volatilization from black soil and cinnamon soil applied only nitrogen was in an order of CK > NPK > NPKOM, while contrary order appeared if nitrogen was amended with soluble carbon. However, it was the same order for red soil applied with only nitrogen or nitrogen amended with soluble carbon. In addition, the variances of NH4+ -N and NO3- -N contents in cinnamon soil were larger than other soils, which suggested that cinnamon soil had high potential of nitrogen loss.

  2. Method 440.0 Determination of Carbon and Nitrogen in Sediments and Particulatesof Estuarine/Coastal Waters Using Elemental Analysis

    EPA Science Inventory

    Elemental analysis is used to determine particulate carbon (PC) and particulate nitrogen (PN) in estuarine and coastal waters and sediment. The method measures the total carbon and nitrogen irrespective of source (inorganic or organic).

  3. Method 440.0 Determination of Carbon and Nitrogen in Sediments and Particulatesof Estuarine/Coastal Waters Using Elemental Analysis

    EPA Science Inventory

    Elemental analysis is used to determine particulate carbon (PC) and particulate nitrogen (PN) in estuarine and coastal waters and sediment. The method measures the total carbon and nitrogen irrespective of source (inorganic or organic).

  4. Role of micro-topographic variability on soil carbon and nitrogen dynamics in Intensively Managed Landscape.

    NASA Astrophysics Data System (ADS)

    Woo, D.; Kumar, P.

    2016-12-01

    Micro-topographic variability is one of the major factors that determine the heterogeneity of soil carbon and nitrogen stocks. By exploring the spatial distribution of soil carbon and nitrogen dynamics, the optimum management of carbon sequestration and soil fertility can be achieved to promote sustainable agricultural practices. The objective of this study is to examine the interactions between micro-topography and soil carbon and nitrogen dynamics. Toward this objective, we developed a three-dimensional soil carbon and nitrogen model by considering various transformation, and transport associated with soil moisture, temperature, and microbes. We used published data for the study site at the Allerton Trust Farm site in Monticello, IL, USA. We found that soil organic carbon and nitrogen were significantly higher in the low-lying zones of flow convergence than upslope areas. This was mainly because the higher moisture and lower temperature conditions in the low-lying areas suppressed microbial processes, thus reducing the decomposition rates. Also, lower inorganic nitrogen concentrations in the low-lying areas than upslope areas were identified, which can be explained to a great extent by higher nitrogen leaching in the low-lying areas. Our results highlight that spatial patterns in soil carbon and nitrogen dynamics are largely regulated by micro-topographic variability that drives soil moisture and temperature conditions.

  5. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  6. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-01-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use the dynamic vegetation model LPJ-GUESS to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one exemplary "business-as-usual" climate scenario). Single factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model, as documented in previous studies. Under a RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics until present. However, during the 21st century nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contradicts earlier model results that showed an 8 to 37% decrease in carbon uptake, questioning the often stated assumption that projections of future terrestrial C dynamics from C-only models are too optimistic.

  7. Elevated CO2 influences microbial carbon and nitrogen cycling

    PubMed Central

    2013-01-01

    Background Elevated atmospheric CO2 (eCO2) has been shown to have significant effects on terrestrial ecosystems. However, little is known about its influence on the structure, composition, and functional potential of soil microbial communities, especially carbon (C) and nitrogen (N) cycling. A high-throughput functional gene array (GeoChip 3.0) was used to examine the composition, structure, and metabolic potential of soil microbial communities from a grassland field experiment after ten-year field exposure to ambient and elevated CO2 concentrations. Results Distinct microbial communities were established under eCO2. The abundance of three key C fixation genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide dehydrogenase (CODH) and propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), significantly increased under eCO2, and so did some C degrading genes involved in starch, cellulose, and hemicellulose. Also, nifH and nirS involved in N cycling were significantly stimulated. In addition, based on variation partitioning analysis (VPA), the soil microbial community structure was largely shaped by direct and indirect eCO2-driven factors. Conclusions These findings suggest that the soil microbial community structure and their ecosystem functioning for C and N cycling were altered dramatically at eCO2. This study provides new insights into our understanding of the feedback response of soil microbial communities to elevated CO2 and global change. PMID:23718284

  8. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  9. Importance of Nitrogen Availability on Land Carbon Sequestration in Northern Eurasia during the 21st Century

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Melillo, J. M.; Monier, E.; Sokolov, A. P.; Lu, X.; Zhuang, Q.

    2015-12-01

    Atmospheric nitrogen deposition, nitrogen fixation, and the application of nitrogen fertilizers provide subsidies to land ecosystems that can increase nitrogen availability for vegetation production and thereby influence land carbon dynamics. In addition, enhanced decomposition of soil organic matter (SOM) from warming soils and permafrost degradation may also increase nitrogen availability in Northern Eurasia. Here, we examine how changes in nitrogen availability may influence land carbon dynamics in Northern Eurasia during the 21st century by comparing results for a "business as usual" scenario (the IPCC Representative Concentration Pathways or RCP 8.5) and a stabilization scenario (RCP 4.5) between a version of the Terrestrial Ecosystem Model that does not consider the effects of atmospheric nitrogen deposition, nitrogen fixation and soil thermal dynamics on land carbon dynamics (TEM 4.4) and a version that does consider these dynamics (TEM 6.0). In these simulations, atmospheric nitrogen deposition, nitrogen fixation, and fertilizer applications provide an additional 3.3 Pg N (RCP 4.5) to 3.9 Pg N (RCP 8.5) to Northern Eurasian ecosystems over the 21st century. Land ecosystems retain about 38% (RCP4.5) to 48% (RCP 8.5) of this nitrogen subsidy. Net nitrogen mineralization estimated by TEM 6.0 provide an additional 1.0 Pg N to vegetation than estimated by TEM 4.4 over the 21st century from enhanced decomposition of SOM including SOM formerly protected by permafrost. The enhanced nitrogen availability in TEM 6.0 allows Northern Eurasian ecosystems to sequester 1.8x (RCP 8.5) to 2.4x (RCP 4.5) more carbon over the 21st century than estimated by TEM 4.4. Our results indicate that consideration of nitrogen subsidies and soil thermal dynamics have a large influence on how simulated land carbon dynamics in Northern Eurasia will respond to future changes in climate, atmospheric chemistry, and disturbances.

  10. Boron Nitride Nanotube: Synthesis and Applications

    NASA Technical Reports Server (NTRS)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  11. Boron nitride nanotube: synthesis and applications

    NASA Astrophysics Data System (ADS)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Kang, Jin Ho; Sauti, Godfrey; Thibeault, Sheila A.; Yamakov, Vesselin; Wise, Kristopher E.; Su, Ji; Fay, Catharine C.

    2014-04-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA/JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800°C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  12. D-retention and sputtering of simultaneously lithiated and boronized carbon surfaces in NSTX-U

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Dominguez, Javier

    2016-10-01

    While lithium serves as a catalyzer for high oxygen concentration in the surface of the lithiated graphite, and oxygen is performing the retention chemistry of D, boron effectively suppresses the role of oxygen and takes over the deuterium retention chemistry. Interestingly, lithium and boron are concurrent players for retention chemistry in LiBC surfaces. In presence of oxygen, lithium role is suppressed with boron and oxygen being concurrent player in the D retention chemistry. With increase of the deuterium accumulation, the oxygen takes over the dominant role in retention. XPS in vacuo data taken in the NSTX-U with the MAPP probe were used to characterize the PFCs chemistry and to provide a comparison with the results from the simulations. (CONACyT) through the postdoctoral fellowship # 267898 (JD), and by the USDOE FES Grant No. DE-SC0013752 through RF of SUNY (PSK).

  13. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

    DOE PAGES

    Jian, Siyang; Li, Jianwei; Chen, Ji; ...

    2016-07-08

    Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. Here, themore » proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively.« less

  14. Seasonal changes in carbon and nitrogen compound concentrations in a Quercus petraea chronosequence.

    PubMed

    Gilson, Angélique; Barthes, Laure; Delpierre, Nicolas; Dufrêne, Éric; Fresneau, Chantal; Bazot, Stéphane

    2014-07-01

    Forest productivity declines with tree age. This decline may be due to changes in metabolic functions, resource availability and/or changes in resource allocation (between growth, reproduction and storage) with tree age. Carbon and nitrogen remobilization/storage processes are key to tree growth and survival. However, studies of the effects of tree age on these processes are scarce and have not yet considered seasonal carbon and nitrogen variations in situ. This study was carried out in a chronosequence of sessile oak (Quercus petraea Liebl.) for 1 year to survey the effects of tree age on the seasonal changes of carbon and nitrogen compounds in several tree compartments, focusing on key phenological stages. Our results highlight a general pattern of carbon and nitrogen function at all tree ages, with carbon reserve remobilization at budburst for growth, followed by carbon reserve formation during the leafy season and carbon reserve use during winter for maintenance. The variation in concentrations of nitrogen compounds shows less amplitude than that of carbon compounds. Storage as proteins occurs later, and mainly depends on leaf nitrogen remobilization and root uptake in autumn. We highlight several differences between tree age groups, in particular the loss of carbon storage function of fine and medium-sized roots with tree ageing. Moreover, the pattern of carbon compound accumulation in branches supports the hypothesis of a preferential allocation of carbon towards growth until the end of wood formation in juvenile trees, at the expense of the replenishment of carbon stores, while mature trees start allocating carbon to storage right after budburst. Our results demonstrate that at key phenological stages, physiological and developmental functions differ with tree age, and together with environmental conditions, influence the carbon and nitrogen concentration variations in sessile oaks.

  15. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  16. Stable carbon isotope evidence for nitrogenous fertilizer impact on carbonate weathering in a small agricultural watershed.

    PubMed

    Brunet, F; Potot, C; Probst, A; Probst, J-L

    2011-10-15

    The isotopic signature of Dissolved Inorganic Carbon (DIC), δ(13)C(DIC), has been investigated in the surface waters of a small agricultural catchment on calcareous substratum, Montoussé, located at Auradé (south-west France). The Montoussé catchment is subjected to intense farming (wheat/sunflower rotation) and a moderated application of nitrogenous fertilizers. During the nitrification of the NH(4)(+), supplied by fertilization, nitrate and H(+) ions are produced in the soil. This anthropogenic acidity is combined with the natural acidity due to carbonic acid in weathering processes. From an isotopic point of view, with 'natural weathering', using carbonic acid, δ(13)C(DIC) is intermediate between the δ(13)C of soil CO(2) produced by organic matter oxidation and that of the carbonate rocks, while it has the same value as the carbonates when carbonic acid is substituted by another acid like nitric acid derived from nitrogen fertilizer. The δ(13)C(DIC) values range from -17.1‰ to -10.7‰ in Montoussé stream waters. We also measured the δ(13)C of calcareous molassic deposits (average -7.9‰) and of soil organic carbon (between -24.1‰ and -26‰) to identify the different sources of DIC and to estimate their contribution. The δ(13) C(DIC) value indicates that weathering largely follows the carbonic acid pathway at the springs (sources of the stream). At the outlet of the basin, H(+) ions, produced during the nitrification of N-fertilizer, also contribute to weathering, especially during flood events. This result is illustrated by the relationship between δ(13)C(DIC) and the molar ratio NO(3)(-)/(Ca(2+) + Mg(2+)). Consequently, when the contribution of nitrate increases, the δ(13)C(DIC) increases towards the calcareous end-member. This new isotopic result provides evidence for the direct influence of nitrogen fertilizer inputs on weathering, CO(2) consumption and base cation leaching and confirms previous results obtained using the chemistry of the

  17. Nitrogen management and the future of food: lessons from the management of energy and carbon.

    PubMed

    Socolow, R H

    1999-05-25

    The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.

  18. Carbon-nitrogen interactions in idealized simulations with JSBACH (version 3.10)

    NASA Astrophysics Data System (ADS)

    Goll, Daniel S.; Winkler, Alexander J.; Raddatz, Thomas; Dong, Ning; Prentice, Ian Colin; Ciais, Philippe; Brovkin, Victor

    2017-05-01

    Recent advances in the representation of soil carbon decomposition and carbon-nitrogen interactions implemented previously into separate versions of the land surface scheme JSBACH are here combined in a single version, which is set to be used in the upcoming 6th phase of coupled model intercomparison project (CMIP6).Here we demonstrate that the new version of JSBACH is able to reproduce the spatial variability in the reactive nitrogen-loss pathways as derived from a compilation of δ15N data (R = 0. 76, root mean square error (RMSE) = 0. 2, Taylor score = 0. 83). The inclusion of carbon-nitrogen interactions leads to a moderate reduction (-10 %) of the carbon-concentration feedback (βL) and has a negligible effect on the sensitivity of the land carbon cycle to warming (γL) compared to the same version of the model without carbon-nitrogen interactions in idealized simulations (1 % increase in atmospheric carbon dioxide per year). In line with evidence from elevated carbon dioxide manipulation experiments, pronounced nitrogen scarcity is alleviated by (1) the accumulation of nitrogen due to enhanced nitrogen inputs by biological nitrogen fixation and reduced losses by leaching and volatilization. Warming stimulated turnover of organic nitrogen further counteracts scarcity.The strengths of the land carbon feedbacks of the recent version of JSBACH, with βL = 0. 61 Pg ppm-1 and γL = -27. 5 Pg °C-1, are 34 and 53 % less than the averages of CMIP5 models, although the CMIP5 version of JSBACH simulated βL and γL, which are 59 and 42 % higher than multi-model average. These changes are primarily due to the new decomposition model, indicating the importance of soil organic matter decomposition for land carbon feedbacks.

  19. Evaluation of a boron-nitrogen, phosphate-free fire-retardant treatment. Part II, Testing of small clear specimens per ASTM Standard D 5664-95, Methods A and B

    Treesearch

    Jerrold E. Winandy; Douglas Herdman

    2003-01-01

    The objective of this work was to evaluate the effects of a new boron-nitrogen, phosphate-free fire-retardant (FR) formulation on several mechanical properties of FR-treated wood and to assess the potential of this treatment for in-service thermal-induced strength loss resulting from exposure to high temperature. Fire-retardant-treated and untreated small clear...

  20. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  1. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  2. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  3. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  4. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured...

  5. Investigating the relative importance of nitrogen deposition on the 21st century terrestrial carbon sink

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Michael; Buermann, Wolfgang; Spracklen, Dominick; Arnold, Steve; Gloor, Manuel

    2017-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in nitrogen deposition from fossil fuel burning and linked carbon-nitrogen interactions fertilized terrestrial ecosystems, increasing carbon uptake and storage. Using the dynamic global vegetation model CLM4.5-BGC, we perform factorial analyses, separating the effects of individual drivers to changes in carbon fluxes and sinks. Globally, we find that increases in nitrogen deposition from 1960 to 2010 increased carbon uptake by 1PgC/yr. One third of this increase can be attributed to East Asia alone, with Europe also having a significant contribution. The global, post-2000 anthropogenic nitrogen deposition effect on terrestrial carbon uptake is entirely accounted for from East Asia (increase of 0.05 PgC/yr). We will also quantify the relative effects of various other drivers on carbon exchanges such as CO2 fertilization, climate change, and land-use and land-cover change. This increased nitrogen deposition has served to fertilize the biosphere in recent years, but its influence on carbon sink processes may be rather short-lived due to the short lifetime of atmospheric reactive nitrogen while the influence of increased CO2 emissions (and the CO2 fertilization effect) will last multiple decades, a 'Faustian Bargain'.

  6. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    NASA Astrophysics Data System (ADS)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  7. Changes in Soil Organic Carbon and Nitrogen as a Result of Cultivation

    DOE Data Explorer

    Post, Wilfred M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mann, L. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2005-01-01

    We assembed and analyzed a data base of soil organic carbon and nitrogen information from over 1100 profiles in order to explore factors related to the changes in storage of soil organic matter resulting from land conversion. The relationship between cultivated and uncultivated organic carbon and nitrogen storage in soils can be described by regression lines with uncultivated storage on the abscissa, and cultivated storage on the ordinate. The slope of the regression lines is less than 1 indicating that the amount of carbon or nitrogen lost is an increasing fraction of the intial amount stored in the soil. Average carbon loss for soils with high initial carbon is 23% for 1-meter depth. Average nitrogen loss for the same depth is 6%. In addition, for soils with very low uncultivated carbon or nitrogen storage, cultivation results in increases in storage. In soils with the same uncultivated carbon contents, profiles with higher C:N ratios lost more carbon than those with low C:N ratios, suggesting that decomposition of organic matter may, in general, be more limited by microbial ability to break carbon bonds than by nitrogen deficiency.

  8. Nitrogen-Doped Carbon Nanotube-Supported Pd Catalyst for Improved Electrocatalytic Performance toward Ethanol Electrooxidation

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Zhang, Xinyuan; Luo, Zhiyong; Tang, Dian; Chen, Changxin; Zhang, Teng; Xie, Zailai

    2017-07-01

    In this study, hydrothermal carbonization (HTC) was applied for surface functionalization of carbon nanotubes (CNTs) in the presence of glucose and urea. The HTC process allowed the deposition of thin nitrogen-doped carbon layers on the surface of the CNTs. By controlling the ratio of glucose to urea, nitrogen contents of up to 1.7 wt% were achieved. The nitrogen-doped carbon nanotube-supported Pd catalysts exhibited superior electrochemical activity for ethanol oxidation relative to the pristine CNTs. Importantly, a 1.5-fold increase in the specific activity was observed for the Pd/HTC-N1.67%CNTs relative to the catalyst without nitrogen doping (Pd/HTC-CNTs). Further experiments indicated that the introduction of nitrogen species on the surface of the CNTs improved the Pd(0) loading and increased the binding energy.

  9. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating - A molecular dynamic study

    NASA Astrophysics Data System (ADS)

    Badjian, H.; Setoodeh, A. R.

    2017-02-01

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  10. Hetero-junctions of Boron Nitride and Carbon Nanotubes: Synthesis and Characterization

    SciTech Connect

    Yap, Yoke Khin

    2013-03-14

    Hetero-junctions of boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) are expected to have appealing new properties that are not available from pure BNNTs and CNTs. Theoretical studies indicate that BNNT/CNT junctions could be multifunctional and applicable as memory, spintronic, electronic, and photonics devices with tunable band structures. This will lead to energy and material efficient multifunctional devices that will be beneficial to the society. However, experimental realization of BNNT/CNT junctions was hindered by the absent of a common growth technique for BNNTs and CNTs. In fact, the synthesis of BNNTs was very challenging and may involve high temperatures (up to 3000 degree Celsius by laser ablation) and explosive chemicals. During the award period, we have successfully developed a simple chemical vapor deposition (CVD) technique to grow BNNTs at 1100-1200 degree Celsius without using dangerous chemicals. A series of common catalyst have then been identified for the synthesis of BNNTs and CNTs. Both of these breakthroughs have led to our preliminary success in growing two types of BNNT/CNT junctions and two additional new nanostructures: 1) branching BNNT/CNT junctions and 2) co-axial BNNT/CNT junctions, 3) quantum dots functionalized BNNTs (QDs-BNNTs), 4) BNNT/graphene junctions. We have started to understand their structural, compositional, and electronic properties. Latest results indicate that the branching BNNT/CNT junctions and QDs-BNNTs are functional as room-temperature tunneling devices. We have submitted the application of a renewal grant to continue the study of these new energy efficient materials. Finally, this project has also strengthened our collaborations with multiple Department of Energy's Nanoscale Science Research Centers (NSRCs), including the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, and the Center for Integrated Nanotechnologies (CINTs) at Sandia National Laboratories and Los

  11. Carbon and nitrogen nutrient balance signaling in plants.

    PubMed

    Zheng, Zhi-Liang

    2009-07-01

    Cellular carbon (C) and nitrogen (N) metabolism must be tightly coordinated to sustain optimal growth and development for plants and other cellular organisms. Furthermore, C/N balance is also critical for the ecosystem response to elevated atmospheric CO(2). Despite numerous physiological and molecular studies in C/N balance or ratio response, very few genes have been shown to play important roles in C/N balance signaling. During recent five years, exciting progress was made through genetic and genomic studies. Several DNA microarray studies have shown that more than half of the transcriptome is regulated by C, N and the C-N combination. Three genetic studies involving distinct bioassays have demonstrated that a putative nitrate transporter (NTR2.1), a putative glutamate receptor (GLR1.1) and a putative methyltransferase (OSU1) have important functions in the C/N balance response. OSU1 is identical to QUA2/TSD2 which has been implicated to act in cell wall biogenesis, indicating a link between cell wall property and the C/N balance signaling. Given that many investigations are only focused on C alone or N alone, the C/N balance bioassays and gene expression patterns are discussed to assist phenotypic characterization of C/N balance signaling. Further, re-examination of those previously reported sugar or nitrogen responsive genes in C/N balance response may be necessary to dissect the C/N signaling pathways. In addition, key components involved in C-N interactions in bacterial, yeast and animal systems and whether they are functionally conserved in plants are discussed. These rapid advances have provided the first important step towards the construction of the complex yet elegant C/N balance signaling networks in plants.

  12. Stable carbon and nitrogen isotope analysis of avian uric acid.

    PubMed

    Bird, Michael I; Tait, Elaine; Wurster, Christopher M; Furness, Robert W

    2008-11-01

    We report results obtained using a new technique developed to measure the stable-isotope composition of uric acid isolated from bird excreta (guano). Results from a diet-switch feeding trial using zebra finches suggest that the delta(13)C of uric acid in the guano equilibrates with the diet of the bird within 3 days of a change in diet, while the equilibration time for delta(15)N may be longer. The average carbon isotope discrimination between uric acid and food before the diet switch was +0.34 +/- 1 per thousand (1sigma) while after the diet switch this increased slightly to +0.83 +/- 0.7 per thousand (1sigma). Nitrogen isotope discrimination was +1.3 +/- 0.3 per thousand (1sigma) and +0.3 +/- 0.3 per thousand (1sigma) before and after the diet switch; however, it is possible that the nitrogen isotope values did not fully equilibrate with diet switch over the course of the experiment. Analyses of other chemical fractions of the guano (organic residue after uric acid extraction and non-uric acid organics solubilised during extraction) suggest a total range of up to 3 per thousand for both delta(13)C and delta(15)N values in individual components of a single bulk guano sample. The analysis of natural samples from a range of terrestrial and marine species demonstrates that the technique yields isotopic compositions consistent with the known diets of the birds. The results from natural samples further demonstrate that multiple samples from the same species collected from the same location yield similar results, while different species from the same location exhibit a range of isotopic compositions indicative of different dietary preferences. Given that many samples of guano can be rapidly collected without any requirement to capture specimens for invasive sampling, the stable-isotope analysis of uric acid offers a new, simple and potentially powerful tool for studying avian ecology and metabolism.

  13. Effect of mono-vacancy on transport properties of zigzag carbon- and boron-nitride-nanotube heterostructures

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Liu, D. S.; Chen, G.

    2013-04-01

    On the basis of first-principles density functional theory and non-equilibrium Green's function technique, we have investigated the effects of a mono-vacancy on the electronic transport properties of the carbon nanotube/boron nitride nanotube heterostructures. The results show that the electronic transport properties are strongly dependent on the position of the mono-vacancy, and the negative differential resistance and rectifying performances can be strengthened or weakened alternately with the position change of the mono-vacancy. Moreover, the performance change is more significant when the mono-vacancy occurs on the carbon nanotube part. These interesting phenomena are explained in terms of the evolution of the transmission spectrum with applied bias combined with molecular projected self-consistent Hamiltonian states analysis.

  14. Does canopy nitrogen uptake enhance carbon sequestration by trees?

    PubMed

    Nair, Richard K F; Perks, Micheal P; Weatherall, Andrew; Baggs, Elizabeth M; Mencuccini, Maurizio

    2016-02-01

    Temperate forest (15) N isotope trace experiments find nitrogen (N) addition-driven carbon (C) uptake is modest as little additional N is acquired by trees; however, several correlations of ambient N deposition against forest productivity imply a greater effect of atmospheric nitrogen deposition than these studies. We asked whether N deposition experiments adequately represent all processes found in ambient conditions. In particular, experiments typically apply (15) N to directly to forest floors, assuming uptake of nitrogen intercepted by canopies (CNU) is minimal. Additionally, conventional (15) N additions typically trace mineral (15) N additions rather than litter N recycling and may increase total N inputs above ambient levels. To test the importance of CNU and recycled N to tree nutrition, we conducted a mesocosm experiment, applying 54 g N/(15) N ha(-1)  yr(-1) to Sitka spruce saplings. We compared tree and soil (15) N recovery among treatments where enrichment was due to either (1) a (15) N-enriched litter layer, or mineral (15) N additions to (2) the soil or (3) the canopy. We found that 60% of (15) N applied to the canopy was recovered above ground (in needles, stem and branches) while only 21% of (15) N applied to the soil was found in these pools. (15) N recovery from litter was low and highly variable. (15) N partitioning among biomass pools and age classes also differed among treatments, with twice as much (15) N found in woody biomass when deposited on the canopy than soil. Stoichiometrically calculated N effect on C uptake from (15) N applied to the soil, scaled to real-world conditions, was 43 kg C kg N(-1) , similar to manipulation studies. The effect from the canopy treatment was 114 kg C kg N(-1) . Canopy treatments may be critical to accurately represent N deposition in the field and may address the discrepancy between manipulative and correlative studies. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  15. Boron isotope systematics during magma-carbonate interaction: an experimental study from Merapi (Indonesia) and Vesuvius (Italy)

    NASA Astrophysics Data System (ADS)

    Deegan, F. M.; Jolis, E. M.; Troll, V. R.; Freda, C.; Whitehouse, M.

    2011-12-01

    Carbonate assimilation is increasingly recognized as an important process affecting the compositional evolution of magma and its inherent ability to erupt explosively due to release of carbonate-derived CO2 [e.g., 1, 2, 3]. In order to gain insights into this process, we performed short time-scale carbonate dissolution experiments in silicate melt using natural starting materials from Merapi and Vesuvius volcanoes at magmatic pressure and temperature [2, 4]. The experiments enable us to resolve in detail the timescales, textures and chemical features of carbonate assimilation. Three compositionally distinct glass domains have been defined: i) Ca-normal glass, similar in composition to the starting material; ii) Ca-rich, contaminated glass; and iii) a diffusional glass interface between the Ca-normal and Ca-rich glass, characterized by steady interchange between SiO2 and CaO. Here we present new boron isotope data for the experimental products obtained by SIMS. The glasses show distinct and systematic variation in their δ11B (%) values. The contaminated glasses generally show extremely negative δ11B values (down to -41 %) relative to both the uncontaminated experimental glass and fresh arc volcanics (-7 to +7 % [5]). Considering that carbonates have δ11B values of +9 to +26 [6], the data cannot be explained by simple mixing processes between the end-members alone. This implies that the δ11B of the original contaminant was drastically modified before being incorporated into the melt, which can be explained by B isotope fractionation during breakdown and degassing of the carbonate. Our data represents the first B isotope analyses of experimental products of carbonate assimilation. They provide novel and well constrained insights into the behavior of boron upon degassing of carbonate. This, in turn, has implications for both i) late stage contamination and volatile addition to hazardous volcanic systems located over carbonate basement (cf. [7]) and ii) studies of

  16. A facile approach towards increasing the nitrogen-content in nitrogen-doped carbon nanotubes via halogenated catalysts

    SciTech Connect

    Ombaka, L.M.; Ndungu, P.G.; Omondi, B.; McGettrick, J.D.; Davies, M.L.; Nyamori, V.O.

    2016-03-15

    Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF{sub 3} and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF{sub 3} catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF{sub 3} catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and are less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF{sub 3} and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF{sub 3} catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.

  17. Carbon and nitrogen dynamics in a soil profile: Model development

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, Jordi; Brovelli, Alessandro; Barry, D. Andrew

    2010-05-01

    In order to meet demands for crops, pasture and firewood, the rate of land use change from forested to agricultural uses has steadily increased over several decades, resulting in an increased release of nutrients towards groundwater and surface water bodies. In parallel, the degradation of riparian zones has diminished their capacity to provide critical ecosystem functions, such as the ability to control and buffer nutrient cycles. In recent years, however, the key environmental importance of natural, healthy ecosystems has been progressively recognized and restoration of degraded lands towards their former natural state has become an area of active research worldwide. Land use changes and restoration practices are known to affect both soil nutrient dynamics and their transport to neighbouring areas. To this end, in order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. Microbiological transformations of the soil organic matter, including decomposition and nutrient turnover are controlled to a large extent by soil water content, influenced in turn by climatic and environmental conditions such as precipitation and evapotranspiration. The work presented here is part of the Swiss RECORD project (http://www.cces.ethz.ch/projects/nature/Record), a large collaborative research effort undertaken to monitor the changes in ecosystem functioning in riparian areas undergoing restoration. In this context we have developed a numerical model to simulate carbon and nitrogen transport and turnover in a one-dimensional variably saturated soil profile. The model is based on the zero-dimensional mechanistic batch model of Porporato et al. (Adv. Water Res., 26: 45-58, 2003), but extends its capabilities to simulate (i) the transport of the mobile components towards deeper horizons, and (ii) the vertical evolution of the profile and the subsequent distribution of the organic matter. The soil is divided in four

  18. Effects of elevated atmospheric carbon dioxide on soil nitrogen cycling

    NASA Astrophysics Data System (ADS)

    Hofmockel, Kirsten S.

    elevated atmospheric CO2 on soil nitrogen cycling at the ecosystem scale, despite an increase in N demand of 0.86 g m-2 y -1 under elevated CO2. My results suggest that elevated CO2 does not alter soil nitrogen cycling at the decadal time scale. Retranslocation within trees and slowly cycling soil organic pools are likely supporting the increased N demand under elevated CO2. Longer-term studies may reveal differences in soil organic matter and carbon sequestration dynamics under ambient and elevated CO2.

  19. Sediment Tracking Using Carbon and Nitrogen Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Fox, J. F.; Papanicolaou, A.

    2002-12-01

    As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to

  20. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.

    PubMed

    Robertson, G Philip; Hamilton, Stephen K; Del Grosso, Stephen J; Parton, William J

    2011-06-01

    The biogeochemical liabilities of grain-based crop production for bioenergy are no different from those of grain-based food production: excessive nitrate leakage, soil carbon and phosphorus loss, nitrous oxide production, and attenuated methane uptake. Contingent problems are well known, increasingly well documented, and recalcitrant: freshwater and coastal marine eutrophication, groundwater pollution, soil organic matter loss, and a warming atmosphere. The conversion of marginal lands not now farmed to annual grain production, including the repatriation of Conservation Reserve Program (CRP) and other conservation set-aside lands, will further exacerbate the biogeochemical imbalance of these landscapes, as could pressure to further simplify crop rotations. The expected emergence of biorefinery and combustion facilities that accept cellulosic materials offers an alternative outcome: agricultural landscapes that accumulate soil carbon, that conserve nitrogen and phosphorus, and that emit relatively small amounts of nitrous oxide to the atmosphere. Fields in these landscapes are planted to perennial crops that require less fertilizer, that retain sediments and nutrients that could otherwise be transported to groundwater and streams, and that accumulate carbon in both soil organic matter and roots. If mixed-species assemblages, they additionally provide biodiversity services. Biogeochemical responses of these systems fall chiefly into two areas: carbon neutrality and water and nutrient conservation. Fluxes must be measured and understood in proposed cropping systems sufficient to inform models that will predict biogeochemical behavior at field, landscape, and regional scales. Because tradeoffs are inherent to these systems, a systems approach is imperative, and because potential biofuel cropping systems and their environmental contexts are complex and cannot be exhaustively tested, modeling will be instructive. Modeling alternative biofuel cropping systems converted