Sample records for boron iodides

  1. Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes.

    PubMed

    Silvi, Mattia; Sandford, Christopher; Aggarwal, Varinder K

    2017-04-26

    Vinyl boronates react with electron-deficient alkyl iodides in the presence of visible light to give boronic esters in which two new C-C bonds have been created. The reaction occurs by radical addition of an electron-deficient alkyl radical to the vinyl boronate followed by electron transfer with another molecule of alkyl iodide, continuing the chain, and triggering a 1,2-metalate rearrangement. In a number of cases, the use of a photoredox catalyst enhances yields significantly. The scope of the radical precursor includes α-iodo ketones, esters, nitriles, primary amides, α-fluorinated halo-acetates and perfluoroalkyl iodides.

  2. Simultaneous detection of iodine and iodide on boron doped diamond electrodes.

    PubMed

    Fierro, Stéphane; Comninellis, Christos; Einaga, Yasuaki

    2013-01-15

    Individual and simultaneous electrochemical detection of iodide and iodine has been performed via cyclic voltammetry on boron doped diamond (BDD) electrodes in a 1M NaClO(4) (pH 8) solution, representative of typical environmental water conditions. It is feasible to compute accurate calibration curve for both compounds using cyclic voltammetry measurements by determining the peak current intensities as a function of the concentration. A lower detection limit of about 20 μM was obtained for iodide and 10 μM for iodine. Based on the comparison between the peak current intensities reported during the oxidation of KI, it is probable that iodide (I(-)) is first oxidized in a single step to yield iodine (I(2)). The latter is further oxidized to obtain IO(3)(-). This technique, however, did not allow for a reasonably accurate detection of iodate (IO(3)(-)) on a BDD electrode. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Simple and Efficient Generation of Aryl Radicals from Aryl Triflates: Synthesis of Aryl Boronates and Aryl Iodides at Room Temperature.

    PubMed

    Liu, Wenbo; Yang, Xiaobo; Gao, Yang; Li, Chao-Jun

    2017-06-28

    Despite the wide use of aryl radicals in organic synthesis, current methods to prepare them from aryl halides, carboxylic acids, boronic acids, and diazonium salts suffer from limitations. Aryl triflates, easily obtained from phenols, are promising aryl radical progenitors but remain elusive in this regard. Inspired by the single electron transfer process for aryl halides to access aryl radicals, we developed a simple and efficient protocol to convert aryl triflates to aryl radicals. Our success lies in exploiting sodium iodide as the soft electron donor assisted by light. This strategy enables the scalable synthesis of two types of important organic molecules, i.e., aryl boronates and aryl iodides, in good to high yields, with broad functional group compatibility in a transition-metal-free manner at room temperature. This protocol is anticipated to find potential applications in other aryl-radical-involved reactions by using aryl triflates as aryl radical precursors.

  4. Palladium-Catalyzed Borylation of Primary Alkyl Bromides

    PubMed Central

    Joshi-Pangu, Amruta; Ma, Xinghua; Diane, Mohamed; Iqbal, Sidra; Kribs, Robert J.; Huang, Richard; Wang, Chao-Yuan

    2012-01-01

    A mild Pd-catalyzed process for the borylation of alkyl bromides has been developed using bis(pinacolato)diboron as a boron source. This process accommodates the use of a wide range of functional groups on the alkyl bromide substrate. Primary bromides react with complete selectivity in the presence of a secondary bromide. The generality of this approach is demonstrated by its extension to the use of alkyl iodides and alkyl tosylates, as well as borylation reactions employing bis(neopentyl glycolato)diboron as the boron source. PMID:22774861

  5. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    PubMed

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  6. Design and chemical synthesis of iodine-containing molecules for application to solar-pumped I* lasers

    NASA Technical Reports Server (NTRS)

    Shiner, Christopher S.

    1986-01-01

    Research is directed toward the design and synthesis of new media for solar-pumped I* lasers. Since the most effective existing lasants are perfluoroalkyl iodides, a strategy was proposed for the development of improved materials of this type with absorption maxima at 300 nm. Absorption spectra were synthesized and measured for prototypical species containing iodine bound to boron, iron, and cobalt.

  7. The Cephalostatins 21. Synthesis of Bis-steroidal Pyrazine Rhamnosides1

    PubMed Central

    Pettit, George R.; Mendonça, Ricardo F.; Knight, John C.; Pettit, Robin K.

    2011-01-01

    The synthesis of bis-steroidal pyrazines derived from 3-oxo-11,21-dihydroxy-pregna- 4,17(20)-diene (4) and glycosylation of a D-ring side chain with α-L-rhamnose has been summarized. Rearrangment of steroidal pyrazine 10 to 14 was found to occur with boron triflouride etherate. Glycosylation of pyrazine 10 using 2,3,4-tri-O-acetyl-α-L-rhamnose iodide led to 1,2-orthoester-α-L-rhamnose pyrazine 17b. By use of a persilylated α-L-rhamnose iodide as donor, formation of the orthoester was avoided. Bis-steroidal pyrazine 10 and rhamnosides 17b and 21c were found to significantly inhibit cancer cell growth in a murine and human cancer cell line panel. Pyrazine 9 inhibited growth of the nosocomial pathogen Enterococcus faecalis. PMID:21899266

  8. A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon and nitrogen. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.

    1981-01-01

    The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen were measured at energies near 300 MeV amu, using a balloon-borne instrument at an atmospheric depth of approximately 5 g/sq cm. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintillators used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from approximately 0.3 amu at boron to approximately 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere the results are B-10/B=0.33 (+0.17, -0.11), C-13/C=0.06 (+0.13, -0.11), and N-15/N=0.42 (+0.19, -0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near Earth consistent with the measurements.

  9. Stereocomplexed PLA-PEG Nanoparticles with Dual-Emissive Boron Dyes for Tumor Accumulation

    PubMed Central

    Kersey, Farrell R.; Zhang, Guoqing; Palmer, Gregory M.; Dewhirst, Mark W.; Fraser, Cassandra L.

    2010-01-01

    Responsive biomaterials play important roles in imaging, diagnostics, and therapeutics. Polymeric nanoparticles (NPs) containing hydrophobic and hydrophilic segments are one class of biomaterial utilized for these purposes. The incorporation of luminescent molecules into NPs adds optical imaging and sensing capability to these vectors. Here we report on the synthesis of dual-emissive, pegylated NPs with “stealth”-like properties, delivered intravenously (IV), for the study of tumor accumulation. The NPs were created by means of stereocomplexation using a methoxy-terminated polyethylene glycol and poly(D-lactide) (mPEG-PDLA) block copolymer combined with iodide-substituted difluoroboron dibenzoylmethane-poly(L-lactide) (BF2dbm(I)PLLA). Boron nanoparticles (BNPs) were fabricated in two different solvent compositions to study the effects on BNP size distribution. The physical and photoluminescent properties of the BNPs were studied in vitro over time to determine stability. Finally, preliminary in vivo results show that stereocomplexed BNPs injected IV are taken up by tumors, an important prerequisite to their use as hypoxia imaging agents in preclinical studies. PMID:20704337

  10. Oxygen Sensing Difluoroboron β-Diketonate Polylactide Materials with Tunable Dynamic Ranges for Wound Imaging.

    PubMed

    DeRosa, Christopher A; Seaman, Scott A; Mathew, Alexander S; Gorick, Catherine M; Fan, Ziyi; Demas, James N; Peirce, Shayn M; Fraser, Cassandra L

    2016-11-23

    Difluoroboron β-diketonate poly(lactic acid) materials exhibit both fluorescence (F) and oxygen sensitive room-temperature phosphorescence (RTP). Introduction of halide heavy atoms (Br and I) is an effective strategy to control the oxygen sensitivity in these materials. A series of naphthyl-phenyl (nbm) dye derivatives with hydrogen, bromide and iodide substituents were prepared for comparison. As nanoparticles, the hydrogen derivative was hypersensitive to oxygen (0-0.3%), while the bromide analogue was suited for hypoxia detection (0-3% O 2 ). The iodo derivative, BF 2 nbm(I)PLA, showed excellent F to RTP peak separation and an 0-100% oxygen sensitivity range unprecedented for metal-free RTP emitting materials. Due to the dual emission and unconventionally long RTP lifetimes of these O 2 sensing materials, a portable, cost-effective camera was used to quantify oxygen levels via lifetime and red/green/blue (RGB) ratiometry. The hypersensitive H dye was well matched to lifetime detection, simultaneous lifetime and ratiometric imaging was possible for the bromide analogue, whereas the iodide material, with intense RTP emission and a shorter lifetime, was suited for RGB ratiometry. To demonstrate the prospects of this camera/material design combination for bioimaging, iodide boron dye-PLA nanoparticles were applied to a murine wound model to detect oxygen levels. Surprisingly, wound oxygen imaging was achieved without covering (i.e. without isolating from ambient conditions, air). Additionally, would healing was monitored via wound size reduction and associated oxygen recovery, from hypoxic to normoxic. These single-component materials provide a simple tunable platform for biological oxygen sensing that can be deployed to spatially resolve oxygen in a variety of environments.

  11. The iodide space in rabbit brain

    PubMed Central

    Ahmed, Nawal; Van Harreveld, A.

    1969-01-01

    1. The iodide space in rabbit brain varies greatly depending on the conditions under which it is determined. 2. When 131I- only is used the iodide space 4 hr after administration of the marker is of the order of 2%. The iodide content of the cerebrospinal fluid (c.s.f.) is about 1% of that of the serum. 3. Depression of the active iodide transport by perchlorate increases the space to 8·2% and the iodide content of the c.s.f. to 26% of that of the serum. 4. The active iodide transport can also be depressed by saturation with unlabelled iodide. Up to a serum iodide concentration of 5 mM the space determined after 5 hr remained constant at 2·7%. The iodide space grew when the serum iodide content was enhanced from 5 to 20 mM, to become constant at a value of 10·6% on further increase of the serum iodide (up to 50 mM). The iodide content of the c.s.f. increased in a similar manner as the space with the iodide concentration of the serum to about 1/3 of the serum concentration. The iodide space of the muscle was independent of the plasma iodide content. 5. From 4 to 8 hr after administration of 131I- alone or with unlabelled iodide (to a serum concentration of 15 mM) the iodide space remained relatively constant. 6. When 131I- was administered in the fluid with which the ventricles were perfused an iodide space of about 7% was attained after about 5 hr. 7. In experiments in which 131I- was administered intravenously and the sink action of the c.s.f. was eliminated by perfusion of the ventricles with a perfusate containing as much 131I- as the plasma, the iodide space was 10·2%. When in addition active iodide transport was depressed by perchlorate the space increased to 16·8%. 8. Intravenous administration of labelled and unlabelled iodide (to a serum concentration of 20-40 mM) and ventricle perfusion with the same concentration of 131I- and unlabelled iodide as in the plasma yielded an iodide space of 20·8%. In similar experiments the iodide concentration of the perfusate was so adjusted that after 5 hr perfusion its iodide content hardly changed during the passage through the ventricles. Under these conditions the iodide concentration of the extracellular and perfusion fluids can be considered to be near equal. The iodide space computed on the basis of the iodide content of the outflowing fluid was 22·5%. 9. The large iodide space could be equated with the extracellular space if the iodide remained extracellular. This seems to be the case in the muscle where the iodide space is similar to the inulin space. 10. The large effects on the iodide space of perchlorate and saturation with unlabelled iodide in experiments in which the marker was administered intravenously and in the perfusate (7 and 8) suggests the presence of an active iodide transport from the brain extracellular fluid into the blood over the blood—brain barrier. PMID:4310942

  12. 21 CFR 520.763a - Dithiazanine iodide tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide tablets. 520.763a Section 520... iodide tablets. (a) Chemical name. 3-Ethyl-2-[5-(3-ethyl - 2 - benzothiazolinylidene) - 1,3 - pentadienyl]-benzothiazolium iodide. (b) Specifications. Dithiazanine iodide tablets contain 10 milligrams, 50 milligrams, 100...

  13. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, D.M.; Coggins, T.L.; Marsh, J.

    Numerous efforts are funded by US agencies (DOE, DoD, DHS) for development of novel radiation sensing and measurement systems. An effort has been undertaken to develop a flexible shielding system compatible with a variety of sources (beta, X-ray, gamma, and neutron) that can be highly characterized using conventional radiation detection and measurement systems. Sources available for use in this system include americium-beryllium (AmBe), plutonium-beryllium (PuBe), strontium-90 (Sr-90), californium-252 (Cf-252), krypton-85 (Kr-85), americium-241 (Am-241), and depleted uranium (DU). Shielding can be varied by utilization of materials that include lexan, water, oil, lead, and polyethylene. Arrangements and geometries of source(s) and shieldingmore » can produce symmetrical or asymmetrical radiation fields. The system has been developed to facilitate accurately repeatable configurations. Measurement positions are similarly capable of being accurately re-created. Stand-off measurement positions can be accurately re-established using differential global positioning system (GPS) navigation. Instruments used to characterize individual measurement locations include a variety of sodium iodide (NaI(Tl)) (3 x 3 inch, 4 x 4 x 16 inch, Fidler) and lithium iodide (LiI(Eu)) detectors (for use with multichannel analyzer software) and detectors for use with traditional hand held survey meters such as boron trifluoride (BF{sub 3}), helium-3 ({sup 3}He), and Geiger-Mueller (GM) tubes. Also available are Global Dosimetry thermoluminescent dosimeters (TLDs), CR39 neutron chips, and film badges. Data will be presented comparing measurement techniques with shielding/source configurations. The system is demonstrated to provide a highly functional process for comparison/characterization of various detector types relative to controllable radiation types and levels. Particular attention has been paid to use of neutron sources and measurements. (authors)« less

  15. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive that even highly functionalized aglycon acceptors add. Following the coupling event, the TMS ethers are readily removed by methanolysis, and since all of the byproducts are volatile, multiple reactions can be performed in a single reaction vessel without isolation of intermediates. In this fashion, per-O-TMS monosaccharides can be converted to biologically relevant α-linked glycolipids in one pot. The stereochemical outcome of these reactions can also be switched to β-glycoside formation by addition of silver to chelate the iodide, thus favoring SN2 displacement of the α-iodide. While iodides derived from benzyl and silyl ether-protected oligosaccharides are susceptible to interglycosidic bond cleavage when treated with TMSI, the introduction of a single acetate protecting group prevents this unwanted side reaction. Partial acetylation of armed glycosyl iodides also attenuates HI elimination side reactions. Conversely, fully acetylated glycosyl iodides are deactivated and require metal catalysis in order for glycosidation to occur. Recent findings indicate that I2 activation of per-O-acetylated mono-, di-, and trisaccharides promotes glycosidation of cyclic ethers to give β-linked iodoalkyl glycoconjugates in one step. Products of these reactions have been converted into multivalent carbohydrate displays. With these synthetic pathways elucidated, chemical reactivity can be exquisitely controlled by the judicious selection of protecting groups to achieve high stereocontrol in step-economical processes.

  16. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils.

    PubMed

    Seki, Miharu; Oikawa, Jun-ichi; Taguchi, Taro; Ohnuki, Toshihiko; Muramatsu, Yasuyuki; Sakamoto, Kazunori; Amachi, Seigo

    2013-01-02

    Laccase oxidizes iodide to molecular iodine or hypoiodous acid, both of which are easily incorporated into natural soil organic matter. In this study, iodide sorption and laccase activity in 2 types of Japanese soil were determined under various experimental conditions to evaluate possible involvement of this enzyme in the sorption of iodide. Batch sorption experiment using radioactive iodide tracer ((125)I(-)) revealed that the sorption was significantly inhibited by autoclaving (121 °C, 40 min), heat treatment (80 and 100 °C, 10 min), γ-irradiation (30 kGy), N(2) gas flushing, and addition of reducing agents and general laccase inhibitors (KCN and NaN(3)). Interestingly, very similar tendency of inhibition was observed in soil laccase activity, which was determined using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a substrate. The partition coefficient (K(d): mL g(-1)) for iodide and specific activity of laccase in soils (Unit g(-1)) showed significant positive correlation in both soil samples. Addition of a bacterial laccase with an iodide-oxidizing activity to the soils strongly enhanced the sorption of iodide. Furthermore, the enzyme addition partially restored iodide sorption capacity of the autoclaved soil samples. These results suggest that microbial laccase is involved in iodide sorption on soils through the oxidation of iodide.

  17. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective

    PubMed Central

    Fisher, W.; Wang, Jian; George, Nysia I.; Gearhart, Jeffery M.; McLanahan, Eva D.

    2016-01-01

    The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children’s Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150–180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29–32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency. PMID:26930410

  18. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective.

    PubMed

    Fisher, W; Wang, Jian; George, Nysia I; Gearhart, Jeffery M; McLanahan, Eva D

    2016-01-01

    The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children's Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150-180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29-32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency.

  19. Hydrogen peroxide inhibits iodide uptake and iodine organification in cultured porcine thyroid follicles.

    PubMed

    Fukayama, H; Murakami, S; Nasu, M; Sugawara, M

    1991-01-01

    We investigated the effect of hydrogen peroxide on the process of thyroid hormone formation in a physiologic culture system of porcine thyroid follicles that we recently established. Porcine thyroid follicles cultured in medium containing 1 mU/mL TSH were exposed to 0 to 500 microM hydrogen peroxide in the presence of 0.1 microCi carrier-free Na125 and sodium iodide for 2 h. Iodide uptake and iodine organification were measured in this incubation system. The kinetics of iodide uptake were used to explain the action of hydrogen peroxide. In addition, cAMP content and Na+,K(+)-ATPase activity (an enzyme necessary for iodide uptake) were measured to investigate the mechanism of hydrogen peroxide action. Hydrogen peroxide at concentrations of 100, 200, and 500 microM inhibited iodide uptake in a dose-dependent manner. Iodide organification was inhibited only when the concentration of hydrogen peroxide was greater than 200 microM. The kinetics of iodide uptake indicated that hydrogen peroxide was a noncompetitive inhibitor with iodide. Inhibition of iodide uptake and iodine organification by hydrogen peroxide were not mediated by alteration of cAMP content of Na+,K(+)-ATPase activity, since exposure to even 500 microM hydrogen peroxide did not change these parameters in the follicle when compared with those of control samples. Our results suggest that the iodide transport system in the thyroid follicle is inhibited at 200 microM hydrogen peroxide or greater.

  20. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    PubMed

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-02

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.

  1. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  3. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  4. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  5. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  6. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to discharges...

  7. Evaluating iodide recycling inhibition as a novel molecular initiating event for thyroid axis disruption

    EPA Science Inventory

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency...

  8. Use of an iodide-specific electrode to study lactoperoxidase-catalyzed iodination of l-tyrosine.

    PubMed

    Threatte, R M; Fregly, M J; Field, F P; Jones, P K

    1979-12-01

    An in vitro method employing an iodide-specific electrode for monitoring lactoperoxidase-catalyzed iodination is described. The method utilized lactoperoxidase, potassium iodide, and a glucose--glucose oxidase system for the generation of hydrogen peroxide and l-tyrosine. As iodination of l-tyrosine proceeded, the free iodide concentration in solution decreased and was monitored by an iodide-specific electrode. The iodide electrode was reliable when compared to a 131I-method for measuring free iodide changes in solution. Increasing concentrations of resorcinol, a well-known inhibitor of thyroid peroxidase-catalyzed iodination, in the reaction mixture resulted in graded inhibition of the initial rate of lactoperoxidase-catalyzed l-tyrosine iodination. This in vitro system can be used to assess inhibitory activity of various antithyroid substances.

  9. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  10. Relationship of dietary iodide and drinking water disinfectants to thyroid function in experimental animals.

    PubMed Central

    Revis, N W; McCauley, P; Holdsworth, G

    1986-01-01

    The importance of dietary iodide on the reported hypothyroid effect of drinking water disinfectants on thyroid function was investigated. Previous studies have also showed differences in the relative sensitivity of pigeons and rabbits to chlorinated water. Pigeons and rabbits were exposed for 3 months to diets containing high (950 ppb) or low (300 ppb) levels of iodide and to drinking water containing two levels of chlorine. Results showed that the high-iodide diet prevented the hypothyroid effect observed in pigeons given the low-iodide diet and chlorinated drinking water. Similar trends were observed in rabbits exposed to the same treatment; however, significant hypothyroid effects were not observed in this animal model. The factor associated with the observed effect of dietary iodide on the chlorine-induced change in thyroid function is unknown, as is the relative sensitivity of rabbits and pigeons to the effect of chlorine. Several factors may explain the importance of dietary iodide and the relative sensitivity of these species. For example, the iodine formed by the known reaction of chlorine with iodide could result in a decrease in the plasma level of iodide because of the relative absorption rates of iodide and iodine in the intestinal tract, and the various types and concentrations of chloroorganics (metabolites) formed in the diet following the exposure of various dietary constituents to chlorine could affect the thyroid function. The former factor was investigated in the present studies. Results do not confirm a consistent, significant reduction in the plasma level of iodide in rabbits and pigeons exposed to chlorinated water and the low-iodide diet. The latter factor is being investigated. PMID:3816728

  11. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  12. Synthesis of carboxylic acids, esters, alcohols and ethers containing a tetrahydropyran ring derived from 6-methyl-5-hepten-2-one.

    PubMed

    Hanzawa, Yohko; Hashimoto, Kahoko; Kasashima, Yoshio; Takahashi, Yoshiko; Mino, Takashi; Sakamoto, Masami; Fujita, Tsutomu

    2012-01-01

    3-hydroxy acids, 3-hydroxy-3,7-dimethyloct-6-enoic acid (1) and 3-hydroxy-2,2,3,7-tetramethyloct-6-enoic acid (2), were prepared from 6-methyl-5-hepten-2-one, and they were subsequently used to prepare (2,6,6-trimethyltetrahydropyran-2-yl)acetic acid (3) and 2-methyl-2-(2,6,6-trimethyltetrahydropyran-2-yl)propanoic acid (4), respectively, via cyclization with an acidic catalyst such as boron trifluoride diethyl etherate or iodine. The reaction of carboxylic acids 3 and 4 with alcohols, including methanol, ethanol, and 1-propanol, produced the corresponding methyl, ethyl, and propyl esters, which all contained a tetrahydropyran ring. Reduction of carboxylic acids 3 and 4 afforded the corresponding alcohols. Subsequent reactions of these alcohols with several acyl chlorides produced novel esters. The alcohols also reacted with methyl iodide and sodium hydride to provide novel ethers. A one-pot cyclization-esterification of 1 to produce esters containing a tetrahydropyran ring, using iodine as a catalyst, was also investigated.

  13. Atomic force microscopy of lead iodide crystal surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-03-01

    Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.

  14. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    DOEpatents

    Skinner, Nathan L.

    1990-01-01

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  15. Iodide handling by the thyroid epithelial cell.

    PubMed

    Nilsson, M

    2001-01-01

    Iodination of thyroglobulin, the key event in the synthesis of thyroid hormone, is an extracellular process that takes place inside the thyroid follicles at the apical membrane surface that faces the follicular lumen. The supply of iodide involves two steps of TSH-regulated transport, basolateral uptake and apical efflux, that imprint the polarized phenotype of the thyroid cell. Iodide uptake is generated by the sodium/iodide symporter present in the basolateral plasma membrane. A candidate for the apical iodide-permeating mechanism is pendrin, a chloride/iodide transporting protein recently identified in the apical membrane. In physiological conditions, transepithelial iodide transport occurs without intracellular iodination, despite the presence of large amounts of thyroglobulin and thyroperoxidase inside the cells. The reason is that hydrogen peroxide, serving as electron acceptor in iodide-protein binding and normally produced at the apical cell surface, is rapidly degraded by cytosolic glutathione peroxidase once it enters the cells. Iodinated thyroglobulin in the lumen stores not only thyroid hormone but iodine incorporated in iodotyrosine residues as well. After endocytic uptake and degradation of thyroglobulin, intracellular deiodination provides a mechanism for recycling of iodide to participate in the synthesis of new thyroid hormone at the apical cell surface.

  16. Demonstration of Iodide Transport Defect but Normal Iodide Organification in Nonfunctioning Nodules of Human Thyroid Glands

    PubMed Central

    Field, James B.; Larsen, P. Reed; Yamashita, Kamejiro; Mashiter, Keith; Dekker, Andrew

    1973-01-01

    Benign and malignant nodules in human thyroid glands, which did not concentrate iodide in vivo, were also unable to accumulate iodide in vitro. The mean thyroid-to-medium ratio (T/M) in seven benign nodules was 0.8±0.2 compared with 7±2 in adjacent normal thyroid tissue. In four malignant thyroid nodules, the mean T/M was 0.5±0.1 compared with 11±4 in adjacent normal thyroid. Despite the inability of such nodules to concentrate iodide, iodide organification was present but was only one-half to one-third as active as in surrounding normal thyroid. Thyroid-stimulating hormone (TSH) increased iodide organification equally in both benign nodules and normal thyroid although it had no effect in three of the four malignant lesions. The reduction in organification is probably related to the absence of iodide transport, since incubation of normal thyroid slices with perchlorate caused similar diminution in iodide incorporation but no change in the response to TSH. Monoiodotyrosine (MIT) and di-iodotyrosine (DIT) accounted for most of the organic iodide in both the nodules and normal tissue. The MIT/DIT ratio was similar in normal and nodule tissue. The normal tissue contained much more inorganic iodide than the nodules, consistent with the absence of the iodide trap in the latter tissue. The thyroxine content of normal thyroid was 149±17 μg/g wet wt and 18±4 μg/g wet wt in the nodules. The transport defect in the nodules was not associated with any reduction in total, Na+-K+- or Mg++-activated ATPase activities or the concentration of ATP. Basal adenylate cyclase was higher in nodules than normal tissue. Although there was no difference between benign and malignant nodules, the response of adenylate cyclase to TSH was greater in the benign lesions. These studies demonstrate that nonfunctioning thyroid nodules, both benign and malignant, have a specific defect in iodide transport that accounts for their failure to accumulate radioactive iodide in vivo. In benign nodules, iodide organification was increased by TSH while no such effect was found in three of four malignant lesions, suggesting additional biochemical defects in thyroid carcinomas. PMID:4353998

  17. Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation

    PubMed Central

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.

    2014-01-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582

  18. Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation.

    PubMed

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A; Kaplan, Daniel I; Santschi, Peter H; Hansel, Colleen M; Yeager, Chris M

    2014-05-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.

  19. Linking loss of sodium-iodide symporter expression to DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyckesvärd, Madeleine Nordén; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg; Kapoor, Nirmal

    Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression andmore » transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.« less

  20. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  1. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets the...

  2. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c...

  3. Congenital hypothyroidism from complete iodide transport defect: long-term evolution with iodide treatment.

    PubMed Central

    Albero, R.; Cerdan, A.; Sanchez Franco, F.

    1987-01-01

    Hypothyroidism from iodide transport deficiency is a rare disease, especially when found in two affected siblings. Treatment with high doses of iodide has been recommended, but no long term results have been reported. Two siblings with congenital hypothyroidism due to total failure to transport iodide have been followed up during twelve and a half years of treatment with oral potassium iodide. Iodine doses varied between 10.3 and 22 mg/day, and serum total iodine concentrations between 100 and 210 micrograms/dl. Total triiodothyronine (T3), thyroxine (T4) and free T4 were in the normal range during the time of study. Basal thyroid stimulating hormones (TSH) and maximum TSH response to thyrotrophin releasing hormone (TRH) were also in the range of normal values. These data along with clinical findings confirmed the potential usefulness of iodine in hypothyroidism due to complete iodide transport defect. PMID:3451231

  4. Project Overview: Inhibition of the Sodium-Iodide Symporter by Perchlorate: Evaluation of Lifestage Sensitivity Using PBPK Modeling

    EPA Science Inventory

    Perchlorate (ClO4-) competitively inhibits uptake of iodide by the sodium-iodide symporter (NIS) in laboratory animals and humans. NIS is found in many tissues, but is primarily responsible for sequestering iodide into the thyroid, enabling biosynthesis of thyroid hormones. The N...

  5. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  6. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  7. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  8. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in salt...

  9. Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choung, Sungwook; Kim, Min Kyung; Yang, Jungseok

    2014-08-04

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of themore » SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation (60Co) resulted in significantly (~2–10 times) lower iodide Kd values for the SMB. The results of Fourier transform infrared spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.« less

  10. Effects of Excess Fluoride and Iodide on Thyroid Function and Morphology.

    PubMed

    Jiang, Yaqiu; Guo, Xiujuan; Sun, Qiuyan; Shan, Zhongyan; Teng, Weiping

    2016-04-01

    Exposure to high levels of iodide in Cangzhou, Shandong Province, China has been associated with increased incidence of thyroid disease; however, whether fluoride can affect the thyroid remains controversial. To investigate the effects of excess fluoride, we evaluated thyroid gland structure and function in rats exposed to fluoride and iodide, either alone or in combination. Five-week-old Wistar rats (n = 160 total) were randomly divided into eight groups: three groups that were given excess fluoride (15, 30, or 60 ppm F); one group given excess iodide (1200 μg/L I); three groups given excess iodide plus fluoride (1200 μg/L I plus 15, 30, or 60 ppm F); and one control group. The serum concentrations of the thyroid hormones TT3 and TT4 on day 150 were significantly reduced for certain fluoride groups; however, no significant differences were observed in concentrations for the pituitary hormone TSH among any groups. Hematoxylin and eosin staining revealed that iodide causes an increase in the areas of the colloid lumens and a decrease in the diameters of epithelial cells and nuclei; however, fluoride causes an increase in nuclear diameters. The damage to follicular epithelial cells upon fluoride or iodide treatment was easily observed by transmission electron microscopy, but the effects were most dramatic upon treatment with both fluoride and iodide. These results suggest that iodide causes the most damage but that fluoride can promote specific changes in the function and morphology of the thyroid, either alone or in combination with iodide.

  11. Development of w/o microemulsion for transdermal delivery of iodide ions.

    PubMed

    Lou, Hao; Qiu, Ni; Crill, Catherine; Helms, Richard; Almoazen, Hassan

    2013-03-01

    The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value<0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.

  12. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept.

    PubMed

    Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G

    2014-08-21

    Typical urinary iodide concentrations range from 0.3 μM to 6.0 μM. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 μM to 6.0 μM. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, F.Y.; Rani, C.S.; Field, J.B.

    Since iodide (I-) inhibits TSH stimulation of cAMP formation, which mediates most of the effects of the hormone, it has been assumed that this accounts for the inhibitory action of iodide on the thyroid. However, TSH stimulation of 32P incorporation into phospholipids and stimulation of thyroid metabolism by other agonists, such as carbachol, phorbol esters, and ionophore A23187, is not cAMP mediated. The present studies examined the effect of iodide on stimulation of glucose oxidation and 32P incorporation into phospholipids by TSH and other agonists to determine if the inhibition of cAMP formation was responsible for the action of iodide.more » Preincubation of dog thyroid slices for 1 h with iodide (10(-4) M) inhibited TSH-, (Bu)2cAMP-, carbachol-, methylene blue-, 12-O-tetradecanoyl phorbol-13-acetate-, ionophore A23187-, prostaglandin E1-, and cholera toxin-stimulated glucose oxidation. I- also inhibited the stimulation by TSH, 12-O-tetradecanoyl phorbol-13-acetate, carbachol, and ionophore A23187 of 32P incorporation into phospholipids. The inhibition was similar whether iodide was added 2 h before or simultaneously with the agonist. I- itself sometimes stimulated basal glucose oxidation, but had no effect on basal 32P incorporation into phospholipids. The effects of iodide on basal and agonist-stimulated thyroid metabolism were blocked by methimazole (10(-3) M). When dog thyroid slices were preloaded with 32PO4 or (1-14C)glucose, the iodide inhibition of agonist stimulation disappeared, suggesting that the effect of iodide involves the transport process. In conclusion, I- inhibited stimulation of glucose oxidation and 32P incorporation into phospholipids by all agonists, indicating that the effect is independent of the cAMP system and that iodide autoregulation does not only involve this system. Oxidation and organification of iodide are necessary for the inhibition.« less

  14. Determination of iodide with 1,3-dibromo-5,5-dimethylhydantoin (DBH) in comparison with the ICl-method. Analytical methods of pharmacopeias with DBH in respect to environmental and economical concern. Part 3.

    PubMed

    Hilp, M; Senjuk, S

    2001-06-01

    USP 1995 (The United States Pharmacopeia, 23rd Edit., (1995), potassium iodide p. 1265, sodium iodide p. 1424), PH. EUR. 1997 (European Pharmacopoeia, third ed., Council of Europe, Strasbourg, (1997), potassium iodide p. 1367, sodium iodide p. 1493) and JAP 1996 (The Japanes Pharmacopoeia, 13th ed. (1996), potassium iodide p. 578, sodium iodide p. 630) determine iodide with the ICl-method (J. Am. Chem. Soc. 25 (1903) 756-761; Z. Anorg. Chem. 36 (1903) 76-83; Fresenius Z. Anal. Chem. 106 (1936) 12-23; Arzneibuch-Kommentar, Wissenschaftliche Erläuterungen zum Europäischen Arzneibuch, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, Govi-Verlag - Pharmazeutischer Verlag GmbH, Eschborn, 12th suppl. (1999), K10 p. 2), using chloroform, which is toxic and hazardous to environment. Without the application of chlorinated hydrocarbons USP 2000 (The United State Pharmacopeia, 24th ed. (2000), potassium iodide p. 1368, sodium iodide p. 1535) and Brit 1999 (British Pharmacopoeia London, (1999), Appendix VIII C, p. A162) titrate iodide with the redox indicator amaranth. A titration with potentiometric indication giving two end-points at the step of I(2) and [ICl(2)](-) is described. Due to the high concentration of hydrochloric acid required for the ICl-method, the determination with DBH (1,3-dibromo-5,5-dimethylhydantoin; 1,3-dibromo-5,5-dimethyl-2,4-imidazolidinedione) can be recommended and is performed easily. Similarly, the iodide content of gallamine triethiodide may be analyzed with DBH by application of a visual two-phase titration in water and ethyl acetate or with potentiometric indication in a mixture of 2-propanol and water. During the removal of the excess of DBH 4-bromo-triethylgallamine (2,2',2"-[1-bromo-benzene-2,3,4-triyltris(oxy)]N,N,N-triethylethanium) is formed.

  15. A comparison between the gastric and salivary concentration of iodide, pertechnetate, and bromide in man

    PubMed Central

    Harden, R. McG.; Alexander, W. D.; Shimmins, J.; Chisholm, D.

    1969-01-01

    The concentration of iodide (I−) and pertechnetate (TcO4−) and bromide (Br−) has been measured simultaneously in gastric juice and parotid saliva. The combined gastric and salivary clearance for iodide and pertechnetate is more than twice the clearance of these ions by the thyroid gland. The concentration of the ions was in the order I−>TcO4−>Br− in both gastric juice and saliva. Differences exist between the secretion of iodide, pertechnetate, and bromide. Bromide, in contrast to iodide and pertechnetate, was found to be more concentrated in gastric juice than in saliva. The ratio of the iodide to pertechnetate clearance was greater in gastric juice than in saliva. PMID:5358585

  16. Determination of iodide, iodate and organo-iodine in waters with a new total organic iodine measurement approach.

    PubMed

    Gong, Tingting; Zhang, Xiangru

    2013-11-01

    The dissolved iodine species that dominate aquatic systems are iodide, iodate and organo-iodine. These species may undergo transformation to one another and thus affect the formation of iodinated disinfection byproducts during disinfection of drinking waters or wastewater effluents. In this study, a fast, sensitive and accurate method for determining these iodine species in waters was developed by derivatizing iodide and iodate to organic iodine and measuring organic iodine with a total organic iodine (TOI) measurement approach. Within this method, organo-iodine was determined directly by TOI measurement; iodide was oxidized by monochloramine to hypoiodous acid and then hypoiodous acid reacted with phenol to form organic iodine, which was determined by TOI measurement; iodate was reduced by ascorbic acid to iodide and then determined as iodide. The quantitation limit of organo-iodine or sum of organo-iodine and iodide or sum of organo-iodine, iodide and iodate was 5 μg/L as I for a 40 mL water sample (or 2.5 μg/L as I for an 80 mL water sample, or 1.25 μg/L as I for a 160 mL water sample). This method was successfully applied to the determination of iodide, iodate and organo-iodine in a variety of water samples, including tap water, seawater, urine and wastewater. The recoveries of iodide, iodate and organo-iodine were 91-109%, 90-108% and 91-108%, respectively. The concentrations and distributions of iodine species in different water samples were obtained and compared. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The BLI-3/TSP-15/DOXA-1 Dual Oxidase Complex Is Required for Iodide Toxicity in Caenorhabditis elegans

    PubMed Central

    Xu, Zhaofa; Luo, Jintao; Li, Yu; Ma, Long

    2014-01-01

    Iodine is an essential trace element for life. Iodide deficiency can lead to defective biosynthesis of thyroid hormones and is a major cause of hypothyroidism and mental retardation. Excess iodide intake, however, has been linked to different thyroidal diseases. How excess iodide causes harmful effects is not well understood. Here, we found that the nematode Caenorhabditis elegans exhibits developmental arrest and other pleiotropic defects when exposed to excess iodide. To identify the responsible genes, we performed a forward genetic screen and isolated 12 mutants that can survive in excess iodide. These mutants define at least four genes, two of which we identified as bli-3 and tsp-15. bli-3 encodes the C. elegans ortholog of the mammalian dual oxidase DUOX1 and tsp-15 encodes the tetraspanin protein TSP-15, which was previously shown to interact with BLI-3. The C. elegans dual oxidase maturation factor DOXA-1 is also required for the arresting effect of excess iodide. Finally, we detected a dramatically increased biogenesis of reactive oxygen species in animals treated with excess iodide, and this effect can be partially suppressed by bli-3 and tsp-15 mutations. We propose that the BLI-3/TSP-15/DOXA-1 dual oxidase complex is required for the toxic pleiotropic effects of excess iodide. PMID:25480962

  18. Uptake mechanism for iodine species to black carbon.

    PubMed

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  19. Iodide-ion-induced oscillations of the ferroin-catalyzed Belousov—Zhabotinskii reaction

    NASA Astrophysics Data System (ADS)

    Melicherčík, Milan; Treindl, Ľudovít

    1992-08-01

    Contrary to "classical" Belousov—Zhabotinskii (BZ) oscillatory systems, consisting of malonic acid, Ce(IV)—Ce(III) or Mn(III)—Mn(II) redox catalyst and KBrO 3 in solutions of H 2SO 4, where in an interval of added iodide initial concentrations 10 -4 mol dm -3 < [I -] 0 < 10 -3 mol dm -3 the oscillations have the same frequency and amplitude as in the absence of iodide, the effect of added iodide on the ferroin-catalyzed BZ system with methyl ester of 3-oxobutanoic acid leads to an increase in the number of oscillations and in the time of their duration. The dependence of this effect on substrate, bromate, iodide, sulfuric acid and ferroin concentrations has been studied. The observations may be explained by a mechanism involving direct reduction of ferroin by iodide, oxidation of iodide to iodate by bromate with a bromide production and eventual faster bromination and iodination of methyl ester of 3-oxobutanoic acid in relation to malonic acid.

  20. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    DOE PAGES

    Adamic, M. L.; Lister, T. E.; Dufek, E. J.; ...

    2015-03-25

    This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Furthermore, precipitated silver iodide samples are usually mixed with niobium or silver powdermore » prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.« less

  1. Palladium-Catalyzed Direct C–H Arylation of Cyclic Enaminones with Aryl Iodides

    PubMed Central

    Yu, Yi-Yun; Bi, Lei

    2013-01-01

    A ligand-free method for the Pd-catalyzed direct arylation of cyclic enaminones using aryl iodides was developed. This method can be applied to a wide range of cyclic enaminones and aryl iodides with excellent C5-regioselectivity. Using widely available aryl iodides, the generality of this transformation provides easy access to a variety of 3-arylpiperidine structural motifs. PMID:23750615

  2. Development of a mercuric iodide solid state spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Vallerga, J.

    1983-01-01

    Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.

  3. Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats

    PubMed Central

    Lima Gonçalves, Carlos Frederico; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Soares Fortunato, Rodrigo; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia

    2013-01-01

    Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function. PMID:24023911

  4. Evaluation of perturbations in serum thyroid hormones during human pregnancy due to dietary iodide and perchlorate exposure using a biologically based dose-response model.

    PubMed

    Lumen, Annie; Mattie, David R; Fisher, Jeffrey W

    2013-06-01

    A biologically based dose-response model (BBDR) for the hypothalamic pituitary thyroid (HPT) axis was developed in the near-term pregnant mother and fetus. This model was calibrated to predict serum levels of iodide, total thyroxine (T4), free thyroxine (fT4), and total triiodothyronine (T3) in the mother and fetus for a range of dietary iodide intake. The model was extended to describe perchlorate, an environmental and food contaminant, that competes with the sodium iodide symporter protein for thyroidal uptake of iodide. Using this mode-of-action framework, simulations were performed to determine the daily ingestion rates of perchlorate that would be associated with hypothyroxinemia or onset of hypothyroidism for varying iodide intake. Model simulations suggested that a maternal iodide intake of 75 to 250 µg/day and an environmentally relevant exposure of perchlorate (~0.1 µg/kg/day) did not result in hypothyroxinemia or hypothyroidism. For a daily iodide-sufficient intake of 200 µg/day, the dose of perchlorate required to reduce maternal fT4 levels to a hypothyroxinemic state was estimated at 32.2 µg/kg/day. As iodide intake was lowered to 75 µg/day, the model simulated daily perchlorate dose required to cause hypothyroxinemia was reduced by eightfold. Similarly, the perchlorate intake rates associated with the onset of subclinical hypothyroidism ranged from 54.8 to 21.5 µg/kg/day for daily iodide intake of 250-75 µg/day. This BBDR-HPT axis model for pregnancy provides an example of a novel public health assessment tool that may be expanded to address other endocrine-active chemicals found in food and the environment.

  5. Analysis of iodide and iodate in Lake Mead, Nevada using a headspace derivatization gas chromatography-mass spectrometry.

    PubMed

    Dorman, James W; Steinberg, Spencer M

    2010-02-01

    We report here a derivatization headspace method for the analysis of inorganic iodine in water. Samples from Lake Mead, the Las Vegas Wash, and from Las Vegas tap water were examined. Lake Mead and the Las Vegas Wash contained a mixture of both iodide and iodate. The average concentration of total inorganic iodine (TII) for Lake Mead was approximately 90 nM with an iodide-to-iodate ratio of approximately 1. The TII concentration (approximately 160 nM) and the ratio of iodide to iodate were higher for the Las Vegas Wash (approximately 2). The TII concentration for tap water was close to that of Lake Mead (approximately 90 nM); however, tap water contained no detectable iodide as a result of ozonation and chlorine treatment which converts all of the iodide to iodate.

  6. Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature

    NASA Astrophysics Data System (ADS)

    Kong, Weimin; Li, Guohui; Liang, Qiangbing; Ji, Xingqi; Li, Gang; Ji, Ting; Che, Tao; Hao, Yuying; Cui, Yanxia

    2018-03-01

    In this work, the synthesis of regular single crystalline lead iodide nanoplatelets are carried out based on the physical vapor phase deposition method. Different lead iodide nanoplatelets are obtained by tuning the location of the mica substrate along with the temperature of the tube furnace. The rules of size, thickness, density of the lead iodide nanoplatelets at varied deposition conditions are analyzed according to the crystal growth principles. It was claimed in literature that the photoluminescence of lead iodide could be obtained only at a low temperature (lower than 200 K). Here, at room temperature, we successfully obtained the photoluminescence spectra of the prepared lead iodide nanoplatelets, which possess two apparent peaks due to the biexcitons and the inelastic scattering of excitons, respectively. Our present study contributes to the development of nanoscaled high performance optoelectronic devices.

  7. Identification of Potential Sodium Iodide Symporter (NIS) Inhibitors in ToxCast Phase1_v2 Chemical Library Using in vitro Radioactive Iodide Uptake (RAIU) Assay

    EPA Science Inventory

    Identification of Potential Sodium Iodide Symporter (NIS) Inhibitors in ToxCast Phase1_v2 Chemical Library Using in vitro Radioactive Iodide Uptake (RAIU) Assay Jun Wang1,2, Daniel R. Hallinger2, Ashley S. Murr2, Angela R. Buckalew1, Tammy E. Stoker2, Susan C. Laws21Oak Ridge In...

  8. Testing iodized activated carbon filters with non-radioactive methyl iodide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deitz, V.R.; Romans, J.B.

    1980-05-30

    Iodized carbons, impregnated with KIx(KI + xI2), were evaluated for trapping methyl iodide-127. In this method the complete effluent of the carbon is sampled and analyzed continuously. In contrast, the RDT-M16 test procedure counts the carbon and the back-up beds for the accumulated 131 species and no information is obtained for the interaction of the large amount of carrier methyl iodide-127 with the iodized charcoal. The test apparatus to measure the penetration of methyl iodide-127 is described and the calibration procedures are detailed. Results are given for the penetration of methyl iodide-127 through new activated carbons, carbons in service, andmore » exhausted carbons withdrawn from service. The reduction in trapping efficiency with service is accompanied by the development of a maximum in the concentration of methyl iodide-127 during the air purge after the dose period. This behavior has escaped notice with methyl iodide-131 due to the way that test is made. The chromatographic holdup of methyl iodide-127 by carbons in service, together with the subsequent slow desorption step, could result in a dilution of the penetration iodine to acceptable levels under some conditions encountered in plant filter operations.« less

  9. An Efficient Process for Pd-Catalyzed C–N Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors

    PubMed Central

    Fors, Brett P.; Davis, Nicole R.; Buchwald, Stephen L.

    2009-01-01

    An investigation into Pd-catalyzed C–N cross-coupling reactions of aryl iodides is described. NaI is shown to have a significant inhibitory effect on these processes. By switching to a solvent system in which the iodide byproduct was insoluble, reactions of aryl iodides were accomplished with the same efficiencies as aryl chlorides and bromides. Using catalyst systems based on certain biarylphosphine ligands, aryl iodides were successfully reacted with an array of primary and secondary amines in high yields. Lastly, reactions of heteroarylamines and heteroaryliodides were also conducted in high yields. PMID:19348431

  10. Potassium Iodide

    MedlinePlus

    ... iodide you should take or give to your child depends on your age or your child's age. If potassium iodide is taken by a ... you should take yourself or give to your child. Ask your doctor, pharmacist, or public official if ...

  11. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    PubMed

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  13. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  14. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  15. New iodide-based molten salt systems for high temperature molten salt batteries

    NASA Astrophysics Data System (ADS)

    Fujiwara, Syozo; Kato, Fumio; Watanabe, Syouichiro; Inaba, Minoru; Tasaka, Akimasa

    Novel multi-component molten salt systems containing iodides, LiF-LiBr-LiI, LiF-NaBr-LiI, and LiF-LiCl-LiBr-LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (∼3 S cm -1 at 500 °C) than conventional LiCl-KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.

  16. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    DOEpatents

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  17. A fluorescence turn-on sensor for iodide based on a thymine-Hg(II)-thymine complex.

    PubMed

    Ma, Boling; Zeng, Fang; Zheng, Fangyuan; Wu, Shuizhu

    2011-12-23

    Iodide plays a vital role in many biological processes, including neurological activity and thyroid function. Due to its physiological relevance, a method for the rapid, sensitive, and selective detection of iodide in food, pharmaceutical products, and biological samples such as urine is of great importance. Herein, we demonstrate a novel and facile strategy for constructing a fluorescence turn-on sensor for iodide based on a T-Hg(II)-T complex (T=thymine). A fluorescent anthracene-thymine dyad (An-T) was synthesized, the binding of which to a mercury(II) ion lead to the formation of a An-T-Hg(II)-T-An complex, thereby quenching the fluorescent emission of this dyad. In this respect, the dyad An-T constituted a fluorescence turn-off sensor for mercury(II) ions in aqueous media. More importantly, it was found that upon addition of iodide, the mercury(II) ion was extracted from the complex due to the even stronger binding between mercury(II) ions and iodide, leading to the release of the free dyad and restoration of the fluorescence. By virtue of this fluorescence quenching and recovery process, the An-T-Hg(II)-T-An complex constitutes a fluorescence turn-on sensor for iodide with a detection limit of 126 nM. Moreover, this sensor is highly selective for iodide over other common anions, and can be used in the determination of iodide in drinking water and biological samples such as urine. This strategy may provide a new approach for sensing some other anions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Permeation of iodide from iodine-enriched yeast through porcine intestine.

    PubMed

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew

    2013-01-01

    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  19. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  20. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.

    1993-04-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  1. Methods of forming boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less

  2. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  3. In Vivo Evaluation of Transdermal Iodide Microemulsion for Treating Iodine Deficiency Using Sprague Dawley Rats.

    PubMed

    Alayoubi, Alaadin; Sullivan, Ryan D; Lou, Hao; Patel, Hemlata; Mandrell, Timothy; Helms, Richard; Almoazen, Hassan

    2016-06-01

    The objective of this study was to evaluate the transdermal efficiency of iodide microemulsion in treating iodine deficiency using rats as an animal model. Animals were fed either iodine-deficient diet (20 μg/kg iodide) or control diet (200 μg/kg iodide) over a 17-month period. At month 14, iodide microemulsion was applied topically in iodine-deficient group and physiological evaluations of thyroid gland functions were characterized by monitoring the thyroid hormones (T3, T4), thyroid-stimulating hormone (TSH), iodide ion excretion in urine, and the overall rat body weights in both groups. Moreover, morphological evaluations of thyroid gland before and after treatment were performed by ultrasound imaging and through histological assessment. Prior to microemulsion treatment, the levels of T3, T4, and TSH in iodine-deficient group were statistically significant as compared to that in the control group. The levels of T3 and T4 increased while TSH level decreased significantly in iodine-deficient group within the first 4 weeks of treatment. After treatment, iodide concentration in urine increased significantly. There was no statistical difference in weight between the two groups. Ultrasound imaging and histological evaluations showed evidence of hyperplasia in iodine-deficient group. Topical iodide microemulsion has shown a promising potential as a novel delivery system to treat iodine deficiency.

  4. Perchlorate and iodide in whole blood samples from infants, children, and adults in Nanchang, China.

    PubMed

    Zhang, Tao; Wu, Qian; Sun, Hong Wen; Rao, Jia; Kannan, Kurunthachalam

    2010-09-15

    Perchlorate, ClO(4)(-), interferes with iodide (I(-)) uptake by the sodium-iodide symporter (NIS) and thereby affects thyroid hormone production in the body. Studies have reported human exposures to perchlorate based on measurements in urine, but little is known about the levels in blood. In this study, we determined concentrations of perchlorate, iodide, and other anions (e.g., chlorate [ClO(3)(-)], bromate [BrO(3)(-)], bromide [Br(-)]) in 131 whole blood samples collected from Chinese donors aged 0.4 to 90 yr, in Nanchang, China. Perchlorate, iodide, and bromide were detected in all of the samples analyzed, whereas chlorate was found in only 27% of the samples and bromate was found in only 2%. The mean (range) concentrations of perchlorate, iodide, and bromide were 2.68 (0.51-10.5), 42.6 (1.58-812), and 2120 (1050-4850) ng/mL, respectively. Perchlorate levels in blood from Nanchang adults were 10-fold greater than levels that have been previously reported for U.S. adults. The iodide/perchlorate molar ratio ranged from 3.05 to 15.3 for all age groups, and the ratio increased with age (r = 0.732, p < 0.01). Perchlorate and bromide concentrations decreased significantly with age, whereas iodide concentrations increased with age. No significant gender-related differences in blood perchlorate, iodide, or bromide levels were found. A significant negative correlation was found between the concentrations of perchlorate and iodide in blood. Exposure doses of perchlorate were estimated for infants, toddlers, children, adolescents, and adults based on the measured concentrations in blood, using a simple pharmacokinetic model. The mean exposure doses of perchlorate for our age groups ranged from 1.12 (adults) to 2.22 μg/kg bw/day (infants), values higher than the United States Environmental Protection Agency's (USEPA) reference dose (RfD: 0.7 μg/kg bw/day). This is the first study on perchlorate and iodide levels in whole blood from infants, toddlers, children, adolescents, and adults from a city in China with known high perchlorate levels.

  5. A perchlorate sensitive iodide transporter in frogs

    PubMed Central

    Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.

    2008-01-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962

  6. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-02-04

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  7. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-01-01

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412

  8. Methods for collection and analysis of geopressured geothermal and oil field waters

    USGS Publications Warehouse

    Lico, Michael S.; Kharaka, Yousif K.; Carothers, William W.; Wright, Victoria A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, .and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C2 through C5) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  9. Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions.

    PubMed

    Baran, Talat

    2017-06-15

    In catalytic systems, the support materials need to be both eco friendly and low cost as well as having high thermal and chemical stability. In this paper, a novel starch supported palladium catalyst, which had these outstanding properties, was designed and its catalytic activity was evaluated in a Suzuki coupling reaction under microwave heating with solvent-free and mild reaction conditions. The starch supported catalyst gave remarkable reaction yields after only 5min as a result of the coupling reaction of the phenyl boronic acid with 23 different substrates, which are bearing aril bromide, iodide, and chloride. The longevity of the catalyst was also investigated, and the catalyst could be reused for 10 runs. The starch supported Pd(II) catalyst yielded remarkable TON (up to 25,000) and TOF (up to 312,500) values by using a simple, fast and eco-friendly method. In addition, the catalytic performance of the catalyst was tested against different commercial palladium catalysts, and the green starch supported catalyst had excellent selectivity. The catalytic tests showed that the novel starch based palladium catalyst proved to be an economical and practical catalyst for the synthesis of biaryl compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be...

  11. Iron-catalyzed 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes.

    PubMed

    Xu, Tao; Cheung, Chi Wai; Hu, Xile

    2014-05-05

    Iron catalysis has been developed for the intermolecular 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes. The catalysis has a wide substrate scope and high functional-group tolerance. A variety of perfluoroalkyl iodides including CF3 I can be employed. The resulting perfluoroalkylated alkyl and alkenyl iodides can be further functionalized by cross-coupling reactions. This methodology provides a straightforward and streamlined access to perfluoroalkylated organic molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.

    PubMed

    McMahon, Caitlin M; Alexanian, Erik J

    2014-06-02

    A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Crystalline boron nitride aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less

  14. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...

  15. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...

  16. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent. (c... salt as a source of dietary iodine in accordance with good manufacturing or feeding practice. ...

  17. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the...

  18. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.

    PubMed

    Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit

    2016-06-01

    In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance.

    PubMed

    Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien

    2017-03-15

    Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

  20. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing hasmore » progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  1. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    PubMed

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  2. The role of the IRE1 pathway in excessive iodide- and/or fluoride-induced apoptosis in Nthy-ori 3-1 cells in vitro.

    PubMed

    Liu, Hongliang; Zeng, Qiang; Cui, Yushan; Zhao, Liang; Zhang, Lei; Fu, Gang; Hou, Changchun; Zhang, Shun; Yu, Linyu; Jiang, Chunyang; Wang, Zhenglun; Chen, Xuemin; Wang, Aiguo

    2014-01-30

    Excessive iodide and fluoride coexist in the groundwater in many regions, causing a potential risk to the human thyroid. To investigate the mechanism of iodide- and fluoride-induced thyroid cytotoxicity, human thyroid follicular epithelial cells (Nthy-ori 3-1) were treated with different concentrations of potassium iodide (KI), with or without sodium fluoride (NaF). Cell morphology, viability, lactate dehydrogenase (LDH) leakage, apoptosis, and expression of inositol-requiring enzyme 1 (IRE1) pathway-related molecules were assessed. Results showed 50 mM of KI, 1 mM of NaF, and 50 mM of KI +1 mM of NaF changed cellular morphology, decreased viability, and increased LDH leakage and apoptosis. Elevated expression of binding protein (BiP), IRE1, and C/EBP homologous protein (CHOP) mRNA and protein, as well as spliced X-box-binding protein-1 (sXBP-1) mRNA, were observed in the 1 mM NaF and 50 mM KI +1 mM NaF groups. Collectively, excessive iodide and/or fluoride is cytotoxic to the human thyroid. Although these data do not manifest iodide could induce the IRE1 pathway, the cytotoxicity followed by exposure to fluoride alone or in combination with iodide may be related to IRE1 pathway-induced apoptosis. Furthermore, exposure to the combination of excessive iodide and fluoride may cause interactive effects on thyroid cytotoxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  4. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    NASA Technical Reports Server (NTRS)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  5. Development of a Screening Approach to Detect Thyroid Disrupting Chemicals that Inhibit the Human Sodium/Iodide Symporter (NIS)

    EPA Science Inventory

    Thyroid hormone synthesis requires active iodide uptake mediated by the sodium/iodide symporter (NIS). Monovalent anions, such as the environmental contaminant perchlorate, have been well characterized as competitive inhibitors of NIS, yet limited information exists for more stru...

  6. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be..., will not result in daily ingestion of the additive so as to provide a total amount of iodine in excess...

  7. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be..., will not result in daily ingestion of the additive so as to provide a total amount of iodine in excess...

  8. The oxidation of reduced nicotinamide nucleotides by hydrogen peroxide in the presence of lactoperoxidase and thiocyanate, iodide or bromide

    PubMed Central

    McC. Hogg, D.; Jago, G. R.

    1970-01-01

    Lactoperoxidase (EC 1.11.1.7) catalysed the oxidation of NADH by hydrogen peroxide in the presence of either thiocyanate, iodide or bromide. In the presence of thiocyanate, net oxidation of thiocyanate occurred simultaneously with the oxidation of NADH, but in the presence of iodide or bromide, only the oxidation of NADH occurred to a significant extent. In the presence of thiocyanate or bromide, NADH was oxidized to NAD+ but in the presence of iodide, an oxidation product with spectral and chemical properties distinct from NAD+ was formed. Thiocyanate, iodide and bromide appeared to function in the oxidation of NADH by themselves being oxidized to products which in turn oxidized NADH, rather than by activating the enzyme. Iodine, which oxidized NADH non-enzymically, appeared to be an intermediate in the oxidation of NADH in the presence of iodide. NADPH was oxidized similarly under the same conditions. An assessment was made of the rates of these oxidation reactions, together with the rates of other lactoperoxidase-catalysed reactions, at physiological concentrations of thiocyanate, iodide and bromide. The results indicated that in milk and saliva the oxidation of thiocyanate to a bacterial inhibitor was likely to predominate over the oxidation of NADH. PMID:4317722

  9. Catalytic determination of molybdenum(VI) by means of an iodide ion-selective electrode and a landolt-type hydrogen peroxide-iodide reaction.

    PubMed

    Kataoka, M; Nishimura, K; Kambara, T

    1983-12-01

    A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 muM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.

  10. Activation of the Nrf2-Keap 1 Pathway in Short-Term Iodide Excess in Thyroid in Rats

    PubMed Central

    Liang, Xue

    2017-01-01

    Wistar rats were randomly divided into groups of varying iodide intake: normal iodide; 10 times high iodide; and 100 times high iodide on Days 7, 14, and 28. Insignificant changes were observed in thyroid hormone levels (p > 0.05). Urinary iodine concentration and iodine content in the thyroid glands increased after high consumption of iodide from NI to 100 HI (p < 0.05). The urinary iodine concentration of the 100 HI group on Days 7, 14, and 28 was 60–80 times that of the NI group. The mitochondrial superoxide production and expressions of Nrf2, Srx, and Prx 3 all significantly increased, while Keap 1 significantly decreased in the 100 HI group when compared to the NI or 10 HI group on Days 7, 14, and 28 (p < 0.05). Immunofluorescence staining results showed that Nrf2 was localized in the cytoplasm in NI group. Although Nrf2 was detected in both cytoplasm and nucleus in 10 HI and 100 HI groups, a stronger positive staining was found in the nucleus. We conclude that the activation of the Nrf2-Keap 1 antioxidative defense mechanism may play a crucial role in protecting thyroid function from short-term iodide excess in rats. PMID:28133506

  11. Flavonoids, Thyroid Iodide Uptake and Thyroid Cancer—A Review

    PubMed Central

    Gonçalves, Carlos F. L.; de Freitas, Mariana L.; Ferreira, Andrea C. F.

    2017-01-01

    Thyroid cancer is the most common malignant tumor of the endocrine system and the incidence has been increasing in recent years. In a great part of the differentiated carcinomas, thyrocytes are capable of uptaking iodide. In these cases, the main therapeutic approach includes thyroidectomy followed by ablative therapy with radioiodine. However, in part of the patients, the capacity to concentrate iodide is lost due to down-regulation of the sodium-iodide symporter (NIS), the protein responsible for transporting iodide into the thyrocytes. Thus, therapy with radioiodide becomes ineffective, limiting therapeutic options and reducing the life expectancy of the patient. Excessive ingestion of some flavonoids has been associated with thyroid dysfunction and goiter. Nevertheless, studies have shown that some flavonoids can be beneficial for thyroid cancer, by reducing cell proliferation and increasing cell death, besides increasing NIS mRNA levels and iodide uptake. Recent data show that the flavonoids apingenin and rutin are capable of increasing NIS function and expression in vivo. Herein we review literature data regarding the effect of flavonoids on thyroid cancer, besides the effect of these compounds on the expression and function of the sodium-iodide symporter. We will also discuss the possibility of using flavonoids as adjuvants for therapy of thyroid cancer. PMID:28604619

  12. Electroextraction of boron from boron carbide scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Ashish; Anthonysamy, S., E-mail: sas@igcar.gov.in; Ghosh, C.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction processmore » developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.« less

  13. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  14. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  15. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  16. Halogens in oil and gas production-associated wastewater.

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Warner, N. R.; Dwyer, G. S.; Mitch, W.; Vengosh, A.

    2014-12-01

    Elevated chloride and bromide in oil and gas wastewaters that are released to the environment are one of the major environmental risks in areas impacted by shale gas development [Olmstead et al.,2013]. In addition to direct contamination of streams, the potential for formation of highly toxic disinfection by-products (DBPs) in drinking water in utilities located downstream from disposal sites poses a serious risk to human health. Here we report on the occurrence of iodide in oil and gas wastewater. We conducted systematic measurements of chloride, bromide, and iodide in (1) produced waters from conventional oil and gas wells from the Appalachian Basin; (2) hydraulic fracturing flowback fluids from unconventional Marcellus and Fayetteville shale gas, (3) effluents from a shale gas spill site in West Virginia; (4) effluents of oil and gas wastewater disposed to surface water from three brine treatment facilities in western Pennsylvania; and (5) surface waters downstream from the brine treatment facilities. Iodide concentration was measured by isotope dilution-inductively coupled plasma-mass spectrometry, which allowed for a more accurate measurement of iodide in a salt-rich matrix. Iodide in both conventional and unconventional oil and gas produced and flowback waters varied from 1 mg/L to 55 mg/L, with no systematic enrichment in hydraulic fracturing fluids. The similarity in iodide content between the unconventional Marcellus flowback waters and the conventional Appalachian produced waters clearly indicate that the hydraulic fracturing process does not induce additional iodide and the iodide content is related to natural variations in the host formations. Our data show that effluents from the brine treatment facilities have elevated iodide (mean = 20.9±1 mg/L) compared to local surface waters (0.03± 0.1 mg/L). These results indicate that iodide, in addition to chloride and bromide in wastewater from oil and gas production, poses an additional risk to downstream surface water quality and drinking water utilities given the potential of formation of iodate-DBPs in drinking water. Olmstead, S.M. et al. (2013). Shale gas development impacts on surface water quality in Pennsylvania, PNAS, 110, 4962-4967.

  17. Use of Phenylboronic Acids to Investigate Boron Function in Plants. Possible Role of Boron in Transvacuolar Cytoplasmic Strands and Cell-to-Wall Adhesion

    PubMed Central

    Bassil, Elias; Hu, Hening; Brown, Patrick H.

    2004-01-01

    The only defined physiological role of boron in plants is as a cross-linking molecule involving reversible covalent bonds with cis-diols on either side of borate. Boronic acids, which form the same reversible bonds with cis-diols but cannot cross-link two molecules, were used to selectively disrupt boron function in plants. In cultured tobacco (Nicotiana tabacum cv BY-2) cells, addition of boronic acids caused the disruption of cytoplasmic strands and cell-to-cell wall detachment. The effect of the boronic acids could be relieved by the addition of boron-complexing sugars and was proportional to the boronic acid-binding strength of the sugar. Experiments with germinating petunia (Petunia hybrida) pollen and boronate-affinity chromatography showed that boronic acids and boron compete for the same binding sites. The boronic acids appear to specifically disrupt or prevent borate-dependent cross-links important for the structural integrity of the cell, including the organization of transvacuolar cytoplasmic strands. Boron likely plays a structural role in the plant cytoskeleton. We conclude that boronic acids can be used to rapidly and reversibly induce boron deficiency-like responses and therefore are useful tools for investigating boron function in plants. PMID:15466241

  18. Catalytic spectrophotometric determination of iodide in pharmaceutical preparations and edible salt.

    PubMed

    El-Ries, M A; Khaled, Elmorsy; Zidane, F I; Ibrahim, S A; Abd-Elmonem, M S

    2012-02-01

    The catalytic effect of iodide on the oxidation of four dyes: viz. variamine blue (VB), methylene blue (MB), rhodamine B (RB), and malachite green (MG) with different oxidizing agents was investigated for the kinetic spectrophotometric determination of iodide. The above catalyzed reactions were monitored spectrophotometrically by following the change in dye absorbances at 544, 558, 660, or 617 nm for the VB, RB, MB, or MG catalyzed reactions, respectively. Under optimum conditions, iodide can be determined within the concentration levels 0.064-1.27 µg mL(-1) for VB method, 3.20-9.54 µg mL(-1) for RB method, 5.00-19.00 µg mL(-1) for the MB method, and 6.4-19.0 µg mL(-1) for the MG one, with detection limit reaching 0.004 µg mL(-1) iodide. The reported methods were highly sensitive, selective, and free from most interference. Applying the proposed procedures, trace amounts of iodide in pharmaceutical and edible salt samples were successfully determined without separation or pretreatment steps. Copyright © 2011 John Wiley & Sons, Ltd.

  19. A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple.

    PubMed

    Wang, Jen-Yuan; Nien, Po-Chin; Chen, Chien-Hsiao; Chen, Lin-Chi; Ho, Kuo-Chuan

    2012-07-01

    A glucose bio-battery prototype independent of oxygen is proposed based on a glucose dehydrogenase (GDH) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. At the bioanode, a NADH electrocatalyst, poly(methylene blue) (PMB), which can be easily grown on the electrode (screen-printed carbon paste electrode, SPCE) by electrodeposition, is harnessed and engineered. We find that carboxylated multi-walled carbon nanotubes (MWCNTs) are capable of significantly increasing the deposition amount of PMB and thus enhancing the PMB's electrocatalysis of NADH oxidation and the glucose bio-battery's performance. The choice of the iodide/tri-iodide redox couple eliminates the dependence of oxygen for this bio-battery, thus enabling the bio-battery with a constant current-output feature similar to that of the solar cells. The present glucose bio-battery prototype can attain a maximum power density of 2.4 μW/cm(2) at 25 °C. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. The value of iodide as a parameter in the chemical characterisation of groundwaters

    NASA Astrophysics Data System (ADS)

    Lloyd, J. W.; Howard, K. W. F.; Pacey, N. R.; Tellam, J. H.

    1982-06-01

    Brackish and saline groundwaters can severely constrain the use of fresh groundwaters. Their chemical characterisation is important in understanding the hydraulic conditions controlling their presence in an aquifer. Major ions are frequently of limited value but minor ions can be used. Iodide in groundwater is particularly significant in many environments due to the presence of soluble iodine in aquifer matrix materials. Iodide is found in groundwaters in parts of the English Chalk aquifer in concentrations higher than are present in modern seawater. Its presence is considered as a indication of groundwater residence and is of use in the characterisation of fresh as well as saline waters. Under certain circumstances modern seawater intrusion into aquifers along English estuaries produces groundwaters which are easily identified due to iodide enrichment from estuarine muds. In other environments iodide concentrations are of value in distinguishing between groundwaters in limestones and shaly gypsiferous rocks as shown by a study in Qatar, while in an alluvial aquifer study in Peru iodide has been used to identify groundwaters entering the aquifer from adjacent granodiorites.

  1. A G-quadruplex based fluorescent oligonucleotide turn-on probe towards iodides detection in real samples.

    PubMed

    Li, Qian; Li, Shuaihua; Chen, Xiu; Bian, Liujiao

    2017-09-01

    A basket-type G-quadruplex (GQ) fluorescent oligonucleotide (OND) probe is designed to detect iodides dependent on thymine-Hg(II)-thymine (T-Hg(II)-T) base pairs and the intrinsic fluorescence quenching capacity of GQ. In the presence of Hg(II) ions (Hg 2+ ), the two hexachloro-fluorescein-labeled ONDs form a hairpin structure and the fluorophores are dragged close to the GQ, leading to fluorescence quenching of the probe due to photoinduced electron transfer. Upon addition of iodide anions, Hg 2+ are extracted from T-Hg(II)-T complexes which attributes to the stronger binding with iodide anions, resulting in the fluorescence recovery. Through performing the fluorescence quenching and recovery processes, this probe developed a fluorescence turn-on sensor for iodide anions determination over a linear range of 20-200nmol/L with a limit of detection of 5nmol/L. The practical use of the turn-on technology was demonstrated by its application in determination of iodides in water, food, pharmaceutical products and biological samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  3. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  4. Draft Genome Sequence of Roseovarius sp. A-2, an Iodide-Oxidizing Bacterium Isolated from Natural Gas Brine Water, Chiba, Japan.

    PubMed

    Yuliana, Tri; Nakajima, Nobuyoshi; Yamamura, Shigeki; Tomita, Masaru; Suzuki, Haruo; Amachi, Seigo

    2017-01-01

    Roseovarius sp. A-2 is a heterotrophic iodide (I - )-oxidizing bacterium isolated from iodide-rich natural gas brine water in Chiba, Japan. This strain oxidizes iodide to molecular iodine (I 2 ) by means of an extracellular multicopper oxidase. Here we report the draft genome sequence of strain A-2. The draft genome contained 46 tRNA genes, 1 copy of a 16S-23S-5S rRNA operon, and 4,514 protein coding DNA sequences, of which 1,207 (27%) were hypothetical proteins. The genome contained a gene encoding IoxA, a multicopper oxidase previously found to catalyze the oxidation of iodide in Iodidimonas sp. Q-1. This draft genome provides detailed insights into the metabolism and potential application of Roseovarius sp. A-2.

  5. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  6. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    PubMed

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  7. Iodide transport: implications for health and disease

    PubMed Central

    2014-01-01

    Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life. PMID:25009573

  8. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    PubMed

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  9. Direct synthesis of alkenyl iodides via indium-catalyzed iodoalkylation of alkynes with alcohols and aqueous HI.

    PubMed

    Wu, Chao; Wang, Zheng; Hu, Zhan; Zeng, Fei; Zhang, Xing-Yu; Cao, Zhong; Tang, Zilong; He, Wei-Min; Xu, Xin-Hua

    2018-05-02

    A convenient and efficient indium-catalyzed approach to synthesize alkenyl iodides has been developed through direct iodoalkylation of alkynes with alcohols and aqueous HI under mild conditions. This catalytic protocol offers an attractive approach for the synthesis of a diverse range of alkenyl iodides in good to excellent yields.

  10. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.

    PubMed

    Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I

    2014-04-15

    Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center-two-electron (2c-2e) σ bonds on the periphery and delocalized multicenter-two-electron (nc-2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron's electron deficiency and leads to fluxional behavior, which has been observed in B13(+) and B19(-). A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B(-), formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B(-)/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors' laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.

  11. The pathogenesis of iodide mumps: A case report.

    PubMed

    Zhang, Guilian; Li, Tao; Wang, Heying; Liu, Jiao

    2017-11-01

    Iodide mumps is an uncommon condition, induced by iodide-containing contrast, and is characterized by a rapid, painless enlargement of the bilateral or unilateral salivary gland. At present, the pathogenesis of iodide mumps is not yet clear. It may be related to an idiosyncratic reaction, a toxic accumulation of iodine in the gland duct, or renal function damage leading to an iodine excretion disorder. This paper reports the clinical manifestations and magnetic resonance imaging results of one case of iodide mumps, which occurred after digital subtraction angiography. A 66-year-old Chinese man presented to our department with a 1-month speech barrier and 1 day of vomiting. He had the history of high blood sugar, the history of high blood pressure and the history of Vitiligo. He had no history of allergies and had never previously received iodide-containing contrast. His renal function and other laboratory examinations were normal. During the digital subtraction angiography (DSA), the patient received approximately 130 mL of nonionic contrast agent (iodixanol). Five hours postsurgery, the patient experienced bilateral parotid enlargement with no other discomfort, such as pain, fever, skin redness, itching, hives, nausea, vomiting, or respiratory abnormalities. We thought the diagnosis was iodide mumps. Intravenous dexamethasone (5 mg) was administered. 20 hours post-DSA, after which the bilateral parotid shrunk. By 4 days postsurgery, the patient's bilateral parotid had recovered completely. We found no obvious abnormal sequence signal in diffusion magnetic resonance imaging or the corresponding apparent diffusion coefficient. Our findings suggest that vasogenic edema may play an important role in the pathogenesis of iodide mumps. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  12. Iodide Residues in Milk Vary between Iodine-Based Teat Disinfectants.

    PubMed

    French, Elizabeth A; Mukai, Motoko; Zurakowski, Michael; Rauch, Bradley; Gioia, Gloria; Hillebrandt, Joseph R; Henderson, Mark; Schukken, Ynte H; Hemling, Thomas C

    2016-07-01

    Majority of iodine found in dairy milk comes from the diet and teat disinfection products used during milking process. The objective of this study was to evaluate the effects of 4 iodine-based teat dips on milk iodide concentrations varying in iodine level (0.25% vs. 0.5%, w/w), normal low viscosity dip versus barrier dip, and application method (dip vs. spray) to ensure safe iodine levels in dairy milk when these products are used. The iodine exposure study was performed during a 2-wk period. The trial farm was purged of all iodine-based disinfection products for 21 d during a prestudy "washout period," which resulted in baseline milk iodide range of 145 to 182 ppb. During the experiment, iodine-based teat dips were used as post-milking teat disinfectants and compared to a non-iodine control disinfectant. Milk iodide residue levels for each treatment was evaluated from composited group samples. Introduction of different iodine-based teat disinfectants increased iodide residue content in milk relative to the control by between 8 and 29 μg/L when averaged across the full trial period. However, residues levels for any treatment remained well below the consumable limit of 500 μg/L. The 0.5% iodine disinfectant increased milk iodide levels by 20 μg/L more compared to the 0.25% iodine. Compared to dip-cup application, spray application significantly increased milk iodide residue by 21 μg/L and utilized approximately 23% more teat dip. This carefully controlled study demonstrated an increase in milk iodide concentrations from iodine disinfectants, but increases were small and within acceptable limits. © 2016 Institute of Food Technologists®

  13. Potassium iodide capsule treatment of feline sporotrichosis.

    PubMed

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  14. Direct current sputtering of boron from boron/boron mixtures

    DOEpatents

    Timberlake, J.R.; Manos, D.; Nartowitz, E.

    1994-12-13

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.

  15. Recent developments with boron as a platform for novel drug design.

    PubMed

    Leśnikowski, Zbigniew J

    2016-06-01

    After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.

  16. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiationmore » has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B–/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors’ laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.« less

  17. Fire extinguishant materials

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Mayer, L. A.; Ling, A. C. (Inventor)

    1983-01-01

    Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred.

  18. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  19. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, J.S.; Barton, J.B.; Dabrowski, A.J.; Schnepple, W.F.

    1986-09-23

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator. 7 figs.

  20. Iodide Protects Heart Tissue from Reperfusion Injury

    PubMed Central

    Iwata, Akiko; Morrison, Michael L.; Roth, Mark B.

    2014-01-01

    Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury. PMID:25379708

  1. Process for the thermochemical production of hydrogen

    DOEpatents

    Norman, John H.; Russell, Jr., John L.; Porter, II, John T.; McCorkle, Kenneth H.; Roemer, Thomas S.; Sharp, Robert

    1978-01-01

    Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.

  2. Stable iodide doping induced by photonic curing for carbon nanotube transparent conductive films

    NASA Astrophysics Data System (ADS)

    Wachi, Atsushi; Nishikawa, Hiroyuki; Zhou, Ying; Azumi, Reiko

    2018-06-01

    Doping has become crucial for achieving stable and high-performance conductive transparent carbon nanotube (CNT) films. In this study, we systematically investigate the doping effects of a few materials including alkali metal iodides, nonmetal iodide, and metals. We demonstrate that photonic curing can enhance the doping effects, and correspondingly improve the conductivity of CNT films, and that such iodides have better doping effects than metals. In particular, doping with a nonmetal compound (NH4I) shows the largest potential to improve the conductivity of CNT films. Typically, doping with metal iodides reduces the sheet resistance (R S) of CNT films with 70–80% optical transmittances at λ = 550 nm from 600–2400 to 250–440 Ω/square, whereas doping with NH4I reduces R S to 57 and 84 Ω/square at 74 and 84% optical transmittances, respectively. Interestingly, such a doped CNT film exhibits only a slight increase in sheet resistance under an extreme environment of high temperature (85 °C) and high relative humidity (85%) for 350 h. The results suggest that photonic-curing-induced iodide doping is a promising approach to producing high-performance conductive transparent CNT films.

  3. Immobilization of Iodate and Iodide using Iron Oxides through Sorption and Co-precipitation at Hanford Site

    NASA Astrophysics Data System (ADS)

    Wang, G.; Qafoku, N. P.; Truex, M. J.; Strickland, C. E.; Freedman, V. L.

    2017-12-01

    Isotopes of iodine were generated during plutonium production at the U.S. Department of Energy (DOE) Hanford Site. The long half-life 129I generated during reactor operations has been released into the subsurface, resulting in several large plumes at the Hanford subsurface. We studied the interaction of iodate (IO3-) and iodide (I-) with Fe oxides. A series of batch experiments were conducted to investigate adsorption and co-precipitation of iodine species in the presence of a variety of Fe oxides, such as ferrihydrite, goethite, hematite and magnetite. In the sorption experiments, each Fe oxide was added to an artificial groundwater containing either iodate or iodide, and reacted at room temperature. The sorption batch experiments for each mineral were conducted at varied initial iodate or iodide concentrations under 3 different pH conditions (pH 5, 7, and 9). In the co-precipitation batch experiments, the initial Fe-mineral-forming solutions were prepared in artificial groundwater containing iodate or iodide. Our results indicate that both sorption and co-precipitation are viable mechanisms of the attenuation of the liquid phase iodine. Species Fe oxides could serve as hosts of iodate and iodide that are present at the Hanford subsurface.

  4. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  5. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  6. Structural stability and electronic properties of an octagonal allotrope of two dimensional boron nitride.

    PubMed

    Takahashi, Lauren; Takahashi, Keisuke

    2017-03-27

    An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.

  7. In vivo and in vitro effects of boron and boronated compounds.

    PubMed

    Benderdour, M; Bui-Van, T; Dicko, A; Belleville, F

    1998-03-01

    Boron is ubiquitously present in soils and water. Associated with pectin it is essential for vascular plants as a component of cell walls, and it stabilizes cell membranes. It is required for the growth of pollen tubes and is involved in membrane transport, stimulating H(+)-pumping ATPase activity and K+ uptake. However, a high boron concentration in the soils is toxic to plants and some boronated derivatives are used as herbicides. An absolute requirement for boron has not been definitively demonstrated in animals and humans. However, experiments with boron supplementation or deprivation show that boron is involved in calcium and bone metabolism, and its effects are more marked when other nutrients (cholecalciferol, magnesium) are deficient. Boron supplementation increases the serum concentration of 17 beta-estradiol and testosterone but boron excess has toxic effects on reproductive function. Boron may be involved in cerebral function via its effects on the transport across membranes. It affects the synthesis of the extracellular matrix and is beneficial in wound healing. Usual dietary boron consumption in humans is 1-2 mg/day for adults. As boron has been shown to have biological activity, research into the chemistry of boronated compounds has increased. Boronated compounds have been shown to be potent anti-osteoporotic, anti-inflammatory, hypolipemic, anti-coagulant and anti-neoplastic agents both in vitro and in vivo in animals.

  8. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  9. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  10. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  11. Direct current sputtering of boron from boron/coron mixtures

    DOEpatents

    Timberlake, John R.; Manos, Dennis; Nartowitz, Ed

    1994-01-01

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

  12. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    PubMed

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Revisiting History: Encountering Iodine Then and Now--A General Chemistry Laboratory to Observe Iodine from Seaweed

    ERIC Educational Resources Information Center

    Wahab, M. Farooq

    2009-01-01

    The history of the discovery of iodine is retold using brown-colored seaweed found commonly along the ocean shore. The seaweed is ashed at a low temperature and the iodides are extracted into boiling water. The iodides are oxidized in acidic medium. Solvent extraction of iodine by oxidation of iodides as well as simple aqueous extraction of iodide…

  15. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    ERIC Educational Resources Information Center

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  16. The biogeochemical effect of seaweeds upon close-to natural concentrations of dissolved iodate and iodide in seawater Preliminary study with Laminaria digitata and Fucus serratus

    NASA Astrophysics Data System (ADS)

    Truesdale, Victor W.

    2008-06-01

    Toward assessing the biogeochemical significance of seaweeds in relation to dissolved iodine in seawater, the effect of whole seaweeds ( Laminaria digitata and Fucus serratus) upon iodide and iodate, at essentially natural concentrations, has been studied. The weeds were carefully removed from the sub-littoral zone of the Menai Straits and exposed to iodide and iodate at their natural temperature (6 °C), but under continuous illumination. Laminaria digitata was found to decrease the concentration of iodate with an exponential rate constant of 0.008-0.24 h -1. This is a newly discovered process which, if substantiated, will require an entirely new mechanism. Generally, apparent iodide concentration increased except in a run with seawater augmented with iodide, where it first decreased. The rate constant for loss of iodide was 0.014-0.16 h -1. Meanwhile, F. serratus was found not to decrease iodate concentrations, as did L. digitata. Indeed, after ˜30 h iodate concentrations increased, suggesting that the weed may take in iodide before oxidising and releasing it. If substantiated, this finding may offer a way into one of the most elusive of processes within the iodine cycle - iodide oxidation. With both seaweeds sustained long-term increases of apparent iodide concentration are most easily explained as a secretion by the weeds of organic matter which is capable of reducing the Ce(IV) reagent used in determination of total iodine. Modelling of the catalytic method used is provided to support this contention. The possibility of developing this to measure the strain that seaweeds endure in this kind of biogeochemical flux experiment is discussed. A Chemical Oxygen Demand type of approach is applied using Ce(IV) as oxidant. The results of the iodine experiments are contrasted with the several investigations of 131I interaction with seaweeds, which have routinely used discs of weed cut from the frond. It is argued that experiments conducted with stable iodine may measure a different variable to that measured in radio-iodine experiments.

  17. Identification of a Novel System for Boron Transport: Atr1 Is a Main Boron Exporter in Yeast▿ †

    PubMed Central

    Kaya, Alaattin; Karakaya, Huseyin C.; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Koc, Ahmet

    2009-01-01

    Boron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1Δ mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1Δ cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1Δ cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance. PMID:19414602

  18. Alkynyl Moiety for Triggering 1,2‐Metallate Shifts: Enantiospecific sp2–sp3 Coupling of Boronic Esters with p‐Arylacetylenes

    PubMed Central

    Ganesh, Venkataraman; Odachowski, Marcin

    2017-01-01

    Abstract The enantiospecific coupling of secondary and tertiary boronic esters to aromatics has been investigated. Using p‐lithiated phenylacetylenes and a range of boronic esters coupling has been achieved by the addition of N‐bromosuccinimide (NBS). The alkyne functionality of the intermediate boronate complex reacts with NBS triggering the 1,2‐migration of the group on boron to carbon giving a dearomatized bromoallene intermediate. At this point elimination and rearomatization occurs with neopentyl boronic esters, giving the coupled products. However, using pinacol boronic esters, the boron moiety migrates to the adjacent carbon resulting in formation of ortho boron‐incorporated coupled products. The synthetic utility of the boron incorporated product has been demonstrated by orthogonal transformation of both the alkyne and boronic ester functionalities. PMID:28618129

  19. Phase Stability and Electronic Structure of Prospective Sb-Based Mixed Sulfide and Iodide 3D Perovskite (CH3NH3)SbSI2.

    PubMed

    Li, Tianyang; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2018-06-29

    Lead-free antimony-based mixed sulfide and iodide perovskite phases have recently been reported to be synthesized experimentally and to exhibit reasonable photovoltaic performance. Through a combination of experimental validation and computational analysis, we show no evidence of the formation of the mixed sulfide and iodide perovskite phase, MASbSI 2 (MA = CH 3 NH 3 + ), and instead that the main products are a mixture of the binary and ternary compounds (Sb 2 S 3 and MA 3 Sb 2 I 9 ). Density functional theory calculations also indicate that such a mixed sulfide and iodide perovskite phase should be thermodynamically less stable compared with binary/ternary anion-segregated secondary phases and less likely to be synthesized under equilibrium conditions. Additionally, band structure calculations show that this mixed sulfide and iodide phase, if possible to synthesize (e.g., under nonequilibrium conditions), should have a suitable direct band gap for photovoltaic application.

  20. The Purity of Radioiodide-I131 Assessed by in Vivo and in Vitro Methods

    PubMed Central

    Fawcett, D. M.; Olde, G. L.; McLeod, L. E.

    1962-01-01

    Between 41 and 94% of the radioactivity of 24 preparations of I131 supplied without cysteine preservative was non-iodide on chromatographic analysis. Extraneous radio-activity was essentially absent from I131 supplied with cysteine. It was converted to iodide-I131 by 10-3 M cysteine or iodide but not by incubation at pH 2. The average thyroid uptake of I131 containing extraneous radioactivity was significantly lower than the uptake of I131 free from non-iodide impurity in 16 human subjects measured under controlled conditions and in a random group of 669 patients. Incubation of samples of I131 containing non-iodide radioactivity with tyrosine and cupric chloride resulted in the non-enzymatic formation of monoiodotyrosine-I131 either in the presence or absence of thyroid homogenate. Enzymatic formation of monoiodotyrosine-I131 by thyroid homogenates could be demonstrated only when I131 free from extraneous activity was used. ImagesFig. 1Fig. 2 PMID:13891874

  1. Application of direct thermometric analysis in iodometry.

    PubMed

    Marik-Korda, P; Erdey, L

    1970-12-01

    Elementary chlorine was determined by a thermometric method using potassium iodide as reagent. The temperature rise corresponding to the heat of reaction was proportional to the chlorine content. Iodine formed in the reaction was also determined with sodium thiosulphate. The heat of the chlorine-iodide reaction is about five times that of the iodine-thiosulphate reaction. Direct determination with potassium iodide is simpler and more rapid than the indirect one.

  2. Passivation Of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  3. Synthesis of Derivatives of Alpha, Omega Difunctional Perfluoroaliphatic Compounds for Low Dielectric Constant Resins

    DTIC Science & Technology

    1992-03-06

    coupling reactions of perfluoroalkyl iodides with certain aryl iodides have been studied. Simple trial tests were carried out between perfluorooctyl iodide...omega Difunctional Perfluoroaliphatic Compounds for Low Dielectric Constant Resins by Robert L. Soulen Department of Chemistry Southwestern University...Difunctional Perfluoroaliphatic Compounds for Low Dielectric Resins 12 PERSONAL AUTHOR(S) Robert L. Soulen 1Ja TYPE OF REPORT 73b TIME COVERED FI DATE OF

  4. Methods of producing continuous boron carbide fibers

    DOEpatents

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  5. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We presentmore » results from an investigation of boron uptake in vivo by the synovium.« less

  6. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism.

    PubMed Central

    Bercz, J P; Jones, L L; Harrington, R M; Bawa, R; Condie, L

    1986-01-01

    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO2) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO2 ingestion, it seems that ClO2 does not cause iodide deficiency of sufficient magnitude to account for the decrease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrients, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen. Images FIGURE 1. a FIGURE 1. b FIGURE 1. c PMID:3816729

  7. Fragment approach to the electronic structure of τ -boron allotrope

    NASA Astrophysics Data System (ADS)

    Karmodak, Naiwrit; Jemmis, Eluvathingal D.

    2017-04-01

    The presence of nonconventional bonding features is an intriguing part of elemental boron. The recent addition of τ boron to the family of three-dimensional boron allotropes is no exception. We provide an understanding of the electronic structure of τ boron using a fragment molecular approach, where the effect of symmetry reduction on skeletal bands of B12 and the B57 fragments are examined qualitatively by analyzing the projected density of states of these fragments. In spite of the structural resemblance to β boron, the reduction of symmetry from a rhombohedral space group to the orthorhombic one destabilizes the bands and reduces the electronic requirements. This suggests the presence of the partially occupied boron sites, as seen for a β boron unit cell, and draws the possibility for the existence of different energetically similar polymorphs. τ boron has a lower binding energy than β boron.

  8. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/Iodide process.

    PubMed

    Sun, Zhuyu; Zhang, Chaojie; Chen, Pei; Zhou, Qi; Hoffmann, Michael R

    2017-12-15

    Iodide photolysis under UV illumination affords an effective method to produce hydrated electrons (e aq - ) in aqueous solution. Therefore, UV/Iodide photolysis can be utilized for the reductive degradation of many recalcitrant pollutants. However, the effect of naturally occurring organic matter (NOM) such as humic and fulvic acids (HA/FA), which may impact the efficiency of UV/Iodide photoreduction, is poorly understood. In this study, the UV photoreductive degradation of perfluorooctane sulfonate (PFOS) in the presence of I - and HA is studied. PFOS undergoes a relatively slow direct photoreduction in pure water, a moderate level of degradation via UV/Iodide, but a rapid degradation via UV/Iodide/HA photolysis. After 1.5 h of photolysis, 86.0% of the initial [PFOS] was degraded in the presence of both I - and HA with a corresponding defluorination ratio of 55.6%, whereas only 51.7% of PFOS was degraded with a defluorination ratio of 4.4% via UV/Iodide illumination in the absence of HA. The relative enhancement in the presence of HA in the photodegradation of PFOS can be attributed to several factors: a) HA enhances the effective generation of e aq - due to the reduction of I 2 , HOI, IO 3 - and I 3 - back to I - ; b) certain functional groups of HA (i.e., quinones) enhance the electron transfer efficiency as electron shuttles; c) a weakly-bonded association of I - and PFOS with HA increases the reaction probability; and d) absorption of UV photons by HA itself produces e aq - . The degradation and defluorination efficiency of PFOS by UV/Iodide/HA process is dependent on pH and HA concentration. As pH increases from 7.0 to 10.0, the enhancement effect of HA improves significantly. The optimal HA concentration for the degradation of 0.03 mM PFOS is 1.0 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Physiological Role of Boron on Health.

    PubMed

    Khaliq, Haseeb; Juming, Zhong; Ke-Mei, Peng

    2018-03-15

    Boron is an essential mineral that plays an important role in several biological processes. Boron is required for growth of plants, animals, and humans. There are increasing evidences of this nutrient showing a variety of pleiotropic effects, ranging from anti-inflammatory and antioxidant effects to the modulation of different body systems. In the past few years, the trials showed disease-related polymorphisms of boron in different species, which has drawn attention of scientists to the significance of boron to health. Low boron profile has been related with poor immune function, increased risk of mortality, osteoporosis, and cognitive deterioration. High boron status revealed injury to cell and toxicity in different animals and humans. Some studies have shown some benefits of higher boron status, but findings have been generally mixed, which perhaps accentuates the fact that dietary intake will benefit only if supplemental amount is appropriate. The health benefits of boron are numerous in animals and humans; for instance, it affects the growth at safe intake. Central nervous system shows improvement and immune organs exhibit enhanced immunity with boron supplementation. Hepatic metabolism also shows positive changes in response to dietary boron intake. Furthermore, animals and human fed diets supplemented with boron reveal improved bone density and other benefits including embryonic development, wound healing, and cancer therapy. It has also been reported that boron affects the metabolism of several enzymes and minerals. In the background of these health benefits, low or high boron status is giving cause for concern. Additionally, researches are needed to further elucidate the mechanisms of boron effects, and determine the requirements in different species.

  10. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  11. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    PubMed

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  12. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  13. Electron paramagnetic resonance of deep boron in silicon carbide

    NASA Astrophysics Data System (ADS)

    Baranov, P. G.; Mokhov, E. N.

    1996-04-01

    In this article we report the first EPR observation of deep boron centres in silicon carbide. A direct identification of the boron atom involved in the defect centre, considered as deep boron, has been established by the presence of a hyperfine interaction with 0268-1242/11/4/005/img1 and 0268-1242/11/4/005/img2 nuclei in isotope-enriched 6H-SiC:B crystals. Deep boron centres were shown from EPR spectra to have axial symmetry along the hexagonal axis. A correspondence between the EPR spectra and the luminescence, ODMR and DLTS spectra of deep boron centres has been indicated. The structural model for a deep boron centre as a boron - vacancy pair is presented and the evidence for bistable behaviour of deep boron centres is discussed.

  14. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  15. Standard free energy of formation of iron iodide

    NASA Technical Reports Server (NTRS)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  16. Study on gold concentrate leaching by iodine-iodide

    NASA Astrophysics Data System (ADS)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  17. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    NASA Astrophysics Data System (ADS)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  18. Boron removal from aqueous solution by direct contact membrane distillation.

    PubMed

    Hou, Deyin; Wang, Jun; Sun, Xiangcheng; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing

    2010-05-15

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 microg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity. Even though Boron concentration of river water is under 0.5 ppm limit value, Boron element will store in basin soils, decrease in crop yields, and occur problematic soils in basin.

  20. Boron exposure through drinking water during pregnancy and birth size.

    PubMed

    Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie

    2016-10-01

    Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    PubMed

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  2. Mathematical Modeling and Experimental Validation of the Spatial Distribution of Boron in the Root of Arabidopsis thaliana Identify High Boron Accumulation in the Tip and Predict a Distinct Root Tip Uptake Function

    PubMed Central

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru

    2015-01-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713

  3. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  4. Structure prediction of boron-doped graphene by machine learning

    NASA Astrophysics Data System (ADS)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  5. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. National surveillance for radiological exposures and intentional potassium iodide and iodine product ingestions in the United States associated with the 2011 Japan radiological incident

    PubMed Central

    LAW, ROYAL K.; SCHIER, JOSH G.; MARTIN, COLLEEN A.; OLIVARES, DAGNY E.; THOMAS, RICHARD G.; BRONSTEIN, ALVIN C.; CHANG, ARTHUR S.

    2015-01-01

    Background In March of 2011, an earthquake struck Japan causing a tsunami that resulted in a radiological release from the damaged Fukushima Daiichi nuclear power plant. Surveillance for potential radiological and any iodine/iodide product exposures was initiated on the National Poison Data System (NPDS) to target public health messaging needs within the United States (US). Our objectives are to describe self-reported exposures to radiation, potassium iodide (KI) and other iodine/iodide products which occurred during the US federal response and discuss its public health impact. Methods All calls to poison centers associated with the Japan incident were identified from March 11, 2011 to April 18, 2011 in NPDS. Exposure, demographic and health outcome information were collected. Calls about reported radiation exposures and KI or other iodine/iodide product ingestions were then categorized with regard to exposure likelihood based on follow-up information obtained from the PC where each call originated. Reported exposures were subsequently classified as probable exposures (high likelihood of exposure), probable non-exposures (low likelihood of exposure), and suspect exposure (unknown likelihood of exposure). Results We identified 400 calls to PCs associated with the incident, with 340 information requests (no exposure reported) and 60 reported exposures. The majority (n = 194; 57%) of the information requests mentioned one or more substances. Radiation was inquired about most frequently (n = 88; 45%), followed by KI (n = 86; 44%) and other iodine/iodide products (n = 47; 24%). Of the 60 reported exposures, KI was reported most frequently (n = 25; 42%), followed by radiation (n = 22; 37%) and other iodine/iodide products (n = 13; 22%). Among reported KI exposures, most were classified as probable exposures (n = 24; 96%); one was a probable non-exposure. Among reported other iodine/iodide product exposures, most were probable exposures (n = 10, 77%) and the rest were suspect exposures (n = 3; 23%). The reported radiation exposures were classified as suspect exposures (n = 16, 73%) or probable non-exposures (n = 6; 27%). No radiation exposures were classified as probable exposures. A small number of the probable exposures to KI and other iodide/iodine products reported adverse signs or symptoms (n = 9; 26%). The majority of probable exposures had no adverse outcomes (n = 28; 82%). These data identified a potential public health information gap regarding KI and other iodine/iodide products which was then addressed through public health messaging activities. Conclusion During the Japan incident response, surveillance activities using NPDS identified KI and other iodine/iodide products as potential public health concerns within the US, which guided CDC’s public health messaging and communication activities. Regional PCs can provide timely and additional information during a public health emergency to enhance data collected from surveillance activities, which in turn can be used to inform public health decision-making. PMID:23043524

  7. National surveillance for radiological exposures and intentional potassium iodide and iodine product ingestions in the United States associated with the 2011 Japan radiological incident.

    PubMed

    Law, Royal K; Schier, Josh G; Martin, Colleen A; Olivares, Dagny E; Thomas, Richard G; Bronstein, Alvin C; Chang, Arthur S

    2013-01-01

    In March of 2011, an earthquake struck Japan causing a tsunami that resulted in a radiological release from the damaged Fukushima Daiichi nuclear power plant. Surveillance for potential radiological and any iodine/iodide product exposures was initiated on the National Poison Data System (NPDS) to target public health messaging needs within the United States (US). Our objectives are to describe self-reported exposures to radiation, potassium iodide (KI) and other iodine/iodide products which occurred during the US federal response and discuss its public health impact. All calls to poison centers associated with the Japan incident were identified from March 11, 2011 to April 18, 2011 in NPDS. Exposure, demographic and health outcome information were collected. Calls about reported radiation exposures and KI or other iodine/iodide product ingestions were then categorized with regard to exposure likelihood based on follow-up information obtained from the PC where each call originated. Reported exposures were subsequently classified as probable exposures (high likelihood of exposure), probable non-exposures (low likelihood of exposure), and suspect exposure (unknown likelihood of exposure). We identified 400 calls to PCs associated with the incident, with 340 information requests (no exposure reported) and 60 reported exposures. The majority (n = 194; 57%) of the information requests mentioned one or more substances. Radiation was inquired about most frequently (n = 88; 45%), followed by KI (n = 86; 44%) and other iodine/iodide products (n = 47; 24%). Of the 60 reported exposures, KI was reported most frequently (n = 25; 42%), followed by radiation (n = 22; 37%) and other iodine/iodide products (n = 13; 22%). Among reported KI exposures, most were classified as probable exposures (n = 24; 96%); one was a probable non-exposure. Among reported other iodine/iodide product exposures, most were probable exposures (n = 10, 77%) and the rest were suspect exposures (n = 3; 23%). The reported radiation exposures were classified as suspect exposures (n = 16, 73%) or probable non-exposures (n = 6; 27%). No radiation exposures were classified as probable exposures. A small number of the probable exposures to KI and other iodide/iodine products reported adverse signs or symptoms (n = 9; 26%). The majority of probable exposures had no adverse outcomes (n = 28; 82%). These data identified a potential public health information gap regarding KI and other iodine/iodide products which was then addressed through public health messaging activities. During the Japan incident response, surveillance activities using NPDS identified KI and other iodine/iodide products as potential public health concerns within the US, which guided CDC's public health messaging and communication activities. Regional PCs can provide timely and additional information during a public health emergency to enhance data collected from surveillance activities, which in turn can be used to inform public health decision-making.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagunova, I.A.

    A characteristic feature of the products of mud-volcano activity in the Kerch-Taman region is their high boron content. Distribution of boron in waters of mud volcanoes is characterized by restriction of anomalously high concentrations of boron to mud volcanoes actively operating at the present time in general, and to the most active period of operation of the individual volcano; there is a direct correlation between boron and the hydrocarbonate ion (r/sub B//HCO/sub 3// = 0.5), and between boron and carbon dioxide from the mud-volcano gases (r/sub B//CO/sub 2// = 0.4). The correlation is lacking between boron and mineralization, and betweenmore » boron and chlorine, the correlation is close to inverse. A spatial connection between areas of development of mud volcanism and belts of boron mineralization has been established. Anomalously high boron concentrations in the products of mud volcanism in the Kerch-Taman region are part of the overall increased boron capacity of the Crimea and the Caucasus, which has been controlled by recent magmatic activity.« less

  9. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  10. Boron Dissolved and Particulate Atmospheric Inputs to a Forest Ecosystem (Northeastern France).

    PubMed

    Roux, Philippe; Turpault, Marie-Pierre; Kirchen, Gil; Redon, Paul-Olivier; Lemarchand, Damien

    2017-12-19

    Boron concentrations and isotopic compositions of atmospheric dust and dissolved depositions were monitored over a two-year period (2012-2013) in the forest ecosystem of Montiers (Northeastern France). This time series allows the determination of the boron atmospheric inputs to this forest ecosystem and contributes to refine our understanding of the sources and processes that control the boron atmospheric cycle. Mean annual dust and dissolved boron atmospheric depositions are comparable in size (13 g·ha -1 ·yr -1 and 16 g·ha -1 ·yr -1 , respectively), which however show significant intra- and interannual variations. Boron isotopes in dust differ from dissolved inputs, with an annual mean value of +1 ‰ and +18 ‰ for, respectively. The notable high boron contents (190-390 μg·g -1 ) of the dust samples are interpreted as resulting from localized spreading of boron-rich fertilizers, thus indicating a significant local impact of regional agricultural activities. Boron isotopes in dissolved depositions show a clear seasonal trend. The absence of correlation with marine cyclic solutes contradicts a control of atmospheric boron by dissolution of seasalts. Instead, the boron data from this study are consistent with a Rayleigh-like evolution of the atmospheric gaseous boron reservoir with possible but limited anthropogenic and/or biogenic contributions.

  11. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    PubMed Central

    Yoshinari, Akira; Takano, Junpei

    2017-01-01

    Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed. PMID:29204148

  12. Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN.

    PubMed

    Swords, Wesley B; Li, Guocan; Meyer, Gerald J

    2015-05-04

    A series of three highly charged cationic ruthenium(II) polypyridyl complexes of the general formula [Ru(deeb)3-x(tmam)x](PF6)2x+2, where deeb is 4,4'-diethyl ester-2,2'-bipyridine and tmam is 4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine, were synthesized and characterized and are referred to as 1, 2, or 3 based on the number of tmam ligands. Crystals suitable for X-ray crystallography were obtained for the homoleptic complex 3, which was found to possess D3 symmetry over the entire ruthenium complex. The complexes displayed visible absorption spectra typical of metal-to-ligand charge-transfer (MLCT) transitions. In acetonitrile, quasi-reversible waves were assigned to Ru(III/II) electron transfer, with formal reduction potentials that shifted negative as the number of tmam ligands was increased. Room temperature photoluminescence was observed in acetonitrile with quantum yields of ϕ ∼ 0.1 and lifetimes of τ ∼ 2 μs. The spectroscopic and electrochemical data were most consistent with excited-state localization on the deeb ligand for 1 and 2 and on the tmam ligand for 3. The addition of tetrabutylammonium iodide to the complexes dissolved in a CH3CN solution led to changes in the UV-vis absorption spectra consistent with ion pairing. A Benesi-Hildebrand-type analysis of these data revealed equilibrium constants that increased with the cationic charge 1 < 2 < 3 with K = 4000, 4400, and 7000 M(-1). (1)H NMR studies in CD3CN also revealed evidence for iodide ion pairs and indicated that they occur predominantly with iodide localization near the tmam ligand(s). The diastereotopic H atoms on the methylene carbon that link the amine to the bipyridine ring were uniquely sensitive to the presence of iodide; analysis revealed that an iodide "binding pocket" exists wherein iodide forms an adduct with the 3 and 3' bipyridyl H atoms and the quaternized amine. The MLCT excited states were efficiently quenched by iodide. Time-resolved photoluminescence measurements of 1 revealed a static component consistent with rapid electron transfer from iodide in the "binding pocket" to the Ru metal center in the excited state, ket > 10(8) s(-1). The possible relevance of this work to solar energy conversion and dye-sensitized solar cells is discussed.

  13. Boron sorption from aqueous solution by hydrotalcite and its preliminary application in geothermal water deboronation.

    PubMed

    Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide

    2013-11-01

    Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.

  14. Evaluation of anion exchange resins Tulsion A-30 and Indion-930A by application of radioanalytical technique

    NASA Astrophysics Data System (ADS)

    Singare, P. U.

    2014-07-01

    Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.

  15. Propylthiouracil, Perchlorate, and Thyroid-Stimulating Hormone Modulate High Concentrations of Iodide Instigated Mitochondrial Superoxide Production in the Thyroids of Metallothionein I/II Knockout Mice

    PubMed Central

    Duan, Qi; Wang, Tingting; Zhang, Na; Perera, Vern; Liang, Xue; Abeysekera, Iruni Roshanie

    2016-01-01

    Background Increased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs) are regarded as scavengers of reactive oxygen species (ROS) in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU), a thyroid peroxidase inhibitor, perchlorate (KClO4), a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH) on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO) mice. Methods Eight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO) mice and background-matched wild type (WT) mice were used. Results By using a mitochondrial superoxide indicator (MitoSOX Red), lactate dehydrogenase (LDH) release, and methyl thiazolyl tetrazolium (MTT) assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM) can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05). Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05). Conclusion We concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid. PMID:26754589

  16. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water.

    PubMed

    Besemer, Matthieu; Bloemenkamp, Rob; Ariese, Freek; van Manen, Henk-Jan

    2016-02-11

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable frequency-doubled optical parametric oscillator system were used to achieve excitation wavelengths between 785 and 374 nm. Focusing on NaI solutions, the relative enhancement of the water bending vibration was found to increase strongly with excitation photon energy, in line with a preresonance effect from the iodide-water charge-transfer transition. We used multivariate curve resolution (MCR) to decompose the measured Raman spectra of NaI solutions into three interconverting spectral components assigned to bulk water and water molecules interacting with one (X···H-O-H···O) and two (X···H-O-H···X) iodide ions (X = I(-)). The Raman spectrum of solid sodium iodide dihydrate supports the assignment of the latter. Using the MCR results, relative Raman scattering cross sections of 4.0 ± 0.6 and 14.0 ± 0.1 were calculated for the mono- and di-iodide species, respectively (compared to that of bulk water set to unity). In addition, it was found that at relatively low concentrations each iodide ion affects the Raman spectrum of roughly 22 surrounding water molecules, indicating that the influence of iodide extends beyond the first solvation shell. Our results demonstrate that the Raman bending vibration of water is a sensitive probe, providing new insights into anion solvation in aqueous environments.

  17. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberreit, Derek; Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110; Rawat, Vivek K.

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for eachmore » ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.« less

  18. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  19. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts.

    PubMed

    Guino-O, Marites A; Talbot, Meghan O; Slitts, Michael M; Pham, Theresa N; Audi, Maya C; Janzen, Daron E

    2015-06-01

    The asymmetric units for the salts 4-(4-fluoro-phen-yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 (+)·I(-), (1), 1-isopropyl-4-(4-methyl-phen-yl)-1,2,4-triazol-1-ium iodide, C12H16N3 (+)·I(-), (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 (+)·I(-), (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 (+)·I(-), (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 (+)·Br(-)·H2O, (5), there is an additional single water mol-ecule. There is a predominant C-H⋯X(halide) inter-action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π-anion inter-action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π-π inter-actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects.

  20. A Colorful Experiment

    ERIC Educational Resources Information Center

    Hunter, C. Bruce

    1978-01-01

    This experiment, mixing solutions of potassium iodide and lead nitrate to give a bright yellow lead iodide precipitate, often leads students into other topics such as making paint from the precipitate. (BB)

  1. Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: a critical review.

    PubMed

    Watson, K; Farré, M J; Knight, N

    2012-11-15

    The presence of bromide (Br(-)) and iodide (I(-)) in source waters leads to the formation of brominated and iodinated disinfection by-products (DBPs), which are often more toxic than their chlorinated analogues. The increasing scarcity of water resources in Australia is leading to use of impaired and alternative water supplies with high bromide and iodide levels, which may result in the production of more brominated and iodinated DBPs. This review aims to provide a summary of research into bromide and iodide removal from drinking water sources. Bromide and iodide removal techniques have been broadly classified into three categories, namely; membrane, electrochemical and adsorptive techniques. Reverse osmosis, nanofiltration and electrodialysis membrane techniques are reviewed. The electrochemical techniques discussed are electrolysis, capacitive deionization and membrane capacitive deionization. Studies on bromide and iodide removal using adsorptive techniques including; layered double hydroxides, impregnated activated carbons, carbon aerogels, ion exchange resins, aluminium coagulation and soils are also assessed. Halide removal techniques have been compared, and areas for future research have been identified. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

    PubMed Central

    Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.

    2008-01-01

    Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346

  3. Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide.

    PubMed

    Liu, Hongliang; Hou, Changchun; Zeng, Qiang; Zhao, Liang; Cui, Yushan; Yu, Linyu; Wang, Lingzhi; Zhao, Yang; Nie, Junyan; Zhang, Bin; Wang, Aiguo

    2016-09-01

    Excess fluoride and iodide coexist in drinking water in many regions, but few studies have investigated the single or interactive effects on thyroid in vivo. In our study, Wistar rats were exposed to excess fluoride and/or iodide through drinking water for 2 or 8 months. The structure and function of the thyroid, cells apoptosis and the expression of inositol-requiring enzyme 1 (IRE1) pathway-related factors were analyzed. Results demonstrated that excess fluoride and/or iodide could change thyroid follicular morphology and alter thyroid hormone levels in rats. After 8 months treatment, both single and co-exposure of the two microelements could raise the thyroid cells apoptosis. However, the expressions of IRE1-related factors were only increased in fluoride-alone and the combined groups. In conclusion, thyroid structure and thyroid function were both affected by excess fluoride and/or iodide. IRE1-induced apoptosis were involved in this cytotoxic process caused by fluoride or the combination of two microelements. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: Study of binding interaction and structural changes of protein

    NASA Astrophysics Data System (ADS)

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-03-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin.

  5. Barium iodide and strontium iodide crystals and scintillators implementing the same

    DOEpatents

    Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold

    2016-11-29

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.

  6. Development of magnetic resonance technology for noninvasive boron quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  7. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  8. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  9. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  10. Experimental Study on Application of Boron Mud Secondary Resource to Oxidized Pellets Production

    NASA Astrophysics Data System (ADS)

    Fu, Xiao-Jiao; Chu, Man-Sheng; Zhao, Jia-Qi; Chen, Shuang-Yin; Liu, Zheng-Gen; Wang, Si-Yuan

    2017-07-01

    In order to realize comprehensive and massive treatment of boron mud secondary resource, fundamental study on boron mud applied to oxidized pellets production as additive was carried out in the paper under laboratory conditions. The effects of boron mud on the performance of oxidized pellets were investigated systemically, and boron mud was combined with other boron-rich material innovatively. The results showed that, within certain limits, boron mud can improve properties of oxidized pellets. The bentonite content decreased to 0.3 % when adding 1.0 % boron mud additive and the pellets met blast furnace requirements. With the combination additive content 0.8 %, bentonite content can be further decreased to 0.2 %, and the pellets properties were better than base pellet. Therefore, it was an effective way to reduce environmental pollution and optimize blast furnace operation by developing boron mud secondary resource as pellets additive.

  11. Boron removal in radioactive liquid waste by forward osmosis membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron.more » No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)« less

  12. A Selective Organic-Based Corrosion Inhibitors Containing Iodide Ion as Enhancer for Protection of Carbon Steel: A Review

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. M.; Kassim, E. S. Mohd; Husin, H.; Jai, J.; Daud, M.; Hashim, M. A.

    2018-05-01

    This paper contains a review on the effect of halide ion with a selected inhibitor which is imidazole derivatives on the efficiency of corrosion inhibition. The paper first describes the mechanism of synergistic inhibition effect among halide ions enhancer with inhibitor on the steel surface. Then the paper describes the measured inhibition efficiency and summarizes the synergistic inhibition condition of imidazoline derivatives inhibitor with iodide ions. The characteristic of synergistic inhibition effect and the relationship between the amount of iodide ion consumption and the amount of organic inhibitor consumption are also discussed. It has been shown that, the synergistic effect between imidazole derivative and iodide ion is an effective method to improve the inhibitive performance in different aqueous media.

  13. Ferromagnetism and semiconducting of boron nanowires

    PubMed Central

    2012-01-01

    More recently, motivated by extensively technical applications of carbon nanostructures, there is a growing interest in exploring novel non-carbon nanostructures. As the nearest neighbor of carbon in the periodic table, boron has exceptional properties of low volatility and high melting point and is stronger than steel, harder than corundum, and lighter than aluminum. Boron nanostructures thus are expected to have broad applications in various circumstances. In this contribution, we have performed a systematical study of the stability and electronic and magnetic properties of boron nanowires using the spin-polarized density functional calculations. Our calculations have revealed that there are six stable configurations of boron nanowires obtained by growing along different base vectors from the unit cell of the bulk α-rhombohedral boron (α-B) and β-rhombohedral boron (β-B). Well known, the boron bulk is usually metallic without magnetism. However, theoretical results about the magnetic and electronic properties showed that, whether for the α-B-based or the β-B-based nanowires, their magnetism is dependent on the growing direction. When the boron nanowires grow along the base vector [001], they exhibit ferromagnetism and have the magnetic moments of 1.98 and 2.62 μB, respectively, for the α-c [001] and β-c [001] directions. Electronically, when the boron nanowire grows along the α-c [001] direction, it shows semiconducting and has the direct bandgap of 0.19 eV. These results showed that boron nanowires possess the unique direction dependence of the magnetic and semiconducting behaviors, which are distinctly different from that of the bulk boron. Therefore, these theoretical findings would bring boron nanowires to have many promising applications that are novel for the boron bulk. PMID:23244063

  14. Boron and silicon: Effects on growth, plasma lipids, urinary cyclic AMP and bone and brain mineral composition of male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborn, C.D.; Nielsen, F.H.

    1994-06-01

    Because boron resembles silicon in its chemical properties, an experiment was performed to determine if excessive dietary boron would affect the response to silicon deprivation and, conversely, if silicon would influence the effects of an excessive intake of boron. Male weanling Sprague-Dawley rats were assigned to groups of 6 or 12 in a two-by-two factorially arranged experiment. Supplemented to a ground corn/casein diet containing 1.2 [mu]g silicon and 3 [mu]g boron per gram were silicon as sodium metasilicate at 0 or 50 [mu]g/g and boron as orthoboric acid at 0 or 500 [mu]g/g diet. At nine weeks, animals fed highmore » dietary boron had significantly decreased final body weights, liver-weight-to-body-weight ratios, urinary cAMP concentrations, plasma triglyceride, cholesterol, glycine, valine, leucine, and lysine concentrations and skull copper, sodium, and manganese concentrations. High dietary boron also significantly increased brain-weight-to-body-weight ratios, magnesium concentrations of femur, brain, and plasma, zinc concentration of femur, and iron concentration of skull. The bone mineral findings suggest that excess dietary boron exerts subtle effects on bone composition. Dietary silicon affected blood urea nitrogen, hematocrit, hemoglobin, and the concentrations of plasma threonine and aspartic acid in animals fed excess boron. Depression of the testes-weight-to-body-weight ratio of animals fed 500 [mu]g boron per gram diet was most marked in animals not fed silicon. Although excessive dietary boron did not markedly enhanced the response of rats to silicon deprivation, dietary silicon affected their response to high dietary boron. Thus, dietary silicon apparently can influence boron toxicity.« less

  15. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin (Inventor); Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  16. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  17. Plasma boron and the effects of boron supplementation in males.

    PubMed Central

    Green, N R; Ferrando, A A

    1994-01-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p < 0.01), lean body mass (p < 0.01), and one repetition maximum (RM) squat (p < 0.001) and one RM bench press (p < 0.01). The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all. PMID:7889885

  18. Microwave sintering of boron carbide

    DOEpatents

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  19. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  20. Removal of boron (B) from waste liquors.

    PubMed

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  1. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    PubMed Central

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  2. Effects of Perchlorate on Thyroidal Uptake of Iodide with Corresponding Hormonal Changes

    DTIC Science & Technology

    2000-07-01

    with iodide for uptake at this iodide-concentrating step (Goldman and Stanbury, 1973), potentially leading to hypothyroidism . As a result perchlorate...TSH can result in increased thyroid weight, goiter and hypothyroidism (Fukuda et al., 1975; Gerber et al., 1981). The objective of this study was to...2000) "• Canine T3 kits ( canine T3 calibrators batch # C3D3-8, expired July 31, 1999; 1251 canine T 3 batch #, TC32, expired July 31, 1999; canine T3

  3. Microgravity

    NASA Image and Video Library

    1992-02-21

    Vapor Crystal Growth System developed in IML-1, Mercuric Iodide Crystal grown in microgravity FES/VCGS (Fluids Experiment System/Vapor Crystal Growth Facility). During the mission, mercury iodide source material was heated, vaporized, and transported to a seed crystal where the vapor condensed. Mercury iodide crystals have practical uses as sensitive X-ray and gamma-ray detectors. In addition to their excellent optical properties, these crystals can operate at room temperature, which makes them useful for portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications, and astronomical observing.

  4. Bridgman-Stockbarger growth of SrI2:Eu2+ single crystal

    NASA Astrophysics Data System (ADS)

    Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.

    2018-05-01

    Strontium Iodide (SrI2): Europium Iodide (EuI2) was purified by Zone-refinement process. Europium doped strontium iodide (SrI2:Eu2+) single crystal was grown by modified vertical Bridgman - Stockbarger technique. Photoluminescence (PL) excitation and emission (PLE) spectra were measured for Eu2+ doped SrI2 crystal. The sharp emission was recorded at 432 nm. Scintillation properties of the SrI2:Eu2+ crystal were checked by the gamma ray spectrometer using 137Cs gamma source.

  5. Tetrabutylammonium Iodide-Promoted Thiolation of Oxindoles Using Sulfonyl Chlorides as Sulfenylation Reagents.

    PubMed

    Zhao, Xia; Wei, Aoqi; Lu, Xiaoyu; Lu, Kui

    2017-08-01

    3-Sulfanyloxindoles were synthesised by triphenylphosphine-mediated transition-metal-free thiolation of oxindoles using sulfonyl chlorides as sulfenylation reagents. The above reaction was promoted by iodide anions, which was ascribed to the in situ conversion of sulfenyl chlorides into the more reactive sulfenyl iodides. Moreover, the thiolation of 3-aryloxindoles was facilitated by bases. The use of a transition-metal-free protocol, readily available reagents, and mild reaction conditions make this protocol more practical for preparing 3-sulfanyloxindoles than traditional methods.

  6. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any contamination and with a uniform size distribution. Various reaction parameters such as temperature, reaction time, and sonication were altered to find the optimal reaction conditions. Once these conditions were determined, boron nanorods were produced then functionalized with amine-terminated polyethylene glycol.

  7. Method for preparing boron-carbide articles

    DOEpatents

    Benton, S.T.; Masters, D.R.

    1975-10-21

    The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.

  8. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  9. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets.

    PubMed

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-24

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  10. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  11. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  12. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  13. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  14. Effect of low temperature oxidation (LTO) in reducing boron skin in boron spin on dopant diffused emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singha, Bandana; Solanki, Chetan Singh

    Formation of boron skin is an unavoidable phenomenon in p-type emitter formation with boron dopant source. The boron skin thickness is generally less than 100 nm and difficult to remove by chemical and physical means. Low temperature oxidation (LTO) used in this work is useful in removing boron skin thickness up to 30 nm and improves the emitter performance. The effective minority carrier lifetime gets improved by more than 30% after using LTO and leakage current of the emitter gets lowered by 100 times thereby showing the importance of low temperature oxidation in boron spin on dopant diffused emitters.

  15. 40 CFR 415.364 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...

  16. 40 CFR 415.364 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...

  17. 40 CFR 415.364 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...

  18. 40 CFR 415.364 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfate, copper chloride, copper iodide, or copper nitrate which introduces pollutants into a publicly... for existing sources (PSES): Subpart AJ—Copper Sulfate, Copper Chloride, Copper Iodide, Copper Nitrate...

  19. [Citrus boron nutrient level and its impact factors in the Three Gorges Reservoir region of Chongqing, China].

    PubMed

    Zhou, Wei; Peng, Liang-Zhi; Chun, Chang-Pin; Jiang, Cai-Lun; Ling, Li-Li; Wang, Nan-Qi; Xing, Fei; Huang, Yi

    2014-04-01

    To investigate the level of boron nutrient in citrus and its impact factors, a total of 954 citrus leaf samples and 302 soil samples were collected from representative orchards in the 12 main citrus production counties in the Three Gorges Reservoir region of Chongqing to determine the boron content in citrus leaves, as well as the relationships between leaf boron content with soil available boron content, soil pH value, cultivar, rootstock and the age of tree. Results indicated that the leaf samples from 41.6% orchards (< 35 mg x kg(-1)) and the soil samples from 89.4% orchards (< 0.5 mg x kg(-1)) were boron insufficient. The correlation of leaf boron content and soil available boron content was not significant. The soil pH, cultivar, rootstock and the age of tree did affect the leaf boron content. The leaves from the orchards with soil pH of 4.5-6.4 demonstrated significantly higher boron contents than with the soil pH of 6.5-8.5. The leaf boron contents in the different cultivars was ranged as Satsuma mandarin > pomelo > valencia orange > sweet orange > tangor > navel orange. The citrus on trifoliate orange and sour pomelo rootstocks had significantly higher leaf boron contents than on Carrizo citrange and red tangerine rootstocks. Compared with the adult citrus trees (above 8 year-old), 6.6% more of leaf samples of younger trees (3 to 8 year-old) contained boron contents in the optimum range (35-100 mg x kg(-1)).

  20. BN Bonded BN fiber article and method of manufacture

    DOEpatents

    Hamilton, Robert S.

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  1. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  2. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  3. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  4. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  5. Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.

    PubMed Central

    Blevins, D G; Lukaszewski, K M

    1994-01-01

    Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877

  6. Thermal neutron shield and method of manufacture

    DOEpatents

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  7. Synthesis, salvage, and catabolism of uridine nucleotides in boron-deficient squash roots.

    PubMed

    Lovatt, C J; Albert, L S; Tremblay, G C

    1981-12-01

    Previous work has provided evidence that plants may require boron to maintain adequate levels of pyrimidine nucleotides, suggesting that the state of boron deficiency may actually be one of pyrimidine starvation. Since the availability of pyrimidine nucleotides is influenced by their rates of synthesis, salvage, and catabolism, we compared these activities in the terminal 3 centimeters of roots excised from boron-deficient and -sufficient squash plants (Cucurbita pepo L.). Transferring 5-day-old squash plants to a boron-deficient nutrient solution resulted in cessation of root elongation within 18 hours. However, withholding boron for up to 30 hours did not result in either impaired de novo pyrimidine biosynthesis or a change in the sensitivity of the de novo pathway to regulation by end product inhibition. Boron deprivation had no significant effect on pyrimidine salvage or catabolism. These results provide evidence that boron-deficient plants are not starved for uridine nucleotides collectively. Whether a particular pyrimidine nucleotide or derivative is limiting during boron deprivation remains to be examined.

  8. Three-chain B{sub 6n+14} cages as possible precursors for the syntheses of boron fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Haigang, E-mail: luhg@sxu.edu.cn; Li, Si-Dian

    Using the first principle methods, we proposed a series of three-chain boron cages B{sub 6n+14} (n = 1–12) which are mainly built by fusing three boron semi-double-rings. Their simple geometric structures (approximate D{sub 3} or C{sub 3} symmetry) facilitate their bottom-up syntheses from the hexagonal B{sub 7} and the double-chain boron clusters, such as B{sub 2}, B{sub 4}, B{sub 6}, B{sub 8}H{sub 2}, B{sub 10}H{sub 2}, B{sub 12}H{sub 2}, and the double ring B{sub 20}. The spherical shapes of these three-chain boron cages show that they could be taken as the possible precursors to further synthesize the boron fullerenes, suchmore » as B{sub 80}. Therefore, these three-chain boron cages provide a possible synthesis pathway of the boron fullerenes from the experimentally synthesized small planar boron clusters.« less

  9. Asymmetric homologation of boronic esters bearing azido and silyloxy substituents.

    PubMed

    Singh, R P; Matteson, D S

    2000-10-06

    In the asymmetric homologation of boronic esters with a (dihalomethyl)lithium, substituents that can bind metal cations tend to interfere. Accordingly, we undertook the introduction of weakly basic oxygen and nitrogen substituents into boronic esters in order to maximize the efficiency of multistep syntheses utilizing this chemistry. Silyloxy boronic esters cannot be made efficiently by direct substitution, but a (hydroxymethyl)boronic ester has been silylated in the usual manner. Conversion of alpha-halo boronic esters to alpha-azido boronic esters has been carried out with sodium azide and a tetrabutylammonium salt as phase-transfer catalyst in a two-phase system with water and either nitromethane or ethyl acetate. These are safer solvents than the previously used dichloromethane, which can form an explosive byproduct with azide ion. Boronic esters containing silyloxy or alkoxy and azido substituents have been shown to react efficiently with (dihalomethyl)lithiums, resulting in efficient asymmetric insertion of the halomethyl group into the carbon-boron bond.

  10. Boron chemicals in diagnosis and therapeutics

    PubMed Central

    Das, Bhaskar C; Thapa, Pritam; Karki, Radha; Schinke, Caroline; Das, Sasmita; Kambhampati, Suman; Banerjee, Sushanta K; Van Veldhuizen, Peter; Verma, Amit; Weiss, Louis M; Evans, Todd

    2013-01-01

    Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade®), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin’s lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans. PMID:23617429

  11. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, V., E-mail: V.Mohammadi@tudelft.nl; Nihtianov, S.

    The lateral gas phase diffusion length of boron atoms, L{sub B}, along silicon and boron surfaces during chemical vapor deposition (CVD) using diborane (B{sub 2}H{sub 6}) is reported. The value of L{sub B} is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and confirmed analytically in the boron deposition temperature range from 700 °C down to 400 °C. For this temperature range the local loading effect of the boron deposition is investigated on the micro scale. A L{sub B} = 2.2 mm was determined for boron deposition at 700 °C, while a L{sub B}more » of less than 1 mm was observed at temperatures lower than 500 °C.« less

  12. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The versatility of boron in biological target engagement

    NASA Astrophysics Data System (ADS)

    Diaz, Diego B.; Yudin, Andrei K.

    2017-08-01

    Boron-containing molecules have been extensively used for the purposes of chemical sensing, biological probe development and drug discovery. Due to boron's empty p orbital, it can coordinate to heteroatoms such as oxygen and nitrogen. This reversible covalent mode of interaction has led to the use of boron as bait for nucleophilic residues in disease-associated proteins, culminating in the approval of new therapeutics that work by covalent mechanisms. Our analysis of a wide range of covalent inhibitors with electrophilic groups suggests that boron is a unique electrophile in its chameleonic ability to engage protein targets. Here we review boron's interactions with a range of protein side-chain residues and reveal that boron's properties are nuanced and arise from its uncommon coordination preferences. These mechanistic and structural insights should serve as a guide for the development of selective boron-based bioactive molecules.

  14. Methylboronic acid fertilization alleviates boron deficiency symptoms in Arabidopsis thaliana.

    PubMed

    Duran, Catherine; Arce-Johnson, Patricio; Aquea, Felipe

    2018-07-01

    Our results showed that methylboronic acid is capable of alleviating boron deficiency, enhancing plant growth, and is less toxic than boric acid at higher concentrations. Boron is an essential plant micronutrient and its deficiency occurs in several regions globally, resulting in impaired plant growth. Boron fertilization is a common agricultural practice, but the action range of boron is narrow, sharply transitioning from deficiency to toxicity. Boric acid (BA) is the most common chemical form used in agriculture. In this work, we describe that methylboronic acid (MBA) is capable of alleviating boron deficiency in Arabidopsis. MBA is a boronic acid, but does not naturally occur in soils, necessitating synthesis. Other boronic acids have been described as boron competitors in plants, inhibiting auxin biosynthesis and root development. MBA is more water-soluble than BA and delivers the same amount of boron per molecule. We observed that Arabidopsis seedlings grown in the presence of MBA presented higher numbers of lateral roots and greater main root length compared to plants grown in BA. In addition, root hair length and leaf surface area were increased using MBA as a boron fertilizer. Finally, MBA was less toxic than BA at high concentrations, producing a slight reduction in the main root length but no decrease in total chlorophyll. Our results open a new opportunity to explore the use of a synthetic form of boron in agriculture, providing a tool for future research for plant nutrition.

  15. Cesium iodide crystals fused to vacuum tube faceplates

    NASA Technical Reports Server (NTRS)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  16. Iodine addition using triiodide solutions

    NASA Technical Reports Server (NTRS)

    Rutz, Jeffrey A.; Muckle, Susan V.; Sauer, Richard L.

    1992-01-01

    The study develops: a triiodide solution for use in preparing ground service equipment (GSE) water for Shuttle support, an iodine dissolution method that is reliable and requires minimal time and effort to prepare, and an iodine dissolution agent with a minimal concentration of sodium salt. Sodium iodide and hydriodic acid were both found to dissolve iodine to attain the desired GSE iodine concentrations of 7.5 +/- 2.5 mg/L and 25 +/- 5 mg/L. The 1.75:1 and 2:1 sodium iodide solutions produced higher iodine recoveries than the 1.2:1 hydriodic acid solution. A two-hour preparation time is required for the three sodium iodide solutions. The 1.2:1 hydriodic acid solution can be prepared in less than 5 min. Two sodium iodide stock solutions (2.5:1 and 2:1) were found to dissolve iodine without undergoing precipitation.

  17. Design and chemical synthesis of iodine-containing molecules for application to solar-pumped I* lasers

    NASA Technical Reports Server (NTRS)

    Shiner, C. S.

    1985-01-01

    This work is directed toward the design and chemical synthesis of new media for solar-pumped I* lasers. In view of the desirability of preparing a perfluoroalkyl iodide absorbing strongly at 300 nm, the relationship betwen perfluoroalkyl iodide structure and the corresponding absorption wavelength was reexamined. Analysis of existing data suggests that, in this family of compounds, the absorption maximum shifts to longer wavelength, as desired, as the C-I bond in the lasant is progressively weakened. Weakening of the C-I bond correlates, in turn, with increasing stability of the perfluoroalkyl radical formed upon photodissociation of the iodide. The extremely promising absorption characteristics of perfluoro-tert-butyl iodide can be accounted for on this basis. A new technique of diode laser probing to obtain precise yields of I* atoms in photodissociation was also developed.

  18. Crystal structures of five 1-alkyl-4-aryl-1,2,4-triazol-1-ium halide salts

    PubMed Central

    Guino-o, Marites A.; Talbot, Meghan O.; Slitts, Michael M.; Pham, Theresa N.; Audi, Maya C.; Janzen, Daron E.

    2015-01-01

    The asymmetric units for the salts 4-(4-fluoro­phen­yl)-1-isopropyl-1,2,4-triazol-1-ium iodide, C11H13FN3 +·I−, (1), 1-isopropyl-4-(4-methyl­phen­yl)-1,2,4-triazol-1-ium iodide, C12H16N3 +·I−, (2), 1-isopropyl-4-phenyl-1,2,4-triazol-1-ium iodide, C11H14N3 +·I−, (3), and 1-methyl-4-phenyl-1,2,4-triazol-1-ium iodide, C9H10N3 +·I−, (4), contain one cation and one iodide ion, whereas in 1-benzyl-4-phenyl-1,2,4-triazol-1-ium bromide monohydrate, C15H14N3 +·Br−·H2O, (5), there is an additional single water mol­ecule. There is a predominant C—H⋯X(halide) inter­action for all salts, resulting in a two-dimensional extended sheet network between the triazolium cation and the halide ions. For salts with para-substitution on the aryl ring, there is an additional π–anion inter­action between a triazolium carbon and iodide displayed by the layers. For salts without the para-substitution on the aryl ring, the π–π inter­actions are between the triazolium and aryl rings. The melting points of these salts agree with the predicted substituent inductive effects. PMID:26090137

  19. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.

    PubMed

    Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X

    2003-04-01

    A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.

  20. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.

    PubMed

    Guo, Wanhong; Shan, Yingchun; Yang, Xin

    2014-01-15

    Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Boron supercapacitors

    DOE PAGES

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; ...

    2016-11-16

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  2. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  3. Boron supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  4. Crystalline boron nitride aerogels

    DOEpatents

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  5. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-02-06

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  6. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  7. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth.

    PubMed

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  8. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth

    PubMed Central

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca2+]c and induce the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth. PMID:26955377

  9. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  10. Characterization of Boron Contamination in Fluorine Implantation using Boron Trifluoride as a Source Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmeide, Matthias; Kondratenko, Serguei

    2011-01-07

    Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less

  11. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    PubMed

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biological effects of tolerable level chronic boron intake on transcription factors.

    PubMed

    Orenay Boyacioglu, Seda; Korkmaz, Mehmet; Kahraman, Erkan; Yildirim, Hatice; Bora, Selin; Ataman, Osman Yavuz

    2017-01-01

    The mechanism of boron effect on human transcription and translation has not been fully understood. In the current study it was aimed to reveal the role of boron on the expression of certain transcription factors that play key roles in many cellular pathways on human subjects chronically exposed to low amounts of boron. The boron concentrations in drinking water samples were 1.57±0.06mg/l for boron group while the corresponding value for the control group was 0.016±0.002mg/l. RNA isolation was performed using PAX gene RNA kit on the blood samples from the subjects. The RNA was then reverse transcribed into cDNA and analyzed using the Human Transcription Factors RT 2 Profiler™ PCR Arrays. While the boron amount in urine was detected as 3.56±1.47mg/day in the boron group, it was 0.72±0.30mg/day in the control group. Daily boron intake of the boron and control groups were calculated to be 6.98±3.39 and 1.18±0.41mg/day, respectively. The expression levels of the transcription factor genes were compared between the boron and control groups and no statistically significant difference was detected (P>0.05). The data suggest that boron intake at 6.98±3.39mg/day, which is the dose at which beneficial effects might be seen, does not result in toxicity at molecular level since the expression levels of transcription factors are not changed. Although boron intake over this level will seem to increase RNA synthesis, further examination of the topic is needed using new molecular epidemiological data. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    PubMed

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Decreasing boron concentrations in UK rivers: insights into reductions in detergent formulations since the 1990s and within-catchment storage issues.

    PubMed

    Neal, Colin; Williams, Richard J; Bowes, Michael J; Harrass, Michael C; Neal, Margaret; Rowland, Philip; Wickham, Heather; Thacker, Sarah; Harman, Sarah; Vincent, Colin; Jarvie, Helen P

    2010-02-15

    The changing patterns of riverine boron concentration are examined for the Thames catchment in southern/southeastern England using data from 1997 to 2007. Boron concentrations are related to an independent marker for sewage effluent, sodium. The results show that boron concentrations in the main river channels have declined with time especially under baseflow conditions when sewage effluent dilution potential is at its lowest. While boron concentrations have reduced, especially under low-flow conditions, this does not fully translate to a corresponding reduction in boron flux and it seems that the "within-catchment" supplies of boron to the river are contaminated by urban sources. The estimated boron reduction in the effluent input to the river based on the changes in river chemistry is typically around 60% and this figure matches with an initial survey of more limited data for the industrial north of England. Data for effluent concentrations at eight sewage treatment works within the Kennet also indicate substantial reductions in boron concentrations: 80% reduction occurred between 2001 and 2008. For the more contaminated rivers there are issues of localised rather than catchment-wide sources and uncertainties over the extent and nature of water/boron stores. Atmospheric sources average around 32 to 61% for the cleaner and 4 to 14% for the more polluted parts. The substantial decreases in the boron concentrations correspond extremely well with the timing and extent of European wide trends for reductions in the industrial and domestic usage of boron-bearing compounds. It clearly indicates that such reductions have translated into lower average and peak concentrations of boron in the river although the full extent of these reductions has probably not yet occurred due to localised stores that are still to deplete.

  15. Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila

    Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less

  16. Modulated photophysics of a cationic DNA-staining dye inside protein bovine serum albumin: study of binding interaction and structural changes of protein.

    PubMed

    Samanta, Anuva; Jana, Sankar; Ray, Debarati; Guchhait, Nikhil

    2014-01-01

    The binding affinity of cationic DNA-staining dye, propidium iodide, with transport protein, bovine serum albumin, has been explored using UV-vis absorption, fluorescence, and circular dichroism spectroscopy. Steady state and time resolved fluorescence studies authenticate that fluorescence quenching of bovine serum albumin by propidium iodide is due to bovine serum albumin-propidium iodide complex formation. Thermodynamic parameters obtained from temperature dependent spectral studies cast light on binding interaction between the probe and protein. Site marker competitive binding has been encountered using phenylbutazone and flufenamic acid for site I and site II, respectively. Energy transfer efficiency and distance between bovine serum albumin and propidium iodide have been determined using Förster mechanism. Structural stabilization or destabilization of protein by propidium iodide has been investigated by urea denaturation study. The circular dichroism study as well as FT-IR measurement demonstrates some configurational changes of the protein in presence of the dye. Docking studies support the experimental data thereby reinforcing the binding site of the probe to the subdomain IIA of bovine serum albumin. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Evolution of Iodoplumbate Complexes in Methylammonium Lead Iodide Perovskite Precursor Solutions

    DOE PAGES

    Sharenko, Alexander; Mackeen, Cameron; Jewell, Leila; ...

    2017-02-02

    Here in this study we investigate the local structure present in single-step precursor solutions of methylammonium lead iodide (MAPbI 3) perovskite as a function of organic and inorganic precursor ratio, as well as with hydriodic acid (HI), using X-ray absorption spectroscopy. An excess of organic precursor as well as the use of HI as a processing additive has been shown to lead to the formation of smooth, continuous, pinhole free MAPbI 3 films, whereas films produced from precursor solutions containing molar equivalents of methylammonium iodide (MAI) and PbI 2 lead to the formation of a discontinuous, needlelike morphology. We nowmore » show that as the amount of excess MAI in the precursor solution is increased, the iodide coordination of iodoplumbate complexes present in solution increases. The use of HI results in a similar increase in iodide coordination. We therefore offer insight into how solution chemistry can be used to control MAPbI 3 thin film morphology by revealing a strong correlation between the lead coordination chemistry in precursor solutions and the surface coverage and morphology of the resulting MAPbI 3 film.« less

  18. Intrathyroidal iodine metabolism in the rat. The influence of diet and the administration of thyroid-stimulating hormone

    PubMed Central

    Barnaby, C. F.; Davidson, Ailsa M.; Plaskett, L. G.

    1965-01-01

    1. Ratios of mono[131I]iodotyrosine and di[131I]iodotyrosine (R values) and the incorporation of 131I into iodothyronines have been estimated in rat thyroid glands from 30min. to 38hr. after the administration of [131I]iodide. 2. In rats receiving a powdered low-iodine diet the R values were close to unity and did not change with time after the administration of [131I]iodide. In rats receiving a commercial pellet diet the R values fell from a mean of 0·8 at 30min. after [131I]iodide administration to 0·49 at 38hr. 3. Administration of 0·5–2·0i.u. of thyroid-stimulating hormone before giving the injection of [131I]iodide caused a small diminution in the R value when the time between injecting [131I]iodide and killing the animal was 16hr. or more. 4. Iodothyronines represented a greater percentage of the total thyroid-gland radioactivity in the iodine-deficient animals than in animals fed on the pellet diet. Thyroid-stimulating hormone had little effect, if any, on the iodothyronine contents. PMID:14342520

  19. Homology of pendrin, sodium-iodide symporter and apical iodide transporter.

    PubMed

    Benvenga, Salvatore; Guarneri, Fabrizio

    2018-06-01

    We observed local homology between human pendrin and sodium/iodide symporter (NIS), that was absent in the NIS-homologous sodium/monocarboxylate transporter or apical iodide transporter (AIT) which, however, does not transport iodide. Thus, we analyzed the full proteins. They shared 63 identical and 66 similar residues (overall homology 14.4%, but 21% when omitting intervening sequences of 15 or more residues). Pendrin was more homologous to NIS (25%) than AIT (20%), particularly in the STAS domain (sulfate transporter and antisigma factor antagonist). Homology was concentrated in 11 segments, with 3/11 involving the STAS domain. In 9/11, homology was greater with NIS (45-58.3%) than with AIT (8.3-42.3%); in 4 of these 9 segments, homology was comparable to or greater than that between NIS and AIT (8.3-52.6%). Pendrin residues which are mutated in Pendred's syndrome are identical to those in the aligned position of NIS and AIT. Hypothyroidism-associated pendrin mutations almost always fall within 4/11 segments. These are the first data that show homology between pendrin and NIS, and topographic relationships between pendrin mutations and the hypothyroid phenotype of PDS.

  20. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine

    PubMed Central

    Nagarajah, James; Le, Mina; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Larson, Steven M.; Ho, Alan L.; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A.; Fagin, James A.

    2016-01-01

    Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer. PMID:27669459

  1. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine.

    PubMed

    Nagarajah, James; Le, Mina; Knauf, Jeffrey A; Ferrandino, Giuseppe; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Saqcena, Mahesh; Larson, Steven M; Ho, Alan L; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A; Fagin, James A

    2016-11-01

    Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer.

  2. Synergistic effect of iodide ions on the corrosion inhibition of steel in 0.5 M H 2SO 4 by new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Bouklah, M.; Hammouti, B.; Aouniti, A.; Benkaddour, M.; Bouyanzer, A.

    2006-07-01

    The effect of addition of 4',4-dihydroxychalcone (P 1), 4-aminochalcone (P 2) and 4-bromo, 4'-methoxychalcone (P 3) on the corrosion of steel in 0.5 M sulphuric acid has been studied by weight loss measurements, potentiodynamic and EIS measurements. We investigate the synergistic effect of iodide ions on the corrosion inhibition of steel in the presence of chalcone derivatives. The corrosion rates of the steel decrease with the increase of the chalcones concentration, while the inhibition efficiencies increase. The addition of iodide ions enhances the inhibition efficiency considerably. The presence of iodide ions increases the degree of surface coverage. The synergism parameters SΘ and SI, calculated from surface coverage and the values of inhibition efficiency, in the case of chalcone derivatives are found to be larger than unity. The enhanced inhibition efficiency in the presence of iodide ions is only due to synergism and there is a definite contribution from the inhibitors molecules. E (%) obtained from the various methods is in good agreement. Polarisation measurements show also that the compounds act as cathodic inhibitors.

  3. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    PubMed

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  4. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Yoon, D; Shin, H

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show thatmore » the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less

  5. Evaluation of Ground-Water and Boron Sources by Use of Boron Stable-Isotope Ratios, Tritium, and Selected Water-Chemistry Constituents near Beverly Shores, Northwestern Indiana, 2004

    USGS Publications Warehouse

    Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.

    2007-01-01

    Concentrations of boron greater than the U.S. Environmental Protection Agency (USEPA) 900 ?g/L removal action level (RAL) standard were detected in water sampled by the USEPA in 2004 from three domestic wells near Beverly Shores, Indiana. The RAL regulates only human-affected concentrations of a constituent. A lack of well logs and screened depth information precluded identification of whether water from sampled wells, and their boron sources, were from human-affected or natural sources in the surficial aquifer, or associated with a previously defined natural, confined aquifer source of boron from the subtill or basal sand aquifers. A geochemically-based classification of the source of boron in ground water could potentially determine the similarity of boron to known sources or mixtures between known sources, or classify whether the relative age of the ground water predated the potential sources of contamination. The U.S. Geological Survey (USGS), in cooperation with the USEPA, investigated the use of a geochemical method that applied boron stable isotopes, and concentrations of boron, tritium, and other constituents to distinguish between natural and human-affected sources of boron in ground water and thereby determine if the RAL was applicable to the situation. Boron stable-isotope ratios and concentrations of boron in 17 ground-water samples and tritium concentrations in 9 ground-water samples collected in 2004 were used to identify geochemical differences between potential sources of boron in ground water near Beverly Shores, Indiana. Boron and d11B analyses for this investigation were made on unacidified samples to assure consistency of the result with unacidified analyses of d11B values from other investigations. Potential sources of boron included surficial-aquifer water affected by coal-combustion products (CCP) or domestic-wastewater, upward discharge of ground water from confined aquifers, and unaffected water from the surficial aquifer that was distant from human-affected boron sources. Boron concentrations in potential ground-water sources of boron were largest (15,700 to 24,400 ?g/L) in samples of CCP-affected surficial aquifer water from four wells at a CCP landfill and smallest (27 to 63 ?g/L) in three wells in the surficial aquifer that were distant from human-affected boron sources. Boron concentrations in water from the basal sand aquifer ranged from 656 ?g/L to 1,800 ?g/L. Boron concentrations in water from three domestic-wastewater-affected surficial aquifer wells ranged from 84 to 387 ?g/L. Among the representative ground-water samples, boron concentrations from all four samples of CCP-affected surficial aquifer water and four of five samples of water from the basal sand aquifer had concentrations greater than the RAL. A comparison of boron concentrations in acid-preserved and unacidified samples indicated that boron concentrations reported for this investigation may be from about 11 to 16 percent less than would be reported in a standard analysis of an acidified sample. The stable isotope boron-11 was most enriched in comparison to boron-10 in ground water from a confined aquifer, the basal sand aquifer (d11B, 24.6 to 34.0 per mil, five samples); it was most depleted in CCP-affected water from the surficial aquifer (d11B, 0.1 to 6.6 per mil, four samples). Domestic-wastewater-affected water from the surficial aquifer (d11B, 8.7 to 11.7 per mil, four samples) was enriched in boron-11, in comparison to individual samples of a borax detergent additive and a detergent with perborate bleach; it was intermediate in composition between basal sand aquifer water and CCP-affected water from the surficial aquifer. The similarity between a ground-water sample from the surficial aquifer and a hypothetical mixture of unaffected surficial aquifer and basal sand aquifer waters indicates the potential for long-term upward discharge of ground water into the surficial aquifer from one or more confined aquifers. Est

  6. The Effect of Boronizing on Metallic Alloys for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Petrova, Roumiana S.; Suwattananont, Naruemon; Samardzic, Veljko

    2008-06-01

    In this study the wear resistance, corrosion resistance, and oxidation resistance of boronized metallic alloys were investigated. Thermochemical treatment was performed by powder pack boronizing process at temperature 850-950 °C for 4 h. Saw-tooth morphology and smooth interface microstructures were observed with an optical microscope; microhardness was measured across the coating depth. The phases present in the boron coatings depend on the substrate material. High-temperature oxidation resistance was investigated and it was found that boron coating on ferrous alloys can resist temperatures up to 800 °C. The corrosion resistance of the boronized samples was improved and the corrosion rate was calculated for boronized and plain specimens. Wear testing was conducted by following the procedures of ASTM G99, ASTM D2526, and ASTM D4060. The obtained experimental results revealed that boronizing significantly improves the wear-resistance, corrosion-resistance, and oxidation resistance of metallic alloys.

  7. Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts

    NASA Astrophysics Data System (ADS)

    Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming

    2017-12-01

    A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.

  8. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    PubMed

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

  9. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    PubMed

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  10. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  11. Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (Rubidium Iodide)

    EPA Science Inventory

    This is a PPRTV for Rubidium Compounds submitted to the Superfund Program.This assessment supports multiple isomers (see related links) and this page is about the chemical rubidium iodide, CASRN 7790-29-6.

  12. Boron- and salt-tolerant trees and shrubs for northern Nevada

    Treesearch

    Heidi Kratsch

    2012-01-01

    Boron is a mineral that, in small quantities, is essential for plant growth and development , but becomes toxic at levels above 0.5 to 1 part per million (ppm) in the soil. Excess boron may be naturally present in the soil, and it can accumulate by irrigating with water high in boron. Boron occurs naturally in arid soils originating from geologically young deposits. It...

  13. Characterization of boron carbide with an electron microprobe

    NASA Technical Reports Server (NTRS)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  14. Process for the extemporaneous preparation of an injectable fatty acid tagged in the omega position by means of radioactive iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardy, A.; Comet, M.; Coornaert, S.

    1984-10-09

    A process is claimed for the preparation of a fatty acid tagged with radioactive iodine, where a brominated or iodized fatty acid is reacted, preferably in the omega position, with radioactive iodide in the dry state or with an aqueous solution of radioactive iodide, in the presence of vehicling iodide, to exchange the bromine or iodine of the fatty acid for radioactive iodine. Application to use as radio-pharmaceutical products for studying cardiac metabolism troubles in human beings by scintigraphy is mentioned.

  15. Chemical disposition of boron in animals and humans.

    PubMed Central

    Moseman, R F

    1994-01-01

    Elemental boron was isolated in 1808. It typically occurs in nature as borates hydrated with varying amounts of water. Important compounds are boric acid and borax. Boron compounds are also used in the production of metals, enamels, and glasses. In trace amounts, boron is essential for the growth of many plants, and is found in animal and human tissues at low concentrations. Poisoning in humans has been reported as the result of accidental ingestion or use of large amounts in the treatment of burns. Boron as boric acid is fairly rapidly absorbed and excreted from the body via urine. The half-life of boric acid in humans is on the order of 1 day. Boron does not appear to accumulate in soft tissues of animals, but does accumulate in bone. Normal levels of boron in soft tissues, urine, and blood generally range from less than 0.05 ppm to no more than 10 ppm. In poisoning incidents, the amount of boric acid in brain and liver tissue has been reported to be as high as 2000 ppm. Recent studies at the National Institute of Environmental Health Sciences have indicated that boron may contribute to reduced fertility in male rodents fed 9000 ppm of boric acid in feed. Within a few days, boron levels in blood and most soft tissues quickly reached a plateau of about 15 ppm. Boron in bone did not appear to plateau, reaching 47 ppm after 7 days on the diet. Cessation of exposure to dietary boron resulted in a rapid drop in bone boron.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889870

  16. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.

    PubMed

    Moghaddasi, Leyla; Bezak, Eva

    2018-03-01

    Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.

  17. Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women

    PubMed Central

    Mahabir, S.; Spitz, M. R.; Barrera, S. L.; Dong, Y. Q.; Eastham, C.; Forman, M. R.

    2012-01-01

    Hormone replacement therapy (HRT) may reduce lung cancer risk. Dietary boron may have actions similar to those of HRT; however, no previous study has reported the associations between dietary boron intake and lung cancer risk or the joint effects of boron intake and HRT use on lung cancer risk. The authors examined the associations between boron intake and the joint effects of boron intake and HRT on lung cancer risk in women. In an ongoing case-control study in Houston, Texas (July 1995 through April 2005, end date for this analysis), 763 women were diagnosed with lung cancer, and 838 were matched healthy controls with data on both diet and HRT. Multiple logistic regression analyses were conducted to assess the associations between dietary boron and HRT with lung cancer risk. After adjustment for potential confounders, the odds ratios for lung cancer with decreasing quartiles of dietary boron intake were 1.0, 1.39 (95% confidence interval (CI): 1.02, 1.90), 1.64 (95% CI: 1.20, 2.24), and 1.95 (95% CI: 1.42, 2.68) mg/day, respectively, for all women (ptrend < 0.0001). In joint-effects analyses, compared with women with high dietary boron intake who used HRT, the odds ratio for lung cancer for low dietary boron intake and no HRT use was 2.07 (95% CI: 1.53, 2.81). Boron intake was inversely associated with lung cancer in women, whereas women who consumed low boron and did not use HRT were at substantial increased odds. PMID:18343880

  18. Boron

    USDA-ARS?s Scientific Manuscript database

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  19. Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Wang, Yang; Wu, Shixi

    2017-07-01

    Study on the boron-based primary combustion products can bridge the gap between primary combustion and secondary combustion in solid rocket ramjets. To clarify the initial state and ignition characteristics of boron particles in the after-burning chamber of solid rocket ramjets, the elemental, composition and morphology of the primary combustion products collected under gas generator chamber pressure of 0.2 MPa and 6 MPa were investigated by energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive (SEM-EDS) individually. The ignition times of boron particles among the primary combustion products were determined using a high temperature tube furnace system. The BD model was adopted for numerical verification. The numerical solution procedure of boron ignition model in a real afterburner chamber was modified. The results show that the sum of B, C, O elements in the primary combustion products reaches approximately 90%. The primary combustion products are mainly consisted of B, C, and B2O3. Images of the primary combustion products present highly agglomeration, indicating an oxidation of boron surface. Numerous spherical carbon particles with a diameter around 100 nm are observed in the products. Three features of the boron in the primary combustion products are obtained, compared to virgin boron. First most of the boron lumps are covered by carbon particles on the surface. Second the mean particle size is five times larger than that of virgin boron. Third the overall initial oxide layer covered on boron surface increases its thickness by above 0.1 μm. The ignition time of boron in the primary combustion products reaches 20-30 ms under 1673-1873 K, which is quite different from virgin boron of 4 ms. Numerical calculation results show the key reason leading to such a long ignition time is the variation of the initial oxide layer thickness. In conclusion, the physicochemical properties of boron particles are found to differ with virgin boron after primary combustion process. The accurate evaluation of the initial oxide layer thickness and initial particle radius is a crucial procedure before the numerical calculation of boron ignition kinetics. Results of our study are expected to provide better insight in the simulation of solid rocket ramjets working process.

  20. Occurrence of perchlorate and thiocyanate in human serum from e-waste recycling and reference sites in Vietnam: association with thyroid hormone and iodide levels.

    PubMed

    Eguchi, Akifumi; Kunisue, Tatsuya; Wu, Qian; Trang, Pham Thi Kim; Viet, Pham Hung; Kannan, Kurunthachalam; Tanabe, Shinsuke

    2014-07-01

    Perchlorate (ClO4 (-)) and thiocyanate (SCN(-)) interfere with iodide (I(-)) uptake by the sodium/iodide symporter, and thereby these anions may affect the production of thyroid hormones (THs) in the thyroid gland. Although human exposure to perchlorate and thiocyanate has been studied in the United States and Europe, few investigations have been performed in Asian countries. In this study, we determined concentrations of perchlorate, thiocyanate, and iodide in 131 serum samples collected from 2 locations in Northern Vietnam, Bui Dau (BD; electrical and electronic waste [e-waste] recycling site) and Doung Quang (DQ; rural site) and examined the association between serum levels of these anions with levels of THs. The median concentrations of perchlorate, thiocyanate, and iodide detected in the serum of Vietnamese subjects were 0.104, 2020, and 3.11 ng mL(-1), respectively. Perchlorate levels were significantly greater in serum of the BD population (median 0.116 ng mL(-1)) than those in the DQ population (median 0.086 ng mL(-1)), which indicated greater exposure from e-waste recycling operations by the former. Serum concentrations of thiocyanate were not significantly different between the BD and DQ populations, but increased levels of this anion were observed among smokers. Iodide was a significant positive predictor of serum levels of FT3 and TT3 and a significant negative predictor of thyroid-stimulating hormone in males. When the association between serum levels of perchlorate or thiocyanate and THs was assessed using a stepwise multiple linear regression model, no significant correlations were found. In addition to greater concentrations of perchlorate detected in the e-waste recycling population, however, given that lower concentrations of iodide were observed in the serum of Vietnamese females, detailed risk assessments on TH homeostasis for females inhabiting e-waste recycling sites, especially for pregnant women and their neonates, are required.

  1. Thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring.

    PubMed

    Liang, Xue; Feng, Yanni; Lin, Laixiang; Abeysekera, Iruni Roshanie; Iqbal, Umar; Wang, Tingting; Wang, Ying; Yao, Xiaomei

    2018-05-01

    Our aim was to investigate thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring. Depending on their iodide intake, the pregnant rats were randomly divided into three groups: normal iodide intake (NI), 10 times high iodide intake (10 HI) and 100 times high iodide intake (100 HI) groups. Iodine concentration in the urine and maternal milk; iodine content and mitochondrial superoxide production; expression of TRα1, TRβ1, NIS and Dio1 in both the thyroid and mammary glands were all measured. The offspring were exposed to different iodide-containing water (NI, 10 HI and 100 HI) from weaning to postnatal day 180 (PN180). Serum thyroid hormone levels were measured in both maternal rats and their offspring. Iodine concentration in the urine and maternal milk, as well as iodine content in the thyroid and mammary glands was significantly increased in both the 10 HI and 100 HI groups (p < .05). In the 100 HI group of maternal rats, low FT3 levels, high FT4, TPOAb and TgAb levels were detected. In addition, an increased mitochondrial superoxide production and decreased expression of TRα1, TRβ1, NIS and Dio1 in the thyroid and mammary glands was found (p < .05). A positive staining of CD4 + that co-localized with TRβ1 in the infiltrated cells within the thyroid follicles was observed. At PN180 in the offspring, the FT3 and FT4 levels showed a significant decrease, while the levels of serum TSH, TPOAb and TgAb were significantly increased in both 10 HI and 100 HI groups (p < .05). In maternal rats, although normal thyroid function can be maintained following 10 HI, thyroiditis can be induced following 100 HI on lactation days 7, 14, and 21. In the offspring at PN180, hypothyroidism complicated with thyroiditis can occur in both the 10 HI and 100 HI groups. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Multicompartmental model for iodide, thyroxine, and triiodothyronine metabolism in normal and spontaneously hyperthyroid cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, M.T.; Broome, M.R.; Turrel, J.M.

    A comprehensive multicompartmental kinetic model was developed to account for the distribution and metabolism of simultaneously injected radioactive iodide (iodide*), T3 (T3*), and T4 (T4*) in six normal and seven spontaneously hyperthyroid cats. Data from plasma samples (analyzed by HPLC), urine, feces, and thyroid accumulation were incorporated into the model. The submodels for iodide*, T3*, and T4* all included both a fast and a slow exchange compartment connecting with the plasma compartment. The best-fit iodide* model also included a delay compartment, presumed to be pooling of gastrosalivary secretions. This delay was 62% longer in the hyperthyroid cats than in themore » euthyroid cats. Unexpectedly, all of the exchange parameters for both T4 and T3 were significantly slowed in hyperthyroidism, possibly because the hyperthyroid cats were older. None of the plasma equivalent volumes of the exchange compartments of iodide*, T3*, or T4* was significantly different in the hyperthyroid cats, although the plasma equivalent volume of the fast T4 exchange compartments were reduced. Secretion of recycled T4* from the thyroid into the plasma T4* compartment was essential to model fit, but its quantity could not be uniquely identified in the absence of multiple thyroid data points. Thyroid secretion of T3* was not detectable. Comparing the fast and slow compartments, there was a shift of T4* deiodination into the fast exchange compartment in hyperthyroidism. Total body mean residence times (MRTs) of iodide* and T3* were not affected by hyperthyroidism, but mean T4* MRT was decreased 23%. Total fractional T4 to T3 conversion was unchanged in hyperthyroidism, although the amount of T3 produced by this route was increased nearly 5-fold because of higher concentrations of donor stable T4.« less

  3. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.

    PubMed

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-05-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Radiochemical purity of iodine-131 labelled metaiodobenzylguanidine infusion fluids: a report from clinical practice.

    PubMed

    Wafelman, A R; Suchi, R; Hoefnagel, C A; Beijnen, J H

    1993-07-01

    Iodine-131 labelled metaiodobenzylguanidine ([131I]MIBG) has a diagnostic and therapeutic role in the management of neural crest tumours, particularly neuroblastoma, malignant phaeochromocytoma and paraganglioma. With therapeutic amounts of [131I]MIBG it is essential that the amount of free [131I]iodide, the most important impurity, is known. In clinical practice the percentage of free [131I]iodide seen in a [131I]MIBG infusion concentrate increased from 2.2% +/- 0.67% to 3.6% +/- 0.39% (mean +/- SD; n = 23) 1 day after production. At the time of use the percentage of free [131I]iodide was always below our upper limit of acceptance of 5%. Since 5% of free [131I]iodide is within practical reach in our environment, a higher percentage at the time of preadministration quality control is not accepted in the Netherlands Cancer Institute.

  5. A comparison of TO-PRO-1 iodide and 5-CFDA-AM staining methods for assessing viability of planktonic algae with epifluorescence microscopy.

    PubMed

    Gorokhova, Elena; Mattsson, Lisa; Sundström, Annica M

    2012-06-01

    Two fluorescent dyes, TO-PRO-1 iodide and 5-CFDA-AM, were evaluated for LIVE/DEAD assessment of unicellular marine algae Brachiomonas submarina and Tetraselmis suecica. Epifluorescence microscopy was used to estimate cell viability in predetermined mixtures of viable and non-viable algal cells and validated using microplate growth assay as reference measurements. On average, 5-CFDA-AM underestimated live cell abundance by ~25% compared with viability estimated by the growth assay, whereas TO-PRO-1 iodide provided accurate viability estimates. Furthermore, viability estimates based on staining with TO-PRO-1 iodide were not affected by a storage period of up to one month in -80°C, making the assay a good candidate for routine assessment of phytoplankton populations in field and laboratory studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Antifungal effects of peroxidase systems.

    PubMed

    Lehrer, R I

    1969-08-01

    In the presence of hydrogen peroxide and either potassium iodide, sodium chloride, or potassium bromide, purified human myeloperoxidase was rapidly lethal to several species of Candida. Its candidacidal activity was inhibited by cyanide, fluoride, and azide, and by heat inactivation of the enzyme. A hydrogen peroxidegenerating system consisting of d-amino acid oxidase, flavine-adenine dinucleotide, and d-alanine could replace hydrogen peroxide in the candidacidal system. Horseradish peroxidase and human eosinophil granules also exerted candidacidal activity in the presence of iodide and hydrogen peroxide; however, unlike myeloperoxidase or neutrophil granules, these peroxidase sources were inactive when chloride replaced iodide. Cells of Saccharomyces, Geotrichum, and Rhodotorula species, and spores of Aspergillus fumigatus and A. niger were also killed by the combination of myeloperoxidase, iodide, and hydrogen peroxide. Peroxidases, functionally linked to hydrogen peroxide-generating systems, could provide phagocytic cells with the ability to kill many fungal species.

  7. Potentiation of antimicrobial photodynamic inactivation mediated by a cationic fullerene by added iodide: in vitro and in vivo studies

    PubMed Central

    Zhang, Yunsong; Dai, Tianhong; Wang, Min; Vecchio, Daniela; Chiang, Long Y; Hamblin, Michael R

    2016-01-01

    Background Antimicrobial photodynamic inactivation with fullerenes bearing cationic charges may overcome resistant microbes. Methods & results We synthesized C60-fullerene (LC16) bearing decaquaternary chain and deca-tertiary-amino groups that facilitates electron-transfer reactions via the photoexcited fullerene. Addition of the harmless salt, potassium iodide (10 mM) potentiated the ultraviolet A (UVA) or white light-mediated killing of Gram-negative bacteria Acinetobacter baumannii, Gram-positive methicillin-resistant Staphylococcus aureus and fungal yeast Candida albicans by 1–2+ logs. Mouse model infected with bioluminescent Acinetobacter baumannii gave increased loss of bioluminescence when iodide (10 mM) was combined with LC16 and UVA/white light. Conclusion The mechanism may involve photoinduced electron reduction of 1(C60>)* or 3(C60>)* by iodide producing I· or I2 followed by subsequent intermolecular electron-transfer events of (C60>)−· to produce reactive radicals. PMID:25723093

  8. Colorimetric Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

    NASA Technical Reports Server (NTRS)

    Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.

  9. Thyroid effects of iodine and iodide in potable water

    NASA Technical Reports Server (NTRS)

    Bull, Richard J.; Thrall, Karla D.; Sherer, Todd T.

    1991-01-01

    Experiments are reviewed which examine the comparative toxicological effects of iodide (I) and iodine (I2) when used to disinfect drinking water. References are made to a subchronic study in rats, a comparison of the distribution of radiolabeled I and I2, and a demonstration of thyroxine formation in the gastrointestinal tract. The results of the study of the rats are examined in detail; the findings show that I and I2 have opposite effects on the concentrations of thyroid hormones in blood. Iodide slightly decreases circulating thyroxine, while I2 significantly increases the thyroxine concentrations, decreases triiodothyronine levels, and does not change the weight of the thyroid gland. The related effects of I2 ingestion are set forth in detail and are shown to be unique to I2 contamination. Iodine can counteract the effects of iodide and should therefore be used as a disinfectant in drinking water.

  10. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  11. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  12. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  13. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  14. Study of the effects of focused high-energy boron ion implantation in diamond

    NASA Astrophysics Data System (ADS)

    Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.

    2017-08-01

    Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.

  15. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapymore » was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less

  16. Chemical and structural characterization of boron carbide powders and ceramics

    NASA Astrophysics Data System (ADS)

    Kuwelkar, Kanak Anant

    Boron carbide is the material of choice for lightweight armor applications due to its extreme hardness, high Young's modulus and low specific weight. The homogeneity range in boron carbide extends from 9 to 20 at% carbon with the solubility limits not uniquely defined in literature. Over the homogeneity range, the exact lattice positions of boron and carbon atoms have not been unambiguously established, and this topic has been the consideration of significant debate over the last 60 years. The atomic configuration and positions of the boron and carbon atoms play a key role in the crystal structure of the boron carbide phases. Depending on the atomic structure, boron carbide exhibits different mechanical properties which may alter its ballistic performance under extreme dynamic conditions. This work focusses on refinement and development of analytical and chemical methods for an accurate determination of the boron carbide stoichiometry. These methods were then utilized to link structural changes of boron carbide across the solubility range to variations in mechanical properties. After an extensive assessment of the currently employed characterization techniques, it was discerned that the largest source of uncertainty in the determination of the boron carbide stoichiometry was found to arise from the method utilized to evaluate the free carbon concentration. To this end, a modified spiking technique was introduced for free carbon determination where curve fitting techniques were employed to model the asymmetry of the 002 free carbon diffraction peak based on the amorphous, disordered and graphitic nature of carbon. A relationship was then established between the relative intensities of the carbon and boron carbide peaks to the percentage of added carbon and the free-carbon content was obtained by extrapolation. Samples with varying chemistry and high purity were synthesized across the solubility range by hot pressing mixtures of amorphous boron and boron carbide. Vibrational mode frequencies and lattice parameter measurements from Rietveld refinement were correlated to the respective B:C ratios calculated using the developed characterization techniques. An expansion of the unit cell and change in slope in the lattice parameter-stoichiometry relationship were observed at more boron rich stoichiometries. These observations were justified through the proposal of a simplified structural model considering preferential substitution of boron atoms for carbon atoms in the icosahedra from 20 at% to 13.3 at% carbon, followed by formation of B-B bonds from 13.3 at % C to 9 at% C. Hardness measurements uncovered decreased hardness values in boron rich boron carbide which was attributed to the formation of weaker unit cells. Load induced amorphization was also detected in all the indented materials. Finally, experimental observations have shown that failure in boron carbide may be governed by a mechanism other than amorphization and synthesizing boron carbide with a modified microstructure at stoichiometries close to B4C may be the way forward to attain improved ballistic performance.

  17. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with less than 40 wt. % amorphous boron additions. X-ray diffraction analysis revealed the samples to be phase pure and boron-rich. Carbon content was determined to be at or near expected values with exception of samples with greater than 40 wt. % amorphous boron additions. Raman microspectroscopy further confirmed the changes in chemistry as well as revealed the chemical homogeneity of the samples. Microstructural analysis carried out using both optical and electron imaging showed clean and consistent microstructures. The changes in the chemistry of the boron carbide samples has been shown to significantly affect the static mechanical properties. Ultrasonic wave speed measurements were used to calculate the elastic moduli which showed a clear decrease in the Young's and shear moduli with a slight increase in bulk modulus. Berkovich nano-indentation revealed a similar trend, as the hardness and fracture toughness of the material decreased with decreasing carbon content. Amorphization within 1 kg Knoop indents was shown to diminish in intensity and extent as carbon content decreased, signifying a mechanism for amorphization mitigation.

  18. Boron exposure assessment using drinking water and urine in the North of Chile.

    PubMed

    Cortes, S; Reynaga-Delgado, E; Sancha, A M; Ferreccio, C

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3mgL(-1), with a median value of 2.9mgL(-1), while concentrations of boron in bottled water varied from 0.01 to 12.2mgL(-1). Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4mgL(-1), with a median of 4.28mgL(-1) and was found to be correlated with tap water sampled from the homes of the volunteers (r=0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The Importance of Slag Structure to Boron Removal from Silicon during the Refining Process: Insights from Raman and Nuclear Magnetic Resonance Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Qian, Guoyu; Wang, Zhi; Gong, Xuzhong; Sun, Liyuan

    2017-12-01

    Slag structure plays an important role in determining the relative ease of boron removal from silicon. Correlation between slag structure and boron removal thermodynamics was experimentally studied by Raman and nuclear magnetic resonance (NMR) spectroscopy using CaO-SiO2-Na2O slags with different optical basicities (0.6 to 0.71). Optimization of slag depolymerization leads to efficient removal of boron. The extent of nonbridged oxygen content (NBO/T) and boron removal gradually increased with an increase in optical basicity from 0.6 to 0.66: B2O3 derived from boron oxidation captured nonbridging oxygens of Q 0(Si), Q 1(Si), and Q 2(Si), and was incorporated into the silicate network in the form of Q 3(Si and B). When optical basicity increased to 0.71, NBO/T rapidly increased and boron removal decreased considerably. Quick depolymerization of Q 3(Si and B) deteriorated the stability of boron. Various structural forms of boron in the silicate network were successfully detected: the BO3 trihedrons [3]B-3Si, [3]B-2Si-1NBO, and BO3 (nonring), and the BO4 tetrahedrons BO4 (1B, 3Si) and BO4 (0B, 4Si). BO4 (1B, 3Si) was the main structure contributing to the increase of boron capacity; BO3 (nonring), detected under higher optical basicity conditions, may cause deterioration of boron removal by suppressing its oxidation.

  20. Gamma-ray shielding effect of Gd3+ doped lead barium borate glasses

    NASA Astrophysics Data System (ADS)

    Kummathi, Harshitha; Naveen Kumar, P.; Vedavathi T., C.; Abhiram, J.; Rajaramakrishna, R.

    2018-05-01

    The glasses of the batch xPbO: 10BaO: (90-x)B2O3: 0.2Gd2O3 (x = 40,45,50 mol %) were prepared by melt-quench technique. The work emphasizes on gamma ray shielding effect on doped lead glasses. The role of Boron is significant as it acts as better neutron attenuator as compared with any other materials, as the thermal neutron cross-sections are high for Gadolinium, 0.2 mol% is chosen as the optimum concentration for this matrix, as higher the concentration may lead to further increase as it produces secondary γ rays due to inelastic neutron scattering. Shielding effects were studied using Sodium Iodide (NaI) - Scintillation Gamma ray spectrometer. It was found that at higher concentration of lead oxide (PbO) in the matrix, higher the attenuation which can be co-related with density. Infra-red (I.R.) spectra reveals that the conversion of Lose triangles to tight tetrahedral structure results in enhancement of shielding properties. The Differential Scanning Calorimeter (D.S.C.) study also reveals that the increase in glass forming range increases the stability which in-turn results in inter-conversion of BO3 to BO4 units such that the density of glass increases with increase in PbO content, resulting in much stable and efficient gamma ray shielding glasses.

  1. Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria.

    PubMed

    Zhao, Dan; Lim, Choon-Ping; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-03-01

    Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml(-1) iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml(-1) iodide (I(-)). When 10(6) CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I(2)), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml(-1), respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I(-)), the molecular iodine concentration was estimated to be 0.76 μg ml(-1) after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml(-1).

  2. Regulation of Iodide Uptake in Placental Primary Cultures

    PubMed Central

    Burns, R.; O'Herlihy, C.; Smyth, P.P.A.

    2013-01-01

    Background Maintenance of adequate iodide supply to the developing fetus is dependent not only on maternal dietary iodine intake but also on placental iodide transport. The objective of this study was to examine the effects of different pregnancy-associated hormones on the uptake of radioiodide by the placenta and to determine if iodide transporter expression is affected by hormone incubation. Methods Primary cultures of placental trophoblast cells were established from placentas obtained at term from pre-labor caesarean sections. They were pre-incubated with 17β-estradiol, prolactin, oxytocin, human chorionic gonadotropin (hCG) and progesterone either singly or in combination over 12 h with 125I uptake being measured after 6 h. RNA was isolated from placental trophoblasts and real-time RT-PCR performed using sodium iodide symporter (NIS) and pendrin (PDS) probes. Results Significant dose response increments in 125I uptake by trophoblast cells (p < 0.01) were observed following incubation with hCG (60% increase), oxytocin (45% increase) and prolactin (32% increase). Although progesterone (50-200 ng/ml) and 17β-estradiol (1,000-15,000 pg/ml) alone produced no significant differences in uptake, they facilitated increased uptake when combined with prolactin or oxytocin, with a combination of all four hormones producing the greatest increase (82%). Increased 125I uptake was accompanied by corresponding increments in NIS mRNA (ratio 1.52) compared to untreated control cells. No significantly increased expression levels of PDS were observed. Conclusions Pregnancy-associated hormones, particularly oxytocin and hCG, have a role in promoting placental iodide uptake which may protect the fetus against iodine deficiency. PMID:24783055

  3. Genetic Factors That Might Lead to Different Responses in Individuals Exposed to Perchlorate

    PubMed Central

    Scinicariello, Franco; Murray, H. Edward; Smith, Lester; Wilbur, Sharon; Fowler, Bruce A.

    2005-01-01

    Perchlorate has been detected in groundwater in many parts of the United States, and recent detection in vegetable and dairy food products indicates that contamination by perchlorate is more widespread than previously thought. Perchlorate is a competitive inhibitor of the sodium iodide symporter, the thyroid cell–surface protein responsible for transporting iodide from the plasma into the thyroid. An estimated 4.3% of the U.S. population is subclinically hypothyroid, and 6.9% of pregnant women may have low iodine intake. Congenital hypothyroidism affects 1 in 3,000 to 1 in 4,000 infants, and 15% of these cases have been attributed to genetic defects. Our objective in this review is to identify genetic biomarkers that would help define subpopulations sensitive to environmental perchlorate exposure. We review the literature to identify genetic defects involved in the iodination process of the thyroid hormone synthesis, particularly defects in iodide transport from circulation into the thyroid cell, defects in iodide transport from the thyroid cell to the follicular lumen (Pendred syndrome), and defects of iodide organification. Furthermore, we summarize relevant studies of perchlorate in humans. Because of perchlorate inhibition of iodide uptake, it is biologically plausible that chronic ingestion of perchlorate through contaminated sources may cause some degree of iodine discharge in populations that are genetically susceptible to defects in the iodination process of the thyroid hormone synthesis, thus deteriorating their conditions. We conclude that future studies linking human disease and environmental perchlorate exposure should consider the genetic makeup of the participants, actual perchlorate exposure levels, and individual iodine intake/excretion levels. PMID:16263499

  4. Spatial distribution of perchlorate, iodide and thiocyanate in the aquatic environment of Tianjin, China: environmental source analysis.

    PubMed

    Qin, Xiaolei; Zhang, Tao; Gan, Zhiwei; Sun, Hongwen

    2014-09-01

    Although China is the largest producer of fireworks (perchlorate-containing products) in the world, the pathways through which perchlorate enters the environment have not been characterized completely in this country. In this study, perchlorate, iodide and thiocyanate were measured in 101 water samples, including waste water, surface water, sea water and paired samples of rain water and surface runoff collected in Tianjin, China. The concentrations of the target anions were generally on the order of rain>surface water≈waste water treatment plant (WWTP) influent>WWTP effluent. High concentrations of perchlorate, iodide and thiocyanate were detected in rain samples, ranging from 0.35 to 27.3 (median: 4.05), 0.51 to 8.33 (2.92), and 1.31 to 107 (5.62) ngmL(-)(1), respectively. Furthermore, the concentrations of the target anions in rain samples were significantly (r=0.596-0.750, p<0.01) positively correlated with the concentrations obtained in the paired surface runoff samples. The anions tested showed a clear spatial distribution, and higher concentrations were observed in the upper reaches of rivers, sea waters near the coast, and rain-surface runoff pairs sampled in urban areas. Our results revealed that precipitation may act as an important source of perchlorate, iodide and thiocyanate in surface water. Moreover, iodide concentrations in the Haihe River and Dagu Drainage Canal showed a good correlation with an ideal marker (acesulfame) of domestic waste water, indicating that input from domestic waste water was an important source of iodide in the surface waters of Tianjin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Re-approaching global iodine emissions: A novel parameterisation for sea-surface iodide concentrations using a machine learning approach

    NASA Astrophysics Data System (ADS)

    Sherwen, T.; Evans, M. J.; Chance, R.; Tinel, L.; Carpenter, L.

    2017-12-01

    Halogens (Cl, Br, I) in the troposphere have been shown to play a profound role in determining the concentrations of ozone and OH. Iodine, which is essentially oceanic in source, exerts its largest impacts on composition in both the marine boundary layer, and in the upper troposphere. This chemistry has only recently been implemented into global models and significant uncertainties remain, particularly regarding the magnitude of iodine emissions. Iodine emissions are dominated by the inorganic oxidation of iodide in the sea surface by ozone, which leads to release of gaseous inorganic iodine (HOI, I2). Critical for calculation of these fluxes is the sea-surface concentration of iodide, which is poorly constrained by observations. Previous parameterizations for sea-surface iodide concentration have focused on simple regressive relationships with sea surface temperature and another single oceanographic variables. This leads to differences in iodine fluxes of approximately a factor of two, and leads to substantial differences in the modelled impact of iodine on atmospheric composition. Here we use an expanded dataset of oceanic iodide observations, which incorporates new data that has been targeted at areas with poor coverage previously. A novel approach of multivariate machine learning techniques is applied to this expanded dataset to generate a model that yields improved estimates of the global sea surface iodide distribution. We then use a global chemical transport model (GEOS-Chem) to explore the impact of this new parameterisation on the atmospheric budget of iodine and its impact on tropospheric composition.

  6. Recent progress in boron nanomaterials

    PubMed Central

    Kondo, Takahiro

    2017-01-01

    Abstract Various types of zero, one, and two-dimensional boron nanomaterials such as nanoclusters, nanowires, nanotubes, nanobelts, nanoribbons, nanosheets, and monolayer crystalline sheets named borophene have been experimentally synthesized and identified in the last 20 years. Owing to their low dimensionality, boron nanomaterials have different bonding configurations from those of three-dimensional bulk boron crystals composed of icosahedra or icosahedral fragments. The resulting intriguing physical and chemical properties of boron nanomaterials are fascinating from the viewpoint of material science. Moreover, the wide variety of boron nanomaterials themselves could be the building blocks for combining with other existing nanomaterials, molecules, atoms, and/or ions to design and create materials with new functionalities and properties. Here, the progress of the boron nanomaterials is reviewed and perspectives and future directions are described. PMID:29152014

  7. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  8. Transcriptomic analysis of boron hyperaccumulation mechanisms in Puccinellia distans.

    PubMed

    Öztürk, Saniye Elvan; Göktay, Mehmet; Has, Canan; Babaoğlu, Mehmet; Allmer, Jens; Doğanlar, Sami; Frary, Anne

    2018-05-01

    Puccinellia distans, common alkali grass, is found throughout the world and can survive in soils with boron concentrations that are lethal for other plant species. Indeed, P. distans accumulates very high levels of this element. Despite these interesting features, very little research has been performed to elucidate the boron tolerance mechanism in this species. In this study, P. distans samples were treated for three weeks with normal (0.5 mg L -1 ) and elevated (500 mg L -1 ) boron levels in hydroponic solution. Expressed sequence tags (ESTs) derived from shoot tissue were analyzed by RNA sequencing to identify genes up and down-regulated under boron stress. In this way, 3312 differentially expressed transcripts were detected, 67.7% of which were up-regulated and 32.3% of which were down-regulated in boron-treated plants. To partially confirm the RNA sequencing results, 32 randomly selected transcripts were analyzed for their expression levels in boron-treated plants. The results agreed with the expected direction of change (up or down-regulation). A total of 1652 transcripts had homologs in A. thaliana and/or O. sativa and mapped to 1107 different proteins. Functional annotation of these proteins indicated that the boron tolerance and hyperaccumulation mechanisms of P. distans involve many transcriptomic changes including: alterations in the malate pathway, changes in cell wall components that may allow sequestration of excess boron without toxic effects, and increased expression of at least one putative boron transporter and two putative aquaporins. Elucidation of the boron accumulation mechanism is important in developing approaches for bioremediation of boron contaminated soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions.

    PubMed

    Hanaoka, Hideki; Uraguchi, Shimpei; Takano, Junpei; Tanaka, Mayuki; Fujiwara, Toru

    2014-06-01

    Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Processing and characterization of boron carbide-hafnium diboride ceramics

    NASA Astrophysics Data System (ADS)

    Brown-Shaklee, Harlan James

    Hafnium diboride based ceramics are promising candidate materials for advanced aerospace and nuclear reactor components. The effectiveness of boron carbide and carbon as HfB2 sintering additives was systematically evaluated. In the first stage of the research, boron carbide and carbon additives were found to improve the densification behavior of milled HfB2 powder in part by removing oxides at the HfB2 surface during processing. Boron carbide additives reduced the hot pressing temperature of HfB2 by 150°C compared to carbon, which reduced the hot pressing temperature by ˜50°C. Reduction of oxide impurities alone could not explain the difference in sintering enhancement, however, and other mechanisms of enhancement were evaluated. Boron carbides throughout the homogeneity range were characterized to understand other mechanisms of sintering enhancement in HfB2. Heavily faulted carbon rich and boron rich boron carbides were synthesized for addition to HfB2. The greatest enhancement to densification was observed in samples containing boron- and carbon-rich compositions whereas B6.5 C provided the least enhancement to densification. It is proposed that carbon rich and boron rich boron carbides create boron and hafnium point defects in HfB2, respectively, which facilitate densification. Evaluation of the thermal conductivity (kth) between room temperature and 2000°C suggested that the stoichiometry of the boron carbide additives did not significantly affect kth of HfB2-BxC composites. The improved sinterability and the high kth (˜110 W/m-K at 300K and ˜90 W/m-K at 1000°C ) of HfB2-BxC ceramics make them excellent candidates for isotopically enriched reactor control materials.

  11. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  12. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  13. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  14. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  15. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  16. 27 CFR 21.78 - Formula No. 42.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Eighty grams of potassium iodide, U.S.P., and 109 grams of red mercuric iodide, N.F. XI; or (2) Ninety-five grams of thimerosal, U.S.P.; or (3) Seventy-six grams of any of the following: phenyl mercuric...

  17. 27 CFR 21.50 - Formula No. 25.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pounds of iodine, U.S.P., and 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine. 249.Miscellaneous external pharmaceuticals, U.S.P...

  18. 27 CFR 21.50 - Formula No. 25.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pounds of iodine, U.S.P., and 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine. 249.Miscellaneous external pharmaceuticals, U.S.P...

  19. Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feakes, D.A.; Shelly, K.; Hawthorne, M.F.

    1995-02-28

    The nido-carborane species K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] has been synthesized for use as an addend for the bilayer membrane of liposomes. Small unilamellar vesicles, composed of distearoylphosphatidylcholine/cholesterol, 1:1, and incorporating K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] in the bilayer, have been investigated in vivo. The time-course biodistribution of boron delivered by these liposomes was determined by inductively coupled plasma-atomic emission spectroscopy analyses after the injection of liposomal suspensions in BALB/c mice bearing EMT6 mammary adenocarcinomas. At the low injected doses normally used ({approx}5-10 mg of boron per kg of body weight), peak tumor boron concentrations ofmore » {approx}35 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx}8 were achieved. These values are sufficiently high for the successful application of boron neutron capture therapy. The bilayer-embedded boron compound may provide the sole boron source or, alternatively, a concentrated aqueous solution of a hydrophilic boron compound may also be encapsulated within the liposomes to provide a dose enhancement. Thus, the incorporation of both K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] and the hydrophilic species, Na{sub 3}[1-(2{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}], within the same liposomes demonstrated significantly enhanced biodistribution characteristics, exemplified by maximum tumor boron concentrations of {approx} 50 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx} 6. 18 refs., 1 fig.« less

  20. Boron isotopes at the catchment scale, a new potential tool to infer critical zone processes.

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Noireaux, J.; Braun, J. J.; Riotte, J.; Louvat, P.; Bouchez, J.; Lemarchand, D.; Muddu, S.; Mohan Kumar, M.; Candaudap, F.

    2017-12-01

    Boron is a mid-mass element that has two isotopes, 10B and 11B. These isotopes are largely fractioned by a number of chemical, biological and physical processes. Boron as a great affinity for clays and is useful for life, making it a double tracer of critical zone processes. This study focuses on the Mule Hole Critical Zone Observatory in South India. This is part of the French Research Infrastructure OZCAR and has benefited from the fruitful Indo-French collaboration (Indo-French Cell for Water Sciences) for more that 15 years. Boron and its isotopes were measured in the different compartment of the CZ in Mule Hole, vegetation, atmosphere, throughfall, soil, soil water, river water and compared to the behavior of other elements. The well constrained hydrology in Mule Hole allowed us to calculate the main fluxes affecting boron in the Critical Zone and came to the first order conclusion that the recycling of boron by vegetation is by far the most important flux within the system, reaching 15-20 times the catchment outlet flux. From an isotopic point of view, the total range of variation is measured between -3 ‰ and 77‰, with a bedrock value at 10‰ in classical delta unit, making boron a well suited tracer for constraining CZ processes. The flux of boron most enriched in heavy boron is the throughfall, showing the importance of biological processes in controlling the boron isotopic composition of the stream. Boron in soils in depleted in the heavy isotope but is enriched in boron compared to the bedrock, a surprising situation that we interpret as the legacy of a previous stage of transient weathering. These results indicate a strong decoupling between the behaviors of boron at the surface of the CZ and at depth.

  1. Growth and characterization of boron doped graphene by Hot Filament Chemical Vapor Deposition Technique (HFCVD)

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Ghoranneviss, M.; Salar Elahi, A.

    2016-03-01

    Large-area boron doped graphene was synthesized on Cu foil (as a catalyst) by Hot Filament Chemical Vapor Deposition (HFCVD) using boron oxide powder and ethanol vapor. To investigate the effect of different boron percentages, grow time and the growth mechanism of boron-doped graphene, scanning electron microscopy (SEM), Raman scattering and X-ray photoelectron spectroscopy (XPS) were applied. Also in this experiment, the I-V characteristic carried out for study of electrical property of graphene with keithley 2361 system. Nucleation of graphene domains with an average domain size of ~20 μm was observed when the growth time is 9 min that has full covered on the Cu surface. The Raman spectroscopy show that the frequency of the 2D band down-shifts with B doping, consistent with the increase of the in-plane lattice constant, and a weakening of the B-C in-plane bond strength relative to that of C-C bond. Also the shifts of the G-band frequencies can be interpreted in terms of the size of the C-C ring and the changes in the electronic structure of graphene in the presence of boron atoms. The study of electrical property shows that by increasing the grow time the conductance increases which this result in agree with SEM images and graphene grain boundary. Also by increasing the boron percentage in gas mixer the conductance decreases since doping graphene with boron creates a band-gap in graphene band structure. The XPS results of B doped graphene confirm the existence of boron in doped graphene, which indicates the boron atoms doped in the graphene lattice are mainly in the form of BC3. The results showed that boron-doped graphene can be successfully synthesized using boron oxide powder and ethanol vapor via a HFCVD method and also chemical boron doping can be change the electrical conductivity of the graphene.

  2. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei

    2014-06-01

    In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Dietary boron: possible roles in human and animal physiology

    USDA-ARS?s Scientific Manuscript database

    Boron is a bioactive element of low molecular weight. Since discovery of the first boron biomolecule, boromycin, in 1967, several other similar biomolecules are now well-characterized. Most recently described was a bacterial cell-to-cell communication signal that requires boron, autoinducer-II. Boro...

  4. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  5. Mechanisms implicated in the effects of boron on wound healing.

    PubMed

    Nzietchueng, Rosine Mayap; Dousset, Brigitte; Franck, Patricia; Benderdour, Mohamed; Nabet, Pierre; Hess, Ketsia

    2002-01-01

    Recently, we demonstrated that boron modulates the turnover of the extracellular matrix and increases TNFalpha release. In the present study, we used an in vitro test to investigate the direct effect of boron on specific enzymes (elastase, trypsin-like enzymes, collagenase and alkaline phosphatase) implicated in extracellular matrix turnover. Boron decreased the elastase and alkaline phosphatase activity, but had no effect on trypsin and collagenase activities. The effect of boron on the enzyme activities was also tested in fibroblasts considered as an in vivo test. In contrast to the results obtained in vitro, boron enhanced the trypsin-like, collagenase, and cathepsin D activities in fibroblasts. Boron did not modify the generation of free radicals compared to the control and did not seem to act on the intracellular alkaline phosphatase activity, However, as it did enhance phosphorylation, it can be hypothesized that boron may affect living cells via a mediator, which could be TNFalpha whose transduction signal involves a cascade of phosphorylations.

  6. Global transport of light elements boron and carbon in the full-W ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    ASDEX Upgrade Team; Hakola, A.; Likonen, J.; Koivuranta, S.; Krieger, K.; Mayer, M.; Neu, R.; Rohde, V.; Sugiyama, K.

    2011-08-01

    Transport of carbon and boron has been investigated in the full-W ASDEX Upgrade after experimental campaigns with (2008) and without (2007) boronizations. For this purpose, poloidal deposition profiles of the two elements on tungsten and graphite regions of lower-divertor tiles have been determined. Carbon is mainly deposited in the inner divertor - 80-90% of the determined 12C and 13C inventories on W - while boron shows a much more symmetric deposition profile. In the unboronized machine, the boron inventories are a factor of 10 smaller than in the boronized case and result from residual boron atoms left in the torus prior to the 2007 campaign. Both carbon and boron are deposited more efficiently and/or show less erosion on graphite than on tungsten, particularly in the outer divertor. For 13C, the difference is 10-100 in favor of graphite. This is most probably caused by a higher re-erosion from tungsten surfaces.

  7. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  8. X-ray method shows fibers fail during fatigue of boron-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.; Whitcomb, J. D.

    1975-01-01

    A method proposed for studying progressive fiber fracture in boron-epoxy laminates during fatigue tests is described. It is based on the intensity of X-ray absorption of the tungsten core in the boron filaments as contrasted with that of the boron and epoxy matrix. When the laminate is X-rayed, the image of the tungsten in the born filaments is recorded on a photographic plate. Breaks in the boron laminates can be easily identified by magnifying the photographic plates. The method is suitable for studying broken boron filaments in most matrix materials, and may supply key information for developing realistic fatigue and fracture models.

  9. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases.

    PubMed

    Trivillin, V A; Garabalino, M A; Colombo, L L; González, S J; Farías, R O; Monti Hughes, A; Pozzi, E C C; Bortolussi, S; Altieri, S; Itoiz, M E; Aromando, R F; Nigg, D W; Schwint, A E

    2014-06-01

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25-76ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung. © 2013 Published by Elsevier Ltd.

  10. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.W. Nigg; Various Others

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.

  11. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  12. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  13. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  14. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  15. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogitsu, Tadashi; Schwegler, Eric; Galli, Giulia

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been knownmore » for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.« less

  16. Boron removal and its concentration in aqueous solution through progressive freeze concentration.

    PubMed

    Wang, Li Pang

    2017-09-01

    This study explored the feasibility of progressive freeze concentration in boron removal and its concentration in aqueous solution. The influence of three key parameters in progressive freeze concentration on boron removal and concentration, namely, the advance speed of the ice front, the circumferential velocity of the stirrer, and the initial boron concentration, are investigated by conducting batch experiments. The results show that the effectiveness of boron removal increases with a lower advance speed of the ice front, a higher circumferential velocity of the stirrer, and a lower initial boron concentration. For a model boron solution with an initial concentration of 100 mg/L, the boron concentration in the ice phase after progressive freeze concentration is below 1 mg/L when the advance speed of the ice front is lower than 1 cm/h and the circumferential velocity of the stirrer is higher than 0.12 m/s. In addition, the concentration of boron in the liquid phase occurs simultaneously with progressive freeze concentration. Furthermore, the results also suggest that this method can be applied to the purification and concentration of not only organic molecules but also inorganic ions.

  17. Morphological transformations of BNCO nanomaterials: Role of intermediates

    NASA Astrophysics Data System (ADS)

    Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.

    2018-06-01

    Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than the 1D boron and nitrogen co-doped tube-like carbon nanorods. The significant differences in the PL properties can be attributed to different carbon structures in these nanomaterials. These achievements can be used to synthesize and control the structures of nanomaterials and contribute to the development of the next generation optoelectronic nanodevices based on 1D and 2D nanomaterials.

  18. 40 CFR Appendix A to Part 68 - Table of Toxic Endpoints

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane

  19. 40 CFR Appendix A to Part 68 - Table of Toxic Endpoints

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane

  20. 40 CFR Appendix A to Part 68 - Table of Toxic Endpoints

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane

  1. Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene

    DTIC Science & Technology

    2007-03-01

    COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Lonnie Carlson, Major...DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Presented to the Faculty Department of Engineering Physics Graduate School...DISTRIBUTION UNLIMITED AFIT/GNE/ENP/07-01 COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE Lonnie

  2. THE BORON-CURCUMIN COMPLEX IN TRACE BORON DETERMINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, M.R.; Metcalfe, J.

    1963-01-01

    A simple and robust method for the formation of the complex of boron with curcumin is described. The sensitivity of the method is 6.6 x 10/sup -5/ g/cm/sup 2/. Formation of the complex is believed to be quantitative under the conditions used and some evidence is given for a 1: 3 boron; curcumin ratio. Methods are outlined for the determination of boron in a number of metals, compounds, and organic materials. (auth)

  3. Method for production of free-standing polycrystalline boron phosphide film

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1985-01-01

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  4. Methods for boron delivery to mammalian tissue

    DOEpatents

    Hawthorne, M. Frederick; Feaks, Debra A.; Shelly, Kenneth J.

    2003-01-01

    Boron neutron capture therapy can be used to destroy tumors. This treatment modality is enhanced by delivering compounds to the tumor site where the compounds have high concentrations of boron, the boron compounds being encapsulated in the bilayer of a liposome or in the bilayer as well as the internal space of the liposomes. Preferred compounds, include carborane units with multiple boron atoms within the carborane cage structure. Liposomes with increased tumor specificity may also be used.

  5. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  6. Functional characterization of Citrus macrophylla BOR1 as a boron transporter.

    PubMed

    Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio

    2013-11-01

    Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants. © 2013 Scandinavian Plant Physiology Society.

  7. The Combined Action of Duplicated Boron Transporters Is Required for Maize Growth in Boron-Deficient Conditions.

    PubMed

    Chatterjee, Mithu; Liu, Qiujie; Menello, Caitlin; Galli, Mary; Gallavotti, Andrea

    2017-08-01

    The micronutrient boron is essential in maintaining the structure of plant cell walls and is critical for high yields in crop species. Boron can move into plants by diffusion or by active and facilitated transport mechanisms. We recently showed that mutations in the maize boron efflux transporter ROTTEN EAR (RTE) cause severe developmental defects and sterility. RTE is part of a small gene family containing five additional members ( RTE2 - RTE6 ) that show tissue-specific expression. The close paralogous gene RTE2 encodes a protein with 95% amino acid identity with RTE and is similarly expressed in shoot and root cells surrounding the vasculature. Despite sharing a similar function with RTE , mutations in the RTE2 gene do not cause growth defects in the shoot, even in boron-deficient conditions. However, rte2 mutants strongly enhance the rte phenotype in soils with low boron content, producing shorter plants that fail to form all reproductive structures. The joint action of RTE and RTE2 is also required in root development. These defects can be fully complemented by supplying boric acid, suggesting that diffusion or additional transport mechanisms overcome active boron transport deficiencies in the presence of an excess of boron. Overall, these results suggest that RTE2 and RTE function are essential for maize shoot and root growth in boron-deficient conditions. Copyright © 2017 by the Genetics Society of America.

  8. CHEMICAL METHODS FOR THE DETERMINATION OF BORON IN REACTOR MATERIALS. PART I. ION-EXCHANGE SEPARATION OF BORON FROM COKES, PITCHES AND GRAPHITES AND ITS COLORIMETRIC DETERMINATION BY THE CURCUMIN-TRI-CHLORACETIC ACID METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, H.B.; Desai, S.R.; Nadkarni, M.N.

    1961-01-01

    A procedure has been standardized for the determination of boron in cokes, pitches, and graphites. The method consists of fixing the boron present in the sample as calcium borate, ion-exchange separation of boric acid from the associated cations, and the colorimetric determination of boron using the curcumin-trichloracetic acid method. Sulfur which is usually present in pitches and cokes is expected to be oxidized to sulfate during the fixation of boron and hence its effect on the colorimetry has been studied. Application of the procedure to the determination of 0.50 and 1.00 microgram amounts of boron, has given coefficients of variationmore » of l0.0 and 6.7% respectively. (auth)« less

  9. Laser-Induced Molecular Fluorescence: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    1981-01-01

    Describes a companion experiment to the experimental study of the di-iodide visible absorption spectrum. Experimental details, interpretation, and data analysis are provided for an analysis of the di-iodide fluorescence excited by a visible laser, using a Raman instrument. (CS)

  10. 21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...

  11. 21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...

  12. 21 CFR 178.2010 - Antioxidants and/or stabilizers for polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... § 176.170(c) of this chapter. Cupric acetate and lithium iodide For use at levels not exceeding 0.025 percent cupric acetate and 0.065 percent lithium iodide by weight of nylon 66 resins complying with § 177...

  13. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  14. 27 CFR 21.51 - Formula No. 25-A.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... solution composed of 20 pounds of iodine, U.S.P.; 15 pounds of either potassium iodide, U.S.P., or sodium iodide, U.S.P.; and 15 pounds of water. (b) Authorized uses. (1) As a solvent: 230.Tinctures of iodine...

  15. A review of recent measurements of optical and thermal properties of α-mercuric iodide

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.

    1992-11-01

    The band gap energy of α-mercuric iodide was measured recently at elevated temperatures using optical absorption and reflection methods. In addition, reflection spectral measurements indicate that the temperature dependence of the exciton peak can provide a means of measuring, in a nondisturbing and remote manner, the local surface temperature of an α-mercuric iodide crystal during its growth from the vapor. Recent measurements of the thermal diffusivity and thermal expansion tensors have confirmed the anisotropy of this material and have implications for growth morphology and the generation of lattice defects.

  16. Enhancement of photoisomerization of polymethine dyes in complexes with biomacromolecules

    NASA Astrophysics Data System (ADS)

    Tatikolov, Alexander S.; Akimkin, Timofei M.; Pronkin, Pavel G.; Yarmoluk, Sergiy M.

    2013-01-01

    Photochemical processes (photoisomerization and generation of the triplet state) of the thiacarbocyanine dyes 3,3',9-trimethylthiacarbocyanine iodide (Cyan 2), 3,3'-diethyl-9-methylthiacarbocyanine iodide (DMTC), and 3,3',9-triethylthiacarbocyanine iodide (TETC) in complexes with biomacromolecules—DNA and chondroitin-4-sulfate—were studied by flash photolysis. It has been shown that, along with generation of the triplet state, enhancement of the photoisomer formation is observed for Cyan 2 and DMTC complexed with the biomolecules. This effect can be explained by the influence of the biopolymer matrix on the potential energy curves of the photoisomerization process.

  17. Ligand-Free Pd-Catalyzed Double Carbonylation of Aryl Iodides with Amines to α-Ketoamides under Atmospheric Pressure of Carbon Monoxide and at Room Temperature.

    PubMed

    Du, Hongyan; Ruan, Qing; Qi, Minghao; Han, Wei

    2015-08-07

    A general Pd-catalyzed double carbonylation of aryl iodides with secondary or primary amines to produce α-ketoamides at atmospheric CO pressure has been developed. This transformation proceeds successfully even at room temperature and in the absence of any ligand and additive. A wide range of aryl iodides and amines can be coupled to the desired α-ketoamides in high yields with excellent chemoselectivities. Importantly, the current methodology has been demonstrated to be applied in the synthesis of bioactive molecules and chiral α-ketoamides.

  18. Mild and Low-Pressure fac-Ir(ppy)3 -Mediated Radical Aminocarbonylation of Unactivated Alkyl Iodides through Visible-Light Photoredox Catalysis.

    PubMed

    Chow, Shiao Y; Stevens, Marc Y; Åkerbladh, Linda; Bergman, Sara; Odell, Luke R

    2016-06-27

    A novel, mild and facile preparation of alkyl amides from unactivated alkyl iodides employing a fac-Ir(ppy)3 -catalyzed radical aminocarbonylation protocol has been developed. Using a two-chambered system, alkyl iodides, fac-Ir(ppy)3 , amines, reductants, and CO gas (released ex situ from Mo(CO)6 ), were combined and subjected to an initial radical reductive dehalogenation generating alkyl radicals, and a subsequent aminocarbonylation with amines affording a wide range of alkyl amides in moderate to excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Efficient photoreductive decomposition of N-nitrosodimethylamine by UV/iodide process.

    PubMed

    Sun, Zhuyu; Zhang, Chaojie; Zhao, Xiaoyun; Chen, Jing; Zhou, Qi

    2017-05-05

    N-nitrosodimethylamine (NDMA) has aroused extensive concern as a disinfection byproduct due to its high toxicity and elevated concentration levels in water sources. This study investigates the photoreductive decomposition of NDMA by UV/iodide process. The results showed that this process is an effective strategy for the treatment of NDMA with 99.2% NDMA removed within 10min. The depletion of NDMA by UV/iodide process obeyed pseudo-first-order kinetics with a rate constant (k 1 ) of 0.60±0.03min -1 . Hydrated electrons (e aq - ) generated by the UV irradiation of iodide were proven to play a critical role. Dimethylamine (DMA) and nitrite (NO 2 - ) were formed as the main intermediate products, which completely converted to formate (HCOO - ), ammonium (NH 4 + ) and nitrogen (N 2 ). Therefore, not only the high efficiencies in NDMA destruction, but the elimination of toxic intermediates make UV/iodide process advantageous. A photoreduction mechanism was proposed: NDMA initially absorbed photons to a photoexcited state, and underwent a cleavage of NNO bond under the attack of e aq - . The solution pH had little impact on NDMA removal. However, alkaline conditions were more favorable for the elimination of DMA and NO 2 - , thus effectively reducing the secondary pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Layered structures of organic/inorganic hybrid halide perovskites

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Minh, Nguyen Viet

    2016-03-01

    Organic-inorganic hybrid halide perovskites, in which the A cations of an ABX3 perovskite are replaced by organic cations, may be used for photovoltaic and solar thermoelectric applications. In this contribution, we systematically study three lead-free hybrid perovskites, i.e., methylammonium tin iodide CH3NH3SnI3 , ammonium tin iodide NH4SnI3 , and formamidnium tin iodide HC (NH2)2SnI3 by first-principles calculations. We find that in addition to the commonly known motif in which the corner-shared SnI6 octahedra form a three-dimensional network, these materials may also favor a two-dimensional (layered) motif formed by alternating layers of the SnI6 octahedra and the organic cations. These two motifs are nearly equal in free energy and are separated by low barriers. These layered structures features many flat electronic bands near the band edges, making their electronic structures significantly different from those of the structural phases composed of three-dimension networks of SnI6 octahedra. Furthermore, because the electronic structures of HC (NH2)2SnI3 are found to be rather similar to those of CH3NH3SnI3 , formamidnium tin iodide may also be promising for the applications of methylammonium tin iodide.

  1. Potentiation of antimicrobial photodynamic inactivation by inorganic salts.

    PubMed

    Hamblin, Michael R

    2017-11-01

    Antimicrobial photodynamic inactivation (aPDI) involves the use of non-toxic dyes excited with visible light to produce reactive oxygen species (ROS) that can destroy all classes of microorganisms including bacteria, fungi, parasites, and viruses. Selectivity of killing microbes over host mammalian cells allows this approach (antimicrobial photodynamic therapy, aPDT) to be used in vivo as an alternative therapeutic approach for localized infections especially those that are drug-resistant. Areas covered: We have discovered that aPDI can be potentiated (up to 6 logs of extra killing) by the addition of simple inorganic salts. The most powerful and versatile salt is potassium iodide, but potassium bromide, sodium thiocyanate, sodium azide and sodium nitrite also show potentiation. The mechanism of potentiation with iodide is likely to be singlet oxygen addition to iodide to form iodine radicals, hydrogen peroxide and molecular iodine. Another mechanism involves two-electron oxidation of iodide/bromide to form hypohalites. A third mechanism involves a one-electron oxidation of azide anion to form azide radical. Expert commentary: The addition of iodide has been shown to improve the performance of aPDT in several animal models of localized infection. KI is non-toxic and is an approved drug for antifungal therapy, so its transition to clinical use in aPDT should be straightforward.

  2. Effect of Excess Iodide Intake on Salivary Glands in a Swiss Albino Mice Model

    PubMed Central

    Ross, Gloria Romina; Fabersani, Emanuel; Russo, Matías; Gómez, Alba; Japaze, Hugo; González, Silvia Nelina

    2017-01-01

    Iodine is an important micronutrient required for nutrition. Excess iodine has adverse effects on thyroid, but there is not enough information regarding its effect on salivary glands. In addition to food and iodized salt, skin disinfectants and maternal nutritional supplements contain iodide, so its intake could be excessive during pregnancy, lactation, and infancy. The aim of this work was to evaluate the effect of excess iodide ingestion on salivary glands during mating, gestation, lactation, and postweaning period in mouse. During assay, mice were allocated into groups: control and treatment groups (received distilled water with NaI 1 mg/mL). Water intake, glandular weight, and histology were analyzed. Treatment groups showed an increase in glandular weight and a significantly (p < 0.05) higher water intake than control groups. Lymphocyte infiltration was observed in animals of treatment groups, while there was no infiltration in glandular sections of control groups. Results demonstrated that a negative relationship could exist between iodide excess and salivary glands. This work is novel evidence that high levels of iodide intake could induce mononuclear infiltration in salivary glands. These results should be considered, especially in pregnant/lactating women, to whom a higher iodine intake is usually recommended. PMID:29250546

  3. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.

    PubMed

    Allard, Sébastien; von Gunten, Urs; Sahli, Elisabeth; Nicolau, Rudy; Gallard, Hervé

    2009-08-01

    The oxidation of iodide by synthetic birnessite (delta-MnO(2)) was studied in perchlorate media in the pH range 4-8. Iodine (I(2)) was detected as an oxidation product that was subsequently further oxidized to iodate (IO(3)(-)). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1M(-2) s(-1). Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 microM/g for iodate at pH 5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH <5 iodine is quickly oxidized to iodate, a non-toxic and stable sink for iodine. At pH >7.5, iodide is not oxidized to a significant extent.

  4. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    PubMed

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  5. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, M. Frederick

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer,more » incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic unimolecular nanoparticles presenting several advantages: tunable size through functionalization and branching, spherical shape due to the icosahedral B122 core, promising water solubility resulting from degradation of all pendant closo-carborane groups to their hydrophilic nido anion substituents, and efficient boron delivery owing to the presence of 120 boron atoms which gives rise to a boron content as high as 40% by weight. Keeping the new objective in mind, we have focused on the design, synthesis and evaluation of new and very boron-rich closomer species. Additionally, progress has also been made toward the evaluation of a newly synthesized boron-rich lipid as a substitute for DSPC in bilayer construction, and the boron content of the resulting liposomes has been greatly enhanced. Related research involving the synthesis and self-assembly of carborane-containing amphiphiles has been systematically studied. Combined hydrophobic and hydrophilic properties of the single-chain amphiphiles allow their spontaneous self-assembly to form rods under a variety of variable conditions, such as concentration in the bilayer, carborane cage structure, chain-length, counterion identity, solvents, methods of preparation, and the ionic charge. On the other hand, the number of attached chains affects the self-assembly process. Particles having totally different shapes have been observed for dual-chain amphiphiles.« less

  6. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    USDA-ARS?s Scientific Manuscript database

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  7. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  8. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  9. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  10. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  11. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  12. Synthesis and in vitro evaluation of thiododecaborated α, α- cycloalkylamino acids for the treatment of malignant brain tumors by boron neutron capture therapy.

    PubMed

    Hattori, Yoshihide; Kusaka, Shintaro; Mukumoto, Mari; Ishimura, Miki; Ohta, Yoichiro; Takenaka, Hiroshi; Uehara, Kouki; Asano, Tomoyuki; Suzuki, Minoru; Masunaga, Shin-Ichiro; Ono, Koji; Tanimori, Shinji; Kirihata, Mitsunori

    2014-12-01

    Boron-neutron capture therapy (BNCT) is an attractive technique for cancer treatment. As such, α, α-cycloalkyl amino acids containing thiododecaborate ([B12H11](2-)-S-) units were designed and synthesized as novel boron delivery agents for BNCT. In the present study, new thiododecaborate α, α-cycloalkyl amino acids were synthesized, and biological evaluation of the boron compounds as boron carrier for BNCT was carried out.

  13. Retrospective Study of Selected DoD Materials and Structures Research and Development Programs. Phase 1. Case History Data Collection

    DTIC Science & Technology

    1979-03-01

    made in continuous form by reducing boron trichloride with hydrogen and depositing the elemental boron formed on an electrically heated, continuously...filament take-up unit. A stoichio- metric mixture of boron trichloride and hydrogen is introduced at the top of the reactor. These react at the surface of...fibers are tungsten wire, boron trichloride , and hydrogen gas. The fine diameter tungsten wire on which boron is deposited is an imported product and is

  14. THE BORON-CURCUMIN COMPLEX IN THE DETERMINATION OF TRACE AMOUNTS OF BORON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, M.R.; Metcalfe, J.

    1962-12-01

    A simple and robust method is described for the formation of the complex of boron with curcumin. The sensitivity of the method is 8.0 to 8.5 x 10/sup -5/ mu g per sq. cm by Sandell's definition. Formation of the complex is believed to be quartitative under the conditions used, and some evidence is given for a ratio of boron to curcumin of 1 to 3. Methods are outlined for determining boron in some metals, compounds, and organic materials. (auth)

  15. Free-standing polycrystalline boron phosphide film and method for production thereof

    DOEpatents

    Baughman, R.J.; Ginley, D.S.

    1982-09-09

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  16. Mineral resource of the month: boron

    USGS Publications Warehouse

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  17. Protodeboronation of ortho- and para-phenol boronic acids and application to ortho and meta functionalization of phenols using boronic acids as blocking and directing groups.

    PubMed

    Lee, Chun-Young; Ahn, Su-Jin; Cheon, Cheol-Hong

    2013-12-06

    The first metal-free thermal protodeboronation of ortho- and para-phenol boronic acids in DMSO was developed. The protodeboronation was successfully applied to the synthesis of ortho- and meta-functionalized phenols using the boronic acid moiety as a blocking group and a directing group, respectively. Mechanistic studies suggested that this protodeboronation proceeds through the coordination of water to the boron atom followed by σ-bond metathesis.

  18. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  19. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  20. 21 CFR 582.80 - Trace minerals added to animal feeds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper... pyrophosphate. Copper sulfate. Iodine Calcium iodate. Calcium iodobehenate. Cuprous iodide. 3,5-Diiodosalicylic.... Thymol iodide. Iron Iron ammonium citrate. Iron carbonate. Iron chloride. Iron gluconate. Iron oxide...

  1. Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.

    PubMed

    Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri

    2011-09-05

    The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M [Livermore, CA; Jankowski, Alan F [Livermore, CA

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  3. Biodistribution of boron after intravenous 4-dihydroxyborylphenylalanine-fructose (BPA-F) infusion in meningioma and schwannoma patients: A feasibility study for boron neutron capture therapy.

    PubMed

    Kulvik, Martti; Kallio, Merja; Laakso, Juha; Vähätalo, Jyrki; Hermans, Raine; Järviluoma, Eija; Paetau, Anders; Rasilainen, Merja; Ruokonen, Inkeri; Seppälä, Matti; Jääskeläinen, Juha

    2015-12-01

    We studied the uptake of boron after 100 mg/kg BPA infusion in three meningioma and five schwannoma patients as a pre-BNCT feasibility study. With average tumour-to-whole blood boron concentrations of 2.5, we discuss why BNCT could, and probably should, be developed to treat severe forms of the studied tumours. However, analysing 72 tumour and 250 blood samples yielded another finding: the plasma-to-whole blood boron concentrations varied with time, suggesting that the assumed constant boron ratio of 1:1 between normal brain tissue and whole blood deserves re-assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Thermal expansion of boron subnitrides

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Kirill A.; Gigli, Lara; Solozhenko, Vladimir L.

    2018-07-01

    The lattice parameters of two boron subnitrides, B13N2 and B50N2, have been measured as a function of temperature between 298 and 1273 K, and the corresponding thermal expansion coefficients have been determined. Thermal expansion of both boron subnitrides was found to be quasi-linear, and the volume thermal expansion coefficients of B50N2 (15.7 (2) × 10-6 K-1) and B13N2 (21.3 (2) × 10-6 K-1) are of the same order of magnitude as those of boron-rich compounds with structure related to α-rhombohedral boron. For both boron subnitrides no temperature-induced phase transitions have been observed in the temperature range under study.

  5. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  6. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  7. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    NASA Astrophysics Data System (ADS)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  8. Catalytic CVD synthesis of boron nitride and carbon nanomaterials - synergies between experiment and theory.

    PubMed

    McLean, Ben; Eveleens, Clothilde A; Mitchell, Izaac; Webber, Grant B; Page, Alister J

    2017-10-11

    Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.

  9. Combined effect of boron and salinity on water transport: The role of aquaporins.

    PubMed

    Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela

    2008-10-01

    Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.

  10. Effects of Boron-Based Gel on Radiation-Induced Dermatitis in Breast Cancer: A Double-Blind, Placebo-Controlled Trial.

    PubMed

    Aysan, Erhan; Idiz, Ufuk Oguz; Elmas, Leyla; Saglam, Esra Kaytan; Akgun, Zuleyha; Yucel, Serap Baskaya

    2017-06-01

    This study is aimed to evaluate the effects of boron on radiation-induced skin reactions (RISR) in breast cancer patients. After 47 patients with invasive ductal carcinoma underwent radiotherapy, 23 (49%) received a boron-based gel, and 24 (51%) received placebo. Assessments were performed according to the Radiation Therapy Oncology Group (RTOG) skin scale and a Five-Point Horizontal Scale (FPHS). At the end of the fifth week of radiotherapy, the RTOG scores in the boron group were significantly lower than those in the placebo group (p = .024). The FPHS score was higher in the placebo group than in the boron group, and this difference was not statistically significant (p = .079). Using the RTOG scoring system, we revealed that the application of a boron-based gel diminished RISR. The mechanism of action is unclear but may be related to antioxidant, wound healing, and thermal degradation effects of boron.

  11. Rapid transporter regulation prevents substrate flow traffic jams in boron transport

    PubMed Central

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi

    2017-01-01

    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285

  12. Rapid transporter regulation prevents substrate flow traffic jams in boron transport.

    PubMed

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi; Marée, Athanasius Fm; Fujiwara, Toru; Grieneisen, Verônica A

    2017-09-05

    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana , boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow.

  13. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reducedmore » silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2, very low H 2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  15. Reduction of iodate in iodated salt to iodide during cooking with iodine as measured by an improved HPLC/ICP-MS method.

    PubMed

    Liu, Liejun; Li, Xiuwei; Wang, Haiyan; Cao, Xiaoxiao; Ma, Wei

    2017-04-01

    Iodate is a strong oxidant, and some animal studies indicate that iodate intake may cause adverse effects. A key focus of the safety assessment of potassium iodate as a salt additive is determining whether iodate is safely reduced to iodide in food. To study the reduction of iodate in table salt to iodide and molecular iodine during cooking. Fifteen food samples cooked with and without iodated salt were prepared in duplicate. The iodine in the cooked food was extracted with deionized water. The iodine species in the extracts were determined by using an improved high-performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). The cooking temperature and the pH of the food were determined. The conversion rate of iodate in iodated salt to iodide and molecular iodine was 96.4%±14.7% during cooking, with 86.8%±14.5% of the iodate converted to iodide ions and 9.6% ±6.2% converted to molecular iodine to lose. The limit of detection, limit of quantification, relative standard deviation and recovery rate of the method HPLC/ICP-MS were 0.70 μg/L for I - (0.69 μg/L for IO 3 - ), 2.10 μg/L for I - (2.06 μg/L for IO 3 - ), 2.6% and 101.6%±2.6%, respectively. Almost all iodate added to food was converted into iodide and molecular iodine during cooking. The improved HPLC/ICP-MS was reliable in the determination of iodine species in food extracts. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Iodine chemistry in the water column of the Chesapeake Bay: Evidence for organic iodine forms

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Ferdelman, Timothy; Culberson, Charles H.; Kostka, Joel; Wu, Jingfeng

    1991-03-01

    During the summer of 1987, we collected and analysed Chesapeake Bay water samples for the inorganic iodine species: iodide (by cathodic-stripping squarewave voltammetry) and iodate (by differential pulse polarography); and total iodine (by hypochlorite oxidation of the seawater sample to iodate). The difference between the sum of the inorganic iodine species and the total iodine was significant for about one-third of the samples collected from the Bay. Thus, in these samples, a third (or more) 'new' form(s) of iodine was present. These samples were primarily from oxygen-saturated surface waters of high biological activity (primary productivity and bacterial processes). This 'new' form can make up as much as 70% of the total iodine. Waters containing low oxygen concentrations showed less of this 'new' form of iodine whereas anoxic and sulphidic bottom waters contained only iodide. This 'new' form of iodine is organic in nature and probably non-volatile. It may reside in the peptide and humic fractions. Only reduced iodine (iodide and organic iodine) was detected in waters from the northern section of the Bay, whereas only iodide and iodate were detected in the southern section of the Bay. In only two samples were iodide, iodate and the 'new' form of iodine found to coexist. Iodide and organic iodine are probably cycled in the surface waters of the northern section of the Bay via a combination of biogeochemical and photochemical processes which produce the reactive intermediates, molecular iodine and hypoiodous acid. These react quickly with reduced inorganic and organic compounds to maintain the reduced forms of iodine in the water column. Only total iodine is conservative throughout the estuary. The inorganic iodine forms can be used as geochemical tracers.

  17. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  18. Thermal neutron shield and method of manufacture

    DOEpatents

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  19. Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet

    NASA Astrophysics Data System (ADS)

    Suh, Chang Hee; Jang, Won Seok; Oh, Sang Kyun; Lee, Rac Gyu; Jung, Yun-Chul; Kim, Young Suk

    2012-08-01

    Boron steel is widely used throughout the automobile industry due to its high tensile strength and hardenability. When boron steel is used for body parts, only high strength is required for crashworthiness. However, when boron steel is used for chassis parts, a high fatigue life is needed. The microstructure of boron steel is mainly affected by the cooling rate during hot stamping. Therefore, this study investigated the low cyclic fatigue life according to the cooling rate. The fatigue life increased at a low strain amplitude when the cooling rate was fast. However, at a high strain amplitude, the fatigue life decreased, due to the low ductility and fracture toughness of the martensite formed by rapid cooling. Martensite formed by a fast cooling rate shows excellent fatigue life at a low total strain amplitude; however, a multiphase microstructure formed by a slow cooling rate is recommended if the parts experience high and low total strain amplitudes alternately. In addition, the cooling rate has little effect on the distribution of solute boron and boron precipitations, so it is expected that boron rarely affects low cyclic fatigue.

  20. Is Boron a Prebiotic Element? A Mini-review of the Essentiality of Boron for the Appearance of Life on Earth

    NASA Astrophysics Data System (ADS)

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".

  1. Where Boron? Mars Rover Detects It

    NASA Image and Video Library

    2016-12-13

    This map shows the route driven by NASA's Curiosity Mars rover (blue line) and locations where the rover's Chemistry and Camera (ChemCam) instrument detected the element boron (dots, colored by abundance of boron according to the key at right). The main map shows the traverse from landing day (Sol 0) in August 2012 to the rover's location in September 2016, with boron detections through September 2015. The inset at upper left shows a magnified version of the most recent portion of that traverse, with boron detections during that portion. Overlapping dots represent cases when boron was detected in multiple ChemCam observation points in the same target and non-overlapping dots represent cases where two different targets in the same location have boron. Most of the mission's detections of boron have been made in the most recent seven months (about 200 sols) of the rover's uphill traverse. The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is up. The scale bar at lower right represents one kilometer (0.62 mile). http://photojournal.jpl.nasa.gov/catalog/PIA21150

  2. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereasmore » for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.« less

  3. Boron investigation survey, March Air Force Base, California. Final report, 27 Jan-7 Feb 92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garland III , J.G.

    1992-07-01

    Armstrong Laboratory conducted a field survey to investigate the source of boron in the March AFB CA wastewater treatment plant effluent. The survey measured boron contributions from drinking water, domestic sources, and industrial sources over a 10-day period. The survey also evaluated the effluent to the treatment plant over the same 10 days. Boron results at the regulatory discharge point averaged 0.48 mg/1, which complies with the base permit. The results also showed drinking water levels averaged 0.225 mg/1, domestic contribution combined with drinking water levels averaged 0.396 mg/1, and mixed industrial and domestic levels ranged from 0.246 mg/1 tomore » 1.84 mg/1. The report presents bulk boron sample results from a variety of soaps and bleaches. Recommendations include further investigation into industrial activity generating high boron levels, discouraging the use of boron-containing products by military, contract, and domestic users and negotiating with the regulating agency for permitting boron at a higher level.« less

  4. The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility[C][W][OPEN

    PubMed Central

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-01-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400

  5. The boron content of selected foods and the estimation of its daily intake among free-living subjects.

    PubMed

    Naghii, M R; Wall, P M; Samman, S

    1996-12-01

    Boron is an essential micronutrient for higher plants. The results of studies in animals and humans have suggested a potential role for boron as a modulator of the steroid hormone pathway. As part of a study to obtain baseline information on boron in humans, the boron content of selected foods (66 items) consumed in Australia was determined. Mean values are presented for the element per 100 g or 100 ml of food and per serving. Major sources of the element were nuts, dried fruits, legumes, fresh vegetables and fruits. The boron content of these foods correlated positively and strongly with values provided by the comprehensive Finnish Tables of mineral composition of foods and with the US Food and Drug Administration Total Diet Study. Because of the similarity in methods employed by this study and that used for the comprehensive Finnish Tables, the latter was used to analyze the boron content in 7-day weighed food records of 32 subjects. Using data obtained from the food records and assigning the corresponding values from the Finnish Tables for the boron content of foods, the average daily consumption of boron for a selected group of Australians was found to be 2.23 +/- 1.23 mg/day.

  6. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  7. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  8. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  9. Production and Characterization of Bulk MgB2 Material made by the Combination of Crystalline and Carbon Coated Amorphous Boron Powders

    NASA Astrophysics Data System (ADS)

    Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.

    2017-07-01

    The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.

  10. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  11. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, D; Bednarz, B

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt tomore » validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.« less

  12. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    PubMed

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p < 0.05), increased the number of positive proliferating cell nuclear antigen (PCNA + ) cells and concentrations of glutathione peroxidase (GSH-Px) and phosphorylated extracellular signal-regulated kinase (p-ERK) (p < 0.05), and promoted mRNA expression of PCNA and ERK1/2 in thymocytes (p < 0.05). However, the number of caspase-3 + cells and the expression level of caspase-3 mRNA were reduced (p < 0.05). Supplementation with 40, 80, and 160 mg/L boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p < 0.05). Our study showed that supplementation of various doses of boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.

  13. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    PubMed

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.

  14. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. PMID:24684609

  15. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).

    PubMed

    Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W

    2014-06-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  16. Screening the ToxCast Phase 1 chemical library for inhibition of deiodinase type 1 activity

    EPA Science Inventory

    Thyroid hormone (TH) homeostasis is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism and elimination, to maintain proper TH signaling. Deiodinase enzymes catalyze iodide release from THs to interconvert THs between active a...

  17. A tiered approach to evaluate an iodine recycling inhibition adverse outcome pathway (AOP) in amphibians

    EPA Science Inventory

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces thyroid hormone synthesis, which leads to insufficiency in tissues and subsequent ne...

  18. Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide

    NASA Astrophysics Data System (ADS)

    Minns, J. L.; Zajdel, P.; Chernyshov, D.; van Beek, W.; Green, M. A.

    2017-05-01

    Hybrid perovskites form an emerging family of exceptional light harvesting compounds. However, the mechanism underpinning their photovoltaic effect is still far from understood, which is impeded by a lack of clarity on their structures. Here we show that iodide ions in the methylammonium lead iodide migrate via interstitial sites at temperatures above 280 K. This coincides with temperature dependent static distortions resulting in pseudocubic local symmetry. Based on bond distance analysis, the migrating and distorted iodines are at lengths consistent with the formation of I2 molecules, suggesting a 2I--->I2+2e- redox couple. The actual formula of this compound is thus (CH3NH3)PbI3-2x(I2)x where x~0.007 at room temperature. A crucial feature of the tetragonal structure is that the methylammonium ions do not sit centrally in the A-site cavity, but disordered around two off-centre orientations that facilitate the interstitial ion migration via a gate opening mechanism.

  19. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide

    DOE PAGES

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; ...

    2016-09-13

    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI 3) and methylammonium lead iodide (MAPbI 3). The best-performing cell fabricated using a (FASnI 3) 0.6(MAPbI 3) 0.4 absorber with an absorption edge of ~1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm 2, and a fill factormore » of 70.6(70.0)% when measured under forward (reverse) voltage scan. In conclusion, the average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility.« less

  20. Mercuric iodide detector systems for identifying substances by x-ray energy dispersive diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, J.S.; Patt, B.E.; Wang, Y.J.

    The use of mercuric iodide arrays for energy-dispersive x-ray diffraction (EDXRD) spectroscopy is now being investigated by the authors for inspection of specific crystalline powders in substances ranging from explosives to illicit drugs. Mercuric iodide has been identified as the leading candidate for replacing the Ge detectors previously employed in the development of this technique because HgI{sub 2} detectors: operate at or near room temperature; without the bulky apparatus associated with cryogenic cooling; and offer excellent spectroscopy performance with extremely high efficiency. Furthermore, they provide the practicality of constructing optimal array geometries necessary for these measurements. Proof of principle experimentsmore » have been performed using a single-HgI{sub 2} detector spectrometer. An energy resolution of 655 eV (FWHM) has been obtained for 60 keV gamma line from an {sup 241}Am source. The EDXRD signatures of various crystalline powdered compounds have been measured and the spectra obtained show the excellent potential of mercuric iodide for this application.« less

  1. Optical response of mixed methylammonium lead iodide and formamidinium tin iodide perovskite thin films

    DOE PAGES

    Ghimire, Kiran; Zhao, Dewei; Yan, Yanfa; ...

    2017-07-13

    Here, mixed tin (Sn) and lead (Pb) based perovskite thin films have been prepared by solution processing combining methylammonium lead iodide (MAPbI 3) and formamidinium tin iodide (FASnI 3) precursors. Optical response in the form of complex dielectric function (ε = ε 1 + iε 2) spectra and absorption coefficient (α) spectra of (FASnI 3) 1-x(MAPbI 3) x based perovskite films have been extracted over a spectral range 0.74 to 5.89 eV using spectroscopic ellipsometry. Absorption band edge energy changes as a function of composition for films including FASnI 3, MAPbI 3, and mixed x = 0.20, 0.35, 0.40, andmore » 0.6 (FASnI 3) 1-x(MAPbI 3) x perovskites. (FASnI 3) 0.60(MAPbI 3) 0.4 is found to have the minimum absorption band edge energy near ~1.2 eV.« less

  2. Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides and Iodides: Scope and Structure-Activity Relationships

    PubMed Central

    Shen, Qilong; Ogata, Tokutaro; Hartwig, John F.

    2010-01-01

    We describe a systematic study of the scope and relationship between ligand structure and activity for a highly efficient and selective class of catalysts for the amination of heteroaryl and aryl chlorides, bromides and iodides containing sterically hindered chelating alkylphosphines. In the presence of this catalyst, aryl and heteroaryl chlorides, bromides and iodides react with many primary amines in high yields with part-per-million quantities of palladium precursor and ligand. Many reactions of primary amines with both heteroaryl and aryl chlorides, bromides and iodides occur to completion with 0.0005-0.05 mol % catalysts. A comparison of the reactivity of this catalyst for coupling of primary amines at these loadings is made with catalysts generated from hindered monophosphines and carbenes, and these data illustrate the benefits of chelation. Thus, these complexes constitute a fourth-generation catalyst for the amination of aryl halides, whose activity complements catalysts based on monophosphines and carbenes. PMID:18444639

  3. Chemical and physical investigations on the charge transfer interaction of organic donors with iodine and its application as non-traditional organic conductors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Sharshar, T.; Adam, Abdel Majid A.; Elsabawy, Khaled M.; Hemeda, O. M.

    2014-09-01

    The iso-leucine-iodide and methionine-iodide charge-transfer complexes were prepared and characterized using different spectroscopic techniques. The iodide charge-transfer complexes were synthesized by grinding KI-I2-amino acid with 1:1:1 M ratio in presence of few drops of methanol solvent. The structures of both solid amino acid iodide charge-transfer complexes are discussed with the help of the obtained results of the infrared and Raman laser spectra, Uv-vis. electronic spectra and thermal analyses. The electrical properties (AC resistivity and dielectric constant) of both complexes were investigated. The positron annihilation Doppler broadening (PADB) spectroscopies were also used to probe the structural changes of both complexes. The PADB line-shape parameters (S and W) were found to be dependent on the structure, electronic configuration of the charge transfer complex. The PADB technique is a powerful tool to probe the structural features of the KI-I2-amino acid complexes.

  4. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites.

    PubMed

    Bakulin, Artem A; Selig, Oleg; Bakker, Huib J; Rezus, Yves L A; Müller, Christian; Glaser, Tobias; Lovrincic, Robert; Sun, Zhenhua; Chen, Zhuoying; Walsh, Aron; Frost, Jarvist M; Jansen, Thomas L C

    2015-09-17

    The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to these materials. The extent and the time scales of the orientational mobility of the organic cation and the molecular mechanism behind its motion remain unclear, with different experimental and computational approaches providing very different qualitative and quantitative description of the molecular dynamics. Here we use ultrafast 2D vibrational spectroscopy of methylammonium (MA) lead iodide to directly resolve the rotation of the organic cations within the MAPbI3 lattice. Our results reveal two characteristic time constants of motion. Using ab initio molecular dynamics simulations, we identify these as a fast (∼300 fs) "wobbling-in-a-cone" motion around the crystal axis and a relatively slow (∼3 ps) jump-like reorientation of the molecular dipole with respect to the iodide lattice. The observed dynamics are essential for understanding the electronic properties of perovskite materials.

  6. Competitive inhibition of thyroidal uptake of dietary iodide by perchlorate does not describe perturbations in rat serum total T4 and TSH.

    PubMed

    McLanahan, Eva D; Andersen, Melvin E; Campbell, Jerry L; Fisher, Jeffrey W

    2009-05-01

    Perchlorate (ClO4(-)) is an environmental contaminant known to disrupt the thyroid axis of many terrestrial and aquatic species. ClO4(-) competitively inhibits iodide uptake into the thyroid at the sodium/iodide symporter and disrupts hypothalamic-pituitary-thyroid (HPT) axis homeostasis in rodents. We evaluated the proposed mode of action for ClO4(-)-induced rat HPT axis perturbations using a biologically based dose-response (BBDR) model of the HPT axis coupled with a physiologically based pharmacokinetic model of ClO4(-). We configured a BBDR-HPT/ClO4(-) model to describe competitive inhibition of thyroidal uptake of dietary iodide by ClO4(-) and used it to simulate published adult rat drinking water studies. We compared model-predicted serum thyroid-stimulating hormone (TSH) and total thyroxine (TT4) concentrations with experimental observations reported in these ClO4(-) drinking water studies. The BBDR-HPT/ClO4(-) model failed to predict the ClO4(-)-induced onset of disturbances in the HPT axis. Using ClO4(-) inhibition of dietary iodide uptake into the thyroid, the model underpredicted both the rapid decrease in serum TT4 concentrations and the rise in serum TSH concentrations. Assuming only competitive inhibition of thyroidal uptake of dietary iodide, BBDR-HPT/ClO4(-) model calculations were inconsistent with the rapid decrease in serum TT4 and the corresponding increase in serum TSH. Availability of bound iodide in the thyroid gland governed the rate of hormone secretion from the thyroid. ClO4(-) is translocated into the thyroid gland, where it may act directly or indirectly on thyroid hormone synthesis/secretion in the rat. The rate of decline in serum TT4 in these studies after 1 day of treatment with ClO4(-) appeared consistent with a reduction in thyroid hormone production/secretion. This research demonstrates the utility of a biologically based model to evaluate a proposed mode of action for ClO4(-) in a complex biological process.

  7. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiu, Fu-Rong, E-mail: xiu_chem@hotmail.com; Qi, Yingying; Zhang, Fu-Shen

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercriticalmore » water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, M.F.

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  9. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations.

    USDA-ARS?s Scientific Manuscript database

    Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...

  10. Mineral of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  11. Dispersion toughened silicon carbon ceramics

    DOEpatents

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  12. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.)

    USDA-ARS?s Scientific Manuscript database

    Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...

  13. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    USDA-ARS?s Scientific Manuscript database

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  14. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  15. Development and application of colorimetric microassay for determining boron-containing compounds

    Treesearch

    S. Nami Kartal; Frederick Green

    2002-01-01

    This paper describes the development of a microsssay for boron and the application of this microassay for evaluating leachability of boron by post-treatment of southern pine with the calcium precipitating agent NHA (N'N-napthaloylhydroxylamine). The microsssay method for quantitative estimation of boron content in treated wood and leachates is a microadaptation of...

  16. The prospects for composites based on boron fibers

    NASA Technical Reports Server (NTRS)

    Naslain, R.

    1978-01-01

    The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.

  17. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides

    PubMed Central

    Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman

    2012-01-01

    Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669

  18. Experimental observation of boron nitride chains.

    PubMed

    Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi; Algara-Siller, Gerardo; Kaiser, Ute; Suenaga, Kazu; Krasheninnikov, Arkady V

    2014-12-23

    We report the formation and characterization of boron nitride atomic chains. The chains were made from hexagonal boron nitride sheets using the electron beam inside a transmission electron microscope. We find that the stability and lifetime of the chains are significantly improved when they are supported by another boron nitride layer. With the help of first-principles calculations, we prove the heteroatomic structure of the chains and determine their mechanical and electronic properties. Our study completes the analogy between various boron nitride and carbon polymorphs, in accordance with earlier theoretical predictions.

  19. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.

    1999-01-01

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

  20. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

    1999-02-16

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

  1. Combustion Performance of a Staged Hybrid Rocket with Boron addition

    NASA Astrophysics Data System (ADS)

    Lee, D.; Lee, C.

    2018-04-01

    In this paper, the effect of boron on overall system specific impulse was investigated. Additionally, a series of combustion tests was carried out to analyze and evaluate the effect of boron addition on O/F variation and radial temperature profiles. To maintain the hybrid rocket engine advantages, upper limit of boron contents in solid fuel was set to be 10 wt%. The results also suggested that, when adding boron to solid fuel, it helped to provide more uniform radial temperature distribution and also to increase specific impulse by 3.2%.

  2. Producing carbon stripper foils containing boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, J. O. Jr.

    2012-12-19

    Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.

  3. Boron isotope fractionation in liquid chromatography with boron-specific resins as column packing material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko

    1997-07-01

    Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phasemore » is suggested.« less

  4. Friction and transfer behavior of pyrolytic boron nitride in contact with various metals

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted with pyrolytic boron nitride in sliding contact with itself and various metals. Auger emission spectroscopy was used to monitor transfer of pyrolytic boron nitride to metals and metals to pyrolytic boron nitride. Results indicate that the friction coefficient for pyrolytic boron nitride in contact with metals can be related to the chemical activity of the metals and more particularly to the d valence bond character of the metal. Transfer was found to occur to all metals except silver and gold and the amount of transfer was less in the presence than in the absence of metal oxide. Friction was less for pyrolytic boron nitride in contact with a metal in air than in vacuum.

  5. Safety Assessment of Boron Nitride as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. © The Author(s) 2015.

  6. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.

  7. A simple thermometric technique for reaction-rate determination of inorganic species, based on the iodide-catalysed cerium(IV)-arsenic(III) reaction.

    PubMed

    Grases, F; Forteza, R; March, J G; Cerda, V

    1985-02-01

    A very simple reaction-rate thermometric technique is used for determination of iodide (5-20 ng ml ), based on its catalytic action on the cerium(IV)-arsenic(III) reaction, and for determination of mercury(II) (1.5-10 ng ml ) and silver(I) (2-10 ng ml ), based on their inhibitory effect on this reaction. The reaction is followed by measuring the rate of temperature increase. The method suffers from very few interferences and is applied to determination of iodide in biological and inorganic samples, and Hg(II) and Ag(I) in pharmaceutical products.

  8. Processing α-mercuric iodide by zone refining

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S. H.; Henderson, D. O.; Biao, Y.; Zhang, K.; Silberman, E.; Nason, D.; van den Berg, L.; Ortale-Baccash, C.; Cross, E.

    1993-03-01

    An investigation is being conducted on zone refining α-mercuric iodide. Analytical studies using differential scanning calorimetry and anion chromatography indicate that impurities are accumulated mainly at the end where zone travel terminates. Early results indicate that single crystals can be readily grown from zone-refined material.

  9. Radiochemical purity, at expiry, and radiochemical stability of iodine-131 labelled meta-iodobenzylguanidine concentrates for intravenous infusion.

    PubMed

    Wafelman, A R; Hoefnagel, C A; Maes, R A; Beijnen, J H

    1996-08-01

    The determination of the amount of free [131I]iodide in [131I]metaiodobenzylguanidine ([131I]MIBG) concentrates for intravenous infusion under different storage conditions derived from daily practice. The percentage of free [131I]iodide was determined in [131I]MIBG concentrates (1.6-3.9 GBq in 7.5 ml), kept on dry ice (up to expiry, 3 days after production) or, after thawing, at room temperature (up to 24 h). A validated solid phase extraction (SPE) assay was used. Free [131I]iodide increased from 1.9% +/- 0.34% at production to 4.4% +/- 0.67% (mean +/- SD; n = 5) at expiry in 3.7 GBq per 7.5 ml [131I]MIBG infusion concentrates stored on dry ice (-78 degrees C). At room temperature, formation of free [131I]iodide was found to be dependent on the radioactive concentration of the fluid. [131I]iodide levels increased from 3.1%, immediately after thawing, to 6.6% and 16.6% at t = 5 and 24 h, respectively, for a 3.9 GBq per 7.5 ml concentrate. The investigated formulation of [131I]MIBG concentrates, stored in its original packing containing dry ice, can generally be used up to expiry. After thawing, the undiluted concentrates should be administered to a patient within 3.5 h.

  10. TRPM7 is regulated by halides through its kinase domain

    PubMed Central

    Yu, Haijie; Zhang, Zheng; Lis, Annette; Penner, Reinhold; Fleig, Andrea

    2013-01-01

    Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg2+), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg2+ ([Mg2+]i) and this is facilitated through the ATP-binding site of the channel’s kinase domain. The synergistic block of TRPM7 by chloride and Mg2+ is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg2+]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells. PMID:23471296

  11. Time-resolved photoelectron imaging of iodide-nitromethane (I-·CH3NO2) photodissociation dynamics.

    PubMed

    Kunin, Alice; Li, Wei-Li; Neumark, Daniel M

    2016-12-07

    Femtosecond time-resolved photoelectron spectroscopy is used to probe the decay channels of iodide-nitromethane (I - ·CH 3 NO 2 ) binary clusters photoexcited at 3.56 eV, near the vertical detachment energy (VDE) of the cluster. The production of I - is observed, and its photoelectron signal exhibits a mono-exponential rise time of 21 ± 1 ps. Previous work has shown that excitation near the VDE of the I - ·CH 3 NO 2 complex transfers an electron from iodide to form a dipole-bound state of CH 3 NO 2 - that rapidly converts to a valence bound (VB) anion. The long appearance time for the I - fragment suggests that the VB anion decays by back transfer of the excess electron to iodide, reforming the I - ·CH 3 NO 2 anion and resulting in evaporation of iodide. Comparison of the measured lifetime to that predicted by RRKM theory suggests that the dissociation rate is limited by intramolecular vibrational energy redistribution in the re-formed anion between the high frequency CH 3 NO 2 vibrational modes and the much lower frequency intermolecular I - ·CH 3 NO 2 stretch and bends, the predominant modes involved in cluster dissociation to form I - . Evidence for a weak channel identified as HI + CH 2 NO 2 - is also observed.

  12. Mechanisms of Exchange Reactions of Primary and Secondary Alkyl Iodides with Elementary Iodine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bujake, John E.; Pratt, M. W. T.; Noyes, Richard M.

    1961-04-01

    Several primary and secondary alkyl iodides exchange thermally with I/ sup 131/ in hexachlorobutadiene between 130 and 200 deg . If the solutions are saturated with oxygen at one atmosphere, rates of exchange fit the kinetic expression k/sub b/STARI! STAl/sub 2/!1/2. Degassed solutions always exchange faster than oxygen saturated ones, but methyl, ethyl, and n-propyl iodides show the same kinetics as with oxygen. Exchange rates of degassed isopropyl and neopentyl iodides also show contributions from a k/sub a/STARI! term. Exchange in degassed ethylene dichloride is 3 to 4 times as fast as in degassed hexachlorobutadiene. Activation energies for k/sub b/more » are usually about 27 to 31 kcal/mole. Effects of substitution on alpha carbon are illustrated by the rate sequence methyl < ethyl < i-propyl = sec-butyl. Effects of substitution on beta carbon are illustrated by the rate sequence ethyl < npropyl>> neopentyl. Since the rates of exchange of methyl, ethyl, and i-propyl iodides vary in the opposite direction from the sequence for bimolecular nucleophilic substitution, the explanation proposed suggests that for nucleophilic substitution the effect of added methyl groups on an alpha carbon is a steric hindrance to solvation by solvent dipoles rather than a steric hindrance to the group attacking the carbon atom itself.« less

  13. Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility.

    PubMed

    Wakai, Satoshi; Ito, Kimio; Iino, Takao; Tomoe, Yasuyoshi; Mori, Koji; Harayama, Shigeaki

    2014-10-01

    Elemental iodine is produced in Japan from underground brine (fossil salt water). Carbon steel pipes in an iodine production facility at Chiba, Japan, for brine conveyance were found to corrode more rapidly than those in other facilities. The corroding activity of iodide-containing brine from the facility was examined by immersing carbon steel coupons in "native" and "filter-sterilized" brine samples. The dissolution of iron from the coupons immersed in native brine was threefold to fourfold higher than that in the filter-sterilized brine. Denaturing gradient gel electrophoresis analyses revealed that iodide-oxidizing bacteria (IOBs) were predominant in the coupon-containing native brine samples. IOBs were also detected in a corrosion deposit on the inner surface of a corroded pipe. These results strongly suggested the involvement of IOBs in the corrosion of the carbon steel pipes. Of the six bacterial strains isolated from a brine sample, four were capable of oxidizing iodide ion (I(-)) into molecular iodine (I(2)), and these strains were further phylogenetically classified into two groups. The iron-corroding activity of each of the isolates from the two groups was examined. Both strains corroded iron in the presence of potassium iodide in a concentration-dependent manner. This is the first report providing direct evidence that IOBs are involved in iron corrosion. Further, possible mechanisms by which IOBs corrode iron are discussed.

  14. Energy release properties of amorphous boron and boron-based propellant primary combustion products

    NASA Astrophysics Data System (ADS)

    Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu

    2015-07-01

    The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.

  15. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vajo, John J.

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less

  16. Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albayrak, Onder, E-mail: albayrakonder@mersin.edu.tr

    In the current study, boron doped biphasic calcium phosphate bioceramics consisting of a mixture of boron doped hydroxyapatite (BHA) and beta tricalcium phosphate (β-TCP) of varying BHA/β-TCP ratios were obtained after sintering stage. The effects of varying boron contents and different sintering temperatures on the BHA/β-TCP ratios and on the sinterability of the final products were investigated. Particle sizes and morphologies of the obtained precipitates were determined using SEM. XRD and FTIR investigation were conducted to detect the boron formation in the structure of HA and quantitative analysis was performed to determine the BHA/β-TCP ratio before and after sintering stage.more » In order to determine the sinterability of the obtained powders, pellets were prepared and sintered; the rates of densification were calculated and obtained results were correlated by SEM images. Also Vickers microhardness values of the sintered samples were determined. The experimental results verified that boron doped hydroxyapatite powders were obtained after sintering stage and the structure consists of a mixture of BHA and β-TCP. As the boron content used in the precipitation stage increases, β-TCP content of the BHA/β-TCP ratio increases but sinterability, density and microhardness deteriorate. As the sintering temperature increases, β-TCP content, density and microhardness of the samples increase and sinterability improves. - Highlights: • This is the first paper about boron doped biphasic calcium phosphate bioceramics. • Boron doping affects the structural and mechanical properties. • BHA/β-TCP ratio can be adjustable with boron content and sintering temperature.« less

  17. Solid state, thermal synthesis of site-specific protein-boron cluster conjugates and their physicochemical and biochemical properties.

    PubMed

    Goszczyński, Tomasz M; Kowalski, Konrad; Leśnikowski, Zbigniew J; Boratyński, Janusz

    2015-02-01

    Boron clusters represent a vast family of boron-rich compounds with extraordinary properties that provide the opportunity of exploitation in different areas of chemistry and biology. In addition, boron clusters are clinically used in boron neutron capture therapy (BNCT) of tumors. In this paper, a novel, in solid state (solvent free), thermal method for protein modification with boron clusters has been proposed. The method is based on a cyclic ether ring opening in oxonium adduct of cyclic ether and a boron cluster with nucleophilic centers of the protein. Lysozyme was used as the model protein, and the physicochemical and biological properties of the obtained conjugates were characterized. The main residues of modification were identified as arginine-128 and threonine-51. No significant changes in the secondary or tertiary structures of the protein after tethering of the boron cluster were found using mass spectrometry and circular dichroism measurements. However, some changes in the intermolecular interactions and hydrodynamic and catalytic properties were observed. To the best of our knowledge, we have described the first example of an application of cyclic ether ring opening in the oxonium adducts of a boron cluster for protein modification. In addition, a distinctive feature of the proposed approach is performing the reaction in solid state and at elevated temperature. The proposed methodology provides a new route to protein modification with boron clusters and extends the range of innovative molecules available for biological and medical testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Relationship Not Found Between Blood and Urine Concentrations and Body Mass Index in Humans With Apparently Adequate Boron Status.

    PubMed

    Koc, Fulya; Aysan, Erhan; Hasbahceci, Mustafa; Arpaci, Beyza; Gecer, Salih; Demirci, Selami; Sahin, Fikrettin

    2016-06-01

    The impact of boron on the development of obesity remains controversial in the analysis of experimental and clinical data. The objective of this study was to investigate the relationship between blood and urine boron concentrations and obesity in normal, overweight, obese, and morbidly obese subjects in different age groups. A total of 105 subjects were categorized into 12 groups based on body mass index and three different age levels: as young adult (18 to 34 years old), adult (35 to 54 years old), and older adult (greater than 55 years old). Age, gender, body mass index, and blood and urine boron concentrations were recorded for each subject. There were 50 women and 55 men, with a mean age of 44.63 ± 17.9 years. Blood and urine boron concentrations were similar among the groups (p = 0.510 and p = 0.228, respectively). However, a positive correlation between age and blood boron concentration (p = 0.001) was detected in contrast to the presence of a negative correlation between age and urine boron concentration (p = 0.027). Multiple linear regression analysis showed that there was no significant relationship between gender, age, and quantitative values of body mass index for each subject, and blood and urine boron concentrations. Although the relationship between boron and obesity has not been confirmed, changes of blood and urine boron concentrations with age may have some physiologic sequences to cause obesity.

  19. Effect of thermal and thermo-mechanical cycling on the boron segregation behavior in the coarse-grained heat-affected zone of low-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sanghoon; Kang, Yongjoon; Lee, Changhee, E-mail: chlee@hanyang.ac.kr

    The boron segregation behavior in the coarse-grained heat-affected zone (CGHAZ) of 10 ppm boron-added low-alloy steel during the welding cycle was investigated by taking the changes in the microstructure and hardness into account. Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress, and the boron segregation behavior was analyzed by secondary ion mass spectrometry (SIMS) and particle tracking autoradiography (PTA). The segregation of boron was found to initially increase, and then decrease with an increase in the heat input. This is believed to be due to the back-diffusion of boron withmore » an increase in the exposure time at high temperature after non-equilibrium grain boundary segregation. The grain boundary segregation of boron could be decreased by an external stress applied during the welding cycle. Such behavior may be due to an increase in the grain boundary area as a result of the grain size reduction induced by the external stress. - Highlights: • Boron segregation behavior in the CGHAZ of low-alloy steel during a welding cycle was investigated. • Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress. • Boron segregation behavior was analyzed using SIMS and PTA techniques.« less

  20. Hybrid-PIC Modeling of the Transport of Atomic Boron in a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iaian D.; Kamhawi, Hani

    2015-01-01

    Computational analysis of the transport of boron eroded from the walls of a Hall thruster is performed by implementing sputter yields of hexagonal boron nitride and velocity distribution functions of boron within the hybrid-PIC model HPHall. The model is applied to simulate NASA's HiVHAc Hall thruster at a discharge voltage of 500V and discharge powers of 1-3 kW. The number densities of ground- and 4P-state boron are computed. The density of ground-state boron is shown to be a factor of about 30 less than the plasma density. The density of the excited state is shown to be about three orders of magnitude less than that of the ground state, indicating that electron impact excitation does not significantly affect the density of ground-state boron in the discharge channel or near-field plume of a Hall thruster. Comparing the rates of excitation and ionization suggests that ionization has a greater influence on the density of ground-state boron, but is still negligible. The ground-state boron density is then integrated and compared to cavity ring-down spectroscopy (CRDS) measurements for each operating point. The simulation results show good agreement with the measurements for all operating points and provide evidence in support of CRDS as a tool for measuring Hall thruster erosion in situ.

  1. Mineral resource of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  2. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    USDA-ARS?s Scientific Manuscript database

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  3. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  4. Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James; Sun, Xuehui

    2002-01-01

    Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.

  5. BIO-PRECIPITATES PRODUCED BY TWO AUTOCHTHONOUS BORON TOLERANT STREPTOMYCES STRAINS.

    PubMed

    Moraga, Norma Beatriz; Irazusta, Verónica; Amoroso, María Julia; Rajal, Verónica Beatriz

    2017-08-01

    Boron is widespread in the environment. Although contaminated soils are hard to recover different strategies have been investigated in the recent years. Bioremediation is one of the most studied because it is eco-friendly and less costly than other techniques. The aim of this research was to evaluate whether two Streptomyces strains isolated from boron contaminated soils in Salta, Argentina, may help remove boron from such soils. For this, they were grown in different liquid media with two boric acid concentrations and their specific growth rate and specific boric acid consumption rate were determined. Both strains showed great capacity to remove boron from the media. Increasing boric acid concentrations affected negatively the specific growth rate, however the specific boric acid consumption rate was superior. Boron bio-precipitates were observed when the strains grew in the presence of boric acid, probably due to an adaptive response developed by the cells to the exposure, for which many proteins were differentially synthetized. This strategy to tolerate high concentrations of boron by immobilizing it in bio-precipitates has not been previously described, to the best of our knowledge, and may have a great potential application in remediating soils contaminated with boron compounds.

  6. Effects of boron on structure and antioxidative activities of spleen in rats.

    PubMed

    Hu, Qianqian; Li, Shenghe; Qiao, Enmei; Tang, Zhongtao; Jin, Erhui; Jin, Guangming; Gu, Youfang

    2014-04-01

    In order to determine the relationship between boron and development of the spleen, especially in the promoting biological effects, we examined the effects of different levels of boron on weight, organ index, microstructure, and antioxidative activities of the spleen in rats. Sprague-Dawley (SD) rats were selected and treated with different concentrations of boron, and then, the organs were resected and weighed. One half of the tissue was fixed and embedded in paraffin to observe tissue structure changes. The other half of the tissue was homogenated for determining the antioxidant activities. The results showed that 40 mg/L of boron could increase weight, organ indexes, and antioxidant capacity of spleens and improve the spleen tissue structure, while the boron concentration above 80 mg/L could decrease weight, organ indexes, and antioxidant capacity of spleens and damage the spleen tissue structure. The higher the concentration, the more serious the damage was. Especially at the concentration of 640 mg/L, it could significantly inhibit the development of the spleen and even exhibit toxic effect. Hence, low boron concentration played a protective role in the development of the spleen, while high boron concentration could damage the organs and even produce toxic effect.

  7. Effect of MoO3 on the synthesis of boron nitride nanotubes over Fe and Ni catalysts.

    PubMed

    Nithya, Jeghan Shrine Maria; Pandurangan, Arumugam

    2012-05-01

    Synthesis of boron nitride nanotubes at reduced temperature is important for industrial manufactures. In this study boron nitride nanotubes were synthesized by thermal evaporation method using B/Fe2O3/MoO3 and B/Ni2O3/MoO3 mixtures separately with ammonia as the nitrogen source. The growth of boron nitride nanotubes occurred at 1100 degrees C, which was relatively lower than other metal oxides assisted growth processes requiring higher than 1200 degrees C. MoO3 promoted formation of B2O2 and aided boron nitride nanotubes growth at a reduced temperature. The boron nitride nanotubes with bamboo shaped, nested cone structured and straight tubes like forms were evident from the high resolution transmission electron microscopy. Metallic Fe and Ni, formed during the process, were the catalysts for the growth of boron nitride nanotubes. Their formation was established by X-ray diffraction. FT Raman showed a peak due to B-N vibration of BNNTs close to 1370 cm(-1). Hence MoO3 assisted growth of boron nitride nanotubes is advantageous, as it significantly reduced the synthesis temperature.

  8. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    NASA Astrophysics Data System (ADS)

    Chioma Affam, Augustine; Chung Wong, Chee; Seyam, Mohammed A. B.; Matt, Chelsea Ann Anak Frederick; Lantan Anak Sumbai, Josephine; Evuti, Abdullahi Mohammed

    2018-03-01

    Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT) method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal). It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  9. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less

  10. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1996-07-16

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  11. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.

    1995-09-12

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.

  12. Evaluation of new antimicrobial agents on Bacillus spp. strains: docking affinity and in vitro inhibition of glutamate-racemase.

    PubMed

    Tamay-Cach, Feliciano; Correa-Basurto, José; Villa-Tanaca, Lourdes; Mancilla-Percino, Teresa; Juárez-Montiel, Margarita; Trujillo-Ferrara, José G

    2013-10-01

    Three glutamic acid derivatives, two boron-containing and one imide-containing compound, were synthesized and tested for antimicrobial activity targeting glutamate-racemase. Antimicrobial effect was evaluated over Bacillus spp. Docking analysis shown that the test compounds bind near the active site of racemase isoforms, suggesting an allosteric effect. The boron derivatives had greater affinity than the imide derivative. In vitro assays shown good antimicrobial activity for the boron-containing compounds, and no effectiveness for the imide-containing compounds. The minimum inhibitory concentration of tetracycline, used as standard, was lower than that of the boron-containing derivatives. However, it seems that the boron-containing derivatives are more selective for bacteria. Experimental evidence suggests that the boron-containing derivatives act by inhibiting the racemase enzyme. Therefore, these test compounds probably impede the formation of the bacterial cell wall. Thus, the boron-containing glutamic acid derivatives should certainly be of interest for future studies as antimicrobial agents for Bacillus spp.

  13. Boronization on NSTX using Deuterated Trimethylboron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W.R. Blanchard; R.C. Gernhardt; H.W. Kugel

    2002-01-28

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in themore » execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described.« less

  14. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    PubMed

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Theoretical Investigation of Stabilizing Mechanism by Boron in Body-Centered Cubic Iron Through (Fe,Cr)23(C,B)6 Precipitates

    NASA Astrophysics Data System (ADS)

    Sahara, Ryoji; Matsunaga, Tetsuya; Hongo, Hiromichi; Tabuchi, Masaaki

    2016-05-01

    Small amounts of boron improve the mechanical properties in high-chromium ferritic heat-resistant steels. In this work, the stabilizing mechanism by boron in body-centered cubic iron (bcc Fe) through (Fe,Cr)23(C,B)6 precipitates was investigated by first-principles calculations. Formation energy analysis of (Fe,Cr)23(C,B)6 reveals that the compounds become more stable to elemental solids as the boron concentration increases. Furthermore, the interface energy of bcc Fe(110) || Fe23(C,B)6(111) also decreases with boron concentration in the compounds. The decreased interface energy caused by boron addition is explained by the balance between the change in the phase stability of the precipitates and the change in the misfit parameter for the bcc Fe matrix and the precipitates. These results show that boron stabilizes the microstructure of heat-resistant steels, which is important for understanding the origins of the creep strength in ferritic steels.

  16. Experimental realization of two-dimensional boron sheets

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  17. Recent progress on borophene: Growth and structures

    NASA Astrophysics Data System (ADS)

    Kong, Longjuan; Wu, Kehui; Chen, Lan

    2018-06-01

    Boron is the neighbor of carbon on the periodic table and exhibits unusual physical characteristics derived from electron-deficient, highly delocalized covalent bonds. As the nearest neighbor of carbon, boron is in many ways similar to carbon, such as having a short covalent radius and the flexibility to adopt sp 2 hybridization. Hence, boron could be capable of forming monolayer structural analogues of graphene. Although many theoretical papers have reported finding two-dimensional allotropes of boron, there had been no experimental evidence for such atom-thin boron nanostructures until 2016. Recently, the successful synthesis of single-layer boron (referred to as borophene) on the Ag(111) substrate opens the era of boron nanostructures. In this brief review, we will discuss the progress that has been made on borophene in terms of synthetic techniques, characterizations and the atomic models. However, borophene is just in infancy; more efforts are expected to be made in future on the controlled synthesis of quality samples and tailoring its physical properties.

  18. Spherical boron nitride particles and method for preparing them

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2003-11-25

    Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.

  19. Boron concentration measurements by alpha spectrometry and quantitative neutron autoradiography in cells and tissues treated with different boronated formulations and administration protocols.

    PubMed

    Bortolussi, Silva; Ciani, Laura; Postuma, Ian; Protti, Nicoletta; Luca Reversi; Bruschi, Piero; Ferrari, Cinzia; Cansolino, Laura; Panza, Luigi; Ristori, Sandra; Altieri, Saverio

    2014-06-01

    The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations. © 2013 Published by Elsevier Ltd.

  20. Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya

    2018-04-01

    Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.

Top