Science.gov

Sample records for boronic acids

  1. Rapid accurate isotopic measurements on boron in boric acid and boron carbide.

    PubMed

    Duchateau, N L; Verbruggen, A; Hendrickx, F; De Bièvre, P

    1986-04-01

    A procedure is described whereby rapid and accurate isotopic measurements can be performed on boron in boric acid and boron carbide after fusion of these compounds with calcium carbonate. It allows the determination of the isotopic composition of boron in boric acid and boron carbide and the direct assay of boron or the (10)B isotope in boron carbide by isotope-dilution mass spectrometry.

  2. Boron

    MedlinePlus

    ... and muscle coordination. Women sometimes use capsules containing boric acid, the most common form of boron, inside the vagina to treat yeast infections. People also apply boric acid to the skin as an astringent or to ...

  3. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  4. Boron containing amino acid compounds and methods for their use

    SciTech Connect

    Glass, J.D.; Coderre, J.A.

    2000-01-25

    The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.

  5. Boron containing amino acid compounds and methods for their use

    DOEpatents

    Glass, John D.; Coderre, Jeffrey A.

    2000-01-01

    The present invention provides new boron containing amino acid compounds and methods for making these compounds by contacting melphalan or another nitrogen mustard derivative and sodium borocaptate. The present invention also provides a method of treating a mammal having a tumor by administering to the mammal a therapeutically effective amount of the new boron containing amino acid compounds.

  6. Boronic acids for fluorescence imaging of carbohydrates.

    PubMed

    Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D

    2016-02-28

    "Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.

  7. Biological Evaluation of Boronated Unnatural Amino Acids as New Boron Carriers

    PubMed Central

    Kabalka, G.W.; Yao, M.-L.; Marepally, S.R.; Chandra, S.

    2010-01-01

    There is a pressing need for new and more efficient boron delivery agents to tumor cells for use in boron neutron capture therapy (BNCT). A class of boronated unnatural cyclic amino acids has demonstrated a remarkable selectivity toward tumors in animal and cell culture models, far superior to currently used agents in clinical BNCT. One of these amino acids, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC), has shown a tumor to blood ratio of 8 and a tumor to normal brain ratio of nearly 21 in a melanoma bearing mouse model. This work represents further biological characterization of this compound for tumor targeting in an EMT6 murine mammary carcinoma mouse model and a T98G human glioblastoma cell line. Female BALB/c mice bearing EMT6 tumors were injected with the fructose complex form of racemic mixtures of cis- and trans isomers of ABCPC in identical concentrations. Boron concentrations were measured in the tumor, blood, brain, skin, and liver tissues at 1, 3, and 5 hr post injection. These observations revealed a remarkable difference in racemic mixtures of cis and trans isomers in tumor targeting by boron. This implies that further separation of the L and D forms of this compound may enhance tumor targeting to an even higher degree than that provided by the racemic mixtures. Since the uptake measurements were made in homogenized tumor and normal tissues, little is known about the subcellular location of the boron arising from the various isomeric forms of the amino acid. To study subcellular delivery of boron from ABCPC in T98G human glioblastoma cells, we employed secondary ion mass spectrometry (SIMS) based technique of ion microscopy, which is capable of quantitatively imaging isotopic (elemental) gradients in cells and tissues at 500 nm spatial resolution. The T98G cells were exposed to the nutrient medium containing 100 ppm boron equivalent of a mixture of both L and D isomers of ABCPC in the form of a fructose complex for 1 hr. Following this

  8. Surface Behavior of Boronic Acid-Terminated Silicones.

    PubMed

    Mansuri, Erum; Zepeda-Velazquez, Laura; Schmidt, Rolf; Brook, Michael A; DeWolf, Christine E

    2015-09-01

    Silicone polymers, with their high flexibility, lie in a monolayer at the air-water interface as they are compressed until a critical pressure is reached, at which point multilayers are formed. Surface pressure measurements demonstrate that, in contrast, silicones that are end-modified with polar groups take up lower surface areas under compression because the polar groups submerge into the water phase. Boronic acids have the ability to undergo coordination with Lewis bases. As part of a program to examine the surface properties of boronic acids, we have prepared boronic acid-modified silicones (SiBAs) and examined them at the air-water interface to better understand if they behave like other end-functional silicones. Monolayers of silicones, aminopropylsilicones, and SiBAs were characterized at the air-water interface as a function of end functionalization and silicone chain length. Brewster angle and atomic force microscopies confirm domain formation and similar film morphologies for both functionalized and non-functionalized silicone chains. There is a critical surface pressure (10 mN m(-1)) independent of chain length that corresponds to a first-order phase transition. Below this transition, the film appears to be a homogeneous monolayer, whose thickness is independent of the chain length. Ellipsometry at the air-water interface indicates that the boronic acid functionality leads to a significant increase of film thickness at low molecular areas that is not seen for non-functionalized silicone chains. What differentiates the boronic acids from simple silicones or other end-functionalized silicones, in particular, is the larger area occupied by the headgroup when under compression compared to other or non-end-functionalized silicones, which suggests an in-plane rather than submerged orientation that may be driven by boronic acid self-complexation. PMID:26263385

  9. Boronic acid sensors for saccharides: A theoretical study

    NASA Astrophysics Data System (ADS)

    Petsalakis, Ioannis D.; Theodorakopoulos, Giannoula

    2013-10-01

    Selective detection of saccharides by fluorescent boronic acid sensors has been the object of active research over the last two decades with numerous experimental reports published. A theoretical study is presented here on pyrene- and anthracene-boronic acid systems and their fluorescent sensing of D-glucose, employing Density Functional Theory and Time-Dependent Density Functional Theory. The difficulties encountered by straight-forward computational approaches are described while it is shown that it is possible to obtain a physically correct description of the photoinduced electron transfer in these systems from diagrams of the molecular orbital energies of the separate donor and acceptor moieties.

  10. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma.

    PubMed

    Hsu, C F; Lin, S Y; Peir, J J; Liao, J W; Lin, Y C; Chou, F I

    2011-12-01

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg (10)B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg (10)B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  11. Boronic Acid-Catalyzed, Highly Enantioselective Aza-Michael Additions of Hydroxamic Acid to Quinone Imine Ketals.

    PubMed

    Hashimoto, Takuya; Gálvez, Alberto Osuna; Maruoka, Keiji

    2015-12-30

    Boronic acid is one of the most versatile organic molecules in chemistry. Its uses include organic reactions, molecular recognition, assembly, and even medicine. While boronic acid catalysis, which utilizes an inherent catalytic property, has become an important research objective, it still lags far behind other boronic acid chemistries. Here, we report our discovery of a new boronic acid catalysis that enables the aza-Michael addition of hydroxamic acid to quinone imine ketals. By using 3-borono-BINOL as a chiral boronic acid catalyst, this reaction could be implemented in a highly enantioselective manner, paving the way to densely functionalized cyclohexanes.

  12. Boron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  13. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol.

    PubMed

    Nishiyabu, Ryuhei; Shimizu, Ai

    2016-07-28

    We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions. PMID:27311634

  14. Scope of the Palladium-Catalyzed Aryl Borylation Utilizing Bis-Boronic Acid

    PubMed Central

    Molander, Gary A.; Trice, Sarah L. J.; Kennedy, Steven M.; Dreher, Spencer D.; Tudge, Matthew T.

    2012-01-01

    The Suzuki-Miyaura reaction has become one of the more useful tools for synthetic organic chemists. Until recently, there did not exist a direct way to make the most important component in the coupling reaction, namely the boronic acid. Current methods to make boronic acids often employ harsh or wasteful reagents to prepare boronic acid derivatives and require additional steps to afford the desired boronic acid. The scope of the previously reported palladium-catalyzed, direct boronic acid synthesis is unveiled, which includes a wide array of synthetically useful aryl electrophiles. It makes use of the newly available second generation Buchwald XPhos preformed palladium catalyst and bis-boronic acid (BBA). For ease of isolation and to preserve the often sensitive C-B bond, all boronic acids were readily converted to their more stable trifluoroborate counterparts. PMID:22769742

  15. Synthesis of boron suboxide from boron and boric acid under mild pressure and temperature conditions

    SciTech Connect

    Jiao, Xiaopeng; Jin, Hua; Ding, Zhanhui; Yang, Bin; Lu, Fengguo; Zhao, Xudong; Liu, Xiaoyang; Peng, Liping

    2011-05-15

    Graphical abstract: Well-crystallized and icosahedral B{sub 6}O crystals were prepared by reacting boron and boric acid at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work.. Research highlights: {yields} Well-crystallized icosahedral B{sub 6}O was synthesized by reacting boric acid and boron. {yields} The synthesis conditions (1 GPa and 1300 {sup o}C for 2 h) are milder in comparison with previous work. {yields} The more practical synthesis method may make B{sub 6}O as a potential substitute for diamond in industry. -- Abstract: Boron suboxide (B{sub 6}O) was synthesized by reacting boron and boric acid (H{sub 3}BO{sub 3}) at pressures between 1 and 10 GPa, and at temperatures between 1300 and 1400 {sup o}C. The B{sub 6}O samples prepared were icosahedral with diameters ranging from 20 to 300 nm. Well-crystallized and icosahedral crystals with an average size of {approx}100 nm can be obtained at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work. The bulk B{sub 6}O sample was stable in air at 600 {sup o}C and then slowly oxidized up to 1000 {sup o}C. The relatively mild synthetic conditions developed in this study provide a more practical synthesis of B{sub 6}O, which may potentially be used as a substitute for diamond in industry as a new superhard material.

  16. BSA-boronic acid conjugate as lectin mimetics.

    PubMed

    Narla, Satya Nandana; Pinnamaneni, Poornima; Nie, Huan; Li, Yu; Sun, Xue-Long

    2014-01-10

    We report bovine serum albumin (BSA)-boronic acid (BA) conjugates as lectin mimetics and their glyco-capturing capacity. The BSA-BA conjugates were synthesized by amidation of carboxylic acid groups in BSA with aminophenyl boronic acid in the presence of EDC, and were characterized by Alizarin Red S (ARS) assay and SDS-PAGE gel. The BSA-BA conjugates were immobilized onto maleimide-functionalized silica beads and their sugar capturing capacity and specificity were confirmed by ARS displacement assay. Further, surface plasmon resonance (SPR) analysis of the glyco-capturing activity of the BSA-BA conjugates was conducted by immobilizing BSA-BA onto SPR gold chip. Overall, we demonstrated a BSA-BA-based lectin mimetics for glyco-capturing applications. These lectin mimetics are expected to provide an important tool for glycomics and biosensor research and applications.

  17. Protodeboronation of ortho- and para-phenol boronic acids and application to ortho and meta functionalization of phenols using boronic acids as blocking and directing groups.

    PubMed

    Lee, Chun-Young; Ahn, Su-Jin; Cheon, Cheol-Hong

    2013-12-01

    The first metal-free thermal protodeboronation of ortho- and para-phenol boronic acids in DMSO was developed. The protodeboronation was successfully applied to the synthesis of ortho- and meta-functionalized phenols using the boronic acid moiety as a blocking group and a directing group, respectively. Mechanistic studies suggested that this protodeboronation proceeds through the coordination of water to the boron atom followed by σ-bond metathesis.

  18. Facile Analysis and Sequencing of Linear and Branched Peptide Boronic Acids by MALDI Mass Spectrometry

    PubMed Central

    Crumpton, Jason; Zhang, Wenyu; Santos, Webster

    2011-01-01

    Interest in peptides incorporating boronic acid moieties is increasing due to their potential as therapeutics/diagnostics for a variety of diseases such as cancer. The utility of peptide boronic acids may be expanded with access to vast libraries that can be deconvoluted rapidly and economically. Unfortunately, current detection protocols using mass spectrometry are laborious and confounded by boronic acid trimerization, which requires time consuming analysis of dehydration products. These issues are exacerbated when the peptide sequence is unknown, as with de novo sequencing, and especially when multiple boronic acid moieties are present. Thus, a rapid, reliable and simple method for peptide identification is of utmost importance. Herein, we report the identification and sequencing of linear and branched peptide boronic acids containing up to five boronic acid groups by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protocols for preparation of pinacol boronic esters were adapted for efficient MALDI analysis of peptides. Additionally, a novel peptide boronic acid detection strategy was developed in which 2,5-dihydroxybenzoic acid (DHB) served as both matrix and derivatizing agent in a convenient, in situ, on-plate esterification. Finally, we demonstrate that DHB-modified peptide boronic acids from a single bead can be analyzed by MALDI-MSMS analysis, validating our approach for the identification and sequencing of branched peptide boronic acid libraries. PMID:21449540

  19. Reversible click reactions with boronic acids to build supramolecular architectures in water.

    PubMed

    Arzt, Matthias; Seidler, Christiane; Ng, David Y W; Weil, Tanja

    2014-08-01

    The interaction of boronic acids with various bifunctional reagents offers great potential for the preparation of responsive supramolecular architectures. Boronic acids react with 1,2-diols yielding cyclic boronate esters that are stable at pH>7.4 but can be hydrolyzed at pH<5.0. The phenylboronic acid (PBA)-salicylhydroxamic acid (SHA) system offers ultra-fast reaction kinetics and high binding affinities. This Focus Review summarizes the current advances in exploiting the bioorthogonal interaction of boronic acids to build pH-responsive supramolecular architectures in water.

  20. Boronated Unnatural Cyclic Amino Acids as Potential Delivery Agents for Neutron Capture Therapy

    PubMed Central

    Kabalka, George W.; Shaikh, Aarif L.; Barth, Rolf F.; Huo, Tianyao; Yang, Weilian; Gordnier, Pamela M.; Chandra, Subhash

    2011-01-01

    Boron delivery characteristics of cis and trans isomers of a boronated unnatural amino acid, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC) were tested in B16 mouse model for human melanoma. Both ABCPC isomers delivered comparable boron to B16 melanoma tumor cells as L-p-boronophenylalanine (BPA). Secondary ion mass spectrometry (SIMS) analysis revealed the presence of boron throughout the tumor from these compounds, and a near homogeneous distribution between the nucleus and cytoplasm of B16 cells grown in vitro. These encouraging observations support further studies of these new boron carriers in BNCT. PMID:21481596

  1. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  2. Fluorescent boronic acid polymer grafted on silica particles for affinity separation of saccharides.

    PubMed

    Xu, Zhifeng; Uddin, Khan Mohammad Ahsan; Kamra, Tripta; Schnadt, Joachim; Ye, Lei

    2014-02-12

    Boronic acid affinity gels are important for effective separation of biological active cis-diols, and are finding applications both in biotech industry and in biomedical research areas. To increase the efficacy of boronate affinity separation, it is interesting to introduce repeating boronic acid units in flexible polymer chains attached on solid materials. In this work, we synthesize polymer brushes containing boronic acid repeating units on silica gels using surface-initiated atom transfer radical polymerization (ATRP). A fluorescent boronic acid monomer is first prepared from an azide-tagged fluorogenic boronic acid and an alkyne-containing acrylate by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction (the CuAAC click chemistry). The boronic acid monomer is then grafted to the surface of silica gel modified with an ATRP initiator. The obtained composite material contains boronic acid polymer brushes on surface and shows favorable saccharide binding capability under physiological pH conditions, and displays interesting fluorescence intensity change upon binding fructose and glucose. In addition to saccharide binding, the flexible polymer brushes on silica also enable fast separation of a model glycoprotein based on selective boronate affinity interaction. The synthetic approach and the composite functional material developed in this work should open new opportunities for high efficiency detection, separation, and analysis of not only simple saccharides, but also glycopeptides and large glycoproteins. PMID:24444898

  3. Fluorescent Boronic Acid Polymer Grafted on Silica Particles for Affinity Separation of Saccharides

    PubMed Central

    2014-01-01

    Boronic acid affinity gels are important for effective separation of biological active cis-diols, and are finding applications both in biotech industry and in biomedical research areas. To increase the efficacy of boronate affinity separation, it is interesting to introduce repeating boronic acid units in flexible polymer chains attached on solid materials. In this work, we synthesize polymer brushes containing boronic acid repeating units on silica gels using surface-initiated atom transfer radical polymerization (ATRP). A fluorescent boronic acid monomer is first prepared from an azide-tagged fluorogenic boronic acid and an alkyne-containing acrylate by Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction (the CuAAC click chemistry). The boronic acid monomer is then grafted to the surface of silica gel modified with an ATRP initiator. The obtained composite material contains boronic acid polymer brushes on surface and shows favorable saccharide binding capability under physiological pH conditions, and displays interesting fluorescence intensity change upon binding fructose and glucose. In addition to saccharide binding, the flexible polymer brushes on silica also enable fast separation of a model glycoprotein based on selective boronate affinity interaction. The synthetic approach and the composite functional material developed in this work should open new opportunities for high efficiency detection, separation, and analysis of not only simple saccharides, but also glycopeptides and large glycoproteins. PMID:24444898

  4. Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl Boronic Acids: pH-Rate Profiles, Autocatalysis, and Disproportionation.

    PubMed

    Cox, Paul A; Leach, Andrew G; Campbell, Andrew D; Lloyd-Jones, Guy C

    2016-07-27

    pH-rate profiles for aqueous-organic protodeboronation of 18 boronic acids, many widely viewed as unstable, have been studied by NMR and DFT. Rates were pH-dependent, and varied substantially between the boronic acids, with rate maxima that varied over 6 orders of magnitude. A mechanistic model containing five general pathways (k1-k5) has been developed, and together with input of [B]tot, KW, Ka, and KaH, the protodeboronation kinetics can be correlated as a function of pH (1-13) for all 18 species. Cyclopropyl and vinyl boronic acids undergo very slow protodeboronation, as do 3- and 4-pyridyl boronic acids (t0.5 > 1 week, pH 12, 70 °C). In contrast, 2-pyridyl and 5-thiazolyl boronic acids undergo rapid protodeboronation (t0.5 ≈ 25-50 s, pH 7, 70 °C), via fragmentation of zwitterionic intermediates. Lewis acid additives (e.g., Cu, Zn salts) can attenuate (2-pyridyl) or accelerate (5-thiazolyl and 5-pyrazolyl) fragmentation. Two additional processes compete when the boronic acid and the boronate are present in sufficient proportions (pH = pKa ± 1.6): (i) self-/autocatalysis and (ii) sequential disproportionations of boronic acid to borinic acid and borane. PMID:27355973

  5. Boronic acid-based enzyme inhibitors: a review of recent progress.

    PubMed

    Fu, H; Fang, H; Sun, Jie; Wang, H; Liu, A; Sun, J; Wu, Z

    2014-01-01

    Since Bortezomib was approved by US FDA as the first drug to treat multiple myeloma, various boronic acid compounds have been developed as enzyme inhibitors. This paper reviewed the progress of boronic acid-based inhibitors against enzymes including proteasome, serine protease, HDACs and other enzymes in the past decade.

  6. Visible-light-mediated chan-lam coupling reactions of aryl boronic acids and aniline derivatives.

    PubMed

    Yoo, Woo-Jin; Tsukamoto, Tatsuhiro; Kobayashi, Shū

    2015-05-26

    The copper(II)-catalyzed aerobic oxidative coupling reaction between aryl boronic acids and aniline derivatives was found to be improved significantly under visible-light-mediated photoredox catalysis. The substrate scope of this oxidative Chan-Lam reaction was thus expanded to include electron-deficient aryl boronic acids as viable starting materials.

  7. 10-Boronic acid substituted camptothecin as prodrug of SN-38.

    PubMed

    Wang, Lei; Xie, Shao; Ma, Longjun; Chen, Yi; Lu, Wei

    2016-06-30

    Malignant tumor cells have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential antitumor therapy. In this study, the 7-ethyl-10-boronic acid camptothecin (B1) was synthesized for the first time as prodrug of SN-38, by linking a cleavable aryl carbon-boron bond to the SN-38. Prodrug B1 selectively activated by H2O2, converted rapidly to the active form SN-38 under favorable oxidative conditions in cancer cells with elevated levels of H2O2. The cell survival assay showed that prodrug B1 was equally or more effective in inhibiting the growth of six different cancer cells, as compared to SN-38. Unexpectedly, prodrug B1 displayed even more potent Topo I inhibitory activity than SN-38, suggesting that it was not only a prodrug of SN-38 but also a typical Topo I inhibitor. Prodrug B1 also demonstrated a significant antitumor activity at 2.0 mg/kg in a xenograft model using human brain star glioblastoma cell lines U87MG. PMID:27060760

  8. Ligand-Promoted, Boron-Mediated Chemoselective Carboxylic Acid Aldol Reaction.

    PubMed

    Nagai, Hideoki; Morita, Yuya; Shimizu, Yohei; Kanai, Motomu

    2016-05-01

    The first carboxylic acid selective aldol reaction mediated by boron compounds and a mild organic base (DBU) was developed. Inclusion of electron-withdrawing groups in the amino acid derivative ligands reacted with BH3·SMe2 forms a boron promoter with increased Lewis acidity at the boron atom and facilitated the carboxylic acid selective enolate formation, even in the presence of other carbonyl groups such as amides, esters, ketones, or aliphatic aldehydes. The remarkable ligand effect led to the broad substrate scope including biologically relevant compounds. PMID:27104352

  9. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    PubMed Central

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  10. Boronic acid-modified magnetic materials for antibody purification

    PubMed Central

    Dhadge, Vijaykumar L.; Hussain, Abid; Azevedo, Ana M.; Aires-Barros, Raquel; Roque, Ana C. A.

    2014-01-01

    Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions. PMID:24258155

  11. Boronic acid-modified magnetic materials for antibody purification.

    PubMed

    Dhadge, Vijaykumar L; Hussain, Abid; Azevedo, Ana M; Aires-Barros, Raquel; Roque, Ana C A

    2014-02-01

    Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g(-1) MP and eluted 160 ± 5 mg hIgG g(-1) MP, while binding only 15 ± 5 mg BSA g(-1) MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 10(5) M(-1) (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g(-1) MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g(-1) MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions.

  12. Exposure assessment of boron in Bandırma boric acid production plant.

    PubMed

    Duydu, Yalçin; Başaran, Nurşen; Bolt, Hermann M

    2012-06-01

    Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL of 17.5mg B/kg-bw/day (corresponds to ∼2020 ng boron/g blood) has been identified for the (male) reproductive effects of boron in a multigenerational study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day (corresponds to 1270 ng boron/g blood). These values are being taken as the basis of current EU safety assessments. The present study was conducted to assess the boron exposure under extreme exposure conditions in a boric acid production plant located in Bandırma, Turkey. The mean blood boron concentrations of low and high exposure groups were 72.94 ± 15.43 (48.46-99.91) and 223.89 ± 60.49 (152.82-454.02)ng/g respectively. The mean blood boron concentration of the high exposure group is still ≈ 6 times lower than the highest no effect level of boron in blood with regard to the developmental effects in rats and ≈ 9 times lower than the highest no effect level of boron in blood with regard to the reprotoxic effects in male rats. In this context, boric acid and sodium borates should not be considered as toxic to reproduction for humans in daily life.

  13. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  14. Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation.

    PubMed

    Dong, Yizhou; Wang, Weiheng; Veiseh, Omid; Appel, Eric A; Xue, Kun; Webber, Matthew J; Tang, Benjamin C; Yang, Xi-Wen; Weir, Gordon C; Langer, Robert; Anderson, Daniel G

    2016-08-30

    Injectable hydrogels have been widely used for a number of biomedical applications. Here, we report a new strategy to form an injectable and glucose-responsive hydrogel using the boronic acid-glucose complexation. The ratio of boronic acid and glucose functional groups is critical for hydrogel formation. In our system, polymers with 10-60% boronic acid, with the balance being glucose-modified, are favorable to form hydrogels. These hydrogels are shear-thinning and self-healing, recovering from shear-induced flow to a gel state within seconds. More importantly, these polymers displayed glucose-responsive release of an encapsulated model drug. The hydrogel reported here is an injectable and glucose-responsive hydrogel constructed from the complexation of boronic acid and glucose within a single component polymeric material.

  15. Oxygenation of Organoboronic Acids by a Nonheme Iron(II) Complex: Mimicking Boronic Acid Monooxygenase Activity.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-10-19

    Phenolic compounds are important intermediates in the bacterial biodegradation of aromatic compounds in the soil. An Arthrobacter sp. strain has been shown to exhibit boronic acid monooxygenase activity through the conversion of different substituted phenylboronic acids to the corresponding phenols using dioxygen. While a number of methods have been reported to cleave the C-B bonds of organoboronic acids, there is no report on biomimetic iron complex exhibiting this activity using dioxygen as the oxidant. In that direction, we have investigated the reactivity of a nucleophilic iron-oxygen oxidant, generated upon oxidative decarboxylation of an iron(II)-benzilate complex [(Tp(Ph2))Fe(II)(benzilate)] (Tp(Ph2) = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate), toward organoboronic acids. The oxidant converts different aryl/alkylboronic acids to the corresponding oxygenated products with the incorporation of one oxygen atom from dioxygen. This method represents an efficient protocol for the oxygenation of boronic acids with dioxygen as the terminal oxidant.

  16. Oxygenation of Organoboronic Acids by a Nonheme Iron(II) Complex: Mimicking Boronic Acid Monooxygenase Activity.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2015-10-19

    Phenolic compounds are important intermediates in the bacterial biodegradation of aromatic compounds in the soil. An Arthrobacter sp. strain has been shown to exhibit boronic acid monooxygenase activity through the conversion of different substituted phenylboronic acids to the corresponding phenols using dioxygen. While a number of methods have been reported to cleave the C-B bonds of organoboronic acids, there is no report on biomimetic iron complex exhibiting this activity using dioxygen as the oxidant. In that direction, we have investigated the reactivity of a nucleophilic iron-oxygen oxidant, generated upon oxidative decarboxylation of an iron(II)-benzilate complex [(Tp(Ph2))Fe(II)(benzilate)] (Tp(Ph2) = hydrotris(3,5-diphenyl-pyrazol-1-yl)borate), toward organoboronic acids. The oxidant converts different aryl/alkylboronic acids to the corresponding oxygenated products with the incorporation of one oxygen atom from dioxygen. This method represents an efficient protocol for the oxygenation of boronic acids with dioxygen as the terminal oxidant. PMID:26430780

  17. Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas

    PubMed Central

    Barth, Rolf F.; Kabalka, George W.; Yang, Weilian; Huo, Tianyao; Nakkula, Robin J.; Shaikh, Aarif L.; Haider, Syed A.; Chandra, Subhash

    2014-01-01

    Unnatural cyclic amino acids (UNAA) are a new class of boron delivery agents that are in a pre-clinical stage of evaluation. In the present study, the biodistribution of racemic forms of the cis-and trans- isomers of the boronated UNAA 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC) and 1-amino-3-boronocycloheptanecarboxylic acid (ABCHC) was studied in B16 melanoma bearing mice and this was compared to L-p-boronophenylalanine (BPA). Boron concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICPOES) at 2.5 hrs following intraperitoneal (i.p.) injection of the test agents at a concentration equivalent to 24 mg B/kg. While all compounds attained comparable tumor boron concentrations, the tumor/blood (T/Bl) boron concentration ratios were far superior for both cis-ABCPC and cis-ABCHC compared to BPA (T/Bl = 16.4, and 15.1 vs. 5.4). Secondary ion mass spectrometry (SIMS) imaging revealed that the cis-ABCPC delivered boron to the nuclei, as well as the cytoplasm of B16 cells. Next, a biodistribution study of cis-ABCPC and BPA was carried out in F98 glioma bearing rats following i.p. administration. Both compounds attained comparable tumor boron concentrations but the tumor/brain (T/Br) boron ratio was superior for cis-ABCPC compared to BPA (6 vs. 3.3). Since UNAAs are water soluble and cannot be metabolized by tumor cells, they potentially could be more effective boron delivery agents than BPA. Our data suggest that further studies are warranted to evaluate these compounds prior to the initiation of clinical studies. PMID:24393770

  18. Intracellular boron accumulation in CHO-K1 cells using amino acid transport control.

    PubMed

    Sato, Eisuke; Yamamoto, Tetsuya; Shikano, Naoto; Ogura, Masato; Nakai, Kei; Yoshida, Fumiyo; Uemae, Yoji; Takada, Tomoya; Isobe, Tomonori; Matsumura, Akira

    2014-06-01

    BPA used in BNCT has a similar structure to some essential amino acids and is transported into tumor cells by amino acid transport systems. Previous study groups have tried various techniques of loading BPA to increase intracellular boron concentration. CHO-K1 cells demonstrate system L (LAT1) activity and are suitable for specifying the transport system of a neutral amino acid. In this study, we examined the intracellular accumulation of boron in CHO-K1 cells by amino acid transport control, which involves co-loading with L-type amino acid esters. Intracellular boron accumulation in CHO-K1 cells showed the greatest increased upon co-loading 1.0mM BPA, with 1.0mM l-Tyr-O-Et and incubating for 60min. This increase is caused by activation of a system L amino acid exchanger between BPA and l-Tyr. The amino acid esters are metabolized to amino acids by intracellular hydrolytic enzymes that increase the concentrations of intracellular amino acids and stimulate exchange transportation. We expect that this amino acid transport control will be useful for enhancing intracellular boron accumulation.

  19. Geometry of trigonal boron coordination sphere in boronic acids derivatives - a bond-valence vector model approach.

    PubMed

    Czerwińska, Karolina; Madura, Izabela D; Zachara, Janusz

    2016-04-01

    The systematic analysis of the geometry of three-coordinate boron in boronic acid derivatives with a common [CBO2] skeleton is presented. The study is based on the bond-valence vector (BVV) model [Zachara (2007). Inorg. Chem. 46, 9760-9767], a simple tool for the identification and quantitative estimation of both steric and electronic factors causing deformations of the coordination sphere. The empirical bond-valence (BV) parameters in the exponential equation [Brown & Altermatt (1985). Acta Cryst. B41, 244-247] rij and b, for B-O and B-C bonds were determined using data deposited in the Cambridge Structural Database. The values obtained amount to rBO = 1.364 Å, bBO = 0.37 Å, rBC = 1.569 Å, bBC = 0.28 Å, and they were further used in the calculation of BVV lengths. The values of the resultant BVV were less than 0.10 v.u. for 95% of the set comprising 897 [CBO2] fragments. Analysis of the distribution of BVV components allowed for the description of subtle in- and out-of plane deviations from the `ideal' (sp(2)) geometry of boron coordination sphere. The distortions specific for distinct groups of compounds such as boronic acids, cyclic and acyclic esters, benzoxaboroles and hemiesters were revealed. In cyclic esters the direction of strains was found to be controlled by the ring size effect. It was shown that the syn or anti location of substituents on O atoms is decisive for the deformations direction for both acids and acyclic esters. The greatest strains were observed in the case of benzoxaboroles which showed the highest deviation from the zero value of the resultant BVV. The out-of-plane distortions, described by the vz component of the resultant BVV, were ascertained to be useful in the identification of weak secondary interactions on the fourth coordination site of the boron centre. PMID:27048726

  20. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions.

    PubMed

    Hanaoka, Hideki; Uraguchi, Shimpei; Takano, Junpei; Tanaka, Mayuki; Fujiwara, Toru

    2014-06-01

    Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth.

  1. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  2. Boron

    SciTech Connect

    Cozen, L.F. )

    1991-05-01

    This paper reports that borate minerals and refined borates are used extensively for the manufacture of vitreous materials such as insulation and textile fiberglasses, borosilicate glass, and porcelain enamels and frits. In North America, these applications are estimated to account for over 54% of the borate consumption. Other substantial uses are in soaps and detergents, metallurgy, fire retardants, industrial biocides, agriculture, and various miscellaneous applications. Reported domestic borate consumption in 1990 was estimated by the U.S. Bureau of Mines to be 320 000 metric tons B{sub 2}O{sub 3} versus 354 000 metric tons B{sub 2}O{sub 3} in 1989. Consumption is projected to remain essentially static in 1991. Imports were estimated by the Bureau to be 50 000 metric tons B{sub 2}O{sub 3} in 1990. Exports of boric acid and refined borates were approximately 650 000 metric tons of product, a 15 000 metric ton increase from the 1989 level. This increase partially offsets the drop in the 1990 consumption level.

  3. Boronic Acid Group: A Cumbersome False Negative Case in the Process of Drug Design.

    PubMed

    Katsamakas, Sotirios; Papadopoulos, Anastasios G; Hadjipavlou-Litina, Dimitra

    2016-01-01

    Herein we present, an exhaustive docking analysis considering the case of autotaxin (ATX). HA155, a small molecule inhibitor of ATX, is co-crystallized. In order to further extract conclusions on the nature of the bond formed between the ligands and the amino acid residues of the active site, density functional theory (DFT) calculations were undertaken. However, docking does not provide reproducible results when screening boronic acid derivatives and their binding orientations to protein drug targets. Based on natural bond orbital (NBO) calculations, the formed bond between Ser/Thr residues is characterized more accurately as a polar covalent bond instead of a simple nonpolar covalent one. The presented results are acceptable and could be used in screening as an active negative filter for boron compounds. The hydroxyl groups of amino acids are bonded with the inhibitor's boron atom, converting its hybridization to sp³. PMID:27617984

  4. Boronic Acid-Based Approach for Separation and Immobilization of Glycoproteins and Its Application in Sensing

    PubMed Central

    Wang, Xiaojin; Xia, Ning; Liu, Lin

    2013-01-01

    Glycoproteins influence a broad spectrum of biological processes including cell-cell interaction, host-pathogen interaction, or protection of proteins against proteolytic degradation. The analysis of their glyco-structures and concentration levels are increasingly important in diagnosis and proteomics. Boronic acids can covalently react with cis-diols in the oligosaccharide chains of glycoproteins to form five- or six-membered cyclic esters. Based on this interaction, boronic acid-based ligands and materials have attracted much attention in both chemistry and biology as the recognition motif for enrichment and chemo/biosensing of glycoproteins in recent years. In this work, we reviewed the progress in the separation, immobilization and detection of glycoproteins with boronic acid-functionalized materials and addressed its application in sensing. PMID:24141187

  5. Boronic acid shell-crosslinked dextran-b-PLA micelles for acid-responsive drug delivery.

    PubMed

    Zhao, Ziwei; Yao, Xuemei; Zhang, Zhe; Chen, Li; He, Chaoliang; Chen, Xuesi

    2014-11-01

    Herein, 3-carboxy-5-nitrophenylboronic acid (CNPBA) shell-crosslinked micelles based on amphiphilic dextran-block-polylactide (Dex-b-PLA) are prepared and used for efficient intracellular drug deliveries. Due to the reversible pH-dependent binding with diols to form boronate esters, CNPBA modified Dex-b-PLA shows excellent pH-sensitivity. In neutral aqueous conditions, CNPBA-Dex-b-PLA forms shell-crosslinked micelles to enable DOX loading, while in acid conditions, the boronate esters hydrolyze and the micelles de-crosslink to release loaded DOX. In vitro release studies indicate that the release of the DOX cargo is minimized at physiological conditions, while there is a burst release in response to low pHs. The cell viability of CNPBA-Dex-b-PLA investigated by MTT assay was more than 90%, indicating that, as a drug delivery system, CNPBA-Dex-b-PLA has good cytocompatibility. These features suggest that the pH-responsive biodegradable CNPBA-Dex-b-PLA can efficiently load and deliver DOX into tumor cells and enhance the inhibition of cellular proliferation in vitro, providing a favorable platform as a drug delivery system for cancer therapy.

  6. Qualitative identification of carboxylic acids, boronic acids, and amines using cruciform fluorophores.

    PubMed

    Schwaebel, Thimon; Lirag, Rio Carlo; Davey, Evan A; Lim, Jaebum; Bunz, Uwe H F; Miljanić, Ognjen Š

    2013-01-01

    Molecular cruciforms are X-shaped systems in which two conjugation axes intersect at a central core. If one axis of these molecules is substituted with electron-donors, and the other with electron-acceptors, cruciforms' HOMO will localize along the electron-rich and LUMO along the electron-poor axis. This spatial isolation of cruciforms' frontier molecular orbitals (FMOs) is essential to their use as sensors, since analyte binding to the cruciform invariably changes its HOMO-LUMO gap and the associated optical properties. Using this principle, Bunz and Miljanić groups developed 1,4-distyryl-2,5-bis(arylethynyl)benzene and benzobisoxazole cruciforms, respectively, which act as fluorescent sensors for metal ions, carboxylic acids, boronic acids, phenols, amines, and anions. The emission colors observed when these cruciform are mixed with analytes are highly sensitive to the details of analyte's structure and - because of cruciforms' charge-separated excited states - to the solvent in which emission is observed. Structurally closely related species can be qualitatively distinguished within several analyte classes: (a) carboxylic acids; (b) boronic acids, and (c) metals. Using a hybrid sensing system composed from benzobisoxazole cruciforms and boronic acid additives, we were also able to discern among structurally similar: (d) small organic and inorganic anions, (e) amines, and (f) phenols. The method used for this qualitative distinction is exceedingly simple. Dilute solutions (typically 10(-6) M) of cruciforms in several off-the-shelf solvents are placed in UV/Vis vials. Then, analytes of interest are added, either directly as solids or in concentrated solution. Fluorescence changes occur virtually instantaneously and can be recorded through standard digital photography using a semi-professional digital camera in a dark room. With minimal graphic manipulation, representative cut-outs of emission color photographs can be arranged into panels which permit quick naked

  7. Qualitative identification of carboxylic acids, boronic acids, and amines using cruciform fluorophores.

    PubMed

    Schwaebel, Thimon; Lirag, Rio Carlo; Davey, Evan A; Lim, Jaebum; Bunz, Uwe H F; Miljanić, Ognjen Š

    2013-08-19

    Molecular cruciforms are X-shaped systems in which two conjugation axes intersect at a central core. If one axis of these molecules is substituted with electron-donors, and the other with electron-acceptors, cruciforms' HOMO will localize along the electron-rich and LUMO along the electron-poor axis. This spatial isolation of cruciforms' frontier molecular orbitals (FMOs) is essential to their use as sensors, since analyte binding to the cruciform invariably changes its HOMO-LUMO gap and the associated optical properties. Using this principle, Bunz and Miljanić groups developed 1,4-distyryl-2,5-bis(arylethynyl)benzene and benzobisoxazole cruciforms, respectively, which act as fluorescent sensors for metal ions, carboxylic acids, boronic acids, phenols, amines, and anions. The emission colors observed when these cruciform are mixed with analytes are highly sensitive to the details of analyte's structure and - because of cruciforms' charge-separated excited states - to the solvent in which emission is observed. Structurally closely related species can be qualitatively distinguished within several analyte classes: (a) carboxylic acids; (b) boronic acids, and (c) metals. Using a hybrid sensing system composed from benzobisoxazole cruciforms and boronic acid additives, we were also able to discern among structurally similar: (d) small organic and inorganic anions, (e) amines, and (f) phenols. The method used for this qualitative distinction is exceedingly simple. Dilute solutions (typically 10(-6) M) of cruciforms in several off-the-shelf solvents are placed in UV/Vis vials. Then, analytes of interest are added, either directly as solids or in concentrated solution. Fluorescence changes occur virtually instantaneously and can be recorded through standard digital photography using a semi-professional digital camera in a dark room. With minimal graphic manipulation, representative cut-outs of emission color photographs can be arranged into panels which permit quick naked

  8. Ammonolysis of esters of hydroxybenzoic acids on a boron phosphate catalyst

    SciTech Connect

    Suvorov, B.V.; Bukeikhanov, N.R.; Li, L.V.; Zulkasheva, A.Z.

    1987-09-10

    In this investigation boron phosphate catalyst was used for ammonolysis of methyl and ethyl esters of salicylic and 4-hydroxybenzoic acids. It was shown that ammonolysis of methyl and ethyl esters of salicylic and 4-hydroxybenzoic acids in presence of boron phosphate catalyst at a ratio of 3-7 moles of ammonia per mole of ester in a contact time of 1-5 sec at 380-400/sub 0/ can be used for obtaining o- and p- hydroxybenzonitriles in yields of over 90% of the theoretical.

  9. Boronic acid flux synthesis and crystal growth of uranium and neptunium boronates and borates: a low-temperature route to the first neptunium(V) borate.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Miller, Hannah M; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2010-11-01

    Molten methylboronic acid has been used as a reactive flux to prepare the first neptunium(V) borate, NpO(2)[B(3)O(4)(OH)(2)] (NpBO-1), and the first actinide boronate, UO(2)(CH(3)BO(2))(H(2)O) (UCBO-1). NpBO-1 contains cation-cation interactions between the neptunyl units. In contrast, the presence of the methyl groups in the uranyl boronate leads to a one-dimensional structure.

  10. A human health risk assessment of boron (boric acid and borax) in drinking water.

    PubMed

    Murray, F J

    1995-12-01

    A human health risk assessment was conducted to derive an appropriate safe exposure level in drinking water of inorganic boron-containing compounds (boric acid and borax). Several regulatory agencies have set or plan to set drinking water guidelines or standards for boron (B). Recent publication of reproductive and developmental toxicity studies by the National Toxicology Program prompted this risk assessment, along with the understanding that boron may be nutritionally essential. A rat developmental toxicity study with a NOAEL of 9.6 mg B/kg/day was selected as the pivotal study on which to base this risk assessment, since it represents the most sensitive endpoint of toxicity. A detailed evaluation of these and other studies allowed modifications of the default values for uncertainty factors to account for the pharmacokinetic similarities among species, the lack of metabolism of inorganic boron-containing compounds, the similarity of the toxicity profile across species, the quality of the toxicological database, and other factors according to the approach described by Renwick previously. Benchmark dose calculations were performed, and the results were in close agreement with the NOAEL selected for this risk assessment. The Reference Dose was calculated to be 0.3 mg B/kg/day, resulting in an acceptable daily intake of 18 mg B/day. Considering that the U.S. average dietary intake of boron is 1.5 mg B/day, 16.5 mg B/day could be available for drinking water or other exposures, if any. A preliminary review of boron data in the National Inorganic Radionuclide Survey by the EPA indicates the median boron level in U.S. drinking water supplies to be 0.031 mg B/liter, and most exposures are less than 2.44 mg B/liter (99th percentile). It is concluded that boron in U.S. drinking water would not be expected to pose any health risk to the public.

  11. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    PubMed

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required.

  12. Copper-catalyzed Chan-Lam coupling between sulfonyl azides and boronic acids at room temperature.

    PubMed

    Moon, Soo-Yeon; Nam, Jungsoo; Rathwell, Kris; Kim, Won-Suk

    2014-01-17

    A mild and efficient method for the synthesis of N-arylsulfonamides in the presence of 10 mol % of CuCl is demonstrated. The reaction proceeds readily at room temperature in an open flask using a variety of sulfonyl azides and boronic acids without any base, ligand, or additive.

  13. Nuclease stability of boron-modified nucleic acids: application to label-free mismatch detection.

    PubMed

    Reverte, Maëva; Vasseur, Jean-Jacques; Smietana, Michael

    2015-11-21

    5'-End boronic acid-modified oligonucleotides were evaluated against various nucleases at single and double stranded levels. The results show that these modifications induce a high resistance to degradation by calf-spleen and snake venom phosphodiesterases. More importantly, this eventually led to the development of a new label-free enzyme-assisted fluorescence-based method for single mismatch detection.

  14. Copper-catalyzed Chan-Lam coupling between sulfonyl azides and boronic acids at room temperature.

    PubMed

    Moon, Soo-Yeon; Nam, Jungsoo; Rathwell, Kris; Kim, Won-Suk

    2014-01-17

    A mild and efficient method for the synthesis of N-arylsulfonamides in the presence of 10 mol % of CuCl is demonstrated. The reaction proceeds readily at room temperature in an open flask using a variety of sulfonyl azides and boronic acids without any base, ligand, or additive. PMID:24404934

  15. Copper-catalyzed C-N cross-coupling of sulfondiimines with boronic acids.

    PubMed

    Bohmann, Rebekka Anna; Bolm, Carsten

    2013-09-01

    The copper-catalyzed C-N cross-coupling of sulfondiimines with boronic acids has been developed. The reaction proceeds at room temperature in good to excellent yields and provides access to a variety of N,N'-disubstituted sulfondiimines, including N-(hetero)aryl sulfondiimines and the first reported N-alkenylated sulfondiimine. PMID:23937076

  16. Discovery of boronic acid-based fluorescent probes targeting amyloid-beta plaques in Alzheimer's disease.

    PubMed

    Jung, Seung-Jin; Lee, Jun Young; Kim, Tae Ho; Lee, Dong-Eun; Jeon, Jongho; Yang, Seung Dae; Hur, Min Goo; Min, Jung-Joon; Park, Yong Dae

    2016-04-01

    A boronic acid-based fluorescent probe was developed for diagnosis of amyloid-β (Aβ) plaques from Alzheimer's disease (AD). Probe 4c, which included boronic acid as a functional group, exhibited a significant increase (64.37-fold, FAβ/F0) in fluorescence intensity as a response to Aβ aggregates, with a blue shift (105nm) in the maximum emission wavelength. We found that boronic acid as a functional group improved the binding affinity (KD value=0.79±0.05μM for 4c) for Aβ aggregates and confirmed that 4c selectively stained Aβ plaques in brain sections from APP/PS1 mice. Ex vivo fluorescence imaging using mice (normal and APP/PS1) also revealed that 4c was able to penetrate the blood-brain barrier (BBB) and to stain Aβ plaques in the brain. From these results, we believe that 4c will be useful as a fluorescent probe in preclinical research related to AD. Furthermore, we believe that our results with boronic acid also provide valuable information for the development of a probe for Aβ plaques. PMID:26927427

  17. Cu(I)-catalyzed (11)C carboxylation of boronic acid esters: a rapid and convenient entry to (11)C-labeled carboxylic acids, esters, and amides.

    PubMed

    Riss, Patrick J; Lu, Shuiyu; Telu, Sanjay; Aigbirhio, Franklin I; Pike, Victor W

    2012-03-12

    Rapid and direct: the carboxylation of boronic acid esters with (11)CO(2) provides [(11)C]carboxylic acids as a convenient entry into [(11)C]esters and [(11)C]amides. This conversion of boronates is tolerant to diverse functional groups (e.g., halo, nitro, or carbonyl). PMID:22308017

  18. The boron oxide{endash}boric acid system: Nanoscale mechanical and wear properties

    SciTech Connect

    Ma, X.; Unertl, W.N.; Erdemir, A.

    1999-08-01

    The film that forms spontaneously when boron oxide (B{sub 2}O{sub 3}) is exposed to humid air is a solid lubricant. This film is usually assumed to be boric acid (H{sub 3}BO{sub 3}), the stable bulk phase. We describe the nanometer-scale surface morphology, mechanical properties, and tribological properties of these films and compare them with crystals precipitated from saturated solutions of boric acid. Scanning force microscopy (SFM) and low-load indentation were the primary experimental tools. Mechanical properties and their variation with depth are reported. In all cases, the surfaces were covered with a layer that has different mechanical properties than the underlying bulk. The films formed on boron oxide showed no evidence of crystalline structure. A thin surface layer was rapidly removed, followed by slower wear of the underlying film. The thickness of this initial layer was sensitive to sample preparation conditions, including humidity. Friction on the worn surface was lower than on the as-formed surface in all cases. In contrast, the SFM tip was unable to cause any wear to the surface film on the precipitated crystals. Indentation pop-in features were common for precipitated crystals but did not occur on the films formed on boron oxide. The surface structures were more complex than assumed in models put forth previously to explain the mechanism of lubricity in the boron oxide{endash}boric acid{endash}water system. {copyright} {ital 1999 Materials Research Society.}

  19. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).

    PubMed

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi; Fujiwara, Terufumi; Ito, Kazuaki

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me(4)NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B(4)C), etc. but also boric acid (B(OH)(3)) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described.

  20. Some Lewis acid-base adducts involving boron trifluoride as electrolyte additives for lithium ion cells

    NASA Astrophysics Data System (ADS)

    Nie, Mengyun; Madec, L.; Xia, J.; Hall, D. S.; Dahn, J. R.

    2016-10-01

    Three complexes with boron trifluoride (BF3) as the Lewis acid and different Lewis bases were synthesized and used as electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2/graphite and Li[Ni0.42Mn0.42Co0.16]O2/graphite pouch cells. Lewis acid-base adducts with a boron-oxygen (Bsbnd O) bond were trimethyl phosphate boron trifluoride (TMP-BF) and triphenyl phosphine oxide boron trifluoride (TPPO-BF). These were compared to pyridine boron trifluoride (PBF) which has a boron-nitrogen (Bsbnd N) bond. The experimental results showed that cells with PBF had the least voltage drop during storage at 4.2 V, 4.4 V and 4.7 V at 40 °C and the best capacity retention during long-term cycling at 55 °C compared to cells with the other additives. Charge-hold-discharge cycling combined with simultaneous electrochemical impedance spectroscopy measurements showed that impedance growth in TMP-BF and TPPO-BF containing cells was faster than cells containing 2%PBF, suggesting that PBF is useful for impedance control at high voltages (>4.4 V). XPS analysis of the SEI films highlighted a specific reactivity of the PBF-derived SEI species that apparently hinders the degradation of both LiPF6 and solvent during formation and charge-hold-discharge cycling. The modified SEI films may explain the improved impedance, the smaller voltage drop during storage and the improved capacity retention during cycling of cells containing the PBF additive.

  1. Facile synthesis of boronic acid-functionalized magnetic carbon nanotubes for highly specific enrichment of glycopeptides

    NASA Astrophysics Data System (ADS)

    Ma, Rongna; Hu, Junjie; Cai, Zongwei; Ju, Huangxian

    2014-02-01

    A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid (APBA) via an amide reaction. The introduction of PASE could bridge the MCNT and APBA, suppress the nonspecific adsorption and reduce the steric hindrance among the bound molecules. Due to the excellent structure of the MCNTs, the functionalization of PASE and then APBA on MCNTs was quite simple, specific and effective. The glycopeptides enrichment and separation with a magnetic field could be achieved by their reversible covalent binding with the boronic group of APBA-MCNTs. The exceptionally large specific surface area and the high density of boronic acid groups of APBA-MCNTs resulted in rapid and highly efficient enrichment of glycopeptides, even in the presence of large amounts of interfering nonglycopeptides. The functional MCNTs possessed high selectivity for enrichment of 21 glycopeptides from the digest of horseradish peroxidase demonstrated by MALDI-TOF mass spectrometric analysis showing more glycopeptides detected than the usual 9 glycopeptides with commercially available APBA-agarose. The proposed system showed better specificity for glycopeptides even in the presence of non-glycopeptides with 50 times higher concentration. The boronic acid functionalized MCNTs provide a promising selective enrichment platform for precise glycoproteomic analysis.A stepwise strategy was developed to synthesize boronic acid functionalized magnetic carbon nanotubes (MCNTs) for highly specific enrichment of glycopeptides. The MCNTs were synthesized by a solvothermal reaction of Fe3+ loaded on the acid-treated CNTs and modified with 1-pyrenebutanoic acid N-hydroxysuccinimidyl ester (PASE) to bind aminophenylboronic acid

  2. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  3. Bulky derivatives of boranes, boronic acids and boronate esters via reaction with diazomethanes.

    PubMed

    Neu, Rebecca C; Jiang, Chunfang; Stephan, Douglas W

    2013-01-21

    Reactions of the perfluoroarylboranes RB(C(6)F(5))(2) (R = C(6)F(5), Ph, Cl, OC(6)F(5)) with Me(3)SiCH(N(2)), (C(6)F(5))CH(N(2)) or Ph(2)C(N(2)) yield (C(6)F(5))(2)B(Me(3)SiCH(C(6)F(5))) 1, (C(6)F(5))B(Me(3)SiCH(C(6)F(5)))(2) 2, (C(6)F(5))B(Me(3)SiCH(C(6)F(5)))(Me(3)SiCH(C(6)H(5))) 3, (C(6)F(5))(2)B(CH(C(6)F(5))(2)) 4, ClB(C(6)F(5))(Ph(2)C(C(6)F(5))) 5 and (C(6)F(5)O)B(C(6)F(5))(Me(3)SiCH(C(6)F(5))) 6 as a result of single or double insertion of a Me(3)SiCH, C(6)F(5)CH or Ph(2)C fragment into a B-C bond of the respective borane. Reactions of one or two equivalents of ethyl α-diazomethylacetate with B(C(6)F(5))(3) yielded (Me)(C(6)F(5))(C=C)(OC(2)H(5))(OB(C(6)F(5))(2)) 8 and [(Me)(C(6)F(5))(C=C)(OC(2)H(5))](2)(O(2)B(C(6)F(5))) 9, in addition to the corresponding pyridine adducts (Me)(C(6)F(5))(C=C)(OC(2)H(5))(OB(C(6)F(5))(2))(py) 10 and [(Me)(C(6)F(5))(C=C)(OC(2)H(5))](2)(O(2)B(C(6)F(5)))(py) 11. Similarly, reaction of α-diazomethylacetate with BPh(3) yielded analogous products of borane reorganization, (Me)(C(6)H(5))(C=C)(OC(2)H(5))(OBPh(2)) 12 and was isolated as a mixture of E and Z-isomers whereas BPh(3) reacts with Me(3)SiCH(N(2)) and pyridine yielding (py)B(Ph(2)(Me(3)SiCH(Ph)) 7. Reactions of Ph(2)C(N(2)) with RB(OH)(2) (R = C(6)F(5), p-F-C(6)H(4), C(6)H(5)) yielded cyclic boroxines of the form [Ph(2)C(R)BO](3) (R = C(6)F(5) 13, p-FC(6)H(4) 14, C(6)H(5) 15) while reactions of the boronate esters (C(6)H(4)O(2))BR (R = C(6)F(5), p-F-C(6)H(4)) with three or five equivalents of Me(3)SiCH(N(2)) yielded (C(6)H(4)O(2))B(Me(3)SiCH(Ar)) (Ar = C(6)F(5) 16, p-F-C(6)H(4) 17) and [(Py)B(C(6)H(4)O(2))(Me(3)SiCH(Ar))] (Ar = C(6)F(5) 18, p-F-C(6)H(4), 19) upon complexation with pyridine. Reaction of HBCat and ClBCat with Ph(2)C(N(2)) yielded the products of B-H and B-Cl bond derivatization (C(6)H(4)O(2))B(Ph(2)CR) (R = H 20, Cl 21), while the triethylphosphine oxide adduct (Et(3)PO)B(C(6)H(4)O(2))(CPh(2)Cl) 22, is readily isolable. PMID:23060040

  4. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. PMID:25600471

  5. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed.

  6. Kinetic flow-injection analysis of boron using 5-fluorosalicylaldehyde and H-acid.

    PubMed

    Sarenqiqige; Kodani, Takamasa; Kajiwara, Mari; Takehara, Kô; Yoshimura, Kazuhisa

    2014-01-01

    Boric acid reacts with 5-fluorosalicylaldehyde (F-SA) and 8-amino-1-naphthol-3,6-disulfonic acid (HA) to form the boric acid-fluoroazomethine H complex (F-AzB) that is now being used for the flow-injection analysis (FIA) of boric acid. At pH 6.5, the F-AzB complexation proceeded fairly fast, whereas the fluoroazomethine H (F-AzH) formation was slow. Thus, highly sensitive measurement of F-AzB was possible if the reaction time was controlled using the FIA method to decrease the background absorbance of F-AzH at the analytical wavelength. The optimum conditions for the color developing reaction were investigated for single and dual channel systems. The former system was simple, applicable to the determination of boron in reversed osmosis (RO) desalination water with a detection limit (LOD) of 4 μg B dm(-3). For the latter system, the calibration range was 0.005 to 10 mg B dm(-3) with an LOD of 1 μg B dm(-3), which can be applicable to natural water analyses of boron. These methods could analyze 15 - 20 samples in one hour. The results of the boron concentration measurement for water samples from an RO desalination plant, industrial wastewater and river water were in fairly good agreement with those obtained by other methods.

  7. Stereoselective formation of trisubstituted vinyl boronate esters by the acid-mediated elimination of α-hydroxyboronate esters.

    PubMed

    Guan, Weiye; Michael, Alicia K; McIntosh, Melissa L; Koren-Selfridge, Liza; Scott, John P; Clark, Timothy B

    2014-08-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki-Miyaura coupling reaction to obtain alkenes of known geometry. PMID:24915498

  8. Stereoselective formation of trisubstituted vinyl boronate esters by the acid-mediated elimination of α-hydroxyboronate esters.

    PubMed

    Guan, Weiye; Michael, Alicia K; McIntosh, Melissa L; Koren-Selfridge, Liza; Scott, John P; Clark, Timothy B

    2014-08-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki-Miyaura coupling reaction to obtain alkenes of known geometry.

  9. A novel approach in cinnamic acid synthesis: direct synthesis of cinnamic acids from aromatic aldehydes and aliphatic carboxylic acids in the presence of boron tribromide.

    PubMed

    Chiriac, Constantin I; Tanasa, Fulga; Onciu, Marioara

    2005-02-28

    Cinnamic acids have been prepared in moderate to high yields by a new direct synthesis using aromatic aldehydes and aliphatic carboxylic acids, in the presence of boron tribromide as reagent, 4-dimethylaminopyridine (4-DMAP) and pyridine (Py) as bases and N-methyl-2-pyrolidinone (NMP) as solvent, at reflux (180-190 degrees C) for 8-12 hours.

  10. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    PubMed

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  11. Boronic Acid Flux Synthesis and Crystal Growth of Uranium and Neptunium Boronates and Borates: A Low Temperature Route to the First Neptunium(V) Borate

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Miller, Hannah M.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-10-04

    Molten methylboronic acid has been used as a reactive flux to prepare the first neptunium(V) borate, NpO2[B3O4(OH)2] (NpBO-1), and the first actinide boronate, UO2(CH3BO2)(H2O) (UCBO-1). NpBO-1 contains cation-cation interactions between the neptunyl units. In contrast, the presence of the methyl groups in the uranyl boronate leads to a one-dimensional structure.

  12. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    PubMed

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. PMID:26150397

  13. A multi-stimuli responive, self-assembling, boronic acid dipeptide

    SciTech Connect

    Jones, Brad Howard; Martinez, Alina Marissa; Wheeler, Jill S.; McKenzie, Bonnie B.; Miller, Lance Lee; Wheeler, David R.; Spoerke, Erik David

    2015-08-11

    Modification of the dipeptide of phenylalanine, FF, with a boronic acid (BA) functionality imparts unique aqueous self-assembly behavior that responds to multiple stimuli. Changes in pH and ionic strength are used to trigger hydrogelation via the formation of nanoribbon networks. Thus, we show for the first time that the binding of polyols to the BA functionality can modulate a peptide between its assembled and disassembled states.

  14. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    PubMed

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts.

  15. Determination of boron in produced water using the carminic acid assay.

    PubMed

    Floquet, Cedric F A; Sieben, Vincent J; MacKay, Bruce A; Mostowfi, Farshid

    2016-04-01

    Using the carminic acid assay, we determined the concentration of boron in oilfield waters. We investigated the effect of high concentrations of salts and dissolved metals on the assay performance. The influence of temperature, development time, reagent concentration, and water volume was studied. Ten produced and flowback water samples of different origins were measured, and the method was successfully validated against ICP-MS measurements. In water-stressed regions, produced water is a potential source of fresh water for irrigation, industrial applications, or consumption. Therefore, boron concentration must be determined and controlled to match the envisaged waste water reuse. Fast, precise, and onsite measurements are needed to minimize errors introduced by sample transportation to laboratories. We found that the optimum conditions for our application were a 5:1 mixing volume ratio (reagent to sample), a 1 g L(-1) carminic acid concentration in 99.99% sulfuric acid, and a 30 min reaction time at ambient temperature (20 °C to 23 °C). Absorption values were best measured at 610 nm and 630 nm and baseline corrected at 865 nm. Under these conditions, the sensitivity of the assay to boron was maximized while its cross-sensitivity to dissolved titanium, iron, barium and zirconium was minimized, alleviating the need for masking agents and extraction methods. PMID:26838405

  16. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid.

    PubMed

    Zohdi, Nima; Mahdavi, Fariba; Abdullah, Luqman Chuah; Choong, Thomas Sy

    2014-01-06

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water.

  17. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  18. Isomer-sensitive deboronation in reductive aminations of aryl boronic acids

    DOE PAGES

    Jones, Brad Howard; Wheeler, David R.; Wheeler, Jill S.; Miller, Lance Lee; Alam, Todd M.; Spoerke, Erik David

    2015-09-05

    Deboronation is observed during the reductive amination of formylphenylboronic acid (FPBA) to the amine termini and side chains of peptides. This deboronation is sensitive to the isomerism of the boronic acid (BA), with ortho-FPBA yielding complete deboronation in the preparation of an N-terminally-modified dipeptide. The observed behavior is also clearly mediated by the chemical identity of the amine substrate. These results reveal a previously undocumented subtlety of BA functionalization and highlight the importance of thorough spectroscopic characterization in the preparation of peptide and small molecule BAs.

  19. Isomer-sensitive deboronation in reductive aminations of aryl boronic acids

    SciTech Connect

    Jones, Brad Howard; Wheeler, David R.; Wheeler, Jill S.; Miller, Lance Lee; Alam, Todd M.; Spoerke, Erik David

    2015-09-05

    Deboronation is observed during the reductive amination of formylphenylboronic acid (FPBA) to the amine termini and side chains of peptides. This deboronation is sensitive to the isomerism of the boronic acid (BA), with ortho-FPBA yielding complete deboronation in the preparation of an N-terminally-modified dipeptide. The observed behavior is also clearly mediated by the chemical identity of the amine substrate. These results reveal a previously undocumented subtlety of BA functionalization and highlight the importance of thorough spectroscopic characterization in the preparation of peptide and small molecule BAs.

  20. Ditopic boronic acid and imine-based naphthalimide fluorescence sensor for copper(II).

    PubMed

    Li, Meng; Ge, Haobo; Arrowsmith, Rory L; Mirabello, Vincenzo; Botchway, Stanley W; Zhu, Weihong; Pascu, Sofia I; James, Tony D

    2014-10-14

    Copper ions are essential for many biological processes. However, high concentrations of copper can be detrimental to the cell or organism. A novel naphthalimide derivative bearing a monoboronic acid group (BNP) was investigated as a Cu(2+) selective fluorescent sensor in living cells. This derivative is one of the rare examples of reversible fluorescent chemosensors for Cu(2+) which uses a boronic acid group for a binding site. Moreover, the adduct BNP-Cu(2+) displays a fluorescence enhancement with fructose. The uptake of this novel compound in HeLa cancer cells was imaged using confocal fluorescence microscopy techniques including two-photon fluorescence lifetime imaging microscopy. PMID:24919009

  1. Probing the general time scale question of boronic acid binding with sugars in aqueous solution at physiological pH.

    PubMed

    Ni, Nanting; Laughlin, Sarah; Wang, Yingji; Feng, You; Zheng, Yujun; Wang, Binghe

    2012-05-01

    The boronic acid group is widely used in chemosensor design due to its ability to reversibly bind diol-containing compounds. The thermodynamic properties of the boronic acid-diol binding process have been investigated extensively. However, there are few studies of the kinetic properties of such binding processes. In this report, stopped-flow method was used for the first time to study the kinetic properties of the binding between three model arylboronic acids, 4-, 5-, and 8-isoquinolinylboronic acids, and various sugars. With all the boronic acid-diol pairs examined, reactions were complete within seconds. The k(on) values with various sugars follow the order of D-fructose>D-tagatose>D-mannose>D-glucose. This trend tracks the thermodynamic binding affinities for these sugars and demonstrates that the 'on' rate is the key factor determining the binding constant.

  2. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    PubMed

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. PMID:22707097

  3. Design and synthesis of boronic acid inhibitors of endothelial lipase.

    PubMed

    O'Connell, Daniel P; LeBlanc, Daniel F; Cromley, Debra; Billheimer, Jeffrey; Rader, Daniel J; Bachovchin, William W

    2012-02-01

    Endothelial lipase (EL) and lipoprotein lipase (LPL) are homologous lipases that act on plasma lipoproteins. EL is predominantly a phospholipase and appears to be a key regulator of plasma HDL-C. LPL is mainly a triglyceride lipase regulating (V)LDL levels. The existing biological data indicate that inhibitors selective for EL over LPL should have anti-atherogenic activity, mainly through increasing plasma HDL-C levels. We report here the synthesis of alkyl, aryl, or acyl-substituted phenylboronic acids that inhibit EL. Many of the inhibitors evaluated proved to be nearly equally potent against both EL and LPL, but several exhibited moderate to good selectivity for EL. PMID:22225633

  4. Boronic acid-containing aminopyridine- and aminopyrimidinecarboxamide CXCR1/2 antagonists: Optimization of aqueous solubility and oral bioavailability.

    PubMed

    Schuler, Aaron D; Engles, Courtney A; Maeda, Dean Y; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Mason, S Nicholas; Auten, Richard L; Zebala, John A

    2015-09-15

    The chemokine receptors CXCR1 and CXCR2 are important pharmaceutical targets due to their key roles in inflammatory diseases and cancer progression. We have previously identified 2-[5-(4-fluoro-phenylcarbamoyl)-pyridin-2-ylsulfanylmethyl]-phenylboronic acid (SX-517) and 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide (SX-576) as potent non-competitive boronic acid-containing CXCR1/2 antagonists. Herein we report the synthesis and evaluation of aminopyridine and aminopyrimidine analogs of SX-517 and SX-576, identifying (2-{(benzyl)[(5-boronic acid-2-pyridyl)methyl]amino}-5-pyrimidinyl)(4-fluorophenylamino)formaldehyde as a potent chemokine antagonist with improved aqueous solubility and oral bioavailability.

  5. Magnetic vinylphenyl boronic acid microparticles for Cr(VI) adsorption: kinetic, isotherm and thermodynamic studies.

    PubMed

    Kara, Ali; Demirbel, Emel; Tekin, Nalan; Osman, Bilgen; Beşirli, Necati

    2015-04-01

    Magnetic vinylphenyl boronic acid microparticles, poly(ethylene glycol dimethacrylate(EG)-vinylphenyl boronic acid(VPBA)) [m-poly(EG-VPBA)], produced by suspension polymerization and characterized, was found to be an efficient solid polymer for Cr(VI) adsorption. The m-poly(EG-VPBA) microparticles were prepared by copolymerizing of ethylene glycol dimethylacrylate (EG) with 4-vinyl phenyl boronic acid (VPBA). The m-poly(EG-VPBA) microparticles were characterized by N2 adsorption/desorption isotherms, electron spin resonance (ESR), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), elemental analysis, scanning electron microscope (SEM) and swelling studies. The m-poly(EG-VPBA) microparticles were used at adsorbent/Cr(VI) ion ratios. The influence of pH, Cr(VI) initial concentration, temperature of the removal process was investigated. The maximum removal of Cr(VI) was observed at pH 2. Langmuir isotherm and Dubinin-Radushkvich isotherm were found to better fit the experiment data rather than Fruendlich isotherm. The kinetics of the adsorption process of Cr(VI) on the m-poly(EG-VPBA) microparticles were investigated using the pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models, results showed that the pseudo-second order equation model provided the best correlation with the experimental results. The thermodynamic parameters (free energy change, ΔG(0) enthalpy change, ΔH(0); and entropy change, ΔS(0)) for the adsorption have been evaluated. PMID:25666882

  6. Transition-metal free reactions of boronic acids: cascade addition - ring-opening of furans towards functionalized γ-ketoaldehydes.

    PubMed

    Roscales, S; Csákÿ, A G

    2016-02-18

    We describe the first ring-opening of furfuryl alcohols with boronic acids to afford functionalized γ-ketoaldehydes. The transformation builds a new C-C bond at the original C-4 of the starting furan, and tolerates ring-substitution at C-3 and C-4 positions. The reaction takes place under metal-free conditions by promotion with tartaric acid.

  7. Nanoparticle-enhanced fluorescence emission for non-separation assays of carbohydrates using a boronic acid-alizarin complex.

    PubMed

    Li, Qianjin; Kamra, Tripta; Ye, Lei

    2016-03-01

    Addition of crosslinked polymer nanoparticles into a solution of a 3-nitrophenylboronic acid-alizarin complex leads to significant enhancement of fluorescence emission. Using the nanoparticle-enhanced boronic acid-alizarin system has improved greatly the sensitivity and extended the dynamic range of separation-free fluorescence assays for carbohydrates.

  8. Fulvestrant-3 Boronic Acid (ZB716): An Orally Bioavailable Selective Estrogen Receptor Downregulator (SERD).

    PubMed

    Liu, Jiawang; Zheng, Shilong; Akerstrom, Victoria L; Yuan, Chester; Ma, Youning; Zhong, Qiu; Zhang, Changde; Zhang, Qiang; Guo, Shanchun; Ma, Peng; Skripnikova, Elena V; Bratton, Melyssa R; Pannuti, Antonio; Miele, Lucio; Wiese, Thomas E; Wang, Guangdi

    2016-09-01

    Orally bioavailable SERDs may offer greater systemic drug exposure, improved clinical efficacy, and more durable treatment outcome for patients with ER-positive endocrine-resistant breast cancer. We report the design and synthesis of a boronic acid modified fulvestrant (5, ZB716), which binds to ERα competitively (IC50 = 4.1 nM) and effectively downregulates ERα in both tamoxifen-sensitive and tamoxifen-resistant breast cancer cells. Furthermore, It has superior oral bioavailability (AUC = 2547.1 ng·h/mL) in mice, indicating its promising clinical utility as an oral SERD. PMID:27529700

  9. The role of boronic acids in accelerating condensation reactions of α-effect amines with carbonyls.

    PubMed

    Gillingham, Dennis

    2016-08-10

    A broad palette of bioconjugation reactions are available for chemical biologists, but an area that still requires investigation is high-rate constant reactions. These are indispensable in certain applications, particularly for in vivo labelling. Appropriately positioned boronic acids accelerate normally sluggish Schiff base condensations of α-effect nucleophiles by five orders of magnitude - providing a new entry to the rare set of reactions that have a rate constant above 100 M(-1) s(-1) under physiological conditions. I summarize here a number of recent reports, including work from my own group, and outline a mechanistic picture that explains the differing behaviour of seemingly similar substrate classes.

  10. Electrochemical incineration of sulfanilic acid at a boron-doped diamond anode.

    PubMed

    El-Ghenymy, Abdellatif; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

    2012-06-01

    The anodic oxidation of sulfanilic acid solutions has been studied in acidic medium using a divided cell with a boron-doped diamond (BDD) anode and a stainless steel cathode. Overall mineralization was achieved under all experimental conditions tested due to the efficient destruction of sulfanilic acid and all its by-products with hydroxyl radicals generated at the BDD anode from water oxidation. The alternative use of an undivided cell with the same electrodes gave rise to the coating of the cathode with polymeric compounds, thus preventing the complete electrochemical incineration of sulfanilic acid. The solutions treated in the anodic compartment of the divided cell were degraded at similar rate under pH regulation within the pH interval 2.0-6.0. The mineralization current efficiency was enhanced when the applied current decreased and the initial substrate concentration increased. The decay of sulfanilic acid was followed by reversed-phase HPLC, showing a pseudo first-order kinetics. Hydroquinone and p-benzoquinone were identified as aromatic intermediates by gas chromatography-mass spectrometry and/or reversed-phase HPLC. Maleic, acetic, formic, oxalic and oxamic acids were detected as generated carboxylic acids by ion-exclusion HPLC. Ionic chromatographic analysis of electrolyzed solutions revealed that the N content of sulfanilic acid was mainly released as NH(4)(+) ion and in much smaller proportion as NO(3)(-) ion.

  11. Fluorinated Boronic Acid-Appended Bipyridinium Salts for Diol Recognition and Discrimination via (19)F NMR Barcodes.

    PubMed

    Axthelm, Jörg; Görls, Helmar; Schubert, Ulrich S; Schiller, Alexander

    2015-12-16

    Fluorinated boronic acid-appended benzyl bipyridinium salts, derived from 4,4'-, 3,4'-, and 3,3'-bipyridines, were synthesized and used to detect and differentiate diol-containing analytes at physiological conditions via (19)F NMR spectroscopy. An array of three water-soluble boronic acid receptors in combination with (19)F NMR spectroscopy discriminates nine diol-containing bioanalytes--catechol, dopamine, fructose, glucose, glucose-1-phosphate, glucose-6-phosphate, galactose, lactose, and sucrose--at low mM concentrations. Characteristic (19)F NMR fingerprints are interpreted as two-dimensional barcodes without the need of multivariate analysis techniques.

  12. Click Chemistry in Lead Optimization of Boronic Acids as β-Lactamase Inhibitors.

    PubMed

    Caselli, Emilia; Romagnoli, Chiara; Vahabi, Roza; Taracila, Magdalena A; Bonomo, Robert A; Prati, Fabio

    2015-07-23

    Boronic acid transition-state inhibitors (BATSIs) represent one of the most promising classes of β-lactamase inhibitors. Here we describe a new class of BATSIs, namely, 1-amido-2-triazolylethaneboronic acids, which were synthesized by combining the asymmetric homologation of boronates with copper-catalyzed azide-alkyne cycloaddition for the stereoselective insertion of the amido group and the regioselective formation of the 1,4-disubstituted triazole, respectively. This synthetic pathway, which avoids intermediate purifications, proved to be flexible and efficient, affording in good yields a panel of 14 BATSIs bearing three different R1 amide side chains (acetamido, benzylamido, and 2-thienylacetamido) and several R substituents on the triazole. This small library was tested against two clinically relevant class C β-lactamases from Enterobacter spp. and Pseudomonas aeruginosa. The K(i) value of the best compound (13a) was as low as 4 nM with significant reduction of bacterial resistance to the combination of cefotaxime/13a. PMID:26102369

  13. Universal solid-phase approach for the immobilization, derivatization, and resin-to-resin transfer reactions of boronic acids.

    PubMed

    Gravel, Michel; Thompson, Kim A; Zak, Mark; Bérubé, Christian; Hall, Dennis G

    2002-01-11

    Boronic acid-containing molecules are employed in a broad range of biological, medicinal, and synthetic applications. These compounds, however, tend to be difficult to handle by solution-phase methods. Herein, this problem is addressed with the development of the first general solid-phase approach for the derivatization of functionalized boronic acids. This approach is based on the use of a diethanolamine resin anchor that facilitates boronic acid immobilization by avoiding the need for exhaustive removal of water in the esterification process. The immobilization of a wide variety of boronic acids onto N,N-diethanolaminomethyl polystyrene (DEAM-PS, 1) can be performed within minutes by simple stirring in anhydrous solvents at room temperature. Evidence for the formation of a bicyclic diethanolamine boronate with putative N-B coordination was shown by (1)H NMR analysis of DEAM-PS-supported p-tolylboronic acid. The hydrolytic cleavage of the same model boronic acid from the DEAM-PS resin was studied by UV spectroscopy. Hydrolysis and attachment were shown to occur under a rapidly attained equilibrium, and a large excess of water (>32 equiv) is required to effect a practically quantitative release of boronic acids from DEAM-PS. Despite their relative sensitivity to water and alcohols, DEAM-PS-bound arylboronic acids functionalized with a formyl, a bromomethyl, a carboxyl, or an amino group can be transformed in good to excellent yields into a wide variety of amines, amides, anilides, and ureas, respectively. Ugi multicomponent reactions on DEAM-PS-supported aminobenzeneboronic acids, derivatization of multifunctional arylboronic acids, and sequential reactions can also be carried out efficiently. These new DEAM-PS-supported arylboronic acids can be employed directly into resin-to-resin transfer reactions (RRTR). This type of multiresin process helps eliminate time-consuming cleavage and transfer operations, thereby considerably simplifying the outlook of combinatorial

  14. Synthesis and Evaluation of Aryl Boronic Acids as Fluorescent Artificial Receptors for Biological Carbohydrates

    PubMed Central

    Craig, Sandra

    2011-01-01

    Carbohydrates in various forms play a vital role in numerous critical biological processes. The detection of such saccharides can give insight into the progression of such diseases such as cancer. Boronic acids react with 1,2 and 1,3 diols of saccharides in non-aqueous or basic aqueous media. Herein, we describe the design, synthesis and evaluation of three bisboronic acid fluorescent probes, each having about ten linear steps in its synthesis. Among these compounds that were evaluated, 9b was shown to selectively label HepG2, liver carcinoma cell line within a concentration range of 0.5–10 μM in comparison to COS-7, a normal fibroblast cell line. PMID:22177855

  15. Efficient removal of boron acid by N-methyl-D-glucamine functionalized silica-polyallylamine composites and its adsorption mechanism.

    PubMed

    Li, Xin; Liu, Ru; Wu, Shan; Liu, Jiong; Cai, Shushan; Chen, Dongsheng

    2011-09-01

    A novel boron adsorbent was fabricated by grafting a boric acid chelating group, i.e., N-methyl-D-glucamine, onto the hydrophilic silica-polyallylamine composites (SPC). The boron adsorbent was characterized by scanning electron microscopy (SEM) and TGA method. The adsorption experiment indicated a maximum boron load capacity of ca. 1.55 mmol g(-1). The high load capacity was attributed to specific chemical affinity and physical adsorption. Highly effective removal of boric acid from aqueous solution was observed for the adsorbent even in the synthetic seawater containing high concentration of foreign ions. Analysis of adsorption thermodynamic and kinetics revealed a spontaneous sorption process that is driven by enthalpy change and limited by chemical reaction. The exhausted adsorbent was regenerated for repeated use by treating with 3% HCl solution, followed by neutralizing with 3% NH(3)·H(2)O at ambient temperature. Only 7% capacity loss was observed after five continuous adsorption-regeneration cycles.

  16. Extractive spectrophotometric and fluorimetric determination of boron with 2,2,4-trimethyl-1,3-pentanediaol and carminic acid.

    PubMed

    Aznarez, J; Ferrer, A; Rabadan, J M; Marco, L

    1985-12-01

    Boric acid at mug ml or ng ml level can be extracted from 1-6M hydrochloric acid into 2,2,4-trimethyl-1,3-pentanediol solution in chloroform and thus separated from many ions which interfere in the usual spectrophotometric methods. The boron is determined directly in the organic phase without back-extraction into water, by adding a solution of carminic acid in a mixture of sulphuric and glacial acetic acids (1+2 v v ) and measuring the absorbance at 549 nm. The molar absorptivity is 2.58 x 10(4) l.mole(-1).cm(-1) and Beer's law is valid for the 0.05-0.4 mug ml boron range. In the fluorimetric method, 509 or 547 nm can be used as the excitation wavelength and 567 nm for emission measurement, giving a linear response in the 8-120 ng ml boron range. Both methods have been applied to determination of boron in plants and natural waters with good precision and accuracy. PMID:18963973

  17. Synthesis of sterically encumbered C10-arylated benzo[h]quinolines using ortho-substituted aryl boronic acids.

    PubMed

    Weimar, Marko; Fuchter, Matthew J

    2013-01-01

    The challenging coupling of 10-halobenzo[h]quinolines with ortho-substituted aryl boronic acids has been achieved using Pd(OAc)(2)/P(O)Ph(3) as the catalytic system. High yields were obtained for diversely functionalised substrates under mild reaction conditions. PMID:23069777

  18. Enantioselective α-alkenylation of aldehydes with boronic acids via the synergistic combination of copper(II) and amine catalysis.

    PubMed

    Stevens, Jason M; MacMillan, David W C

    2013-08-14

    The enantioselective α-alkenylation of aldehydes has been accomplished using boronic acids via the synergistic combination of copper and chiral amine catalysis. The merger of two highly utilized and robust catalytic systems has allowed for the development of a mild and operationally trivial protocol for the direct formation of α-formyl olefins employing common building blocks for organic synthesis. PMID:23889497

  19. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate.

    PubMed

    Sreekanth, Narayanaru; Nazrulla, Mohammed Azeezulla; Vineesh, Thazhe Veettil; Sailaja, Krishnamurty; Phani, Kanala Lakshminarasimha

    2015-11-18

    Herein we report the electrocatalytic activity of boron-doped graphene for the reduction of CO2. Electrolysis takes place at low overpotentials leading exclusively to formate as the product (vis-à-vis benchmark Bi catalyst). Computational studies reveal mechanistic details of CO2 adsorption and subsequent conversion to formic acid/formate.

  20. Polyglycerol as a high-loading support for boronic acids with application in solution-phase Suzuki cross-couplings.

    PubMed

    Hebel, André; Haag, Rainer

    2002-12-27

    In this paper, we describe the usage of a soluble high-loading polyglycerol support for functionalized boronic acids without further linker design. The quantitatively formed polyglycerol boron esters were subsequently employed in homogeneous Suzuki cross-coupling reactions to give high yields (84-91%) of functional biaryls with minimal amounts of the Pd catalyst (0.2 mol %). In situ precipitation and ultrafiltration were used as simple and effective purification protocols. Furthermore, the reaction conditions were optimized by the choice of the solvent and the catalyst.

  1. Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes.

    PubMed

    Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D

    2005-04-30

    We describe the pH response of a set of isomeric water-soluble fluorescent probes based on both the 6-aminoquinolinium and boronic acid moieties. These probes show spectral shifts and intensity changes with pH, in a wavelength-ratiometric and colorimetric manner. Subsequently, changes in pH can readily be determined around the physiological level. Although boronic acid containing probes are known to exhibit pH sensitivity along with an ability for saccharide binding/chelating, the new probes reported here are considered to be unique and show an unperturbed pH response, even in the presence of high concentrations of background saccharide, such as with glucose and fructose, allowing for the predominant pH sensitivity. The response of the probes is based on the ability of the boronic acid group to interact with strong bases like OH(-), changing from the neutral form of the boronic acid group, R-B(OH)(2), to the anionic ester, R-B(-)(OH)(3), form, which is an electron donating group. The presence of an electron deficient quaternary heterocyclic nitrogen center and a strong electron donating amino group in the 6-position of the quinolinium backbone, provides for the spectral changes observed upon OH(-) complexation. In addition, by comparing the results obtained with systems separately incorporating 6-methoxy or 6-methyl substituents, the suppressed response towards monosaccharides, such as with glucose and fructose, can clearly be observed for these systems. Finally we compare our results to those of a control compound, BAQ, which does not contain the boronic acid group, allowing a rationale of the spectral changes to be made.

  2. Fabrication of a detection platform with boronic-acid-containing zwitterionic polymer brush.

    PubMed

    Song, Lingjie; Zhao, Jie; Luan, Shifang; Ma, Jiao; Liu, Jingchuan; Xu, Xiaodong; Yin, Jinghua

    2013-12-26

    Development of technologies for biomedical detection platform is critical to meet the global challenges of various disease diagnoses, especially for point-of-use applications. Because of its natural simplicity, effectiveness, and easy repeatability, random covalent-binding technique is widely adopted in antibody immobilization. However, its antigen-binding capacity is relatively low when compared to site-specific immobilization of antibody. Herein, we report that a detection platform modified with boronic acid (BA)-containing sulfobetaine-based polymer brush. Mainly because of the advantage of oriented immobilization of antibody endowed with BA-containing three-dimensional polymer brush architecture, the platform had a high antigen-binding capacity. Notably, nonspecific protein adsorption was also suppressed by the zwitterionic pendants, thus greatly enhanced signal-to-noise (S/N) values for antigen recognition. Furthermore, antibodies captured by BA pendants could be released in dissociation media. This new platform is promising for potential applications in immunoassays. PMID:24299274

  3. Boronic acid functionalized peptidyl synthetic lectins: Combinatorial library design, peptide sequencing, and selective glycoprotein recognition

    PubMed Central

    Bicker, Kevin L.; Sun, Jing; Lavigne, John J.; Thompson, Paul R.

    2011-01-01

    Aberrant glycosylation of cell membrane and secreted glycoproteins is a hallmark of various disease states, including cancer. The natural lectins currently used in the recognition of these glycoproteins are costly, difficult to produce, and unstable towards rigorous use. Herein we describe the design and synthesis of several boronic acid functionalized peptide-based synthetic lectin (SL) libraries, as well as the optimized methodology for obtaining peptide sequences of these SLs. SL libraries were subsequently used to identify SLs with as high as 5-fold selectivity for various glycoproteins. SLs will inevitably find a role in cancer diagnositics, given that they do not suffer from the drawbacks of natural lectins and that the combinatorial nature of these libraries allows for the identification of an SL for nearly any glycosylated biomolecule. PMID:21405093

  4. Polymeric Cryogel-Based Boronate Affinity Chromatography for Separation of Ribonucleic Acid from Bacterial Extracts.

    PubMed

    Shakya, Akhilesh Kumar; Srivastava, Akshay; Kumar, Ashok

    2015-01-01

    Three-dimensional monolithic columns are preferred stationary phase in column chromatography. Conventional columns based on silica or particles are efficient in bioseparation though associated with limitations of nonspecific interaction and uneven porosity that causes high mass transfer resistance for the movement of big molecules. Cryogels as a monolith column have shown promising application in bioseparation. Cryogels column can be synthesized in the form of a monolith at sub-zero temperature through gelation of pre-synthesized polymers or polymerization of monomers. Cryogels are macroporous and mechanically stable materials. They have open interconnected micron-sized pores with a wide range of porosity (10-200 μm). Current protocol demonstrated the ability of poly(hydroxymethyl methacrylate)-co-vinylphenyl boronic acid p(HEMA-co-VPBA) cryogel matrix for selective separation of RNA from the bacterial crude extract. PMID:26623972

  5. Potent inhibitors of HCV-NS3 protease derived from boronic acids

    SciTech Connect

    Venkatraman, Srikanth; Wu, Wanli; Prongay, Andrew; Girijavallabhan, Viyyoor; Njoroge, F. George

    2009-07-23

    Chronic hepatitis C infection is the leading causes for cirrhosis of the liver and hepatocellular carcinoma, leading to liver failure and liver transplantation. The etiological agent, HCV virus produces a single positive strand of RNA that is processed with the help of serine protease NS3 to produce mature virus. Inhibition of NS3 protease can be potentially used to develop effective drugs for HCV infections. Numerous efforts are now underway to develop potent inhibitors of HCV protease that contain ketoamides as serine traps. Herein we report the synthesis of a series of potent inhibitors that contain a boronic acid as a serine trap. The activity of these compounds were optimized to 200 pM. X-ray structure of compound 17 bound to NS3 protease is also discussed.

  6. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    PubMed

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  7. Correlating Physicochemical Properties of Boronic Acid-Chitosan Conjugates to Glucose Adsorption Sensitivity

    PubMed Central

    Asantewaa, Yaa; Aylott, Jonathan; Burley, Jonathan C.; Billa, Nashiru; Roberts, Clive J.

    2012-01-01

    Phenyl boronic acid (PBA), which is known to interact with glucose, was covalently bonded to chitosan by direct reductive N-alkylation of chitosan with 4-formylphenylboronic acid (4-FPBA). Evidence of PBA bonding on chitosan was assessed by FTIR, ToF-SIMS, SEM, DSC and glucose adsorption sensitivity measurements. FTIR spectra showed strong signals at 1560 and 630 cm−1 indicating the formation of p-substituted benzene. Similarly, ToF-SIMS analyses on the conjugates registered fragments of boron ion (B−) at 11.0 m/z whose intensity increased in proportion to 4-FPBA loading. The degree to which PBA was bonded to chitosan was related to the 4-FPBA load used in the reaction (termed F1 through to F6 with increasing 4-FPBA load). Glucose adsorption sensitivity to PBA-bonded chitosan was directly related to the amount of PBA functionality within the conjugates and the physical nature of the matrices (porous or crystalline). Topographic analysis by SEM revealed that PBA-chitosan conjugates F1, F2 and F3 have porous matrices and their sensitivity to glucose adsorption was directly proportional to the degree of PBA substitution onto chitosan. Conversely, conjugates F4, F5 and F6 appeared crystalline under SEM and glucose adsorption sensitivity decreased in proportion to amount of PBA bonded to chitosan. The crystalline nature of the conjugates was confirmed by DSC, where the exothermic event related to the melting of the bonded PBA moiety, occurred at 338 °C. Thus, decreased sensitivity to glucose adsorption by the conjugates can be ascribed to the crystallinity imparted by increased content of the bonded PBA moiety, providing an optimal loading of PBA in terms of maximizing response to glucose. PMID:24300397

  8. Diastereomeric resolution of rac-1,1'-bi-2-naphthol boronic acid with a chiral boron ligand and its application to simultaneous synthesis of (R)- and (S)-3,3'-disubstituted 1,1'-bi-2-naphthol derivatives.

    PubMed

    Lee, Chun-Young; Cheon, Cheol-Hong

    2013-07-19

    A new concept of diastereomeric resolution has been developed where a boronic acid functionality was employed as (1) a diastereomeric resolving group with a chiral boron ligand and (2) a masked functional group for further transformation thereafter. This new diastereomeric resolution method was successfully applied to the preparation of both (R)- and (S)-3,3'-disubstituted 1,1'-bi-2-naphthol (BINOL) derivatives in a step-ecomonical manner. Racemic BINOL boronic acid reacted with a commercially available pinene-derived iminodiacetic acid as a chiral boron ligand to generate the two diastereomers in quantitative yields over a gram-scale quantity. After the removal of the chiral boron ligand from the diastereomers under mild conditions, the subsequent Suzuki coupling reaction of the resulting chiral BINOL boronic acids with aryl halides provided a series of both (R)- and (S)-BINOL derivatives in good yields. Further, both resulting diastereomers could be directly applied to the Suzuki coupling reaction without the removal of the chiral ligand.

  9. In vivo percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in humans: a summary.

    PubMed

    Wester, R C; Hui, X; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-01-01

    Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry, which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10% in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percent dose, with flux and permeability constant (Kp) calculated at 0.009 microg/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percent dose, with flux and Kp calculated at 0.009 microg/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percent, with flux and Kp calculated at 0.01 microg/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. These in vivo results show that percutaneous absorption of boron, as boric acid, borax, and disodium octaborate tetrahydrate, through intact human skin is low and is significantly less than the average daily dietary intake. This very low boron skin absorption makes it apparent that, for the borates tested, the use of gloves to prevent systemic uptake is unnecessary. These findings do not apply to abraded or otherwise damaged skin.

  10. Corrosion resistance of inconel 690 to borax, boric acid, and boron nitride at 1100{degrees}C

    SciTech Connect

    Imrich, K.J.

    1996-12-12

    Significant general and localized corrosion was observed on Inconel 690 coupons following exposure to borax, boric acid and boron nitride at 1100{degrees}C. Severe localized attack at and below the melt line was observed on coupons exposed to borax. An intergranular attack at and below the melt line was observed on coupons exposed to borax. An intergranular attack (IGA) of the Inconel 690 was also observed. Severe internal void formation and IGA (30 mils penetration after 3 days) was observed in the coupon exposed to boric acid. Both borax and boric acid remove the protective chromium oxide; however, this layer can be reestablished by heating the Inconel 690 to 975 {degrees}C in air for several hours. Inconel 690 in direct contact with boron nitride resulted in the formation of a thick chromium borate layer, a general corrosion rate of 50 to 90 mils per year, and internal void formation of 1 mil per day.

  11. Strategies for the design and synthesis of boronated nucleic acid and protein components as potential delivery agents for neutron capture therapy

    SciTech Connect

    Wyzlic, I.M.; Tjarks, W.; Soloway, A.H.; Anisuzzaman, A.K.M.; Rong, Feng-Guang; Barth, R.F. )

    1994-03-30

    Strategies for the design and synthesis of boronated nucleosides, amino acids, and peptides as potential delivery agents for boron neutron capture therapy (BNCT) are described. For BNCT to be a useful treatment modality, there is a need to design and synthesize nontoxic boron compounds that selectively target tumor cells, accumulate in sufficient amounts (20-30 [mu]g [sup 10]B/g of tumor) and persist at therapeutic levels for a sufficient time prior to neutron irradiation. Boronated nucleosides, amino acids and peptides are such promising target compounds. Such structures may be selectively used by proliferating neoplastic cells compared with mitotically less active normal cells and therefore achieve the tissue differentials necessary for BNCT. The rationale for synthesis of boronated nucleic acid and protein components is discussed. Results of biological and clinical studies of some boronated nucleosides, nucleotides, amino acids and peptides are presented. Boronated nucleosides, amino acids and peptides can be considered as potential targeting agents for BNCT. 96 refs., 4 figs.

  12. Determination of boron in blood, urine and bone by electrothermal atomic absorption spectrometry using zirconium and citric acid as modifiers

    NASA Astrophysics Data System (ADS)

    Burguera, Marcela; Burguera, José Luis; Rondón, Carlos; Carrero, Pablo

    2001-10-01

    A comparative study of various potential chemical modifiers (Au, Ba, Be, Ca, Cr, Ir, La, Lu, Mg, Ni, Pd, Pt, Rh, Ru, Sr, V, W, and Zr), and different 'coating' treatments (Zr, W, and W+Rh) of the pyrolytic graphite platform of a longitudinally heated graphite tube atomizer for thermal stabilization and determination of boron was undertaken. The use of Au, Ba, Be, Cr, Ir, Pt, Rh, Ru, Sr and V as modifiers, and of W+Rh coating produced erratic, and noisy signals, while the addition of La, Ni and Pd as modifiers, and the W coating had positive effects, but with too high background absorption signals, rendering their use unsuitable for boron determination even in aqueous solutions. The atomic absorption signal for boron was increased and stabilized when the platform was coated with Zr, and by the addition of Ca, Mg, Lu, W or Zr as modifiers. Only the addition of 10 μg of Zr as a modifier onto Zr-treated platforms allowed the use of a higher pyrolysis temperature without analyte losses. The memory effect was minimized by incorporating a cleaning step with 10 μl of 50 g l -1 NH 4F HF after every three boron measurements. The addition of 10 μl of 15 g l -1 citric acid together with Zr onto Zr-treated platforms significantly improved the characteristic mass to m0=282 pg, which is adequate for biological samples such as urine and bone, although the sensitivity was still inadequate for the determination of boron in blood of subjects without supplementary diet. Under optimized conditions, the detection limit (3σ) was 60 μg l -1. The amount of boron found in whole blood, urine and femur head samples from patients with osteoporosis was in agreement with values previously reported in the literature.

  13. Homogeneous and heterogenized Au(III) Schiff base-complexes as selective and general catalysts for self-coupling of aryl boronic acids.

    PubMed

    González-Arellano, C; Corma, A; Iglesias, M; Sánchez, F

    2005-04-21

    A series of homogeneous and heterogenized gold metal complexes show high activity and selectivity for the homocoupling of a large variety of aryl boronic acids, being of general utility for the synthesis of C2-symmetric biaryls.

  14. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in the crystalline state.

    PubMed Central

    Farr-Jones, S; Smith, S O; Kettner, C A; Griffin, R G; Bachovchin, W W

    1989-01-01

    The effectiveness of boronic acids as inhibitors of serine proteases has been widely ascribed to the ability of the boronyl group to form a tetrahedral adduct with the active-site serine that closely mimics the putative tetrahedral intermediate or transition state formed with substrates. However, recent 15N NMR studies of alpha-lytic protease (EC 3.4.21.12) in solution have shown that some boronic acids and peptide boronic acids form adducts with the active-site histidine instead of with the serine. Such histidine-boron adducts have not thus far been reported in x-ray diffraction studies of boronic acid-serine protease complexes. Here, we report an 15N NMR study of the MeOSuc-Ala-Ala-Pro-boroPhe complex of alpha-lytic protease in the crystalline state using magic-angle spinning. Previous 15N NMR studies have shown this complex involves the formation of a histidine-boron bond in solution. The 15N NMR spectra of the crystalline complex are essentially identical to those of the complex in solution, thereby showing that the structure of this complex is the same in solution and in the crystal and that both involve formation of a histidine-boron adduct. PMID:2780549

  15. A Three‐Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes)†

    PubMed Central

    Santos, Fábio M. F.; Rosa, João N.; Candeias, Nuno R.; Carvalho, Cátia Parente; Matos, Ana I.; Ventura, Ana E.; Florindo, Helena F.; Silva, Liana C.

    2015-01-01

    Abstract The modular assembly of boronic acids with Schiff‐base ligands enabled the construction of innovative fluorescent dyes [boronic acid salicylidenehydrazone (BASHY)] with suitable structural and photophysical properties for live cell bioimaging applications. This reaction enabled the straightforward synthesis (yields up to 99 %) of structurally diverse and photostable dyes that exhibit a polarity‐sensitive green‐to‐yellow emission with high quantum yields of up to 0.6 in nonpolar environments. These dyes displayed a high brightness (up to 54 000 m −1 cm−1). The promising structural and fluorescence properties of BASHY dyes fostered the preparation of non‐cytotoxic, stable, and highly fluorescent poly(lactide‐co‐glycolide) nanoparticles that were effectively internalized by dendritic cells. The dyes were also shown to selectively stain lipid droplets in HeLa cells, without inducing any appreciable cytotoxicity or competing plasma membrane labeling; this confirmed their potential as fluorescent stains. PMID:26691630

  16. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory.

    PubMed

    Tsakris, Athanassios; Kristo, Ioulia; Poulou, Aggeliki; Themeli-Digalaki, Katerina; Ikonomidis, Alexandros; Petropoulou, Dimitra; Pournaras, Spyros; Sofianou, Danai

    2009-02-01

    The worldwide increase in the occurrence and dissemination of KPC beta-lactamases among gram-negative pathogens makes critical the early detection of these enzymes. Boronic acid disk tests using different antibiotic substrates were evaluated for detection of KPC-possessing Klebsiella pneumoniae isolates. A total of 57 genotypically confirmed KPC-possessing K. pneumoniae isolates with varying carbapenem MICs were examined. To measure the specificity of the tests, 106 non-KPC-possessing isolates (89 K. pneumoniae and 17 Escherichia coli isolates) were randomly selected among those exhibiting reduced susceptibility to cefoxitin, expanded-spectrum cephalosporins, or carbapenems. As many as 56, 53, and 40 of the non-KPC-possessing isolates harbored extended-spectrum beta-lactamases, metallo-beta-lactamases, and plasmid-mediated AmpC beta-lactamases, respectively. By use of CLSI methodology and disks containing imipenem, meropenem, or cefepime, either alone or in combination with 400 microg of boronic acid, all 57 KPC producers gave positive results (sensitivity, 100%) whereas all 106 non-KPC producers were negative (specificity, 100%). The meropenem duplicate disk with or without boronic acid demonstrated the largest differences in inhibition zone diameters between KPC producers and non-KPC producers. By use of disks containing ertapenem, all isolates were correctly differentiated except for five AmpC producers that gave false-positive results (sensitivity, 100%; specificity, 95.3%). These practical and simple boronic acid disk tests promise to be very helpful for the accurate differentiation of KPC-possessing K. pneumoniae isolates, even in regions where different broad-spectrum beta-lactamases are widespread.

  17. Rh(III)-catalyzed selective coupling of N-methoxy-1H-indole-1-carboxamides and aryl boronic acids.

    PubMed

    Zheng, Jing; Zhang, Yan; Cui, Sunliang

    2014-07-01

    A Rh(III)-catalyzed selective coupling of N-methoxy-1H-indole-1-carboxamide and aryl boronic acids is reported. The coupling is mild and efficient toward diverse product formation, with selective C-C and C-C/C-N bond formation. Kinetic isotope effects studies were conducted to reveal a mechanism of C-H activation and electrophilic addition. PMID:24959967

  18. Dual Catalysis Using Boronic Acid and Chiral Amine: Acyclic Quaternary Carbons via Enantioselective Alkylation of Branched Aldehydes with Allylic Alcohols.

    PubMed

    Mo, Xiaobin; Hall, Dennis G

    2016-08-31

    A ferrocenium boronic acid salt activates allylic alcohols to generate transient carbocations that react with in situ-generated chiral enamines from branched aldehydes. The optimized conditions afford the desired acyclic products embedding a methyl-aryl quaternary carbon center with up to 90% yield and 97:3 enantiomeric ratio, with only water as the byproduct. This noble-metal-free method complements alternative methods that are incompatible with carbon-halogen bonds and other sensitive functional groups. PMID:27518200

  19. Boronate-Phenolic Network Capsules with Dual Response to Acidic pH and cis-Diols.

    PubMed

    Guo, Junling; Sun, Huanli; Alt, Karen; Tardy, Blaise L; Richardson, Joseph J; Suma, Tomoya; Ejima, Hirotaka; Cui, Jiwei; Hagemeyer, Christoph E; Caruso, Frank

    2015-08-26

    Dual-responsive boronate-phenolic network (BPN) capsules are fabricated by the complexation of phenylborate and phenolic materials. The BPN capsules are stable in the presence of competing carbohydrates, but dissociate at acidic pH or in the presence of competing cis-diols at physiological pH. This engineered capsule system provides a platform for a wide range of biological and biomedical applications.

  20. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  1. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  2. Targeting class A and C serine β-lactamases with a broad-spectrum boronic acid derivative.

    PubMed

    Tondi, Donatella; Venturelli, Alberto; Bonnet, Richard; Pozzi, Cecilia; Shoichet, Brian K; Costi, Maria Paola

    2014-06-26

    Production of β-lactamases (BLs) is the most widespread resistance mechanism adopted by bacteria to fight β-lactam antibiotics. The substrate spectrum of BLs has become increasingly broad, posing a serious health problem. Thus, there is an urgent need for novel BL inhibitors. Boronic acid transition-state analogues are able to reverse the resistance conferred by class A and C BLs. We describe a boronic acid analogue possessing interesting and potent broad-spectrum activity vs class A and C serine-based BLs. Starting from benzo(b)thiophene-2-boronic acid (BZBTH2B), a nanomolar non-β-lactam inhibitor of AmpC that can potentiate the activity of a third-generation cephalosporin against AmpC-producing resistant bacteria, we designed a novel broad-spectrum nanomolar inhibitor of class A and C BLs. Structure-based drug design (SBDD), synthesis, enzymology data, and X-ray crystallography results are discussed. We clarified the inhibitor binding geometry responsible for broad-spectrum activity vs serine-active BLs using double mutant thermodynamic cycle studies. PMID:24882105

  3. Targeting Class A and C Serine β-Lactamases with a Broad-Spectrum Boronic Acid Derivative

    PubMed Central

    2015-01-01

    Production of β-lactamases (BLs) is the most widespread resistance mechanism adopted by bacteria to fight β-lactam antibiotics. The substrate spectrum of BLs has become increasingly broad, posing a serious health problem. Thus, there is an urgent need for novel BL inhibitors. Boronic acid transition-state analogues are able to reverse the resistance conferred by class A and C BLs. We describe a boronic acid analogue possessing interesting and potent broad-spectrum activity vs class A and C serine-based BLs. Starting from benzo(b)thiophene-2-boronic acid (BZBTH2B), a nanomolar non-β-lactam inhibitor of AmpC that can potentiate the activity of a third-generation cephalosporin against AmpC-producing resistant bacteria, we designed a novel broad-spectrum nanomolar inhibitor of class A and C BLs. Structure-based drug design (SBDD), synthesis, enzymology data, and X-ray crystallography results are discussed. We clarified the inhibitor binding geometry responsible for broad-spectrum activity vs serine-active BLs using double mutant thermodynamic cycle studies. PMID:24882105

  4. A Metal and Base-Free Chemoselective Primary Amination of Boronic Acids Using Cyanamidyl/Arylcyanamidyl Radical as Aminating Species: Synthesis and Mechanistic Studies by Density Functional Theory.

    PubMed

    Chatterjee, Nachiketa; Arfeen, Minhajul; Bharatam, Prasad V; Goswami, Avijit

    2016-06-17

    An efficient, metal and base-free, chemoselective synthesis of aryl-, heteroaryl-, and alkyl primary amines from the corresponding boronic acids has been achieved at ambient temperature mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA) and N-bromosuccinimide (NBS) using cyanamidyl/arylcyanamidyl radicals as the aminating species. The primary amine compounds were initially obtained as their corresponding ammonium trifluoroacetate salts which, on treatment with aq NaOH, provide the free amines. Finally, the primary amines were isolated through column chromatography over silica-gel using hexane-EtOAc solvent system as the eluent. The reactions are sufficiently fast, completing within 1 h. Quantum chemical calculations in combination with experimental observations validate that the ipso amination of substituted boronic acids involves the formation of cyanamidyl/arylcyanamidyl radical, followed by regiospecific interaction of its nitrile-N center with boron atom of the boronic acids, leading to chemoselective primary amination.

  5. Evaluation of the radiolabeled boronic acid-based FAP inhibitor MIP-1232 for atherosclerotic plaque imaging.

    PubMed

    Meletta, Romana; Müller Herde, Adrienne; Chiotellis, Aristeidis; Isa, Malsor; Rancic, Zoran; Borel, Nicole; Ametamey, Simon M; Krämer, Stefanie D; Schibli, Roger

    2015-01-01

    Research towards the non-invasive imaging of atherosclerotic plaques is of high clinical priority as early recognition of vulnerable plaques may reduce the incidence of cardiovascular events. The fibroblast activation protein alpha (FAP) was recently proposed as inflammation-induced protease involved in the process of plaque vulnerability. In this study, FAP mRNA and protein levels were investigated by quantitative polymerase chain reaction and immunohistochemistry, respectively, in human endarterectomized carotid plaques. A published boronic-acid based FAP inhibitor, MIP-1232, was synthetized and radiolabeled with iodine-125. The potential of this radiotracer to image plaques was evaluated by in vitro autoradiography with human carotid plaques. Specificity was assessed with a xenograft with high and one with low FAP level, grown in mice. Target expression analyses revealed a moderately higher protein level in atherosclerotic plaques than normal arteries correlating with plaque vulnerability. No difference in expression was determined on mRNA level. The radiotracer was successfully produced and accumulated strongly in the FAP-positive SK-Mel-187 melanoma xenograft in vitro while accumulation was negligible in an NCI-H69 xenograft with low FAP levels. Binding of the tracer to endarterectomized tissue was similar in plaques and normal arteries, hampering its use for atherosclerosis imaging. PMID:25633335

  6. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy.

    PubMed

    Soriano-Ursúa, Marvin A; Farfán-García, Eunice D; López-Cabrera, Yessica; Querejeta, Enrique; Trujillo-Ferrara, José G

    2014-01-01

    Boron-containing compounds (BCCs), particularly boron containing acids (BCAs), have become attractive moieties or molecules in drug development. It has been suggested that when functional groups with boron atoms are added to well-known drugs, the latter are conferred with greater potency and efficacy in relation to their target receptors. However, the use of BCAs in drug development is limited due to the lack of a toxicological profile. Consequently, the aim of the present study was to evaluate the acute toxicity of boric and boronic acids. Thus, a determination was made of the lethal dose (LD50) of test compounds in male CD1 mice, as well as the effective dose required to negatively affect spontaneous motor activity and to produce notable behavioral abnormalities. After treatment of animals at different doses, macroscopic observations were made from a necropsy, and Raman scattering spectroscopic studies were carried out on brain tissue samples. In general, the results show that most of the tested BCAs have very low toxicity, evidenced by the high doses required to induce notable toxic effects (greater than 100 mg/kg of body weight for all compounds, except for 3-thyenilboronic acid). Such toxic effects, presumably mediated by action on the CNS, include eye damage, gastrointestinal effects (e.g., gastric-gut dilatation and fecal retention), sedation, hypnosis and/or trembling. This preliminary toxicological profile suggests that BCAs can be considered potential therapeutic agents or moieties to be added to other compounds in the development of new drugs. Future studies are required to explore possible chronic toxicity of BCCs.

  7. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant.

    PubMed

    Furikado, Yuki; Nagahata, Tomomi; Okamoto, Takuya; Sugaya, Tomoaki; Iwatsuki, Satoshi; Inamo, Masahiko; Takagi, Hideo D; Odani, Akira; Ishihara, Koji

    2014-10-01

    To establish a detailed reaction mechanism for the condensation between a boronic acid, RB(OH)2, and a diol, H2L, in aqueous solution, the acid dissociation constants (Ka(BL)) of boronic acid diol esters (HBLs) were determined based on the well-established concept of conditional formation constants of metal complexes. The pKa values of HBLs were 2.30, 2.77, and 2.00 for the reaction systems, 2,4-difluorophenylboronic acid and chromotropic acid, 3-nitrophenylboronic acid and alizarin red S, and phenylboronic acid and alizarin red S, respectively. A general and precise reaction mechanism of RB(OH)2 with H2L in aqueous solution, which can serve as a universal reaction mechanism for RB(OH)2 and H2L, was proposed on the basis of (a) the relative kinetic reactivities of the RB(OH)2 and its conjugate base, that is, the boronate ion, toward H2L, and (b) the determined pKa values of HBLs. The use of the conditional formation constant, K', based on the main reaction: RB(OH)2 + H2L (K1)⇌ RB(L)(OH)(-) + H3O(+) instead of the binding constant has been proposed for the general reaction of uncomplexed boronic acid species (B') with uncomplexed diol species (L') to form boronic acid diol complex species (esters, BL') in aqueous solution at pH 5-11: B' + L' (K')⇌ BL'. The proposed reaction mechanism explains perfectly the formation of boronic acid diol ester in aqueous solution.

  8. Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes.

    PubMed

    Urtiaga, Ane; Fernández-González, Carolina; Gómez-Lavín, Sonia; Ortiz, Inmaculada

    2015-06-01

    This work deals with the electrochemical degradation and mineralization of perfluorooctanoic acid (PFOA). Model aqueous solutions of PFOA (100mg/L) were electro-oxidized under galvanostatic conditions in a flow-by undivided cell provided with a tungsten cathode and an anode formed by a commercial ultrananocrystalline boron doped diamond (BDD) coating on a niobium substrate. A systematic experimental study was conducted in order to analyze the influence of the following operation variables: (i) the supporting electrolyte, NaClO4 (1.4 and 8.4g/L) and Na2SO4 (5g/L); (ii) the applied current density, japp, in the range 50-200 A/m(2) and (iii) the hydrodynamic conditions, in terms of flowrate in the range 0.4×10(-4)-1.7×10(-4)m(3)/s and temperature in the range 293-313K. After 6h of treatment and at japp 200A/m(2), PFOA removal was higher than 93% and the mineralization ratio, obtained from the decrease of the total organic carbon (TOC) was 95%. The electrochemical generation of hydroxyl radicals in the supporting electrolyte was experimentally measured based on their reaction with dimethyl sulfoxide. The enhanced formation of hydroxyl radicals at higher japp was related to the faster kinetics of PFOA removal. The fitting of experimental data to the proposed kinetic model provided the first order rate constants of PFOA degradation, kc(1) that moved from 2.06×10(-4) to 15.58×10(-4)s(-1), when japp varied from 50 to 200A/m(2).

  9. Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes.

    PubMed

    Urtiaga, Ane; Fernández-González, Carolina; Gómez-Lavín, Sonia; Ortiz, Inmaculada

    2015-06-01

    This work deals with the electrochemical degradation and mineralization of perfluorooctanoic acid (PFOA). Model aqueous solutions of PFOA (100mg/L) were electro-oxidized under galvanostatic conditions in a flow-by undivided cell provided with a tungsten cathode and an anode formed by a commercial ultrananocrystalline boron doped diamond (BDD) coating on a niobium substrate. A systematic experimental study was conducted in order to analyze the influence of the following operation variables: (i) the supporting electrolyte, NaClO4 (1.4 and 8.4g/L) and Na2SO4 (5g/L); (ii) the applied current density, japp, in the range 50-200 A/m(2) and (iii) the hydrodynamic conditions, in terms of flowrate in the range 0.4×10(-4)-1.7×10(-4)m(3)/s and temperature in the range 293-313K. After 6h of treatment and at japp 200A/m(2), PFOA removal was higher than 93% and the mineralization ratio, obtained from the decrease of the total organic carbon (TOC) was 95%. The electrochemical generation of hydroxyl radicals in the supporting electrolyte was experimentally measured based on their reaction with dimethyl sulfoxide. The enhanced formation of hydroxyl radicals at higher japp was related to the faster kinetics of PFOA removal. The fitting of experimental data to the proposed kinetic model provided the first order rate constants of PFOA degradation, kc(1) that moved from 2.06×10(-4) to 15.58×10(-4)s(-1), when japp varied from 50 to 200A/m(2). PMID:24981910

  10. Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element.

    PubMed

    Li, Jian; Zhang, Ning; Sun, Qingqing; Bai, Zhanming; Zheng, Jianbin

    2016-10-01

    A novel imprinted silica matrix-poly(aniline boronic acid) hybrid for electrochemical detection of dopamine (DA) was developed. Boronic acid functionalized conducting polymer was electrochemically prepared on Au electrode. The number of covalent binding sites toward DA templates was controlled by potential cycles. A precursory sol solution of ammonium fluorosilicate (as cross-linking monomer) containing DA was spin-coated on the polymer modified electrode. Under NH3 atmosphere, the hydroxyl ions were generated in the solution and catalyzed the hydrolysis of fluorosilicate to form silica matrix. After this aqueous sol-gel process, an inorganic framework around the DA template was formed and the imprinted hybrid for DA was also produced. As revealed by scanning electron microscopy, UV-vis spectroscopy and cyclic voltammetry characterization, DA was embedded in the imprinted hybrid successfully. The affinity and selectivity of the imprinted hybrid were also characterized by cyclic voltammetry. The imprinted hybrid showed higher affinity for DA than that for epinephrine, and little or no affinity for ascorbic acid and uric acid due to the combined effects of covalent interaction, cavities matching and electrostatic repulsion. The imprinted hybrid sensor exhibited a quick response (within 5min) to DA in the concentration range from 0.05 to 500μmolL(-1) with a detection limit of 0.018μmolL(-1). The prepared sensor was also applied to detect DA in real samples with a satisfactory result. PMID:27474321

  11. Respiratory irritation associated with inhalation of boron trifluoride and fluorosulfonic acid.

    PubMed

    Rusch, George M; Bowden, Anthony M; Muijser, Hans; Arts, Josje

    2008-05-01

    The objectives of this study were to examine the respiratory irritancy of boron trifluoride (BF(3)) and fluorosulfonic acid (FSA) following acute inhalation exposure. Testing was conducted using groups of 10 male and 10 female rats (BF(3)) or groups of 6 male rats (FSA). Rats were exposed for a single 4-h period (BF(3)) or a single 1-h period (FSA) and necropsied 1 or 14 days after exposure (BF(3)) or 14 days after exposure (FSA). Measurements consisted of clinical signs, body weight, kidney and lung weight, histopathology (BF(3)), and breathing parameters (FSA) and were used to evaluate the possible irritating effects of these compounds. The results indicated treatment-related findings in the larynx and trachea in the rats exposed to 74.4 mg/m(3) BF(3), consisting of ventral cartilage necrosis, hemorrhage, and an increase in ventral epithelial hyperplasia and ventral inflammatory cell inflammation 24 h postexposure. In the animals sacrificed 14 days postexposure, the only notable observation was ventral cartilage necrosis, present in 2 animals. The next lower level tested, 24.6 mg/m(3) BF, was considered a no-observed-adverse-effects level (NOAEL). A concentration of 4125 mg/m(3) FSA resulted in a clearly decreased breathing rate during and shortly after exposure with 67% (4/6) mortality on days 5-9 after exposure. A concentration of 845 mg/m(3) FSA resulted in only minor signs of irritation, consisting of slight changes in breathing pattern shorlty after exposure. The results of the present 4-h inhalation study with BF(3) indicated that respiratory irritation was present at a level of 74.4 mg/m(3) whereas 24.6 mg/m(3) was a NOAEL. A single 1-h exposure to 845 mg/m(3) FSA resulted in only minor signs of respiratory irritation, indicating that on a mass basis FSA is no more toxic or irritating than hydrogen fluoride (HF) or sulfuric acid. PMID:18464054

  12. Three-component Pd/Cu-catalyzed cascade reactions of cyclic iodoniums, alkynes, and boronic acids: an approach to methylidenefluorenes.

    PubMed

    Zhu, Daqian; Wu, Yongcheng; Wu, Baojian; Luo, Bingling; Ganesan, A; Wu, Fu-Hai; Pi, Rongbiao; Huang, Peng; Wen, Shijun

    2014-05-01

    Linear diaryliodonium salts are widely used as arylating reagents for C-C and C-X bond formation. Meanwhile, synthetic applications of cyclic iodoniums are relatively rare although they offer the opportunity to set up reaction cascades. We demonstrate an atom and step economical three-component reaction involving cyclic diphenyleneiodoniums, alkynes, and boronic acids, resulting in the construction of methylidenefluorenes in a single operation. Our route enables facile access to both symmetrical and unsymmetrical methylidenefluorene derivatives, compounds that have attracted interest due to their optical properties. PMID:24742135

  13. Direct catalytic trifluoromethylthiolation of boronic acids and alkynes employing electrophilic shelf-stable N-(trifluoromethylthio)phthalimide.

    PubMed

    Pluta, Roman; Nikolaienko, Pavlo; Rueping, Magnus

    2014-02-01

    A new and safe method for the synthesis of N-(trifluoromethylthio)phthalimide, a convenient and shelf-stable reagent for the direct trifluoromethylthiolation, has been developed. N-(Trifluoromethylthio)phthalimide can be used as an electrophilic source of F3 CS(+) and reacts readily with boronic acids and alkynes under copper catalysis. The utility of CF3 S-containing molecules as biologically active agents, the mild reaction conditions employed, and the high tolerance of functional groups demonstrate the potential of this new methodology to be widely applied in organic synthesis as well as industrial pharmaceutical and agrochemical research and development. PMID:24449094

  14. Palladium-Catalyzed Defluorinative Coupling of 1-Aryl-2,2-Difluoroalkenes and Boronic Acids: Stereoselective Synthesis of Monofluorostilbenes.

    PubMed

    Thornbury, Richard T; Toste, F Dean

    2016-09-12

    The palladium-catalyzed defluorinative coupling of 1-aryl-2,2-difluoroalkenes with boronic acids is described. Broad functional-group tolerance arises from a redox-neutral process by a palladium(II) active species which is proposed to undergo a β-fluoride elimination to afford the products. The monofluorostilbene products were formed with excellent diastereoselectivity (≥50:1) in all cases, and it is critical, as traditional chromatographic techniques often fail to separate monofluoroalkene isomers. As a demonstration of this method's unique combination of reactivity and functional-group tolerance, a Gleevec® analogue, using a monofluorostilbene as an amide isostere, was synthesized. PMID:27511868

  15. Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur.

    PubMed

    Li, Jianxiao; Li, Chunsheng; Yang, Shaorong; An, Yanni; Wu, Wanqing; Jiang, Huanfeng

    2016-09-01

    An efficient and convenient palladium-catalyzed C-H bond oxidative sulfenylation of indoles and related electron-rich heteroarenes with aryl boronic acids and elemental sulfur has been described. This procedure provides a useful and direct approach for the assembly of a wide range of structurally diverse 3-sulfenylheteroarenes with moderate to excellent yields from simple and readily available starting materials. Moreover, this synthetic protocol is suitable for N-protected and unprotected indoles. Notably, the construction of two C-S bonds in one step was also achieved in this transformation. PMID:27500941

  16. Characterization and in vitro activity of a branched peptide boronic acid that interacts with HIV-1 RRE RNA.

    PubMed

    Wynn, Jessica E; Zhang, Wenyu; Tebit, Denis M; Gray, Laurie R; Hammarskjold, Marie-Louise; Rekosh, David; Santos, Webster L

    2016-09-01

    A branched peptide containing multiple boronic acids was found to bind RRE IIB selectively and inhibit HIV-1 p24 capsid production in a dose-dependent manner. Structure-activity relationship studies revealed that branching in the peptide is crucial for the low micromolar binding towards RRE IIB, and the peptide demonstrates selectivity towards RRE IIB in the presence of tRNA. Footprinting studies suggest a binding site on the upper stem and internal loop regions of the RNA, which induces enzymatic cleavage of the internal loops of RRE IIB upon binding. PMID:27091070

  17. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein.

    PubMed

    Pan, Miaorong; Sun, Yangfei; Zheng, Jin; Yang, Wuli

    2013-09-11

    In this work, core-shell-shell-structured boronic acid-functionalized magnetic composite microspheres Fe3O4@SiO2@poly (methyl methacrylate-co-4-vinylphenylbornoic acid) (Fe3O4@SiO2@P(MMA-co-VPBA)) with a uniform size and fine morphology were synthesized. Here, Fe3O4 magnetic particles were prepared by a solvothermal reaction, whereas the Fe3O4@SiO2 microspheres with a core-shell structure were obtained by a sol-gel process. 3-(Trimethoxysilyl) propyl methacrylate (MPS)-modified Fe3O4@SiO2 was used as the seed in the emulsion polymerization of MMA and VPBA to form the core-shell-shell-structured magnetic composite microspheres. As the boronic acid groups on the surface of Fe3O4@SiO2@P(MMA-co-VPBA) could form tight yet reversible covalent bonds with the cis-1,2-diols groups of glycoproteins, the magnetic composite microspheres were applied to enrich a standard glycoprotein, horseradish peroxidase (HRP), and the results demonstrated that the composite microspheres have a higher affinity for the glycoproteins in the presence of the nonglycoprotein bovine serum albumin (BSA) over HRP. Additionally, different monomer mole ratios of MMA/VPBA were studied, and the results implied that using MMA as the major monomer could reduce the amount of VPBA with a similar glycoprotein enrichment efficiency but a lower cost. PMID:23924282

  18. Transition-metal-free access to primary anilines from boronic acids and a common (+)NH2 equivalent.

    PubMed

    Voth, Samantha; Hollett, Joshua W; McCubbin, J Adam

    2015-03-01

    Diversely substituted anilines are prepared by treatment of functionalized arylboronic acids with a common, inexpensive source of electrophilic nitrogen (H2N-OSO3H, HSA) under basic aqueous conditions. Electron-rich substrates are found to be the most reactive by this method. However, even moderately electron-poor substrates are well tolerated under the room temperature conditions. Sterically hindered substrates appear to be equally effective compared to unhindered ones. Highly electron-deficient substrates afford product in very low yields at room temperature, but moderate to good yields are obtained at refluxing temperatures. Our method is also amenable to electrophilic amination of several common boronic acid derivatives (e.g., pinacol esters). We demonstrate that it can be combined with metal-halogen exchange reactions or a variety of directed ortho metalation protocols in a "one-pot" sequence for the synthesis of aromatic amines with unique substitution patterns. DFT studies, in combination with experimental results, suggest that the reaction occurs via base-mediated activation of HSA, followed by 1,2 aryl B-N migration. This mode of activation appears to be critical for the success of the reaction and allows, for the first time, a general, electrophilic amination of boronic acids at ambient temperature.

  19. A universal procedure for the [¹⁸F]trifluoromethylation of aryl iodides and aryl boronic acids with highly improved specific activity.

    PubMed

    van der Born, Dion; Sewing, Claudia; Herscheid, J Koos D M; Windhorst, Albert D; Orru, Romano V A; Vugts, Danielle J

    2014-10-01

    Herein, we describe a valuable method for the introduction of the [(18)F]CF3 group into arenes with highly improved specific activity by the reaction of [(18)F]trifluoromethane with aryl iodides or aryl boronic acids. This [(18)F]trifluoromethylation reaction is the first to be described in which the [(18)F]CF3 products are generated in actual trace amounts and can therefore effectively be used as PET tracers. The method shows broad scope with respect to possible aryl iodide and aryl boronic acid substrates, as well as good to excellent conversion. In particular, the [(18)F]trifluoromethylation of boronic acids was found to outperform [(18)F]trifluoromethylation reactions of halogenated aryl precursors with regard to conversion, reaction conditions, and kinetics. PMID:25155042

  20. A universal procedure for the [¹⁸F]trifluoromethylation of aryl iodides and aryl boronic acids with highly improved specific activity.

    PubMed

    van der Born, Dion; Sewing, Claudia; Herscheid, J Koos D M; Windhorst, Albert D; Orru, Romano V A; Vugts, Danielle J

    2014-10-01

    Herein, we describe a valuable method for the introduction of the [(18)F]CF3 group into arenes with highly improved specific activity by the reaction of [(18)F]trifluoromethane with aryl iodides or aryl boronic acids. This [(18)F]trifluoromethylation reaction is the first to be described in which the [(18)F]CF3 products are generated in actual trace amounts and can therefore effectively be used as PET tracers. The method shows broad scope with respect to possible aryl iodide and aryl boronic acid substrates, as well as good to excellent conversion. In particular, the [(18)F]trifluoromethylation of boronic acids was found to outperform [(18)F]trifluoromethylation reactions of halogenated aryl precursors with regard to conversion, reaction conditions, and kinetics.

  1. Boronic Acid: A Bio-Inspired Strategy To Increase the Sensitivity and Selectivity of Fluorescent NADH Probe.

    PubMed

    Wang, Lu; Zhang, Jingye; Kim, Beomsue; Peng, Juanjuan; Berry, Stuart N; Ni, Yong; Su, Dongdong; Lee, Jungyeol; Yuan, Lin; Chang, Young-Tae

    2016-08-24

    Fluorescent probes have emerged as an essential tool in the molecular recognition events in biological systems; however, due to the complex structures of certain biomolecules, it remains a challenge to design small-molecule fluorescent probes with high sensitivity and selectivity. Inspired by the enzyme-catalyzed reaction between biomolecule and probe, we present a novel combination-reaction two-step sensing strategy to improve sensitivity and selectivity. Based on this strategy, we successfully prepared a turn-on fluorescent reduced nicotinamide adenine dinucleotide (NADH) probe, in which boronic acid was introduced to bind with NADH and subsequently accelerate the sensing process. This probe shows remarkably improved sensitivity (detection limit: 0.084 μM) and selectivity to NADH in the absence of any enzymes. In order to improve the practicality, the boronic acid was further modified to change the measurement conditions from alkalescent (pH 9.5) to physiological environment (pH 7.4). Utilizing these probes, we not only accurately quantified the NADH weight in a health care product but also evaluated intracellular NADH levels in live cell imaging. Thus, these bio-inspired fluorescent probes offer excellent tools for elucidating the roles of NADH in biological systems as well as a practical strategy to develop future sensitive and selective probes for complicated biomolecules. PMID:27500425

  2. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry.

    PubMed

    Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2015-01-28

    The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2(nd) generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent. PMID:25502878

  3. Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Cyrański, Michał K.; Jezierska, Aneta; Klimentowska, Paulina; Panek, Jarosław J.; Żukowska, GraŻyna Z.; Sporzyński, Andrzej

    2008-03-01

    Boronic acids have emerged as one of the most useful class of organoboron molecules, with application in synthesis, catalysis, analytical chemistry, supramolecular chemistry, biology, and medicine. In this study, the structural and spectroscopic properties of n-butylboronic acid were investigated using experimental and theoretical approaches. X-ray crystallography method provided structural information on the studied compound in the solid state. Infrared and Raman spectroscopy served as tools for the data collection on vibrational modes of the analyzed system. Car-Parrinello molecular dynamics simulations in solid state were carried out at 100 and 293K to investigate an environmental and temperature influence on molecular properties of the n-butylboronic acid. Analysis of interatomic distances of atoms involved in the intermolecular hydrogen bond was performed to study the proton motion in the crystal. Subsequently, Fourier transform of autocorrelation functions of atomic velocities and dipole moment was applied to study the vibrational properties of the compound. In addition, the inclusion of quantum nature of proton motion was performed for O-H stretching vibrational mode by application of the envelope method for intermolecular hydrogen-bonded system. The second part of the computational study consists of simulations performed in vacuo. Monomeric and dimeric forms of the n-butylboronic acid were investigated using density functional theory and Møller-Plesset second-order perturbation method. The basis set superposition error was estimated. Finally, atoms in molecules (AIM) theory was applied to study electron density topology and properties of the intermolecular hydrogen bond. Successful reproduction of the molecular properties of the n-butylboronic acid by computational methodologies, presented in the manuscript, indicates the way for future studies of large boron-containing organic systems of importance in biology or materials science.

  4. Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods.

    PubMed

    Cyrański, Michał K; Jezierska, Aneta; Klimentowska, Paulina; Panek, Jarosław J; Zukowska, Grazyna Z; Sporzyński, Andrzej

    2008-03-28

    Boronic acids have emerged as one of the most useful class of organoboron molecules, with application in synthesis, catalysis, analytical chemistry, supramolecular chemistry, biology, and medicine. In this study, the structural and spectroscopic properties of n-butylboronic acid were investigated using experimental and theoretical approaches. X-ray crystallography method provided structural information on the studied compound in the solid state. Infrared and Raman spectroscopy served as tools for the data collection on vibrational modes of the analyzed system. Car-Parrinello molecular dynamics simulations in solid state were carried out at 100 and 293 K to investigate an environmental and temperature influence on molecular properties of the n-butylboronic acid. Analysis of interatomic distances of atoms involved in the intermolecular hydrogen bond was performed to study the proton motion in the crystal. Subsequently, Fourier transform of autocorrelation functions of atomic velocities and dipole moment was applied to study the vibrational properties of the compound. In addition, the inclusion of quantum nature of proton motion was performed for O-H stretching vibrational mode by application of the envelope method for intermolecular hydrogen-bonded system. The second part of the computational study consists of simulations performed in vacuo. Monomeric and dimeric forms of the n-butylboronic acid were investigated using density functional theory and Moller-Plesset second-order perturbation method. The basis set superposition error was estimated. Finally, atoms in molecules (AIM) theory was applied to study electron density topology and properties of the intermolecular hydrogen bond. Successful reproduction of the molecular properties of the n-butylboronic acid by computational methodologies, presented in the manuscript, indicates the way for future studies of large boron-containing organic systems of importance in biology or materials science. PMID:18376948

  5. Discovery of 2-[5-(4-Fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic Acid (SX-517): Noncompetitive Boronic Acid Antagonist of CXCR1 and CXCR2

    PubMed Central

    2015-01-01

    The G protein-coupled chemokine receptors CXCR1 and CXCR2 play key roles in inflammatory diseases and carcinogenesis. In inflammation, they activate and recruit polymorphonuclear cells (PMNs) through binding of the chemokines CXCL1 (CXCR1) and CXCL8 (CXCR1 and CXCR2). Structure–activity studies that examined the effect of a novel series of S-substituted 6-mercapto-N-phenyl-nicotinamides on CXCL1-stimulated Ca2+ flux in whole human PMNs led to the discovery of 2-[5-(4-fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic acid (SX-517), a potent noncompetitive boronic acid CXCR1/2 antagonist. SX-517 inhibited CXCL1-induced Ca2+ flux (IC50 = 38 nM) in human PMNs but had no effect on the Ca2+ flux induced by C5a, fMLF, or PAF. In recombinant HEK293 cells that stably expressed CXCR2, SX-517 antagonized CXCL8-induced [35S]GTPγS binding (IC50 = 60 nM) and ERK1/2 phosphorylation. Inhibition was noncompetitive, with SX-517 unable to compete the binding of [125I]-CXCL8 to CXCR2 membranes. SX-517 (0.2 mg/kg iv) significantly inhibited inflammation in an in vivo murine model. SX-517 is the first reported boronic acid chemokine antagonist and represents a novel pharmacophore for CXCR1/2 antagonism. PMID:25254640

  6. Discovery of 2-[5-(4-Fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic Acid (SX-517): Noncompetitive Boronic Acid Antagonist of CXCR1 and CXCR2.

    PubMed

    Maeda, Dean Y; Peck, Angela M; Schuler, Aaron D; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Fan, Guo-Huang; Zebala, John A

    2014-10-23

    The G protein-coupled chemokine receptors CXCR1 and CXCR2 play key roles in inflammatory diseases and carcinogenesis. In inflammation, they activate and recruit polymorphonuclear cells (PMNs) through binding of the chemokines CXCL1 (CXCR1) and CXCL8 (CXCR1 and CXCR2). Structure-activity studies that examined the effect of a novel series of S-substituted 6-mercapto-N-phenyl-nicotinamides on CXCL1-stimulated Ca(2+) flux in whole human PMNs led to the discovery of 2-[5-(4-fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic acid (SX-517), a potent noncompetitive boronic acid CXCR1/2 antagonist. SX-517 inhibited CXCL1-induced Ca(2+) flux (IC50 = 38 nM) in human PMNs but had no effect on the Ca(2+) flux induced by C5a, fMLF, or PAF. In recombinant HEK293 cells that stably expressed CXCR2, SX-517 antagonized CXCL8-induced [(35)S]GTPγS binding (IC50 = 60 nM) and ERK1/2 phosphorylation. Inhibition was noncompetitive, with SX-517 unable to compete the binding of [(125)I]-CXCL8 to CXCR2 membranes. SX-517 (0.2 mg/kg iv) significantly inhibited inflammation in an in vivo murine model. SX-517 is the first reported boronic acid chemokine antagonist and represents a novel pharmacophore for CXCR1/2 antagonism.

  7. Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron.

    PubMed

    Kajiwara, Mari; Ito, Yoshio N; Miyazaki, Yoshinobu; Fujimori, Takao; Takehara, Kô; Yoshimura, Kazuhisa

    2015-02-14

    The ternary system of boric acid, salicylaldehyde (SA) and H-acid (HA) was voltammetrically studied from kinetic and equilibrium points of view. The effect of the SA substituents was also studied by using two analogs, 5-fluorosalicylaldehyde (F-SA) and 5-methylsalicylaldehyde (Me-SA). The three cathodic peaks of Azomethine H (AzH), Azomethine H-boric acid complex (AzB), and free SA were observed in the solution containing boric acid, SA and HA. The peak potentials of AzH and SA were shifted to negative potentials with increasing pH, while the peak potential of AzB was pH-independent. This difference indicates that a proton participates in the charge-transfer steps of the AzH and SA reductions, but not in that of the AzB reduction. The formation constants for the AzB complexation were similar among all the examined analogs. In the kinetic study, the reaction rate was higher in an acidic condition for the AzH formation, but in a neutral condition for the AzB formation. The rate constants for the AzB complexes were in the order of F-SA > SA ≈ Me-SA, indicating that the fluoro group accelerates the F-AzB complexation. The AzB complexation mechanism is considered to consist of more than three steps, i.e., the pre-equilibrium of the salicylaldehyde-boric acid complex (SA-B) formation, the nucleophilic attack of HA on SA-B, and the remaining some steps to form AzB. Based on these results, the voltammetric determination method of boron using F-SA was optimized, which allowed the boron concentration to be determined within only 5 min with a 0.03 mg B dm(-3) detection limit.

  8. Thermodynamic Analysis of the Selectivity Enhancement Obtained by Using Smart Hydrogels That Are Zwitterionic When Detecting Glucose With Boronic Acid Moieties

    PubMed Central

    Horkay, F.; Cho, S. H.; Tathireddy, P.; Rieth, L.; Solzbacher, F.; Magda, J.

    2011-01-01

    Because the boronic acid moiety reversibly binds to sugar molecules and has low cytotoxicity, boronic acid-containing hydrogels are being used in a variety of implantable glucose sensors under development, including sensors based on optical, fluorescence, and swelling pressure measurements. However, some method of glucose selectivity enhancement is often necessary, because isolated boronic acid molecules have a binding constant with glucose that is some forty times smaller than their binding constant with fructose, the second most abundant sugar in the human body. In many cases, glucose selectivity enhancement is obtained by incorporating pendant tertiary amines into the hydrogel network, thereby giving rise to a hydrogel that is zwitterionic at physiological pH. However, the mechanism by which incorporation of tertiary amines confers selectivity enhancement is poorly understood. In order to clarify this mechanism, we use the osmotic deswelling technique to compare the thermodynamic interactions of glucose and fructose with a zwitterionic smart hydrogel containing boronic acid moieties. We also investigate the change in the structure of the hydrogel that occurs when it binds to glucose or to fructose using the technique of small angle neutron scattering. PMID:22190765

  9. Adsorption of boric acid on pure and humic acid coated am-Al(OH)3: A boron K-edge XANES study.

    PubMed

    Xu, Dani; Peak, Derek

    2007-02-01

    The fate and mobility of boric acid in the environment is largely controlled by adsorption reactions with soil organic matter and soil minerals to form surface complexes (Soil Sci Soc. Am. J. 1991, 55, 1582; Geochim. Cosmochim. Acta 2002, 67, 2551; Soil Sci. Soc. Am. J. 1995, 59, 405; Environ. Sci. Technol. 1995, 29, 302). In this study, boric acid adsorption on pure am-Al(OH)3 and 5% (w/w) humic acid (HA) coated am-Al(OH)3 were investigated both as a function of pH (4.5-11) and initial boric acid concentration (0-4.5 mmol L(-1)). Batch adsorption isotherm experiments were also conducted with samples exposed to atmospheric CO2 and anaerobic (N2) conditions to examine the effects of dissolved CO2 on boric acid adsorption. Boron (B) K-edge X-ray absorption near-edge structure (XANES) spectroscopy was used to investigate the coordination of boric acid adsorbed at mineral/water interfaces. The XANES spectra of boric acid adsorption samples showed that both trigonally and tetrahedrally coordinated B complexes were present on the mineral surface. Both macroscopic and spectroscopic experiments revealed that the combination of HA coating on am-Al(OH)3 and dissolved CO2 decreased boric acid adsorption compared to adsorption on pure am-Al(OH)3.

  10. Asymmetric synthesis of protected α-amino boronic acid derivatives with an air- and moisture-stable Cu(II) catalyst.

    PubMed

    Buesking, Andrew W; Bacauanu, Vlad; Cai, Irene; Ellman, Jonathan A

    2014-04-18

    The asymmetric borylation of N-tert-butanesulfinyl imines with bis(pinacolato)diboron is achieved using a Cu(II) catalyst and provides access to synthetically useful and pharmaceutically relevant α-amino boronic acid derivatives. The Cu(II)-catalyzed reaction is performed on the benchtop in air at room temperature using commercially available, inexpensive reagents at low catalyst loadings. A variety of N-tert-butanesulfinyl imines, including ketimines, react readily to provide α-sulfinamido boronate esters in good yields and with high stereoselectivity. In addition, this transformation is applied to the straightforward, telescoped synthesis of α-sulfinamido trifluoroborates. PMID:24684495

  11. Tribological properties of boric acid and boric-acid-forming surfaces: Part 2, Formation and self-lubrication mechanisms of boric acid films on boron- and boric-oxide-containing surfaces

    SciTech Connect

    Erdemir, A.; Fenske, G.R.; Erck, R.A.; Nichols, F.A.; Busch, D.

    1990-01-01

    This paper describes the formation and self-lubricating mechanisms of boric acid films on boron- and boric oxide-containing surfaces. As reported in part I, boric acid, owing to a layered triclinic crystal structure and weak interlayer bonds, enjoys an unusual lubrication capability. RF-magnetron sputtering and vacuum evaporation techniques were used to produce thin coatings of boron and boric oxides on steel substrates. The results of tribological experiments indicate that the room temperature friction coefficient of tribosystems that include boron and/or boric oxide coatings ranges from 0.05 to 0.07, depending on the coating type. Laser-Raman spectroscopy of these surfaces revealed that this low friction is associated with a thin boric acid film that forms on the surfaces of these coatings. The fabrication and potential importance of boric acid and boric acid-forming surfaces for practical applications are enumerated. Surface engineering of tribomaterials, such as these demonstrated in this paper, is suggested as a new lubrication concept for use in present and future tribological industries. 16 refs.

  12. Chemometric study on the electrochemical incineration of nitrilotriacetic acid using platinum and boron-doped diamond anode.

    PubMed

    Zhang, Chunyong; He, Zhenzhu; Wu, Jingyu; Fu, Degang

    2015-07-01

    This study investigated the electrochemical incineration of nitrilotriacetic acid (NTA) at boron-doped diamond (BDD) and platinum (Pt) anodes. Trials were performed in the presence of sulfate electrolyte media under recirculation mode. The parameters that influence the degradation efficiency were investigated, including applied current density, flow rate, supporting electrolyte concentration and reaction time. To reduce the number of experiments, the system had been managed under chemometric technique named Doehlert matrix. As a consequence, the mineralization of NTA demonstrated similar behavior upon operating parameters on these two anodes. Further kinetic study indicated that the degradations followed pseudo-first-order reactions for both BDD and Pt anodes, and the reaction rate constant of the former was found to be higher than that of the latter. Such difference could be interpreted by results from fractal analysis. In addition, a reaction sequence for NTA mineralization considering all the detected intermediates was also proposed.

  13. Spectroscopic studies on 9H-carbazole-9-(4-phenyl) boronic acid pinacol ester by DFT method

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Kurt, M.; Can, M.; Horzum, N.; Atac, A.

    2016-08-01

    9H-Carbazole-9-(4-phenyl) boronic acid pinacol ester (9-CPBAPE) molecule was investigated by FT-IR, Raman, UV-vis, 1H and 13C NMR spectra. FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. 1H, 13C NMR and UV-vis spectra were recorded in dimethyl sulfoxide (DMSO) solution. The results of theoretical calculations for the spectra of the title molecule were compared with the experimental spectra. The highest occupied molecular orbital (HOMO) the lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential (MEP) analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G (d,p) basis set calculations using the Gaussian 09 program. The total (TDOS), partial (PDOS) density of state and overlap population density of state (OPDOS) diagrams analyses were performed using GaussSum 2.2 program.

  14. Physisorption of Nucleic Acid Bases on Boron Nitride Nanotubes: A new class of Hybrid Nano-Bio Materials

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Saikat; Gowtham, S.; Scheicher, Ralph; Pandey, Ravindra; Karna, Shashi

    2010-03-01

    We investigate the adsorption of the nucleic acid bases, adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first principles density functional theory calculations. The calculated binding energy shows the order: G>A C T U implying that the interaction strength of the (high-curvature) BNNT with the nucleobases, G being an exception, is nearly the same. A higher binding energy for the G-BNNT conjugate appears to result from a stronger hybridization of the molecular orbitals of G and BNNT, since the charge transfer involved in the physisorption process is insignificant. A smaller energy gap predicted for the G-BNNT conjugate relative to that of the pristine BNNT may be useful in application of this class of biofunctional materials to the design of the next generation sensing devices.

  15. Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode.

    PubMed

    Yardım, Yavuz; Keskin, Ertugrul; Şentürk, Zühre

    2013-11-15

    Herein, a boron-doped diamond (BDD) electrode that is anodically pretreated was used for the simultaneous determination of caffeine (CAF) and chlorogenic acid (CGA) by cyclic and adsorptive stripping voltammetry. The dependence of peak current and potential on pH, scan rate, accumulation parameters and other experimental variables were studied. By using square-wave stripping mode after 60 s accumulation under open-circuit voltage, the BDD electrode was able to separate the oxidation peak potentials of CAF and CGA present in binary mixtures by about 0.4V in Britton-Robinson buffer at pH 1.0. The limits of detection were 0.107 µg mL(-1) (5.51×10(-7) M) for CAF, and 0.448 µg mL(-1) (1.26×10(-6) M) for CGA. The practical applicability of this methodology was tested in commercially available beverage samples. PMID:24148509

  16. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry

    NASA Astrophysics Data System (ADS)

    Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2015-01-01

    The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal

  17. Chemometric study on the electrochemical incineration of nitrilotriacetic acid using platinum and boron-doped diamond anode.

    PubMed

    Zhang, Chunyong; He, Zhenzhu; Wu, Jingyu; Fu, Degang

    2015-07-01

    This study investigated the electrochemical incineration of nitrilotriacetic acid (NTA) at boron-doped diamond (BDD) and platinum (Pt) anodes. Trials were performed in the presence of sulfate electrolyte media under recirculation mode. The parameters that influence the degradation efficiency were investigated, including applied current density, flow rate, supporting electrolyte concentration and reaction time. To reduce the number of experiments, the system had been managed under chemometric technique named Doehlert matrix. As a consequence, the mineralization of NTA demonstrated similar behavior upon operating parameters on these two anodes. Further kinetic study indicated that the degradations followed pseudo-first-order reactions for both BDD and Pt anodes, and the reaction rate constant of the former was found to be higher than that of the latter. Such difference could be interpreted by results from fractal analysis. In addition, a reaction sequence for NTA mineralization considering all the detected intermediates was also proposed. PMID:25747300

  18. Chemistry and biology of boron.

    PubMed

    Loomis, W D; Durst, R W

    1992-04-01

    Boron is an essential nutrient for certain organisms, notably vascular plants and diatoms. Cyanobacteria require boron for formation of nitrogen-fixing heterocysts and boron may be beneficial to animals. Boron deficiency in plants produces manifold symptoms: many functions have been postulated. Deficiency symptoms first appear at growing points, within hours in root tips and within minutes or seconds in pollen tube tips, and are characterized by cell wall abnormalities. Boron-deficient tissues are brittle or fragile, while plants grown on high boron levels may have unusually flexible or resilient tissues. Borate forms cyclic diesters with appropriate diols or polyols. The most stable are formed with cis-diols on a furanoid ring. Two compounds have this structure physiologically: ribose in ribonucleotides and RNA, and apiose in the plant cell wall. Germanium can substitute for boron in carrot cell cultures. Both boron and germanium are localized primarily in the cell wall. We postulate that borate-apiofuranose ester cross-links are the auxin-sensitive acid-growth link in vascular plants, that the cyanobacterial heterocyst envelope depends on borate cross-linking of mannopyranose and/or galactopyranose residues in a polysaccharide-lipid environment, and that boron in diatoms forms ester cross-links in the polysaccharide cell wall matrix rather than boron-silicon interactions. Complexing of ribonucleotides is probably a factor in boron toxicity. PMID:1605832

  19. Efficient nuclear drug translocation and improved drug efficacy mediated by acidity-responsive boronate-linked dextran/cholesterol nanoassembly.

    PubMed

    Zhu, Jing-Yi; Lei, Qi; Yang, Bin; Jia, Hui-Zhen; Qiu, Wen-Xiu; Wang, Xuli; Zeng, Xuan; Zhuo, Ren-Xi; Feng, Jun; Zhang, Xian-Zheng

    2015-06-01

    The present study reported a lysosome-acidity-targeting bio-responsive nanovehicle self-assembled from dextran (Dex) and phenylboronic acid modified cholesterol (Chol-PBA), aiming at the nucleus-tropic drug delivery. The prominent advantage of this assembled nanoconstruction arose from its susceptibility to acidity-labile dissociation concurrently accompanied with the fast liberation of encapsulated drugs, leading to efficient nuclear drug translocation and consequently favorable drug efficacy. By elaborately exploiting NH4Cl pretreatment to interfere with the cellular endosomal acidification progression, this study clearly evidenced at a cellular level the strong lysosomal-acidity dependency of nuclear drug uptake efficiency, which was shown to be the main factor influencing the drug efficacy. The boronate-linked nanoassembly displayed nearly no cytotoxicity and can remain structural stability under the simulated physiological conditions including 10% serum and the normal blood sugar concentration. The cellular exposure to cholesterol was found to bate the cellular uptake of nanoassembly in a dose-dependent manner, suggesting a cholesterol-associated mechanism of the intracellular internalization. The in vivo antitumor assessment in xenograft mouse models revealed the significant superiority of DOX-loaded Dex/Chol-PBA nanoassembly over the controls including free DOX and the DOX-loaded non-sensitive Dex-Chol, as reflected by the more effective tumor-growth inhibition and the better systematic safety. In terms of the convenient preparation, sensitive response to lysosomal acidity and efficient nuclear drug translocation, Dex/Chol-PBA nanoassembly derived from natural materials shows promising potentials as the nanovehicle for nucleus-tropic drug delivery especially for antitumor agents. More attractively, this study offers a deeper insight into the mechanism concerning the contribution of acidity-responsive delivery to the enhanced chemotherapy performance. PMID

  20. Efficient nuclear drug translocation and improved drug efficacy mediated by acidity-responsive boronate-linked dextran/cholesterol nanoassembly.

    PubMed

    Zhu, Jing-Yi; Lei, Qi; Yang, Bin; Jia, Hui-Zhen; Qiu, Wen-Xiu; Wang, Xuli; Zeng, Xuan; Zhuo, Ren-Xi; Feng, Jun; Zhang, Xian-Zheng

    2015-06-01

    The present study reported a lysosome-acidity-targeting bio-responsive nanovehicle self-assembled from dextran (Dex) and phenylboronic acid modified cholesterol (Chol-PBA), aiming at the nucleus-tropic drug delivery. The prominent advantage of this assembled nanoconstruction arose from its susceptibility to acidity-labile dissociation concurrently accompanied with the fast liberation of encapsulated drugs, leading to efficient nuclear drug translocation and consequently favorable drug efficacy. By elaborately exploiting NH4Cl pretreatment to interfere with the cellular endosomal acidification progression, this study clearly evidenced at a cellular level the strong lysosomal-acidity dependency of nuclear drug uptake efficiency, which was shown to be the main factor influencing the drug efficacy. The boronate-linked nanoassembly displayed nearly no cytotoxicity and can remain structural stability under the simulated physiological conditions including 10% serum and the normal blood sugar concentration. The cellular exposure to cholesterol was found to bate the cellular uptake of nanoassembly in a dose-dependent manner, suggesting a cholesterol-associated mechanism of the intracellular internalization. The in vivo antitumor assessment in xenograft mouse models revealed the significant superiority of DOX-loaded Dex/Chol-PBA nanoassembly over the controls including free DOX and the DOX-loaded non-sensitive Dex-Chol, as reflected by the more effective tumor-growth inhibition and the better systematic safety. In terms of the convenient preparation, sensitive response to lysosomal acidity and efficient nuclear drug translocation, Dex/Chol-PBA nanoassembly derived from natural materials shows promising potentials as the nanovehicle for nucleus-tropic drug delivery especially for antitumor agents. More attractively, this study offers a deeper insight into the mechanism concerning the contribution of acidity-responsive delivery to the enhanced chemotherapy performance.

  1. Simultaneous Disulfide and Boronic Acid Ester Exchange in Dynamic Combinatorial Libraries.

    PubMed

    Diemer, Sanna L; Kristensen, Morten; Rasmussen, Brian; Beeren, Sophie R; Pittelkow, Michael

    2015-09-10

    Dynamic combinatorial chemistry has emerged as a promising tool for the discovery of complex receptors in supramolecular chemistry. At the heart of dynamic combinatorial chemistry are the reversible reactions that enable the exchange of building blocks between library members in dynamic combinatorial libraries (DCLs) ensuring thermodynamic control over the system. If more than one reversible reaction operates in a single dynamic combinatorial library, the complexity of the system increases dramatically, and so does its possible applications. One can imagine two reversible reactions that operate simultaneously or two reversible reactions that operate independently. Both these scenarios have advantages and disadvantages. In this contribution, we show how disulfide exchange and boronic ester transesterification can function simultaneous in dynamic combinatorial libraries under appropriate conditions. We describe the detailed studies necessary to establish suitable reaction conditions and highlight the analytical techniques appropriate to study this type of system.

  2. Highly Luminescent Microporous Organic Polymer with Lewis Acidic Boron Sites on the Pore Surface: Ratiometric Sensing and Capture of F(-) Ions.

    PubMed

    Suresh, Venkata M; Bandyopadhyay, Arkamita; Roy, Syamantak; Pati, Swapan K; Maji, Tapas Kumar

    2015-07-20

    Reversible and selective capture/detection of F(-) ions in water is of the utmost importance, as excess intake leads to adverse effects on human health. Highly robust Lewis acidic luminescent porous organic materials have potential for efficient sequestration and detection of F(-) ions. Herein, the rational design and synthesis of a boron-based, Lewis acidic microporous organic polymer (BMOP) derived from tris(4-bromo-2,3,5,6-tetramethylphenyl)boron nodes and diethynylbiphenyl linkers with a pore size of 1.08 nm for selective turn-on sensing and capture of F(-) ion are reported. The presence of a vacant pπ orbital on the boron center of BMOP results in intramolecular charge transfer (ICT) from the linker to boron. BMOP shows selective turn-on blue emission for F(-) ions in aqueous mixtures with a detection limit of 2.6 μM. Strong B-F interactions facilitate rapid sequestration of F(-) by BMOP. The ICT emission of BMOP can be reversibly regenerated by addition of an excess of water, and the polymer can be reused several times. PMID:26074403

  3. Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films.

    PubMed

    Tyszczuk-Rotko, Katarzyna; Bęczkowska, Ilona; Wójciak-Kosior, Magdalena; Sowa, Ireneusz

    2014-11-01

    The paper describes the fabrication and application of a novel sensor (a boron-doped diamond electrode modified with Nafion and lead films) for the simultaneous determination of paracetamol and ascorbic acid by differential pulse voltammetry. The main advantage of the lead film and polymer covered boron-doped diamond electrode is that the sensitivity of the stripping responses is increased and the separation of paracetamol and ascorbic acid signals is improved due to the modification of the boron-doped diamond surface by the lead layer. Additionally, the repeatability of paracetamol and ascorbic acid signals is improved by the application of the Nafion film coating. In the presence of oxygen, linear calibration curves were obtained in a wide concentration range from 5×10(-7) to 2×10(-4) mol L(-1) for paracetamol and from 1×10(-6) to 5×10(-4) mol L(-1) for ascorbic acid. The analytical utility of the differential pulse voltammetric method elaborated was tested in the assay of paracetamol and ascorbic acid in commercially available pharmaceutical formulations and the method was validated by high performance liquid chromatography coupled with diode array detector.

  4. Site and chirality selective chemical modifications of boron nitride nanotubes (BNNTs) via Lewis acid-base interactions.

    PubMed

    Sundaram, Rajashabala; Scheiner, Steve; Roy, Ajit K; Kar, Tapas

    2015-02-01

    The pristine BNNTs contain both Lewis acid (boron) and Lewis base (nitrogen) centers at their surface. Interactions of ammonia and borane molecules, representatives of Lewis base and acid as adsorbates respectively, with matching sites at the surface of BNNTs, have been explored in the present DFT study. Adsorption energies suggest stronger chemisorption (about 15-20 kcal mol(-1)) of borane than ammonia (about 5-10 kcal mol(-1)) in both armchair (4,4) and zigzag (8,0) variants of the tube. NH3 favors (8,0) over the (4,4) tube, whereas BH3 exhibits the opposite preference, indicating some chirality dependence on acid-base interactions. A new feature of bonding is found in BH3/AlH3-BNNTs (at the edge site) complexes, where one hydrogen of the guest molecule is involved in three-center two-electron bonding, in addition to dative covalent bond (N: → B). This interaction causes a reversal of electron flow from borane/alane to BNNT, making the tube an electron acceptor, suggesting tailoring of electronic properties could be possible by varying strength of incoming Lewis acids. On the contrary, BNNTs always behave as electron acceptor in ammonia complexes. IR, XPS and NMR spectra show some characteristic features of complexes and can help experimentalists to identify not only structures of such complexes but also the location of the guest molecules and design second functionalizations. Interaction with several other neutral BF3, BCl3, BH2CH3 and ionic CH3(+) acids as well as amino group (CH3NH2 and NH2COOH) were also studied. The strongest interaction (>100 kcal mol(-1)) is found in BNNT-CH3(+) complexes and H-bonds are the only source of stability of NH2COOH-BNNT complexes. PMID:25559141

  5. A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Scott, K.

    2015-07-01

    A composite membrane based on a non-stoichiometric composition of BPO4 with excess of PO4 (BPOx) was synthesised and characterised for medium temperature fuel cell use (120-180 °C). The electrolyte was characterised by FTIR, SS-NMR, TGA and XRD and showed that the B-O is tetrahedral, in agreement with reports in the literature that boron phosphorus oxide compounds at B:P < 1 are exclusively built of borate and phosphate tetrahedra. Platinum micro electrodes were used to study the electrolyte compatibility and stability towards oxygen reduction at 150 °C and to obtain kinetic and mass transport parameters. The conductivities of the pure BPOx membrane electrolyte and a Polybenzimidazole (PBI)-4BPOx composite membrane were 7.9 × 10-2 S cm-1 and 4.5 × 10-2 S cm-1 respectively at 150 °C, 5%RH. Fuel cell tests showed a significant enhancement in performance of BPOx over that of typical 5.6H3PO4-PBI membrane electrolyte. The enhancement is due to the improved ionic conductivity (3×), a higher exchange current density of the oxygen reduction (30×) and a lower membrane gas permeability (10×). Fuel cell current densities at 0.6 V were 706 and 425 mA cm-2 for BPOx and 5.6H3PO4-PBI, respectively, at 150 °C with O2 (atm).

  6. Palladium-catalyzed cross-coupling of sterically demanding boronic acids with α-bromocarbonyl compounds.

    PubMed

    Zimmermann, Bettina; Dzik, Wojciech I; Himmler, Thomas; Goossen, Lukas J

    2011-10-01

    A catalyst system generated in situ from Pd(dba)(2) and tri(o-tolyl)phosphine mediates the coupling of arylboronic acids with alkyl α-bromoacetates under formation of arylacetic acid esters at unprecedented low loadings. The new protocol, which involves potassium fluoride as the base and catalytic amounts of benzyltriethylammonium bromide as a phase transfer catalyst, is uniquely effective for the synthesis of sterically demanding arylacetic acid derivatives.

  7. Studies on the adsorption of cell impurities from plasmid-containing lysates to phenyl boronic acid chromatographic beads.

    PubMed

    Gomes, A Gabriela; Azevedo, Ana M; Aires-Barros, M Raquel; Prazeres, D Miguel F

    2011-12-01

    Plasmid DNA (pDNA) is purified directly from alkaline lysis-derived Escherichia coli (E. coli) lysates by phenyl boronate (PB) chromatography. The method explores the ability of PB ligands to bind covalently, but reversibly, to cis-diol-containing impurities like RNA and lipopolysaccharides (LPS), leaving pDNA in solution. In spite of this specificity, cis-diol free species like proteins and genomic DNA (gDNA) are also removed. This is a major advantage since the process is designed to keep the target pDNA from binding. The focus of this paper is on the study of the secondary interactions between the impurities (RNA, gDNA, proteins, LPS) in a pDNA-containing lysate and 3-amino PB controlled pore glass (CPG) matrices. Runs were designed to evaluate the role of adsorption buffer composition, feed type (pH, salt content), CPG matrix and sample pretreatment (RNase A, isopropanol precipitation). Water was chosen as the adsorption buffer over MgCl(2) solutions since it maximised pDNA yield (96.2±4.9%) and protein removal (61.3±3.0%), while providing for a substantial removal of RNA (65.5±3.5%) and gDNA (44.7±14.1%). Although the use of pH 3.5 maximised removal of impurities (~75%), the best compromise between plasmid yield (~96%) and RNA clearance (~60-70%) was obtained for a pH of 5.2. Plasmid yield was maximal (>96%) when the concentration of acetate and potassium ions in the incoming lysate feed were 1.7 M and 1.0 M, respectively. The pre-treatment of lysates with RNase A deteriorated the performance since the resulting oligoribonucleotides lack the cis-diol group at their 3' termini. Overall, the results support the idea that charge transfer interactions between the boron atom at acidic pH and electron donor groups in the aromatic bases of nucleic acids and side residues of proteins are responsible for the non-specific removal of gDNA, RNA and proteins.

  8. Studies on the adsorption of cell impurities from plasmid-containing lysates to phenyl boronic acid chromatographic beads.

    PubMed

    Gomes, A Gabriela; Azevedo, Ana M; Aires-Barros, M Raquel; Prazeres, D Miguel F

    2011-12-01

    Plasmid DNA (pDNA) is purified directly from alkaline lysis-derived Escherichia coli (E. coli) lysates by phenyl boronate (PB) chromatography. The method explores the ability of PB ligands to bind covalently, but reversibly, to cis-diol-containing impurities like RNA and lipopolysaccharides (LPS), leaving pDNA in solution. In spite of this specificity, cis-diol free species like proteins and genomic DNA (gDNA) are also removed. This is a major advantage since the process is designed to keep the target pDNA from binding. The focus of this paper is on the study of the secondary interactions between the impurities (RNA, gDNA, proteins, LPS) in a pDNA-containing lysate and 3-amino PB controlled pore glass (CPG) matrices. Runs were designed to evaluate the role of adsorption buffer composition, feed type (pH, salt content), CPG matrix and sample pretreatment (RNase A, isopropanol precipitation). Water was chosen as the adsorption buffer over MgCl(2) solutions since it maximised pDNA yield (96.2±4.9%) and protein removal (61.3±3.0%), while providing for a substantial removal of RNA (65.5±3.5%) and gDNA (44.7±14.1%). Although the use of pH 3.5 maximised removal of impurities (~75%), the best compromise between plasmid yield (~96%) and RNA clearance (~60-70%) was obtained for a pH of 5.2. Plasmid yield was maximal (>96%) when the concentration of acetate and potassium ions in the incoming lysate feed were 1.7 M and 1.0 M, respectively. The pre-treatment of lysates with RNase A deteriorated the performance since the resulting oligoribonucleotides lack the cis-diol group at their 3' termini. Overall, the results support the idea that charge transfer interactions between the boron atom at acidic pH and electron donor groups in the aromatic bases of nucleic acids and side residues of proteins are responsible for the non-specific removal of gDNA, RNA and proteins. PMID:22024344

  9. Fine-Tuning of Lewis Acidity: The Case of Borenium Hydride Complexes Derived from Bis(phosphinimino)amide Boron Precursors.

    PubMed

    Jaiswal, Kuldeep; Prashanth, Billa; Singh, Sanjay

    2016-07-25

    Reactions of bis(phosphinimino)amines LH and L'H with Me2 S⋅BH2 Cl afforded chloroborane complexes LBHCl (1) and L'BHCl (2), and the reaction of L'H with BH3 ⋅Me2 S gave a dihydridoborane complex L'BH2 (3) (LH=[{(2,4,6-Me3 C6 H2 N)P(Ph2 )}2 N]H and L'H=[{(2,6-iPr2 C6 H3 N)P(Ph2 )}2 N]H). Furthermore, abstraction of a hydride ion from L'BH2 (3) and LBH2 (4) mediated by Lewis acid B(C6 F5 )3 or the weakly coordinating ion pair [Ph3 C][B(C6 F5 )4 ] smoothly yielded a series of borenium hydride cations: [L'BH](+) [HB(C6 F5 )3 ](-) (5), [L'BH](+) [B(C6 F5 )4 ](-) (6), [LBH](+) [HB(C6 F5 )3 ](-) (7), and [LBH](+) [B(C6 F5 )4 ](-) (8). Synthesis of a chloroborenium species [LBCl](+) [BCl4 ](-) (9) without involvement of a weakly coordinating anion was also demonstrated from a reaction of LBH2 (4) with three equivalents of BCl3 . It is clear from this study that the sterically bulky strong donor bis(phosphinimino)amide ligand plays a crucial role in facilitating the synthesis and stabilization of these three-coordinated cationic species of boron. Therefore, the present synthetic approach is not dependent on the requirement of weakly coordinating anions; even simple BCl4 (-) can act as a counteranion with borenium cations. The high Lewis acidity of the boron atom in complex 8 enables the formation of an adduct with 4-dimethylaminopyridine (DMAP), [LBH⋅(DMAP)](+) [B(C6 F5 )4 ](-) (10). The solid-state structures of complexes 1, 5, and 9 were investigated by means of single-crystal X-ray structural analysis. PMID:27351275

  10. Detection of KPC Carbapenemase in Pseudomonas aeruginosa Isolated From Clinical Samples Using Modified Hodge Test and Boronic Acid Phenotypic Methods and Their Comparison With the Polymerase Chain Reaction

    PubMed Central

    Falahat, Saeed; Shojapour, Mana; Sadeghi, Abdorrahim

    2016-01-01

    Background Bacterial resistance to antibiotics has become a major source of concern for public health. Pseudomonas aeruginosa strains are important opportunistic pathogens. These bacteria have a high resistance to a wide range of existing antimicrobials and antibiotics. Objectives The present study was performed to evaluate the frequency of KPC in P. aeruginosa isolated from clinical samples of educational hospitals of Arak University of Medical Sciences, using the mentioned phenotypic and genotypic methods. Materials and Methods One hundred and eight non-duplicate clinical isolates of P. aeruginosa were collected from hospitals of Arak University of Medical Sciences, Arak, Iran. Antibacterial susceptibility was determined by the disk diffusion method. KPC production was confirmed by the Modified Hodge Test (MHT), which is a phenotypic test, and combined-disk test with boronic acid and the Polymerase Chain Reaction (PCR). Results In the present study, 13 isolates (12%) of P. aeruginosa were positive for KPC, using PCR. Comparison of the two phenotypic methods used in this study showed that boronic acid is more sensitive than MHT in identification of KPC-producing strains (84.6% vs. 77%). Conclusions Utilization of reliable methods for identifying carbapenemase-producing strains and determining their antibiotic resistance pattern could have a very important role in treatment of infections caused by these strains. A substantial amount of P. aeruginosa isolated from clinical samples of hospitals in Arak (Iran) produce KPC carbapenemase. Due to their low specificity, MHT and boronic acid phenotypic methods could not completely identify KPC-producing P. aeruginosa. However, the sensitivity of boronic acid phenotypic method in detection of KPC was higher than MHT. PMID:27800140

  11. Nickel-Catalyzed Cross Couplings of Benzylic Ammonium Salts and Boronic Acids: Stereospecific Formation of Diarylethanes via C–N Bond Activation

    PubMed Central

    Maity, Prantik; Shacklady-McAtee, Danielle M.; Yap, Glenn P. A.; Sirianni, Eric R.; Watson, Mary P.

    2014-01-01

    We have developed a nickel-catalyzed cross coupling of benzylic ammonium triflates with aryl boronic acids to afford diarylmethanes and diarylethanes. This reaction proceeds under mild reaction conditions and with exceptional functional group tolerance. Further, it transforms branched benzylic ammonium salts to diarylethanes with excellent chirality transfer, offering a new strategy for the synthesis of highly enantioenriched diarylethanes from readily available chiral benzylic amines. PMID:23268734

  12. Minerals Yearbook 1989: Boron

    SciTech Connect

    Lyday, P.A.

    1990-08-01

    U.S. production and sales of boron minerals and chemicals decreased during the year. Domestically, glass fiber insulation was the largest use for borates, followed by sales to distributors, textile-grade glass fibers, and borosilicate glasses. California was the only domestic source of boron minerals. The United States continued to provide essentially all of its own supply while maintaining a strong position as a source of sodium borate products and boric acid exported to foreign markets. Supplementary U.S. imports of Turkish calcium borate and calcium-sodium borate ores, borax, and boric acid, primarily for various glass uses, continued.

  13. Chemoselective Boronic Ester Synthesis by Controlled Speciation**

    PubMed Central

    Fyfe, James W B; Seath, Ciaran P; Watson, Allan J B

    2014-01-01

    Control of boronic acid solution speciation is presented as a new strategy for the chemoselective synthesis of boronic esters. Manipulation of the solution equilibria within a cross-coupling milieu enables the formal homologation of aryl and alkenyl boronic acid pinacol esters. The generation of a new, reactive boronic ester in the presence of an active palladium catalyst also facilitates streamlined iterative catalytic C=C bond formation and provides a method for the controlled oligomerization of sp2-hybridized boronic esters. PMID:25267096

  14. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide.

    PubMed

    Matsubara, Teruhiko; Ujie, Michiko; Yamamoto, Takashi; Akahori, Miku; Einaga, Yasuaki; Sato, Toshinori

    2016-08-01

    The progression of influenza varies according to age and the presence of an underlying disease; appropriate treatment is therefore required to prevent severe disease. Anti-influenza therapy, such as with neuraminidase inhibitors, is effective, but diagnosis at an early phase of infection before viral propagation is critical. Here, we show that several dozen plaque-forming units (pfu) of influenza virus (IFV) can be detected using a boron-doped diamond (BDD) electrode terminated with a sialic acid-mimic peptide. The peptide was used instead of the sialyloligosaccharide receptor, which is the common receptor of influenza A and B viruses required during the early phase of infection, to capture IFV particles. The peptide, which was previously identified by phage-display technology, was immobilized by click chemistry on the BDD electrode, which has excellent electrochemical characteristics such as low background current and weak adsorption of biomolecules. Electrochemical impedance spectroscopy revealed that H1N1 and H3N2 IFVs were detectable in the range of 20-500 pfu by using the peptide-terminated BDD electrode. Our results demonstrate that the BDD device integrated with the receptor-mimic peptide has high sensitivity for detection of a low number of virus particles in the early phase of infection. PMID:27457924

  15. Inhibiting the β-Lactamase of Mycobacterium tuberculosis (Mtb) with Novel Boronic Acid Transition-State Inhibitors (BATSIs).

    PubMed

    Kurz, Sebastian G; Hazra, Saugata; Bethel, Christopher R; Romagnoli, Chiara; Caselli, Emilia; Prati, Fabio; Blanchard, John S; Bonomo, Robert A

    2015-06-12

    BlaC, the single chromosomally encoded β-lactamase of Mycobacterium tuberculosis, has been identified as a promising target for novel therapies that rely upon β-lactamase inhibition. Boronic acid transition-state inhibitors (BATSIs) are a class of β-lactamase inhibitors which permit rational inhibitor design by combinations of various R1 and R2 side chains. To explore the structural determinants of effective inhibition, we screened a panel of 25 BATSIs to explore key structure-function relationships. We identified a cefoperazone analogue, EC19, which displayed slow, time-dependent inhibition against BlaC with a potency similar to that of clavulanate (Ki* of 0.65 ± 0.05 μM). To further characterize the molecular basis of inhibition, we solved the crystallographic structure of the EC19-BlaC(N172A) complex and expanded our analysis to variant enzymes. The results of this structure-function analysis encourage the design of a novel class of β-lactamase inhibitors, BATSIs, to be used against Mycobacterium tuberculosis. PMID:27622739

  16. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.

    PubMed

    Zhang, Qi; Fu, Ming-Chen; Yu, Hai-Zhu; Fu, Yao

    2016-08-01

    Mechanistic study has been carried out on the B(C6F5)3-catalyzed amine alkylation with carboxylic acid. The reaction includes acid-amine condensation and amide reduction steps. In condensation step, the catalyst-free mechanism is found to be more favorable than the B(C6F5)3-catalyzed mechanism, because the automatic formation of the stable B(C6F5)3-amine complex deactivates the catalyst in the latter case. Meanwhile, the catalyst-free condensation is constituted by nucleophilic attack and the indirect H2O-elimination (with acid acting as proton shuttle) steps. After that, the amide reduction undergoes a Lewis acid (B(C6F5)3)-catalyzed mechanism rather than a Brønsted acid (B(C6F5)3-coordinated HCOOH)-catalyzed one. The B(C6F5)3)-catalyzed reduction includes twice silyl-hydride transfer steps, while the first silyl transfer is the rate-determining step of the overall alkylation catalytic cycle. The above condensation-reduction mechanism is supported by control experiments (on both temperature and substrates). Meanwhile, the predicted chemoselectivity is consistent with the predominant formation of the alkylation product (over disilyl acetal product). PMID:27441997

  17. Comparing atrazine and cyanuric acid electro-oxidation on mixed oxide and boron-doped diamond electrodes.

    PubMed

    Malpass, Geoffroy R P; Salazar-Banda, Giancarlo R; Miwa, Douglas W; Machado, Sérgio A S; Motheo, Artur J

    2013-01-01

    The breakdown of pesticides has been promoted by many methods for clean up of contaminated soil and wastewaters. The main goal is to decrease the toxicity of the parent compound to achieve non-toxic compounds or even, when complete mineralization occurs, carbon dioxide and water. Therefore, electrochemical degradation (potentiostatic and galvanostatic) of both the pesticide atrazine and cyanuric acid (CA) at boron-doped diamond (BDD) and Ti/Ru0.3Ti0.7O2 dimensionally stable anode (DSA) electrodes, in different supporting electrolytes (NaCl and Na2SO4), is presented with the aim of establishing the influence of the operational parameters on the process efficiency. The results demonstrate that both the electrode material and the supporting electrolyte have a strong influence on the rate of atrazine removal. In the chloride medium, the rate of atrazine removal is always greater than in sulfate under all conditions employed. Furthermore, in the sulfate medium, atrazine degradation was significant only at the BDD electrode. The total organic carbon (TOC) load decreased by 79% and 56% at the BDD and DSA electrodes, respectively, in the chloride medium. This trend was maintained in the sulfate medium but the TOC removal was lower (i.e. 33% and 13% at BDD and DSA electrodes, respectively). CA, a stable atrazine degradation intermediate, was also studied and it is efficiently removed using the BDD electrode in both media, mainly when high current densities are employed. The use of the BDD electrode in the chloride medium not only degrades atrazine but also mineralized cyanuric acid leading to the higher TOC removal.

  18. Comparing atrazine and cyanuric acid electro-oxidation on mixed oxide and boron-doped diamond electrodes.

    PubMed

    Malpass, Geoffroy R P; Salazar-Banda, Giancarlo R; Miwa, Douglas W; Machado, Sérgio A S; Motheo, Artur J

    2013-01-01

    The breakdown of pesticides has been promoted by many methods for clean up of contaminated soil and wastewaters. The main goal is to decrease the toxicity of the parent compound to achieve non-toxic compounds or even, when complete mineralization occurs, carbon dioxide and water. Therefore, electrochemical degradation (potentiostatic and galvanostatic) of both the pesticide atrazine and cyanuric acid (CA) at boron-doped diamond (BDD) and Ti/Ru0.3Ti0.7O2 dimensionally stable anode (DSA) electrodes, in different supporting electrolytes (NaCl and Na2SO4), is presented with the aim of establishing the influence of the operational parameters on the process efficiency. The results demonstrate that both the electrode material and the supporting electrolyte have a strong influence on the rate of atrazine removal. In the chloride medium, the rate of atrazine removal is always greater than in sulfate under all conditions employed. Furthermore, in the sulfate medium, atrazine degradation was significant only at the BDD electrode. The total organic carbon (TOC) load decreased by 79% and 56% at the BDD and DSA electrodes, respectively, in the chloride medium. This trend was maintained in the sulfate medium but the TOC removal was lower (i.e. 33% and 13% at BDD and DSA electrodes, respectively). CA, a stable atrazine degradation intermediate, was also studied and it is efficiently removed using the BDD electrode in both media, mainly when high current densities are employed. The use of the BDD electrode in the chloride medium not only degrades atrazine but also mineralized cyanuric acid leading to the higher TOC removal. PMID:23837356

  19. N,N-Dimethyl formamide facilitated formation of hexagonal boron nitride from boric acid

    NASA Astrophysics Data System (ADS)

    Xue, Yanming; Elsanousi, Ammar; Fan, Ying; Lin, Jing; Li, Jie; Xu, Xuewen; Lu, Yang; Zhang, Lei; Zhang, Tingting; Tang, Chengchun

    2013-10-01

    In this paper, we report on a promoting novel process for the formation of h-BN plates by using N,N-dimethyl formamide-treated boric acid (DMF-BA). Using this B source, the formation of h-BN can be indeed improved greatly compared to using pure boric acid (BA). This method effectively reduces the content of boric acid and amorphous boric oxide, enhancing the transformation rate of h-BN. For preparation of pure h-BN, it can obviously lower the resultant temperature without further purification process. Via graphitization index (G.I.) calculation and thermostability analysis, the pure h-BN plates obtained from the DMF-BA would be a promising candidate for raw material of c-BN and low-temperature applications in the air.

  20. Crystal structure of (2′,3,6′-tri­chloro­biphenyl-2-yl)boronic acid tetra­hydro­furan monosolvate

    PubMed Central

    Durka, Krzysztof; Kliś, Tomasz; Serwatowski, Janusz

    2015-01-01

    The title compound, C12H8BCl3O2·C4H8O, crystallizes as a tetra­hydro­furan monosolvate. The boronic acid group adopts a syn–anti conformation and is significantly twisted along the carbon–boron bond by 69.2 (1)°, due to considerable steric hindrance from the 2′,6′-di­chloro­phenyl group that is located ortho to the boronic acid substituent. The phenyl rings of the biphenyl are almost perpendicular to one another, with a dihedral angle of 87.9 (1)° between them. In the crystal, adjacent mol­ecules are linked via O—H⋯O inter­actions to form centrosymmetric dimers with R 2 2(8) motifs, which have recently been shown to be energetically very favourable. The hy­droxy groups are in an anti conformation and are also engaged in hydrogen-bonding inter­actions with the O atom of the tetra­hydro­furan solvent mol­ecule. Cl⋯Cl halogen-bonding inter­actions [Cl⋯Cl = 3.464 (1) Å] link neigbouring dimers into chains running along [010]. Further aggregation occurs due to an additional Cl⋯Cl halogen bond [Cl⋯Cl = 3.387 (1) Å]. PMID:26870407

  1. Crystal structure of (2',3,6'-tri-chloro-biphenyl-2-yl)boronic acid tetra-hydro-furan monosolvate.

    PubMed

    Durka, Krzysztof; Kliś, Tomasz; Serwatowski, Janusz

    2015-12-01

    The title compound, C12H8BCl3O2·C4H8O, crystallizes as a tetra-hydro-furan monosolvate. The boronic acid group adopts a syn-anti conformation and is significantly twisted along the carbon-boron bond by 69.2 (1)°, due to considerable steric hindrance from the 2',6'-di-chloro-phenyl group that is located ortho to the boronic acid substituent. The phenyl rings of the biphenyl are almost perpendicular to one another, with a dihedral angle of 87.9 (1)° between them. In the crystal, adjacent mol-ecules are linked via O-H⋯O inter-actions to form centrosymmetric dimers with R 2 (2)(8) motifs, which have recently been shown to be energetically very favourable. The hy-droxy groups are in an anti conformation and are also engaged in hydrogen-bonding inter-actions with the O atom of the tetra-hydro-furan solvent mol-ecule. Cl⋯Cl halogen-bonding inter-actions [Cl⋯Cl = 3.464 (1) Å] link neigbouring dimers into chains running along [010]. Further aggregation occurs due to an additional Cl⋯Cl halogen bond [Cl⋯Cl = 3.387 (1) Å]. PMID:26870407

  2. Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels.

    PubMed

    Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I

    2015-12-01

    Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors. PMID:26372198

  3. Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels.

    PubMed

    Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I

    2015-12-01

    Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors.

  4. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.

    PubMed

    Guinea, Elena; Arias, Conchita; Cabot, Pere Lluís; Garrido, José Antonio; Rodríguez, Rosa María; Centellas, Francesc; Brillas, Enric

    2008-01-01

    Solutions containing 164 mg L(-1) salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H(2)O(2), electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O(2)-diffusion cathode. In the three latter procedures, 0.5mM Fe(2+) is added to the solution to form hydroxyl radical (()OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the O(2)-diffusion cathode. Total mineralization is attained for all methods with BDD and for photoelectro-Fenton and solar photoelectro-Fenton with Pt. The poor decontamination achieved in anodic oxidation and electro-Fenton with Pt is explained by the slow removal of most pollutants by ()OH formed from water oxidation at the Pt anode in comparison to their quick destruction with ()OH produced at BDD. ()OH generated from Fenton's reaction oxidizes rapidly all aromatic pollutants, but it cannot destroy final Fe(III)-oxalate complexes. Solar photoelectro-Fenton treatments always yield quicker degradation rate due to the very fast photodecarboxylation of these complexes by UVA irradiation supplied by solar light. The effect of current density on the degradation rate, efficiency and energy cost of all methods is examined. The salicylic acid decay always follows a pseudo-first-order kinetics. 2,3-Dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic, alpha-ketoglutaric, glycolic, glyoxylic, maleic, fumaric, malic, tartronic and oxalic acids are detected as oxidation products. A general reaction sequence for salicylic acid mineralization considering all these intermediates is proposed.

  5. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    SciTech Connect

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  6. Catalytic conversion of cellulose to fuels and chemicals using boronic acids

    SciTech Connect

    Raines, Ronald; Caes, Benjamin; Palte, Michael

    2015-10-20

    Methods and catalyst compositions for formation of furans from carbohydrates. A carbohydrate substrate is heating in the presence of a 2-substituted phenylboronic acid (or salt or hydrate thereof) and optionally a magnesium or calcium halide salt. The reaction is carried out in a polar aprotic solvent other than an ionic liquid, an ionic liquid or a mixture thereof. Additional of a selected amount of water to the reaction can enhance the yield of furans.

  7. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  8. Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.

    PubMed

    Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

    2012-11-15

    Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 μM (tTHMs), and 12 and 22 μM (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to

  9. Electrochemical displacement sensor based on ferrocene boronic acid tracer and immobilized glycan for saccharide binding proteins and E. coli.

    PubMed

    Dechtrirat, Decha; Gajovic-Eichelmann, Nenad; Wojcik, Felix; Hartmann, Laura; Bier, Frank F; Scheller, Frieder W

    2014-08-15

    Pathogens such as viruses and bacteria use their envelope proteins and their adhesin lectins to recognize the glycan residues presented on the cell surface of the target tissues. This principle of recognition is used in a new electrochemical displacement sensor for the protein concanavalin A (ConA). A gold electrode was first modified with a self-assembled monolayer of a thiolated mannose/OEG conjugate and a ferrocene boroxol derivative was pre-assembled as reporter molecule onto the mannose surface. The novel tracer molecule based on a 2-hydroxymethyl phenyl boronic acid derivative binds even at neutral pH to the saccharides which could expand the application towards biological samples (i.e., urine and feces). Upon the binding of ConA, the tracer was displaced and washed away from the sensor surface leading to a decrease in the electrochemical signal. Using square wave voltammetry (SWV), the concentration of ConA in the sample solution could be determined in the dynamic concentration range established from 38nmolL(-1) to 5.76µmolL(-1) with a reproducible detection limit of 1µgmL(-1) (38nmolL(-1)) based on the signal-to-noise ratio (S/N=3) with fast response of 15min. The new reporter molecule showed a reduced non-specific displacement by BSA and ribonuclease A. The sensor was also successfully transferred to the first proof of principle for the detection of Escherichia coli exhibiting a detection limit of approximately 6×10(2)cells/mL. Specificity of the displacement by target protein ConA and E. coli was demonstrated since the control proteins (i.e., BSA and RNaseA) and the control E. coli strain, which lack of type 1 fimbriae, were ineffective.

  10. Experimental dissolution vs. transformation of micas under acidic soil conditions: Clues from boron isotopes

    NASA Astrophysics Data System (ADS)

    Voinot, A.; Lemarchand, D.; Collignon, C.; Granet, M.; Chabaux, F.; Turpault, M.-P.

    2013-09-01

    Minerals in soils evolve through contact with water and other weathering agents (protons, organic acids and ligands) from the atmosphere or released by the surrounding vegetation and associated fauna. Determining the respective contribution of these agents to weathering budgets and the mechanisms by which they interact with soil minerals is a key step toward obtaining refined models of soil development, plant/mineral interactions and, ultimately, soil sustainability. To test the influence of different chemical agents on the processes of mica weathering (dissolution and transformation), we conducted a series of laboratory flow-through experiments on biotite using three chemical groups of reactants found in forest soils: protons (HCl), organic acids (citric acid) and ligands (siderophores). These experiments were performed at two different pH values (pH 3 and pH 4.5) for 37 days at 20 °C. Biotite was chosen as a test-mineral because it is reactive with acids and water and because it is commonly found in granite soils. To investigate the weathering reactions, the chemical and isotopic compositions of B (δ11B) and the concentrations of predominant cation (Si, Al, Mg, K and Fe) were monitored in the outflowing solutions. The choice of B as a proxy for weathering processes is based on the fact that B is located in different crystallographic sites in biotite (interlayers and structural sites, named I- and S-sites, respectively). We observed a large δ11B contrast between these sites (Δ11BS-I sites˜80‰), which allows for a precise quantification of the respective contribution of I- and S-sites to B released during biotite weathering. The individual reaction rates for these crystallographic sites were inferred from the B chemical and isotopic compositions of the outflowing solutions. A comparison with the major elements reveals that B is preferentially released to solution under all tested experimental conditions (up to 4 times more), particularly in the presence of

  11. Electroextraction of boron from boron carbide scrap

    SciTech Connect

    Jain, Ashish; Anthonysamy, S.; Ghosh, C.; Ravindran, T.R.; Divakar, R.; Mohandas, E.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  12. Design and exploration of novel boronic acid inhibitors reveals important interactions with a clavulanic acid-resistant sulfhydryl-variable (SHV) β-lactamase.

    PubMed

    Winkler, Marisa L; Rodkey, Elizabeth A; Taracila, Magdalena A; Drawz, Sarah M; Bethel, Christopher R; Papp-Wallace, Krisztina M; Smith, Kerri M; Xu, Yan; Dwulit-Smith, Jeffrey R; Romagnoli, Chiara; Caselli, Emilia; Prati, Fabio; van den Akker, Focco; Bonomo, Robert A

    2013-02-14

    Inhibitor resistant (IR) class A β-lactamases pose a significant threat to many current antibiotic combinations. The K234R substitution in the SHV β-lactamase, from Klebsiella pneumoniae , results in resistance to ampicillin/clavulanate. After site-saturation mutagenesis of Lys-234 in SHV, microbiological and biochemical characterization of the resulting β-lactamases revealed that only -Arg conferred resistance to ampicillin/clavulanate. X-ray crystallography revealed two conformations of Arg-234 and Ser-130 in SHV K234R. The movement of Ser-130 is the principal cause of the observed clavulanate resistance. A panel of boronic acid inhibitors was designed and tested against SHV-1 and SHV K234R. A chiral ampicillin analogue was discovered to have a 2.4 ± 0.2 nM K(i) for SHV K234R; the chiral ampicillin analogue formed a more complex hydrogen-bonding network in SHV K234R vs SHV-1. Consideration of the spatial position of Ser-130 and Lys-234 and this hydrogen-bonding network will be important in the design of novel antibiotics targeting IR β-lactamases.

  13. Design and Exploration of Novel Boronic Acid Inhibitors Reveals Important Interactions with a Clavulanic Acid-Resistant Sulfhydryl-Variable (SHV) β-Lactamase

    PubMed Central

    Winkler, Marisa L.; Rodkey, Elizabeth A.; Taracila, Magdalena A.; Drawz, Sarah M.; Bethel, Christopher R.; Papp-Wallace, Krisztina M.; Smith, Kerri M.; Xu, Yan; Dwulit-Smith, Jeffrey R.; Romagnoli, Chiara; Caselli, Emilia; Prati, Fabio; van den Akker, Focco; Bonomo, Robert A.

    2014-01-01

    Inhibitor resistant (IR) class A β-lactamases pose a significant threat to many current antibiotic combinations. The K234R substitution in the SHV β-lactamase, from Klebsiella pneumoniae, results in resistance to ampicillin/clavulanate. After site-saturation mutagenesis of Lys-234 in SHV, microbiological and biochemical characterization of the resulting β-lactamases revealed that only –Arg conferred resistance to ampicillin/clavulanate. X-ray crystallography revealed two conformations of Arg-234 and Ser-130 in SHV K234R. The movement of Ser-130 is the principal cause of the observed clavulanate resistance. A panel of boronic acid inhibitors was designed and tested against SHV-1 and SHV K234R. A chiral ampicillin analogue was discovered to have a 2.4 ± 0.2 nM Ki for SHV K234R; the chiral ampicillin analogue formed a more complex hydrogen-bonding network in SHV K234R vs SHV-1. Consideration of the spatial position of Ser-130 and Lys-234 and this hydrogen-bonding network will be important in the design of novel antibiotics targeting IR β-lactamases. PMID:23252553

  14. The development of copper-catalyzed aerobic oxidative coupling of H-tetrazoles with boronic acids and an insight into the reaction mechanism.

    PubMed

    Liu, Chao-You; Li, Yu; Ding, Jin-Ying; Dong, De-Wen; Han, Fu-She

    2014-02-17

    The development of a highly efficient and practical protocol for the direct C-N coupling of H-tetrazole and boronic acid was presented. A careful and patient optimization of a variety of reaction parameters revealed that this conventionally challenge reaction could indeed proceed efficiently in a very simple system, that is, just by stirring the tetrazoles and boronic acids under oxygen in the presence of different Cu(I) or Cu(II) salts with only 5 mol % loading in DMSO at 100 °C. Most significantly, the reaction could proceed very smoothly in a regiospecific manner to afford the 2,5-disubstituted tetrazoles in high to excellent yields. A mechanistic study revealed that both tetrazole and DMSO are crucial for the generation of catalytically active copper species in the reaction process in addition to their role as reactant and solvent, respectively. It is demonstrated that in the reaction cycle, the Cu(I) catalyst could be oxidized to Cu(II) by oxygen to form a [CuT2D] complex (T = tetrazole anion; D = DMSO) through an oxidative copper amination reaction. The Cu(II) complex thus formed was confirmed to be the real catalytically active copper species. Namely, the Cu(II) complex disproportionates to aryl Cu(III) and Cu(I) in the presence of boronic acid. Facile elimination of the Cu(III) species delivers the C-N-coupled product. The results presented herein not only provide a reliable and efficient protocol for the synthesis of 2,5-disubstituted tetrazoles, but most importantly, the mechanistic results would have broad implications for the de novo design and development of new methods for Cu-catalyzed coupling reactions.

  15. The development of copper-catalyzed aerobic oxidative coupling of H-tetrazoles with boronic acids and an insight into the reaction mechanism.

    PubMed

    Liu, Chao-You; Li, Yu; Ding, Jin-Ying; Dong, De-Wen; Han, Fu-She

    2014-02-17

    The development of a highly efficient and practical protocol for the direct C-N coupling of H-tetrazole and boronic acid was presented. A careful and patient optimization of a variety of reaction parameters revealed that this conventionally challenge reaction could indeed proceed efficiently in a very simple system, that is, just by stirring the tetrazoles and boronic acids under oxygen in the presence of different Cu(I) or Cu(II) salts with only 5 mol % loading in DMSO at 100 °C. Most significantly, the reaction could proceed very smoothly in a regiospecific manner to afford the 2,5-disubstituted tetrazoles in high to excellent yields. A mechanistic study revealed that both tetrazole and DMSO are crucial for the generation of catalytically active copper species in the reaction process in addition to their role as reactant and solvent, respectively. It is demonstrated that in the reaction cycle, the Cu(I) catalyst could be oxidized to Cu(II) by oxygen to form a [CuT2D] complex (T = tetrazole anion; D = DMSO) through an oxidative copper amination reaction. The Cu(II) complex thus formed was confirmed to be the real catalytically active copper species. Namely, the Cu(II) complex disproportionates to aryl Cu(III) and Cu(I) in the presence of boronic acid. Facile elimination of the Cu(III) species delivers the C-N-coupled product. The results presented herein not only provide a reliable and efficient protocol for the synthesis of 2,5-disubstituted tetrazoles, but most importantly, the mechanistic results would have broad implications for the de novo design and development of new methods for Cu-catalyzed coupling reactions. PMID:24449340

  16. Horseradish peroxidase-catalyzed synthesis of poly(thiophene-3-boronic acid) biocomposites for mono-/bi-enzyme immobilization and amperometric biosensing.

    PubMed

    Huang, Yi; Wang, Wen; Li, Zou; Qin, Xiaoli; Bu, Lijuan; Tang, Zhiyong; Fu, Yingchun; Ma, Ming; Xie, Qingji; Yao, Shouzhuo; Hu, Jiming

    2013-06-15

    We report here on a facile enzymatic polymerization protocol to prepare enzyme-poly(thiophene-3-boronic acid) (PTBA) polymeric biocomposites (PBCs) for high-performance mono-/bi-enzyme amperometric biosensing. Horseradish peroxidase (HRP)-catalyzed polymerization of thiophene-3-boronic acid (TBA) monomer was conducted in aqueous solution containing HRP (or plus glucose oxidase (GOx)) by either directly added or GOx-glucose generated oxidant H2O2. The mono-/bi-enzyme amperometric biosensors were prepared simply by casting the dialysis-isolated PBCs on Au-plated Au electrode (Auplate/Au), followed by coating with an outer-layer chitosan (CS) film. The boronic acid residues are capable of covalent bonding with enzyme at the glycosyl sites (boronic acid-diols interaction), which should less affect the enzymatic activity as compared with the common cases of covalent bonding at the peptide chains, and UV-vis spectrophotometric tests confirmed that the encapsulated HRP almost possesses its pristine enzymatic specific activity. The enzyme electrodes were studied by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry in the presence of Fe(CN)6(4-) mediator. The CS/HRP-PTBA/Auplate/Au electrode responded linearly to H2O2 concentration from 1 to 300 μM with a sensitivity of 390 μA mM(-1)cm(-2) and a limit of detection (LOD) of 0.1 μM. The bienzyme CS/GOx-HRP-PTBA(H2O2)/Auplate/Au electrode responded linearly to glucose concentration from 5 μM to 0.83 mM with a sensitivity of 75.1 μA mM(-1)cm(-2) and a LOD of 1 μM, and it is found here that the use of Fe(CN)6(4-) that can only efficiently mediate HRP favorably avoids the "unusual amperometric responses" observed when other mediators that can efficiently turn over both HRP and GOx are used. PMID:23391705

  17. Crystal Structures of KPC-2 and SHV-1 β-Lactamases in Complex with the Boronic Acid Transition State Analog S02030.

    PubMed

    Nguyen, Nhu Q; Krishnan, Nikhil P; Rojas, Laura J; Prati, Fabio; Caselli, Emilia; Romagnoli, Chiara; Bonomo, Robert A; van den Akker, Focco

    2016-03-01

    Resistance to expanded-spectrum cephalosporins and carbapenems has rendered certain strains of Klebsiella pneumoniae the most problematic pathogens infecting patients in the hospital and community. This broad-spectrum resistance to β-lactamases emerges in part via the expression of KPC-2 and SHV-1 β-lactamases and variants thereof. KPC-2 carbapenemase is particularly worrisome, as the genetic determinant encoding this β-lactamase is rapidly spread via plasmids. Moreover, KPC-2, a class A enzyme, is difficult to inhibit with mechanism-based inactivators (e.g., clavulanate). In order to develop new β-lactamase inhibitors (BLIs) to add to the limited available armamentarium that can inhibit KPC-2, we have structurally probed the boronic acid transition state analog S02030 for its inhibition of KPC-2 and SHV-1. S02030 contains a boronic acid, a thiophene, and a carboxyl triazole moiety. We present here the 1.54- and 1.87-Å resolution crystal structures of S02030 bound to SHV-1 and KPC-2 β-lactamases, respectively, as well as a comparative analysis of the S02030 binding modes, including a previously determined S02030 class C ADC-7 β-lactamase complex. S02030 is able to inhibit vastly different serine β-lactamases by interacting with the conserved features of these active sites, which includes (i) forming the bond with catalytic serine via the boron atom, (ii) positioning one of the boronic acid oxygens in the oxyanion hole, and (iii) utilizing its amide moiety to make conserved interactions across the width of the active site. In addition, S02030 is able to overcome more distantly located structural differences between the β-lactamases. This unique feature is achieved by repositioning the more polar carboxyl-triazole moiety, generated by click chemistry, to create polar interactions as well as reorient the more hydrophobic thiophene moiety. The former is aided by the unusual polar nature of the triazole ring, allowing it to potentially form a unique C-H…O 2

  18. Mass spectrometry signal amplification for ultrasensitive glycoprotein detection using gold nanoparticle as mass tag combined with boronic acid based isolation strategy.

    PubMed

    Liu, Minbo; Zhang, Lijuan; Xu, Yawei; Yang, Pengyuan; Lu, Haojie

    2013-07-25

    We describe a novel method for rapid and ultrasensitive detection of intact glycoproteins without enzymatic pretreatment which was commonly used in proteomic research. This method is based on using gold nanoparticle (AuNP) as signal tag in laser desorption/ionization mass spectrometry (LDI-MS) analysis combined with boronic acid assisted isolation strategy. Briefly speaking, target glycoproteins were firstly isolated from sample solution with boronic acid functionalized magnetic microparticles, and then the surface modified gold nanoparticles were added to covalently bind to the glycoproteins. After that, these AuNP tagged glycoproteins were eluted from magnetic microparticles and applied to LDI-MS analysis. The mass signal of AuNP rather than that of glycoprotein was detected and recorded in this strategy. Through data processing of different standard glycoproteins, we have demonstrated that the signal of AuNP could be used to quantitatively represent glycoprotein. This method allows femtomolar detection of intact glycoproteins. We believe that the successful validation of this method on three different kinds of glycoproteins suggests the potential use for tracking trace amount of target glycoproteins in real biological samples in the near future.

  19. Multilayer Hydrophilic Poly(phenol-formaldehyde resin)-Coated Magnetic Graphene for Boronic Acid Immobilization as a Novel Matrix for Glycoproteome Analysis.

    PubMed

    Wang, Jiaxi; Wang, Yanan; Gao, Mingxia; Zhang, Xiangmin; Yang, Pengyuan

    2015-07-29

    Capturing glycopeptides selectively and efficiently from mixed biological samples has always been critical for comprehensive and in-depth glycoproteomics analysis, but the lack of materials with superior capture capacity and high specificity still makes it a challenge. In this work, we introduce a way first to synthesize a novel boronic-acid-functionalized magnetic graphene@phenolic-formaldehyde resin multilayer composites via a facile process. The as-prepared composites gathered excellent characters of large specific surface area and strong magnetic responsiveness of magnetic graphene, biocompatibility of resin, and enhanced affinity properties of boronic acid. Furthermore, the functional graphene composites were shown to have low detection limit (1 fmol) and good selectivity, even when the background nonglycopeptides has a concentration 100 fold higher. Additionally, enrichment efficiency of the composites was still retained after being used repeatedly (at least three times). Better yet, the practical applicability of this approach was evaluated by the enrichment of human serum with a low sample volume of 1 μL. All the results have illustrated that the magG@PF@APB has a great potential in glycoproteome analysis of complex biological samples.

  20. Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes

    NASA Astrophysics Data System (ADS)

    Şahin, Alpay; Ar, İrfan

    2015-08-01

    The aim of this study is to synthesize a composite membrane having high proton conductivity, ion exchange capacity and chemical stability. In order to achieve this aim, poly(vinyl alcohol) (PVA) based composite membranes are synthesized by using classic sol-gel method. Boric acid (H3BO3) and boron phosphate (BPO4) are added to the membrane matrix in different ratios in order to enhance the membrane properties. Characterization tests, i.e; FT-IR analysis, mechanical strength tests, water hold-up capacities, swelling properties, ion exchange capacities, proton conductivities and fuel cell performance tests of synthesized membranes are carried out. As a result of performance experiments highest performance values are obtained for the membrane containing 15% boron phosphate at 0.6 V and 750 mA/cm2. Water hold-up capacity, swelling ratio, ion exchange capacity and proton conductivity of this membrane are found as 56%, 8%, 1.36 meq/g and 0.37 S/cm, respectively. These values are close to the values obtained ones for perfluorosulphonic acid membranes. Therefore this membrane can be regarded as a promising candidate for usage in fuel cells.

  1. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  2. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    PubMed

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. PMID:27393888

  3. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-01

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  4. Direct current sputtering of boron from boron/boron mixtures

    DOEpatents

    Timberlake, J.R.; Manos, D.; Nartowitz, E.

    1994-12-13

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.

  5. Boron doping a semiconductor particle

    SciTech Connect

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  6. Boron doping a semiconductor particle

    SciTech Connect

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  7. Chronic boron exposure and human semen parameters.

    PubMed

    Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu

    2010-04-01

    Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (p<0.0001). Boron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups. PMID:19962437

  8. Highly selective enrichment of baicalin in rat plasma by boronic acid-functionalized core-shell magnetic microspheres: Validation and application to a pharmacokinetic study.

    PubMed

    Huang, Taomin; Xiong, Ya; Chen, Nianzu; Wang, Donglei; Lai, Yonghua; Deng, Chunhui

    2016-01-15

    To the best of our knowledge, this study is the first to successfully apply a novel, highly selective enrichment technique based on boronic acid-functionalized core-shell magnetic microspheres (BA-Fe3O4@SiO2-Au@mSiO2) with a large surface area and uniform pore size, to determine the baicalin concentration in rat plasma by HPLC. By taking advantage of the special interaction between boronic acid and baicalin under alkaline conditions, as well as the microspheres' size exclusion ability, baicalin was selectively extracted from protein-rich biosamples, such as plasma, without any other pretreatment procedure except for a 10-min vortexing step. BA-Fe3O4@SiO2-Au@mSiO2 microsphere-adsorbed baicalin was straightforwardly and rapidly isolated from the matrix using a magnet. Baicalin was subsequently eluted from the microspheres under acidic conditions for 2min for further HPLC analysis. The extraction conditions, such as the amount of microspheres added, adsorption time, adsorption pH, and elution time and pH, were also determined. Furthermore, method validation, including the linear range, detection limit, precision, accuracy, and recovery, were determined. This newly developed method based on BA-Fe3O4@SiO2-Au@mSiO2 microspheres is a simple, accurate, selective, and green analytical preparatory technique for analyzing baicalin in rat plasma. This study will be further novel research on the analysis of complex plasma samples and the pharmacokinetics of drugs similar to baicalin.

  9. Electro-fenton and photoelectro-fenton degradation of sulfanilic acid using a boron-doped diamond anode and an air diffusion cathode.

    PubMed

    El-Ghenymy, Abdellatif; Garrido, José Antonio; Centellas, Francesc; Arias, Conchita; Cabot, Pere Lluís; Rodríguez, Rosa María; Brillas, Enric

    2012-04-01

    The mineralization of sulfanilic acid has been studied by electro-Fenton (EF) and photoelectro-Fenton (PEF) reaction with UVA light using an undivided electrochemical cell with a boron-doped diamond (BDD) anode and an air diffusion cathode able to generate H(2)O(2). Organics were then oxidized by hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between generated H(2)O(2) and added Fe(2+). The UVA irradiation in PEF enhanced the production of hydroxyl radicals in the bulk, accelerating the removal of organics and photodecomposed intermediates like Fe(III)-carboxylate complexes. Partial decontamination of 1.39 mM sulfanilic acid solutions was achieved by EF until 100 mA cm(-2) at optimum conditions of 0.4 mM Fe(2+) and pH 3.0. The increase in current density and substrate content led to an almost total mineralization. In contrast, the PEF process was more powerful, yielding almost complete mineralization in less electrolysis time under comparable conditions. The kinetics for sulfanilic acid decay always followed a pseudo-first-order reaction. Hydroquinone and p-benzoquinone were detected as aromatic intermediates, whereas acetic, maleic, formic, oxalic, and oxamic acids were identified as generated carboxylic acids. NH(4)(+) ion was preferentially released in both treatments, along with NO(3)(-) ion in smaller proportion.

  10. Selective detection of dopamine using a combined permselective film of electropolymerized (poly-tyramine and poly-pyrrole-1-propionic acid) on a boron-doped diamond electrode.

    PubMed

    Shang, Fengjun; Liu, Yali; Hrapovic, Sabahudin; Glennon, Jeremy D; Luong, John H T

    2009-03-01

    An effective and robust electrochemical approach has been developed for selective detection of dopamine in the presence of 3,4-dihydroxyphenylalanine (l-DOPA), ascorbic acid, uric acid and other dopamine metabolites. A 'layer-by-layer' film of tyramine and pyrrole-1-propionic acid (PPA) was formed by subsequent electropolymerization on a boron-doped diamond (BDD) electrode with an overall thickness of approximately 33 nm as estimated by AFM. The formation of the electropolymerized homogeneous film was also confirmed by SEM and Raman spectroscopy. The modified BDD electrode exhibited rapid response to dopamine within 6 s and a detection limit of 50 nM with excellent reproducibility. The stable electropolymerized film was capable of excluding electroactive interference from 20 microM l-DOPA, 20 microM 3,4-dihydroxyphenylacetic acid (DOPAC), and ascorbic and uric acids at normal physiological conditions (100 microM each). The modified electrode could be used for several repeated analyses of dopamine at 5 microM, without noticeable surface fouling. A plausible mechanism for permselectivity was suggested and supported by pertinent experimental data.

  11. The Effects of Boron Derivatives on Lipid Absorption from the Intestine and on Bile Lipids and Bile Acids of Sprague Dawley Rats

    PubMed Central

    Hall, Iris H.; Reynolds, David J.; Wong, O. T.; Sood, A.; Spielvogel, B. F.

    1995-01-01

    N,N-dimethyl-n-octadecylamine borane 1 at 8 mg/kg/day, tetrakis-u-(trimethylamine boranecarboxylato)-bis(trimethyl-carboxyborane)-dicopper(II) 2 at 2.5 mg/kg/day and trimethylamine-carboxyborane 3 at 8 mg/kg/day were evaluated for their effects on bile lipids, bile acids, small intestinal absorption of cholesterol and cholic acid and liver and small intestinal enzyme activities involved in lipid metabolism. The agent administered orally elevated rat bile excretion of lipids, e.g. cholesterol and phospholipids, and compounds 2 and 3 increased the bile flow rate. These agents altered the composition of the bile acids, but there was no significant increase in lithocholic acid which is most lithogenic agent in rats. The three agents did decrease cholesterol absorption from isolated in situ intestinal duodenum loops in the presence of drug. Hepatic and small intestinal mucosa enzyme activities, e.g. ATP-dependent citrate lyase, acyl CoA cholesterol acyl transferase, cholsterol-7-α -hydroxylase, sn glycerol-3-phosphate acyl transferase, phosphatidylate phosphohydrolase, and lipoprotein lipase, were reduced. However, the boron derivatives 1 and 3 decreased hepatic HMG-CoA reductase activity, the regulatory enzyme for cholesterol synthesis, but the compounds had no effects on small intestinal mucosa HMG-CoA reductase activity. There was no evidence of hepatic cell damage afforded by the drugs based on clinical chemistry values which would induce alterations in bile acid concentrations after treatment of the rat. PMID:18472747

  12. Crystal Structures of KPC-2[beta]-Lactamase in Complex with 3-Nitrophenyl Boronic Acid and the Penam Sulfone PSR-3-226

    SciTech Connect

    Ke, Wei; Bethel, Christopher R.; Papp-Wallace, Krisztina M.; Pagadala, Sundar Ram Reddy; Nottingham, Micheal; Fernandez, Daniel; Buynak, John D.; Bonomo, Robert A.; van den Akker, Focco

    2012-08-01

    Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by {beta}-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two {beta}-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-{angstrom} resolution. 3-NPBA demonstrated a Km value of 1.0 {+-} 0.1 {micro}M (mean {+-} standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-{angstrom} resolution. PSR-3-226 displayed a K{sub m} value of 3.8 {+-} 0.4 {micro}M for KPC-2, and the inactivation rate constant (kinact) was 0.034 {+-} 0.003 s{sup -1}. When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first {beta}-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.

  13. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC) by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas.

    PubMed

    Chandra, Subhash; Barth, Rolf F; Haider, Syed A; Yang, Weilian; Huo, Tianyao; Shaikh, Aarif L; Kabalka, George W

    2013-01-01

    The development of new boron-delivery agents is a high priority for improving the effectiveness of boron neutron capture therapy. In the present study, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC) as a mixture of its L- and D-enantiomers was evaluated in vivo using the B16 melanoma model for the human tumor and the F98 rat glioma as a model for human gliomas. A secondary ion mass spectrometry (SIMS) based imaging instrument, CAMECA IMS 3F SIMS Ion Microscope, was used for quantitative imaging of boron at 500 nm spatial resolution. Both in vivo and in vitro studies in melanoma models demonstrated that boron was localized in the cytoplasm and nuclei with some cell-to-cell variability. Uptake of cis-ABCPC in B16 cells was time dependent with a 7.5:1 partitioning ratio of boron between cell nuclei and the nutrient medium after 4 hrs. incubation. Furthermore, cis-ABCPC delivered boron to cells in all phases of the cell cycle, including S-phase. In vivo SIMS studies using the F98 rat glioma model revealed an 8:1 boron partitioning ratio between the main tumor mass and normal brain tissue with a 5:1 ratio between infiltrating tumor cells and contiguous normal brain. Since cis-ABCPC is water soluble and can cross the blood-brain-barrier via the L-type amino acid transporters (LAT), it may accumulate preferentially in infiltrating tumor cells in normal brain due to up-regulation of LAT in high grade gliomas. Once trapped inside the tumor cell, cis-ABCPC cannot be metabolized and remains either in a free pool or bound to cell matrix components. The significant improvement in boron uptake by both the main tumor mass and infiltrating tumor cells compared to those reported in animal and clinical studies of p-boronophenylalanine strongly suggest that cis-ABCPC has the potential to become a novel new boron delivery agent for neutron capture therapy of gliomas and melanomas.

  14. Biodistribution and Subcellular Localization of an Unnatural Boron-Containing Amino Acid (Cis-ABCPC) by Imaging Secondary Ion Mass Spectrometry for Neutron Capture Therapy of Melanomas and Gliomas

    PubMed Central

    Chandra, Subhash; Barth, Rolf F.; Haider, Syed A.; Yang, Weilian; Huo, Tianyao; Shaikh, Aarif L.; Kabalka, George W.

    2013-01-01

    The development of new boron-delivery agents is a high priority for improving the effectiveness of boron neutron capture therapy. In the present study, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC) as a mixture of its L- and D- enantiomers was evaluated in vivo using the B16 melanoma model for the human tumor and the F98 rat glioma as a model for human gliomas. A secondary ion mass spectrometry (SIMS) based imaging instrument, CAMECA IMS 3F SIMS Ion Microscope, was used for quantitative imaging of boron at 500 nm spatial resolution. Both in vivo and in vitro studies in melanoma models demonstrated that boron was localized in the cytoplasm and nuclei with some cell-to-cell variability. Uptake of cis-ABCPC in B16 cells was time dependent with a 7.5:1 partitioning ratio of boron between cell nuclei and the nutrient medium after 4 hrs. incubation. Furthermore, cis-ABCPC delivered boron to cells in all phases of the cell cycle, including S-phase. In vivo SIMS studies using the F98 rat glioma model revealed an 8:1 boron partitioning ratio between the main tumor mass and normal brain tissue with a 5:1 ratio between infiltrating tumor cells and contiguous normal brain. Since cis-ABCPC is water soluble and can cross the blood-brain-barrier via the L-type amino acid transporters (LAT), it may accumulate preferentially in infiltrating tumor cells in normal brain due to up-regulation of LAT in high grade gliomas. Once trapped inside the tumor cell, cis-ABCPC cannot be metabolized and remains either in a free pool or bound to cell matrix components. The significant improvement in boron uptake by both the main tumor mass and infiltrating tumor cells compared to those reported in animal and clinical studies of p-boronophenylalanine strongly suggest that cis-ABCPC has the potential to become a novel new boron delivery agent for neutron capture therapy of gliomas and melanomas. PMID:24058680

  15. 3D-QSAR-aided design, synthesis, in vitro and in vivo evaluation of dipeptidyl boronic acid proteasome inhibitors and mechanism studies.

    PubMed

    Lei, Meng; Feng, Huayun; Wang, Cheng; Li, Hailing; Shi, Jingmiao; Wang, Jia; Liu, Zhaogang; Chen, Shanshan; Hu, Shihe; Zhu, Yongqiang

    2016-06-01

    Proteasome had been clinically validated as an effective target for the treatment of cancers. Up to now, many structurally diverse proteasome inhibitors were discovered. And two of them were launched to treat multiple myeloma (MM) and mantle cell lymphoma (MCL). Based on our previous biological results of dipeptidyl boronic acid proteasome inhibitors, robust 3D-QSAR models were developed and structure-activity relationship (SAR) was summarized. Several structurally novel compounds were designed based on the theoretical models and finally synthesized. Biological results showed that compound 12e was as active as the standard bortezomib in enzymatic and cellular activities. In vivo pharmacokinetic profiles suggested compound 12e showed a long half-life, which indicated that it could be administered intravenously. Cell cycle analysis indicated that compound 12e inhibited cell cycle progression at the G2M stage. PMID:27117691

  16. Characterization of electrodeposited elemental boron

    SciTech Connect

    Jain, Ashish; Anthonysamy, S. Ananthasivan, K.; Ranganathan, R.; Mittal, Vinit; Narasimhan, S.V.; Vasudeva Rao, P.R.

    2008-07-15

    Elemental boron was produced through electrowinning from potassium fluoroborate dissolved in a mixture of molten potassium fluoride and potassium chloride. The characteristics of the electrodeposited boron (raw boron) as well as the water and acid-leached product (processed boron) were studied. The chemical purity, specific surface area, size distribution of particles and X-ray crystallite size of the boron powders were investigated. The morphology of the deposits was examined using scanning electron microscopy (SEM). The chemical state of the matrix, as well as the impurity phases present in them, was established using X-ray photoelectron spectroscopy (XPS). In order to interpret and understand the results obtained, a thermodynamic analysis was carried out. The gas-phase corrosion in the head space as well as the chemistry behind the leaching process were interpreted using this analysis. The ease of oxidation of these powders in air was investigated using differential thermal analysis (DTA) coupled with thermogravimetry (TG). From the results obtained in this study it was established that elemental boron powder with a purity of 95-99% could be produced using a high temperature molten salt electrowinning process. The major impurities were found to be oxygen, carbon, iron and nickel.

  17. Synthesis, chemical and enzymatic hydrolysis, and aqueous solubility of amino acid ester prodrugs of 3-carboranyl thymidine analogs for boron neutron capture therapy of brain tumors.

    PubMed

    Hasabelnaby, Sherifa; Goudah, Ayman; Agarwal, Hitesh K; abd Alla, Mosaad S M; Tjarks, Werner

    2012-09-01

    Various water-soluble L-valine-, L-glutamate-, and glycine ester prodrugs of two 3-Carboranyl Thymidine Analogs (3-CTAs), designated N5 and N5-2OH, were synthesized for Boron Neutron Capture Therapy (BNCT) of brain tumors since the water solubilities of the parental compounds proved to be insufficient in preclinical studies. The amino acid ester prodrugs were prepared and stored as hydrochloride salts. The water solubilities of these amino acid ester prodrugs, evaluated in phosphate buffered saline (PBS) at pH 5, pH 6 and pH 7.4, improved 48-6600 times compared with parental N5 and N5-2OH. The stability of the amino acid ester prodrugs was evaluated in PBS at pH 7.4, Bovine serum, and Bovine cerebrospinal fluid (CSF). The rate of the hydrolysis in all three incubation media depended primarily on the amino acid promoiety and, to a lesser extend, on the site of esterification at the deoxyribose portion of the 3-CTAs. In general, 3'-amino acid ester prodrugs were less sensitive to chemical and enzymatic hydrolysis than 5'-amino acid ester prodrugs and the stabilities of the latter decreased in the following order: 5'-valine > 5'-glutamate > 5'-glycine. The rate of the hydrolysis of the 5'-amino acid ester prodrugs in Bovine CSF was overall higher than in PBS and somewhat lower than in Bovine serum. Overall, 5'-glutamate ester prodrug of N5 and the 5'-glycine ester prodrugs of N5 and N5-2OH appeared to be the most promising candidates for preclinical BNCT studies. PMID:22889558

  18. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  19. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  20. Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin.

    PubMed

    Zhou, Yanli; Dong, Hui; Liu, Lantao; Hao, Yuanqiang; Chang, Zhu; Xu, Maotian

    2015-02-15

    A voltammetric sensor for determination of glycated hemoglobin (HbA1c) was developed based on the composites of phenylboronic acid-modified pyrroloquinoline quinine (PBA-PQQ) and reduced graphene oxide. After the electrodeposition of reduced graphene oxide (ERGO) on the glassy carbon (GC) electrode, PQQ multilayer was decorated on the surface of the ERGO/GC electrode via potential cycling. Further modification with PBA would lead to the formation of the working electrode, namely PBA-PQQ/ERGO/GC electrode. PQQ on the electrode exhibited a quasi-reversible electrode process with 2-electron transfer and 2-proton participation, and the electron transfer efficiency was further enhanced by the introduction of ERGO layer. The complexation of PBA with HbA1c through specific boronic acid-diol recognition could cause the change of the oxidation peak current of PQQ on the electrode, which was utilized for HbA1c detection. Under the optimized conditions, the PBA-PQQ/ERGO/GC electrode provided high selectivity and high sensitivity for HbA1c detection with a linear range of 9.4-65.8 μg mL(-1) and a low detection limit of 1.25 μg mL(-1). The fabricated sensor was also successfully applied to determine the percentages of HbA1c in whole blood of healthy individuals.

  1. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    PubMed Central

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔGbinding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  2. On-column labeling of gram-positive bacteria with a boronic acid functionalized squarylium cyanine dye for analysis by polymer-enhanced capillary transient isotachophoresis.

    PubMed

    Saito, Shingo; Massie, Tara L; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L

    2012-03-01

    A new asymmetric, squarylium cyanine dye functionalized by boronic acid ("SQ-BA") was designed and synthesized for on-capillary labeling of gram-positive bacteria to provide for high sensitivity detection by way of a modified form of capillary electrophoresis with laser induced fluorescence detection (CE-LIF). The CE-based separation employed a polymer-enhanced buffer with capillary transient isotachophoresis in a new hybrid method dubbed "PectI." It was found that the addition of various monosaccharides to SQ-BA in a batch aqueous solution greatly enhanced the emission of the boronic acid functionalized dye by a factor of up to 18.3 at a long wavelength (λ(ex) = 630 nm, λ(em) = 660 nm) with a high affinity constant (K = ~10(2.80) M(-1)) superior to other sugar probes. Semiempirical quantum mechanics calculations suggest that the mechanism for this high enhancement may involve the dissociation of initially nonemissive dye associates (stabilized by an intramolecular hydrogen bond) upon complex formation with sugars. The fluorescence emission of SQ-BA was also significantly enhanced in the presence of a gram-positive bacterial spore, Bacillus globigii (Bg), which serves as a simulant of B. anthracis (or anthrax) and which possesses a peptidoglycan (sugar)-rich spore coat to provide ample sites for interaction with the dye. Several peaks were observed for a pure Bg sample even with polyethyleneoxide (PEO) present in the CE separation buffer, despite the polymer's previously demonstrated ability to focus microoorganisms to a single peak during migration. Likewise, several peaks were observed for a Bg sample when capillary transient isotachophoresis (ctITP) alone was employed. However, the new combination of these techniques as "PectI" dramatically and reproducibly focused the bacteria to a single peak with no staining procedure. Using PectI, the trace detection of Bg spores (corresponding to approximately three cells per injection) along with separation efficiency

  3. Copper catalyzed N-arylation of amidines with aryl boronic acids and one-pot synthesis of benzimidazoles by a Chan-Lam-Evans N-arylation and C-H activation/C-N bond forming process.

    PubMed

    Li, Jihui; Bénard, Sébastien; Neuville, Luc; Zhu, Jieping

    2012-12-01

    Mono-N-arylation of benzamidines 1 with aryl boronic acids 2 was effectively achieved in the presence of a catalytic amount of Cu(OAc)(2) and NaOPiv under mild aerobic conditions. Combining this step with an intramolecular direct C-H bond functionalization, catalyzed by the same catalytic system but under oxygen at 120 °C, afforded benzimidazoles 3 in good to excellent yields. PMID:23151245

  4. Methods of forming boron nitride

    DOEpatents

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  5. Evolutionary Divergence of Plant Borate Exporters and Critical Amino Acid Residues for the Polar Localization and Boron-Dependent Vacuolar Sorting of AtBOR1.

    PubMed

    Wakuta, Shinji; Mineta, Katsuhiko; Amano, Taro; Toyoda, Atsushi; Fujiwara, Toru; Naito, Satoshi; Takano, Junpei

    2015-05-01

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments. PMID:25619824

  6. Evolutionary Divergence of Plant Borate Exporters and Critical Amino Acid Residues for the Polar Localization and Boron-Dependent Vacuolar Sorting of AtBOR1.

    PubMed

    Wakuta, Shinji; Mineta, Katsuhiko; Amano, Taro; Toyoda, Atsushi; Fujiwara, Toru; Naito, Satoshi; Takano, Junpei

    2015-05-01

    Boron (B) is an essential micronutrient for plants but is toxic when accumulated in excess. The plant BOR family encodes plasma membrane-localized borate exporters (BORs) that control translocation and homeostasis of B under a wide range of conditions. In this study, we examined the evolutionary divergence of BORs among terrestrial plants and showed that the lycophyte Selaginella moellendorffii and angiosperms have evolved two types of BOR (clades I and II). Clade I includes AtBOR1 and homologs previously shown to be involved in efficient transport of B under conditions of limited B availability. AtBOR1 shows polar localization in the plasma membrane and high-B-induced vacuolar sorting, important features for efficient B transport under low-B conditions, and rapid down-regulation to avoid B toxicity. Clade II includes AtBOR4 and barley Bot1 involved in B exclusion for high-B tolerance. We showed, using yeast complementation and B transport assays, that three genes in S. moellendorffii, SmBOR1 in clade I and SmBOR3 and SmBOR4 in clade II, encode functional BORs. Furthermore, amino acid sequence alignments identified an acidic di-leucine motif unique in clade I BORs. Mutational analysis of AtBOR1 revealed that the acidic di-leucine motif is required for the polarity and high-B-induced vacuolar sorting of AtBOR1. Our data clearly indicated that the common ancestor of vascular plants had already acquired two types of BOR for low- and high-B tolerance, and that the BOR family evolved to establish B tolerance in each lineage by adapting to their environments.

  7. Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids

    PubMed Central

    2015-01-01

    A copper-mediated radiofluorination of aryl- and vinylboronic acids with K18F is described. This method exhibits high functional group tolerance and is effective for the radiofluorination of a range of electron-deficient, -neutral, and -rich aryl-, heteroaryl-, and vinylboronic acids. This method has been applied to the synthesis of [18F]FPEB, a PET radiotracer for quantifying metabotropic glutamate 5 receptors. PMID:26568457

  8. Modular Attachment of Appended Boron Lewis Acids to a Ruthenium Pincer Catalyst: Metal-Ligand Cooperativity Enables Selective Alkyne Hydrogenation.

    PubMed

    Tseng, Kuei-Nin T; Kampf, Jeff W; Szymczak, Nathaniel K

    2016-08-24

    A new series of bifunctional Ru complexes with pendent Lewis acidic boranes were prepared by late-stage modification of an active hydrogen-transfer catalyst. The appended boranes modulate the reactivity of a metal hydride as well as catalytic hydrogenations. After installing acidic auxiliary groups, the complexes become multifunctional and catalyze the cis-selective hydrogenation of alkynes with higher rates, conversions, and selectivities compared with the unmodified catalyst. PMID:27472301

  9. Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids.

    PubMed

    Mossine, Andrew V; Brooks, Allen F; Makaravage, Katarina J; Miller, Jason M; Ichiishi, Naoko; Sanford, Melanie S; Scott, Peter J H

    2015-12-01

    A copper-mediated radiofluorination of aryl- and vinylboronic acids with K(18)F is described. This method exhibits high functional group tolerance and is effective for the radiofluorination of a range of electron-deficient, -neutral, and -rich aryl-, heteroaryl-, and vinylboronic acids. This method has been applied to the synthesis of [(18)F]FPEB, a PET radiotracer for quantifying metabotropic glutamate 5 receptors. PMID:26568457

  10. A simple chip free-flow electrophoresis for monosaccharide sensing via supermolecule interaction of boronic acid functionalized quencher and fluorescent dye.

    PubMed

    Yin, Xiao-Yang; Dong, Jing-Yu; Wang, Hou-Yu; Li, Si; Fan, Liu-Yin; Cao, Cheng-Xi

    2013-08-01

    Here, a simple micro free-flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο-BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion-exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion-exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο-BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10(-11) M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE. PMID:23712879

  11. Controlling false-positive results obtained with the Hodge and Masuda assays for detection of class a carbapenemase in species of enterobacteriaceae by incorporating boronic Acid.

    PubMed

    Pasteran, Fernando; Mendez, Tania; Rapoport, Melina; Guerriero, Leonor; Corso, Alejandra

    2010-04-01

    The modified Hodge method (MHT) has been recommended by the CLSI for confirmation of suspected class A carbapenemase production in species of Enterobacteriaceae. This test and the Masuda method (MAS) have advantages over traditional phenotypic methods in that they directly analyze carbapenemase activity. In order to identify the potential interferences of these tests, we designed a panel composed of diverse bacterial genera with distinct carbapenem susceptibility patterns (42 carbapenemase producers and 48 nonproducers). About 25% of results among carbapenemase nonproducers, mainly strains harboring CTX-M and AmpC hyperproducers, were observed to be false positive. Subsequently, we developed an optimized approach for more-accurate detection of suspicious isolates of carbapenemase by addition of boronic acid (BA) derivatives (reversible inhibitor of class A carbapenemases and AmpC cephalosporinases) and oxacillin (inhibitor of AmpCs enzymes). The use of the modified BA- and oxacillin-based MHT and MAS resulted in high sensitivity (>90%) and specificity (100%) for class A carbapenemase detection. By use of these methodologies, isolates producing KPCs and GES, Sme, IMI, and NMC-A carbapenemases were successfully distinguished from those producing other classes of ss-lactamases (extended-spectrum beta-lactamases [ESBLs], AmpC beta-lactamases, metallo-beta-lactamases [MBLs], etc.). These methods will provide the fast and useful information needed for targeting of antimicrobial therapy and appropriate infection control.

  12. A space network structure constructed by tetraneedlelike ZnO whiskers supporting boron nitride nanosheets to enhance comprehensive properties of poly(L-lacti acid) scaffolds.

    PubMed

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Shuai, Cijun

    2016-01-01

    In this study, the mechanical strength and modulus of poly(L-lacti acid) (PLLA) scaffolds were enhanced with the mechanical properties of boron nitride nanosheets (BNNSs) and tetraneedlelike ZnO whiskers (T-ZnOw). The adhesion and proliferation of cells were improved as well as osteogenic differentiation of stem cells was increased. Their dispersion statues in PLLA matrix were improved through a space network structure constructed by three-dimensional T-ZnOw supporting two-dimensional BNNSs. The results showed that the compressive strength, modulus and Vickers hardness of the scaffolds with incorporation of 1 wt% BNNSs and 7 wt% T-ZnOw together were about 96.15%, 32.86% and 357.19% higher than that of the PLLA scaffolds, respectively. This might be due to the effect of the pull out and bridging of BNNSs and T-ZnOw as well as the crack deflection, facilitating the formation of effective stress transfer between the reinforcement phases and the matrix. Furthermore, incorporation of BNNSs and T-ZnOw together into PLLA scaffolds was beneficial for attachment and viability of MG-63 cells. More importantly, the scaffolds significantly increased proliferation and promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The enhanced mechanical and biological properties provide the potentials of PLLA/BNNSs/T-ZnOw scaffolds for the application into bone tissue engineering. PMID:27629058

  13. Electrochemical behavior of chlorogenic acid at a boron-doped diamond electrode and estimation of the antioxidant capacity in the coffee samples based on its oxidation peak.

    PubMed

    Yardım, Yavuz

    2012-04-01

    In this study, an electroanalytical methodology for the determination of chlorogenic acid (CGA) was achieved at a boron-doped diamond electrode under adsorptive transfer stripping voltammetric conditions. The values obtained for CGA were used to estimate the antioxidant properties of the coffee sample based on CGA oxidation. By using square-wave stripping mode, the compound yielded a well-defined voltammetric response at +0.49 V with respect to Ag/AgCl in Britton-Robinson buffer at pH 3.0 (after 120 s accumulations at a fixed potential of 0.40 V). At the optimum experimental conditions, linear calibration curve is obtained within the concentration range of 0.25 to 4.0 μg mL⁻¹ with the limit of detection 0.049 μg mL⁻¹ . The developed protocol was successfully applied for the analysis of antioxidant capacity in the coffee products such as Turkish coffee and instant coffee.

  14. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  15. A space network structure constructed by tetraneedlelike ZnO whiskers supporting boron nitride nanosheets to enhance comprehensive properties of poly(L-lacti acid) scaffolds

    PubMed Central

    Feng, Pei; Peng, Shuping; Wu, Ping; Gao, Chengde; Huang, Wei; Deng, Youwen; Shuai, Cijun

    2016-01-01

    In this study, the mechanical strength and modulus of poly(L-lacti acid) (PLLA) scaffolds were enhanced with the mechanical properties of boron nitride nanosheets (BNNSs) and tetraneedlelike ZnO whiskers (T-ZnOw). The adhesion and proliferation of cells were improved as well as osteogenic differentiation of stem cells was increased. Their dispersion statues in PLLA matrix were improved through a space network structure constructed by three-dimensional T-ZnOw supporting two-dimensional BNNSs. The results showed that the compressive strength, modulus and Vickers hardness of the scaffolds with incorporation of 1 wt% BNNSs and 7 wt% T-ZnOw together were about 96.15%, 32.86% and 357.19% higher than that of the PLLA scaffolds, respectively. This might be due to the effect of the pull out and bridging of BNNSs and T-ZnOw as well as the crack deflection, facilitating the formation of effective stress transfer between the reinforcement phases and the matrix. Furthermore, incorporation of BNNSs and T-ZnOw together into PLLA scaffolds was beneficial for attachment and viability of MG-63 cells. More importantly, the scaffolds significantly increased proliferation and promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The enhanced mechanical and biological properties provide the potentials of PLLA/BNNSs/T-ZnOw scaffolds for the application into bone tissue engineering. PMID:27629058

  16. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system.

  17. [Cu(OH)(TMEDA)]₂Cl₂-catalyzed regioselective 2-arylation of 5-substituted tetrazoles with boronic acids under mild conditions.

    PubMed

    Onaka, Takuya; Umemoto, Hideaki; Miki, Yasuyoshi; Nakamura, Akira; Maegawa, Tomohiro

    2014-07-18

    A mild and regioselective 2-arylation of 5-substituted tetrazoles is described. The reaction proceeds regioselectively with a variety of arylboronic acids in the presence of [Cu(OH)(TMEDA)]2Cl2 to afford 2,5-disubstituted tetrazoles. This is the first report of highly regioselective arylation of 5-alkyltetrazoles. PMID:24962401

  18. Mechanism of Enhanced Electrochemical Oxidation of 2,4-dichlorophenoxyacetic Acid with in situ Microwave Activated Boron-doped Diamond and Platinum Anodes

    NASA Astrophysics Data System (ADS)

    Gao, Junxia; Zhao, Guohua; Liu, Meichuan; Li, Dongming

    2009-09-01

    Remarkable enhancement in degradation effect is achieved at in situ activated boron-doped diamond (BDD) and Pt anodes with different extent through electrochemical oxidation (EC) of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave (MW) radiation in a flow system. Results show that when EC is activated with MW radiation, the complete mineralization time of 2,4-D at the BDD is reduced quickly from 10 to 4 h while Chemical oxygen demand (COD) removal at Pt is increased from 37.7 to 58.3% at 10 h; the initial current efficiency is both improved about 1.5 times while the pseudo-first-order rate constant is increased by 153 and 119% at the BDD and Pt, respectively. To gain insight into the higher efficiency in microwave activated EC, the mechanism has therefore been systematically evaluated from the essence of electrochemical reaction and the accumulated hydroxyl radical concentration. 2,4-Dichlorophenol, catechol, benquinone, and maleic and oxalic acids are the main intermediates on the Pt anode measured by high performance liquid chromatography (HPLC), while the intermediates on the BDD electrode include 2,4-dichlorophenol, hydroquinone, and maleic and oxalic acids. The reaction pathway with microwave radiation is the same as that in a conventional electrochemical oxidation on both electrodes. While less and lower aromatic intermediates produce at the BDD with MW, which suggests the higher ring-open ratio and the faster oxidation of carboxylic acids. With microwave radiation, the ring-open ratio at the BDD is increased to 98.8% from 85.6%; the value at Pt is increased to 67.3% from 35.9%. So microwave radiation can activate the electrochemical oxidation, which leads to the higher efficiency. This promotion is mainly due to the higher accumulated hydroxyl radical concentration and the effects by microwave radiation. All the results prove that the BDD electrode presents much better mineralization performance with MW. To the best of our knowledge, it is the first

  19. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  20. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  1. Acidity enhancement of unsaturated bases of group 15 by association with borane and beryllium dihydride. Unexpected boron and beryllium Brønsted acids.

    PubMed

    Martín-Sómer, Ana; Mó, Otilia; Yáñez, Manuel; Guillemin, Jean-Claude

    2015-01-21

    The intrinsic acidity of CH2[double bond, length as m-dash]CHXH2, HC[triple bond, length as m-dash]CXH2 (X = N, P, As, Sb) derivatives and of their complexes with BeH2 and BH3 has been investigated by means of high-level density functional theory and molecular orbital ab initio calculations, using as a reference the ethyl saturated analogues. The acidity of the free systems steadily increases down the group for the three series of derivatives, ethyl, vinyl and ethynyl. The association with both beryllium dihydride and borane leads to a very significant acidity enhancement, being larger for BeH2 than for BH3 complexes. This acidity enhancement, for the unsaturated compounds, is accompanied by a change in the acidity trends down the group, which do not steadily decrease but present a minimum value for both the vinyl- and the ethynyl-phosphine. When the molecule acting as the Lewis acid is beryllium dihydride, the π-type complexes in which the BeH2 molecules interact with the double or triple bond are found, in some cases, to be more stable, in terms of free energies, than the conventional complexes in which the attachment takes place at the heteroatom, X. The most important finding, however, is that P, As, and Sb ethynyl complexes with BeH2 do not behave as P, As, or Sb Brønsted acids, but unexpectedly as Be acids.

  2. Palladium-Catalyzed 1,3-Difunctionalization Using Terminal Alkenes with Alkenyl Nonaflates and Aryl Boronic Acids.

    PubMed

    McCammant, Matthew S; Shigeta, Takashi; Sigman, Matthew S

    2016-04-15

    A Pd-catalyzed 1,3-difunctionalization of terminal alkenes using 1,1-disubstituted alkenyl nonaflates and arylboronic acid coupling partners is reported. This transformation affords allylic arene products that are difficult to selectively access using traditional Heck cross-coupling methodologies. The evaluation of seldom employed 1,1-disubstituted alkenyl nonaflate coupling partners led to the elucidation of subtle mechanistic features of π-allyl stabilized Pd-intermediates. Good stereo- and regioselectivity for the formation of 1,3-addition products can be accessed through a minimization of steric interactions that emanate from alkenyl nonaflate substitution.

  3. Extraordinary cohesiveness of a boronic acid-based calix[6]arene monolayer at the air-water interface

    SciTech Connect

    Hendel, R.A.; Janout, V.; Lee, W.; Regen, S.L.

    1996-11-13

    In this paper, we describe the design and synthesis of calix[6]arene. We also report our unexpected finding that monolayers of the surfactant exhibit extraordinary cohesiveness while in intimate contact with water; i.e., dehydration is not essential for stabilizing the film. The specific molecule that was chosen as a synthetic target was 5,11,17,23,29, 35-hexakis(3-dihydroxybora-1-propyl)-37,38,39,40,41, 42-hexakis(hexadecycloxy)calix[6]-arene, I. The synthesis of I proved to be straightforward using methods that have previously been developed for calix[6]arene and alkylboronic acids synthesis. 10 refs., 2 figs.

  4. Effect of consumption of fatty acids, calcium, vitamin D and boron with regular physical activity on bone mechanical properties and corresponding metabolic hormones in rats.

    PubMed

    Naghii, M R; Ebrahimpour, Y; Darvishi, P; Ghanizadeh, G; Mofid, M; Torkaman, G; Asgari, A R; Hedayati, M

    2012-03-01

    The consumption of fatty acids, nutrients, and regular physical activity, individually influence bone mechanical properties in rats. To investigate their effects in combination, male rats were divided into the seven groups: G1: regular food and drinking water; G2: same as Gr.1 + physical activity (Whole body vibration; WBV); G3: same as Gr.2 + Calcium, Vit. D, Boron; G4: same as Gr.3 + canola oil; G5: same as Gr.3 + sunflower oil; G6: same as Gr.3 + mix of sunflower oil and canola oil; and G7: same as Gr.3 + coconut oil; and treated for 8 weeks. Analysis between the control with the groups 2 and 3 revealed that vibration in the G2 increased the body weight (P = 0.04), with no other major difference in plasma and bone indices. Comparison between the control with the G4-G7 (the oil groups) revealed that the rats in the G5 had a lower body weight (15 % less) and a significant increase in plasma levels of Estradiol in the G7 was noted. In addition, levels of Testosterone in the G4 and G7, and Free Testosterone in the G7 had a remarkable increase. Similar trend was observed for plasma levels of Vit. D in the G4 and G5. The stiffness and the breaking strength of the femur in the G7, and the breaking strength of the lumbar in the G7 compared to the control and the G4 and G5 was significantly higher and tended to increase in comparison to the G6. Better and stronger measurements observed for coconut oil is warranted to further study its effect on biomechanical properties of bones.

  5. Novel Insights Into The Mode of Inhibition of Class A SHV-1 Beta-Lactamases Revealed by Boronic Acid Transition State Inhibitors

    SciTech Connect

    W Ke; J Sampson; C Ori; F Prati; S Drawz; C Bethel; R Bonomo; F van den Akker

    2011-12-31

    Boronic acid transition state inhibitors (BATSIs) are potent class A and C {beta}-lactamase inactivators and are of particular interest due to their reversible nature mimicking the transition state. Here, we present structural and kinetic data describing the inhibition of the SHV-1 {beta}-lactamase, a clinically important enzyme found in Klebsiella pneumoniae, by BATSI compounds possessing the R1 side chains of ceftazidime and cefoperazone and designed variants of the latter, compounds 1 and 2. The ceftazidime and cefoperazone BATSI compounds inhibit the SHV-1 {beta}-lactamase with micromolar affinity that is considerably weaker than their inhibition of other {beta}-lactamases. The solved crystal structures of these two BATSIs in complex with SHV-1 reveal a possible reason for SHV-1's relative resistance to inhibition, as the BATSIs adopt a deacylation transition state conformation compared to the usual acylation transition state conformation when complexed to other {beta}-lactamases. Active-site comparison suggests that these conformational differences might be attributed to a subtle shift of residue A237 in SHV-1. The ceftazidime BATSI structure revealed that the carboxyl-dimethyl moiety is positioned in SHV-1's carboxyl binding pocket. In contrast, the cefoperazone BATSI has its R1 group pointing away from the active site such that its phenol moiety moves residue Y105 from the active site via end-on stacking interactions. To work toward improving the affinity of the cefoperazone BATSI, we synthesized two variants in which either one or two extra carbons were added to the phenol linker. Both variants yielded improved affinity against SHV-1, possibly as a consequence of releasing the strain of its interaction with the unusual Y105 conformation.

  6. NMR, FT-IR, Raman and UV-Vis spectroscopic investigation and DFT study of 6-Bromo-3-Pyridinyl Boronic Acid

    NASA Astrophysics Data System (ADS)

    Dikmen, Gökhan; Alver, Özgür

    2015-11-01

    Possible stable conformers and geometrical molecular structures of 6-Bromo-3-Pyridinyl Boronic acid (6B3PBA; C5H5BBrNO2) were studied experimentally and theoretically using FT-IR and Raman spectroscopic methods. FT-IR and Raman spectra were recorded in the region of 4000-400 cm-1 and 3700-400 cm-1, respectively. The structural properties were investigated further, using 1H, 13C, 1H coupled 13C, HETCOR, COSY and APT NMR techniques. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. Vibrational wavenumbers of 6B3PBA were calculated whereby B3LYP density functional methods including 6-311++G(d, p), 6-311G(d, p), 6-311G(d), 6-31G(d, p) and 6-31G(d) basis sets. The comparison of the experimentally and theoretically obtained results using mean absolute error and experimental versus calculated correlation coefficients for the vibrational wavenumbers indicates that B3LYP method with 6-311++G(d, p) gives more satisfactory results for predicting vibrational wavenumbers when compared to the 6-311G(d, p), 6-311G(d), 6-31G(d, p) and 6-31G(d) basis sets. However, this method and none of the mentioned methods here seem suitable for the calculations of OH stretching modes, most likely because increasing unharmonicity in the high wave number region and possible intra and inter molecular interactions at OH edges lead some deviations between experimental and theoretical results. Moreover, reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated using scaled quantum mechanical (SQM) method.

  7. Chemical disposition of boron in animals and humans.

    PubMed Central

    Moseman, R F

    1994-01-01

    Elemental boron was isolated in 1808. It typically occurs in nature as borates hydrated with varying amounts of water. Important compounds are boric acid and borax. Boron compounds are also used in the production of metals, enamels, and glasses. In trace amounts, boron is essential for the growth of many plants, and is found in animal and human tissues at low concentrations. Poisoning in humans has been reported as the result of accidental ingestion or use of large amounts in the treatment of burns. Boron as boric acid is fairly rapidly absorbed and excreted from the body via urine. The half-life of boric acid in humans is on the order of 1 day. Boron does not appear to accumulate in soft tissues of animals, but does accumulate in bone. Normal levels of boron in soft tissues, urine, and blood generally range from less than 0.05 ppm to no more than 10 ppm. In poisoning incidents, the amount of boric acid in brain and liver tissue has been reported to be as high as 2000 ppm. Recent studies at the National Institute of Environmental Health Sciences have indicated that boron may contribute to reduced fertility in male rodents fed 9000 ppm of boric acid in feed. Within a few days, boron levels in blood and most soft tissues quickly reached a plateau of about 15 ppm. Boron in bone did not appear to plateau, reaching 47 ppm after 7 days on the diet. Cessation of exposure to dietary boron resulted in a rapid drop in bone boron.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889870

  8. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets

    PubMed Central

    2013-01-01

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices. PMID:23347409

  9. Broth Microdilution Method To Detect Extended-Spectrum β-Lactamases and AmpC β-Lactamases in Enterobacteriaceae Isolates by Use of Clavulanic Acid and Boronic Acid as Inhibitors ▿

    PubMed Central

    Jeong, Seok Hoon; Song, Wonkeun; Kim, Jae-Seok; Kim, Han-Sung; Lee, Kyu Man

    2009-01-01

    This study was designed to evaluate the performance of the broth microdilution (BMD) method to detect production of extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases in Enterobacteriaceae by using clavulanic acid (CA) and boronic acid (BA) as ESBL and AmpC β-lactamase inhibitors, respectively. A total of 100 clinical isolates of Enterobacteriaceae were analyzed. Mueller-Hinton broth containing serial twofold dilutions of cefotaxime (CTX), ceftazidime (CAZ), aztreonam (ATM), or cefepime (FEP) with or without either or both CA and BA was prepared. An eightfold or greater decrease in the MIC of CTX, CAZ, ATM, or FEP in the presence of CA and BA was considered a positive result for ESBL and plasmid-mediated AmpC β-lactamase (PABL), respectively. In tests with CA, expanded-spectrum β-lactams containing BA (CTX-BA, CAZ-BA, ATM-BA, and FEP-BA) showed higher positive rates in detecting ESBL producers than those without BA. The combination of CTX- and CAZ-based BMD tests with CA and BA showed sensitivity and specificity of 100% for the detection of ESBLs and PABLs. The BMD testing could be applicable for routine use in commercially available semiautomated systems for the detection of ESBLs and PABLs in Enterobacteriaceae. PMID:19710269

  10. In vitro percutaneous absorption of boron as boric acid, borax, and disodium octaborate tetrahydrate in human skin: a summary.

    PubMed

    Wester, R C; Hartway, T; Maibach, H I; Schell, M J; Northington, D J; Culver, B D; Strong, P L

    1998-01-01

    Literature from the first half of this century reports concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax and disodium octaborate tetrahydrate (DOT) in biological matrices. In vitro human skin percent doses of boric acid absorbed were 1.2 for a 0.05% solution, 0.28 for a 0.5% solution, and 0.70 for a 5.0% solution. These absorption amounts translated into flux values of, respectively, 0.25, 0.58, and 14.58 microg/cm2/h, and permeability constants (Kp) of 5.0 x 10(-4), 1.2 x 10(-4), and 2.9 x 10(-4) cm/h for the 0.05%, 0.5%, and 5.0% solutions. The above in vitro doses were at infinite, 1000 microL/cm2 volume. At 2 microL/cm2 (the in vivo dosing volume), flux decreased some 200-fold to 0.07 microg/cm2/h and Kp of 1.4 x 10(-6) cm/h, while percent dose absorbed was 1.75%. Borax dosed at 5.0%/1000 microL/cm2 had 0.41 percent dose absorbed, flux at 8.5 microg/cm2/h, and Kp was 1.7 x 10(-4) cm/h. Disodium octaborate tetrahydrate (DOT) dosed at 10%/1000 microL/cm2 was 0.19 percent dose absorbed, flux at 7.9 microg/cm2/h, and Kp was 0.8 x 10(-4) cm/h. These in vitro results from infinite doses (1000 microL/cm2) were a 1000-fold greater than those obtained in the companion in vivo study. The results from the finite (2 microL/cm2) dosing were closer (10-fold difference) to the in vivo results. General application of infinite dose percutaneous absorption values for risk assessment is questioned by these results.

  11. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay

    2015-05-01

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).

  12. Petasis Borono-Mannich reaction and allylation of carbonyl compounds via transient allyl boronates generated by palladium-catalyzed substitution of allyl alcohols. an efficient one-pot route to stereodefined alpha-amino acids and homoallyl alcohols.

    PubMed

    Selander, Nicklas; Kipke, Andreas; Sebelius, Sara; Szabó, Kalman J

    2007-11-01

    An efficient one-pot procedure was designed by integration of the pincer-complex-catalyzed borylation of allyl alcohols in the Petasis borono-Mannich reaction and in allylation of aldehydes and ketones. These procedures are suitable for one-pot synthesis of alpha-amino acids and homoallyl alcohols from easily available allyl alcohol, amine, aldehyde, or ketone substrates. In the presented transformations, the active allylating agents are in situ generated allyl boronic acid derivatives. These transient intermediates are proved to be reasonably acid-, base-, alcohol-, water-, and air-stable species, which allows a high level of compatibility with the reaction conditions of the allylation of various aldehyde/ketone and imine electrophiles. The boronate source of the reaction is diboronic acid or in situ hydrolyzed diboronate ester ensuring that the waste product of the reaction is nontoxic boric acid. The regio- and stereoselectivity of the reaction is excellent, as almost all products form as single regio- and stereoisomers. The described procedure is suitable to create quaternary carbon centers in branched allylic products without formation of the corresponding linear allylic isomers. Furthermore, products comprising three stereocenters were formed as single products without formation of other diastereomers. Because of the highly disciplined consecutive processes, up to four-step, four-component transformations could be performed selectively as a one-pot sequence. For example, stereodefined pyroglutamic acid could be prepared from a simple allyl alcohol, a commercially available amine, and glyoxylic acid in a one-step procedure. The presented method also grants an easy access to stereodefined 1,7-dienes that are useful substrates for Grubbs ring-closing metathesis.

  13. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained. PMID:19552446

  14. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  15. Benzodipyrrole-based Donor-Acceptor-type Boron Complexes as Tunable Near-infrared-Absorbing Materials.

    PubMed

    Nakamura, Tomoya; Furukawa, Shunsuke; Nakamura, Eiichi

    2016-07-20

    Benzodipyrrole-based donor-acceptor boron complexes were designed and synthesized as near-infrared-absorbing materials. The electron-rich organic framework combined with the Lewis acidic boron co-ordination enabled us to tune the LUMO energy level and the HOMO-LUMO gap (i.e.,the absorption wavelength) by changing the organic acceptor units, the number of boron atoms, and the substituents on the boron atoms.

  16. Fabrication of boron articles

    DOEpatents

    Benton, Samuel T.

    1976-01-01

    This invention is directed to the fabrication of boron articles by a powder metallurgical method wherein the articles are of a density close to the theoretical density of boron and are essentially crackfree. The method comprises the steps of admixing 1 to 10 weight percent carbon powder with amorphous boron powder, cold pressing the mixture and then hot pressing the cold pressed compact into the desired article. The addition of the carbon to the mixture provides a pressing aid for inhibiting the cracking of the hot pressed article and is of a concentration less than that which would cause the articles to possess significant concentrations of boron carbide.

  17. Effect of combination therapy of fatty acids, calcium, vitamin D and boron with regular physical activity on cardiovascular risk factors in rat.

    PubMed

    Naghii, M R; Darvishi, P; Ebrahimpour, Y; Ghanizadeh, G; Mofid, M; Hedayati, M; Asgari, A R

    2012-01-01

    The effect of consumption of fatty acids and selected nutrients, along with regular physical activity, on cardiovascular risk factors in rats was investigated.Male rats were divided into the seven groups: Group 1: regular food and drinking water, Group 2: same as Group. 1 + physical activity (whole body vibration; WBV), Group 3: same as Group. 2 + calcium, vitamin D, boron, Group 4: same as Group. 3 + canola oil, Group 5: same as Group. 3 + sunflower oil, Group 6: same as Group. 3 + mix of sunflower oil and canola oil, Group 7: same as Group. 3 + coconut oil. Rats were treated for 8 weeks, and analysis of the frozen plasmas was performed. A- Analysis between the treatment groups and control revealed that vibration training in Group 2 increased body weight (P = 0.04), plasma creatin kinase (CK), (P = 0.02), and estradiol (E2), (P = 0.03). Rats in Group 5 consumed less food and plasma levels of cholesterol and LDL-cholesterol (LDL-C) increased significantly (P = 0.02) in Group 6 and in Group 7 (p<0.05). B- Analysis of data among Group 4 - 7 (the oil consuming groups) and Group 3 revealed significant differences in cholesterol (Chol), LDL-C, HDL-cholesterol (HDL-C), triglycerides (TG), C- reactive protein (hs-CRP), estradiol (E2), atherogenic index (AI), and risk factor (RF), (p<0.05). In addition, plasma levels of testosterone (T) and free testosterone (FT) in Group 7 had a remarkable but non-significant increase. As a result of vibration training, a similar trend was observed for vitamin D in Group 2-7. The findings show that WBV is effective in improving health status by influencing cardiovascular disease (CVD) risk factors. Moreover, canola oil and sunflower oil, separately, showed beneficial impacts on CVD risk factors; whereas their combination had negative impacts on lipid profile. Coconut oil revealed to be efficient to provide health benefits in terms of CVD treatments. PMID:22277894

  18. Boronic Acid Transition State Inhibitors Active against KPC and Other Class A β-Lactamases: Structure-Activity Relationships as a Guide to Inhibitor Design

    PubMed Central

    Rojas, Laura J.; Taracila, Magdalena A.; Papp-Wallace, Krisztina M.; Bethel, Christopher R.; Caselli, Emilia; Romagnoli, Chiara; Winkler, Marisa L.; Spellberg, Brad; Prati, Fabio

    2016-01-01

    Boronic acid transition state inhibitors (BATSIs) are competitive, reversible β-lactamase inhibitors (BLIs). In this study, a series of BATSIs with selectively modified regions (R1, R2, and amide group) were strategically designed and tested against representative class A β-lactamases of Klebsiella pneumoniae, KPC-2 and SHV-1. Firstly, the R1 group of compounds 1a to 1c and 2a to 2e mimicked the side chain of cephalothin, whereas for compounds 3a to 3c, 4a, and 4b, the thiophene ring was replaced by a phenyl, typical of benzylpenicillin. Secondly, variations in the R2 groups which included substituted aryl side chains (compounds 1a, 1b, 1c, 3a, 3b, and 3c) and triazole groups (compounds 2a to 2e) were chosen to mimic the thiazolidine and dihydrothiazine ring of penicillins and cephalosporins, respectively. Thirdly, the amide backbone of the BATSI, which corresponds to the amide at C-6 or C-7 of β-lactams, was also changed to the following bioisosteric groups: urea (compound 3b), thiourea (compound 3c), and sulfonamide (compounds 4a and 4b). Among the compounds that inhibited KPC-2 and SHV-1 β-lactamases, nine possessed 50% inhibitory concentrations (IC50s) of ≤600 nM. The most active compounds contained the thiopheneacetyl group at R1 and for the chiral BATSIs, a carboxy- or hydroxy-substituted aryl group at R2. The most active sulfonamido derivative, compound 4b, lacked an R2 group. Compound 2b (S02030) was the most active, with acylation rates (k2/K) of 1.2 ± 0.2 × 104 M−1 s−1 for KPC-2 and 4.7 ± 0.6 × 103 M−1 s−1 for SHV-1, and demonstrated antimicrobial activity against Escherichia coli DH10B carrying blaSHV variants and blaKPC-2 or blaKPC-3 and against clinical strains of Klebsiella pneumoniae and E. coli producing different class A β-lactamase genes. At most, MICs decreased from 16 to 0.5 mg/liter. PMID:26729496

  19. Effect of combination therapy of fatty acids, calcium, vitamin D and boron with regular physical activity on cardiovascular risk factors in rat.

    PubMed

    Naghii, M R; Darvishi, P; Ebrahimpour, Y; Ghanizadeh, G; Mofid, M; Hedayati, M; Asgari, A R

    2012-01-01

    The effect of consumption of fatty acids and selected nutrients, along with regular physical activity, on cardiovascular risk factors in rats was investigated.Male rats were divided into the seven groups: Group 1: regular food and drinking water, Group 2: same as Group. 1 + physical activity (whole body vibration; WBV), Group 3: same as Group. 2 + calcium, vitamin D, boron, Group 4: same as Group. 3 + canola oil, Group 5: same as Group. 3 + sunflower oil, Group 6: same as Group. 3 + mix of sunflower oil and canola oil, Group 7: same as Group. 3 + coconut oil. Rats were treated for 8 weeks, and analysis of the frozen plasmas was performed. A- Analysis between the treatment groups and control revealed that vibration training in Group 2 increased body weight (P = 0.04), plasma creatin kinase (CK), (P = 0.02), and estradiol (E2), (P = 0.03). Rats in Group 5 consumed less food and plasma levels of cholesterol and LDL-cholesterol (LDL-C) increased significantly (P = 0.02) in Group 6 and in Group 7 (p<0.05). B- Analysis of data among Group 4 - 7 (the oil consuming groups) and Group 3 revealed significant differences in cholesterol (Chol), LDL-C, HDL-cholesterol (HDL-C), triglycerides (TG), C- reactive protein (hs-CRP), estradiol (E2), atherogenic index (AI), and risk factor (RF), (p<0.05). In addition, plasma levels of testosterone (T) and free testosterone (FT) in Group 7 had a remarkable but non-significant increase. As a result of vibration training, a similar trend was observed for vitamin D in Group 2-7. The findings show that WBV is effective in improving health status by influencing cardiovascular disease (CVD) risk factors. Moreover, canola oil and sunflower oil, separately, showed beneficial impacts on CVD risk factors; whereas their combination had negative impacts on lipid profile. Coconut oil revealed to be efficient to provide health benefits in terms of CVD treatments.

  20. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  1. Branched polymeric media: boron-chelating resins from hyperbranched polyethylenimine.

    PubMed

    Mishra, Himanshu; Yu, Changjun; Chen, Dennis P; Goddard, William A; Dalleska, Nathan F; Hoffmann, Michael R; Diallo, Mamadou S

    2012-08-21

    Extraction of boron from aqueous solutions using selective resins is important in a variety of applications including desalination, ultrapure water production, and nuclear power generation. Today's commercial boron-selective resins are exclusively prepared by functionalization of styrene-divinylbenzene (STY-DVB) beads with N-methylglucamine to produce resins with boron-chelating groups. However, such boron-selective resins have a limited binding capacity with a maximum free base content of 0.7 eq/L, which corresponds to a sorption capacity of 1.16 ± 0.03 mMol/g in aqueous solutions with equilibrium boron concentration of ∼70 mM. In this article, we describe the synthesis and characterization of a new resin that can selectively extract boron from aqueous solutions. We show that branched polyethylenimine (PEI) beads obtained from an inverse suspension process can be reacted with glucono-1,5-D-lactone to afford a resin consisting of spherical beads with high density of boron-chelating groups. This resin has a sorption capacity of 1.93 ± 0.04 mMol/g in aqueous solution with equilibrium boron concentration of ∼70 mM, which is 66% percent larger than that of standard commercial STY-DVB resins. Our new boron-selective resin also shows excellent regeneration efficiency using a standard acid wash with a 1.0 M HCl solution followed by neutralization with a 0.1 M NaOH solution.

  2. The structure of boron in boron fibres

    NASA Technical Reports Server (NTRS)

    Bhardwaj, J.; Krawitz, A. D.

    1983-01-01

    The structure of noncrystalline, chemically vapour-deposited boron fibres was investigated by computer modelling the experimentally obtained X-ray diffraction patterns. The diffraction patterns from the models were computed using the Debye scattering equation. The modelling was done utilizing the minimum nearest-neighbour distance, the density of the model, and the broadening and relative intensity of the various peaks as boundary conditions. The results suggest that the fibres consist of a continuous network of randomly oriented regions of local atomic order, about 2 nm in diameter, containing boron atoms arranged in icosahedra. Approximately half of these regions have a tetragonal structure and the remaining half a distorted rhombohedral structure. The model also indicates the presence of many partial icosahedra and loose atoms not associated with any icosahedra. The partial icosahedra and loose atoms indicated in the present model are in agreement with the relaxing sub-units which have been suggested to explain the anelastic behavior of fibre boron and the loosely bound boron atoms which have been postulated to explain the strengthening mechanism in boron fibres during thermal treatment.

  3. Cyclization of peptoids by formation of boronate esters

    PubMed Central

    Chirayil, Sara; Luebke, Kevin J.

    2011-01-01

    Introduction of conformational constraints into peptoids (N-substituted oligoglycines) will enable new applications in molecular recognition and self-assembly. Peptoids that contain both a phenylboronic acid side chain and a vicinal diol cyclize by intramolecular condensation to form boronate esters. A fluorescent indicator of free boronic acid was used to assay esterification. A galactose moiety 2 to 5 monomer units away from a boronic acid side chain in a peptoid reacts with the boronic acid in competition with the indicator. The intramolecular reaction predominates in each case, with 80–90% of the peptoid cyclized. When the diol is a simple 2,3-dihydroxypropyl group, esterification is less favored but still appreciable. PMID:22611292

  4. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  5. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  6. Microwave sintering of boron carbide

    DOEpatents

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  7. Thermodynamics of Boroxine Formation from the Aliphatic Boronic Acid Monomers R–B(OH)2 (R = H, H3C, H2N, HO, and F): A Computational Investigation

    PubMed Central

    Bhat, Krishna L.; Markham, George D.; Larkin, Joseph D.; Bock, Charles W.

    2011-01-01

    Boroxines are the 6-membered cyclotrimeric dehydration products of organoboronic acids: 3 R– B(OH)2 → R3B3O3 + 3 H2O, and in recent years have emerged as a useful class of organoboron molecules with applications in organic synthesis both as reagents and catalysts, as structural components in boronic acid derived pharmaceutical agents, as anion acceptors and electrolyte additives for battery materials [AL Korich and PM Iovine, Dalton Trans. 39 (2010) 1423–1431]. Second-order Møller-Plesset perturbation theory, in conjunction with the Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets, was used to investigate the structures and relative energies of the endo-exo, anti, and syn conformers of the aliphatic boronic acids R–B(OH)2 (R = H, H3C, H2N, HO, and F), as well as the thermodynamics of their boroxine formation; single-point calculations at the MP2/aug-cc-pVQZ, MP2/aug-cc-pV5Z, and CCSD(T)/aug-cc-pVTZ level using the MP2/aug-cc-pVTZ optimized geometries were also performed in selected cases. The endo-exo conformer was generally lowest in energy in vacuo, as well as in PCM and CPCM models of aqueous and carbon tetrachloride media. The values of ΔH2980 for boroxine formation via dehydration from the endo-exo conformers of these aliphatic boronic acids ranged from −2.9 for (H2N)3B3O3 to +12.2 kcal/mol for H3B3O3 at the MP2/aug-cc-pVTZ level in vacuo; for H3B3O3 the corresponding values in PCM:UFF implicit carbon tetrachloride and aqueous media were +11.2 and +9.8 kcal/mol, respectively. Based on our calculations, we recommend that ΔHf(298 K) for boroxine listed in the JANAF compilation needs to be revised from −290.0 kcal/mol to approximately −277.0 kcal/mol. PMID:21650154

  8. Role of boron oxide in growth of boron nitride grains

    SciTech Connect

    Hubacek, Milan; Ueki, Masanori

    1996-12-31

    Grain growth in sintered hexagonal boron nitride ceramics hot-pressed from microcrystalline and crystalline powders was studied. Boron oxide released during sintering, especially from the microcrystalline powder, had a crucial effect on the size and orientation of boron nitride grains and on the mechanical properties of the ceramics. The extraction of boron oxide from the boron nitride grains with elemental boron and subsequent conversion to a refractory suboxide resulted in a substantial rise in the refractoriness, preventing the undesirable growth of boron nitride grains, and reducing their response to the uniaxial effect of the external pressure. The migration mechanism of boron oxide ill hot-pressed boron nitride was also confirmed by measurements of the oxygen distribution ill the ceramics.

  9. Direct current sputtering of boron from boron/coron mixtures

    DOEpatents

    Timberlake, John R.; Manos, Dennis; Nartowitz, Ed

    1994-01-01

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

  10. Boron in sillimanite.

    PubMed

    Grew, E S; Hinthorne, J R

    1983-08-01

    Sillimanite in six granulite-facies, kornerupine-bearing rocks contains 0.035 to 0.43 percent B(2)O(3) and 0.02 to 0.23 percent MgO (by weight). Substitution of boron for silicon and magnesium for aluminum is coupled such that the ratio of magnesium to boron is about 0.5. Sillimanite incorporates more than 0.1 percent B(2)O(3) only at high temperatures in a boron-rich environment at very low partial pressures of water. In the amphibolite facies, the sillimanite boron contents are too low to appreciably affect the stability relations of sillimanite with kyanite and andalusite. PMID:17830955

  11. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2016-02-16

    According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.

  12. Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.

    PubMed Central

    Blevins, D G; Lukaszewski, K M

    1994-01-01

    Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877

  13. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes.

    PubMed

    Do, Van Thanh; Tang, Chuyang Y; Reinhard, Martin; Leckie, James O

    2012-10-15

    The separation layer of polyamide-based (PA) thin film composite (TFC) membranes can be modified by active chlorine species. The PA-TFC membranes, NF90, BW30 and NF270, were exposed to different concentrations of sodium hypochlorite (NaOCl) at pH 5 for 24 h. Elemental composition obtained from X-ray Photoelectron Spectroscopy (XPS) showed that the chlorine content in the PA layer increased with the chlorine concentrations. Treatment of membranes with 10 ppm Cl increased the membrane hydrophilicity. By contrast, when treated with 1000 ppm Cl or more, the membranes became less hydrophilic. Water permeability values for all 3 membrane types declined with increased chlorine concentrations. Filtration of polyethylene glycols (PEGs) with molecular weights of 200, 400 and 600 Daltons (Da) was performed to investigate the influence of chlorine treatment on membrane molecular weight cut off (MWCO) and rejection by size exclusion. Treatment with 10 and 100 ppm Cl lowered the MWCO while treatment with higher concentrations increased the MWCO. All chlorinated membranes experienced higher NaCl rejection compared to virgin ones. The performance of NF90 was tested with respect to the rejection of inorganic contaminants including boron (H(3)BO(3)) and arsenic (H(2)AsO(4)(-)). The boron rejection results paralleled PEG rejection whereas those for arsenic followed NaCl rejection patterns. The changes in membrane performance due to chlorine treatment were explained in terms of competing mechanisms: membrane tightening, bond cleavage by N-chlorination and chlorination promoted polyamide hydrolysis.

  14. An introduction to boron: history, sources, uses, and chemistry.

    PubMed Central

    Woods, W G

    1994-01-01

    Following a brief overview of the terrestrial distribution of boron in rocks, soil, and water, the history of the discovery, early utilization, and geologic origin of borate minerals is summarized. Modern uses of borate-mineral concentrates, borax, boric acid, and other refined products include glass, fiberglass, washing products, alloys and metals, fertilizers, wood treatments, insecticides, and microbiocides. The chemistry of boron is reviewed from the point of view of its possible health effects. It is concluded that boron probably is complexed with hydroxylated species in biologic systems, and that inhibition and stimulation of enzyme and coenzymes are pivotal in its mode of action. Images Figure 1. PMID:7889881

  15. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    NASA Astrophysics Data System (ADS)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  16. Ambiphilic boron in 1,4,2,5-diazadiborinine.

    PubMed

    Wang, Baolin; Li, Yongxin; Ganguly, Rakesh; Hirao, Hajime; Kinjo, Rei

    2016-01-01

    Boranes have long been known as the archetypal Lewis acids owing to an empty p-orbital on the boron centre. Meanwhile, Lewis basic tricoordinate boranes have been developed in recent years. Here we report the synthesis of an annulated 1,4,2,5-diazadiborinine derivative featuring boron atoms that exhibit both Lewis acidic and basic properties. Experimental and computational studies confirmed that two boron atoms in this molecule are spectroscopically equivalent. Nevertheless, this molecule cleaves C-O, B-H, Si-H and P-H bonds heterolytically, and readily undergoes [4+2] cycloaddition reaction with non-activated unsaturated bonds such as C=O, C=C, C≡C and C≡N bonds. The result, thus, indicates that the indistinguishable boron atoms in 1,4,2,5-diazadiborinine act as both nucleophilic and electrophilic centres, demonstrating ambiphilic nature. PMID:27279265

  17. Ambiphilic boron in 1,4,2,5-diazadiborinine

    PubMed Central

    Wang, Baolin; Li, Yongxin; Ganguly, Rakesh; Hirao, Hajime; Kinjo, Rei

    2016-01-01

    Boranes have long been known as the archetypal Lewis acids owing to an empty p-orbital on the boron centre. Meanwhile, Lewis basic tricoordinate boranes have been developed in recent years. Here we report the synthesis of an annulated 1,4,2,5-diazadiborinine derivative featuring boron atoms that exhibit both Lewis acidic and basic properties. Experimental and computational studies confirmed that two boron atoms in this molecule are spectroscopically equivalent. Nevertheless, this molecule cleaves C–O, B–H, Si–H and P–H bonds heterolytically, and readily undergoes [4+2] cycloaddition reaction with non-activated unsaturated bonds such as C=O, C=C, C≡C and C≡N bonds. The result, thus, indicates that the indistinguishable boron atoms in 1,4,2,5-diazadiborinine act as both nucleophilic and electrophilic centres, demonstrating ambiphilic nature. PMID:27279265

  18. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  19. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-02-06

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  20. Boronated liposome development and evaluation

    SciTech Connect

    Hawthorne, M.F.

    1995-11-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  1. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes.

    PubMed

    Do, Van Thanh; Tang, Chuyang Y; Reinhard, Martin; Leckie, James O

    2012-10-15

    The separation layer of polyamide-based (PA) thin film composite (TFC) membranes can be modified by active chlorine species. The PA-TFC membranes, NF90, BW30 and NF270, were exposed to different concentrations of sodium hypochlorite (NaOCl) at pH 5 for 24 h. Elemental composition obtained from X-ray Photoelectron Spectroscopy (XPS) showed that the chlorine content in the PA layer increased with the chlorine concentrations. Treatment of membranes with 10 ppm Cl increased the membrane hydrophilicity. By contrast, when treated with 1000 ppm Cl or more, the membranes became less hydrophilic. Water permeability values for all 3 membrane types declined with increased chlorine concentrations. Filtration of polyethylene glycols (PEGs) with molecular weights of 200, 400 and 600 Daltons (Da) was performed to investigate the influence of chlorine treatment on membrane molecular weight cut off (MWCO) and rejection by size exclusion. Treatment with 10 and 100 ppm Cl lowered the MWCO while treatment with higher concentrations increased the MWCO. All chlorinated membranes experienced higher NaCl rejection compared to virgin ones. The performance of NF90 was tested with respect to the rejection of inorganic contaminants including boron (H(3)BO(3)) and arsenic (H(2)AsO(4)(-)). The boron rejection results paralleled PEG rejection whereas those for arsenic followed NaCl rejection patterns. The changes in membrane performance due to chlorine treatment were explained in terms of competing mechanisms: membrane tightening, bond cleavage by N-chlorination and chlorination promoted polyamide hydrolysis. PMID:22818949

  2. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  3. Mineral of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  4. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    SciTech Connect

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay; Kumar, Manjeet; Thakur, Anup

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT)

  5. A modular synthesis of functionalised phenols enabled by controlled boron speciation.

    PubMed

    Molloy, John J; Law, Robert P; Fyfe, James W B; Seath, Ciaran P; Hirst, David J; Watson, Allan J B

    2015-03-14

    A modular synthesis of functionalised biaryl phenols from two boronic acid derivatives has been developed via one-pot Suzuki-Miyaura cross-coupling, chemoselective control of boron solution speciation to generate a reactive boronic ester in situ, and oxidation. The utility of this method has been further demonstrated by application in the synthesis of drug molecules and components of organic electronics, as well as within iterative cross-coupling. PMID:25628154

  6. A modular synthesis of functionalised phenols enabled by controlled boron speciation.

    PubMed

    Molloy, John J; Law, Robert P; Fyfe, James W B; Seath, Ciaran P; Hirst, David J; Watson, Allan J B

    2015-03-14

    A modular synthesis of functionalised biaryl phenols from two boronic acid derivatives has been developed via one-pot Suzuki-Miyaura cross-coupling, chemoselective control of boron solution speciation to generate a reactive boronic ester in situ, and oxidation. The utility of this method has been further demonstrated by application in the synthesis of drug molecules and components of organic electronics, as well as within iterative cross-coupling.

  7. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    SciTech Connect

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We present results from an investigation of boron uptake in vivo by the synovium.

  8. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  9. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  10. A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins.

    PubMed

    Li, Daojin; Li, Yang; Li, Xinglin; Bie, Zijun; Pan, Xianghua; Zhang, Qian; Liu, Zhen

    2015-03-01

    Boronate affinity materials, as effective sample enrichment sorbents for glycoproteomic analysis, have attracted increasing attention in recent years. However, most of boronate affinity materials suffer from an apparent limitation, limited binding strength. As a result, extraction of glycoproteins of trace concentration is rather difficult or impossible. In this study, we present a high boronate avidity monolithic capillary. Branched polyethyleneimine (PEI) was used as a scaffold to amplify the number of boronic acid moieties. While 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA), which exhibited ultrahigh affinity toward cis-diol-containing compounds, was employed as an affinity ligand. Due to the PEI-assisted synergistic multivalent binding, the monolithic column exhibited high boronate avidity toward glycoproteins, with binding constants of 10(-6)-10(-7)M. Such binding strength was the highest among already reported boronic acid-functionalized materials that can be used for glycoproteomic analysis. Besides, the boronate avidity monolithic column exhibited one additional beneficial feature, lowered binding pH (≥6.5). These features greatly favored the selective enrichment of trace glycoproteins from real samples. The feasibility for practical applications was demonstrated with the selective enrichment of trace glycoproteins in human saliva. As compared with other boronate avidity/affinity materials, the boronate avidity monolithic capillary exhibited the best performance.

  11. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  12. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  13. Boron and Compounds

    Integrated Risk Information System (IRIS)

    Boron and Compounds ; CASRN 7440 - 42 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  14. Plasma boron and the effects of boron supplementation in males.

    PubMed

    Green, N R; Ferrando, A A

    1994-11-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p < 0.01), lean body mass (p < 0.01), and one repetition maximum (RM) squat (p < 0.001) and one RM bench press (p < 0.01). The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all.

  15. Boron isotopes as an artificial tracer.

    PubMed

    Quast, Konrad W; Lansey, Kevin; Arnold, Robert; Bassett, Randy L; Rincon, Martha

    2006-01-01

    A field study was conducted using a combination of intrinsic and artificial tracers to estimate travel times and dilution during transport of infiltrate from a reclaimed water infiltration basin to nearby monitoring wells. A major study objective was to validate boric acid enriched in (10)B as an artificial tracer. Basin 10E at the Rio Hondo Spreading Grounds in Whittier, California, was the site of the test. The basin normally receives a mixture of treated municipal waste water, purchased State Project water, and local runoff from the San Gabriel River. Approximately 3.5 kg of (10)B-enriched boric acid was dispersed among 2.05 x 10(5) m(3) of basin water to initiate the experiment. The resultant median delta(11)B in the infiltration basin was -71 per thousand. Prior to tracer addition, the basin water had an intrinsic delta(11)B of +2 per thousand. Local monitoring wells that were used to assess travel times had delta(11)B values of +5 per thousand and +8 per thousand at the time of tracer addition. Analytic results supported an assumption that boron is conserved during ground water transport and that boron enriched in (10)B is a useful artificial tracer. Several intrinsic tracers were used to reinforce the boric acid tracer findings. These included stable isotopes of oxygen (delta(18)O) and hydrogen (deltaD), sulfate concentration, and the boron to chloride ratio. Xenon isotopes, (136)Xe and (124)Xe, also supported boron isotope results. Xenon isotopes were added to the recharge basin as dissolved gases by investigators from the Lawrence Livermore National Laboratory.

  16. Nothing Boring About Boron.

    PubMed

    Pizzorno, Lara

    2015-08-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body's use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD(+)); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin's lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron's beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron-only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis; osteoarthritis (OA

  17. Azomethine H colorimetric method for determining dissolved boron in water

    USGS Publications Warehouse

    Spencer, R.R.; Erdmann, D.E.

    1979-01-01

    An automated colorimetric method for determining dissolved boron in water is described. The boron is complexed with azomethine H, which is readily available as the condensation product of H acid (8-amino-1-naphthol-3,6-disulfonic acid) and salicylaldehyde. The absorbance of the yellow complex formed is then measured colorimetrically at 410 nm. Interference effects from other dissolved species are minimized by the addition of diethylenetriaminepentaacetic acid (DTPA); however, iron, zinc, and bicarbonate interfere at concentrations above 400 ??g/L, 2000 ??g/L, and 200 mg/L, respectively. The bicarbonate interference can be eliminated by careful acidification of the sample with concentrated HCl to a pH between 5 and 6. Thirty samples per hour can be routinely analyzed over the range of from 10 to 400 ??g/L, boron.

  18. Methods of producing continuous boron carbide fibers

    SciTech Connect

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  19. Pretreatment of plant and soil samples: a problem in boron analysis. Part I. Plants

    SciTech Connect

    Wikner, B.

    1986-01-01

    Possible sources of errors in the determination of boron in plant samples were examined. During drying and grinding neither loss nor contamination of boron was observed. It was found that boron was slightly lost when muffling at temperatures higher than 550/sup 0/C. The addition of Ca(OH)/sub 2/ prevented the loss but gave rise to incomplete ashing in many cases. Nitrate salts added in order to enhance oxidation gave rise to boron loss. Wet ashing should be done preferably in a concentrated sulfuric acid or phosphoric acid medium at low temperatures. At higher temperatures the shape of the digestion flask is important - long neck flasks are usually safe enough due to their condensating effects. Very high temperatures with foaming demand additional cooling condensors. Borosilicate glass can not be used. Extraction of plant samples with hydrochloric acid is a convenient alternative but no more than 75-94% of the total boron concentration in plants could be extracted.

  20. Chemical Vapor Deposition of Phosphorous- and Boron-Doped Graphene Using Phenyl-Containing Molecules.

    PubMed

    Mekan Ovezmyradov; Magedov, Igor V; Frolova, Liliya V; Chandler, Gary; Garcia, Jill; Bethke, Donald; Shaner, Eric A; Kalugin, Nikolai G

    2015-07-01

    Simultaneous chemical vapor deposition (CVD) of graphene and "in-situ" phosphorous or boron doping of graphene was accomplished using Triphenylphosphine (TPP) and 4-Methoxyphenylboronic acid (4-MPBA). The TPP and 4-MPBA molecules were sublimated and supplied along with CH4 molecules during graphene growth at atmospheric pressure. The grown graphene samples were characterized using Raman spectroscopy. Phosphorous and boron presence in phosphorous and boron doped graphene was confirmed with Auger electron spectroscopy. The possibility of obtaining phosphorous and boron doped graphene using solid-source molecule precursors via CVD can lead to an easy and rapid production of modified large area graphene.

  1. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides

    PubMed Central

    Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman

    2012-01-01

    Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669

  2. Experimental Microbiology of Saturated Salt Solutions and Other Harsh Environments. III. Growth of Salt-Tolerant Penicillium notatum in Boron-Rich Media 1

    PubMed Central

    Roberts, Karen; Siegel, S. M.

    1967-01-01

    A stress-tolerant strain of Penicillium notatum, isolated by passage through a nutrient solution saturated with calcium acetate, was found to have a tolerance to boron in several states of oxidation. Growth in the presence of elementary boron, saturating amounts of boric acid, and with various concentrations of sodium borohydride was observed and mycelial mats were spectrographically analyzed for boron accumulation. PMID:6076112

  3. A dual role of boronate affinity in high-sensitivity detection of vicinal diol brassinosteroids from sub-gram plant tissues via UPLC-MS/MS.

    PubMed

    Xin, Peiyong; Yan, Jijun; Fan, Jinshi; Chu, Jinfang; Yan, Cunyu

    2013-03-01

    Based on the dual role of specific boronate affinity, making use of both novel self-synthesized boronate affinity-functionalized magnetic nanoparticles and a high-efficiency organic boronic acid-type derivatization reagent, we report a simple, convenient and highly-sensitive method for detection of endogenous brassinosteroids from real plant materials.

  4. Boron suboxide: As hard as cubic boron nitride

    NASA Astrophysics Data System (ADS)

    He, Duanwei; Zhao, Yusheng; Daemen, L.; Qian, J.; Shen, T. D.; Zerda, T. W.

    2002-07-01

    The Vickers hardness of boron suboxide single crystals was measured using a diamond indentation method. Under a loading force of 0.98 N, our test gave an average Vickers hardness of 45 GPa. The average fracture toughness was measured as 4.5 MPa m1/2. We also measured the hardness of the cubic boron nitride and sapphire single crystals for comparison. The average measured hardness for boron suboxide was found to be very close to that of cubic boron nitride under the same loading force. Our results suggest that the boron suboxide could be a new superhard material for industrial applications, surpassed in hardness only by diamond and cubic boron nitride.

  5. Functional characterization of Citrus macrophylla BOR1 as a boron transporter.

    PubMed

    Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio

    2013-11-01

    Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants.

  6. Boronate esters: Synthesis, characterization and molecular base receptor analysis

    NASA Astrophysics Data System (ADS)

    Gómez-Jaimes, Gelen; Barba, Victor

    2014-10-01

    The synthesis of three boronate esters obtained by reacting 4-fluorophenylboronic (1), 4-iodophenylboronic (2) and 3,4-chlorophenylboronic (3) acids with 2,4,5-trihidroxybenzaldehyde is reported. The structural characterization was determined by spectroscopic and spectrometric techniques. The boron atom was evaluated to acts as Lewis acid center in the reaction with pyridine (Py), triethylamine (TEA) and fluoride anion (F-). The titration method was followed by UV-Vis and 11B NMR spectroscopy; results indicate the good interaction with the fluoride ion but poor coordination towards pyridine in solution.

  7. Magnetron sputter deposition of boron and boron carbide

    SciTech Connect

    McKernan, M.A.; Makowiecki, D.; Ramsey, P.; Jankowski, A.

    1991-03-13

    The fabrication of x-ray optical coatings with greater reflectivity required the development of sputter deposition processes for boron and boron carbide. The use of high density boron and boron carbide and a vacuum brazed target design was required to achieve the required sputter process stability and resistance to the thermal stress created by high rate sputtering. The results include a description of the target fabrication procedures and sputter process parameters necessary to fabricate B{sub 4}C{sup (1)} and B{sup (2)} modulated thin film structures. 3 refs., 6 figs.

  8. A facile and high-yield formation of dipyrrin-boronic acid dyads and triads: a light-harvesting system in the visible region based on the efficient energy transfer.

    PubMed

    Yamamura, Masaki; Yazaki, Shinya; Seki, Motofumi; Matsui, Yasunori; Ikeda, Hiroshi; Nabeshima, Tatsuya

    2015-03-01

    Artificial light-harvesting systems, Ar,O-BODIPY dyads and triads conjugated with a light harvester, were synthesized in high yield by the reaction of an N2O2-type dipyrrin with boronic acids. Dyad 2 having a pyrene unit underwent quantitative Förster resonance energy transfer (FRET) from the antenna unit, pyrene, to the fluorophore unit, Ar,O-BODIPY. Triads 3·5 and 4·5 were quantitatively prepared by mixing pyridine-appended compounds 3 and 4 with saloph·Zn complex 5, respectively. Triad 4·5 underwent efficient FRET from the saloph·Zn complex unit to the fluorophore unit at the rate of 2.0 × 10(11) s(-1). Interestingly, the fluorescence quenching process in the excited state of the triad 3·5 took place following the energy transfer event. Thus, appropriate positioning of the energy donor and acceptor is necessary to construct a highly efficient FRET system. PMID:25554254

  9. Electronic conduction in liquid boron

    NASA Astrophysics Data System (ADS)

    Glorieux, B.; Saboungi, M. L.; Enderby, J. E.

    2001-10-01

    The electrical conductivity of levitated liquid elemental boron was measured near the melting point using a contactless electrical conductivity technique. A phase change is clearly detected in the course of laser heating of a 2 mm diameter boron sphere levitated aerodynamically. The value obtained for the electrical conductivity sets liquid boron among the liquid semiconductors and establishes that the semiconducting behavior survives the melting process contradicting an earlier report that a semiconductor-to-metal transition occurs.

  10. Fivefold twinned boron carbide nanowires.

    PubMed

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  11. Boron recovery from clay waste using Diaion CRB-02 resin.

    PubMed

    Kipçak, I; Ozdemir, M

    2010-03-01

    A two-step process for boron recovery from clay waste is proposed in the present work. The leachate obtained after the clay waste was leached with sulphuric acid solution was treated with Diaion CRB-02 - a boron-specific resin for the separation of boron from the alkaline species in the leachate. The batch studies showed that a maximum boron recovery of about 95% was obtained at a pH value of 8.0, an initial boron concentration of 50 mg L(-1), a contact time of 24 h and a temperature of 25 degrees C. Equilibrium sorption data fitted the Langmuir isotherm. Column studies were carried out using different inlet boron concentrations and flow rates at a pH value of 8.0 and a temperature of 25 degrees C. The Yoon-Nelson and Thomas models were used to describe the dynamic behaviour of the column and to determine the column kinetic parameters. By these models and graphical integration, the column capacity values were found to be 7.3-8.5 mg g(-1) and 7.1-8.5 mg g(-1), respectively, and the 50% breakthrough time values were found to be 21-155 min and 19-149 min, respectively, depending on the inlet concentration and flow rate. It was observed that about 76% of the boron in the leachate solution could be recovered at an inlet boron concentration of 250 mg L(-1), a flow rate of 2.5 mL min(-1), a pH value of 8.0 and a temperature of 25 degrees C.

  12. Spectrophotometric determination of traces of boron in high purity silicon

    SciTech Connect

    Parashar, D.C.; Sarkar, A.K.; Singh, N. )

    1989-07-01

    A reddish brown complex is formed between boron and curcumin in concentrated sulfuric acid and glacial acetic acid mixture (1:1). The colored complex is highly selective and stable for about 3 hours and has the maximum absorbance at 545 nm. The sensitivity of the method is extremely high and the detection limit is 3 parts per billion based on 0.004 absorbance value. The interference of some of the important cations and anions relevant to silicon were studied and it is found that 100 fold excess of most of these cations and anions do not interfere in the determination of boron. The method is successfully employed for the determination of boron in silicon used in semiconductor devices. The results have been verified by standard addition method.

  13. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I.

    PubMed

    Ye, Yingda; Sanford, Melanie S

    2012-06-01

    This communication describes the development of a mild method for the cross-coupling of arylboronic acids with CF(3)I via the merger of photoredox and Cu catalysis. This method has been applied to the trifluoromethylation of electronically diverse aromatic and heteroaromatic substrates and tolerates many common functional groups. PMID:22624669

  14. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  15. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  16. Boron isotopic compositions of some boron minerals

    SciTech Connect

    Oi, Takao; Musashi, Masaaki; Ossaka, Tomoko; Kakihana, Hidetake ); Nomura, Masao; Okamoto, Makoto )

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the {sup 11}B/{sup 10}B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher {sup 11}B/{sup 10}B ratios than those of nonmarine origin. It has been found that the sequence of decreasing {sup 11}B/{sup 10}B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite (Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with high BO{sub 3}/BO{sub 4} ratios, (the ratio of the number of the BO{sub 3} triangle units to the number of the BO{sub 4} tetrahedron units in the structural formula of a mineral) have higher {sup 11}B/{sup 10}B ratios.

  17. Atomically controlled substitutional boron-doping of graphene nanoribbons

    PubMed Central

    Kawai, Shigeki; Saito, Shohei; Osumi, Shinichiro; Yamaguchi, Shigehiro; Foster, Adam S.; Spijker, Peter; Meyer, Ernst

    2015-01-01

    Boron is a unique element in terms of electron deficiency and Lewis acidity. Incorporation of boron atoms into an aromatic carbon framework offers a wide variety of functionality. However, the intrinsic instability of organoboron compounds against moisture and oxygen has delayed the development. Here, we present boron-doped graphene nanoribbons (B-GNRs) of widths of N=7, 14 and 21 by on-surface chemical reactions with an employed organoboron precursor. The location of the boron dopant is well defined in the centre of the B-GNR, corresponding to 4.8 atom%, as programmed. The chemical reactivity of B-GNRs is probed by the adsorption of nitric oxide (NO), which is most effectively trapped by the boron sites, demonstrating the Lewis acid character. Structural properties and the chemical nature of the NO-reacted B-GNR are determined by a combination of scanning tunnelling microscopy, high-resolution atomic force microscopy with a CO tip, and density functional and classical computations. PMID:26302943

  18. Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats.

    PubMed

    Nielsen, Forrest H

    2004-01-01

    Female and male rats weighing about 170 g and 200 g, respectively, were fed diets (approximately 70 microg boron/kg) in a factorial arrangement with supplemental boron at 0 (deficient) and 3 (adequate) mg/kg and canola oil or palm oil at 75 g/kg of diet as variables. After 5 weeks, six females in each treatment were bred. Dams and pups continued on their respective dietary treatments through gestation, lactation and post-weaning. Thirteen weeks after weaning, plasma and bones were collected from 12 male and 12 female offspring in each treatment. Boron supplementation increased femur strength measured by the breaking variable bending moment; tibial calcium and phosphorus concentrations; and plasma alkaline phosphatase. Femur breaking stress was greatest in boron-supplemented rats fed canola oil, and lowest in boron-deprived females fed canola oil; this group also exhibited the lowest femur bending moment. Minerals associated with bone organic matrix, zinc and potassium, were increased by boron supplementation in tibia. Plasma phospholipids were decreased by boron deprivation in females, but not males. Plasma cholesterol was decreased in boron-supplemented males by replacing canola oil with palm oil. The findings suggest that a diet high in omega-3 alpha-linolenic acid promotes femur strength best when the dietary boron is adequate.

  19. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    PubMed Central

    2009-01-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors. PMID:20596476

  20. Boron Clusters Come of Age

    ERIC Educational Resources Information Center

    Grimes, Russell N.

    2004-01-01

    Boron is the only element other than carbon that can build molecules of unlimited size by covalently boding to itself, a property known as catenation. In contrast to the chains and rings favored by carbon, boron arguably adopts a cluster motif that is reflected in the various forms of the pure element and in the huge area of polyhedral borane…

  1. Boron Oxygen Pair Effect in p+ Emitter and Nanosized Boron Rich Layer by Fold Coordination Analysis for Crystalline Silicon Solar Cell Applications.

    PubMed

    Park, Cheolmin; Kim, Bonggi; Balaji, Nagarajan; Lee, Youn-Jung; Ju, Minkyu; Lee, Hoongjoo; Yi, Junsin

    2016-05-01

    N-type substrates possess better material characteristics than p-type substrates for high efficiency mass producible Si solar cells with HIT, IBC structures. The major drawbacks of these structures are a complicated fabrication process and an expensive unit cost. In this paper, the boron emitter doping profile of a nanosized boron rich layer (BRL), for which the boron and oxygen concentrations are correlated, is optimized to fabricate high efficiency solar cells on an n-type substrate. Boron doping was carried out using a BBr3 furnace with varying oxygen gas ratios and the surface was treated with acid etching. The effect of the oxygen on the nanosized BRL was analyzed using both FTIR spectroscopy and XPS, where by conductivity and the Si-B bond were observed for the three-fold and four-fold coordinated borons, respectively. The results showed that the oxygen quantities in the boron doped emitter and the nanosized BRL affected the characteristics of the solar cell. Regarding the solar cells that were fabricated using the boron emitter and shallow emitter (90 ohm/sq) processes, the open-circuit voltage increased by 54 mV and the short circuit current (J(sc)) increased by 3.7 mA/cm2. The J(sc) increase was due to an increased quantum efficiency in the short wavelength range. The shallow emitter etch back process minimized the boron-oxygen defects in the doping profile. PMID:27483832

  2. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite.

    PubMed

    Shavnya, Andre; Hesp, Kevin D; Mascitti, Vincent; Smith, Aaron C

    2015-11-01

    A palladium-catalyzed one-step synthesis of (hetero)aryl alkyl sulfones from (hetero)arylboronic acids, potassium metabisulfite, and unactivated or activated alkylhalides is described. This transformation is of broad scope, occurs under mild conditions, and employs readily available reactants. A stoichiometric experiment has led to the isolation of a catalytically active dimeric palladium sulfinate complex, which was characterized by X-ray diffraction analysis.

  3. Method and apparatus for the preparation of liquid samples for determination of boron

    DOEpatents

    Siemer, Darryl D.

    1986-01-01

    A method and apparatus for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.

  4. Method and apparatus for the preparation of liquid samples for determination of boron

    DOEpatents

    Siemer, D.D.

    A method and apparatus are described for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.

  5. Method and apparatus for the preparation of liquid samples for determination of boron

    DOEpatents

    Siemer, Darryl D.

    1986-03-04

    A method and apparatus for the preparation of a liquid sample for the quantitative determination of boron by flame photometry. The sample is combined in a vessel with sulfuric acid, and an excess of methanol is added thereto. The methanol reacts with any boron present in the sample to form trimethyl borate which is volatilized by the heat of reaction between the excess methanol and sulfuric acid. The volatilized trimethyl borate is withdrawn from the vessel by either a partial vacuum or a positive pressure and is rapidly transferred to a standard flame photometer. The method is free of interference from typical boron concomitants.

  6. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  7. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  8. Pyridine-Hydrazones as N,N'-Ligands in Asymmetric Catalysis: Pd(II)-Catalyzed Addition of Boronic Acids to Cyclic Sulfonylketimines.

    PubMed

    Álvarez-Casao, Yolanda; Monge, David; Álvarez, Eleuterio; Fernández, Rosario; Lassaletta, José M

    2015-10-16

    The design, synthesis, and coordination features of a novel class of chiral pyridine-hydrazone ligands are described. As a first application, L/Pd(TFA)2 complexes served as catalysts in the 1,2-addition of arylboronic acids to saccharin-derived cyclic ketimines, affording products in high yields and enantioselectivities. The method was also applied to more challenging 3,4-disubstituted 1,2,5-thiadiazole 1,1-dioxides, affording again high yields and enantioselectivities along with high regioselectivities for unsymmetrically substituted derivatives.

  9. A surprising substituent effect provides a superior boronic acid catalyst for mild and metal-free direct Friedel-Crafts alkylations and prenylations of neutral arenes.

    PubMed

    Ricardo, Carolynne L; Mo, Xiaobin; McCubbin, J Adam; Hall, Dennis G

    2015-03-01

    The development of more general and efficient catalytic processes for Friedel-Crafts alkylations is an important objective of interest toward the production of pharmaceuticals and commodity chemicals. Herein, 2,3,4,5-tetrafluorophenylboronic acid was identified as a potent air- and moisture-tolerant metal-free catalyst that significantly improves the scope of direct Friedel-Crafts alkylations of a variety of slightly activated and neutral arenes, including polyarenes, with allylic and benzylic alcohols. This method also provides a simple alternative for the direct installation of prenyl units commonly found in naturally occurring arenes. Alkylations with benzylic alcohols occur under exceptionally mild conditions. PMID:25678266

  10. An experimental and theoretical investigation of Acenaphthene-5-boronic acid: conformational study, NBO and NLO analysis, molecular structure and FT-IR, FT-Raman, NMR and UV spectra.

    PubMed

    Karabacak, Mehmet; Sinha, Leena; Prasad, Onkar; Asiri, Abdullah M; Cinar, Mehmet

    2013-11-01

    The solid state Fourier transform infrared (FT-IR) and FT-Raman spectra of Acenaphthene-5-boronic acid (AN-5-BA), have been recorded in the range 4000-400cm(-1) and 4000-10cm(-1), respectively. Density functional theory (DFT), with the B3LYP functional was used for the optimization of the ground state geometry and simulation of the infrared and Raman spectra of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes and the normal modes were assigned by a scaled quantum mechanical (SQM) force field approach. Hydrogen-bonded dimer of AN-5-BA, optimized by counterpoise correction, has also been studied by B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge-Including Atomic Orbital (GIAO) method. Natural bond orbital (NBO) analysis has been applied to study stability of the molecule arising from charge delocalization. UV spectrum of the title compound was also recorded and the electronic properties, such as frontier orbitals, and band gap energies were measured by TD-DFT approach. The first order hyperpolarizability 〈β〉, its components and associated properties such as average polarizability and anisotropy of the polarizability (α and Δα) of AN-5-BA was calculated using the finite-field approach. PMID:23892116

  11. An experimental and theoretical investigation of Acenaphthene-5-boronic acid: Conformational study, NBO and NLO analysis, molecular structure and FT-IR, FT-Raman, NMR and UV spectra

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Sinha, Leena; Prasad, Onkar; Asiri, Abdullah M.; Cinar, Mehmet

    2013-11-01

    The solid state Fourier transform infrared (FT-IR) and FT-Raman spectra of Acenaphthene-5-boronic acid (AN-5-BA), have been recorded in the range 4000-400 cm-1 and 4000-10 cm-1, respectively. Density functional theory (DFT), with the B3LYP functional was used for the optimization of the ground state geometry and simulation of the infrared and Raman spectra of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes and the normal modes were assigned by a scaled quantum mechanical (SQM) force field approach. Hydrogen-bonded dimer of AN-5-BA, optimized by counterpoise correction, has also been studied by B3LYP at the 6-311++G(d,p) level and the effects of molecular association through O-H⋯O hydrogen bonding have been discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by Gauge-Including Atomic Orbital (GIAO) method. Natural bond orbital (NBO) analysis has been applied to study stability of the molecule arising from charge delocalization. UV spectrum of the title compound was also recorded and the electronic properties, such as frontier orbitals, and band gap energies were measured by TD-DFT approach. The first order hyperpolarizability <β>, its components and associated properties such as average polarizability and anisotropy of the polarizability (α and Δα) of AN-5-BA was calculated using the finite-field approach.

  12. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth.

    PubMed

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world". PMID:22528885

  13. Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth.

    PubMed

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".

  14. Is Boron a Prebiotic Element? A Mini-review of the Essentiality of Boron for the Appearance of Life on Earth

    NASA Astrophysics Data System (ADS)

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".

  15. The levels of boron-uptake proteins in roots are correlated with tolerance to boron stress in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron (B) is an essential micronutrient required for plant growth and development. Recently, two major B-uptake proteins, BOR1 and NIP5;1 have been identified and partially characterized. BOR1 is a high-affinity B transporter involved in xylem loading in roots, and NIP5;1 acts is a major boric-acid ...

  16. Boron and silicon: Effects on growth, plasma lipids, urinary cyclic AMP and bone and brain mineral composition of male rats

    SciTech Connect

    Seaborn, C.D.; Nielsen, F.H. . Grand Forks Human Nutrition Research Center)

    1994-06-01

    Because boron resembles silicon in its chemical properties, an experiment was performed to determine if excessive dietary boron would affect the response to silicon deprivation and, conversely, if silicon would influence the effects of an excessive intake of boron. Male weanling Sprague-Dawley rats were assigned to groups of 6 or 12 in a two-by-two factorially arranged experiment. Supplemented to a ground corn/casein diet containing 1.2 [mu]g silicon and 3 [mu]g boron per gram were silicon as sodium metasilicate at 0 or 50 [mu]g/g and boron as orthoboric acid at 0 or 500 [mu]g/g diet. At nine weeks, animals fed high dietary boron had significantly decreased final body weights, liver-weight-to-body-weight ratios, urinary cAMP concentrations, plasma triglyceride, cholesterol, glycine, valine, leucine, and lysine concentrations and skull copper, sodium, and manganese concentrations. High dietary boron also significantly increased brain-weight-to-body-weight ratios, magnesium concentrations of femur, brain, and plasma, zinc concentration of femur, and iron concentration of skull. The bone mineral findings suggest that excess dietary boron exerts subtle effects on bone composition. Dietary silicon affected blood urea nitrogen, hematocrit, hemoglobin, and the concentrations of plasma threonine and aspartic acid in animals fed excess boron. Depression of the testes-weight-to-body-weight ratio of animals fed 500 [mu]g boron per gram diet was most marked in animals not fed silicon. Although excessive dietary boron did not markedly enhanced the response of rats to silicon deprivation, dietary silicon affected their response to high dietary boron. Thus, dietary silicon apparently can influence boron toxicity.

  17. New evidences on efficacy of boronic acid-based derivatization method to identify sugars in plant material by gas chromatography-mass spectrometry.

    PubMed

    Faraco, Marianna; Fico, Daniela; Pennetta, Antonio; De Benedetto, Giuseppe E

    2016-10-01

    This work presents an analytical procedure based on gas chromatography-mass spectrometry which allows the determination of aldoses (glucose, mannose, galactose, arabinose, xylose, fucose, rhamnose) and chetoses (fructose) in plant material. One peak for each target carbohydrate was obtained by using an efficient derivatization employing methylboronic acid and acetic anhydride sequentially, whereas the baseline separation of the analytes was accomplished using an ionic liquid capillary column. First, the proposed method was optimized and validated. Successively, it was applied to identify the carbohydrates present in plant material. Finally, the procedure was successfully applied to samples from a XVII century painting, thus highlighting the occurrence of starch glue and fruit tree gum as polysaccharide materials. PMID:27474277

  18. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  19. Tailor-Made Boronic Acid Functionalized Magnetic Nanoparticles with a Tunable Polymer Shell-Assisted for the Selective Enrichment of Glycoproteins/Glycopeptides.

    PubMed

    Zhang, Xihao; Wang, Jiewen; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2015-11-11

    Biomedical sciences, and in particular biomarker research, demand efficient glycoproteins enrichment platforms. In this work, we present a facile and time-saving method to synthesize phenylboronic acid and copolymer multifunctionalized magnetic nanoparticles (NPs) using a distillation-precipitation polymerization (DPP) technique. The polymer shell is obtained through copolymerization of two monomers-affinity ligand 3-acrylaminophenylboronic acid (AAPBA) and a hydrophilic functional monomer. The resulting hydrophilic Fe3O4@P(AAPBA-co-monomer) NPs exhibit an enhanced binding capacity toward glycoproteins by an additional functional monomer complementary to the surface presentation of the target protein. The effects of monomer ratio of AAPBA to hydrophilic comonomers on the binding of glycoproteins are systematically investigated. The morphology, structure, and composition of all the synthesized microspheres are characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The hydrophilic Fe3O4@P(AAPBA-co-monomer) microspheres show an excellent performance in the separation of glycoproteins with high binding capacity; And strong magnetic response allows them to be easily separated from solution in the presence of an external magnetic field. Moreover, both synthetic Fe3O4@P(AAPBA) and copolymeric NPs show good adsorption to glycoproteins in physiological conditions (pH 7.4). The Fe3O4@P(AAPBA-co-monomer) NPs are successfully utilized to selectively capture and identify the low-abundance glycopeptides from the tryptic digest of horseradish peroxidase (HRP). In addition, the selective isolation and enrichment of glycoproteins from the egg white samples at physiological condition is obtained by Fe3O4@P(AAPBA-co-monomer) NPs as adsorbents.

  20. Tailor-Made Boronic Acid Functionalized Magnetic Nanoparticles with a Tunable Polymer Shell-Assisted for the Selective Enrichment of Glycoproteins/Glycopeptides.

    PubMed

    Zhang, Xihao; Wang, Jiewen; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2015-11-11

    Biomedical sciences, and in particular biomarker research, demand efficient glycoproteins enrichment platforms. In this work, we present a facile and time-saving method to synthesize phenylboronic acid and copolymer multifunctionalized magnetic nanoparticles (NPs) using a distillation-precipitation polymerization (DPP) technique. The polymer shell is obtained through copolymerization of two monomers-affinity ligand 3-acrylaminophenylboronic acid (AAPBA) and a hydrophilic functional monomer. The resulting hydrophilic Fe3O4@P(AAPBA-co-monomer) NPs exhibit an enhanced binding capacity toward glycoproteins by an additional functional monomer complementary to the surface presentation of the target protein. The effects of monomer ratio of AAPBA to hydrophilic comonomers on the binding of glycoproteins are systematically investigated. The morphology, structure, and composition of all the synthesized microspheres are characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The hydrophilic Fe3O4@P(AAPBA-co-monomer) microspheres show an excellent performance in the separation of glycoproteins with high binding capacity; And strong magnetic response allows them to be easily separated from solution in the presence of an external magnetic field. Moreover, both synthetic Fe3O4@P(AAPBA) and copolymeric NPs show good adsorption to glycoproteins in physiological conditions (pH 7.4). The Fe3O4@P(AAPBA-co-monomer) NPs are successfully utilized to selectively capture and identify the low-abundance glycopeptides from the tryptic digest of horseradish peroxidase (HRP). In addition, the selective isolation and enrichment of glycoproteins from the egg white samples at physiological condition is obtained by Fe3O4@P(AAPBA-co-monomer) NPs as adsorbents. PMID:26479332

  1. Effect of pretreatment and additives on boron release during pyrolysis and gasification of coal

    SciTech Connect

    Yuuki Mochizuki; Katsuyasu Sugawara; Yukio Enda

    2009-09-15

    Boron is one of the most toxic and highly volatile elements present in coal. As part of a series of studies carried out on coal cleaning to prevent environmental problems and to promote efficient coal utilization processes, the removal of boron by leaching with water and acetic acid has been investigated. The effects of the addition of ash components, that is, SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO on the control of boron release during pyrolysis and gasification were investigated. Here, 20-70% of boron in coal was removed by leaching the coal with water and acetic acid. Boron leached by water and acetic acid was related to the volatiles released from coal in pyrolysis below 1173 K. The addition of ash components such as SiO{sub 2} and Al{sub 2}O{sub 3} was found to be effective in suppressing the release of boron during pyrolysis at temperatures below and above 1173 K, respectively. The addition of CaO to coal was effective in suppressing the release of boron during gasification at 1173 K. 26 refs., 7 figs., 3 tabs.

  2. Enantiospecific sp2-sp3 coupling of secondary and tertiary boronic esters

    NASA Astrophysics Data System (ADS)

    Bonet, Amadeu; Odachowski, Marcin; Leonori, Daniele; Essafi, Stephanie; Aggarwal, Varinder K.

    2014-07-01

    The cross-coupling of boronic acids and related derivatives with sp2 electrophiles (the Suzuki-Miyaura reaction) is one of the most powerful C-C bond formation reactions in synthesis, with applications that span pharmaceuticals, agrochemicals and high-tech materials. Despite the breadth of its utility, the scope of this Nobel prize-winning reaction is rather limited when applied to aliphatic boronic esters. Primary organoboron reagents work well, but secondary and tertiary boronic esters do not (apart from a few specific and isolated examples). Through an alternative strategy, which does not involve using transition metals, we have discovered that enantioenriched secondary and tertiary boronic esters can be coupled to electron-rich aromatics with essentially complete enantiospecificity. As the enantioenriched boronic esters are easily accessible, this reaction should find considerable application, particularly in the pharmaceutical industry where there is growing awareness of the importance of, and greater clinical success in, creating biomolecules with three-dimensional architectures.

  3. Interactions between dietary boron and thiamine affect lipid metabolism

    SciTech Connect

    Herbel, J.L.; Hunt, C.D. )

    1991-03-15

    An experiment was designed to test the hypothesis that dietary boron impacts upon the function of various coenzymes involved in energy metabolism. In a 2 {times} 7 factorially-arranged experiment, weanling, vitamin D{sub 3}-deprived rats were fed a ground corn-casein-corn oil based diet supplemented with 0 or 2 mg boron/kg and 50% of the requirement for thiamine (TM), riboflavin (RF), pantothenic acid (PA) or pyridoxine (PX); 0% for folic acid (FA) or nicotinic acid (NA). All vitamins were supplemented in adequate amounts in the control diet. At 8 weeks of age, the TM dietary treatment was the one most affected by supplemental dietary boron (SDB). In rats that were fed 50% TM, SDB increased plasma concentrations of triglyceride (TG) and activity of alanine transaminase (ALT), and the liver to body weight (L/B) ratio. However, in the SDB animals, adequate amounts of TM decreased the means of those variables to near that observed in non-SDB rats fed 50% TM. The findings suggest that an interaction between dietary boron and TM affects lipid metabolism.

  4. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    PubMed

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  5. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    PubMed

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents. PMID:26877036

  6. Nothing Boring About Boron

    PubMed Central

    Pizzorno, Lara

    2015-01-01

    The trace mineral boron is a micronutrient with diverse and vitally important roles in metabolism that render it necessary for plant, animal, and human health, and as recent research suggests, possibly for the evolution of life on Earth. As the current article shows, boron has been proven to be an important trace mineral because it (1) is essential for the growth and maintenance of bone; (2) greatly improves wound healing; (3) beneficially impacts the body’s use of estrogen, testosterone, and vitamin D; (4) boosts magnesium absorption; (5) reduces levels of inflammatory biomarkers, such as high-sensitivity C-reactive protein (hs-CRP) and tumor necrosis factor α (TNF-α); (6) raises levels of antioxidant enzymes, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase; (7) protects against pesticide-induced oxidative stress and heavy-metal toxicity; (8) improves the brains electrical activity, cognitive performance, and short-term memory for elders; (9) influences the formation and activity of key biomolecules, such as S-adenosyl methionine (SAM-e) and nicotinamide adenine dinucleotide (NAD+); (10) has demonstrated preventive and therapeutic effects in a number of cancers, such as prostate, cervical, and lung cancers, and multiple and non-Hodgkin’s lymphoma; and (11) may help ameliorate the adverse effects of traditional chemotherapeutic agents. In none of the numerous studies conducted to date, however, do boron’s beneficial effects appear at intakes > 3 mg/d. No estimated average requirements (EARs) or dietary reference intakes (DRIs) have been set for boron—only an upper intake level (UL) of 20 mg/d for individuals aged ≥ 18 y. The absence of studies showing harm in conjunction with the substantial number of articles showing benefits support the consideration of boron supplementation of 3 mg/d for any individual who is consuming a diet lacking in fruits and vegetables or who is at risk for or has osteopenia; osteoporosis

  7. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility.

    PubMed

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-07-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400

  8. Adsorption removal of boron in aqueous solutions by amine-modified tannin gel.

    PubMed

    Morisada, Shintaro; Rin, Tetsuzen; Ogata, Takeshi; Kim, Yoen-Ho; Nakano, Yoshio

    2011-07-01

    A tannin gel (TG) synthesized from condensed tannin molecules has a remarkable ability to adsorb various metal ions in aqueous solutions. In the present study, the adsorption removal of boron in solutions at various pHs and temperatures has been examined using the TG and the amine-modified tannin gel (ATG) prepared with ammonia treatment of the TG. The adsorption amounts of boron for the TG and the ATG were relatively small and almost constant below pH 7, whereas the boron adsorption amounts increased with increasing pH in the range of pH above 7. Considering that in aqueous solutions above pH 7, the mole fraction of boric acid decreases while that of tetrahydroxyborate ion increases with increasing pH, the boron adsorption onto both gels takes place probably through the chelate formation of tetrahydroxyborate ion with the hydroxy and the amino groups in the gels. Besides, the adsorbability of the ATG for boron was higher than that of the TG due to the stable coordination bond between boron and nitrogen of the amino group in the ATG. The adsorption kinetics were adequately described by the pseudo-second order kinetic equation while the adsorption isotherms followed both the Langmuir and the Freundlich equations. The boron adsorbability of both the TG and the ATG at low boron concentration were comparable or fairly good compared with other adsorbents.

  9. The boron efflux transporter ROTTEN EAR is required for maize inflorescence development and fertility.

    PubMed

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-07-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs.

  10. Adsorption removal of boron in aqueous solutions by amine-modified tannin gel.

    PubMed

    Morisada, Shintaro; Rin, Tetsuzen; Ogata, Takeshi; Kim, Yoen-Ho; Nakano, Yoshio

    2011-07-01

    A tannin gel (TG) synthesized from condensed tannin molecules has a remarkable ability to adsorb various metal ions in aqueous solutions. In the present study, the adsorption removal of boron in solutions at various pHs and temperatures has been examined using the TG and the amine-modified tannin gel (ATG) prepared with ammonia treatment of the TG. The adsorption amounts of boron for the TG and the ATG were relatively small and almost constant below pH 7, whereas the boron adsorption amounts increased with increasing pH in the range of pH above 7. Considering that in aqueous solutions above pH 7, the mole fraction of boric acid decreases while that of tetrahydroxyborate ion increases with increasing pH, the boron adsorption onto both gels takes place probably through the chelate formation of tetrahydroxyborate ion with the hydroxy and the amino groups in the gels. Besides, the adsorbability of the ATG for boron was higher than that of the TG due to the stable coordination bond between boron and nitrogen of the amino group in the ATG. The adsorption kinetics were adequately described by the pseudo-second order kinetic equation while the adsorption isotherms followed both the Langmuir and the Freundlich equations. The boron adsorbability of both the TG and the ATG at low boron concentration were comparable or fairly good compared with other adsorbents. PMID:21645917

  11. Reducing Boron Toxicity by Microbial Sequestration

    SciTech Connect

    Hazen, T.; Phelps, T.J.

    2002-01-01

    While electricity is a clean source of energy, methods of electricity-production, such as the use of coal-fired power plants, often result in significant environmental damage. Coal-fired electrical power plants produce air pollution, while contaminating ground water and soils by build-up of boron, which enters surrounding areas through leachate. Increasingly high levels of boron in soils eventually overcome boron tolerance levels in plants and trees, resulting in toxicity. Formation of insoluble boron precipitates, mediated by mineral-precipitating bacteria, may sequester boron into more stable forms that are less available and toxic to vegetation. Results have provided evidence of microbially-facilitated sequestration of boron into insoluble mineral precipitates. Analyses of water samples taken from ponds with high boron concentrations showed that algae present contained 3-5 times more boron than contained in the water in the samples. Boron sequestration may also be facilitated by the incorporation of boron within algal cells. Experiments examining boron sequestration by algae are in progress. In bacterial experiments with added ferric citrate, the reduction of iron by the bacteria resulted in an ironcarbonate precipitate containing boron. An apparent color change showing the reduction of amorphous iron, as well as the precipitation of boron with iron, was more favorable at higher pH. Analysis of precipitates by X-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectroscopy revealed mineralogical composition and biologicallymediated accumulation of boron precipitates in test-tube experiments.

  12. Boron diffusion in silicon devices

    DOEpatents

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  13. Neutron detectors comprising boron powder

    SciTech Connect

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  14. Inelastic properties of boron oxides

    NASA Astrophysics Data System (ADS)

    Tushishvili, M. Ch.; Darsavelidze, G. Sh.; Tsagareishvili, O. A.; Bairamashvili, I. A.; Jobava, J. Sh.

    1991-07-01

    Temperature dependence of internal friction and dynamic shear modulus for boron anhydride (B2O3) and boron suboxide (B6O) have been investigated at frequencies of 1-10 Hz and over the temperature range 80-900 K. Absolute shear modulus for boron suboxide at 80 and 400 K was 0.9 and 0.85 GPa, respectively. Relaxation maximum of internal friction, accompanied with shear modulus defect had activation energy of 0.8 eV, and frequency factor of ˜1.1012 s-1. Measruements of absolute values of boron suboxide shear modulus at various temperatures showed deviations from linear decrease above 670 K. In the internal friction spectrum at temperatures of 410 and 700 K the maxima of origin have been revealed. At temperatures of 595 and 650-700 K an intense maxima of internal friction and shear modulus defects were observed. Many of the relaxation and hysteretic processes have been discussed accounting on the possiblity of formation of point defects (oxygen vacancies, unbonded boron atoms), split dislocations and polysynthetic twins in the (001) rhombohedral planes, lowering down the local symmetry in the boron suboxide crystal structure.

  15. Heats of Formation for the Boronic Acids R–B(OH)2 and Boroxines R3B3O3 (R=H, Li, HBe, H2B, H3C, H2N, HO, F, and Cl) Calculated at the G2, G3, and G4 Levels of Theory

    PubMed Central

    Bock, Charles W.; Larkin, Joseph D.

    2014-01-01

    Boronic acids (R–B(OH)2) and their boroxine (R3B3O3) dehydration products have emerged as important classes of compounds with a multitude of diverse applications. However, the available heats of formation for these compounds are not always as accurate as would be required for further use. In this study the heats of formation at 298.15 K of R–B(OH)2 and R3B3O3 (R = H, Li, HBe, H2B, H3C, H2N, HO, F, and Cl) have been calculated at the G2, G3[G3B3], and G4 levels of theory and used to determine the enthalpy changes for the dehydration reactions: 3 R–B(OH)2 → R3B3O3 + 3 H2O; comparisons are made with other rigorous levels of theory, e.g. CBS-Q[CBS-QB3] and W1U, as well as with experimental values wherever possible. Enthalpy changes for the dehydration reactions have also been calculated using second-order Møller-Plesset perturbation theory (MP2) with the Dunning-Woon correlation-consistent aug-cc-pVDZ and aug-cc-pVTZ basis sets, and B3LYP density functional theory with the 6-311++G(2df,2pd) basis set. With the exception of H2N-B(OH)2, the dehydration reactions are consistently predicted to be exothermic. Our results provide a cautionary note for the use of the B3LYP functional in the calculation of structures and energies of boronic acids and boroxines. Where comparisons could be made, the G4 and W1U predictions for the heats of formation of these boron compounds differ significantly. PMID:24653975

  16. Relationships of anion-exchange sorption of boron from natural thermal-spring water

    SciTech Connect

    Meichik, N.R.; Leikin, Yu.A.; Antipov, M.A.; Goryacheva, N.V.; Klimenko, I.S.; Medvedev, S.A.; Galitskaya, N.B.

    1988-02-20

    Boric acid is one of the characteristic components of Kamchatka waters. Extraction of boron from thermal waters for production of potable water is closely linked with current problems of multiproduct utilization of resources and protection of the environment. The authors have investigated the possibilities of using ion exchange for extraction of boron from natural waters, and studied the sorption relationships by a dynamic method. They synthesized a macroporous anion-exchanger based on a copolymer of styrene with divinylbenzene, containing N-methylglucamine groups (ANB-11 resin). ANB-11 resin had high sorption capacity for boron anions during sorption from thermal-spring water. The experimental data were described by Elkins equation.

  17. Rhodococcus baikonurensis BTM4c, a boron-tolerant actinobacterial strain isolated from soil.

    PubMed

    Yoon, Jaewoo; Miwa, Hiroki; Ahmed, Iftikhar; Yokota, Akira; Fujiwara, Toru

    2010-01-01

    By screening a bacterial population from the soil in Tokyo, Japan, we isolated a boron-tolerant bacterium, strain BTM4c. Strain BTM4c grew under the boron excess conditions with 100 mM boric acid, which is generally toxic to bacteria. Molecular phylogenetic, chemotaxonomic, and physiological data showed that the strain belongs to the genus Rhodococcus, and is to be identified as Rhodococcus baikonurensis. PMID:20057133

  18. Inexpensive Method for Coating the Interior of Silica Growth Ampoules with Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Wang, Jianbin; Regel, Liya L.; Wilcox, William R.

    2003-01-01

    An inexpensive method was developed for coating the interior of silica ampoules with hexagonal boron nitride. An aqueous solution of boric acid was used to coat the ampoule prior to drying in a vacuum at 200 C. This coating was converted to transparent boron nitride by heating in ammonia at 1000 C. Coated ampoules were used to achieve detached solidification of indium antimonide on earth.

  19. DABO Boronate Promoted Conjugate Allylation of α,β-Unsaturated Aldehydes Using Copper(II) Catalysis.

    PubMed

    Roest, Pjotr C; Michel, Nicholas W M; Batey, Robert A

    2016-08-01

    The first catalytic method for the selective 1,4-conjugate allylation of α,β-unsaturated aldehydes is reported. The method employs an air-stable diethanolamine-complexed boronic acid (DABO boronate) as the allyl transfer reagent and promotes conjugate addition over 1,2-addition. A variety of aryl- and alkyl-substituted enals are tolerated, providing δ,ε-unsaturated aldehyde products in good yields and selectivities under mild conditions. PMID:27362535

  20. Synthesis and photocurrent of amorphous boron nanowires.

    PubMed

    Ge, Liehui; Lei, Sidong; Hart, Amelia H C; Gao, Guanhui; Jafry, Huma; Vajtai, Robert; Ajayan, Pulickel M

    2014-08-22

    Although theoretically feasible, synthesis of boron nanostructures is challenging due to the highly reactive nature, high melting and boiling points of boron. We have developed a thermal vapor transfer approach to synthesizing amorphous boron nanowire using a solid boron source. The amorphous nature and chemical composition of boron nanowires were characterized by high resolution transmission electron microscopy, selected area electron diffraction, and electron energy loss spectroscopy. Optical properties and photoconduction of boron nanowires have not yet been reported. In our investigation, the amorphous boron nanowire showed much better optical and electrical properties than previously reported photo-response of crystalline boron nanobelts. When excited by a blue LED, the photo/dark current ratio (I/I₀) is 1.5 and time constants in the order of tens of seconds. I/I₀ is 1.17 using a green light. PMID:25061013

  1. Boronated porhyrins and methods for their use

    DOEpatents

    Miura, M.; Shelnutt, J.A.; Slatkin, D.N.

    1999-03-02

    The present invention covers boronated porphyrins containing multiple carborane cages which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies such as boron neutron capture therapy and photodynamic therapy. 3 figs.

  2. Boronated porhyrins and methods for their use

    DOEpatents

    Miura, Michiko; Shelnutt, John A.; Slatkin, Daniel N.

    1999-03-02

    The present invention covers boronated porphyrins containing multiple carborane cages which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies such as boron neutron capture therapy and photodynamic therapy.

  3. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor.

    PubMed

    Yilmaz, A Erdem; Boncukcuoglu, Recep; Yilmaz, M Tolga; Kocakerim, M Muhtar

    2005-01-31

    In this study, boron removal from boron-containing wastewaters prepared synthetically was investigated. The experiments in which Amberlite IRA 743, boron specific resin was used were carried out in a column reactor. The bed volume of resin, boron concentration, flow rate and temperature were selected as experimental parameters. The experimental results showed that percent of boron removal increased with increasing amount of resin and with decreasing boron concentration in the solution. Boron removal decreased with increasing of flow rate and the effect of temperature on the percent of total boron removal increased the boron removal rate. As a result, it was seen that about 99% of boron in the wastewater could be removed at optimum conditions.

  4. Raman Effect in Boron and Boron-Rich Compounds

    NASA Astrophysics Data System (ADS)

    Werheit, Helmut; Filipov, Volodimir

    High-resolution Raman spectra of different allotropes of elemental boron and of some selected representatives of boron-rich solids are presented and discussed. Often, the number of modes exceeds that, which is group theoretically predicted for idealized structures. The reason is intrinsic defects, which are typical for most of these structures. Specific Raman modes in the spectra of different groups of icosahedral structures are attributed to inter-icosahedral and intra-icosahedral B-B vibrations respectively and allow assessing the bonding forces related. Badger's rule is satisfactorily fulfilled across all icosahedral structure groups. - Depending on the penetration depth of the exciting radiation, Raman spectra can be significantly different as shown for boron carbide and lanthanum hexaboride.

  5. Methods for boron delivery to mammalian tissue

    DOEpatents

    Hawthorne, M. Frederick; Feaks, Debra A.; Shelly, Kenneth J.

    2003-01-01

    Boron neutron capture therapy can be used to destroy tumors. This treatment modality is enhanced by delivering compounds to the tumor site where the compounds have high concentrations of boron, the boron compounds being encapsulated in the bilayer of a liposome or in the bilayer as well as the internal space of the liposomes. Preferred compounds, include carborane units with multiple boron atoms within the carborane cage structure. Liposomes with increased tumor specificity may also be used.

  6. Mineral resource of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  7. Merging thiophene with boron: new building blocks for conjugated materials.

    PubMed

    Ren, Yi; Jäkle, Frieder

    2016-09-28

    This perspective highlights recent progress on the design, synthesis and applications of thienylboranes as building blocks for new functional materials. Well-controlled synthetic protocols, such as boron-tin and boron-silicon exchange reactions, hydroboration of alkynyl groups, and electrophilic borylations provide opportunities to access thiophene-boranes that are chemically robust and display desirable photophysical properties, redox characteristics, and solid-state assembly behavior. Diverse protocols for further functionalization allow for facile integration into larger conjugated structures and even polymeric systems. Moreover, the strong Lewis acid character that is characteristic of trivalent boranes facilitates intra- and intermolecular Lewis acid-base interactions that can further enrich the chemical and electronic properties of thiophene-borane materials. Recent advances with respect to applications in sensing, organic electronics, and the development of molecular switches are also discussed.

  8. Determination of boron concentration in oilfield water with a microfluidic ion exchange resin instrument.

    PubMed

    Floquet, Cedric F A; Sieben, Vincent J; MacKay, Bruce A; Mostowfi, Farshid

    2016-07-01

    We developed and validated a microfluidic instrument for interference-free determination of boron in produced water. The instrument uses a boron-specific chelating resin to separate the analyte from its complex matrix. Ten produced water samples were analyzed with the instrument and the results were successfully validated against ICP-MS measurements. Removing interference effects enables precise boron measurement for wastewater even with high total dissolved solid (TDS) levels. 1,4-Piperazinediethanesulfonic acid conditions the resin and maintains the optimum pH for boron adsorption from the sample. Boron is then eluted from the resin using a 10% sulfuric acid solution and its concentration measured with the colorimetric carminic acid assay in 95% sulfuric acid. The use of a microfluidic mixer greatly enhances the sensitivity and kinetics of the carminic acid assay, by factors of 2 and 7.5, respectively, when compared against the same assay performed manually. A maximum sensitivity of 2.5mg(-1)L, a precision of 4.2% over the 0-40.0mgL(-1) measuring range, a 0.3mgL(-1) limit of detection, and a sampling rate of up to four samples per hour were achieved. Automation and microfluidics reduce the operator workload and fluid manipulation errors, translating into safer and higher-quality measurements in the field. PMID:27154679

  9. Boron doping of diamond via solid state diffusion

    NASA Astrophysics Data System (ADS)

    Tsai, W.; Delfino, M.; Ching, L.-Y.; Reynolds, G.; Hodul, D.; Cooper, C. B., III

    Boron was diffused into diamond and simultaneously electrically activated by a rapid thermal annealing technique using a cubic boron nitride planar diffusion source in an argon atmosphere. Type IIa diamonds of 100 line orientation were precleaned in an ammonium persulfate/sulfuric acid solution at 200 C before processing in a rapid thermal processor. Annealing temperature was 1370 C for 20 sec. Electrical contacts of Ti/Au were made on diamond via evaporation, and subsequent ohmic annealing was carried out for 30 min at 800 C. The current-voltage characteristics of boron-doped diamond was found to be ohmic with a resistance of 170 mega-ohm from -5 to 5 volts as compared with the high resistivity (greater than 10 exp 15 ohm-cm) of the unprocessed IIa diamond. Boron concentrations as high as 3.5 x 10 exp 19 atoms/cc were detected at a depth of 500 A in the diamond substrate using secondary ion mass spectrometry.

  10. Thermal conductivity of boron carbides

    NASA Technical Reports Server (NTRS)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  11. Graphite–boron composite heater in a Kawai-type apparatus: the inhibitory effect of boron oxide and countermeasures

    NASA Astrophysics Data System (ADS)

    Xie, Longjian; Yoneda, Akira; Yoshino, Takashi; Fei, Hongzhan; Ito, Eiji

    2016-04-01

    We have investigated the performance of a graphite-boron composite (GBC) with 3 wt % boron as a precursor for a boron-doped diamond heater in a Kawai-type apparatus at 15 GPa. We first tested a machinable cylinder of GBC sintered at 1000°C in Ar/H2 gas (99:1 molar ratio). Boron oxide (B2O3) formed during sintering frequently hindered the GBC heater from stable operation at temperatures higher than 1400°C by producing melt throughout the heater together with oxide and/or silicates. We then rinsed the GBC heater in hydrochloric acid to remove B2O3. After rinsing, we succeeded in stably generating temperatures higher than 2000°C. We also improved a molding process of different-sized GBC tubes for convenient use and tested the molded GBC heater. It was free from the B2O3 problem. The electromotive force of the W/Re thermocouple was successfully monitored up to 2400°C.

  12. Graphite-boron composite heater in a Kawai-type apparatus: the inhibitory effect of boron oxide and countermeasures

    NASA Astrophysics Data System (ADS)

    Xie, Longjian; Yoneda, Akira; Yoshino, Takashi; Fei, Hongzhan; Ito, Eiji

    2016-04-01

    We have investigated the performance of a graphite-boron composite (GBC) with 3 wt % boron as a precursor for a boron-doped diamond heater in a Kawai-type apparatus at 15 GPa. We first tested a machinable cylinder of GBC sintered at 1000°C in Ar/H2 gas (99:1 molar ratio). Boron oxide (B2O3) formed during sintering frequently hindered the GBC heater from stable operation at temperatures higher than 1400°C by producing melt throughout the heater together with oxide and/or silicates. We then rinsed the GBC heater in hydrochloric acid to remove B2O3. After rinsing, we succeeded in stably generating temperatures higher than 2000°C. We also improved a molding process of different-sized GBC tubes for convenient use and tested the molded GBC heater. It was free from the B2O3 problem. The electromotive force of the W/Re thermocouple was successfully monitored up to 2400°C.

  13. Thermionic properties of the molybdenum boron system

    SciTech Connect

    Storms, E.K.

    1980-01-01

    The thermionic work function has been measured as a function of composition within the various two phase regions between Mo and MoB/sub 2/. Values at the low boron and high boron phase boundaries for the various compounds were obtained by extrapolation. The following effective work functions were obtained: Mo/sub 2/B (low boron) = 3.08 eV; Mo/sub 2/B (high boron) = 3.63 eV; ..cap alpha..-MoB (low boron) = 3.38 eV; ..cap alpha..-MoB (high boron) = 4.30 eV; ..beta..-MoB (low boron) = 2.83 eV; ..beta..-MoB (high boron) = 3.92; Mo/sub 2/B/sub 3/ (low boron) = 4.65 eV; Mo/sub 2/B/sub 3/ (high boron) = 3.85 eV; and MoB/sub 2/ (low boron) = 3.52 eV. Because the composition range of these compounds is very narrow, the work function is very sensitive to the composition within the single phase regions.

  14. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    PubMed

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism. PMID:21999349

  15. The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites?

    PubMed

    Lamdan, Netta Li; Attia, Ziv; Moran, Nava; Moshelion, Menachem

    2012-04-01

    Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism.

  16. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    SciTech Connect

    Soloway, A.H.

    1991-01-01

    Current progress on this research includes the synthesis of chemical structures for malignant brain tumors. These structures include boron-containing derivatives of lipophilic anticonvulsants and CNS depressants; carboranyl precursors of nucleic acids and related structures; and carboranyl amino acids. Cellular uptake and persistence studies have also been carried out with F98 rat glioma cells. 1 fig., 1 tab.

  17. BP: synthesis and properties of boron phosphide

    NASA Astrophysics Data System (ADS)

    Woo, Katherine; Lee, Kathleen; Kovnir, Kirill

    2016-07-01

    Cubic boron phosphide, BP, is notorious for its difficult synthesis, thus preventing it from being a widely used material in spite of having numerous favorable technological properties. In the current work, three different methods of synthesis are developed and compared: from the high temperature reaction of elements, Sn flux assisted synthesis, and a solid state metathesis reaction. Structural and optical properties of the products synthesized from the three methods were thoroughly characterized. Solid state metathesis is shown to be the cleanest and most efficient method in terms of reaction temperature and time. Synthesis by Sn flux resulted in a novel Sn-doped BP compound. Undoped BP samples exhibit an optical bandgap of ∼2.2 eV while Sn-doped BP exhibits a significantly smaller bandgap of 1.74 eV. All synthesized samples show high stability in concentrated hydrochloric acid, saturated sodium hydroxide solutions, and fresh aqua regia.

  18. Drinking water health advisory for boron

    SciTech Connect

    Cantilli, R.

    1991-04-01

    The Health Advisory Program, sponsored by the Environmental Protection Agency's Office of Water, has issued its report on the element boron: included are the compounds boric acid and borax(sodium tetraborate). It provides information on the health effects, analytical methodology, and treatment technology that would be useful in dealing with the contamination of drinking water. Health Advisories (HAs) describe nonregulatory concentrations of drinking water contaminants at which adverse health effects would not be anticipated to occur over specific exposure durations. HAs serve as informal technical guidance to assist Federal, State, and local officials responsible for protecting public health when emergency spills or contamination situations occur. They are not legally enforceable Federal Standards and are subject to change as new information becomes available.

  19. Electrochemical mineralization pathway of quinoline by boron-doped diamond anodes.

    PubMed

    Wang, Chunrong; Ma, Keke; Wu, Tingting; Ye, Min; Tan, Peng; Yan, Kecheng

    2016-04-01

    Boron-doped diamond anodes were selected for quinoline mineralization, and the resulting intermediates, phenylpropyl aldehyde, phenylpropionic acid, and nonanal were identified and followed during quinoline oxidation by gas chromatography-mass spectrometry and high-performance liquid chromatography. The evolutions of formic acid, acetic acid, oxalic acid, NO2(-), NO3(-), and NH4(+) were quantified. A new reaction pathway for quinoline mineralization by boron-doped diamond anodes has been proposed, where the pyridine ring in quinoline is cleaved by a hydroxyl radical giving phenylpropyl aldehyde and NH4(+). Phenylpropyl aldehyde is quickly oxidized into phenylpropionic acid, and the benzene ring is cleaved giving nonanal. This is further oxidized to formic acid, acetic acid, and oxalic acid. Finally, these organic intermediates are mineralized to CO2 and H2O. NH4(+) is also oxidized to NO2(-) and on to NO3(-). The results will help to gain basic reference for clearing intermediates and their toxicity.

  20. Boron neutron capture therapy of ocular melanoma and intracranial glioma using p-boronophenylalanine

    SciTech Connect

    Coderre, J.A.; Greenberg, D.; Micca, P.L.; Joel, D.D.; Saraf, S. ); Packer, S. . Div. of Ophthalmology)

    1990-01-01

    During conventional radiotherapy, the dose that can be delivered to the tumor is limited by the tolerance of the surrounding normal tissue within the treatment volume. Boron Neutron Capture Therapy (BNCT) represents a promising modality for selective tumor irradiation. The key to effective BNCT is selective localization of {sup 10}B in the tumor. We have shown that the synthetic amino acid p-boronophenylalanine (BPA) will selectively deliver boron to melanomas and other tumors such as gliosarcomas and mammary carcinomas. Systemically delivered BPA may have general utility as a boron delivery agent for BNCT. In this paper, BNCT with BPA is used in treatment of experimentally induced gliosarcoma in rats and nonpigmented melanoma in rabbits. The tissue distribution of boron is described, as is response to the BNCT. 6 refs., 4 figs., 1 tab.

  1. Enhancement of electrical conductivity and electrochemical activity of hydrogenated amorphous carbon by incorporating boron atoms

    NASA Astrophysics Data System (ADS)

    Naragino, Hiroshi; Yoshinaga, Kohsuke; Nakahara, Akira; Tanaka, Sakuya; Honda, Kensuke

    2013-06-01

    Conductive boron-doped hydrogenated amorphous carbon (B-DLC) thin films were successfully synthesized with RF plasma-enhanced CVD method. By incorporating boron atoms in amorphous carbon, conduction types were changed from n- to p-type, and volume resistivity was decreased from 30.4 (non-doped) to 6.36 × 10-2 Ω cm (B/C = 2.500 atom%). B-DLC film with sp2/(sp2 + sp3) carbons of 75 atom% exhibited high resistance to electrochemically-induced corrosion in strong acid solution. Furthermore, it was clarified that boron atoms in DLC could enhance kinetics of hydrogen evolution during water electrolysis at B-DLC surface. B-DLC is, therefore, a promising electrode material for hydrogen production by increasing the concentration of boron atoms in B-DLC and enhancing the reactivity of H2 evolution.

  2. Structure of boron nitride nanotubes

    SciTech Connect

    Buranova, Yu. S. Kulnitskiy, B. A.; Perezhogin, I. A.; Blank, V. D.

    2015-01-15

    The crystallographic structure of boron nitride nanotubes has been investigated. Various defects that may arise during nanotube synthesis are revealed by electron microscopy. Nanotubes with different numbers of walls and different diameters are modeled by molecular dynamics methods. Structural features of single-wall nanotubes are demonstrated. The causes of certain defects in multiwall nanotubes are indicated.

  3. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  4. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  5. Boron trifluoride coatings for plastics

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M.

    1978-01-01

    Tough, durable coatings of boron triflouride can be deposited on plastic optical components to protect them from destructive effects of abrasion, scratching, and environment. Coating material can be applied simultaneously with organic polymers, using plasma glow-discharge methods, or it can be used as base material for other coatings to increase adhesion.

  6. Advanced microstructure of boron carbide.

    PubMed

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  7. Thermoelectric properties of boron carbides

    SciTech Connect

    Aselage, T.; Emin, D.; Wood, C.

    1988-01-01

    Boron carbides are ceramic materials with unusual properties and applications. These refractory materials (T/sub m/ > 2600K) exist as a single phase over a wide range of stoichiometries, from 20 a/o carbon to less than 10 a/o carbon (Bouchacourt and Thevenot 1981). The relatively low density (approx.2.5 g/cm/sup 3/) and exceptional hardness lead to applications in the area of ceramic armor. In addition, /sup 10/B has a large capture cross section for thermal neutrons. This fact, along with the robust nature of the structure in a high radiation environment, leads to the use of boron carbides as nuclear reactor control materials. Because of a combination of unusual high temperature electronic and thermal properties, boron carbides also make efficient very high temperature (p-type) thermoelectrics. In this paper, we shall review the electrical and thermal properties of boron carbides and describe recent progress in understanding these properties. 13 refs., 4 figs.

  8. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray.

    PubMed

    Valdovinos-Flores, Cesar; Gaspar-Ramírez, Octavio; Heras-Ramírez, María Elena; Lara-Álvarez, Carlos; Dorantes-Ugalde, José Antonio; Saldaña-Loza, Luz María

    2016-01-01

    In the search of alternatives for controlling Aethina tumida Murray, we recently proposed the BAA trap which uses boric acid and an attractant which mimics the process of fermentation caused by Kodamaea ohmeri in the hive. This yeast is excreted in the feces of A. tumida causing the fermentation of pollen and honey of infested hives and releasing compounds that function as aggregation pheromones to A. tumida. Since the boron is the toxic element in boric acid, the aim of this article is to assess the amount of boron residues in honey and beeswax from hives treated with the BAA trap. For this aim, the amount of bioaccumulated boron in products of untreated hives was first determined and then compared with the amount of boron of products from hives treated with the BAA trap in two distinct climatic and soil conditions. The study was conducted in the cities of Padilla, Tamaulipas, and Valladolid, Yucatan (Mexico) from August 2014 to March 2015. The quantity of boron in honey was significantly less in Yucatan than in Tamaulipas; this agrees with the boron deficiency among Luvisol and Leptosol soils found in Yucatan compared to the Vertisol soil found in Tamaulipas. In fact, the honey from Yucatan has lower boron levels than those reported in the literature. The BAA treatment was applied for four months, results show that the BAA trap does not have any residual effect in either honey or wax; i.e., there is no significant difference in boron content before and after treatment. On the other hand, the organophosphate pesticide coumaphos was found in 100% of wax samples and in 64% of honey samples collected from Yucatan. The concentration of coumaphos in honey ranges from 0.005 to 0.040 mg/kg, which are below Maximum Residue Limit (MRL) allowed in the European Union (0.1 mg/kg) but 7.14% of samples exceeded the MRL allowed in Canada (0.02 mg/kg).

  9. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray

    PubMed Central

    Valdovinos-Flores, Cesar; Gaspar-Ramírez, Octavio; Heras–Ramírez, María Elena; Dorantes-Ugalde, José Antonio; Saldaña-Loza, Luz María

    2016-01-01

    In the search of alternatives for controlling Aethina tumida Murray, we recently proposed the BAA trap which uses boric acid and an attractant which mimics the process of fermentation caused by Kodamaea ohmeri in the hive. This yeast is excreted in the feces of A. tumida causing the fermentation of pollen and honey of infested hives and releasing compounds that function as aggregation pheromones to A. tumida. Since the boron is the toxic element in boric acid, the aim of this article is to assess the amount of boron residues in honey and beeswax from hives treated with the BAA trap. For this aim, the amount of bioaccumulated boron in products of untreated hives was first determined and then compared with the amount of boron of products from hives treated with the BAA trap in two distinct climatic and soil conditions. The study was conducted in the cities of Padilla, Tamaulipas, and Valladolid, Yucatan (Mexico) from August 2014 to March 2015. The quantity of boron in honey was significantly less in Yucatan than in Tamaulipas; this agrees with the boron deficiency among Luvisol and Leptosol soils found in Yucatan compared to the Vertisol soil found in Tamaulipas. In fact, the honey from Yucatan has lower boron levels than those reported in the literature. The BAA treatment was applied for four months, results show that the BAA trap does not have any residual effect in either honey or wax; i.e., there is no significant difference in boron content before and after treatment. On the other hand, the organophosphate pesticide coumaphos was found in 100% of wax samples and in 64% of honey samples collected from Yucatan. The concentration of coumaphos in honey ranges from 0.005 to 0.040 mg/kg, which are below Maximum Residue Limit (MRL) allowed in the European Union (0.1 mg/kg) but 7.14% of samples exceeded the MRL allowed in Canada (0.02 mg/kg). PMID:27092938

  10. Boron and Coumaphos Residues in Hive Materials Following Treatments for the Control of Aethina tumida Murray.

    PubMed

    Valdovinos-Flores, Cesar; Gaspar-Ramírez, Octavio; Heras-Ramírez, María Elena; Lara-Álvarez, Carlos; Dorantes-Ugalde, José Antonio; Saldaña-Loza, Luz María

    2016-01-01

    In the search of alternatives for controlling Aethina tumida Murray, we recently proposed the BAA trap which uses boric acid and an attractant which mimics the process of fermentation caused by Kodamaea ohmeri in the hive. This yeast is excreted in the feces of A. tumida causing the fermentation of pollen and honey of infested hives and releasing compounds that function as aggregation pheromones to A. tumida. Since the boron is the toxic element in boric acid, the aim of this article is to assess the amount of boron residues in honey and beeswax from hives treated with the BAA trap. For this aim, the amount of bioaccumulated boron in products of untreated hives was first determined and then compared with the amount of boron of products from hives treated with the BAA trap in two distinct climatic and soil conditions. The study was conducted in the cities of Padilla, Tamaulipas, and Valladolid, Yucatan (Mexico) from August 2014 to March 2015. The quantity of boron in honey was significantly less in Yucatan than in Tamaulipas; this agrees with the boron deficiency among Luvisol and Leptosol soils found in Yucatan compared to the Vertisol soil found in Tamaulipas. In fact, the honey from Yucatan has lower boron levels than those reported in the literature. The BAA treatment was applied for four months, results show that the BAA trap does not have any residual effect in either honey or wax; i.e., there is no significant difference in boron content before and after treatment. On the other hand, the organophosphate pesticide coumaphos was found in 100% of wax samples and in 64% of honey samples collected from Yucatan. The concentration of coumaphos in honey ranges from 0.005 to 0.040 mg/kg, which are below Maximum Residue Limit (MRL) allowed in the European Union (0.1 mg/kg) but 7.14% of samples exceeded the MRL allowed in Canada (0.02 mg/kg). PMID:27092938

  11. Properties and electrochemical characteristics of boron-doped multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tsierkezos, Nikos G.; Ritter, Uwe; Nugraha Thaha, Yudi; Krischok, Stefan; Himmerlich, Marcel; Downing, Clive

    2015-10-01

    Boron-doped multi-walled carbon nanotubes were synthesized upon decomposition of ethyl alcohol and boric acid via chemical vapor deposition. The boron-doped nanotubes were treated with hydrochloric acid and were characterized by means of scanning electron and transmission electron microscopy in conjunction with energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. The electrochemistry of ferrocyanide/ferricyanide on boron-doped nanotubes was studied in temperature range of 283.15-303.15 K. The findings exhibit an improvement of films' current response and kinetics of electron transfer with the rise in temperature. The kinetics for electron transfer enhances and the redox process occurs slightly more spontaneously upon acid treatment.

  12. Boron neutron capture therapy for cancer

    SciTech Connect

    Barth, R.E.; Soloway, A.H. ); Fairchild, R.G. State Univ. of New York, Stony Brook )

    1990-10-01

    Boron neutron capture therapy (BNCT) bring together two components that when kept separate have only minor effects on normal cells. The first component is a stable isotope of boron (boron 10) that can be concentrated in tumor cells. The second is a beam of low-energy neutrons that produces short-range radiation when absorbed, or captured, by the boron. The combination of these two conditions at the site of a tumor releases intense radiation that can destroy malignant tissues. BNCT is based on the nuclear reaction that occurs when boron 10 is irradiated with an absorbs neutrons. The neutrons that it takes up are called thermal, or slow, neutrons. They are of such low energy that they cause little tissue damage as compared with other forms of radiation such as protons, gamma rays and fast neutrons. When an atom of boron 10 captures a neutron, an unstable isotope, boron 11, forms. The boron 11 instantly fissions, yielding lithium 7 nuclei and energetic alpha particles. These heavy particles, which carry 2.79 million electron volts of energy, are a highly lethal form of radiation. If the treatment proceeds as intended, the destructive effects of the capture reaction would occur primarily in those cancer cells that have accumulated boron 10. Normal cells with low concentrations of boron would be spared.

  13. First-principles studies of boron nanostructures

    NASA Astrophysics Data System (ADS)

    Lau, Kah Chun

    Boron is an 'electron deficient' element which has a rather fascinating chemical versatility. In the solid state, the elemental boron has neither a pure covalent nor a pure metallic character. As a result, its vast structural dimensionality and peculiar bonding features hold a unique place among other elements in the periodic table. In order to understand and properly describe these unusual bonding features, a detailed and systematic theoretical study is needed. In this work, I will show that some of the qualitative features of boron nanostructures, including clusters, sheets and nanotubes can easily be extracted from the results of first principles calculations based on density functional theory. Specifically, the size-dependent evolution of topological structures and bonding characteristics of boron clusters, Bn will be discussed. Based on the scenario observed in the boron clusters, the unique properties of boron sheets and boron nanotubes will be described. Moreover, the ballistic electron transport in single-walled boron nanotube relative to that of single-walled carbon nanotubes will be considered. It is expected that the theoretical results obtained in the present thesis will initiate further studies on boron nanostructures, which will be helpful in understanding, designing and realizing boron-based nanoscale devices.

  14. The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility[C][W][OPEN

    PubMed Central

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-01-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400

  15. Re-sintered boron-rich polycrystalline cubic boron nitride and method for making same

    SciTech Connect

    Lavens, T.R.; Corrigan, F.R.; Shott, R.L.; Bovenkerk, H.P.

    1987-06-16

    A method is described for making re-sintered polycrystalline cubic boron nitride (CBN) which comprises: (a) placing sintered substantially catalyst-free boron-rich polycrystalline cubic boron nitride particles in a high pressure/high temperature apparatus, the particles being substantially free of sintering inhibiting impurities; (b) subjecting the boron-rich cubic boron nitride particles to a pressure and a temperature adequate to re-sinter the particles, the temperature being below the CBN reconversion temperature; (c) maintaining the temperature and pressure for a time sufficient to re-sinter the boron-rich cubic boron nitride particles in the apparatus, and (d) recovering the re-sintered polycrystalline cubic boron nitride from the apparatus.

  16. Determination of boron distribution in rat's brain, kidney and liver.

    PubMed

    Pazirandeh, Ali; Jameie, Behnam; Zargar, Maysam

    2009-07-01

    To determine relative boron distribution in rat's brain, liver and kidney, a mixture of boric acid and borax, was used. After transcardial injection of the solution, the animals were sacrificed and the brain, kidney and liver were removed. The coronal sections of certain areas of the brain were prepared by freezing microtome. The slices were sandwiched within two pieces of CR-39. The samples were bombarded in a thermal neutron field of the TRR pneumatic facility. The alpha tracks are registered on CR-39 after being etched in NaOH. The boron distribution was determined by counting these alpha tracks CR-39 plastics. The distribution showed non-uniformity in brain, liver and kidney. PMID:19375929

  17. Encapsulated boron as an osteoinductive agent for bone scaffolds.

    PubMed

    Gümüşderelioğlu, Menemşe; Tunçay, Ekin Ö; Kaynak, Gökçe; Demirtaş, Tolga T; Aydın, Seda Tığlı; Hakkı, Sema S

    2015-01-01

    The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells.

  18. Boron-enhanced diffusion of boron: Physical mechanisms

    NASA Astrophysics Data System (ADS)

    Agarwal, Aditya; Gossmann, H.-J.; Eaglesham, D. J.

    1999-04-01

    Silicon layers containing B in excess of a few atomic percent create a supersaturation of Si self-interstitials in the underlying Si, resulting in enhanced diffusion of B in the substrate [boron-enhanced diffusion (BED)]. The temperature and time dependence of BED is investigated here. Evaporated boron as well as ultralow energy 0.5 keV B-implanted layers were annealed at temperatures from 1100 to 800 °C for times ranging from 3 to 3000 s. Isochronal 10 s anneals reveal that the BED effect increases with increasing temperature up to 1050 °C and then decreases. In contrast, simulations based on interstitial generation via the kick-out mechanism predict a decreasing dependence leading to the conclusion that the kick-out mechanism is not the dominant source of excess interstitials responsible for BED. The diffusivity enhancements from the combined effects of BED and transient-enhanced diffusion, measured in 2×1015cm-2, 0.5 keV B-implanted samples, show a similar temperature dependence as seen for evaporated B, except that the maximum enhancement occurs at 1000 °C. The temperature-dependent behavior of BED supports the hypothesis that the source of excess interstitials is the formation of a silicon boride phase in the high-boron-concentration silicon layer.

  19. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  20. Jaguar Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, L. I.; Baker, E. L.; Capellos, C.

    2009-12-01

    The Jaguar product library was expanded to include boron and boron containing products by analysis of Available Hugoniot and static volumetric data to obtain constants of the Murnaghan relationships for the components. Experimental melting points were also utilized to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX—boron mixtures calculated with these relationships using Jaguar are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that the boron does not react near the detonation front or that boron mixtures exhibit eigenvalue detonation behavior (as shown by some aluminized explosives), with higher detonation velocities at the initial points. Analyses of calorimetric measurements for RDX—boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the detonation properties of the formulation.

  1. Method for preparing boron-carbide articles

    DOEpatents

    Benton, S.T.; Masters, D.R.

    1975-10-21

    The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.

  2. Prediction of boron carbon nitrogen phase diagram

    NASA Astrophysics Data System (ADS)

    Yao, Sanxi; Zhang, Hantao; Widom, Michael

    We studied the phase diagram of boron, carbon and nitrogen, including the boron-carbon and boron-nitrogen binaries and the boron-carbon-nitrogen ternary. Based on the idea of electron counting and using a technique of mixing similar primitive cells, we constructed many ''electron precise'' structures. First principles calculation is performed on these structures, with either zero or high pressures. For the BN binary, our calculation confirms that a rhmobohedral phase can be stablized at high pressure, consistent with some experimental results. For the BCN ternary, a new ground state structure is discovered and an Ising-like phase transition is suggested. Moreover, we modeled BCN ternary phase diagram and show continuous solubility from boron carbide to the boron subnitride phase.

  3. Comparison of the level of boron concentrations in black teas with fruit teas available on the Polish market.

    PubMed

    Zioła-Frankowska, Anetta; Frankowski, Marcin; Novotny, Karel; Kanicky, Viktor

    2014-01-01

    The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content) fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day) is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time. PMID:25379551

  4. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    SciTech Connect

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  5. Comparison of the Level of Boron Concentrations in Black Teas with Fruit Teas Available on the Polish Market

    PubMed Central

    Zioła-Frankowska, Anetta; Frankowski, Marcin; Novotny, Karel; Kanicky, Viktor

    2014-01-01

    The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content) fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day) is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time. PMID:25379551

  6. A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature.

    PubMed

    Shih, Yu-Jen; Liu, Chia-Hsun; Lan, Wei-Cheng; Huang, Yao-Hui

    2014-09-01

    Chemical oxo-precipitation (COP), which combines treatment with an oxidant and precipitation using metal salts, was developed for treating boron-containing water under milder conditions (room temperature, pH 10) than those of conventional coagulation processes. The concentration of boron compounds was 1000mg-BL(-1). They included boric acid (H3BO3) and perborate (NaBO3). Precipitation using calcium chloride eliminated 80% of the boron from the perborate solution, but was unable to treat boric acid. COP uses hydrogen peroxide (H2O2) to pretreat boric acid, substantially increasing the removal of boron from boric acid solution by chemical precipitation from less than 5% to 80%. Furthermore, of alkaline earth metals, barium ions are the most efficient precipitant, and can increase the 80% boron removal to 98.5% at [H2O2]/[B] and [Ba]/[B] molar ratios of 2 and 1, respectively. The residual boron in the end water of COP contained 15ppm-B: this value cannot be achieved using conventional coagulation processes.

  7. Initial boronization of PBX-M using ablation of solid boronized probes

    SciTech Connect

    Kugel, H.W.; Hirooka, Y.; Kaita, R.; Kaye, S.; Khandagle, M. . Inst. of Plasma and Fusion Research); Timberlake, J.; Bell, R.; England, A.; Isler, R.; Okabayashi, M.; Paul, S.; Takahashi, H.; Tighe, W.; von Goeler, S.; Post-Zwicker, A.P. ); Jones, S. )

    1993-05-01

    The initial boronization of PBX-M was performed using the sequential ablation of two types of solid target probes. Probe-1 in a mushroom shape consisted of a 10.7% boronized 2-D C-C composite containing 3.6 g of boron in a B[sub 4]C binder. Probe-2 in a rectangular shape consisted of an 86% boronized graphite felt composite containing 19.5 g of 40 [mu] boron particles. After boronization with Probe-1, the loop voltage during 1 MW neutral beam heated plasmas decreased 27% and volt-sec consumption decreased 20%. Strong peripheral spectral lines from low-Z elements decreased by factors of about 5. The central oxygen density decreased 15--20%. The total radiated power during neutral beam injection decreased by 43%. Probe-2 boronization exhibited improved operating conditions similar to Probe-1, but for some parameters, a smaller percentage change occurred due to the residual boron from the previous boronization using Probe-1. The ablation rates of both probes were consistent with front face temperatures at or slightly above the boron melting point. These results confirm the effectiveness of the solid target boronization (STB) technique as a real-time impurity control method for replenishing boron depositions without the use of hazardous borane compounds.

  8. Initial boronization of PBX-M using ablation of solid boronized probes

    SciTech Connect

    Kugel, H.W.; Hirooka, Y.; Kaita, R.; Kaye, S.; Khandagle, M.; Timberlake, J.; Bell, R.; England, A.; Isler, R.; Okabayashi, M.; Paul, S.; Takahashi, H.; Tighe, W.; von Goeler, S.; Post-Zwicker, A.P.; Jones, S.

    1993-05-01

    The initial boronization of PBX-M was performed using the sequential ablation of two types of solid target probes. Probe-1 in a mushroom shape consisted of a 10.7% boronized 2-D C-C composite containing 3.6 g of boron in a B{sub 4}C binder. Probe-2 in a rectangular shape consisted of an 86% boronized graphite felt composite containing 19.5 g of 40 {mu} boron particles. After boronization with Probe-1, the loop voltage during 1 MW neutral beam heated plasmas decreased 27% and volt-sec consumption decreased 20%. Strong peripheral spectral lines from low-Z elements decreased by factors of about 5. The central oxygen density decreased 15--20%. The total radiated power during neutral beam injection decreased by 43%. Probe-2 boronization exhibited improved operating conditions similar to Probe-1, but for some parameters, a smaller percentage change occurred due to the residual boron from the previous boronization using Probe-1. The ablation rates of both probes were consistent with front face temperatures at or slightly above the boron melting point. These results confirm the effectiveness of the solid target boronization (STB) technique as a real-time impurity control method for replenishing boron depositions without the use of hazardous borane compounds.

  9. Dietary boron, brain function, and cognitive performance.

    PubMed Central

    Penland, J G

    1994-01-01

    Although the trace element boron has yet to be recognized as an essential nutrient for humans, recent data from animal and human studies suggest that boron may be important for mineral metabolism and membrane function. To investigate further the functional role of boron, brain electrophysiology and cognitive performance were assessed in response to dietary manipulation of boron (approximately 0.25 versus approximately 3.25 mg boron/2000 kcal/day) in three studies with healthy older men and women. Within-subject designs were used to assess functional responses in all studies. Spectral analysis of electroencephalographic data showed effects of dietary boron in two of the three studies. When the low boron intake was compared to the high intake, there was a significant (p < 0.05) increase in the proportion of low-frequency activity, and a decrease in the proportion of higher-frequency activity, an effect often observed in response to general malnutrition and heavy metal toxicity. Performance (e.g., response time) on various cognitive and psychomotor tasks also showed an effect of dietary boron. When contrasted with the high boron intake, low dietary boron resulted in significantly poorer performance (p < 0.05) on tasks emphasizing manual dexterity (studies II and III); eye-hand coordination (study II); attention (all studies); perception (study III); encoding and short-term memory (all studies); and long-term memory (study I). Collectively, the data from these three studies indicate that boron may play a role in human brain function and cognitive performance, and provide additional evidence that boron is an essential nutrient for humans. PMID:7889884

  10. Synthesis, Properties, and Applications Of Boron Nitride

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.

    1993-01-01

    Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.

  11. Boron-10 ABUNCL Active Testing

    SciTech Connect

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

    2013-07-09

    The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from testing of the active mode of the General Electric Reuter-Stokes Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) at Los Alamos National Laboratory using sources and fuel pins.

  12. Boron clusters in luminescent materials.

    PubMed

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed. PMID:26574714

  13. CVD-produced boron filaments

    NASA Technical Reports Server (NTRS)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  14. Boron clusters in luminescent materials.

    PubMed

    Mukherjee, Sanjoy; Thilagar, Pakkirisamy

    2016-01-21

    In recent times, luminescent materials with tunable emission properties have found applications in almost all aspects of modern material sciences. Any discussion on the recent developments in luminescent materials would be incomplete if one does not account for the versatile photophysical features of boron containing compounds. Apart from triarylboranes and tetra-coordinate borate dyes, luminescent materials consisting of boron clusters have also found immense interest in recent times. Recent studies have unveiled the opportunities hidden within boranes, carboranes and metalloboranes, etc. as active constituents of luminescent materials. From simple illustrations of luminescence, to advanced applications in LASERs, OLEDs and bioimaging, etc., the unique features of such compounds and their promising versatility have already been established. In this review, recent revelations about the excellent photophysical properties of such materials are discussed.

  15. Ferrocenyl-substituted Schiff base complexes of boron: Synthesis, structural, physico-chemical and biochemical aspects

    NASA Astrophysics Data System (ADS)

    Yadav, Sunita; Singh, R. V.

    2011-01-01

    Biological important complexes of boron(III) derived from 1-acetylferrocenehydrazinecarboxamide (L 1H), 1-acetylferrocenehydrazinecarbothioamide (L 2H) and 1-acetylferrocene carbodithioic acid (L 3H) have been prepared and investigated using a combination of microanalytical analysis, melting point, electronic, IR, 1H NMR and 13C NMR spectral studies, cyclic voltammetry and X-ray powder diffraction studies. Boron isopropoxide interacts with the ligands in 1:1, 1:2 and 1:3 molar ratios (boron:ligand) resulting in the formation of coloured products. On the basis of conductance and spectral evidences, tetrahedral structures for boron(III) complexes have been assigned. The ligands are coordinated to the boron(III) via the azomethine nitrogen atom and the thiolic sulfur atom/enolic oxygen atom. On the basis of X-ray powder diffraction study one of the representative boron complex was found to have orthorhombic lattice, having lattice parameters: a = 9.9700, b = 15.0000 and c = 7.0000. Both the ligands and their complexes have been screened for their biological activity on several pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties. Plant growth regulating activity of one of the ligand and its complexes has also been recorded on gram plant, and results have been discussed.

  16. Surface glycosylation of polysulfone membrane towards a novel complexing membrane for boron removal.

    PubMed

    Meng, Jianqiang; Yuan, Jing; Kang, Yinlin; Zhang, Yufeng; Du, Qiyun

    2012-02-15

    In this study, a novel complexing membrane was synthesized for boron removal from aqueous solution. A glycopolymer, poly(2-gluconamidoethyl methacrylate) (PGAMA), was grafted onto the chloromethylated polysulfone (CMPSF) microporous membrane via surface-initiated ATRP (SIATRP). The glycosylated PSF (GlyPSF) membrane was characterized by attenuated total refection-Flourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM). It was demonstrated that PGAMA was successfully anchored onto the membrane surface and the grafting yield can be tuned in a wide range up to 5.9 mg/cm(2) by varying the polymerization time. The complexing membrane can adsorb boron rapidly with the equilibrium reached within 2h and has a remarkable high boron adsorption capacity higher than 2.0 mmol/g at optimized conditions. Freundlich, Langmuir, and Dubinin-Radushkevich adsorption isotherms were applied, and the data were best described by Langmuir model. Kinetic data were analyzed, and the data fitted very well to the pseudo-second-order rate expression. The optimal pH for boron uptake is in a wide range of 6-9, and the optimal initial boron concentration is over 300 mg/L. Studies of ionic strength effects indicated the formation of inner-sphere surface complexes. The complexed boron can be leached quantitatively under acid condition.

  17. Boron removal and recovery from concentrated wastewater using a microwave hydrothermal method.

    PubMed

    Tsai, Hao-Cheng; Lo, Shang-Lien

    2011-02-28

    Boron compounds are widely-used raw materials in industries. However, elevated boron concentrations in aqueous systems may be harmful to human and plants. In this study, calcium hydroxide (Ca(OH)(2)) alone and Ca(OH)(2) with phosphoric acid (H(3)PO(4)) addition (P-addition) were used to remove and recover boron from wastewater using hydrothermal methods. A microwave (MW) hydrothermal method was used and compared with the conventional heating (CH) method in batch experiments. Physicochemical properties of the precipitates obtained from both methods were analysed by XRD, SEM with EDX and BET. For the case of Ca(OH)(2) alone and the MW method, experimental results showed that boron recovery efficiency reached 90% within 10 min, and crystals of Ca(2)B(2)O(5)·H(2)O were found in the precipitates as indicated by the XRD analysis. For the case of P-addition and the MW method, boron recovery efficiency reached 99% within 10 min, and calcium phosphate species (CaHPO(4)·H(2)O, CaHPO(4) and Ca(10)(PO(4))(6)(OH)(2)) were formed. The experimental results of this study indicate that the required reaction time of the MW method was much less than that of the CH method, and the MW method is an effective and efficient method for boron removal and recovery from concentrated wastewater.

  18. Study of boron behaviour in two Spanish coal combustion power plants.

    PubMed

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems.

  19. Ferrocenyl-substituted Schiff base complexes of boron: synthesis, structural, physico-chemical and biochemical aspects.

    PubMed

    Yadav, Sunita; Singh, R V

    2011-01-01

    Biological important complexes of boron(III) derived from 1-acetylferrocenehydrazinecarboxamide (L1H), 1-acetylferrocenehydrazinecarbothioamide (L2H) and 1-acetylferrocene carbodithioic acid (L3H) have been prepared and investigated using a combination of microanalytical analysis, melting point, electronic, IR, 1H NMR and 13C NMR spectral studies, cyclic voltammetry and X-ray powder diffraction studies. Boron isopropoxide interacts with the ligands in 1:1, 1:2 and 1:3 molar ratios (boron:ligand) resulting in the formation of coloured products. On the basis of conductance and spectral evidences, tetrahedral structures for boron(III) complexes have been assigned. The ligands are coordinated to the boron(III) via the azomethine nitrogen atom and the thiolic sulfur atom/enolic oxygen atom. On the basis of X-ray powder diffraction study one of the representative boron complex was found to have orthorhombic lattice, having lattice parameters: a=9.9700, b=15.0000 and c=7.0000. Both the ligands and their complexes have been screened for their biological activity on several pathogenic fungi and bacteria and were found to possess appreciable fungicidal and bactericidal properties. Plant growth regulating activity of one of the ligand and its complexes has also been recorded on gram plant, and results have been discussed.

  20. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Sahin, Fikrettin

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering.

  1. Boron removal and recovery from concentrated wastewater using a microwave hydrothermal method.

    PubMed

    Tsai, Hao-Cheng; Lo, Shang-Lien

    2011-02-28

    Boron compounds are widely-used raw materials in industries. However, elevated boron concentrations in aqueous systems may be harmful to human and plants. In this study, calcium hydroxide (Ca(OH)(2)) alone and Ca(OH)(2) with phosphoric acid (H(3)PO(4)) addition (P-addition) were used to remove and recover boron from wastewater using hydrothermal methods. A microwave (MW) hydrothermal method was used and compared with the conventional heating (CH) method in batch experiments. Physicochemical properties of the precipitates obtained from both methods were analysed by XRD, SEM with EDX and BET. For the case of Ca(OH)(2) alone and the MW method, experimental results showed that boron recovery efficiency reached 90% within 10 min, and crystals of Ca(2)B(2)O(5)·H(2)O were found in the precipitates as indicated by the XRD analysis. For the case of P-addition and the MW method, boron recovery efficiency reached 99% within 10 min, and calcium phosphate species (CaHPO(4)·H(2)O, CaHPO(4) and Ca(10)(PO(4))(6)(OH)(2)) were formed. The experimental results of this study indicate that the required reaction time of the MW method was much less than that of the CH method, and the MW method is an effective and efficient method for boron removal and recovery from concentrated wastewater. PMID:21211905

  2. Study of boron behaviour in two Spanish coal combustion power plants.

    PubMed

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems. PMID:21664037

  3. Conduction mechanism in boron carbide

    NASA Technical Reports Server (NTRS)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  4. Making Microscopic Cubes Of Boron

    NASA Technical Reports Server (NTRS)

    Faulkner, Joseph M.

    1993-01-01

    Production of finely divided cubes of boron involves vacuum-deposition technology and requires making of template. Template supports pattern of checkered squares 25 micrometers on side, which are etched 25 micrometers into template material. Template coasted uniformly with paralyene or some similar vacuum coating with low coefficient of adhesion. Intended application to solid rocket fuels, explosives, and pyrotechnics; process used for other applications, from manufacture of pharmaceuticals to processing of nuclear materials.

  5. METHOD OF PREPARING POLONIUM-BORON SOURCES

    DOEpatents

    Birden, J.H.

    1959-08-01

    An improved technique is described for preparation of a polonium-boron neutron source. A selected amount of Po-210 is vaporized into a thin walled nickel container, then the desired amcunt of boron powder is added. After sealing the container, it is heated quickly by induction heating to vaporize the Po-210 and deposit it in the still cool boron powder. The unit is then quickly cooled to prevent revaporization of the Po-210 from the boron. The build-up of neutron emission may be followed by means of a neutron counter in order to terminate the heating at the optimum level of neutron yield.

  6. Boron removal from geothermal waters by electrocoagulation.

    PubMed

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar; Yilmaz, M Tolga; Paluluoğlu, Cihan

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm(2), but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  7. Premixed Combustion Model for Boron Clouds

    NASA Astrophysics Data System (ADS)

    Wang, Mengze; Han, Wang; Chen, Zheng

    2015-11-01

    Boron particle is an ideal additive in solid propellants and fuels due to its very high volumetric heat release. In this study, a premixed combustion model for boron clouds is developed based on a previous combustion model for single boron particle. The flame structure is assumed to be composed of three zones: the preheat zone, the ignition zone, and the reaction zone, and analytical solutions are derived from the governing equations. Consequently the influence of the boron clouds' physical properties on the flame propagation process is investigated.

  8. Mineral resource of the month: boron

    USGS Publications Warehouse

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  9. Boronization in DIII-D

    SciTech Connect

    Jackson, G.L.; Burrell, K.H.; DeBoo, J.C.; Greenfield, C.M.; Groebner, R.J.; Hodapp, T.; Kellman, A.G.; Lee, R.; Lippman, S.I.; Phillips, J.; Taylor, T.S.; West, W.P. ); Winter, J. . Inst. fuer Plasmaphysik); Moyer, R. ); Watkins, J. (Sandia National Labs., Livermore,

    1992-05-01

    A thin boron film has been applied to the DIII-D tokamak plasma facing surfaces to reduce impurity influx, particularly oxygen and carbon. A direct result of this surface modification was the observation of a regime of very high energy confinement, VH-mode, with confinement times from 1.5 to 2 times greater than predicted by H-mode scaling relation for the same set of parameters. VH-mode discharges are characterized by low ohmic target densities, low edge neutral pressure, and reduced cycling. These conditions have reduced the collisionality, {nu}*, in the edge region producing a higher edge pressure gradient and a significant bootstrap current, up to 30% of the total current. We will describe the edge plasma properties after boronization including reductions in recycling inferred from measurements of {tau}{sup p}*. In particular we will discuss the edge plasma conditions necessary for access to VH-mode including the boronization process and properties of the deposited film.

  10. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    SciTech Connect

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L.; Bergland, R.; Elowitz, E.; Chadha, M.

    1994-12-31

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report.

  11. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).

    PubMed

    Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W

    2014-06-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This

  12. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  13. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  14. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  15. Boron water quality for the Plynlimon catchments

    NASA Astrophysics Data System (ADS)

    Neal, C.

    Boron concentrations in rainfall, throughfall and stemflow for Spruce stands, mist, streamwater and groundwater are compared with chloride to assess atmospheric sources and catchment input-output balances for the Plynlimon catchments. In rainfall, boron concentration averages about 4.5 μg-B l-1 and approximately two thirds of this comes from anthropogenic sources. In through-fall and stemflow, boron concentrations are approximately a factor of ten times higher than in rainfall. This increase is associated with enhanced scavenging of mist and dry deposition by the trees. As the sampling sites were close to a forest edge, this degree of scavenging is probably far higher than in the centre of the forest. The throughfall and stemflow concentrations of boron show some evidence of periodic variations with time with peak concentrations occurring during the summer months indicating some vegetational cycling. In mist, boron concentrations are almost twenty times higher than in rainfall and anthropogenic sources account for about 86% of this. Within the Plynlimon streams, boron concentrations are about 1.4 to 1.7 times higher than in rainfall. However, after allowance for mist and dry deposition contributions to atmospheric deposition, it seems that, on average, about 30% of the boron input is retained within the catchment. For the forested catchments, felling results in a disruption of the biological cycle and a small increase in boron leaching from the catchment results in the net retention by the catchment being slightly reduced. Despite the net uptake by the catchment, there is clear evidence of a boron component of weathering from the bedrock. This is shown by an increased boron concentration in a stream influenced by a nearby borehole which increased groundwater inputs. The weathering component for boron is also observed in Plynlimon groundwaters as boron concentrations and boron to chloride ratios are higher than for the streams. For these Goundwaters, increases in

  16. Some physical properties of compacted specimens of highly dispersed boron carbide and boron suboxide

    NASA Astrophysics Data System (ADS)

    Tsagareishvili, Otar; Lezhava, David; Tushishvili, Mamuka; Gabunia, Levan; Antadze, Marina; Kekelidze, Luiza; Dzigrashvili, Teimuraz

    2004-02-01

    Structure, shear modulus and internal friction (IF) of compacted specimens of boron carbide and boron suboxide have been investigated. Microtwins and stacking faults were observed along the {100} plane systems of polycrystalline specimens of boron carbide. Electrical conductivity of the specimens was that of p-type. Concentration of holes varied from 10 17 to 10 19 cm -3. The IF was measured in the temperature range 80-300 K. It was shown that the IF of boron carbide and that of boron suboxide were characterized with a set of similar relaxation processes. Mechanisms of the relaxation processes in boron carbide and boron suboxide are discussed in terms of the Hasiguti model of interaction between dislocations and point defects.

  17. High pressure phase transformations of cubic boron nitride from amorphous boron nitride using magnesium boron nitride as the catalyst

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Nover, G.; Will, G.

    1995-07-01

    Results are described of high pressure phase transformations of amorphous boron nitride (aBN) to cubic boron nitride (cBN) using magnesium boron nitride (Mg 3B 2N 4) as a catalyst-solvent. It was observed that amorphous boron nitride undergoes various structural modifications under high pressures and high temperatures leading to the formation of hexagonal, cubic and wurtzitic phases of boron nitride. The minimum pressure at which aBN starts transforming into cBN was found to be 25 kbar at 1800°C. This is the lowest pressure for cBN formation employing the catalyst-solvent process and is reported here for the first time.

  18. Selective extraction and enrichment of glycoproteins based on boronate affinity SPME and determination by CIEF-WCID.

    PubMed

    Li, Lixian; Xia, Zhining; Pawliszyn, Janusz

    2015-07-30

    In this study, a new thin-film boronic acid coating was developed for solid-phase microextraction (SPME) followed by capillary isoelectric focusing with whole-column imaging detection (CIEF-WCID). Boronate functionalized particles of phenylboronic acid (PBA) and 3-aminophenylboronic acid (3-aPBA) were utilized as boronate affinity solid phase coating on thin-film stainless steel blades for selective extraction and enrichment of glycoproteins. The process of extraction and elution could be easily controlled by adjusting pH. To test specificity, asialofetuin and lactoferrin were selected as glycoproteins test molecules, while BSA and myoglobin were used as control non-glycoproteins in this study. The boronate affinity coating was characterized. The effect of buffer, pH, extraction profiles and elution profiles were investigated. The developed method was successfully applied to extract glycoproteins from standard buffer, PBS, human plasma and 10-fold diluted human blood using two kinds of boronate affinity blades. Boronate affinity SPME could be a promising tool for selective extraction and enrichment of low-abundance glycoproteins in real biological samples.

  19. The interaction of boron with goethite: experiments and CD-MUSIC modeling.

    PubMed

    Goli, Esmaiel; Rahnemaie, Rasoul; Hiemstra, Tjisse; Malakouti, Mohammad Jafar

    2011-03-01

    Boron (B) is an essential element for plants and animals growth that interacts with mineral surfaces regulating its bioavailability and mobility in soils, sediments, and natural ecosystems. The interaction with mineral surfaces is quite important because of a narrow range between boron deficiency and toxicity limits. In this study, the interaction of boric acid with goethite (α-FeOOH) was measured in NaNO(3) background solution as a function of pH, ionic strength, goethite and boron concentration representing as adsorption edges and isotherms. Boron adsorption edges showed a bell-shaped pattern with maximum adsorption around pH 8.50, whereas adsorption isotherms were rather linear. The adsorption data were successfully described with the CD-MUSIC model in combination with the Extended Stern (ES) model. The charge distribution (CD) of inner-sphere boron surface complexes was calculated from the geometry optimized with molecular orbital calculations applying density functional theory (MO/DFT). The CD modeling suggested dominant binding of boric acid as a trigonal inner-sphere complex with minor contributions of a tetrahedral inner-sphere complex (at high pH) and a trigonal outer-sphere complex (at low pH). The interpretation with the CD model is consistent with the spectroscopic observations.

  20. The interaction of boron with goethite: experiments and CD-MUSIC modeling.

    PubMed

    Goli, Esmaiel; Rahnemaie, Rasoul; Hiemstra, Tjisse; Malakouti, Mohammad Jafar

    2011-03-01

    Boron (B) is an essential element for plants and animals growth that interacts with mineral surfaces regulating its bioavailability and mobility in soils, sediments, and natural ecosystems. The interaction with mineral surfaces is quite important because of a narrow range between boron deficiency and toxicity limits. In this study, the interaction of boric acid with goethite (α-FeOOH) was measured in NaNO(3) background solution as a function of pH, ionic strength, goethite and boron concentration representing as adsorption edges and isotherms. Boron adsorption edges showed a bell-shaped pattern with maximum adsorption around pH 8.50, whereas adsorption isotherms were rather linear. The adsorption data were successfully described with the CD-MUSIC model in combination with the Extended Stern (ES) model. The charge distribution (CD) of inner-sphere boron surface complexes was calculated from the geometry optimized with molecular orbital calculations applying density functional theory (MO/DFT). The CD modeling suggested dominant binding of boric acid as a trigonal inner-sphere complex with minor contributions of a tetrahedral inner-sphere complex (at high pH) and a trigonal outer-sphere complex (at low pH). The interpretation with the CD model is consistent with the spectroscopic observations. PMID:21185584

  1. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  2. Mono- and di-cationic hydrido boron compounds.

    PubMed

    Ghadwal, Rajendra S; Schürmann, Christian J; Andrada, Diego M; Frenking, Gernot

    2015-08-28

    Brønsted acid HNTf2 (Tf = SO2CF3) mediated dehydrogenative hydride abstraction from (L(1))BH3 () and (L(2))BH3 () (L(1) = IPrCH2 = 1,3-(2,6-di-isopropylphenyl)imidazol-2-methylidene (); L(2) = SIPrCH2 = 1,3-(2,6-di-isopropylphenyl)imidazolidin-2-methylidiene ()) affords thermally stable hydride bridged mono-cationic hydrido boron compounds [{(L(1))BH2}2(μ-H)](NTf2) () and [{(L(2))BH2}2(μ-H)](NTf2) (). Furthermore, hydride abstraction yields di-cationic hydrido boron compounds [{(L(1))BH}2(μ-H)2](NTf2)2 () and [{(L(2))BH}2(μ-H)2](NTf2)2 (). Unique cationic boron compounds with CH2BH2(μ-H)BH2CH2 ( and ) and CH2BH(μ-H)2BHCH2 ( and ) moieties feature a 3c-2e bond and have been fully characterized. Interesting electronic and structural features of compounds are analysed using spectroscopic, crystallographic, and computational methods. PMID:26200103

  3. Termite Resistance of MDF Panels Treated with Various Boron Compounds

    PubMed Central

    Usta, Mustafa; Ustaomer, Derya; Kartal, Saip Nami; Ondaral, Sedat

    2009-01-01

    In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX), boric acid (BA), zinc borate (ZB), or sodium perborate tetrahydrate (SPT) were added to urea-formaldehyde (UF) resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH4Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus Shiraki. Laboratory termite resistance tests showed that all samples containing boron compounds had greater resistance against termite attack compared to untreated MDF samples. At the second and third weeks of exposure, nearly 100% termite mortalities were recorded in all boron compound treated samples. The highest termite mortalities were determined in the samples with either BA or BX. Also, it was found that SPT showed notable performance on the termite mortality. As chemical loadings increased, termite mortalities increased, and at the same time the weight losses of the samples decreased. PMID:19582229

  4. Termite resistance of MDF panels treated with various boron compounds.

    PubMed

    Usta, Mustafa; Ustaomer, Derya; Kartal, Saip Nami; Ondaral, Sedat

    2009-06-19

    In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX), boric acid (BA), zinc borate (ZB), or sodium perborate tetrahydrate (SPT) were added to urea-formaldehyde (UF) resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH(4)Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus Shiraki. Laboratory termite resistance tests showed that all samples containing boron compounds had greater resistance against termite attack compared to untreated MDF samples. At the second and third weeks of exposure, nearly 100% termite mortalities were recorded in all boron compound treated samples. The highest termite mortalities were determined in the samples with either BA or BX. Also, it was found that SPT showed notable performance on the termite mortality. As chemical loadings increased, termite mortalities increased, and at the same time the weight losses of the samples decreased.

  5. Porphyrins for boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Gabel, Detlef

    1990-01-01

    Novel compounds for treatment of brain tumors in Boron Neutron Capture Therapy are disclosed. A method for preparing the compounds as well as pharmaceutical compositions containing said compounds are also disclosed. The compounds are water soluble, non-toxic and non-labile boronated porphyrins which show significant uptake and retention in tumors.

  6. Boron Carbides As Thermo-electric Materials

    NASA Technical Reports Server (NTRS)

    Wood, Charles

    1988-01-01

    Report reviews recent theoretical and experimental research on thermoelectric materials. Recent work with narrow-band semiconductors demonstrated possibility of relatively high thermoelectric energy-conversion efficiencies in materials withstanding high temperatures needed to attain such efficiencies. Among promising semiconductors are boron-rich borides, especially boron carbides.

  7. Boron carbide whiskers produced by vapor deposition

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  8. Ultratough single crystal boron-doped diamond

    SciTech Connect

    Hemley, Russell J; Mao, Ho-Kwang; Yan, Chih-Shiue; Liang, Qi

    2015-05-05

    The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.

  9. Simple mass spectrometric method for the estimation of boron and aluminum in water at the parts per billion level.

    PubMed

    Krishnan, Nagasathiya; Raman, Pachaiappan; Mariappanadar, Vairamani

    2015-01-01

    The coordinating nature of the hydroxy carboxylic acids, such as tartaric and citric acids, has been utilized for the in-situ formation of anions representing the trivalent elements boron and aluminum and two dianions of the hydroxy acid selected under negative electrospray ionization mass spectral conditions. The abundance of these ions could be used for the quantification of boron and aluminum in water at concentrations ranging from 4.0 ppb to 535.0 ppb. For a period of six months, the validity of this method was tested with citric acid as the coordinating agent. Thus, the developed method offers a simple means for the quantification of boron and aluminum in water by negative electrospray ionization mass spectrometry with a single quadrupole mass spectrometer.

  10. Stabilization of boron carbide via silicon doping.

    PubMed

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  11. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  12. Molecular characterization of the boron adducts of the proteasome inhibitor Bortezomib with epigallocatechin-3-gallate and related polyphenols

    PubMed Central

    Glynn, Stephen J.; Gaffney, Kevin J.; Sainz, Marcos A.; Louie, Stan G.

    2015-01-01

    The green tea polyphenol epigallocatechin-3-gallate (EGCG) was reported to effectively antagonize the ability of Bortezomib to induce apoptosis in cancer cells. This interaction was attributed to the formation of a covalent adduct between a phenolic moiety of EGCG with the boronic acid group of Bortezomib. However, the structural details of this boron adduct and the molecular factors that contribute to its formation and its ability to inhibit Bortezomib's activity remain unclear. This paper describes the use of NMR spectroscopy and cell assays to characterize the structures and properties of the boron adducts of EGCG and related polyphenols. The observed boron adducts included both boronate and borate derivatives, and their structural characteristics were correlated with cell-based evaluation of the ability of EGCG and other phenols to antagonize the anticancer activity of Bortezomib. The enhanced stability of the BZM/EGCG adduct was attributed to electronic and steric reasons, and a newly identified intramolecular interaction of the boron atom of BZM with the adjacent amide bond. The reported approach provides a useful method for determining the potential ability of polyphenols to form undesired adducts with boron-based drugs and interfere with their actions. PMID:25669488

  13. Accumulation and loss of arsenic and boron, alone and in combination, in mallard ducks

    USGS Publications Warehouse

    Pendleton, G.W.; Whitworth, M.R.; Olsen, G.H.

    1995-01-01

    Study was conducted at the Patuxent Wildlife Research Center from June to October 1987. Adult mallard ducks were exposed to dietary concentrations of arsenic as sodium arsenate, boron as boric acid, or both; tissue accumulation and loss rates were estimated when the ducks were returned to uncontaminated food.

  14. Boron enrichment in martian clay.

    PubMed

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  15. Boron enrichment in martian clay.

    PubMed

    Stephenson, James D; Hallis, Lydia J; Nagashima, Kazuhide; Freeland, Stephen J

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.

  16. Boron Enrichment in Martian Clay

    PubMed Central

    Nagashima, Kazuhide; Freeland, Stephen J.

    2013-01-01

    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration. PMID:23762242

  17. A polymeric route to multielemental boron siliconcarbide ceramic

    NASA Astrophysics Data System (ADS)

    Ambadas, G.

    2015-02-01

    A multielemental single source precursor polymer for boron silicon carbide ceramic was prepared by condensation polymerization of boric acid, vinyl silylester and furfuraldehyde. Polymer exhibited excellent thermal stability due the presence of borosiloxane bridges and yield high ceramic residue on pyrolysis. Oxidation behavior of the polymer was studied by heat treating the precursor in air at 1350°C. Morphological analysis of the surface after heat treatment indicates the formation of a uniform glassy layer on the surface. The borosilicate glassy layer on the surface extends superior oxidation resistance to the sample.

  18. Electrodeposited tungsten-nickel-boron: A replacement for hexavalent chromium

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-04-01

    Chromium, deposited from acidic solutions of its hexavalent ion, has been the rule for wear resistant, corrosion resistant coatings for many years. Although chromium coatings are durable, the plating process generates air emissions, effluent rinse waters, and process solutions that are toxic, suspected carcinogens, and a risk to human health and the environment. Tungsten-nickel-boron (W-Ni-B) alloy deposition is a potential substitute for hexavalent chrome. It has excellent wear, corrosion, and mechanical properties and also may be less of an environmental risk. This study examines the electroplating process and deposit properties of W-Ni-B and compares them with those of hexavalent chrome.

  19. Boronate Affinity-Molecularly Imprinted Biocompatible Probe: An Alternative for Specific Glucose Monitoring.

    PubMed

    Chen, Guosheng; Qiu, Junlang; Fang, Xu'an; Xu, Jianqiao; Cai, Siying; Chen, Qing; Liu, Yan; Zhu, Fang; Ouyang, Gangfeng

    2016-08-19

    A biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity-molecular imprinted polymers (BA-MIPs). The unique pre-self-assembly between glucose and boronic acids creates glucose-specific memory cavities in the BA-MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude. The BA-MIPs probe was applied to glucose determination in serum and urine and implanted into plant tissues for low-destructive and long-term in vivo continuous glucose monitoring. PMID:27411946

  20. Boronated porphyrins in NCT: Results with a new potent tumor localizer

    SciTech Connect

    Kahl, S.B.; Koo, M.S.; Laster, B.H.; Fairchild, R.G.

    1988-01-01

    Several chemical methods are available for the solubilization of boronated porphyrins. We have previously reported the tumor localization of nido carboranyl porphyrins in which the icosahedral carborane cages have been opened to give B/sub 9/C/sub 2/ anions. One of these species has shown tumor boron levels of nearly 50 ..mu..g B/g when delivered by week-long subcutaneous infusions. We report here recent in vivo experiments with a new, highly water-soluble porphyrin based on the hematoporphyrin-type of compound in which aqueous solubility is achieved using the two propionic acid side chains of the ''natural'' porphyrin frame. 7 refs.

  1. Electrochemical behavior of the boron anode in aqueous solutions

    NASA Technical Reports Server (NTRS)

    Delduca, B. S.

    1972-01-01

    The electrochemical oxidation of p-type boron in 0.2 N NaNO3 solutions of pH 0.4 to 13.1 was studied by galvanostatic techniques. The capacitance of the electrode, Tafel slopes, and a limited analysis of reaction mechanisms are reported. The anodic dissolution in acid solution is a charge-transfer-limited one-electron reaction to form a monovalent species in the over-potential region of 0.25 to 0.70 V. The dissolution in basic solution is most probably a one-electron charge-transfer reaction from a monovalent to divalent species involving three hydroxyl ions. Open circuit potentials were mixed potentials, probably due to hydrogen formation at open circuit but not contributing to the electrochemical reaction at the applied overpotential. Exchange current, estimated by extrapolation of the Tafel line to the standard oxidation potential for the boron reaction, were of the order of 10 to the minus 6th power A/cm2 in acid solution and 10 to the minus 12th power A/cm2 in basic solution. The reaction order of the rate determining acidic and basic reactions was determined with regard to (H+) and (OH-). The level of illumination had no effect on the electrochemical behavior of the electrode.

  2. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2.

    PubMed

    Wongthai, Printip; Hagiwara, Kohei; Miyoshi, Yurika; Wiriyasermkul, Pattama; Wei, Ling; Ohgaki, Ryuichi; Kato, Itsuro; Hamase, Kenji; Nagamori, Shushi; Kanai, Yoshikatsu

    2015-03-01

    The efficacy of boron neutron capture therapy relies on the selective delivery of boron carriers to malignant cells. p-Boronophenylalanine (BPA), a boron delivery agent, has been proposed to be localized to cells through transporter-mediated mechanisms. In this study, we screened aromatic amino acid transporters to identify BPA transporters. Human aromatic amino acid transporters were functionally expressed in Xenopus oocytes and examined for BPA uptake and kinetic parameters. The roles of the transporters in BPA uptake were characterized in cancer cell lines. For the quantitative assessment of BPA uptake, HPLC was used throughout the study. Among aromatic amino acid transporters, ATB(0,+), LAT1 and LAT2 were found to transport BPA with Km values of 137.4 ± 11.7, 20.3 ± 0.8 and 88.3 ± 5.6 μM, respectively. Uptake experiments in cancer cell lines revealed that the LAT1 protein amount was the major determinant of BPA uptake at 100 μM, whereas the contribution of ATB(0,+) became significant at 1000 μM, accounting for 20-25% of the total BPA uptake in MCF-7 breast cancer cells. ATB(0,+), LAT1 and LAT2 transport BPA at affinities comparable with their endogenous substrates, suggesting that they could mediate effective BPA uptake in vivo. The high and low affinities of LAT1 and ATB(0,+), respectively, differentiate their roles in BPA uptake. ATB(0,+), as well as LAT1, could contribute significantly to the tumor accumulation of BPA at clinical dose.

  3. Boron Nitride Nanoribbons Becomes Metallic

    SciTech Connect

    Huang, Jingsong; Terrones Maldonado, Humberto; Sumpter, Bobby G; Lopez-Benzanilla, Alejandro

    2011-01-01

    Standard spin-polarized density functional theory calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag boron nitride nanoribbons (zBNNRs). Unlike the semiconducting and nonmagnetic H edge-terminated zBNNRs, the O edge-terminated zBNNRs have two energetically degenerate magnetic ground states with a ferrimagnetic character on the B edge, both of which are metallic. In contrast, the S edge-terminated zBNNRs are nonmagnetic albeit still metallic. An intriguing coexistence of two different Peierls-like distortions is observed for S edge-termination that manifests as a strong S dimerization at the B zigzag edge and a weak S trimerization at the N zigzag edge, dictated by the band fillings at the vicinity of the Fermi level. Nevertheless, metallicity is retained along the S wire on theNedge due to the partial filling of the band derived from the pz orbital of S. A second type of functionalization with O or S atoms embedded in the center of zBNNRs yields semiconducting features. Detailed examination of both types of functionalized zBNNRs reveals that the p orbitals on O or S play a crucial role in mediating the electronic structures of the ribbons.We suggest that O and S functionalization of zBNNRs may open new routes toward practical electronic devices based on boron nitride materials.

  4. Controlled in situ boron doping of diamond thin films using solution phase

    NASA Astrophysics Data System (ADS)

    Roy, M.; Dua, A. K.; Nuwad, J.; Girija, K. G.; Tyagi, A. K.; Kulshreshtha, S. K.

    2006-12-01

    Controlled boron doping of diamond film using nontoxic reagents is a challenge in itself. During the present study, attempts have been made to dope diamond films in situ with boron from a solution of boric acid (H3BO3) in methanol (CH3OH) using a specially designed bubbler that ensured continuous and controlled flow of vapors of boron precursors during deposition. The samples are thoroughly characterized using a host of techniques comprising of x-ray photoelectron spectroscopy, Raman, x-ray diffraction, and current-voltage measurements (I-V). Cross-sectional micro-Raman spectroscopy has been used to obtain depth profile of boron in diamond films. Boron concentration ([B]) in the films is found to vary linearly on a semilog scale with molarity (M) of H3BO3 in CH3OH. Lattice constant of our samples is smaller than the reported American society for testing and materials (ASTM) values due to oxygen incorporation and it increases with [B] in the diamond samples. Heavily boron doped samples exhibit Fano deformation of the Raman line shape and negative and/zero activation barrier in temperature dependent I-V measurements that indicate the formation of metallic phase in the samples. The present study illustrates the feasibility of safe and controlled boron doping of diamond films using a solution of H3BO3 in CH3OH over a significant range of [B] from semiconductor to metallic regime but with a little adverse effect due to unintentional but unavoidable incorporation of oxygen.

  5. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays.

    PubMed

    Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang

    2015-09-01

    The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.

  6. Chemical etching of boron-rich layer and its impact on high efficiency n-type silicon solar cells

    NASA Astrophysics Data System (ADS)

    Ryu, Kyungsun; Upadhyaya, Ajay; Song, Hyun-Jin; Choi, Chel-Jong; Rohatgi, Ajeet; Ok, Young-Woo

    2012-08-01

    This paper reports on an effective chemical etching treatment to remove a boron-rich layer which has a significant negative impact on n-type silicon (Si) solar cells with boron emitter. A nitric acid-grown oxide/silicon nitride stack passivation on the boron-rich layer-etched boron emitter markedly decreases the emitter saturation current density J0e from 430 to 100 fA/cm2. This led to 1.6% increase in absolute cell efficiency including 22 mV increase in open-circuit voltage Voc and 1.9 mA/cm2 increase in short-circuit current density Jsc. This resulted in screen-printed large area (239 cm2) n-type Si solar cells with efficiency of 19.0%.

  7. Boron-Loaded Silicone Rubber Scintillators

    SciTech Connect

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  8. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  9. Boron mullite: Formation and basic characterization

    SciTech Connect

    Lührs, Hanna; Fischer, Reinhard X.; Schneider, Hartmut

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Decrease of B-mullite formation temperature with increasing boron content. ► Decrease of lattice parameters b and c with increasing boron content. ► Significant reduction of thermal expansion (−15%) due to incorporation of boron. ► Decomposition of B-mullite at 1400 °C, long-term stability at 800 °C. -- Abstract: A series of boron doped mullites (B-mullite) was prepared from single-phase gels with initial compositions based on a 1:1 isomorphous substitution of Si by B, starting from a 3:2 mullite composition (Al{sub 4.5}Si{sub 1.5}O{sub 9.75}). A high amount of boron (>10 mol.%) can be incorporated into the crystal structure of mullite where it most likely replaces Si. In situ phase formation of B-mullites was studied with high temperature X-ray diffraction and thermal analysis. A decrease of the formation temperature for B-mullite with increasing boron content was observed. With increasing boron content lattice parameters b and c significantly decrease, while no systematic evolution of a is observed. Long annealing at 1400 °C results in decomposition of B-mullite to boron free mullite and α-alumina. At 800 °C B-mullite appears to be stable over a period of at least 12 days. The mean thermal expansion coefficient was reduced by 15% upon incorporation of boron which makes the material technologically interesting.

  10. Fluoride interference in the determination of boron by inductively coupled plasma emission spectroscopy

    SciTech Connect

    Fucsko, J.; Tan, S.H.; La, H.; Balazs, M.K. )

    1993-02-01

    Boron determination in borophosphosilicate glass films by the ICP-AES or ICP-MS technique can be performed after dissolution of the sample in HF solution. However, addition of HF to boric acid standard solution can cause a drift in the slope of the calibration curve. The signal change was correlated with the kinetics of the borontetrafluoride complex formation reaction. The mechanism was explained by the selectively increased boron transport into the plasma, which was caused by the more efficient diffusion of borontrifluoride gas through the aerosol particles into the nebulizer gas. With the kinetics of borontetrafluoride complex formation taken into consideration, an accurate and precise method was developed for the determination of boron in BPSG films. 16 refs., 3 figs., 5 tabs.

  11. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    NASA Technical Reports Server (NTRS)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  12. X-ray diffraction study of boron produced by pyrolysis of boron tribromide

    NASA Astrophysics Data System (ADS)

    Rosenberg, David

    The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its

  13. Use of inductively coupled plasma-mass spectrometry in boron-10 stable isotope experiments with plants, rats, and humans.

    PubMed Central

    Vanderpool, R A; Hoff, D; Johnson, P E

    1994-01-01

    The commercial availability of inductively coupled plasma-mass spectrometry technology (ICP-MS) has presented the opportunity to measure the boron concentrations and isotope ratios in a large number of samples with minimal sample preparation. A typical analytical sequence for fecal samples consists of 25 acid blanks, 1 digestion blank, 5 calibration solutions, 4 standard reference material solutions, 10 samples, and 4 natural abundance bias standards. Boron detection limits (3 x 1 sigma) for acid blanks are 0.11 ppb for 10B, and 0.40 ppb for 11B. Isotope ratios were measured in fecal samples with 20 to 50 ppb boron with < 2% relative standard deviation. Rapid washout and minimal memory effects were observed for a 50 ppb beryllium internal standard, but a 200 ppb boron biological sample had a 1.0 ppb boron memory after a 6-min washout. Boron isotope ratios in geological materials are highly variable; apparently this variability is reflected in plants of a fixed natural abundance value for boron requires that a natural abundance ratio be determined for each sample or related data set. The natural abundance variability also prevents quantitation and calculation of isotope dilution by instrument-supplied software. To measure boron transport in animal systems, 20 micrograms of 10B were fed to a fasted rat. During the 3 days after a 10B oral dose, 95% of the 10B was recovered from the urine and 4% from the feces. Urinary isotope ratios, 11B/10B, changed from a natural abundance of 4.1140 to an enriched value of 0.95077, a 77% change.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889873

  14. Effect of boron doping on optical properties of sol-gel based nanostructured zinc oxide films on glass

    SciTech Connect

    Jana, Sunirmal; Vuk, Angela Surca; Mallick, Aparajita; Orel, Boris; Biswas, Prasanta Kumar

    2011-12-15

    Graphical abstract: Room temperature fine structured UV-vis PL emissions (a) as phonon replicas in 1 at.% boron doped film originated from LO phonon evidenced from Near Grazing Incidence Angle (NGIA) IR spectral study (b). Highlights: Black-Right-Pointing-Pointer Sol-gel based boron doped nanostructured ZnO thin films deposited on pure silica glass using crystalline boric acid as boron source. Black-Right-Pointing-Pointer Observed first time, room temperature fine structured PL emissions in 1 at.% doped film as phonon replicas originated from LO phonon (both IR and Raman active). Black-Right-Pointing-Pointer Boron doping controls the LO phonon energy in addition to visible reflection, band gap and grain size. Black-Right-Pointing-Pointer The films possessed mixed crystal phases with hexagonal as major phase. -- Abstract: Boron doped zinc oxide thin films ({approx}80 nm) were deposited onto pure silica glass by sol-gel dip coating technique from the precursor sol/solution of 4.0 wt.% equivalent oxide content. The boron concentration was varied from 0 to 2 at.% w.r.t. Zn using crystalline boric acid. The nanostructured feature of the films was visualized by FESEM images and the largest cluster size of ZnO was found in 1 at.% boron doped film (B1ZO). The presence of mixed crystal phases with hexagonal as major phase was identified from XRD reflections of the films. Particle size, optical band gap, visible specular reflection, room temperature photoluminescence (PL) emissions (3.24-2.28 eV), infra-red (IR) and Raman active longitudinal optical (LO) phonon vibration were found to be dependent on dopant concentration. For the first time, we report the room temperature fine structured PL emissions as phonon replicas originated from the LO phonon (both IR and Raman active) in 1 at.% boron doped zinc oxide film.

  15. Boron-10 Lined Proportional Counter Wall Effects

    SciTech Connect

    Siciliano, Edward R.; Kouzes, Richard T.

    2012-05-01

    The Department of Energy Office of Nuclear Safeguards (NA-241) is supporting the project 'Coincidence Counting With Boron-Based Alternative Neutron Detection Technology' at Pacific Northwest National Laboratory (PNNL) for development of an alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a boron-lined proportional tube based system in the configuration of a coincidence counter. This report provides information about how variations in proportional counter radius and gas pressure in a typical coincident counter design might affect the observed signal from boron-lined tubes. A discussion comparing tubes to parallel plate counters is also included.

  16. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  17. Crystallization of Beryllium-Boron Metallic Glasses

    SciTech Connect

    Jankowski, A F; Wall, M A; Nieh, T G

    2002-02-14

    Prior studies of evaporation and sputter deposition show that the grain size of pure beryllium can be dramatically refined through the incorporation of metal impurities. Recently, the addition of boron at a concentration greater than 11% is shown to serve as a glassy phase former in sputter deposited beryllium. Presently, thermally induced crystallization of the beryllium-boron metallic glass is reported. The samples are characterized during an in-situ anneal treatment with bright field imaging and electron diffraction using transmission electron microscopy. A nanocrystalline structure evolves from the annealed amorphous phase and the crystallization temperature is affected by the boron concentration.

  18. Current data regarding the structure-toxicity relationship of boron-containing compounds.

    PubMed

    Farfán-García, E D; Castillo-Mendieta, N T; Ciprés-Flores, F J; Padilla-Martínez, I I; Trujillo-Ferrara, J G; Soriano-Ursúa, M A

    2016-09-01

    Boron is ubiquitous in nature, being an essential element of diverse cells. As a result, humans have had contact with boron containing compounds (BCCs) for a long time. During the 20th century, BCCs were developed as antiseptics, antibiotics, cosmetics and insecticides. Boric acid was freely used in the nosocomial environment as an antiseptic and sedative salt, leading to the death of patients and an important discovery about its critical toxicology for humans. Since then the many toxicological studies done in relation to BCCs have helped to establish the proper limits of their use. During the last 15 years, there has been a boom of research on the design and use of new, potent and efficient boron containing drugs, finding that the addition of boron to some known drugs increases their affinity and selectivity. This mini-review summarizes two aspects of BCCs: toxicological data found with experimental models, and the scarce but increasing data about the structure-activity relationship for toxicity and therapeutic use. As is the case with boron-free compounds, the biological activity of BCCs is related to their chemical structure. We discuss the use of new technology to discover potent and efficient BCCs for medicinal therapy by avoiding toxic effects. PMID:27329537

  19. Effects of dietary boron and arsenic on the behavior of mallard ducklings

    USGS Publications Warehouse

    Whitworth, M.R.; Pendleton, G.W.; Hoffman, D.J.; Camardese, M.B.

    1991-01-01

    High concentrations of boron and arsenic have been associated with irrigation drain water and aquatic plants consumed by waterfowl. Both compounds affect the central nervous sytem and cause generalized physiological distress in mammals and waterfowl. We examined sublethal efefcts of boron and arsenic on the behavior of developing mallard ducklings (Anas Platyrhnchos). Day-old ducklings received an untreated diet (control) or a diet containing 100, 400, or 1,600 ppm boron, added as boric acid, or 30, 100, or 300 ppm arsenic, added as sodium aresenate. Activity schedules and behavior durations were analyzed for effects at the various treatment levels. Both boron and arsenic at the highest levels had significant effects on the activity schedules of developing ducklings, including increased time at rest and under the provided heat lamp. We also observed decreases in the amount of time treated ducklings spent in alert behaviors and in the water in comparison to control ducklings. High levels of boron (1,600 ppm) increased feeding time overall but did not increase the amount of food consumed. Arsenic had no effect on feeding behavior. There were no differences found in the durations of behaviors as a result of treatment. These findings, in combination with reported effects on the growth and physiology of ducklings under identical treatments, suggest that reported concentrations of these compounds in aquatic plants in the Central Valley of California could adversly affect normal duckling development and survival.

  20. Current data regarding the structure-toxicity relationship of boron-containing compounds.

    PubMed

    Farfán-García, E D; Castillo-Mendieta, N T; Ciprés-Flores, F J; Padilla-Martínez, I I; Trujillo-Ferrara, J G; Soriano-Ursúa, M A

    2016-09-01

    Boron is ubiquitous in nature, being an essential element of diverse cells. As a result, humans have had contact with boron containing compounds (BCCs) for a long time. During the 20th century, BCCs were developed as antiseptics, antibiotics, cosmetics and insecticides. Boric acid was freely used in the nosocomial environment as an antiseptic and sedative salt, leading to the death of patients and an important discovery about its critical toxicology for humans. Since then the many toxicological studies done in relation to BCCs have helped to establish the proper limits of their use. During the last 15 years, there has been a boom of research on the design and use of new, potent and efficient boron containing drugs, finding that the addition of boron to some known drugs increases their affinity and selectivity. This mini-review summarizes two aspects of BCCs: toxicological data found with experimental models, and the scarce but increasing data about the structure-activity relationship for toxicity and therapeutic use. As is the case with boron-free compounds, the biological activity of BCCs is related to their chemical structure. We discuss the use of new technology to discover potent and efficient BCCs for medicinal therapy by avoiding toxic effects.

  1. Heat treatments modify the tribological properties of nickel boron coatings.

    PubMed

    Gilley, Kevin L; Nino, Juan C; Riddle, Yancy W; Hahn, David W; Perry, Scott S

    2012-06-27

    The effects of annealing temperature on the tribological properties of electroless nickel-boron coatings have been investigated. The coatings were annealed in a tube furnace under a flow (0.0094 N m(3)/min) of oxygen gas at temperatures of 250, 400, 550, and 700 °C for 3 h. Using scanning electron microscopy, images of the annealed coatings documented changes in surface morphology. From this it was seen that the higher annealing temperatures produced marked changes, moving from the nodular structure of nickel-boron coatings to a flaked surface morphology. The chemical effect of the annealing temperature was studied via X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS data indicated that after annealing at the temperatures of 550 and 700 °C, an accumulation of boron oxide species could be seen at the surface as well as a complete loss of nickel signal. An analysis of Raman spectra collected across the surface further identified the predominant species to be boric acid. The tribological response of the coatings was studied with a pin-on-disk tribometer with 440C stainless steel balls run against the coatings in ambient air. It was seen that the as received sample and the sample annealed at 250 °C samples exhibited modest friction properties, while the 400 °C sample had increased friction due to wear debris from the ball. The 550 and 700 °C samples showed remarkably low friction coefficients between 0.06 and 0.08, attributable to the presence of boric acid. The wear tracks were analyzed using scanning white light interferometry and from this data wear rates were obtained for the coatings ranging from 10(-8) to 10(-7) mm(3)/Nm.

  2. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    PubMed

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  3. Boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Haque, A. M.; Moschini, G.; Valkovic, Vlado; Zafiropoulos, D.

    1995-03-01

    The final goal of any radiotherapy project is to expose the tumor as the target to a lethal dose of ionizing radiation, sparing thereby the surrounding healthy tissues to a maximum extent. Precise treatment is nevertheless essential for cure, since the danger exists that the tumor might re-establish itself if every cancer cell is not destroyed. The conventional therapy treatments existing to date, e.g., surgery, radiation therapy, and chemotherapy, have been successful in curing some kinds of cancers, but still there are many exceptions. In the following, the progress of a promising therapy tool, called the boron neutron capture therapy (BNCT), which has made its dynamic evolution in recent years, is briefly described. The approach towards clinical trials with BNCT is described in detail.

  4. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-27

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  5. Boron-Filled Hybrid Carbon Nanotubes

    PubMed Central

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  6. Boron-Filled Hybrid Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  7. Spectromicroscopy in Boron Neutron Capture Therapy Research

    NASA Astrophysics Data System (ADS)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  8. Boron strengthening in FeAl

    SciTech Connect

    Baker, I.; Li, X.; Xiao, H.; Klein, O.; Nelson, C.; Carleton, R.L.; George, E.P.

    1998-11-01

    The effect of boron on the strength of B2-structured FeAl is considered as a function of composition, grain size and temperature. Boron does not affect the concentrations of antisite atoms or vacancies present, with the former increasing and the latter decreasing with increasing deviation from the stoichiometric composition. When vacancies are absent, the strength increase per at. % B per unit lattice strain, {Delta}{sigma}/({Delta}c x {epsilon}) increases with increasing aluminum concentration, but when vacancies are present (>45 at. % Al), {Delta}{sigma}/({Delta}c x {epsilon}) decreases again. Boron increases grain size strengthening in FeAl. B strengthening is roughly independent of temperature up to the yield strength peak but above the point, when diffusion-assisted deformation occurs, boron strengthening increases dramatically.

  9. Boron-deoxidized copper withstands brazing temperatures

    NASA Technical Reports Server (NTRS)

    Schmidt, E. H.

    1966-01-01

    Boron-deoxidized high-conductivity copper is used for fabrication of heat transfer components that are brazed in a hydrogen atmosphere. This copper has high strength and ductility at elevated temperatures and does not exhibit massive intergranular failure.

  10. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  11. Large diameter carbon-boron fiber

    NASA Technical Reports Server (NTRS)

    Veltri, R. D.; Jacob, B. A.; Galasso, F. S.

    1975-01-01

    Investigations concerned with a development of large-diameter carbon fibers are considered, taking into account the employment of vapor deposition techniques. In the experiments a carbon monofilament substrate is used together with reacting gases which consist of combinations of hydrogen, methane, and boron trichloride. It is found that the described approach can be used to obtain a large-diameter carbon filament containing boron. The filament has reasonable strength and modulus properties.

  12. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  13. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  14. Characterization of Boron Contamination in Fluorine Implantation using Boron Trifluoride as a Source Material

    NASA Astrophysics Data System (ADS)

    Schmeide, Matthias; Kondratenko, Serguei

    2011-01-01

    Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer. The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequent charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation. The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.

  15. (2,4,6-Trimethyl­phen­yl)boronic acid–triphenyl­phosphine oxide (1/1)

    PubMed Central

    Roşca, Sorin; Olaru, Marian; Raţ, Ciprian I.

    2012-01-01

    In the crystal structure of the title compound, C9H13BO2·C18H15OP, there are O—H⋯O hydrogen bonds between the O atom of triphenyl­phosphine oxide and one hy­droxy group of the boronic acid. Boronic acid mol­ecules form inversion-related hydrogen-bonded dimers in an R 2 2(8) motif. The structure is consolidated by inter­molecular C—H⋯O bonds and C—H⋯π inter­actions. PMID:22259536

  16. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey.

    PubMed

    Duydu, Yalçın; Başaran, Nurşen; Üstündağ, Aylin; Aydin, Sevtap; Ündeğer, Ülkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M

    2011-06-01

    Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL (no observed adverse effect level) of 17.5 mg B/kg-bw/day has been identified for the (male) reproductive effects of boron in a multigeneration study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day. These values are being taken as the basis of current EU safety assessments. The present study was conducted to investigate the reproductive effects of boron exposure in workers employed in boric acid production plant in Bandirma, Turkey. In order to characterize the external and internal boron exposures, boron was determined in biological samples (blood, urine, semen), in workplace air, in food, and in water sources. Unfavorable effects of boron exposure on the reproductive toxicity indicators (concentration, motility, morphology of the sperm cells and blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone) were not observed. The mean calculated daily boron exposure (DBE) of the highly exposed group was 14.45 ± 6.57 (3.32-35.62) mg/day. These human exposures represent worst-case exposure conditions to boric acid/borates in Turkey. These exposure levels are considerably lower than exposures, which have previously led to reproductive effects in experimental animals. In conclusion, this means that dose levels of boron associated with developmental and reproductive toxic effects in animals are by far not reachable for humans under conditions of normal handling and use.

  17. Boronization on NSTX using Deuterated Trimethylboron

    SciTech Connect

    W.R. Blanchard; R.C. Gernhardt; H.W. Kugel; P.H. LaMarche

    2002-01-28

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in the execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described.

  18. CVD boron on calcium chromate powder

    SciTech Connect

    Coonen, R.M.

    1984-09-01

    This study was an experimental effort to improve the compositional homogeneity of a pyrotechnic mixture of boron and calcium chromate (CaCrO/sub 4/). Boron was deposited onto calcium chromate powders at 350/sup 0/C from a diborane and hydrogen gas mixture at a pressure of 40 torr by Chemical Vapor Deposition (CVD). The B:CaCrO/sub 4/ ratio of the coated powders was analyzed by inductively-coupled plasma spectroscopy and the distribution of the two phases was observed by electron microprobe analysis. The pyrotechnic activity was determined by differential thermal analysis. In addition to varying the composition of the mixture, an attempt was made to vary the boron distribution by coating both sized and unsized CaCrO/sub 4/ powders. Boron was deposited for 2 h onto sized CaCrO/sub 4/ powder, which resulted in a higher weight percentage of boron in comparison to the unsized powder. CVD coated CaCrO/sub 4/ powders began their pyrotechnic activity at an auto ignition temperature that was lower than the auto ignition temperature observed for mechanically blended mixtures. The coating of sized CaCrO/sub 4/ powder improved the uniformity of boron deposition of CaCrO/sub 4/, but it also decreased the pyrotechnic activity.

  19. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  20. Optimization of conditions for the determination of boron by a ruthenium(II) complex having diol moiety: A mechanistic study.

    PubMed

    Nakano, Eiko; Iwatsuki, Satoshi; Inamo, Masahiko; Takagi, Hideo D; Ishihara, Koji

    2008-01-15

    Two ruthenium(II) complexes, [Ru(bpy)(2)(dhbpy-H(-1))](+) and [Ru(bpy)(2)(dhphen)](2+) (bpy=2,2'-bipyridine, dhbpy=3,3'-dihydroxy-2,2'-bipyridine, dhphen=5,6-dihydroxy-1,10-phenanthroline) were examined for use as a colorimetric reagent for the determination of boron. The reactions of boric acid with these two complexes were thermodynamically and kinetically studied in detail in order to specify the reactive species and to set up optimum condition for the determination of boron. The detailed analysis of the kinetic data for the reaction of the latter water-soluble complex showed that both boric acid and borate ion were reactive in an alkaline solution. The thermodynamically and kinetically optimum pH for the determination of boron was ca. 9 at 25 degrees C. A spectrofluorimetric determination of boron with the latter complex was attempted at 600nm with excitation at 360nm, and at pH 8.9 using CHES (N-cyclohexyl-2-aminoethanesulfonic acid) buffer. It was found that a trace amount of boron as low as ca. 2x10(-5)M ( approximately 1ppm) could be detectable.