Science.gov

Sample records for borrelia burgdorferi revealed

  1. Asymptomatic infection with Borrelia burgdorferi.

    PubMed

    Steere, Allen C; Sikand, Vijay K; Schoen, Robert T; Nowakowski, John

    2003-08-15

    The natural history of asymptomatic seroconversion to Borrelia burgdorferi has been unclear. We report here, on the basis of a post hoc assessment, the frequency and outcome of asymptomatic seroconversion to B. burgdorferi in participants of a large Lyme disease vaccine trial. We show that infection with B. burgdorferi may be asymptomatic but that asymptomatic infection is unusual in the United States.

  2. Genetics of Borrelia burgdorferi

    PubMed Central

    Brisson, Dustin; Drecktrah, Dan; Eggers, Christian H.; Samuels, D. Scott

    2013-01-01

    The spirochetes in the Borrelia burgdorferi sensu lato genospecies group cycle in nature between tick vectors and vertebrate hosts. The current assemblage of B. burgdorferi sensu lato, of which three species cause Lyme disease in humans, originated from a rapid species radiation that occurred near the origin of the clade. All of these species share a unique genome structure that is highly segmented and predominantly composed of linear replicons. One of the circular plasmids is a prophage that exists as several isoforms in each cell and can be transduced to other cells, likely contributing to an otherwise relatively anemic level of horizontal gene transfer, which nevertheless appears to be adequate to permit strong natural selection and adaptation in populations of B. burgdorferi. Although the molecular genetic toolbox is meager, several antibiotic-resistant mutants have been isolated, and the resistance alleles, as well as some exogenous genes, have been fashioned into markers to dissect gene function. Genetic studies have probed the role of the outer membrane lipoprotein OspC, which is maintained in nature by multiple niche polymorphisms and negative frequency-dependent selection. One of the most intriguing genetic systems in B. burgdorferi is vls recombination, which generates antigenic variation during infection of mammalian hosts. PMID:22974303

  3. Borrelia burgdorferi Infections in the United States

    PubMed Central

    Heymann, Warren R.

    2012-01-01

    It is becoming increasingly evident that the clinical presentation of infection with Borrelia burgdorferi varies greatly between different parts of the world. A growing number of European and Asian isolates of Lyme borreliae, differing from the American strain of Borrelia burgdorferi, have been identified in several different disorders. In light of the increasing number of reports describing an association between various cutaneous disorders and infection with Borrelia burgdorferi and the controversy that still remains over where Borrelia burgdorferi is truly pathogenic in these diseases, this review of the literature assesses the significance of these reports in substantiating these hypotheses, as such associations are important both diagnostically and therapeutically. PMID:22916311

  4. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks

    PubMed Central

    Dunham-Ems, Star M.; Caimano, Melissa J.; Pal, Utpal; Wolgemuth, Charles W.; Eggers, Christian H.; Balic, Anamaria; Radolf, Justin D.

    2009-01-01

    Lyme disease is caused by transmission of the spirochete Borrelia burgdorferi from ticks to humans. Although much is known about B. burgdorferi replication, the routes and mechanisms by which it disseminates within the tick remain unclear. To better understand this process, we imaged live, infectious B. burgdorferi expressing a stably integrated, constitutively expressed GFP reporter. Using isolated tick midguts and salivary glands, we observed B. burgdorferi progress through the feeding tick via what we believe to be a novel, biphasic mode of dissemination. In the first phase, replicating spirochetes, positioned at varying depths throughout the midgut at the onset of feeding, formed networks of nonmotile organisms that advanced toward the basolateral surface of the epithelium while adhering to differentiating, hypertrophying, and detaching epithelial cells. In the second phase of dissemination, the nonmotile spirochetes transitioned into motile organisms that penetrated the basement membrane and entered the hemocoel, then migrated to and entered the salivary glands. We designated the first phase of dissemination “adherence-mediated migration” and provided evidence that it involves the inhibition of spirochete motility by one or more diffusible factors elaborated by the feeding tick midgut. Our studies, which we believe are the first to relate the transmission dynamics of spirochetes to the complex morphological and developmental changes that the midgut and salivary glands undergo during engorgement, challenge the conventional viewpoint that dissemination of Lyme disease–causing spirochetes within ticks is exclusively motility driven. PMID:19920352

  5. Heterogeneity of Borrelia burgdorferi in the skin.

    PubMed

    Aberer, E; Kersten, A; Klade, H; Poitschek, C; Jurecka, W

    1996-12-01

    The reliability of various in vitro techniques to identify Borrelia burgdorferi infection is still unsatisfactory. Using a high-power resolution videomicroscope and staining with the borrelia genus-specific monoclonal flagellar antibody H9724, we identified borrelial structures in skin biopsies of erythema chronicum migrans (from which borrelia later was cultured), of acrodermatitis chronica atrophicans, and of morphea. In addition to typical borreliae, we noted stained structures of varying shapes identical to borreliae found in a "borrelia-injected skin" model; identical to agar-embedded borreliae; and identical to cultured borreliae following exposure to hyperimmune sera and/or antibiotics. We conclude that the H9724-reactive structures represent various forms of B. burgdorferi rather than staining artifacts. These "atypical" forms of B. burgdorferi may represent in vivo morphologic variants of this bacterium.

  6. Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi.

    PubMed

    Zhao, Xiaowei; Zhang, Kai; Boquoi, Tristan; Hu, Bo; Motaleb, M A; Miller, Kelly A; James, Milinda E; Charon, Nyles W; Manson, Michael D; Norris, Steven J; Li, Chunhao; Liu, Jun

    2013-08-27

    Periplasmic flagella are essential for the distinctive morphology, motility, and infectious life cycle of the Lyme disease spirochete Borrelia burgdorferi. In this study, we genetically trapped intermediates in flagellar assembly and determined the 3D structures of the intermediates to 4-nm resolution by cryoelectron tomography. We provide structural evidence that secretion of rod substrates triggers remodeling of the central channel in the flagellar secretion apparatus from a closed to an open conformation. This open channel then serves as both a gateway and a template for flagellar rod assembly. The individual proteins assemble sequentially to form a modular rod. The hook cap initiates hook assembly on completion of the rod, and the filament cap facilitates filament assembly after formation of the mature hook. Cryoelectron tomography and mutational analysis thus combine synergistically to provide a unique structural blueprint of the assembly process of this intricate molecular machine in intact cells. PMID:23940315

  7. Study of the Response Regulator Rrp1 Reveals Its Regulatory Role in Chitobiose Utilization and Virulence of Borrelia burgdorferi

    PubMed Central

    Sze, Ching Wooen; Smith, Alexis; Choi, Young Hee; Yang, Xiuli; Pal, Utpal; Yu, Aiming

    2013-01-01

    Life cycle alternation between arthropod and mammals forces the Lyme disease spirochete, Borrelia burgdorferi, to adapt to different host milieus by utilizing diverse carbohydrates. Glycerol and chitobiose are abundantly present in the Ixodes tick. B. burgdorferi can utilize glycerol as a carbohydrate source for glycolysis and chitobiose to produce N-acetylglucosamine (GlcNAc), a key component of the bacterial cell wall. A recent study reported that Rrp1, a response regulator that synthesizes cyclic diguanylate (c-di-GMP), governs glycerol utilization in B. burgdorferi. In this report, we found that the rrp1 mutant had growth defects and formed membrane blebs that led to cell lysis when GlcNAc was replaced by chitobiose in the growth medium. The gene chbC encodes a key chitobiose transporter of B. burgdorferi. We found that the expression level of chbC was significantly repressed in the mutant and that constitutive expression of chbC in the mutant successfully rescued the growth defect, indicating a regulatory role of Rrp1 in chitobiose uptake. Immunoblotting and transcriptional studies revealed that Rrp1 is required for the activation of bosR and rpoS and that its impact on chbC is most likely mediated by the BosR-RpoS regulatory pathway. Tick-mouse infection studies showed that although the rrp1 mutant failed to establish infection in mice via tick bite, exogenous supplementation of GlcNAc into unfed ticks partially rescued the infection. The finding reported here provides us with new insight into the regulatory role of Rrp1 in carbohydrate utilization and virulence of B. burgdorferi. PMID:23478317

  8. Characterization of the RelBbu Regulon in Borrelia burgdorferi Reveals Modulation of Glycerol Metabolism by (p)ppGpp.

    PubMed

    Bugrysheva, Julia V; Pappas, Christopher J; Terekhova, Darya A; Iyer, Radha; Godfrey, Henry P; Schwartz, Ira; Cabello, Felipe C

    2015-01-01

    The bacterial stringent response is triggered by deficiencies of available nutrients and other environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global changes in gene expression and metabolism that enable bacteria to adapt to and survive these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between ticks and mammals that could trigger the stringent response. We have previously shown that the B. burgdorferi stringent response is mediated by a single enzyme, RelBbu, with both (p)ppGpp synthase and hydrolase activities, and that a B. burgdorferi 297 relBbu null deletion mutant was defective in adapting to stationary phase, incapable of down-regulating synthesis of rRNA and could not infect mice. We have now used this deletion mutant and microarray analysis to identify genes comprising the rel regulon in B. burgdorferi cultured at 34°C, and found that transcription of genes involved in glycerol metabolism is induced by relBbu. Culture of the wild type parental strain, the relBbu deletion mutant and its complemented derivative at 34°C and 25°C in media containing glucose or glycerol as principal carbon sources revealed a growth defect in the mutant, most evident at the lower temperature. Transcriptional analysis of the glp operon for glycerol uptake and metabolism in these three strains confirmed that relBbu was necessary and sufficient to increase transcription of this operon in the presence of glycerol at both temperatures. These results confirm and extend previous findings regarding the stringent response in B. burgdorferi. They also demonstrate that the stringent response regulates glycerol metabolism in this organism and is likely crucial for its optimal growth in ticks.

  9. Rickettsiae and Borrelia burgdorferi in ixodid ticks.

    PubMed Central

    Magnarelli, L A; Andreadis, T G; Stafford, K C; Holland, C J

    1991-01-01

    Nymphs and adults of hard-bodied ticks were collected in Connecticut and tested by direct and indirect immunofluorescence staining methods for rickettsiae and Borrelia burgdorferi. Of the 609 Ixodes dammini ticks examined, 59 (9.7%) harbored rickettsialike microorganisms in hemocytes (blood cells). These bacteria reacted with fluorescein-conjugated antiserum to Ehrlichia canis, the etiologic agent of with fluorescein-conjugated antiserum to Ehrlichia canis, the etiologic agent of canine ehrlichiosis. Prevalence of infection ranged from 6.8 to 12.7% for males and females, respectively. Although the specific identities of the hemocytic rickettsialike organisms are unknown, they share antigens with ehrlichiae. Electron microscopy revealed rickettsiae in ovarian tissues of I. dammini that also had infected hemocytes. Rickettsialike organisms were also observed in the hemocytes of 5 (6.9%) of 73 Dermacentor variabilis ticks. In analyses for B. burgdorferi, 146 (23.7%) of 617 I. dammini ticks harbored these spirochetes in midguts. Hemocytic rickettsialike microorganisms coexisted with B. burgdorferi in 36 (6.7%) of the 537 nymphs and adults of I. dammini examined. I. dammini, with its broad host range, has the potential to acquire multiple microorganisms. Images PMID:1757551

  10. Borrelia burgdorferi tissue morphologies and imaging methodologies.

    PubMed

    MacDonald, A B

    2013-08-01

    This manuscript offers an image presentation of diverse forms of Borrelia burgdorferi spirochetes which are not spiral or corkscrew shaped. Explanations are offered to justify the legitimacy of tissue forms of Borrelia which may confuse the inexperienced microscopic examiner and which may lead to the misdiagnosis of non-spiral forms as artifacts. Images from the author's personal collection of Borrelia burgdorferi images and a few select images of Borrelia burgdorferi from the peer-reviewed published literature are presented. A commentary justifying each of the image profiles and a survey of the imaging modalities utilized provides the reader with a frame of reference. Regularly spiraled Borrelia are rarely seen in solid tissues. A variety of straightened, undulating, and clipped-off profiles are demonstrated, and the structural basis for each image is explained. Tissue examination is a diagnostic tool and a quality control for judging the eradication or the persistence of borreliosis following attempts to eradicate the infection with antibiotic therapy. The presence or absence of chronic Lyme borreliosis may be objectively adjudicated by tissue examinations which demonstrate or which fail to show pathogenic microbes in patients who have received a full course of antibiotics.

  11. Borrelia burgdorferi tissue morphologies and imaging methodologies.

    PubMed

    MacDonald, A B

    2013-08-01

    This manuscript offers an image presentation of diverse forms of Borrelia burgdorferi spirochetes which are not spiral or corkscrew shaped. Explanations are offered to justify the legitimacy of tissue forms of Borrelia which may confuse the inexperienced microscopic examiner and which may lead to the misdiagnosis of non-spiral forms as artifacts. Images from the author's personal collection of Borrelia burgdorferi images and a few select images of Borrelia burgdorferi from the peer-reviewed published literature are presented. A commentary justifying each of the image profiles and a survey of the imaging modalities utilized provides the reader with a frame of reference. Regularly spiraled Borrelia are rarely seen in solid tissues. A variety of straightened, undulating, and clipped-off profiles are demonstrated, and the structural basis for each image is explained. Tissue examination is a diagnostic tool and a quality control for judging the eradication or the persistence of borreliosis following attempts to eradicate the infection with antibiotic therapy. The presence or absence of chronic Lyme borreliosis may be objectively adjudicated by tissue examinations which demonstrate or which fail to show pathogenic microbes in patients who have received a full course of antibiotics. PMID:23479042

  12. Complex Population Structure of Borrelia burgdorferi in Southeastern and South Central Canada as Revealed by Phylogeographic Analysis

    PubMed Central

    Mechai, S.; Margos, G.; Feil, E. J.; Lindsay, L. R.

    2014-01-01

    Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, is an emerging zoonotic disease in Canada and is vectored by the blacklegged tick, Ixodes scapularis. Here we used Bayesian analyses of sequence types (STs), determined by multilocus sequence typing (MLST), to investigate the phylogeography of B. burgdorferi populations in southern Canada and the United States by analyzing MLST data from 564 B. burgdorferi-positive samples collected during surveillance. A total of 107 Canadian samples from field sites were characterized as part of this study, and these data were combined with existing MLST data for samples from the United States and Canada. Only 17% of STs were common between both countries, while 49% occurred only in the United States, and 34% occurred only in Canada. However, STs in southeastern Ontario and southwestern Quebec were typically identical to those in the northeastern United States, suggesting a recent introduction into this region from the United States. In contrast, STs in other locations in Canada (the Maritimes; Long Point, Ontario; and southeastern Manitoba) were frequently unique to those locations but were putative descendants of STs previously found in the United States. The picture in Canada is consistent with relatively recent introductions from multiple refugial populations in the United States. These data thus point to a geographic pattern of populations of B. burgdorferi in North America that may be more complex than simply comprising northeastern, midwestern, and Californian groups. We speculate that this reflects the complex ecology and spatial distribution of key reservoir hosts. PMID:25501480

  13. Borrelia burgdorferi infection surrounding La Crosse, Wis.

    PubMed Central

    Callister, S M; Agger, W A; Schell, R F; Ellingson, J L

    1988-01-01

    This investigation defined the extent of Borrelia burgdorferi infection surrounding La Crosse, Wis. White-footed mice, Peromyscus leucopus or P. maniculatis, were captured from sites in Wisconsin, Minnesota, and Iowa and cultured for B. burgdorferi to define the local boundaries of the midwestern Lyme disease area. All foci of B. burgdorferi infection (N1, N2, N3, and N4) were located north of interstate highway 90 except focus S2, which was south of the highway near Fort McCoy, Wis. The interstate highway may have been a barrier to deer movement which slowed the southward dispersal of Ixodes dammini. B. burgdorferi was isolated from 12 (63%) of the mice captured from site N4, which was adjacent to the western border of Fort McCoy. Unexpectedly, no B. burgdorferi-infected mice were isolated at site N0, located north of interstate highway 90 and enclosed by areas in which B. burgdorferi infection is endemic. This site is surrounded by natural barriers which may have slowed the spread of I. dammini by deer. The Wisconsin area in which B. burgdorferi is endemic should now include the surrounding area north of interstate highway 90 west from Fort McCoy to the Mississippi River. Additional studies are needed to define the rapidity, limits, and means of I. dammini dispersal into southern Wisconsin. PMID:3230137

  14. Is Localized Scleroderma Caused by Borrelia burgdorferi?

    PubMed

    Zinchuk, Alexander N; Kalyuzhna, Lidiya D; Pasichna, Iryna A

    2016-09-01

    Despite considerable achievements in the study of localized scleroderma, the etiology of the disease has not been investigated completely. Borrelia burgdorferi-the agent of Lyme disease-is suggested to be one of the possible etiological factors of localized scleroderma. However, among scientists, this hypothesis is quite controversial. We have conducted investigations of the level of IgM and IgG class antibodies to B. burgdorferi in the serum of patients with localized scleroderma. To rationally substantiate the role of B. burgdorferi in the occurrence of localized scleroderma, thirty-two patients with localized scleroderma treated at an in-patient department were examined. The level of anti-Borrelia antibodies was determined in ELISA. Diagnostic levels of IgM and/or IgG were detected in 18.8% of patients with localized scleroderma, which is more than in the population (p < 0.01). Positive levels of anti-Borrelia antibodies in patients with localized scleroderma confirm the borreliosis nature of the disease, requiring conduction of complex antimicrobial treatment. PMID:27387068

  15. Recombinant constructs of Borrelia burgdorferi

    DOEpatents

    Dattwyler, Raymond J.; Gomes-Solecki, Maria J. C.; Luft, Benjamin J.; Dunn, John J.

    2007-02-20

    Novel chimeric nucleic acids, encoding chimeric Borrelia proteins comprising OspC or an antigenic fragment thereof and OspA or an antigenic fragment thereof, are disclosed. Chimeric proteins encoded by the nucleic acid sequences are also disclosed. The chimeric proteins are useful as vaccine immunogens against Lyme borreliosis, as well as for immunodiagnostic reagents.

  16. High-Throughput Sequence Typing Reveals Genetic Differentiation and Host Specialization among Populations of the Borrelia burgdorferi Species Complex that Infect Rodents

    PubMed Central

    Jacquot, Maude; Bisseux, Maxime; Abrial, David; Marsot, Maud; Ferquel, Elisabeth; Chapuis, Jean-Louis; Vourc'h, Gwenaël; Bailly, Xavier

    2014-01-01

    Lyme disease is a zoonosis caused by various species belonging to the Borrelia burgdorferi bacterial species complex. These pathogens are transmitted by ticks and infect multiple, taxonomically distinct, host species. From an epidemiological perspective, it is important to determine whether genetic variants within the species complex are able to spread freely through the whole host community or, instead, if certain variants are restricted to particular hosts. To this end, we characterized the genotypes of members of the B. burgdorferi species complex; the bacteria were isolated from more than two hundred individuals captured in the wild and belonging to three different rodent host species. For each individual, we used a high-throughput approach to amplify and sequence rplB, a housekeeping gene, and ospC, which is involved in infection. This approach allowed us to evaluate the genetic diversity both within and among species in the B. burgdorferi species complex. Strong evidence of genetic differentiation among host species was revealed by both genes, even though they are, a priori, not constrained by the same selective pressures. These data are discussed in the context of the advancements made possible by multi-locus high-throughput sequencing and current knowledge of Lyme disease epidemiology. PMID:24533116

  17. Genomic Characteristics of Chinese Borrelia burgdorferi Isolates

    PubMed Central

    Hou, Xuexia; Zhang, Lin; Zhang, Yuanyuan; Liu, Huixin; Liu, Wei; Chen, Chen; Wan, Kanglin

    2016-01-01

    In China, B. burgdorferi, B.garinii, B. afzelii and B. yangtze sp. nov have been reported; B.garinii and B. afzelii are the main pathogenic genotypes. But until now only one Chinese strain was reported with whole genome sequence. In order to further understand the genomic characteristics and diversity of Chinese Borrelia strains, 5 isolates from China were sequenced and compared with the whole genome sequences of strains in other areas. The results showed a high degree of conservation within the linear chromosome of Chinese strains, whereas plasmid showed a much larger diversity according to the majority genomic information of plasmids. The genome sequences of the five Chinese strains were compared with the corresponding reference strains, respectively, according to the genospecies. Pairwise analysis demonstrates that there are only 70 SNPs between the genomes of CS4 and B31. However, there are many more SNPs between the genomes of QX-S13 and VS116, PD91 and PBi, FP1 and PKo, R9 and Pko, respectively. Gene comparison showed some important different genes. OspA was one of the important different genes. Comparative genomic studies have found that OspA gene sequences of PD91 and R9 had great differences compared with the sequence of B31. OspA gene sequence of R9 had a 96bp deletion; OspA gene of PD91 had two deletions: 9bp and 10 bp. To conclude, we showed the genomic characteristics of four genotype Chinese B. burgdorferi strains. The genomic sequence of B. yangtze sp. nov and differences from B. valaisiana were first reported. Comparative analysis of Chinese strains with the different Borrelia species from other areas will help us to understand evolution and pathogenesis of Chinese Borrelia burgdorferi strains. PMID:27093540

  18. The lipid raft proteome of Borrelia burgdorferi.

    PubMed

    Toledo, Alvaro; Pérez, Alberto; Coleman, James L; Benach, Jorge L

    2015-11-01

    Eukaryotic lipid rafts are membrane microdomains that have significant amounts of cholesterol and a selective set of proteins that have been associated with multiple biological functions. The Lyme disease agent, Borrelia burgdorferi, is one of an increasing number of bacterial pathogens that incorporates cholesterol onto its membrane, and form cholesterol glycolipid domains that possess all the hallmarks of eukaryotic lipid rafts. In this study, we isolated lipid rafts from cultured B. burgdorferi as a detergent resistant membrane (DRM) fraction on density gradients, and characterized those molecules that partitioned exclusively or are highly enriched in these domains. Cholesterol glycolipids, the previously known raft-associated lipoproteins OspA and OpsB, and cholera toxin partitioned into the lipid rafts fraction indicating compatibility with components of the DRM. The proteome of lipid rafts was analyzed by a combination of LC-MS/MS or MudPIT. Identified proteins were analyzed in silico for parameters that included localization, isoelectric point, molecular mass and biological function. The proteome provided a consistent pattern of lipoproteins, proteases and their substrates, sensing molecules and prokaryotic homologs of eukaryotic lipid rafts. This study provides the first analysis of a prokaryotic lipid raft and has relevance for the biology of Borrelia, other pathogenic bacteria, as well as for the evolution of these structures. All MS data have been deposited in the ProteomeXchange with identifier PXD002365 (http://proteomecentral.proteomexchange.org/dataset/PXD002365).

  19. [Heterogeneity of the gene P83/100 of Borrelia borrelia burgdorferi sensu lato complex].

    PubMed

    Fomenko, N V; Sabitova, Iu B; Khasnatinov, M A; Gol'tsova, N A; Danchinova, G A; Bataa, Zh; Ambed, D; Stronin, O V

    2007-01-01

    The 35 full-length Borrelia burgdorferi sensu lato complex a83/100 gene nucleotide sequences were determined. High level of homology was observed in the nucleotide sequences corresponding to the strains and isolates of Borrelia fzelii. The analysis of the nucleotide sequences revealed two groups of Borrelia garinii. The most variable p83/100 gene region containing species-typical insertions and deletions was demonstrated to be included into the region where the antigenic determinants of protein were encoded. According to the data obtained in this work, the modification of the P83/100 protein structure and immunological properties could be suggested to exist even within species. The results of this work could be used for receiving recombinant P83/100 proteins useful for diagnostic applications.

  20. Experimental Borrelia burgdorferi infection in Peromyscus leucopus.

    PubMed

    Moody, K D; Terwilliger, G A; Hansen, G M; Barthold, S W

    1994-04-01

    We evaluated the susceptibility of laboratory-reared adult and infant white-footed mice (Peromyscus leucopus) to a known pathogenic isolate of Borrelia burgdorferi (N40). Two-month-old and 3-day-old Peromyscus were inoculated intradermally with 10(6) to 10(7) spirochetes. At 21 days for adults or 30 days for infants post inoculation, mice were killed, and tissues were cultured for spirochetes and examined microscopically. Based on serology and culture, adult mice became infected but did not have any gross or microscopic lesions. Mice inoculated as infants became infected, and also developed carditis and multifocal arthritis. Contact transmission between inoculated infants and their naive mothers was not observed. Age at inoculation appeared to be a critical factor in inducing Lyme borreliosis lesions in Peromyscus leucopus, as in other species.

  1. Biomechanics of Borrelia burgdorferi Vascular Interactions.

    PubMed

    Ebady, Rhodaba; Niddam, Alexandra F; Boczula, Anna E; Kim, Yae Ram; Gupta, Nupur; Tang, Tian Tian; Odisho, Tanya; Zhi, Hui; Simmons, Craig A; Skare, Jon T; Moriarty, Tara J

    2016-09-01

    Systemic dissemination of microbes is critical for progression of many infectious diseases and is associated with most mortality due to bacterial infection. The physical mechanisms mediating a key dissemination step, bacterial association with vascular endothelia in blood vessels, remain unknown. Here, we show that endothelial interactions of the Lyme disease spirochete Borrelia burgdorferi under physiological shear stress mechanistically resemble selectin-dependent leukocyte rolling. Specifically, these interactions are mediated by transfer of mechanical load along a series of adhesion complexes and are stabilized by tethers and catch bond properties of the bacterial adhesin BBK32. Furthermore, we found that the forces imposed on adhesive bonds under flow may be small enough to permit active migration driven by bacterial flagellar motors. These findings provide insight into the biomechanics of bacterial-vascular interactions and demonstrate that disseminating bacteria and circulating host immune cells share widely conserved mechanisms for interacting with endothelia under physiological shear stress. PMID:27568563

  2. RNA-Seq of Borrelia burgdorferi in Multiple Phases of Growth Reveals Insights into the Dynamics of Gene Expression, Transcriptome Architecture, and Noncoding RNAs

    PubMed Central

    Arnold, William K.; Savage, Christina R.; Brissette, Catherine A.; Seshu, Janakiram; Livny, Jonathan; Stevenson, Brian

    2016-01-01

    Borrelia burgdorferi, the agent of Lyme disease, differentially expresses numerous genes and proteins as it cycles between mammalian hosts and tick vectors. Insights on regulatory mechanisms have been provided by earlier studies that examined B. burgdorferi gene expression patterns during cultivation. However, prior studies examined bacteria at only a single time point of cultivation, providing only a snapshot of what is likely a dynamic transcriptional program driving B. burgdorferi adaptations to changes during culture growth phases. To address that concern, we performed RNA sequencing (RNA-Seq) analysis of B. burgdorferi cultures at early-exponential, mid-exponential, and early-stationary phases of growth. We found that expression of nearly 18% of annotated B. burgdorferi genes changed significantly during culture maturation. Moreover, genome-wide mapping of the B. burgdorferi transcriptome in different growth phases enabled insight on transcript boundaries, operon structures, and identified numerous putative non-coding RNAs. These RNA-Seq data are discussed and presented as a resource for the community of researchers seeking to better understand B. burgdorferi biology and pathogenesis. PMID:27706236

  3. Comparative population genomics of the Borrelia burgdorferi species complex reveals high degree of genetic isolation among species and underscores benefits and constraints to studying intra-specific epidemiological processes.

    PubMed

    Jacquot, Maude; Gonnet, Mathieu; Ferquel, Elisabeth; Abrial, David; Claude, Alexandre; Gasqui, Patrick; Choumet, Valérie; Charras-Garrido, Myriam; Garnier, Martine; Faure, Benjamin; Sertour, Natacha; Dorr, Nelly; De Goër, Jocelyn; Vourc'h, Gwenaël; Bailly, Xavier

    2014-01-01

    Lyme borreliosis, one of the most frequently contracted zoonotic diseases in the Northern Hemisphere, is caused by bacteria belonging to different genetic groups within the Borrelia burgdorferi species complex, which are transmitted by ticks among various wildlife reservoirs, such as small mammals and birds. These features make the Borrelia burgdorferi species complex an attractive biological model that can be used to study the diversification and the epidemiology of endemic bacterial pathogens. We investigated the potential of population genomic approaches to study these processes. Sixty-three strains belonging to three species within the Borrelia burgdorferi complex were isolated from questing ticks in Alsace (France), a region where Lyme disease is highly endemic. We first aimed to characterize the degree of genetic isolation among the species sampled. Phylogenetic and coalescent-based analyses revealed clear delineations: there was a ∼50 fold difference between intra-specific and inter-specific recombination rates. We then investigated whether the population genomic data contained information of epidemiological relevance. In phylogenies inferred using most of the genome, conspecific strains did not cluster in clades. These results raise questions about the relevance of different strategies when investigating pathogen epidemiology. For instance, here, both classical analytic approaches and phylodynamic simulations suggested that population sizes and migration rates were higher in B. garinii populations, which are normally associated with birds, than in B. burgdorferi s.s. populations. The phylogenetic analyses of the infection-related ospC gene and its flanking region provided additional support for this finding. Traces of recombination among the B. burgdorferi s.s. lineages and lineages associated with small mammals were found, suggesting that they shared the same hosts. Altogether, these results provide baseline evidence that can be used to formulate

  4. Two Boundaries Separate Borrelia burgdorferi Populations in North America

    PubMed Central

    Tsao, Jean I.; Castillo-Ramírez, Santiago; Girard, Yvette A.; Hamer, Sarah A.; Hoen, Anne Gatewood; Lane, Robert S.; Raper, Steve L.; Ogden, Nicholas H.

    2012-01-01

    Understanding the spread of infectious diseases is crucial for implementing effective control measures. For this, it is important to obtain information on the contemporary population structure of a disease agent and to infer the evolutionary processes that may have shaped it. Here, we investigate on a continental scale the population structure of Borrelia burgdorferi, the causative agent of Lyme borreliosis (LB), a tick-borne disease, in North America. We test the hypothesis that the observed population structure is congruent with recent population expansions and that these were preceded by bottlenecks mostly likely caused by the near extirpation in the 1900s of hosts required for sustaining tick populations. Multilocus sequence typing and complementary population analytical tools were used to evaluate B. burgdorferi samples collected in the Northeastern, Upper Midwestern, and Far-Western United States and Canada. The spatial distribution of sequence types (STs) and inferred population boundaries suggest that the current populations are geographically separated. One major population boundary separated western B. burgdorferi populations transmitted by Ixodes pacificus in California from Eastern populations transmitted by I. scapularis; the other divided Midwestern and Northeastern populations. However, populations from all three regions were genetically closely related. Together, our findings suggest that although the contemporary populations of North American B. burgdorferi now comprise three geographically separated subpopulations with no or limited gene flow among them, they arose from a common ancestral population. A comparative analysis of the B. burgdorferi outer surface protein C (ospC) gene revealed novel linkages and provides additional insights into the genetic characteristics of strains. PMID:22729536

  5. Antigenically variable Borrelia burgdorferi isolated from cottontail rabbits and Ixodes dentatus in rural and urban areas.

    PubMed Central

    Anderson, J F; Magnarelli, L A; LeFebvre, R B; Andreadis, T G; McAninch, J B; Perng, G C; Johnson, R C

    1989-01-01

    Spirochetes were isolated from 71 subadult Ixodes dentatus removed from cottontail rabbits captured in Millbrook, N.Y., and in New York, N.Y. Spirochetes were also cultured from kidney tissues of six rabbits. While all isolates reacted with monoclonal antibody H9724, which identifies the spirochetes as borreliae, more than half did not bind with antibody H5332 and even fewer reacted with H3TS, both of which were produced to outer surface protein A of Borrelia burgdorferi. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles of three isolates differed from one another and from all previously characterized B. burgdorferi strains from humans, ticks, and wildlife in North America. The 12 periplasmic flagella that originated subterminally from each pointed end of a rabbit Borellia isolate contrasted with the 11 or fewer flagella for B. burgdorferi reported previously from North America. Although DNA homology and restriction endonuclease analysis also revealed differences among a rabbit kidney isolate, an I. dentatus isolate, and B. burgdorferi B31, similarities were sufficient to lead us to conclude that the borreliae in rabbits and I. dentatus are B. burgdorferi. Enzyme-linked immunosorbent assay titers of sera from humans with diagnosed Lyme disease to rabbit tick B. burgdorferi were often similar to one another and to those recorded for a reference B. burgdorferi strain. Images PMID:2913024

  6. Intact Flagellar Motor of Borrelia burgdorferi Revealed by Cryo-Electron Tomography: Evidence for Stator Ring Curvature and Rotor/C-Ring Assembly Flexion▿ †

    PubMed Central

    Liu, Jun; Lin, Tao; Botkin, Douglas J.; McCrum, Erin; Winkler, Hanspeter; Norris, Steven J.

    2009-01-01

    The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of ∼1,280 flagellar motors, a ∼3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation. PMID:19429612

  7. Distribution of Borrelia burgdorferi in host mice in Pennsylvania.

    PubMed Central

    Lord, R D; Lord, V R; Humphreys, J G; McLean, R G

    1994-01-01

    Host mice (Peromyscus leucopus and Peromyscus maniculatus) were sampled throughout the state of Pennsylvania to determine the geographical and ecological distribution of the Lyme disease spirochete Borrelia burgdorferi. All 67 counties of the state were sampled. A total of 1,619 mice were captured from a total of 157 sites during the period 1990 to 1993 for an overall capture rate of 29.69%. A total of 112 (6.92%) isolations of B. burgdorferi were made. The distribution of isolations revealed the reason for the correlated distribution of human cases of Lyme disease in the state. Significantly more mice were captured and significantly more isolations were made from hemlock (Tsuga canadensis) habitat than from deciduous species forest. Nevertheless, high isolation rates from counties of the southeastern corner of the state illustrate well that hemlock habitat is not essential. Evidence suggests that in some areas, transmission between mice is occurring in some way other than through ticks as vectors. Host mice proved useful for determining the geographical and ecological distribution of B. burgdorferi. PMID:7814489

  8. Distribution of Borrelia burgdorferi in host mice in Pennsylvania.

    PubMed

    Lord, R D; Lord, V R; Humphreys, J G; McLean, R G

    1994-10-01

    Host mice (Peromyscus leucopus and Peromyscus maniculatus) were sampled throughout the state of Pennsylvania to determine the geographical and ecological distribution of the Lyme disease spirochete Borrelia burgdorferi. All 67 counties of the state were sampled. A total of 1,619 mice were captured from a total of 157 sites during the period 1990 to 1993 for an overall capture rate of 29.69%. A total of 112 (6.92%) isolations of B. burgdorferi were made. The distribution of isolations revealed the reason for the correlated distribution of human cases of Lyme disease in the state. Significantly more mice were captured and significantly more isolations were made from hemlock (Tsuga canadensis) habitat than from deciduous species forest. Nevertheless, high isolation rates from counties of the southeastern corner of the state illustrate well that hemlock habitat is not essential. Evidence suggests that in some areas, transmission between mice is occurring in some way other than through ticks as vectors. Host mice proved useful for determining the geographical and ecological distribution of B. burgdorferi.

  9. Minimal-Change Disease Secondary to Borrelia burgdorferi Infection

    PubMed Central

    Kwiatkowska, Ewa; Gołembiewska, Edyta; Ciechanowski, Kazimierz; Kędzierska, Karolina

    2012-01-01

    Lyme borreliosis is a chronic illness caused by tick-transmitted spirochete Borrelia burgdorferi. Borreliosis can be extremely threatening if it is not diagnosed and treated in early stages. Kidneys are not typically involved in the disease. However, in infected dogs, Lyme nephritis is present in 5–10% of cases. It is associated with rapidly progressing renal failure. Histopathological examination shows mesangial proliferative glomerulonephritis with diffuse tubular necrosis, (Dambach et al. (1997)). In available literature, there were reports of human's glomerulonephritis associated with Borrelia burgdorferi infection. These cases refer to membranous and mesangial proliferative glomerulonephritis (Kirmizis and Chatzidimitriou (2010), Zachäus (2008), and Kirmizis et al. (2004)). In this paper, we present the case of minimal-change disease (MCD) as a result of Borrelia burgdorferi infection. PMID:24527240

  10. Isolation and characterization of Borrelia burgdorferi from Illinois Ixodes dammini.

    PubMed

    Nelson, J A; Bouseman, J K; Kitron, U; Callister, S M; Harrison, B; Bankowski, M J; Peeples, M E; Newton, B J; Anderson, J F

    1991-08-01

    Ixodes dammini ticks from two northwestern Illinois sites were found to be infected with Borrelia burgdorferi at rates of 19 and 32%. B. burgdorferi isolates, one from each site, had protein and antigenic patterns similar to those of the B-31 strain. An indirect immunofluorescence method proved to be more sensitive than dark-field microscopy in detection of these spirochetes. A modified BSK medium containing rifampin was found to be more efficient for spirochete isolation than unsupplemented BSK medium. PMID:1761698

  11. Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi.

    PubMed Central

    Takayama, K; Rothenberg, R J; Barbour, A G

    1987-01-01

    We were unable to demonstrate the presence of the classic enterobacterium-type lipopolysaccharide in the cells of the Lyme disease spirochete, Borrelia burgdorferi B31. This finding was primarily based on chemical analysis and the absence of free lipid A upon mild acid hydrolysis of the appropriate cell extracts. These results do not preclude the possible existence of an unusual lipopolysaccharide-like compound(s) in B. burgdorferi. Images PMID:3623705

  12. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  13. Vaccination against Lyme disease caused by diverse Borrelia burgdorferi.

    PubMed

    Fikrig, E; Telford, S R; Wallich, R; Chen, M; Lobet, Y; Matuschka, F R; Kimsey, R B; Kantor, F S; Barthold, S W; Spielman, A; Flavell, R A

    1995-01-01

    Diversity and mutations in the genes for outer surface proteins (Osps) A and B of Borrelia burgdorferi sensu lato (B. burgdorferi), the spirochetal agent of Lyme disease, suggests that a monovalent OspA or OspB vaccine may not provide protection against antigenically variable naturally occurring B. burgdorferi. We now show that OspA or OspB immunizations protect mice from tick-borne infection with heterogeneous B. burgdorferi from different geographic regions. This result is in distinct contrast to in vitro killing analyses and in vivo protection studies using syringe injections of B. burgdorferi as the challenge inoculum. Evaluations of vaccine efficacy against Lyme disease and other vector-borne infections should use the natural mode of transmission and not be predicated on classification systems or assays that do not rely upon the vector to transmit infection.

  14. Suppression of Long-Lived Humoral Immunity Following Borrelia burgdorferi Infection

    PubMed Central

    Elsner, Rebecca A.; Hastey, Christine J.; Olsen, Kimberly J.; Baumgarth, Nicole

    2015-01-01

    Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host’s ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure to develop long

  15. Case Report: Bilateral diaphragmatic dysfunction due to Borrelia Burgdorferi

    PubMed Central

    Basunaid, Suhail; van der Grinten, Chris; Cobben, Nicole; Otte, Astrid; Sprooten, Roy; Gernot, Rohde

    2014-01-01

    Summary: In this case report we describe a rare case of bilateral diaphragmatic dysfunction due to Lyme disease. Case report: A 62-years-old male presented to the hospital because of flu-like symptoms. During initial evaluation a bilateral diaphragmatic weakness with orthopnea and nocturnal hypoventilation was observed, without a known aetiology. Bilateral diaphragmatic paralysis was confirmed by fluoroscopy with a positive sniff test. The patient was referred to our centre for chronic non-invasive nocturnal ventilation (cNPPV). Subsequent investigations revealed evidence of anti- Borrelia seroactivity in EIA-IgG and IgG-blot, suggesting a recent infection with Lyme disease, and resulted in a 4-week treatment with oral doxycycline. The symptoms of nocturnal hypoventilation were successfully improved with cNPPV. However, our patient still shows impaired diaphragmatic function but he is no longer fully dependent on nocturnal ventilatory support.     Conclusion: Lyme disease should be considered in the differential diagnosis of diaphragmatic dysfunction. It is a tick-borne illness caused by one of the three pathogenic species of the spirochete Borrelia burgdorferi, present in Europe. A delay in recognizing the symptoms can negatively affect the success of treatment. Non-invasive mechanical ventilation (NIV) is considered a treatment option for patients with diaphragmatic paralysis. PMID:25671085

  16. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi.

    PubMed

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G; Joosten, Leo A B

    2016-09-01

    We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known regarding the effect of autophagy on in vivo models of Borrelia infection. Here, we showed that ATG7-deficient mice that were intra-articular injected with Borrelia spirochetes displayed increased joint swelling, cell influx, and enhanced interleukin-1β and interleukin-6 production by inflamed synovial tissue. Because both interleukin-1β and interleukin-6 are linked to the development of adaptive immune responses, we examine the function of autophagy on Borrelia induced adaptive immunity. Human peripheral blood mononuclear cells treated with autophagy inhibitors showed an increase in interleukin-17, interleukin-22, and interferon-γ production in response to exposure to Borrelia burgdorferi. Increased IL-17 production was dependent on IL-1β release but, interestingly, not on interleukin-23 production. In addition, cytokine quantitative trait loci in ATG9B modulate the Borrelia induced interleukin-17 production. Because high levels of IL-17 have been found in patients with confirmed, severe, chronic borreliosis, we propose that the modulation of autophagy may be a potential target for anti-inflammatory therapy in patients with persistent Lyme disease. PMID:27101991

  17. Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi

    PubMed Central

    2011-01-01

    Background Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts. Results RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNAAla); tRNAIle; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a relBbu deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of E. coli relA mutants. Conclusions We conclude that rRNA transcription in B. burgdorferi is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate. PMID:21251259

  18. Western gray squirrel (Rodentia: Sciuridae): a primary reservoir host of Borrelia burgdorferi in Californian oak woodlands?

    PubMed

    Lane, Robert S; Mun, Jeomhee; Eisen, Rebecca J; Eisen, Lars

    2005-05-01

    In California, dense woodlands have been recognized as important biotopes where humans are exposed to the nymphal stage of the western blacklegged tick, Ixodes pacificus Cooley & Kohls, the primary vector of the Lyme disease spirochete Borrelia burgdorferi sensu stricto (s.s.), in the far-western United States. To identify the principal reservoir host(s) of this spirochete, and of closely related spirochetes in the B. burgdorferi sensu lato (s.l.) complex, in dense woodlands in Mendocino County, California, approximately 50 species of birds and mammals, including wood rats and kangaroo rats, were evaluated as potential hosts for vector ticks and borreliae in 2002 and 2003. Although polymerase chain reaction (PCR) and sequencing analyses revealed that many vertebrate species had been exposed to one or more members of the B. burgdorferi s.l. spirochetal complex, only the western gray squirrel, Sciurus griseus, fulfilled the major criteria for a reservoir host of B. burgdorferi s.s. Ear-punch biopsies from eight of 10 squirrels collected from five separate woodlands were PCR-positive for B. burgdorferi s.s., 47% of I. pacificus larvae (n = 64) and 31% of nymphs (n = 49) removed from squirrels contained B. burgdorferi s.l., and the engorgement status of I. pacificus larvae was associated positively with acquisition of spirochetes. Overall, 83 and 100% of the amplicons sequenced from PCR-positive I. pacificus larvae and nymphs, respectively, were identified as B. burgdorferi s.s, Among the five remaining positive I. pacificus larvae, three contained B. bissettii and two had uncharacterized B. burgdorferi s.l. Borrelia burgdorferi s.s. was detected in one of five larvae and zero of two nymphs of the Pacific Coast tick, Dermacentor occidentalis Marx, that likewise had been removed from squirrels. The rickettsial agent of human anaplasmosis, Anaplasma phagocytophilum, was detected in the blood or ear biopsies of two squirrels and in one (1.6%) of 64 I. pacificus larvae and

  19. A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi.

    PubMed

    Barbour, Alan G; Jasinskas, Algimantas; Kayala, Matthew A; Davies, D Huw; Steere, Allen C; Baldi, Pierre; Felgner, Philip L

    2008-08-01

    Humans and other animals with Lyme borreliosis produce antibodies to a number of components of the agent Borrelia burgdorferi, but a full accounting of the immunogens during natural infections has not been achieved. Employing a protein array produced in vitro from 1,292 DNA fragments representing approximately 80% of the genome, we compared the antibody reactivities of sera from patients with early or later Lyme borreliosis to the antibody reactivities of sera from controls. Overall, approximately 15% of the open reading frame (ORF) products (Orfs) of B. burgdorferi in the array detectably elicited an antibody response in humans with natural infections. Among the immunogens, 103 stood out on the basis of statistical criteria. The majority of these Orfs were also immunogenic with sera obtained from naturally infected Peromyscus leucopus mice, a major reservoir. The high-ranking set included several B. burgdorferi proteins hitherto unrecognized as immunogens, as well as several proteins that have been established as antigens. The high-ranking immunogens were more likely than nonreactive Orfs to have the following characteristics: (i) plasmid-encoded rather than chromosome-encoded proteins, (ii) a predicted lipoprotein, and (iii) a member of a paralogous family of proteins, notably the Bdr and Erp proteins. The newly discovered antigens included Orfs encoded by several ORFs of the lp36 linear plasmid, such as BBK07 and BBK19, and proteins of the flagellar apparatus, such as FliL. These results indicate that the majority of deduced proteins of B. burgdorferi do not elicit antibody responses during infection and that the limited sets of immunogens are similar for two different host species.

  20. Lack of serum antibodies against Borrelia burgdorferi in children with autism.

    PubMed

    Burbelo, Peter D; Swedo, Susan E; Thurm, Audrey; Bayat, Ahmad; Levin, Andrew E; Marques, Adriana; Iadarola, Michael J

    2013-07-01

    It has been proposed that Borrelia burgdorferi infection is present in ∼25% of children with autism spectrum disorders. In this study, antibodies against Borrelia burgdorferi were assessed in autistic (n = 104), developmentally delayed (n = 24), and healthy control (n = 55) children. No seropositivity against Borrelia burgdorferi was detected in the children with and without autism. There was no evidence of an association between Lyme disease and autism. PMID:23658391

  1. Detection of Borrelia burgdorferi and Borrelia lonestari in birds in Tennessee.

    PubMed

    Jordan, B E; Onks, K R; Hamilton, S W; Hayslette, S E; Wright, S M

    2009-01-01

    Lyme disease in the United States is caused by the bacterial spirochete Borrelia burgdorferi s.s. (Johnson, Schmid, Hyde, Steigerwalt, and Brenner), which is transmitted by tick vectors Ixodes scapularis (Say) and I. pacificus (Cooley and Kohls). Borrelia lonestari, transmitted by the tick Amblyomma americanum L., may be associated with a related syndrome, southern tick-associated rash illness (STARI). Borrelia lonestari sequences, reported primarily in the southeastern states, have also been detected in ticks in northern states. It has been suggested that migratory birds may have a role in the spread of Lyme disease spirochetes. This study evaluated both migratory waterfowl and nonmigratory wild turkeys (Meleagris gallopavo silvestris, Eastern wild turkey) for B. burgdorferi and B. lonestari DNA sequences. A total of 389 avian blood samples (163 migratory birds representing six species, 125 wild turkeys harvested in habitats shared with migratory birds, 101 wild turkeys residing more distant from migratory flyways) were extracted, amplified, and probed to determine Borrelia presence and species identity. Ninety-one samples were positive for Borrelia spp. Among migratory birds and turkeys collected near migration routes, B. burgdorferi predominated. Among turkeys residing further away from flyways, detection of B. lonestari was more common. All A. americanum ticks collected from these areas were negative for Borrelia DNA; no I. scapularis were found. To our knowledge, this represents the first documentation of B. lonestari among any birds.

  2. Fluoroimmunoassay studies with solubilized antigens from Borrelia burgdorferi.

    PubMed Central

    Hechemy, K E; Harris, H L; Wethers, J A; Stevens, R W; Stock, B R; Reilly, A A; Benach, J L

    1989-01-01

    Sodium deoxycholate-solubilized Borrelia burgdorferi antigen was prepared for use in a solid-phase fluoroimmunoassay (FIA-L) to detect antibodies in Lyme disease. Serum specimens were tested by FIA-L and by a microimmunofluorescence test. The FIA-L results are comparable to those of the standard microimmunofluorescence test. The overall agreement was 0.98. Moreover, the FIA-L procedure is simple and rapid; fluorescence is objectively determined and is proportional to antibody titer. Images PMID:2671034

  3. Comparison of Growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto at Five Different Temperatures

    PubMed Central

    Veinović, Gorana; Ružić-Sabljić, Eva; Strle, Franc; Cerar, Tjaša

    2016-01-01

    Lyme borreliosis is caused by the spirochete Borrelia burgdorferi sensu lato, a fastidious bacterium that replicates slowly and requires special conditions to grow in the laboratory. Borrelia isolation from clinical material is a golden standard for microbiological diagnosis of borrelial infection. Important factors that affect in vitro borrelia growth are temperature of incubation and number of borrelia cells in the sample. The aim of the study was to assess the influence of temperature on borrelia growth and survival by evaluation and comparison of growth of 31 different borrelia strains at five different temperatures and to determine the influence of different inoculums on borrelia growth at different temperatures. Borreliae were cultured in the MKP medium; the initial and final number of spirochetes was determined by dark field microscopy using Neubauer counting chamber. The growth of borrelia was defined as final number of cells/mL after three days of incubation. For all three Borrelia species, the best growth was found at 33°C, followed by 37, 28, and 23°C, while no growth was detected at 4°C (P<0.05). The growth of B. afzelii species was weaker in comparison to the other two species at 23, 28, 33 and 37°C (P<0.05), respectively. There was no statistically significant difference between the growth of B. garinii and B. burgdorferi sensu stricto at 28, 33, and 37°C (P>0.05), respectively. Inoculum had statistically significant influence on growth of all three Borrelia species at all tested temperatures except at 4°C. PMID:27310556

  4. Borrelia burgdorferi Spirochetes Induce Mast Cell Activation and Cytokine Release

    PubMed Central

    Talkington, Jeffrey; Nickell, Steven P.

    1999-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, is introduced into human hosts via tick bites. Among the cell types present in the skin which may initially contact spirochetes are mast cells. Since spirochetes are known to activate a variety of cell types in vitro, we tested whether B. burgdorferi spirochetes could activate mast cells. We report here that freshly isolated rat peritoneal mast cells or mouse MC/9 mast cells cultured in vitro with live or freeze-thawed B. burgdorferi spirochetes undergo low but detectable degranulation, as measured by [5-3H] hydroxytryptamine release, and they synthesize and secrete the proinflammatory cytokine tumor necrosis factor alpha (TNF-α). In contrast to findings in previous studies, where B. burgdorferi-associated activity was shown to be dependent upon protein lipidation, mast cell TNF-α release was not induced by either lipidated or unlipidated recombinant OspA. This activity was additionally shown to be protease sensitive and surface expressed. Finally, comparisons of TNF-α-inducing activity in known low-, intermediate-, and high-passage B. burgdorferi B31 isolates demonstrated passage-dependent loss of activity, indicating that the activity is probably plasmid encoded. These findings document the presence in low-passage B. burgdorferi spirochetes of a novel lipidation-independent activity capable of inducing cytokine release from host cells. PMID:10024550

  5. Proteome Analysis of Borrelia burgdorferi Response to Environmental Change

    SciTech Connect

    Angel, Thomas E.; Luft, Benjamin J.; Yang, Xiaohua; Nicora, Carrie D.; Camp, David G.; Jacobs, Jon M.; Smith, Richard D.

    2010-11-02

    We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism’s life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis. We identified 1031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals.

  6. Borrelia burgdorferi Stimulates Macrophages to Secrete Higher Levels of Cytokines and Chemokines than Borrelia afzelii or Borrelia garinii

    PubMed Central

    Strle, Klemen; Drouin, Elise E.; Shen, Shiqian; El Khoury, Joseph; McHugh, Gail; Ruzic-Sabljic, Eva; Strle, Franc; Steere, Allen C.

    2009-01-01

    To delineate the inflammatory potential of the 3 pathogenic species of Borrelia burgdorferi sensu lato, we stimulated monocyte-derived macrophages from healthy human donors with 10 isolates each of B. burgdorferi, B. afzelii, or B. garinii recovered from erythema migrans (EM) skin lesions of Lyme borreliosis patients from the United States or Slovenia. U.S. B. burgdorferi isolates induced macrophages to secrete significantly higher levels of IL-8, CCL3, CCL4, IL-6, IL-10 and TNF than B. garinii or B. afzelii isolates. Consistent with this response in cultured macrophages, the cytokine levels in sera of patients from whom the isolates were obtained were significantly greater in B. burgdorferi-infected patients than in B. afzelii- or B. garinii-infected patients. These results demonstrate in vitro and in vivo that B. burgdorferi has greater inflammatory potential than B. afzelii and B. garinii, which may account in part for variations in the clinical manifestations of Lyme borreliosis. PMID:19909078

  7. Evolution of Northeastern and Midwestern Borrelia burgdorferi, United States

    PubMed Central

    Vandermause, Mary F.; Meece, Jennifer K.; Reed, Kurt D.; Dykhuizen, Daniel E.

    2010-01-01

    The per capita incidence of human Lyme disease in the northeastern United States is more than twice that in the Midwest. However, the prevalence of Borrelia burgdorferi, the bacterium that causes Lyme disease, in the tick vector is nearly identical in the 2 regions. The disparity in human Lyme disease incidence may result from a disparity in the human invasiveness of the bacteria in the Northeast and Midwest caused by fundamentally different evolutionary histories. B. burgdorferi populations in the Northeast and Midwest are geographically isolated, enabling evolutionary divergence in human invasiveness. However, we found that B. burgdorferi populations in the Northeast and Midwest shared a recent common ancestor, which suggests that substantial evolutionary divergence in human invasiveness has not occurred. We propose that differences in either animal ecology or human behavior are the root cause of the differences in human incidence between the 2 regions. PMID:20507740

  8. Persister Development by Borrelia burgdorferi Populations In Vitro

    PubMed Central

    Caskey, John R.

    2015-01-01

    Doxycycline is an antibiotic commonly used to treat Lyme disease and other bacterial infections. The MIC and minimum bactericidal concentration (MBC) for Borrelia burgdorferi have been investigated by different groups but were experimentally established in this study as a function of input cell density. We demonstrated that B. burgdorferi treated in the stationary phase has a higher probability of regrowth following removal of antibiotic. In addition, we determined experimentally and mathematically that the spirochetes which persist posttreatment do not have a longer lag phase but exhibit a lower growth rate than untreated spirochetes. Finally, we found that treating the spirochetes by pulse-dosing did not eliminate growth or reduce the persister population in vitro. From these data, we propose that B. burgdorferi persister development is stochastic and driven by slowed growth. PMID:26248368

  9. Differential Expression of Borrelia burgdorferi Proteins during Growth In Vitro

    PubMed Central

    Ramamoorthy, Ramesh; Philipp, Mario T.

    1998-01-01

    In an earlier paper we described the transcriptionally regulated differential levels of expression of two lipoproteins of Borrelia burgdorferi, P35 and P7.5, during growth of the spirochetes in culture from logarithmic phase to stationary phase (K. J. Indest, R. Ramamoorthy, M. Solé, R. D. Gilmore, B. J. B. Johnson, and M. T. Philipp, Infect. Immun. 65:1165–1171, 1997). Here we further assess this phenomenon by investigating whether the expression of other antigens of B. burgdorferi, including some well-characterized ones, are also regulated in a growth-phase-dependent manner in vitro. These studies revealed 13 additional antigens, including OspC, BmpD, and GroEL, that were upregulated 2- to 66-fold and a 28-kDa protein that was downregulated 2- to 10-fold, during the interval between the logarithmic- and stationary-growth phases. Unlike with these in vitro-regulated proteins, the levels of expression of OspA, OspB, P72, flagellin, and BmpA remained unchanged throughout growth of the spirochetes in culture. Furthermore, ospAB, bmpAB, groEL, and fla all exhibited similar mRNA profiles, which is consistent with the constitutive expression of these genes. By contrast, the mRNA and protein profiles of ospC and bmpD indicated regulated expression of these genes. While bmpD exhibited a spike in mRNA expression in early stationary phase, ospC maintained a relatively higher level of mRNA throughout culture. These findings demonstrate that there are additional genes besides P7.5 and P35 whose regulated expression can be investigated in vitro and which may thus serve as models to facilitate the study of regulatory mechanisms in an organism that cycles between an arthropod and a vertebrate host. PMID:9784512

  10. Borrelia burgdorferi stimulates macrophages to secrete higher levels of cytokines and chemokines than Borrelia afzelii or Borrelia garinii.

    PubMed

    Strle, Klemen; Drouin, Elise E; Shen, Shiqian; El Khoury, Joseph; McHugh, Gail; Ruzic-Sabljic, Eva; Strle, Franc; Steere, Allen C

    2009-12-15

    To delineate the inflammatory potential of the 3 pathogenic species of Borrelia burgdorferi sensu lato, we stimulated monocyte-derived macrophages from healthy human donors with 10 isolates each of B. burgdorferi, Borrelia afzelii, or Borrelia garinii recovered from erythema migrans skin lesions of patients with Lyme borreliosis from the United States or Slovenia. B. burgdorferi isolates from the United States induced macrophages to secrete significantly higher levels of interleukin (IL)-8, CCL3, CCL4, IL-6, IL-10, and tumor necrosis factor than B. garinii or B. afzelii isolates. Consistent with this response in cultured macrophages, chemokine and cytokine levels in serum samples of patients from whom the isolates were obtained were significantly greater in B. burgdorferi-infected patients than in B. afzelii- or B. garinii-infected patients. These results demonstrate in vitro and in vivo that B. burgdorferi has greater inflammatory potential than B. afzelii and B. garinii, which may account in part for variations in the clinical manifestations of Lyme borreliosis.

  11. Immunochemical analysis of lipopolysaccharide-like component extracted from Borrelia burgdorferi sensu lato.

    PubMed

    Schwarzová, K; Ciznár, I

    2004-01-01

    Immunoelectrophoresis and its modifications were applied to analysis of a lipopolysaccharide-like component (LPS-LC) extracted from Borrelia garinii strains K24 and K48 isolated from Ixodes ricinus and Borrelia burgdorferi sensu stricto strain B31. A modification of the hot phenol-water method was used for isolation of LPS. Immunoelectrophoresis (IE) and crossed immunoelectrophoresis (CIE) of LPS-LC with polyclonal rabbit antisera revealed a pattern and properties partially similar to LPS from other Gram-negative bacteria. B. garinii LPS-LC formed in CIE a diffuse band extending from the start to the anode. Similarly, the shape and position of the band in IE did not show major differences from LPS of other Gram-negative bacteria. The LPS-LC extracted from the three genomic groups of B. burgdorferi sensu lato were found to have similar immunochemical properties irrespective of their genotype origin.

  12. Virulent strain associated outer membrane proteins of Borrelia burgdorferi.

    PubMed Central

    Skare, J T; Shang, E S; Foley, D M; Blanco, D R; Champion, C I; Mirzabekov, T; Sokolov, Y; Kagan, B L; Miller, J N; Lovett, M A

    1995-01-01

    We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase activity indicating their outer membrane origin and their lack of inner membrane contamination, respectively. Hydrophobic proteins were identified by phase partitioning with Triton X-114. Most of these hydrophobic membrane proteins were not acylated, suggesting that they are outer membrane-spanning proteins. Identification of palmitate-labeled lipoproteins revealed that several were enriched in the OMV, several were enriched in the protoplasmic cylinder inner membrane fraction, and others were found exclusively associated with the inner membrane. The protein composition of OMV changed significantly with successive in vitro cultivation of strain B31. Using antiserum with specificity for virulent strain B31, we identified OMV antigens on the surface of the spirochete and identified proteins whose presence in OMV could be correlated with virulence and protective immunity in the rabbit Lyme disease model. These virulent strain associated outer membrane-spanning proteins may provide new insight into the pathogenesis of Lyme disease. Images PMID:7593626

  13. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate

    SciTech Connect

    Casjens, S.R.; Dunn, J.; Fraser-Liggett, C. M.; Mongodin, E. F.; Qiu, W. G.; Luft, B. J.; Schutzer, S. E.

    2011-03-01

    Human Lyme disease is caused by a number of related Borrelia burgdorferi sensu lato species. We report here the complete genome sequence of Borrelia sp. isolate SV1 from Finland. This isolate is to date the closest known relative of B. burgdorferi sensu stricto, but it is sufficiently genetically distinct from that species that it and its close relatives warrant its candidacy for new-species status. We suggest that this isolate should be named 'Borrelia finlandensis.'

  14. Serologic analyses of Peromyscus leucopus, a rodent reservoir for Borrelia burgdorferi, in northeastern United States.

    PubMed

    Magnarelli, L A; Anderson, J F; Hyland, K E; Fish, D; Mcaninch, J B

    1988-06-01

    An enzyme-linked immunosorbent assay (ELISA) and indirect fluorescent-antibody test were used to detect antibodies to Borrelia burgdorferi, the causative agent of Lyme disease, in Peromyscus leucopus (white-footed mouse). Of the 661 mice captured in Connecticut, Rhode Island, and New York during 1980 and 1983 to 1987, 166 (25.1%) had antibodies to B. burgdorferi by ELISA. Comparative analyses of 210 serum specimens, collected in areas where Lyme disease is endemic, revealed a threefold difference in sensitivity between the ELISA (38.1% positive) and the indirect fluorescent-antibody method (12.4%). Although prevalence of seropositive P. leucopus was highest during June, elevated amounts of antibody (1:1,280 to 1:2,560) were detected in mice that harbored spirochetes during all seasons. Being reservoirs for B. burgdorferi, these rodents are suitable for monitoring spirochete infections at foci and should be included in field evaluations of control programs aimed at suppressing Lyme disease.

  15. Bgp, a secreted glycosaminoglycan-binding protein of Borrelia burgdorferi strain N40, displays nucleosidase activity and is not essential for infection of immunodeficient mice.

    PubMed

    Parveen, Nikhat; Cornell, Kenneth A; Bono, James L; Chamberland, Christen; Rosa, Patricia; Leong, John M

    2006-05-01

    Bgp, one of the surface-localized glycosaminoglycan-binding proteins of the Lyme disease spirochete, Borrelia burgdorferi, exhibited nucleosidase activity. Infection of SCID mice with B. burgdorferi strain N40 mutants harboring a targeted insertion in bgp and apparently retaining all endogenous plasmids revealed that Bgp is not essential for colonization of immunocompromised mice.

  16. [Study of the anti Borrelia burgdorferi antibody of hunters in Hokkaido].

    PubMed

    Kubo, N; Arashima, Y; Kawabata, M; Kawano, K; Nakao, M; Miyamoto, K

    1992-01-01

    We examined the sera of 587 hunters in Hokkaido (Japan's northernmost island) for the antibody to Borrelia burgdorferi (B. burgdorferi) by enzyme immunoassay, clarified the conditions related to antibody positivity in these subjects according to region, and studied the effects of factors such as age and lifestyle on the antibody titer. In contrast with an anti-B. burgdorferi antibody positive rate of 7.1% in control sera, that in the hunters' sera was 16.0%. Among those positive for the anti-B. burgdorferi antibody, the antibody positive rate in sera excluding those testing positive in the serological test for syphilis was 5.5% in the controls, and 15.4% in the hunters, the latter rate being significantly higher (p less than 0.05). In both hunters and control groups, the antibody-positive rate tended to be higher in older subjects, but the antibody titer showed no correlation with their age, or the duration of their hunting experience. Examination of the hunters' occupations revealed a tendency toward high titers in those engaged in dairy farming. The antibody positivity of those who went gathering edible wild plants was significantly higher than those did not (p less than 0.05). These observations suggested that the high antibody-positive rate in hunters may have been due largely to the effect of activities other than hunting as sources of infection by Borrelia.

  17. Molecular Typing of Borrelia burgdorferi Sensu Lato: Taxonomic, Epidemiological, and Clinical Implications

    PubMed Central

    Wang, Guiqing; van Dam, Alje P.; Schwartz, Ira; Dankert, Jacob

    1999-01-01

    Borrelia burgdorferi sensu lato, the spirochete that causes human Lyme borreliosis (LB), is a genetically and phenotypically divergent species. In the past several years, various molecular approaches have been developed and used to determine the phenotypic and genetic heterogeneity within the LB-related spirochetes and their potential association with distinct clinical syndromes. These methods include serotyping, multilocus enzyme electrophoresis, DNA-DNA reassociation analysis, rRNA gene restriction analysis (ribotyping), pulsed-field gel electrophoresis, plasmid fingerprinting, randomly amplified polymorphic DNA fingerprinting analysis, species-specific PCR and PCR-based restriction fragment length polymorphism (RFLP) analysis, and sequence analysis of 16S rRNA and other conserved genes. On the basis of DNA-DNA reassociation analysis, 10 different Borrelia species have been described within the B. burgdorferi sensu lato complex: B. burgdorferi sensu stricto, Borrelia garinii, Borrelia afzelii, Borrelia japonica, Borrelia andersonii, Borrelia valaisiana, Borrelia lusitaniae, Borrelia tanukii, Borrelia turdi, and Borrelia bissettii sp. nov. To date, only B. burgdorferi sensu stricto, B. garinii, and B. afzelii are well known to be responsible for causing human disease. Different Borrelia species have been associated with distinct clinical manifestations of LB. In addition, Borrelia species are differentially distributed worldwide and may be maintained through different transmission cycles in nature. In this paper, the molecular methods used for typing of B. burgdorferi sensu lato are reviewed. The current taxonomic status of B. burgdorferi sensu lato and its epidemiological and clinical implications, especiallly correlation between the variable clinical presentations and the infecting Borrelia species, are discussed in detail. PMID:10515907

  18. Nanoscopic Localization of Surface-Exposed Antigens of Borrelia burgdorferi.

    PubMed

    Lemgruber, Leandro; Sant'Anna, Celso; Griffths, Caron; Abud, Yuri; Mhlanga, Musa; Wallich, Reinhard; Frischknecht, Friedrich

    2015-06-01

    Borrelia burgdorferi sensu lato, the causative agent of Lyme disease, is transmitted to humans through the bite of infected Ixodes spp. ticks. Successful infection of vertebrate hosts necessitates sophisticated means of the pathogen to escape the vertebrates' immune system. One strategy employed by Lyme disease spirochetes to evade adaptive immunity involves a highly coordinated regulation of the expression of outer surface proteins that is vital for infection, dissemination, and persistence. Here we characterized the expression pattern of bacterial surface antigens using different microscopy techniques, from fluorescent wide field to super-resolution and immunogold-scanning electron microscopy. A fluorescent strain of B. burgdorferi spirochetes was labeled with monoclonal antibodies directed against various bacterial surface antigens. Our results indicate that OspA is more evenly distributed over the surface than OspB and OspC that were present as punctate areas. PMID:25739645

  19. Serological Detection of Borrelia burgdorferi among Horses in Korea.

    PubMed

    Lee, Seung-Hun; Yun, Sun-Hee; Choi, Eunsang; Park, Yong-Soo; Lee, Sang-Eun; Cho, Gil-Jae; Kwon, Oh-Deog; Kwak, Dongmi

    2016-02-01

    Lyme disease is a tick-borne zoonotic infectious disease caused by Borrelia burgdorferi. The present study assessed the infection status of B. burgdorferi among horses reared in Korea using ELISA and PCR. Between 2009 and 2013, blood samples were collected from 727 horses throughout Korea. Data for each animal including age, gender, breed, and region of sample collection were used for epidemiological analysis. Overall, 38 (5.2%; true prevalence: 5.5%) of 727 horses were seropositive by ELISA. There were statistically significant differences according to breed and region (P<0.001) whose differences might be attributed to the ecology of vector ticks and climate conditions. Using 2 nested PCR, none of the samples tested positive for B. burgdorferi. Thus, a positive ELISA result can indicate only that the tested horse was previously exposed to B. burgdorferi, with no certainty over the time of exposure. Since global warming is likely to increase the abundance of ticks in Korea, continuous monitoring of tick-borne diseases in Korean horses is needed. PMID:26951987

  20. Serological Detection of Borrelia burgdorferi among Horses in Korea

    PubMed Central

    Lee, Seung-Hun; Yun, Sun-Hee; Choi, Eunsang; Park, Yong-Soo; Lee, Sang-Eun; Cho, Gil-Jae; Kwon, Oh-Deog; Kwak, Dongmi

    2016-01-01

    Lyme disease is a tick-borne zoonotic infectious disease caused by Borrelia burgdorferi. The present study assessed the infection status of B. burgdorferi among horses reared in Korea using ELISA and PCR. Between 2009 and 2013, blood samples were collected from 727 horses throughout Korea. Data for each animal including age, gender, breed, and region of sample collection were used for epidemiological analysis. Overall, 38 (5.2%; true prevalence: 5.5%) of 727 horses were seropositive by ELISA. There were statistically significant differences according to breed and region (P<0.001) whose differences might be attributed to the ecology of vector ticks and climate conditions. Using 2 nested PCR, none of the samples tested positive for B. burgdorferi. Thus, a positive ELISA result can indicate only that the tested horse was previously exposed to B. burgdorferi, with no certainty over the time of exposure. Since global warming is likely to increase the abundance of ticks in Korea, continuous monitoring of tick-borne diseases in Korean horses is needed. PMID:26951987

  1. Isolation and characterization of Borrelia burgdorferi from blood of a bird captured in the Saint Croix River Valley.

    PubMed Central

    McLean, R G; Ubico, S R; Hughes, C A; Engstrom, S M; Johnson, R C

    1993-01-01

    Field investigations were conducted to further evaluate the role of birds in the maintenance and dissemination of Borrelia burgdorferi. Blood specimens were taken from 39 passerine birds of 17 species captured during June 1991 at the Saint Croix National Riverway in Wisconsin, and one isolate, WI91-23, was cultured from an adult song sparrow (Melospiza melodia). This isolate was shown to be infectious for Peromyscus leucopus and Mesocricetus auratus (golden hamster). Isolate WI91-23 was confirmed as B. burgdorferi by immunofluorescence assay by using species-specific anti-OspA monoclonal antibodies H3TS and H5332 and anti-OspB antibody H5TS. Isolate WI91-23 was compared with Borrelia anserina Es, Borrelia hermsii MAN-1, and other B. burgdorferi strains (ATCC 53210, CT-1, and Catharus fuscescens [veery] liver 10293). Pulsed-field gel electrophoresis of in situ-lysed spirochetes revealed that the DNA plasmid profile of WI91-23 was most similar to those of plasmids from B. burgdorferi and most different from those of plasmids from B. anserina and B. hermsii. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the protein profile of WI91-23 was like that of other B. burgdorferi strains studied, with dominant proteins corresponding to OspA and OspB, and that it differed from the protein profiles of B. anserina and B. hermsii. These findings indicate that passerine birds may serve as reservoirs for B. burgdorferi. Images PMID:8370728

  2. Bacteriolytic activity of selected vertebrate sera for Borrelia burgdorferi sensu stricto and Borrelia bissettii.

    PubMed

    Ullmann, Amy J; Lane, Robert S; Kurtenbach, Klaus; Miller, Michael; Schriefer, Martin E; Zeldner, Nordin; Piesman, Joseph

    2003-12-01

    An in vitro assay to evaluate the bacteriolytic activity of the complement pathway was applied to 2 strains of Borrelia bissettii, CO501 and DN127, and compared with that of B. burgdorferi sensu stricto B31. Sera from mule deer (Odocoileus hemionus) and the Western Fence lizard (Sceloporus occidentalis) were completely borreliacidal for B. burgdorferi and for both strains of B. bissettii. Serum from Bobwhite quail (Colinus virginianus) was nonlytic for B. burgdorferi and partially lytic for B. bissettii strains, CO-501 and DN127. Serum from a New Zealand White rabbit (Oryctolagus cuniculus) was partially lytic for all 3 strains of Borrelia, whereas serum from white-footed mice (Peromyscus leucopus) were nonlytic for all 3 Borrelia strains. The spectrum of complement sensitivity of B. bissettii appears to be similar to that of European B. afzelii in that tested rodent serum is not lytic to these 2 genospecies. Interestingly, both B. bissettii and B. afzelii have been found to be closely associated with rodents. Complement sensitivity demonstrated in these experiments may suggest and possibly predict specific reservoir-host associations. PMID:14740924

  3. [Criteria for evaluation of immunoblots using Borrelia afzelii, Borrelia garinii and Borrelia burgdorferi sensu stricto for diagnosis of Lyme borreliosis].

    PubMed

    Honegr, K; Havlasová, J; Gebouský, P; Dostál, V; Pellantová, V; Skrabková, Z; Hulínská, D

    2001-11-01

    The immunoblot was prepared from genotypes Borrelia afzelii (KC 90), Borrelia garinii (M 192) and Borrelia burgdorferi sensu stricto (B 31). Sera of 63 patients with different forms of Lyme borreliosis were examined and 40 healthy donors in the endemic area of the disease. In class IgM in the group of patients significantly more frequently antibodies against OspC, p39, p41 B. afzelii, p39, p41, p66, p83 B. garinii and OspC1, OspA, B. burgdorferi sensu stricto were found. In class IgG there were antibodies against p39, p41, p93 B. afzelii, p14, p41, p93 B. garinii and OspA, OspC p93 B. burgdorferi sensu lato. Based on the assembled results by means of discrimination analysis and logistic regression the most suitable combinations of antigens for evaluation of immunoblots in different genotypes were determined. Furthermore evaluation was suggested using a combination of antigens of several genotypes which led to an increased sensitivity and specificity of the immunoblot. Tables were prepared for easier evaluation of newly examined sera samples.

  4. Inability of Ixodes cookei and Amblyomma americanum nymphs (Acari: Ixodidae) to transmit Borrelia burgdorferi.

    PubMed

    Ryder, J W; Pinger, R R; Glancy, T

    1992-05-01

    The vector competency of Ixodes cookei Packard and Amblyomma americanum (L.) for Borrelia burgdorferi was studied using Syrian hamsters. Ixodes dammini Spielman, Clifford, Piesman & Corwin were used as controls. Darkfield and immunofluorescent examinations of midgut diverticula revealed B. burgdorferi spirochetes in 32 of 36 (88.9%) I. dammini larvae, 5 of 36 (13.9%) I. cookei larvae, and 7 of 36 (19.4%) A. americanum larvae within 48 h after feeding on infected Syrian hamsters. B. burgdorferi were also observed in the midguts of 94 of 107 (87.8%) I. dammini nymphs that developed from the fed larvae. However, none of 30 I. cookei nymphs was positive for spirochetes and only 1 of 60 (1.7%) A. americanum nymphs was found positive for B. burgdorferi. Nymphs of each tick species, reared from larvae that had fed on infected hamsters, were allowed to feed on uninfected hamsters to determine their ability to transmit B. burgdorferi. Transmission was demonstrated only by I. dammini nymphs.

  5. Borrelia burgdorferi needs chemotaxis to establish infection in mammals and to accomplish its enzootic cycle.

    PubMed

    Sze, Ching Wooen; Zhang, Kai; Kariu, Toru; Pal, Utpal; Li, Chunhao

    2012-07-01

    Borrelia burgdorferi, the causative agent of Lyme disease, can be recovered from different organs of infected animals and patients, indicating that the spirochete is very invasive. Motility and chemotaxis contribute to the invasiveness of B. burgdorferi and play important roles in the process of the disease. Recent reports have shown that motility is required for establishing infection in mammals. However, the role of chemotaxis in virulence remains elusive. Our previous studies showed that cheA₂, a gene encoding a histidine kinase, is essential for the chemotaxis of B. burgdorferi. In this report, the cheA₂ gene was inactivated in a low-passage-number virulent strain of B. burgdorferi. In vitro analyses (microscopic observations, computer-based bacterial tracking analysis, swarm plate assays, and capillary tube assays) showed that the cheA₂ mutant failed to reverse and constantly ran in one direction; the mutant was nonchemotactic to attractants. Mouse needle infection studies showed that the cheA₂ mutant failed to infect either immunocompetent or immunodeficient mice and was quickly eliminated from the initial inoculation sites. Tick-mouse infection studies revealed that although the mutant was able to survive in ticks, it failed to establish a new infection in mice via tick bites. The altered phenotypes were completely restored when the mutant was complemented. Collectively, these data demonstrate that B. burgdorferi needs chemotaxis to establish mammalian infection and to accomplish its natural enzootic cycle.

  6. Evidence for Host-Genotype Associations of Borrelia burgdorferi Sensu Stricto

    PubMed Central

    Mechai, Samir; Margos, Gabriele; Feil, Edward J.; Barairo, Nicole; Lindsay, L. Robbin; Michel, Pascal; Ogden, Nicholas H.

    2016-01-01

    Different genotypes of the agent of Lyme disease in North America, Borrelia burgdorferi sensu stricto, show varying degrees of pathogenicity in humans. This variation in pathogenicity correlates with phylogeny and we have hypothesized that the different phylogenetic lineages in North America reflect adaptation to different host species. In this study, evidence for host species associations of B. burgdorferi genotypes was investigated using 41 B. burgdorferi-positive samples from five mammal species and 50 samples from host-seeking ticks collected during the course of field studies in four regions of Canada: Manitoba, northwestern Ontario, Quebec, and the Maritimes. The B. burgdorferi genotypes in the samples were characterized using three established molecular markers (multi-locus sequence typing [MLST], 16S-23S rrs-rrlA intergenic spacer, and outer surface protein C sequence [ospC] major groups). Correspondence analysis and generalized linear mixed effect models revealed significant associations between B. burgdorferi genotypes and host species (in particular chipmunks, and white-footed mice and deer mice), supporting the hypotheses that host adaptation contributes to the phylogenetic structure and possibly the observed variation in pathogenicity in humans. PMID:26901761

  7. Evidence for Host-Genotype Associations of Borrelia burgdorferi Sensu Stricto.

    PubMed

    Mechai, Samir; Margos, Gabriele; Feil, Edward J; Barairo, Nicole; Lindsay, L Robbin; Michel, Pascal; Ogden, Nicholas H

    2016-01-01

    Different genotypes of the agent of Lyme disease in North America, Borrelia burgdorferi sensu stricto, show varying degrees of pathogenicity in humans. This variation in pathogenicity correlates with phylogeny and we have hypothesized that the different phylogenetic lineages in North America reflect adaptation to different host species. In this study, evidence for host species associations of B. burgdorferi genotypes was investigated using 41 B. burgdorferi-positive samples from five mammal species and 50 samples from host-seeking ticks collected during the course of field studies in four regions of Canada: Manitoba, northwestern Ontario, Quebec, and the Maritimes. The B. burgdorferi genotypes in the samples were characterized using three established molecular markers (multi-locus sequence typing [MLST], 16S-23S rrs-rrlA intergenic spacer, and outer surface protein C sequence [ospC] major groups). Correspondence analysis and generalized linear mixed effect models revealed significant associations between B. burgdorferi genotypes and host species (in particular chipmunks, and white-footed mice and deer mice), supporting the hypotheses that host adaptation contributes to the phylogenetic structure and possibly the observed variation in pathogenicity in humans. PMID:26901761

  8. Evidence that two ATP-dependent (Lon) proteases in Borrelia burgdorferi serve different functions.

    PubMed

    Coleman, James L; Katona, Laura I; Kuhlow, Christopher; Toledo, Alvaro; Okan, Nihal A; Tokarz, Rafal; Benach, Jorge L

    2009-11-01

    The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH(2)-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host.

  9. [Prevalence of Borrelia burgdorferi antibodies in Hamburg blood donors].

    PubMed

    Weiland, T; Kühnl, P; Laufs, R; Heesemann, J

    1992-01-01

    One thousand regular blood donors of the Department of Transfusion Medicine at the University Hospital in Hamburg were screened for antibodies against the Lyme disease spirochete, B. burgdorferi. 7.2% were initially reactive in the enzyme immunoassay, 37.5% of which were confirmed by immunoblot. The seroprevalence of anti-B. burgdorferi antibodies thus is 2.7% in Hamburg blood donors. 25 of 27 positive donors received a physical exam, which did not reveal any symptoms of acute or chronic Lyme disease. 24 of these 25 donors were tested for B. burgdorferi-specific DNA in urine by polymerase chain reaction, which came out negative in all cases. Introduction of B. burgdorferi antibody screening is not regarded an effective means to prevent transfusion-transmitted Lyme disease.

  10. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms

    PubMed Central

    Herranen, Anni; Schwarzbach, Armin; Gilbert, Leona

    2015-01-01

    The spirochaete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common tick-borne infection in the northern hemisphere. There is a long-standing debate regarding the role of pleomorphic forms in Lyme disease pathogenesis, while very little is known about the characteristics of these morphological variants. Here, we present a comprehensive analysis of B. burgdorferi pleomorphic formation in different culturing conditions at physiological temperature. Interestingly, human serum induced the bacterium to change its morphology to round bodies (RBs). In addition, biofilm-like colonies in suspension were found to be part of B. burgdorferi’s normal in vitro growth. Further studies provided evidence that spherical RBs had an intact and flexible cell envelope, demonstrating that they are not cell wall deficient, or degenerative as previously implied. However, the RBs displayed lower metabolic activity compared with spirochaetes. Furthermore, our results indicated that the different pleomorphic variants were distinguishable by having unique biochemical signatures. Consequently, pleomorphic B. burgdorferi should be taken into consideration as being clinically relevant and influence the development of novel diagnostics and treatment protocols. PMID:25564498

  11. Systemic disease in Peromyscus leucopus associated with Borrelia burgdorferi infection.

    PubMed

    Burgess, E C; French, J B; Gendron-Fitzpatrick, A

    1990-03-01

    Sixteen wild Peromyscus leucopus, trapped for the establishment of a breeding colony, developed signs of neurological damage (trembling, incoordination, circling, head tilt, and lameness of the rear legs) 2-47 days after capture in southern Wisconsin. Spirochetes were cultured from the brain of 5/11 mice, and Borrelia burgdorferi was cultured from 1 brain. A spirochete was isolated from the bladder of 1 mouse. The spirochete was identified by fluorescent antibody staining with the monoclonal antibody specific for B. burgdorferi, H5332. Serum antibodies to the spirochete were found in 14/15 mice. Negative results were obtained in all tests for viruses and bacteria, including Listeria (2/2), Mycoplasma (2/2), mouse hepatitis virus (10/10), Theilers's encephalomyelitis virus (GD VII) (8/8), REO 3 virus (2/2), and lymphocytic choriomeningitis virus (4/4). There was no bacterial growth from brains cultured on eosin methylene blue or blood agar (3/3). Histologic lesions included nonsuppurative cellular infiltrates in the brain, kidney, liver, and lung. Three outbred Swiss-Webster mice were inoculated orally with a suspension of the brain in BSKII medium, and 3 were inoculated with unpassed B. burgdorferi cultured from the brain of a P. leucopus with motor dysfunction. Five of the inoculated mice developed antibody titers of 1:128; one mouse was positive at 1:256. Motor signs of neurologic damage developed in 3/6 mice 2-24 weeks post-inoculation, and B. burgdorferi was detected in the brains of 2 mice by isolation and by fluorescent antibody.

  12. Seroprevalence of Leptospira spp. and Borrelia burgdorferi sensu lato in Italian horses.

    PubMed

    Ebani, Valentina V; Bertelloni, Fabrizio; Pinzauti, Paolo; Cerri, Domenico

    2012-01-01

    The aim of the study was to determine the seroprevalence of Leptospira spp. and Borrelia burgdorferi sensu lato in healthy horses living in 7 provinces of central Italy. In the period 2007-2009, sera from 386 horses were tested by microagglutination test (MAT) to detect antibodies to Leptospira spp., employing the following serovars as antigens: Bratislava, Ballum, Canicola, Icterohaemorrhagiae, Grippotyphosa, Hardjo, Pomona, Tarassovi. 3 animals were positive for the serovars Icterohaemorrhagiae, 2 to Bratislava, and 1 to Pomona, for a total 1.5% seroprevalence. All sera were examined by immunofluorence antibody test (IFAT) to reveal anti-B. burgdorferi s.l. antibodies. 94 (24.3%) horses were positive with antibody titres ranging from 1:64 to 1:1,024. The seroprevalence was significantly higher in >10 year-old horses compared to younger subjects. No significant differences in the mean seroprevalence were observed in the respective years. The total mean seroprevalence were strictly related to the environmental conditions of the areas in which the horses lived. No cross-reactions between Leptospira and Borrelia were observed. This is the first serological survey on antibodies to B. burgdorferi s.l. in Italian horses. PMID:22742794

  13. Further Characterization of Complement Regulator-Acquiring Surface Proteins of Borrelia burgdorferi

    PubMed Central

    Kraiczy, Peter; Skerka, Christine; Brade, Volker; Zipfel, Peter F.

    2001-01-01

    The three genospecies Borrelia burgdorferi, Borrelia garinii, and Borrelia afzelii, all causative agents of Lyme disease, differ in their susceptibilities to human complement-mediated lysis. We recently reported that serum resistance of borrelias correlates largely with their ability to bind the human complement regulators FHL-1/reconectin and factor H. To date, two complement regulator-acquiring-proteins (CRASP-1 and CRASP-2) have been identified in serum-resistant B. afzelii isolates (P. Kraiczy, C. Skerka, M. Kirschfink, V. Brade, and P. F. Zipfel, Eur. J. Immunol. 31:1674–1684, 2001). Here, we present a comprehensive study of the CRASPs detectable in both serum-resistant and intermediate serum-sensitive B. afzelii and B. burgdorferi isolates. These CRASPs were designated according to the genospecies either as BaCRASPs, when derived from B. afzelii, or as BbCRASPs, for proteins identified in B. burgdorferi isolates. Each borrelial isolate expresses distinct CRASPs that can be differentiated by their mobility and binding phenotypes. A detailed comparison reveals overlapping and even identical binding profiles for BaCRASP-1 (27.5 kDa), BbCRASP-1 (25.9 kDa), and BbCRASP-2 (23.2 kDa), which bind FHL-1/reconectin strongly and interact weakly with factor H. In contrast, two B. afzelii proteins (BaCRASP-4 [19.2 kDa] and BaCRASP-5 [22.5 kDa]) and three B. burgdorferi proteins (BbCRASP-3 [19.8 kDa], BbCRASP-4 [18.5 kDa], and BbCRASP-5 [17.7 kDa]) bind factor H but not FHL-1/reconectin. Most CRASPs bind both human immune regulators at their C-terminal ends. Temperature-dependent up-regulation of CRASPs (BaCRASP-1, BaCRASP-2, and BaCRASP-5) is detected in low-passage borrelias cultured at 33 or 37°C compared with those cultured at 20°C. The characterization of the individual CRASPs on the molecular level is expected to identify new virulence factors and potential vaccine candidates. PMID:11705962

  14. Sylvatic maintenance of Borrelia burgdorferi (Spirochaetales) in Northern California: untangling the web of transmission.

    PubMed

    Brown, R N; Peot, M A; Lane, R S

    2006-07-01

    Lyme borreliosis is associated with several genospecies of Borrelia burgdorferi sensu lato (s.l.) (Spirochaetales), but human disease has been associated only with Borrelia burgdorferi sensu stricto (s.s.) Johnson, Schmid, Hyde, Steigerwalt & Brenner in the western United States. Restriction fragment length polymorphism (RFLP) analysis of rrf-rrl amplicons from 124 tick and mammalian isolates from various habitats yielded 13 RFLP patterns. Of these patterns, six were patterns previously associated either with Borrelia bissettii Postic, Marti Ras, Lane, Hendson & Baranton or Borrelia burgdorferi s.s., and the remaining seven patterns belonged to diverse and previously uncharacterized Borrelia spp. Uncharacterized Borrelia spp. were cultured most frequently from Ixodes spinipalpis Hadwen & Nuttall and California kangaroo rats, Dipodomys californicus Merriam, inhabiting grasslands, and B. bissettii from I. spinipalpis and dusky-footed woodrats, Neotoma fuscipes Baird, associated with oak woodlands or chaparral. B. burgdorferi s.s. typically was isolated from host-seeking Ixodes pacificus Cooley & Kohls collected in dense oak woodlands, woodland-grass, or redwood forests. Although some isolates of B. burgdorferi s.s. were cultured from woodrats, there was no clear association of this human pathogen with any vertebrate host. These findings, along with recent evidence indicating that the western gray squirrel, Sciurus griseus Ord, may be an important reservoir of B. burgdorferi s.s. in Californian oak woodlands, suggest that our earlier hypothesis implicating an enzootic cycle involving woodrats and I. spinipalpis is insufficient to account for observed patterns of infection in nature.

  15. Spotted fever group rickettsiae or Borrelia burgdorferi in Ixodes cookei (Ixodidae) in Connecticut.

    PubMed Central

    Magnarelli, L A; Swihart, R K

    1991-01-01

    Immatures and females of Ixodes cookei, a hard-bodied tick, were collected from woodchucks and other mammals in the northeastern United States and examined for spotted fever group rickettsiae and Borrelia burgdorferi. Of the 93 nymphs analyzed by a hemolymph test, 4 (4.3%) harbored rickettsiae. Six (15%) of 40 females were also infected. All infected ticks were collected from woodchucks in Connecticut. Indirect fluorescent antibody staining of midgut tissues from 128 nymphs revealed B. burgdorferi in two (1.6%) ticks, whereas larval and female ticks were negative. Further consideration should be given to I. cookei as a possible vector of spotted fever group rickettsiae or spirochetes that cause Lyme borreliosis. PMID:1885748

  16. Antibodies to Rickettsia spp. and Borrelia burgdorferi in Spanish Wild Red Foxes (Vulpes vulpes).

    PubMed

    Lledó, Lourdes; Serrano, José Luis; Isabel Gegúndez, María; Giménez-Pardo, Consuelo; Saz, José Vicente

    2016-01-01

    We examined 314 red foxes (Vulpes vulpes) from the province of Soria, Spain, for Rickettsia typhi, Rickettsia slovaca, and Borrelia burgdorferi infection. Immunofluorescence assays showed 1.9% had antibodies to R. typhi, 6.7% had antibodies to R. slovaca, and 8.3% had antibodies to B. burgdorferi. Serostatus was not correlated with sex or age. Because red foxes can be infected by Rickettsiae and B. burgdorferi, presence of red foxes may be and indicator for the presence of these pathogens.

  17. Infection of Ixodes ricinus (Acari: Ixodidae) by Borrelia burgdorferi sensu lato in North Africa

    USGS Publications Warehouse

    Zhioua, E.; Bouattour, A.; Hu, C.M.; Gharbi, M.; Aeschliman, A.; Ginsberg, H.S.; Gern, L.

    1999-01-01

    Free-living adult Ixodes ricinus L. were collected in Amdoun, situated in the Kroumiry mountains in northwestern Tunisia (North Africa). Using direct fluorescence antibody assay, the infection rate of field-collected I. ricinus by Borrelia burgdorferi sensu lato was 30.5% (n = 72). No difference in infection rate was observed between male and female ticks. Spirochetes that had been isolated from I. ricinus from Ain Drahim (Kroumiry Mountains) in 1988 were identified as Borrelia lusitaniae (formerly genospecies PotiB2). This is the first identification of a genospecies of Borrelia burgdorferi sensu lato from the continent of Africa.

  18. Occurrence of Borrelia burgdorferi Sensu Lato in Ixodes ricinus Ticks with First Identification of Borrelia miyamotoi in Vojvodina, Serbia.

    PubMed

    Potkonjak, Aleksandar; Kleinerman, Gabriela; Gutiérrez, Ricardo; Savić, Sara; Vračar, Vuk; Nachum-Biala, Yaarit; Jurišić, Aleksandar; Rojas, Alicia; Petrović, Aleksandra; Ivanović, Ivana; Harrus, Shimon; Baneth, Gad

    2016-10-01

    Lyme borreliosis is the most common tick-borne infectious disease in Eurasia. Borrelia miyamotoi is the only known relapsing fever Borrelia group spirochete transmitted by Ixodes species. The aim of this study was to investigate the presence of Lyme Borrelia spp. and relapsing fever Borrelia spp. in Ixodes ricinus ticks collected from dogs and the vegetation from different parts of Vojvodina, Serbia. A total of 71 Ixodes ricinus ticks were collected and screened for the presence of Lyme Borrelia spp. group and relapsing fever Borrelia spp. by real-time PCR for the Borrelia flagellin B (flaB) gene followed by DNA sequencing of PCR products. Species identification was verified by PCR of the outer surface protein A (ospA) gene for Lyme Disease Borrelia spp. and by PCR of the glycerophosphodiester phosphodiesterase (glpQ) gene for relapsing fever Borrelia spp. Lyme Borrelia spp. were found in 15/71 (21.13%) of the ticks evaluated and included B. luisitaniae (11.3%), B. afzelii (7%), B. valaisiana (1.4%), and B. garinii (1.4%). Borrelia miyamotoi, from the relapsing fever Borrelia complex, was found, for the first time in Serbia, in one (1.4%) nymph collected from the environment. Co-infections between Borrelia species in ticks were not detected. These results suggest that the dominance of species within B. burgdorferi s.l. complex in I. ricinus ticks may vary over time and in different geographic regions. Further systematic studies of Borrelia species in vectors and reservoir hosts are needed to understand eco-epidemiology of these zoonotic infections and how to prevent human infection in the best way.

  19. Occurrence of Borrelia burgdorferi Sensu Lato in Ixodes ricinus Ticks with First Identification of Borrelia miyamotoi in Vojvodina, Serbia.

    PubMed

    Potkonjak, Aleksandar; Kleinerman, Gabriela; Gutiérrez, Ricardo; Savić, Sara; Vračar, Vuk; Nachum-Biala, Yaarit; Jurišić, Aleksandar; Rojas, Alicia; Petrović, Aleksandra; Ivanović, Ivana; Harrus, Shimon; Baneth, Gad

    2016-10-01

    Lyme borreliosis is the most common tick-borne infectious disease in Eurasia. Borrelia miyamotoi is the only known relapsing fever Borrelia group spirochete transmitted by Ixodes species. The aim of this study was to investigate the presence of Lyme Borrelia spp. and relapsing fever Borrelia spp. in Ixodes ricinus ticks collected from dogs and the vegetation from different parts of Vojvodina, Serbia. A total of 71 Ixodes ricinus ticks were collected and screened for the presence of Lyme Borrelia spp. group and relapsing fever Borrelia spp. by real-time PCR for the Borrelia flagellin B (flaB) gene followed by DNA sequencing of PCR products. Species identification was verified by PCR of the outer surface protein A (ospA) gene for Lyme Disease Borrelia spp. and by PCR of the glycerophosphodiester phosphodiesterase (glpQ) gene for relapsing fever Borrelia spp. Lyme Borrelia spp. were found in 15/71 (21.13%) of the ticks evaluated and included B. luisitaniae (11.3%), B. afzelii (7%), B. valaisiana (1.4%), and B. garinii (1.4%). Borrelia miyamotoi, from the relapsing fever Borrelia complex, was found, for the first time in Serbia, in one (1.4%) nymph collected from the environment. Co-infections between Borrelia species in ticks were not detected. These results suggest that the dominance of species within B. burgdorferi s.l. complex in I. ricinus ticks may vary over time and in different geographic regions. Further systematic studies of Borrelia species in vectors and reservoir hosts are needed to understand eco-epidemiology of these zoonotic infections and how to prevent human infection in the best way. PMID:27574731

  20. Hypothetical Protein BB0569 Is Essential for Chemotaxis of the Lyme Disease Spirochete Borrelia burgdorferi

    PubMed Central

    Zhang, Kai; Liu, Jun; Charon, Nyles W.

    2015-01-01

    ABSTRACT The Lyme disease spirochete Borrelia burgdorferi has five putative methyl-accepting chemotaxis proteins (MCPs). In this report, we provide evidence that a hypothetical protein, BB0569, is essential for the chemotaxis of B. burgdorferi. While BB0569 lacks significant homology to the canonical MCPs, it contains a conserved domain (spanning residues 110 to 170) that is often evident in membrane-bound MCPs such as Tar and Tsr of Escherichia coli. Unlike Tar and Tsr, BB0569 lacks transmembrane regions and recognizable HAMP and methylation domains and is similar to TlpC, a cytoplasmic chemoreceptor of Rhodobacter sphaeroides. An isogenic mutant of BB0569 constantly runs in one direction and fails to respond to attractants, indicating that BB0569 is essential for chemotaxis. Immunofluorescence, green fluorescent protein (GFP) fusion, and cryo-electron tomography analyses demonstrate that BB0569 localizes at the cell poles and is required for chemoreceptor clustering at the cell poles. Protein cross-linking studies reveal that BB0569 forms large protein complexes with MCP3, indicative of its interactions with other MCPs. Interestingly, analysis of B. burgdorferi mcp mutants shows that inactivation of either mcp2 or mcp3 reduces the level of BB0569 substantially and that such a reduction is caused by protein turnover. Collectively, these results demonstrate that the domain composition and function of BB0569 are similar in some respects to those of TlpC but that these proteins are different in their cellular locations, further highlighting that the chemotaxis of B. burgdorferi is unique and different from the Escherichia coli and Salmonella enterica paradigm. IMPORTANCE Spirochete chemotaxis differs substantially from the Escherichia coli and Salmonella enterica paradigm, and the basis for controlling the rotation of the bundles of periplasmic flagella at each end of the cell is unknown. In recent years, Borrelia burgdorferi, the causative agent of Lyme disease, has

  1. Evaluation of the Borrelia burgdorferi BBA64 Protein as a Protective Immunogen in Mice

    PubMed Central

    Brandt, Kevin S.; Patton, Toni G.; Allard, Anna S.; Caimano, Melissa J.; Radolf, Justin D.

    2014-01-01

    The Borrelia burgdorferi bba64 gene product is a surface-localized lipoprotein synthesized within mammalian and tick hosts and is involved in vector transmission of disease. These properties suggest that BBA64 may be a vaccine candidate against Lyme borreliosis. In this study, protective immunity against B. burgdorferi challenge was assessed in mice immunized with the BBA64 protein. Mice developed a high-titer antibody response following immunization with soluble recombinant BBA64 but were not protected when challenged by needle inoculation of culture-grown spirochetes. Likewise, mice passively immunized with an anti-BBA64 monoclonal antibody were not protected against needle-inoculated organisms. BBA64-immunized mice were subjected to B. burgdorferi challenge by the natural route of a tick bite, but these trials did not demonstrate significant protective immunity in either outbred or inbred strains of mice. Lipidated recombinant BBA64 produced in Escherichia coli was assessed for possible improved elicitation of a protective immune response. Although inoculation with this antigen produced a high-titer antibody response, the lipidated BBA64 also was unsuccessful in protecting mice from B. burgdorferi challenge by tick bites. Anti-BBA64 antibodies raised in rats eradicated the organisms, as evidenced by in vitro borreliacidal assays, thus demonstrating the potential for BBA64 to be effective as a protective immunogen. However, passive immunization with the same monospecific rat anti-BBA64 polyclonal serum failed to provide protection against tick bite-administered challenge. These results reveal the challenges faced in not only identifying B. burgdorferi proteins with potential protective capability but also in producing recombinant antigens conducive to preventive therapies against Lyme borreliosis. PMID:24501342

  2. CspA from Borrelia burgdorferi Inhibits the Terminal Complement Pathway

    PubMed Central

    Hallström, Teresia; Siegel, Corinna; Mörgelin, Matthias; Kraiczy, Peter; Skerka, Christine; Zipfel, Peter F.

    2013-01-01

    ABSTRACT In order to survive and persist in an immunocompetent human host, Borrelia burgdorferi controls the human immune attack and blocks the damaging effects of the activated complement system. These Gram-negative spirochetes use CspA (CRASP-1) and four additional immune evasion proteins to bind combinations of human plasma regulators, including factor H, factor H-like protein 1 (FHL-1), complement factor H-related protein 1 (CFHR1), CFHR2, CFHR5, and plasminogen. As many microbial immune evasion proteins have multiple functions, we hypothesized that CspA has additional roles in complement or immune control. Here, we identify CspA as a terminal complement inhibitor. Borrelial CspA binds the human terminal complement components C7 and C9 and blocks assembly and membrane insertion of the terminal complement complex (TCC). CspA inhibits TCC assembly at the level of C7, as revealed by hemolytic assays, and inhibits polymerization of C9. CspA, when ectopically expressed on the surface of serum-sensitive Borrelia garinii, blocks TCC assembly on the level of C7 and induces serum resistance in the transformed bacteria. This CspA-mediated serum resistance and terminal complement pathway inhibition allow B. burgdorferi to survive in the hostile environment of human plasma. PMID:23943762

  3. Cell-density-dependent expression of Borrelia burgdorferi lipoproteins in vitro.

    PubMed Central

    Indest, K J; Ramamoorthy, R; Solé, M; Gilmore, R D; Johnson, B J; Philipp, M T

    1997-01-01

    Previously, we had identified non-OspA-OspB surface proteins of Borrelia burgdorferi that are targeted by the antibody-dependent complement-mediated killing mechanism. Here we demonstrate by Western blotting that one of these proteins, P35, is upregulated at the onset of stationary phase in vitro. Northern analysis revealed that the upregulation of P35 is at the level of transcription. In addition, the expression of an open reading frame (ORF) located downstream of the p35 gene was found to be regulated in the same fashion as that of P35. This ORF encodes a 7.5-kDa lipoprotein. The transcriptional start sites for both of these genes were determined, to aid in the identification of the putative promoter regions. Additional sequencing of the 5' flanking region of the p35 gene revealed a region of dyad symmetry 52 bp upstream of the transcription start site. Southern analysis demonstrated that the expression of these genes was not due to a cell-density-dependent rearrangement in the genome of B. burgdorferi. These findings provide an in vitro model for studying mechanisms of gene regulation in B. burgdorferi. PMID:9119447

  4. Fourier transform infrared spectroscopy of DNA from Borrelia burgdorferi sensu lato and Ixodes ricinus ticks

    NASA Astrophysics Data System (ADS)

    Muntean, Cristina M.; Stefan, Razvan; Bindea, Maria; Cozma, Vasile

    2013-06-01

    In this work we present a method for detection of motile and immotile Borrelia burgdorferi genomic DNA, in relation with infectious and noninfectious spirochetes. An FT-IR study of DNA isolated from B. burgdorferi sensu lato strains and from positive and negative Ixodes ricinus ticks, respectively, is reported. Motile bacterial cells from the species B. burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii were of interest. Also, FT-IR absorbance spectra of DNA from immotile spirochetes of B. burgdorferi sensu stricto, in the absence and presence of different antibiotics (doxycycline, erythromycin, gentamicin, penicillin V or phenoxymethylpenicillin, tetracycline, respectively) were investigated. FT-IR spectra, providing a high molecular structural information, have been analyzed in the wavenumber range 400-1800 cm-1. FT-IR signatures, spectroscopic band assignments and structural interpretations of these DNAs are reported. Spectral differences between FT-IR absorbances of DNAs from motile bacterial cells and immotile spirochetes, respectively, have been found. Particularly, alterations of the sugar-phosphate B-form chain in the case of DNA from Borrelia immotile cells, as compared with DNA from B. burgdorferi sensu lato motile cells have been observed. Based on this work, specific B. burgdorferi sensu lato and I. ricinus DNA-ligand interactions, respectively, might be further investigated using Fourier transform infrared spectroscopy.

  5. Real-time PCR-based identification of Borrelia burgdorferi sensu lato species in ticks collected from humans in Romania.

    PubMed

    Briciu, Violeta T; Meyer, Fabian; Sebah, Daniela; Tăţulescu, Doina F; Coroiu, Georgiana; Lupşe, Mihaela; Carstina, Dumitru; Mihalca, Andrei D; Hizo-Teufel, Cecilia; Klier, Christiane; Huber, Ingrid; Fingerle, Volker

    2014-09-01

    The aims of our study were to determine (i) which tick species bite humans in Romania and (ii) the prevalence of Borrelia (B.) burgdorferi genospecies in these ticks. All ticks collected from patients who presented to the Clinic of Infectious Diseases Cluj Napoca in spring/summer 2010 were morphologically identified by an entomologist and tested for B. burgdorferi genospecies prevalence by a real-time PCR assay targeting the hbb gene and melting curve analysis. Out of 532 ticks, 518 were Ixodes ricinus, 10 Dermacentor marginatus, and 3 Haemaphysalis spp. ticks, and one unidentified tick due to destruction. Since evaluation of the hbb PCR revealed that it was not possible to differentiate between B. spielmanii/B. valaisiana and B. garinii/B. bavariensis, sequencing of an 800-bp fragment of the ospA gene was performed in these cases. Out of 389 investigated ticks, 43 were positive by hbb PCR for B. burgdorferi sensu lato. The positive samples were 42 Ixodes ricinus (11.1% B. burgdorferi sensu lato prevalence) and the one unidentified tick. Species identification revealed the presence of mainly B. afzelii, but also of B. garinii, B. burgdorferi sensu stricto, B. valaisiana, and B. lusitaniae. In 4 samples, differentiation between B. spielmanii/B. valaisiana was impossible. Our study shows that the most relevant human pathogenic B. burgdorferi genospecies - predominantly B. afzelii - are present in ticks collected from Romanian patients.

  6. Morphoea and Borrelia burgdorferi: results from the Scottish Highlands in the context of the world literature

    PubMed Central

    Goodlad, J R; Davidson, M M; Gordon, P; Billington, R; Ho-Yen, D O

    2002-01-01

    Aims: Previous studies investigating the link between infection with Borrelia burgdorferi and morphoea have produced conflicting results. Often, these studies have been undertaken in patients from different regions or countries, and using methods of varying sensitivity for detecting Borrelia burgdorferi infection. This study aimed to establish whether a relation could be demonstrated in the Highlands of Scotland, an area with endemic Lyme disease, with the use of a sensitive method for detecting the organism. Methods: The study was performed on biopsies of lesional skin taken from 16 patients from the Highlands of Scotland with typical clinical features of morphoea. After histological confirmation of the diagnosis, a nested polymerase chain reaction (PCR) using primers to a unique conserved region of the Borrelia burgdorferi flagellin gene was performed on DNA extracts from each biopsy. A literature search was also performed for comparable studies. Results: None of the 16 patients had documented clinical evidence of previous infection with B burgdorferi. DNA was successfully extracted from 14 of the 16 cases but all of these were negative using PCR for B burgdorferi specific DNA, despite successful amplification of appropriate positive controls in every test. The results were compared with those of other documented studies. Conclusions: Examination of the literature suggests that there is a strong geographical relation between B burgdorferi and morphoea. These results, in which no such association was found, indicate that morphoea may not be associated with the subspecies of B burgdorferi found in the Highlands of Scotland. PMID:12456775

  7. Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species.

    PubMed

    Barbour, Alan G; Bunikis, Jonas; Travinsky, Bridgit; Hoen, Anne Gatewood; Diuk-Wasser, Maria A; Fish, Durland; Tsao, Jean I

    2009-12-01

    The Lyme borreliosis agent Borrelia burgdorferi and the relapsing fever group species Borrelia miyamotoi co-occur in the United States. We used species-specific, quantitative polymerase chain reaction to study both species in the blood and skin of Peromyscus leucopus mice and host-seeking Ixodes scapularis nymphs at a Connecticut site. Bacteremias with B. burgdorferi or B. miyamotoi were most prevalent during periods of greatest activity for nymphs or larvae, respectively. Whereas B. burgdorferi was 30-fold more frequent than B. miyamotoi in skin biopsies and mice had higher densities of B. burgdorferi densities in the skin than in the blood, B. miyamotoi densities were higher in blood than skin. In a survey of host-seeking nymphs in 11 northern states, infection prevalences for B. burgdorferi and B. miyamotoi averaged approximately 0.20 and approximately 0.02, respectively. Co-infections of P. leucopus or I. scapularis with both B. burgdorferi and B. miyamotoi were neither more nor less common than random expectations. PMID:19996447

  8. Extracellular secretion of the Borrelia burgdorferi Oms28 porin and Bgp, a glycosaminoglycan binding protein.

    PubMed

    Cluss, Robert G; Silverman, Damon A; Stafford, Thomas R

    2004-11-01

    Borrelia burgdorferi, the Lyme disease pathogen, cycles between its Ixodes tick vector and vertebrate hosts, adapting to vastly different biochemical environments. Spirochete gene expression as a function of temperature, pH, growth phase, and host milieu is well studied, and recent work suggests that regulatory networks are involved. Here, we examine the release of Borrelia burgdorferi strain B31 proteins into conditioned medium. Spirochetes intrinsically radiolabeled at concentrations ranging from 10(7) to 10(9) cells per ml secreted Oms28, a previously characterized outer membrane porin, into RPMI medium. As determined by immunoblotting, this secretion was not associated with outer membrane blebs or cytoplasmic contamination. A similar profile of secreted proteins was obtained for spirochetes radiolabeled in mixtures of RPMI medium and serum-free Barbour-Stoenner-Kelly (BSK II) medium. Proteomic liquid chromatography-tandem mass spectrometry analysis of tryptic fragments derived from strain B31 culture supernatants confirmed the identity of the 28-kDa species as Oms28 and revealed a 26-kDa protein as 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs-2), previously described as Bgp, a glycosaminoglycan-binding protein. The release of Oms28 into the culture medium is more selective when the spirochetes are in logarithmic phase of growth compared to organisms obtained from stationary phase. As determined by immunoblotting, stationary-phase spirochetes released OspA, OspB, and flagellin. Oms28 secreted by strains B31, HB19, and N40 was also recovered by radioimmunoprecipitation. This is the first report of B. burgdorferi protein secretion into the extracellular environment. The possible roles of Oms28 and Bgp in the host-pathogen interaction are considered.

  9. Borrelia burgdorferi Induces the Production and Release of Proinflammatory Cytokines in Canine Synovial Explant Cultures

    PubMed Central

    Straubinger, Reinhard K.; Straubinger, Alix F.; Summers, Brian A.; Erb, Hollis N.; Härter, Luc; Appel, Max J. G.

    1998-01-01

    Canine synovial membrane explants were exposed to high- or low-passage Borrelia burgdorferi for 3, 6, 12, and 24 h. Spirochetes received no treatment, were UV light irradiated for 16 h, or were sonicated prior to addition to synovial explant cultures. In explant tissues, mRNA levels for the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1α (IL-1α), IL-1β, and IL-8 were surveyed semiquantitatively by reverse transcription-PCR. Culture supernatants were examined for numbers of total and motile (i.e., viable) spirochetes, TNF-like and IL-1-like activities, polymorphonuclear neutrophil (PMN) chemotaxis-inducing activities, and IL-8. During exposure to synovial explant tissues, the total number of spirochetes in the supernatants decreased gradually by ∼30%, and the viability also declined. mRNAs for TNF-α, IL-1α, IL-1β, and IL-8 were up-regulated in synovial explant tissues within 3 h after infection with untreated or UV light-irradiated B. burgdorferi, and mRNA levels corresponded to the results obtained with bioassays. During 24 h of coincubation, cultures challenged with untreated or UV light-irradiated spirochetes produced similar levels of TNF-like and IL-1-like activities. In contrast, explant tissues exposed to untreated B. burgdorferi generated significantly higher levels of chemotactic factors after 24 h of incubation than did explant tissues exposed to UV light-treated spirochetes. In identical samples, a specific signal for IL-8 was identified by Western blot analysis. High- and low-passage borreliae did not differ in their abilities to induce proinflammatory cytokines. No difference in cytokine induction between untreated and sonicated high-passage spirochetes was observed, suggesting that fractions of the organism can trigger the production and release of inflammatory mediators. The titration of spirochetes revealed a dose-independent cytokine response, where 103 to 107 B. burgdorferi organisms induced similar TNF

  10. DNA sequencing diagnosis of off-season spirochetemia with low bacterial density in Borrelia burgdorferi and Borrelia miyamotoi infections.

    PubMed

    Lee, Sin Hang; Vigliotti, Jessica S; Vigliotti, Veronica S; Jones, William; Moorcroft, Thomas A; Lantsman, Katherine

    2014-01-01

    A highly conserved 357-bp segment of the 16S ribosomal RNA gene (16S rDNA) of Borrelia burgdorferi sensu lato and the correspondent 358-bp segment of the Borrelia miyamotoi gene were amplified by a single pair of nested polymerase chain reaction (PCR) primers for detection, and the amplicons were used as the templates for direct Sanger DNA sequencing. Reliable molecular diagnosis of these borreliae was confirmed by sequence alignment analysis of the hypervariable regions of the PCR amplicon, using the Basic Local Alignment Search Tool (BLAST) provided by the GenBank. This methodology can detect and confirm B. burgdorferi and B. miyamotoi in blood samples of patients with off-season spirochetemia of low bacterial density. We found four B. miyamotoi infections among 14 patients with spirochetemia, including one patient co-infected by both B. miyamotoi and B. burgdorferi in a winter month when human exposure to tick bites is very limited in the Northeast of the U.S.A. We conclude that sensitive and reliable tests for these two Borrelia species should be implemented in the microbiology laboratory of hospitals located in the disease-endemic areas, for timely diagnosis and appropriate treatment of the patients at an early stage of the infection to prevent potential tissue damages.

  11. Functional outcomes in patients with Borrelia burgdorferi reinfection.

    PubMed

    Jares, Tyler M; Mathiason, Michelle A; Kowalski, Todd J

    2014-02-01

    When Lyme disease is treated with appropriate antibiotic therapy in the early stages, long-term outcomes are good. However, a few patients have persistent symptoms despite appropriate therapy. Whether these patients' symptoms are any different from those of patients with reinfection is unclear. Our objective was to compare long-term symptoms and functional outcomes of patients with Borrelia burgdorferi reinfection with those of patients with only 1 episode of infection and with no history of infection. We compared outcomes of Lyme reinfection patients, characterized by recurrent erythema migrans (EM) lesions, with those of patients with 1 episode of Lyme disease (Lyme control) and with no history of Lyme disease (non-Lyme control) by retrospective medical record review and a survey consisting of a 36-item Short-Form Health Survey (SF-36) and a 10-item symptom questionnaire. Analysis of variance (ANOVA) for continuous variables and χ(2) analysis for categorical variables were used. In cases of low cell counts, Fisher's exact tests were used. Bonferroni correction was used for multiple comparisons when ANOVA was significant. Reinfection was identified in 23/673 (3.4%) patients who had a diagnosis of Lyme disease in our health system during 2000-2004. Of the 23, 15 had long-term follow-up data and were age- and sex-matched to 45 Lyme control and 60 non-Lyme control group patients. Clinical characteristics were similar in the reinfection and Lyme control groups. SF-36 results were similar between groups for all domains except energy/vitality (VT). The SF-36 domain of VT was significantly different between groups: 63.0 vs. 54.5 vs. 64.5 in the reinfection, Lyme control, and non-Lyme control groups, respectively (p=0.047). Clinical features and long-term outcomes of patients with recurrent EM lesions were similar to those of the control groups and consistent with B. burgdorferi reinfection, not persistent infection. Patients with Lyme reinfection should be treated with

  12. Functional outcomes in patients with Borrelia burgdorferi reinfection.

    PubMed

    Jares, Tyler M; Mathiason, Michelle A; Kowalski, Todd J

    2014-02-01

    When Lyme disease is treated with appropriate antibiotic therapy in the early stages, long-term outcomes are good. However, a few patients have persistent symptoms despite appropriate therapy. Whether these patients' symptoms are any different from those of patients with reinfection is unclear. Our objective was to compare long-term symptoms and functional outcomes of patients with Borrelia burgdorferi reinfection with those of patients with only 1 episode of infection and with no history of infection. We compared outcomes of Lyme reinfection patients, characterized by recurrent erythema migrans (EM) lesions, with those of patients with 1 episode of Lyme disease (Lyme control) and with no history of Lyme disease (non-Lyme control) by retrospective medical record review and a survey consisting of a 36-item Short-Form Health Survey (SF-36) and a 10-item symptom questionnaire. Analysis of variance (ANOVA) for continuous variables and χ(2) analysis for categorical variables were used. In cases of low cell counts, Fisher's exact tests were used. Bonferroni correction was used for multiple comparisons when ANOVA was significant. Reinfection was identified in 23/673 (3.4%) patients who had a diagnosis of Lyme disease in our health system during 2000-2004. Of the 23, 15 had long-term follow-up data and were age- and sex-matched to 45 Lyme control and 60 non-Lyme control group patients. Clinical characteristics were similar in the reinfection and Lyme control groups. SF-36 results were similar between groups for all domains except energy/vitality (VT). The SF-36 domain of VT was significantly different between groups: 63.0 vs. 54.5 vs. 64.5 in the reinfection, Lyme control, and non-Lyme control groups, respectively (p=0.047). Clinical features and long-term outcomes of patients with recurrent EM lesions were similar to those of the control groups and consistent with B. burgdorferi reinfection, not persistent infection. Patients with Lyme reinfection should be treated with

  13. Repeat or persistent Lyme disease: persistence, recrudescence or reinfection with Borrelia Burgdorferi?

    PubMed Central

    2015-01-01

    Whether or not Borrelia burgdorferi can persist after conventional treatment with antimicrobials has been a very controversial issue. Two recent studies took different approaches to try to answer this question. In one, investigators showed that, in each of 22 instances in 17 patients with two consecutive episodes of culture-proved erythema migrans, the strains of B. burgdorferi were different based on their genotypes. This indicated that the repeat episodes were due to new infections rather than recrudescence of the original infection. In another study, in which persistence of B. burgdorferi was assessed by using xenodiagnosis, no viable B. burgdorferi were cultured from ticks fed on any of the patients. There continues to be no evidence that viable B. burgdorferi persist in humans after conventional treatment with antimicrobials. PMID:25705394

  14. Reservoir competence of Microtus pennsylvanicus (Rodentia: Cricetidae) for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Markowski, D.; Ginsberg, H.S.; Hyland, K.E.; Hu, R.

    1998-01-01

    The reservoir competence of the meadow vole, Microtus pennsylvanicus Ord, for the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner was established on Patience Island, RI. Meadow voles were collected from 5 locations throughout Rhode Island. At 4 of the field sites, M. pennsylvanicus represented only 4.0% (n = 141) of the animals captured. However, on Patience Island, M. pennsylvanicus was the sole small mammal collected (n = 48). Of the larval Ixodes scapularis Say obtained from the meadow voles on Patience Island, 62% (n = 78) was infected with B. burgdorferi. Meadow voles from all 5 locations were successfully infected with B. burgdorferi in the laboratory and were capable of passing the infection to xenodiagnostic I. scapularis larvae for 9 wk. We concluded that M. pennsylvanicus was physiologically capable of maintaining B. burgdorferi infection. However, in locations where Peromyscus leucopus (Rafinesque) is abundant, the role of M. pennsylvanicus as a primary reservoir for B. burgdorferi was reduced.

  15. Prevalence of Borrelia burgdorferi Sensu Lato in Ticks from Eastern China

    PubMed Central

    Hou, Juan; Ling, Feng; Chai, Chengliang; Lu, Ye; Yu, Xianghua; Lin, Junfen; Sun, Jimin; Chang, Yue; Ye, Xiaodong; Gu, Shiping; Pang, Weilong; Wang, Chengwei; Zheng, Xiaohua; Jiang, Jianmin; Chen, Zhiping; Gong, Zhenyu

    2015-01-01

    To explore the tick distribution and prevalence of Borrelia in Zhejiang Province, we performed a survey in nine sites. A total of 447 adult ticks of 11 species were captured and the dominant tick species were Haemaphysalis longicornis and Ixodes sinensis and the abundance of tick species in different areas varied significantly. Overall, 4.70% of the ticks were polymerase chain reaction (PCR) positive for Borrelia. The average PCR positive rates were 5.19% for H. longicornis, 3.45% for Amblyomma testudinarium, 1.06% for I. sinensis, 5.00% for Rhipicephalus (Boophilus) microplus, and 19.44% for Ixodes granulatus, respectively. No Borrelia DNA was detected in Rhiphicephalus haemaphysaloides, Haemaphysalis yeni, Dermacentor taiwanensis, Haemaphysalis hystricis, Hyalomna asiaticum, and Ixodes ovatus. The prevalence of Borrelia was significantly different among tick species and the prevalence in I. granulatus was significantly higher than that in other tick species. Of note, experimentally confirmed vectors for B. burgdorferi s.l. including I. sinensis and I. granulatus were found in Zhejiang Province. Two species of B. burgdorferi s.l. exist in Zhejiang Province of which 12 sequences were most similar to the sequence of Borrelia garinii and nine sequences were most similar to the sequence of Borrelia valaisiana or Borrelia yangtze sp. nov. PMID:25548382

  16. First record of Borrelia burgdorferi B31 strain in Dermacentor nitens ticks in the northern region of Parana (Brazil)

    PubMed Central

    Gonçalves, Daniela Dib; Carreira, Teresa; Nunes, Mónica; Benitez, Aline; Lopes-Mori, Fabiana Maria Ruiz; Vidotto, Odilon; de Freitas, Julio Cesar; Vieira, Maria Luísa

    2013-01-01

    The aim of this study was to investigate the presence of DNA of Borrelia burgdorferi sensu lato (s.l.) in ticks that feed on horses used for animal traction in rural Jataizinho, Parana, Brazil. Between February and June 2008, a total of 224 ticks was collected of which 75% were identified as Dermacentor nitens and 25% as Amblyomma cajenense. To amplify B. burgdorferi s.l. DNA, the intergenic space region (ISR) between the 5S (rrf) 23S (rrl) rRNA genes was used as targets for nested-PCR. Two ticks of the D. nitens species were positive for B. burgdorferi s.l. Both species showed a fragment of 184 bp, but the sequencing revealed 99.9% homology with the B. burgdorferi sensu stricto (s.s.) strain B31. These results showed, for the first time, the presence of spirochete DNA infecting ticks that parasitize horses used for animal traction, in the rural municipality mentioned. In conclusion, this study opens up promising prospects for determining the infection rate of B. burgdorferi s.s. genospecies or other species in the equine population, as well as the impact of the infection rate on Lyme disease in the state of Parana. PMID:24516456

  17. Comparison of detection of Borrelia burgdorferi DNA and anti-Borrelia burgdorferi antibodies in patients with erythema migrans in north-eastern Poland

    PubMed Central

    Dunaj, Justyna; Zajkowska, Joanna; Czupryna, Piotr; Świerzbińska, Renata; Guziejko, Katarzyna; Aleksiejczuk, Piotr; Barry, Gerald; Kondrusik, Maciej; Pancewicz, Sławomir

    2015-01-01

    Introduction Diagnostic methods in erythema migrans are still not standardized. Aim To evaluate the frequency of Borrelia burgdorferi s.l. DNA presence in patients with erythema migrans (EM); to assess the polymerase chain reaction (PCR) procedure for detecting B. burgdorferi s.l. DNA in patients with the skin form of Lyme borreliosis; and to compare the results of the PCR-based method with the traditional ELISA method. Material and methods Skin biopsy and blood samples from 93 patients with EM were examined for B. burgdorferi s.l. DNA detection (PCR). Seventy-one of these patients were examined for the presence of anti-B. burgdorferi s.l. antibodies (ELISA). Results Borrelia burgdorferi s.l. DNA was detected in 48% of the skin biopsy specimens and in 2% of blood samples. Only 1 patient was PCR positive in both blood and skin samples. Seventy percent of patients whose PCR results were positive were bitten by a tick less than 14 days before. IgM anti-B. burgdorferi s.l – specific antibodies were present in the serum of 35% of patients and IgG antibodies – in 30% of patients. Seventeen percent were positive in both IgM and IgG. Conclusions Polymerase chain reaction of skin biopsy specimens seems to be currently the most sensitive and specific test for the diagnosis of patients with EM, especially in patients with a short duration of the disease (< 14 days) but still its effectiveness is much lower than expected. Polymerase chain reaction of blood samples cannot be recommended at the present time for the routine diagnostic of patients with EM. PMID:25821421

  18. In vitro activities of faropenem, ertapenem, imipenem and meropenem against Borrelia burgdorferi s.l.

    PubMed

    Rödel, Rebecca; Freyer, Alexandra; Bittner, Thomas; Schäfer, Volker; Hunfeld, Klaus-Peter

    2007-07-01

    Little is known about the in vitro activity of penems and carbapenems against the spirochete Borrelia burgdorferi. Here, faropenem, ertapenem, imipenem and meropenem as well as the third-generation cephalosporin ceftriaxone and tobramycin were tested in vitro against 11 isolates of the B. burgdorferi sensu lato complex. On a microg/mL basis, ertapenem was the most potent carbapenem (minimal inhibitory concentration (MIC) range: 0.015-0.125 microg/mL), with in vitro activity comparable with that of ceftriaxone against Borrelia. These findings are supported by the results of time-kill experiments in a Borrelia afzelii skin isolate, demonstrating a >3 log10 unit (99.9%) reduction of the inoculum after 96 h of exposure to either drug at a concentration of three log2 unit dilutions above the respective MIC. PMID:17512703

  19. Borrelia burgdorferi Proteins Whose Expression Is Similarly Affected by Culture Temperature and pH

    PubMed Central

    Ramamoorthy, Ramesh; Scholl-Meeker, Dorothy

    2001-01-01

    Previously, we had demonstrated the upregulation in the expression of several proteins, including the lipoproteins OspC and P35, of Borrelia burgdorferi in the stationary growth phase. Since the expression of OspC is also known to be affected by culture temperature and pH, we examined the effects of both variables on the expression of the remaining stationary-phase-upregulated proteins. Our study revealed that the expression of each of the remaining stationary-phase-upregulated proteins, P35 included, was also influenced by culture temperature; these proteins were selectively expressed at 34°C but not at 24°C. Significantly, the expression of a majority of these proteins was also affected by culture pH, since they were abundantly expressed at pH 7.0 (resembling the tick midgut pH of 6.8 during feeding) but only sparsely at pH 8.0 (a condition closer to that of the unfed tick midgut pH of 7.4). We propose that this group of B. burgdorferi proteins, which in culture is selectively expressed under conditions of 34°C and pH 7.0, may be induced in the tick midgut during the feeding event. Furthermore, the differential and coordinate expression of these proteins under different environmental conditions suggests that the encoding genes may be coregulated. PMID:11254645

  20. Structure of decorin binding protein B from Borrelia burgdorferi and its interactions with glycosaminoglycans.

    PubMed

    Feng, Wei; Wang, Xu

    2015-12-01

    Decorin-binding proteins (DBPs), DBPA and DBPB, are surface lipoproteins on Borrelia burgdorferi, the causative agent of Lyme disease. DBPs bind to the connective tissue proteoglycan decorin and facilitate tissue colonization by the bacterium. Although structural and biochemical properties of DBPA are well understood, little is known about DBPB. In current work, we determined the solution structure of DBPB from strain B31 of B. burgdorferi and characterized its interactions with glycosaminoglycans (GAGs). Our structure shows that DBPB adopts the same topology as DBPA, but possesses a much shorter terminal helix, resulting in a longer unstructured C-terminal tail, which is also rich in basic amino acids. Characterization of DBPB-GAG interactions reveals that, despite similar GAG affinities of DBPA and DBPB, the primary GAG-binding sites in DBPB are different from DBPA. In particular, our results indicate that lysines in the C-terminus of DBPB are vital to DBPB's ability to bind GAGs whereas C-terminal tail for DBPA from strain B31 only plays a minor role in facilitating GAG bindings. Furthermore, the traditional GAG-binding pocket important to DBPA-GAG interactions is only secondary to DBPB's GAG-binding ability.

  1. Dynamics of connective-tissue localization during chronic Borrelia burgdorferi infection.

    PubMed

    Imai, Denise M; Feng, Sunlian; Hodzic, Emir; Barthold, Stephen W

    2013-08-01

    The etiologic agent of Lyme disease, Borrelia burgdorferi, localizes preferentially in the extracellular matrix during persistence. In chronically infected laboratory mice, there is a direct association between B. burgdorferi and the proteoglycan decorin, which suggests that decorin has a role in defining protective niches for persistent spirochetes. In this study, the tissue colocalization of B. burgdorferi with decorin and the dynamics of borrelial decorin tropism were evaluated during chronic infection. Spirochetes were found to colocalize absolutely with decorin, but not collagen I in chronically infected immunocompetent C3H mice. Passive immunization of infected C3H-scid mice with B. burgdorferi-specific immune serum resulted in the localization of spirochetes in decorin-rich microenvironments, with clearance of spirochetes from decorin-poor microenvironments. In passively immunized C3H-scid mice, tissue spirochete burdens were initially reduced, but increased over time as the B. burgdorferi-specific antibody levels waned. Concurrent repopulation of the previously cleared decorin-poor microenvironments was observed with the rising tissue spirochete burden and declining antibody titer. These findings indicate that the specificity of B. burgdorferi tissue localization during chronic infection is determined by decorin, driven by the borrelia-specific antibody response, and fluctuates with the antibody response. PMID:23797360

  2. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden.

    PubMed

    Jaenson, T G T; Eisen, L; Comstedt, P; Mejlon, H A; Lindgren, E; Bergström, S; Olsen, B

    2009-09-01

    The distributional area of the tick Ixodes ricinus (L.), the primary European vector to humans of Lyme borreliosis spirochaetes (Borrelia burgdorferi sensu lato) and tick-borne encephalitis virus, appears to be increasing in Sweden. It is therefore important to determine which environmental factors are most useful to assess risk of human exposure to this tick and its associated pathogens. The geographical distribution of I. ricinus in Sweden was analysed with respect to vegetation zones and climate. The northern limit of I. ricinus and B. burgdorferi s.l. in Sweden corresponds roughly to the northern limit of the southern boreal vegetation zone, and is characterized climatically by snow cover for a mean duration of 150 days and a vegetation period averaging 170 days. The zoogeographical distribution of I. ricinus in Sweden can be classified as southerly-central, with the centre of the distribution south of the Limes Norrlandicus. Ixodes ricinus nymphs from 13 localities in different parts of Sweden were examined for the presence of B. burgdorferi s.l. and found to be infected with Borrelia afzelii and Borrelia garinii. Tick sampling localities were characterized on the basis of the density of Borrelia-infected I. ricinus nymphs, presence of specific mammals, dominant vegetation and climate. Densities of I. ricinus nymphs and Borrelia-infected nymphs were significantly correlated, and nymphal density can thus serve as a general indicator of risk for exposure to Lyme borreliosis spirochaetes. Analysis of data from this and other studies suggests that high densities of Borrelia-infected nymphs typically occur in coastal, broadleaf vegetation and in mixed deciduous/spruce vegetation in southern Sweden. Ixodes ricinus populations consistently infected with B. burgdorferi s.l. can occur in: (a) biotopes with shrews, rodents, hares and birds; (b) biotopes with shrews, rodents, hares, deer and birds, and (c) island locations where the varying hare (Lepus timidus) is the

  3. Detection of Borrelia burgdorferi sensu lato DNA in the blood of wild bison from Białowieza primeval forest in eastern Poland.

    PubMed

    Adaszek, L; Dzięgiel, B; Krzysiak, M; Skrzypczak, M; Adaszek, M; Staniec, M; Wyłupek, D; Winiarczyk, S

    2014-01-01

    The aim of the present study was to investigate the occurrence of Borrelia burgdorferi sensu lato DNA in a group of 120 wild bison (Bison bonasus) from the Bialowieza Primeval Forest in eastern Poland. The PCR technique revealed the presence of 16S RNA of Borrelia burgdorferi sensu lato in the blood of 16 out of 120 examined animals. DNA amplification by means of primers SC1 and SC2 gave a product with a size of 300-bp. The sequences of the PCR products obtained showed 100% homology with each other and 100% homology with B. burgdorferi s.1. 16S RNA gene DQ111061. Results of this study suggest that wild bison are important in maintaining agents of Lyme borreliosis, and that studies of reservoir competence of this species are indicated.

  4. The Western Progression of Lyme Disease: Infectious and Nonclonal Borrelia burgdorferi Sensu Lato Populations in Grand Forks County, North Dakota

    PubMed Central

    Stone, Brandee L.; Russart, Nathan M.; Gaultney, Robert A.; Floden, Angela M.; Vaughan, Jefferson A.

    2014-01-01

    Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota. PMID:25304515

  5. The Western progression of lyme disease: infectious and Nonclonal Borrelia burgdorferi Sensu Lato populations in Grand Forks County, North Dakota.

    PubMed

    Stone, Brandee L; Russart, Nathan M; Gaultney, Robert A; Floden, Angela M; Vaughan, Jefferson A; Brissette, Catherine A

    2015-01-01

    Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota. PMID:25304515

  6. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi.

    PubMed

    Novak, Elizabeth A; Sultan, Syed Z; Motaleb, Md A

    2014-01-01

    In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts to its changing environment is through cyclic-di-GMP (c-di-GMP) signaling. c-di-GMP has been shown to be instrumental in orchestrating the adaptation of B. burgdorferi to the tick environment. B. burgdorferi possesses only one set of c-di-GMP-metabolizing genes (one diguanylate cyclase and two distinct phosphodiesterases) and one c-di-GMP-binding PilZ-domain protein designated as PlzA. While studies in the realm of c-di-GMP signaling in B. burgdorferi have exploded in the last few years, there are still many more questions than answers. Elucidation of the importance of c-di-GMP signaling to B. burgdorferi may lead to the identification of mechanisms that are critical for the survival of B. burgdorferi in the tick phase of the enzootic cycle as well as potentially delineate a role (if any) c-di-GMP may play in the transmission and virulence of B. burgdorferi during the enzootic cycle, thereby enabling the development of effective drugs for the prevention and/or treatment of Lyme disease.

  7. Borrelia burgdorferi sensu lato and co-infections with Anaplasma phagocytophilum and Rickettsia spp. in Ixodes ricinus in Hamburg, Germany.

    PubMed

    May, K; Jordan, D; Fingerle, V; Strube, C

    2015-12-01

    To obtain initial data on Borrelia burgdorferi sensu lato (Spirochaetales: Spirochaetaceae) in Ixodes ricinus (Ixodida: Ixodidae) ticks in Hamburg, Germany, 1400 questing ticks were collected by flagging at 10 different public recreation areas in 2011 and analysed using probe-based quantitative real-time polymerase chain reaction. The overall rate of infection with B. burgdorferi s.l. was 34.1%; 30.0% of adults were infected (36.7% of females and 26.0% of males), as were 34.5% of nymphs. Significant differences in tick infection rates were observed between the spring and summer/autumn months, as well as among sampling locations. Borrelia genospecies identification by reverse line blotting was successful in 43.6% of positive tick samples. The most frequent genospecies was Borrelia garinii/Borrelia bavariensis, followed by Borrelia afzelii, Borrelia valaisiana, B. burgdorferi sensu stricto, Borrelia spielmanii, Borrelia bissettii and Borrelia lusitaniae. Based on previously published data, co-infection of Borrelia and Rickettsiales spp. was determined in 25.8% of ticks. Overall, 22.9% of ticks were co-infected with Rickettsia spp. (Rickettsiales: Rickettsiaceae), 1.7% with Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and 1.2% with both pathogens. Study results show a high prevalence of Borrelia-positive ticks in recreation areas in the northern German city of Hamburg and the potential health risk to humans in these areas should not be underestimated.

  8. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization

    PubMed Central

    Lin, Yi-Pin; Chen, Qiang; Ritchie, Jennifer A.; Dufour, Nicholas P.; Fischer, Joshua R.; Coburn, Jenifer; Leong, John M.

    2014-01-01

    SUMMARY Microbial pathogens that colonize multiple tissues commonly produce adhesive surface proteins that mediate attachment to cells and/or extracellular matrix in target organs. Many of these ‘adhesins’ bind to multiple ligands, complicating efforts to understand the role of each ligand-binding activity. Borrelia burgdorferi, the causative agent of Lyme disease, produces BBK32, first identified as a fibronectin-binding adhesin that promotes skin and joint colonization. BBK32 also binds to glycosaminoglycan (GAG), which, like fibronectin is ubiquitously present on cell surfaces. To determine which binding activity is relevant for BBK32-promoted infectivity, we generated a panel of BBK32 truncation and internal deletion mutants, and identified variants specifically defective for binding to either fibronectin or GAG. These variants promoted bacterial attachment to different mammalian cell types in vitro, suggesting that fibronectin and GAG binding may play distinct roles during infection. Intravenous inoculation of mice with a high-passage non-infectious B. burgdorferi strain that produced wild type BBK32 or BBK32 mutants defective for GAG or fibronectin binding, revealed that only GAG-binding activity was required for significant localization to joints at 60 minutes post-infection. An otherwise infectious B. burgdorferi strain producing BBK32 specifically deficient in fibronectin binding was fully capable of both skin and joint colonization in the murine model, whereas a strain producing BBK32 selectively attenuated for GAG binding colonized the inoculation site but not knee or tibiotarsus joints. Thus, the BBK32 fibronectin- and GAG-binding activities are separable in vivo, and BBK32-mediated GAG binding, but not fibronectin binding, contributes to joint colonization. PMID:25486989

  9. Reservoir competence of four chaparral-dwelling rodents for Borrelia burgdorferi in California.

    PubMed

    Brown, R N; Lane, R S

    1996-01-01

    Aspects of the reservoir competence of four rodents for the Lyme disease spirochete, Borrelia burgdorferi, were evaluated in California. Rodents were live-trapped and ear-punch biopsies were cultured during each season. A second set of biopsies was cultured from representative individuals after 2-3 weeks of captivity and the results of culturing biopsies taken on both dates were compared with the results of feeding Ixodes pacificus larvae on hosts xenodiagnostically. The prevalence of infections did not differ significantly between dusky-footed woodrats (Neotoma fuscipes) and California kangaroo rats (Dipodomys californicus) nor among seasons. Combined results of the three tests showed that 85.7% of dusky-footed woodrats (n = 21) and 78.6% of California kangaroo rats (n = 14) were infected with B. burgdorferi. In contrast, only 22.2% of brush mice (Peromyscus boylii) (n = 14) and 7.1% of pinyon mice (P. truei) (n = 9) were infected. The sensitivity of culturing ear-punch biopsies as an assay for borrelial infection was significantly greater when biopsies were taken after a short period of captivity (0.89) rather than on the day of capture (0.52). Tick xenodiagnosis, in which I. pacificus was used as the vector, revealed borrelial infections in 90.3% of infected rodents. Spirochetes were observed in 37.7% of 239, 45.2% of 155, 60.0% of 10, and 7.1% of 14 cultures of nymphal I. pacificus fed as larvae on naturally infected woodrats, kangaroo rats, brush mice, and a pinyon mouse, respectively. The mean prevalence of infection in xenodiagnostic ticks varied significantly among host species with a greater proportion of ticks infected while feeding on woodrats and kangaroo rats than on mice. This study reconfirms previous reports that implicated woodrats and kangaroo rats as reservoirs of B. burgdorferi in California.

  10. Mammal Diversity and Infection Prevalence in the Maintenance of Enzootic Borrelia burgdorferi along the Western Coastal Plains of Maryland

    PubMed Central

    ANDERSON, JENNIFER M.; SWANSON, KATHERINE I.; SCHWARTZ, TIMOTHY R.; GLASS, GREGORY E.; NORRIS, DOUGLAS E.

    2014-01-01

    The primary vector of Borrelia burgdorferi in North America, Ixodes scapularis, feeds on various mammalian, avian, and reptilian hosts. Several small mammal hosts; Peromyscus leucopus, Tamias striatus, Microtus pennsylvanicus, and Blarina spp. can serve as reservoirs in an enzootic cycle of Lyme disease. The primary reservoir in the northeast United States is the white-footed mouse, P. leucopus. The infection prevalence of this reservoir as well as the roles of potential secondary reservoirs has not been established in southern Maryland, a region of low to moderate Borrelia infection in humans. Intensive trapping at 96 locations throughout the western Coastal Plains of Maryland was conducted and we found that 31.6% of P. leucopus were infected with B. burgdorferi. Sequence and phylogenetic analysis revealed that only B. burgdorferi sensu stricto circulated in southern Maryland. Feral house mice and voles also were infected and may serve as secondary hosts. Peromyscus gender, age and month of capture were significantly associated with infection status. Larval I. scapularis were the dominant ectoparasite collected from captured rodents even though host seeking A. americanum and D. variabilis were collected in greater numbers across the sampling region. Our findings illustrate that the enzootic cycle of LD is maintained in the western Coastal Plains region of southern Maryland between I. scapularis and P. leucopus as the dominant reservoir. PMID:17187577

  11. Surveillance for Borrelia burgdorferi in Ixodes Ticks and Small Rodents in British Columbia*

    PubMed Central

    Lee, Min-Kuang; Man, Stephanie; Fernando, Keerthi; Wong, Quantine; Hojgaard, Andrias; Tang, Patrick; Mak, Sunny; Henry, Bonnie; Patrick, David M.

    2015-01-01

    Abstract To determine the prevalence of Borrelia burgdorferi in British Columbian ticks, fieldwork was conducted over a 2-year period. In all, 893 ticks (Ixodes pacificus, I. angustus, I. soricis, Ixodes spp., and Dermacentor andersoni) of different life stages were retrieved from 483 small rodents (Peromyscus maniculatus, Perognathus parvus, and Reithrodontomys megalotis). B. burgdorferi DNA was detected in 5 out of 359 tick pools, and 41 out of 483 mice were serologically confirmed to have antibodies against B. burgdorferi. These results were consistent with previous studies, data from passive surveillance in British Columbia, and data from neighboring states in the Pacific Northwest, suggesting a continually low prevalence of B. burgdorferi in British Columbia ticks. PMID:26502354

  12. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle

    NASA Astrophysics Data System (ADS)

    Hofmeester, T. R.; Coipan, E. C.; van Wieren, S. E.; Prins, H. H. T.; Takken, W.; Sprong, H.

    2016-04-01

    Background. In the northern hemisphere, ticks of the Ixodidae family are vectors of diseases such as Lyme borreliosis, Rocky Mountain spotted fever and tick-borne encephalitis. Most of these ticks are generalists and have a three-host life cycle for which they are dependent on three different hosts for their blood meal. Finding out which host species contribute most in maintaining ticks and the pathogens they transmit, is imperative in understanding the drivers behind the dynamics of a disease. Methods. We performed a systematic review to identify the most important vertebrate host species for Ixodes ricinus and Borrelia burgdorferi s.l. as a well-studied model system for tick-borne diseases. We analyzed data from 66 publications and quantified the relative contribution for 15 host species. Review results. We found a positive correlation between host body mass and tick burdens for the different stages of I. ricinus. We show that nymphal burdens of host species are positively correlated with infection prevalence with B. burgdorferi s.l., which is again positively correlated with the realized reservoir competence of a host species for B. burgdorferi s.l. Our quantification method suggests that only a few host species, which are amongst the most widespread species in the environment (rodents, thrushes and deer), feed the majority of I. ricinus individuals and that rodents infect the majority of I. ricinus larvae with B. burgdorferi s.l. Discussion. We argue that small mammal-transmitted Borrelia spp. are maintained due to the high density of their reservoir hosts, while bird-transmitted Borrelia spp. are maintained due to the high infection prevalence of their reservoir hosts. Our findings suggest that Ixodes ricinus and Borrelia burgdorferi s.l. populations are maintained by a few widespread host species. The increase in distribution and abundance of these species, could be the cause for the increase in Lyme borreliosis incidence in Europe in recent decades.

  13. Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird

    PubMed Central

    2014-01-01

    Background The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. Methods Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. Results Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. Conclusions Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia

  14. Large Scale Spatial Risk and Comparative Prevalence of Borrelia miyamotoi and Borrelia burgdorferi Sensu Lato in Ixodes pacificus

    PubMed Central

    Padgett, Kerry; Bonilla, Denise; Kjemtrup, Anne; Vilcins, Inger-Marie; Yoshimizu, Melissa Hardstone; Hui, Lucia; Sola, Milagros; Quintana, Miguel; Kramer, Vicki

    2014-01-01

    Borrelia miyamotoi is a newly described emerging pathogen transmitted to people by Ixodes species ticks and found in temperate regions of North America, Europe, and Asia. There is limited understanding of large scale entomological risk patterns of B. miyamotoi and of Borreila burgdorferi sensu stricto (ss), the agent of Lyme disease, in western North America. In this study, B. miyamotoi, a relapsing fever spirochete, was detected in adult (n = 70) and nymphal (n = 36) Ixodes pacificus ticks collected from 24 of 48 California counties that were surveyed over a 13 year period. Statewide prevalence of B. burgdorferi sensu lato (sl), which includes B. burgdorferi ss, and B. miyamotoi were similar in adult I. pacificus (0.6% and 0.8%, respectively). In contrast, the prevalence of B. burgdorferi sl was almost 2.5 times higher than B. miyamotoi in nymphal I. pacificus (3.2% versus 1.4%). These results suggest similar risk of exposure to B. burgdorferi sl and B. miyamotoi from adult I. pacificus tick bites in California, but a higher risk of contracting B. burgdorferi sl than B. miyamotoi from nymphal tick bites. While regional risk of exposure to these two spirochetes varies, the highest risk for both species is found in north and central coastal California and the Sierra Nevada foothill region, and the lowest risk is in southern California; nevertheless, tick-bite avoidance measures should be implemented in all regions of California. This is the first study to comprehensively evaluate entomologic risk for B. miyamotoi and B. burgdorferi for both adult and nymphal I. pacificus, an important human biting tick in western North America. PMID:25333277

  15. First detection of Borrelia burgdorferi sensu lato DNA in king penguins (Aptenodytes patagonicus halli).

    PubMed

    Schramm, Frédéric; Gauthier-Clerc, Michel; Fournier, Jean-Charles; McCoy, Karen D; Barthel, Cathy; Postic, Danièle; Handrich, Yves; Le Maho, Yvon; Jaulhac, Benoît

    2014-10-01

    The hard tick Ixodes uriae parasitises a wide range of seabird species in the circumpolar areas of both Northern and Southern hemispheres and has been shown to be infected with Borrelia burgdorferi sensu lato, the bacterial agents of Lyme borreliosis. Although it is assumed that seabirds represent viable reservoir hosts, direct demonstrations of infection are limited to a single study from the Northern hemisphere. Here, the blood of 50 tick-infested adult king penguins (Aptenodytes patagonicus halli) breeding in the Crozet Archipelago (Southern Indian Ocean) was examined for B. burgdorferi sl exposure by serology and for spirochetemia by in vitro DNA amplification. Four birds were found positive by serology, whereas B. burgdorferi sl DNA was detected in two other birds. Our data therefore provide the first direct proof of Borrelia burgdorferi sl spirochetes in seabirds of the Southern hemisphere and indicate a possible reservoir role for king penguins in the natural maintenance of this bacterium. Although the bacterial genetic diversity present in these hosts and the infectious period for tick vectors remain to be elucidated, our results add to a growing body of knowledge on the contribution of seabirds to the complex epizootiology of Lyme disease and the global dissemination of B. burgdorferi sl spirochetes. PMID:25150726

  16. Molecular characterization of the p100 gene of Borrelia burgdorferi strain PKo.

    PubMed

    Jauris-Heipke, S; Fuchs, R; Hofmann, A; Lottspeich, F; Preac-Mursic, V; Soutschek, E; Will, G; Wilske, B

    1993-12-01

    The p100 gene coding for the p100 protein of Borrelia burgdorferi strain PKo has been cloned, sequenced and expressed in Escherichia coli. An open reading frame including upstream and downstream sequences with potential translation and transcription signals could be identified. The reading frame consists of 1989 nucleotides corresponding to a protein of 663 amino acids and a calculated molecular mass of 75.8 kDa. The protein has a leader peptide and is processed without modification at the N-terminus. A high percentage of amino acid sequence identity could be found to the high-molecular mass protein p83/p93 of B. burgdorferi strain B31.

  17. Interleukin-10 (IL-10) inhibits Borrelia burgdorferi-induced IL-17 production and attenuates IL-17-mediated Lyme arthritis.

    PubMed

    Hansen, Emily S; Medić, Velinka; Kuo, Joseph; Warner, Thomas F; Schell, Ronald F; Nardelli, Dean T

    2013-12-01

    Previous studies have shown that cells and cytokines associated with interleukin-17 (IL-17)-driven inflammation are involved in the arthritic response to Borrelia burgdorferi infection. Here, we report that IL-17 is a contributing factor in the development of Lyme arthritis and show that its production and histopathological effects are regulated by interleukin-10 (IL-10). Spleen cells obtained from B. burgdorferi-infected, "arthritis-resistant" wild-type C57BL/6 mice produced low levels of IL-17 following stimulation with the spirochete. In contrast, spleen cells obtained from infected, IL-10-deficient C57BL/6 mice produced a significant amount of IL-17 following stimulation with B. burgdorferi. These mice developed significant arthritis, including erosion of the bones in the ankle joints. We further show that treatment with antibody to IL-17 partially inhibited the significant hind paw swelling and histopathological changes observed in B. burgdorferi-infected, IL-10-deficient mice. Taken together, these findings provide additional evidence of a role for IL-17 in Lyme arthritis and reveal an additional regulatory target of IL-10 following borrelial infection.

  18. Molecular characterization of a 35-kilodalton protein of Borrelia burgdorferi, an antigen of diagnostic importance in early Lyme disease.

    PubMed Central

    Gilmore, R D; Kappel, K J; Johnson, B J

    1997-01-01

    Antibodies against a 35-kDa antigen of Borrelia burgdorferi are detectable in the serum of about half of patients with early Lyme disease. The gene encoding this antigen was isolated from a genomic library of B. burgdorferi B31 (low passage), and full-length expression of the recombinant gene product was achieved in Escherichia coli. Antiserum raised against the recombinant protein was reactive with a B. burgdorferi protein of the same molecular size as the diagnostic 35-kDa antigen cited in an earlier study of criteria for the sero-diagnosis of early Lyme disease. Also, the recombinant protein was reactive with serum from patients with early Lyme disease who were seropositive for the 35-kDa antigen. DNA sequence analysis of the gene indicated an open reading frame of 909 bp encoding a protein with a calculated molecular mass of 34.3 kDa. This gene did not possess the usual initiation codon ATG but rather probably used a TTG codon. The deduced amino acid sequence of the N terminus exhibited a motif similar to that for signal peptides of lipoproteins. Southern blotting revealed a chromosomal location for this gene; and it was specific for B. burgdorferi, B. afzellii, and B. garinii but not for B. hermsii, B. coriaciae, or B. turicatae. PMID:8968885

  19. An OspC-specific monoclonal antibody passively protects mice from tick-transmitted infection by Borrelia burgdorferi B31.

    PubMed

    Mbow, M L; Gilmore, R D; Titus, R G

    1999-10-01

    A murine monoclonal antibody directed against Borrelia burgdorferi B31 outer surface protein C (OspC) antigen was generated by a method whereby borreliae were inoculated into the mouse via the natural transmission mode of tick feeding. Passive immunization with this antibody resulted in protection of C3H/HeJ and outbred mice from a tick-transmitted challenge infection. Immunofluorescence staining of borrelia cells indicated surface exposure of the OspC epitope reactive with the monoclonal antibody.

  20. Molecular and immunological characterization of the p83/100 protein of various Borrelia burgdorferi sensu lato strains.

    PubMed

    Rössler, D; Eiffert, H; Jauris-Heipke, S; Lehnert, G; Preac-Mursic, V; Teepe, J; Schlott, T; Soutschek, E; Wilske, B

    1995-05-01

    The complete coding regions of the chromosomally encoded p83/100 protein of four Borrelia garinii strains and one Borrelia burgdorferi sensu stricto strain have been amplified by the polymerase chain reaction (PCR), cloned and sequenced. From alignment studies with the deduced amino acid sequences presented here, and five other published p83/100 sequences, the most heterologous region of the p83/100 molecule was identified to be located between amino acid position 390-540. To study the structure of this heterogeneous region, and internal fragment of the p83/100 genes from 11 additional B. burgdorferi sensu lato strains was amplified by PCR. The PCR products were analyzed by DNA sequencing and restriction enzyme analysis. These internal p83/100 fragments varied in size and sequence. Cluster analysis of internal p83/100 fragments, as well as restriction enzyme analysis, revealed three major groups in accordance with grouping into the three species causing Lyme disease. Strains within the same species (six B. burgdorferi sensu stricto and six B. afzelii strains) showed similar p83/100 partial structures. Nevertheless, nine B. garinii strains showed more sequence variations and could be further divided into two major subgroups. One group is represented by OspA serotype 4 strains, the other more heterogeneous group is represented by OspA serotypes 3, 5, 6 and 7 strains. Phenotypic analysis with four p83/100-specific monoclonal antibodies revealed four distinct reactivity patterns. Antibody L100 1B4 recognized a common epitope of B. burgdorferi sensu stricto and B. afzelii. Antibodies L100 17D3 and L100 18B4 were reactive with an epitope shared by strains of all three species. The broadest reactivity was shown by L100 18B4 which, in contrast to L100 17D3, additionally recognized the relapsing fever borreliae B. turicatae and B. hermsii. L100 8B8 detected a subgroup of the B. burgdorferi sensu stricto strains. Since comparison of the p83/100 molecule with sequences from

  1. CD4+ T Cells Promote Antibody Production but Not Sustained Affinity Maturation during Borrelia burgdorferi Infection

    PubMed Central

    Elsner, Rebecca A.; Hastey, Christine J.

    2014-01-01

    CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response to Borrelia burgdorferi appears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality of B. burgdorferi infection-induced CD4 TFH cells. We report that CD4 T cells were effectively primed and TFH cells induced after B. burgdorferi infection. These CD4 T cells contributed to the control of B. burgdorferi burden and supported the induction of B. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependent B. burgdorferi protein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells. In vitro T-B cocultures demonstrated that T cells isolated from B. burgdorferi-infected but not B. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responses in vivo. The data further suggest that B. burgdorferi infection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy. PMID:25312948

  2. Collections of adult Ixodes dammini in Indiana, 1987-1990, and the isolation of Borrelia burgdorferi.

    PubMed

    Pinger, R R; Holycross, J; Ryder, J; Mummert, M

    1991-09-01

    The collection records for Ixodes dammini Spielman, Clifford, Piesman & Corwin in Indiana are summarized for the period 1987-1990. In 1990, 13 of 729 deer examined were found to harbor adult I. dammini ticks. Eleven of these ticks were collected from 10 deer at a site in Newton County in northwestern Indiana. Borrelia burgdorferi spirochetes were isolated from a single female I. dammini tick collected from this site.

  3. Evidence that Borrelia burgdorferi immunodominant proteins p100, p94 and p83 are identical.

    PubMed

    Ditton, H J; Neuss, M; Zöller, L

    1992-07-15

    Recently there have been reports on high-molecular mass components of Borrelia burgdorferi, namely the p100, p94 and p83, which claimed these proteins to be specific marker antigens for the serodiagnosis of late Lyme borreliosis. The nucleotide sequences of the p100 and p83 have been published. The alignment of the deduced N-terminal amino acid sequences with the N-terminal sequence of the p94 now provides evidence that all three proteins are identical.

  4. High-throughput plasmid content analysis of Borrelia burgdorferi B31 by using Luminex multiplex technology.

    PubMed

    Norris, Steven J; Howell, Jerrilyn K; Odeh, Evelyn A; Lin, Tao; Gao, Lihui; Edmondson, Diane G

    2011-02-01

    Borrelia burgdorferi, the causative agent of Lyme disease in North America, is an invasive pathogen that causes persistent multiorgan manifestations in humans and other mammals. Genetic studies of this bacterium are complicated by the presence of multiple plasmid replicons, many of which are readily lost during in vitro culture. The analysis of B. burgdorferi plasmid content by plasmid-specific PCR and agarose gel electrophoresis or other existing techniques is informative, but these techniques are cumbersome and challenging to perform in a high-throughput manner. In this study, a PCR-based Luminex assay was developed for determination of the plasmid content of the strain B. burgdorferi B31. This multiplex, high-throughput method allows simultaneous detection of the plasmid contents of many B. burgdorferi strains in a 96-well format. The procedure was used to evaluate the occurrence of plasmid loss in 44 low-passage B. burgdorferi B31 clones and in a library of over 4,000 signature-tagged mutagenesis (STM) transposon mutant clones. This analysis indicated that only 40% of the clones contained all plasmids, with (in order of decreasing frequency) lp5, lp56, lp28-1, lp25, cp9, lp28-4, lp28-2, and lp21 being the most commonly missing plasmids. These results further emphasize the need for careful plasmid analysis in Lyme disease Borrelia studies. Adaptations of this approach may also be useful in the evaluation of plasmid content and chromosomal gene variations in additional Lyme disease Borrelia strains and other organisms with variable genomes and in the correlation of these genetic differences with pathogenesis and other biological properties.

  5. The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks.

    PubMed

    Bourret, Travis J; Lawrence, Kevin A; Shaw, Jeff A; Lin, Tao; Norris, Steven J; Gherardini, Frank C

    2016-01-01

    The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks. PMID:27656169

  6. Survey for Ixodes spp. and Borrelia burgdorferi in southeastern Wisconsin and northeastern Illinois.

    PubMed

    Callister, S M; Nelson, J A; Schell, R F; Jobe, D A; Bautz, R; Agger, W A; Coggins, J

    1991-02-01

    Forested areas adjacent to Milwaukee, Wis., and Chicago, Ill., were investigated for rodents and ticks infected with Borrelia burgdorferi, the causative agent of Lyme disease. White-footed mice (Peromyscus leucopus or Peromyscus maniculatus), meadow voles (Microtus pennsylvanicus), and eastern chipmunks (Tamias striatus) were captured; and specimens from these animals were cultured for B. burgdorferi to define whether the midwestern Lyme disease area currently encompasses these large metropolitan centers. During 1988, B. burgdorferi was successfully cultured from the tissues of two M. pennyslvanicus voles captured from the Chicago area. However, no Ixodes spp. ticks were captured. None of 274 animals captured from sites I3 and 12 additional sites in Wisconsin and Illinois during the summer of 1989 were infected with B. burgdorferi or Ixodes spp. In addition, no ticks were recovered when the underbrush in 11 contiguous areas was flagged. Apparently, B. burgdorferi is rarely found in these areas because of the absence of the appropriate tick vectors. Further studies are needed to monitor the dispersal of B. burgdorferi-infected Ixodes dammini into this heavily populated midwestern region. PMID:2007650

  7. Detection of Borrelia burgdorferi in urine of Peromyscus leucopus by inhibition enzyme-linked immunosorbent assay.

    PubMed

    Magnarelli, L A; Anderson, J F; Stafford, K C

    1994-03-01

    An inhibition enzyme-linked immunosorbent assay was developed to detect Borrelia burgdorferi, the etiologic agent of Lyme borreliosis, in urine from white-footed mice (Peromyscus leucopus). Of the 87 urine specimens tested from 87 mice collected in widely separated tick-infested sites in Connecticut, 57 (65.5%) contained detectable concentrations of spirochetal antigens. Forty-seven (62.7%) of 75 serum samples analyzed contained antibodies to B. burgdorferi. In culture work with tissues from bladders, kidneys, spleens, or ears, 50 of 87 mice (57.5%) were infected with B. burgdorferi. Thirty-eight (76%) of 50 infected mice had antigens of this spirochete in urine, while 36 (72%) individuals had infected bladders. Of those with infected bladders, 24 (66.7%) mice excreted subunits or whole cells of B. burgdorferi into urine. Successful culturing of B. burgdorferi from mouse tissues, the presence of serum antibodies to this bacterium, and detection of antigens to this spirochete in urine provide further evidence that multiple assays can be performed to verify the presence of B. burgdorferi in P. leucopus.

  8. The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks

    PubMed Central

    Bourret, Travis J.; Lawrence, Kevin A.; Shaw, Jeff A.; Lin, Tao; Norris, Steven J.; Gherardini, Frank C.

    2016-01-01

    The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks.

  9. The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks

    PubMed Central

    Bourret, Travis J.; Lawrence, Kevin A.; Shaw, Jeff A.; Lin, Tao; Norris, Steven J.; Gherardini, Frank C.

    2016-01-01

    The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is unclear whether ROS and RNS pose a significant challenge to B. burgdorferi in vivo. In this study, we screened a library of B. burgdorferi strains with mutations in DNA repair genes for increased susceptibility to ROS or RNS in vitro. Strains with mutations in the methyl-directed mismatch repair gene mutS1 are hypersensitive to killing by ROS, while strains lacking the nucleotide excision repair (NER) gene uvrB show increased susceptibility to both ROS and RNS. Therefore, mutS1-deficient and uvrB-deficient strains were compared for their ability to complete their infectious cycle in Swiss Webster mice and I. scapularis ticks to help identify sites of oxidative and nitrosative stresses encountered by B. burgdorferi in vivo. Both mutS1 and uvrB were dispensable for infection of mice, while uvrB promoted the survival of spirochetes in I. scapularis ticks. The decreased survival of uvrB-deficient B. burgdorferi was associated with the generation of RNS in I. scapularis midguts and salivary glands during feeding. Collectively, these data suggest that B. burgdorferi must withstand cytotoxic levels of RNS produced during infection of I. scapularis ticks. PMID:27656169

  10. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection

    PubMed Central

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-01-01

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients’ serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions. PMID:27527151

  11. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection.

    PubMed

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-08-03

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions.

  12. A Novel Isothermal Assay of Borrelia burgdorferi by Recombinase Polymerase Amplification with Lateral Flow Detection.

    PubMed

    Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin

    2016-01-01

    A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions. PMID:27527151

  13. Why are there several species of Borrelia burgdorferi sensu lato detected in dogs and humans?

    PubMed

    Skotarczak, Bogumiła

    2014-04-01

    Borrelia burgdorferi sensu lato is a group of spirochete bacteria species some of which cause borreliosis in humans and dogs. Humans and dogs are susceptible to illness from many of the same tick-borne pathogens, including B. burgdorferi s.l. (Bbsl). Little is known about the pathogenic role of the species of Bbsl in canines. The molecular methods which detect and amplify the DNA of borreliae and allow differentiating borreliae species or strains have not been used in canine diagnostics yet. Until now, it has been believed that in European dogs, like in humans, at least three pathogenic species occur but the most frequently described symptoms may be associated with the infection caused by B. burgdorferi sensu stricto species. A dog as well as a human is a host for many species of Bbsl, because borreliacidal ability of serum of dogs and humans is evident only in certain genospecies of Bbsl. Therefore both a dog and a human harbor more species than in case of some wild animal species which create older phylogenetic Bbsl species-host systems and these animals may act even as a non-competent reservoir host. Apart from many genospecies of Bbsl, a dog harbors other tick-borne agents and dual or triple infections may occur.

  14. Seroepidemiology of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in wild mice captured in northern Turkey.

    PubMed

    Güner, E S; Watanabe, M; Kadosaka, T; Polat, E; Gargili, A; Gulanber, A; Ohashi, N; Kaneda, K; Imai, Y; Masuzawa, T

    2005-04-01

    An expedition across the Asian part of the Black Sea coast and national parks of Northern Turkey was organized in the summer of 2001 to investigate the presence of Borrelia burgdorferi sensu lato (s.l.), Lyme borreliosis agent, and Anaplasma phagocytophilum, human granulocytic ehrlichiosis, agent, in wild mice. A total of 65 Apodemus flavicollis, Apodemus sylvaticus, Microtus epiroticus, Crocidura suaveolens and Mus macedonicus, were captured. Two out of 22 Apodemus sylvaticus specimens were seropositive for B. afzelii by enzyme-linked immunosorbent assay as confirmed by Western blotting, however cultures of skin and bladder samples from all small mammals in Barbour-Stoenner-Kelly's medium-II remained negative for B. burgdorferi s.l. All sera tested were negative for Anaplasma phagocytophilum by indirect immunofluorescent assay. The prevalence of B. burgdorferi s.l. and Anaplasma phagocytophilum is low in wild mice of the Asian part of Northern Turkey.

  15. A MODEST MODEL EXPLAINS THE DISTRIBUTION AND ABUNDANCE OF BORRELIA BURGDORFERI STRAINS

    PubMed Central

    BRISSON, DUSTIN; DYKHUIZEN, DANIEL E.

    2006-01-01

    The distribution and abundance of Borrelia burgdorferi, including human Lyme disease strains, is a function of its interactions with vertebrate species. We present a mathematical model describing important ecologic interactions affecting the distribution and abundance of B. burgdorferi strains, marked by the allele at the outer surface protein C locus, in Ixodes scapularis ticks, the principal vector. The frequency of each strain in ticks can be explained by the vertebrate species composition, the density of each vertebrate species, the number of ticks that feed on individuals of each species, and the rate at which those ticks acquire different strain. The model results are consistent with empirical data collected in a major Lyme disease focus in New England. An applicable extension of these results would be to predict the proportion of ticks carrying human infectious strains of B. burgdorferi from disease host densities and thus predict the local risk of contracting Lyme disease. PMID:16606995

  16. Susceptibility of the western fence lizard (Sceloporus occidentalis) to the Lyme borreliosis spirochete (Borrelia burgdorferi).

    PubMed

    Lane, R S

    1990-01-01

    Attempts to infect juvenile and adult western fence lizards (Sceloporus occidentalis) with the Lyme borreliosis spirochete (Borrelia burgdorferi) were largely unsuccessful. Spirochetes could not be isolated from the blood and various tissues of 14 lizards 21-32 days after they had been inoculated ip (n = 8) or sc (n = 6) with 10(6) or 10(8) B. burgdorferi representing 3 tick isolates, although 1 lizard apparently developed a transitory spirochetemia lasting 2 days. Similarly, spirochetes could not be detected in the blood or tissues of 5 lizards fed upon by 2- greater than 8 infected larvae or nymphs of the western black-legged tick (Ixodes pacificus). Sixty-five blood samples from 59 lizards in an endemic area and various tissues from 20 of the same lizards were also assayed for B. burgdorferi with negative results. The implications of these findings for the maintenance of this spirochete in natural foci are discussed. PMID:2301709

  17. Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States

    PubMed Central

    Cerar, Tjasa; Strle, Franc; Stupica, Dasa; Ruzic-Sabljic, Eva; McHugh, Gail; Steere, Allen C.

    2016-01-01

    Borrelia burgdorferi sensu stricto isolates from patients with erythema migrans in Europe and the United States were compared by genotype, clinical features of infection, and inflammatory potential. Analysis of outer surface protein C and multilocus sequence typing showed that strains from these 2 regions represent distinct genotypes. Clinical features of infection with B. burgdorferi in Slovenia were similar to infection with B. afzelii or B. garinii, the other 2 Borrelia spp. that cause disease in Europe, whereas B. burgdorferi strains from the United States were associated with more severe disease. Moreover, B. burgdorferi strains from the United States induced peripheral blood mononuclear cells to secrete higher levels of cytokines and chemokines associated with innate and Th1-adaptive immune responses, whereas strains from Europe induced greater Th17-associated responses. Thus, strains of the same B. burgdorferi species from Europe and the United States represent distinct clonal lineages that vary in virulence and inflammatory potential. PMID:27088349

  18. Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States.

    PubMed

    Cerar, Tjasa; Strle, Franc; Stupica, Dasa; Ruzic-Sabljic, Eva; McHugh, Gail; Steere, Allen C; Strle, Klemen

    2016-05-01

    Borrelia burgdorferi sensu stricto isolates from patients with erythema migrans in Europe and the United States were compared by genotype, clinical features of infection, and inflammatory potential. Analysis of outer surface protein C and multilocus sequence typing showed that strains from these 2 regions represent distinct genotypes. Clinical features of infection with B. burgdorferi in Slovenia were similar to infection with B. afzelii or B. garinii, the other 2 Borrelia spp. that cause disease in Europe, whereas B. burgdorferi strains from the United States were associated with more severe disease. Moreover, B. burgdorferi strains from the United States induced peripheral blood mononuclear cells to secrete higher levels of cytokines and chemokines associated with innate and Th1-adaptive immune responses, whereas strains from Europe induced greater Th17-associated responses. Thus, strains of the same B. burgdorferi species from Europe and the United States represent distinct clonal lineages that vary in virulence and inflammatory potential.

  19. Subcellular localization and chaperone activities of Borrelia burgdorferi Hsp60 and Hsp70.

    PubMed Central

    Scopio, A; Johnson, P; Laquerre, A; Nelson, D R

    1994-01-01

    Subcellular locations and chaperone functions of Hsp60 and Hsp70 with flagellin were investigated in Borrelia burgdorferi. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis of fractionated cells showed Hsp60 to be present in the soluble fractions and the Triton X-100 detergent-soluble membrane fraction at growth temperatures ranging from 20 to 37 degrees C. The relative amount of Hsp60 associated with the membrane increased with growth temperature. Hsp70 was found in soluble fractions at growth temperatures between 28 and 37 degrees C, but at 20 degrees C it was also present in the Triton X-100-insoluble membrane fraction. Immunoelectron microscopy revealed that the majority of Hsp60 was localized in the cytoplasm but a detectable fraction (approximately 30%) was associated with the cell envelope. The chaperone functions of Hsp60 and Hsp70 were analyzed by immunoprecipitation of [35S]methionine-labeled cell lysates under nondenaturing conditions in the presence or absence of ATP. Hsp70 was found to bind flagellin at all temperatures tested between 33 and 41 degrees C. This association could be decreased with ATP when cells had been incubated at 41 degrees C during radioactive labeling but not at lower temperatures. Both flagellin and Hsp70 were found to associate with Hsp60, forming a complex of the three proteins. Hsp70 association with this complex could be decreased with ATP, but flagellin binding to Hsp60 was ATP independent at all temperatures studied. Both Hsp70 and flagellin were inaccessible to monoclonal antibodies against them when bound to Hsp60. These studies suggest that in B. burgdorferi, a major function of Hsp60 and Hsp70 is in the molecular processing of flagellin. Images PMID:7961395

  20. Proteomic Analysis of Lyme Disease: Global Protein Comparison of Three Strains of Borrelia burgdorferi

    SciTech Connect

    Jacobs, Jon M.; Yang, Xiaohua; Luft, Benjamin J.; Dunn, John J.; Camp, David G.; Smith, Richard D.

    2005-04-01

    The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. It has been studied extensively to help understand its pathogenicity of infection and how it can persist in different mammalian hosts. We report the proteomic analysis of the archetype B. burgdorferi B31 strain and two other strains (ND40, and JD-1) having different Borrelia pathotypes using strong cation exchange fractionation of proteolytic peptides followed by high-resolution, reversed phase capillary liquid chromatography coupled with ion trap tandem mass spectrometric (LC-MS/MS) analysis. Protein identification was facilitated by the availability of the complete B31 genome sequence. A total of 665 Borrelia proteins were identified representing ~38 % coverage of the theoretical B31 proteome. A significant overlap was observed between the identified proteins in direct comparisons between any two strains (>72%), but distinct differences were observed among identified hypothetical and outer membrane proteins of the three strains. Such a concurrent proteomic overview of three Borrelia strains based upon only the B31 genome sequence is shown to provide significant insights into the presence or absence of specific proteins and a broad overall comparison among strains.

  1. Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library

    PubMed Central

    Feng, Jie; Wang, Ting; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2014-01-01

    Although antibiotic treatment for Lyme disease is effective in the majority of cases, especially during the early phase of the disease, a minority of patients suffer from post-treatment Lyme disease syndrome (PTLDS). It is unclear what mechanisms drive this problem, and although slow or ineffective killing of Borrelia burgdorferi has been suggested as an explanation, there is a lack of evidence that viable organisms are present in PTLDS. Although not a clinical surrogate, insight may be gained by examining stationary-phase in vitro Borrelia burgdorferi persisters that survive treatment with the antibiotics doxycycline and amoxicillin. To identify drug candidates that can eliminate B. burgdorferi persisters more effectively, we screened an Food and Drug Administration (FDA)-approved drug library consisting of 1524 compounds against stationary-phase B. burgdorferi by using a newly developed high throughput SYBR Green I/propidium iodide (PI) assay. We identified 165 agents approved for use in other disease conditions that had more activity than doxycycline and amoxicillin against B. burgdorferi persisters. The top 27 drug candidates from the 165 hits were confirmed to have higher anti-persister activity than the current frontline antibiotics. Among the top 27 confirmed drug candidates from the 165 hits, daptomycin, clofazimine, carbomycin, sulfa drugs (e.g., sulfamethoxazole), and certain cephalosporins (e.g. cefoperazone) had the highest anti-persister activity. In addition, some drug candidates, such as daptomycin and clofazimine (which had the highest activity against non-growing persisters), had relatively poor activity or a high minimal inhibitory concentration (MIC) against growing B. burgdorferi. Our findings may have implications for the development of a more effective treatment for Lyme disease and for the relief of long-term symptoms that afflict some Lyme disease patients. PMID:26038747

  2. Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library.

    PubMed

    Feng, Jie; Wang, Ting; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G; Zhang, Ying

    2014-07-01

    Although antibiotic treatment for Lyme disease is effective in the majority of cases, especially during the early phase of the disease, a minority of patients suffer from post-treatment Lyme disease syndrome (PTLDS). It is unclear what mechanisms drive this problem, and although slow or ineffective killing of Borrelia burgdorferi has been suggested as an explanation, there is a lack of evidence that viable organisms are present in PTLDS. Although not a clinical surrogate, insight may be gained by examining stationary-phase in vitro Borrelia burgdorferi persisters that survive treatment with the antibiotics doxycycline and amoxicillin. To identify drug candidates that can eliminate B. burgdorferi persisters more effectively, we screened an Food and Drug Administration (FDA)-approved drug library consisting of 1524 compounds against stationary-phase B. burgdorferi by using a newly developed high throughput SYBR Green I/propidium iodide (PI) assay. We identified 165 agents approved for use in other disease conditions that had more activity than doxycycline and amoxicillin against B. burgdorferi persisters. The top 27 drug candidates from the 165 hits were confirmed to have higher anti-persister activity than the current frontline antibiotics. Among the top 27 confirmed drug candidates from the 165 hits, daptomycin, clofazimine, carbomycin, sulfa drugs (e.g., sulfamethoxazole), and certain cephalosporins (e.g. cefoperazone) had the highest anti-persister activity. In addition, some drug candidates, such as daptomycin and clofazimine (which had the highest activity against non-growing persisters), had relatively poor activity or a high minimal inhibitory concentration (MIC) against growing B. burgdorferi. Our findings may have implications for the development of a more effective treatment for Lyme disease and for the relief of long-term symptoms that afflict some Lyme disease patients.

  3. Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California.

    PubMed

    Eisen, Lars; Eisen, Rebecca J; Mun, Jeomhee; Salkeld, Daniel J; Lane, Robert S

    2009-06-01

    This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi- or B. bissettii-infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky-footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak-woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host-targeted acaricides or oral vaccination against B. burgdorferi. PMID:20514140

  4. Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California

    PubMed Central

    Eisen, Lars; Eisen, Rebecca J.; Mun, Jeomhee; Salkeld, Daniel J.; Lane, Robert S.

    2008-01-01

    This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi- or B. bissettii-infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky-footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak-woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host-targeted acaricides or oral vaccination against B. burgdorferi. PMID:20514140

  5. Demonstration of a B-lymphocyte mitogen produced by the Lyme disease pathogen, Borrelia burgdorferi.

    PubMed Central

    Schoenfeld, R; Araneo, B; Ma, Y; Yang, L M; Weis, J J

    1992-01-01

    Lyme disease refers to the multisymptomatic illness in humans which results from infection with the tick-borne spirochete Borrelia burgdorferi. The white-footed mouse is the major reservoir for B. burgdorferi and, upon infection, certain inbred mice develop symptoms similar to those reported in human disease. Sonicated preparations of washed spirochetes were found to have potent mitogenic activity when cultured with lymphocytes from naive C57BL/6, C3H/HeJ, or BALB/c mice. The activity of the B. burgdorferi sonicate was approximately fourfold greater than that of a similarly prepared Escherichia coli sonicate. Polymyxin B efficiently inhibited the mitogenic activity of the E. coli sonicate but only slightly inhibited that of the B. burgdorferi sonicate, suggesting that a lipid A-containing lipopolysaccharide was not responsible for the B. burgdorferi activity. Kinetic analysis indicated peak proliferation at 2 to 3 days of culturing, suggesting polyclonal activation. B- and T-lymphocyte depletion experiments indicated that the major cell type responding to the B. burgdorferi mitogen was the B lymphocyte. This mitogen stimulated murine B cells not only to proliferate but also to differentiate into antibody-secreting cells, as demonstrated by the production of immunoglobulin by stimulated splenocytes. Furthermore, the sonicated preparation stimulated the B-cell tumor line CH12.LX to secrete immunoglobulin in the absence of accessory cells. B. burgdorferi also stimulated interleukin-6 production in splenocyte cultures. The observation that B. burgdorferi can stimulate activation of and immunoglobulin production by normal B lymphocytes may directly reflect on the development of arthritis associated with persistent infection by this organism. Images PMID:1730476

  6. Transmission cycles of Borrelia burgdorferi and B. bissettii in relation to habitat type in northwestern California.

    PubMed

    Eisen, Lars; Eisen, Rebecca J; Mun, Jeomhee; Salkeld, Daniel J; Lane, Robert S

    2009-06-01

    This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi- or B. bissettii-infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky-footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak-woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host-targeted acaricides or oral vaccination against B. burgdorferi.

  7. BB0744 Affects Tissue Tropism and Spatial Distribution of Borrelia burgdorferi.

    PubMed

    Wager, Beau; Shaw, Dana K; Groshong, Ashley M; Blevins, Jon S; Skare, Jon T

    2015-09-01

    Borrelia burgdorferi, the etiologic agent of Lyme disease, produces a variety of proteins that promote survival and colonization in both the Ixodes species vector and various mammalian hosts. We initially identified BB0744 (also known as p83/100) by screening for B. burgdorferi strain B31 proteins that bind to α1β1 integrin and hypothesized that, given the presence of a signal peptide, BB0744 may be a surface-exposed protein. In contrast to this expectation, localization studies suggested that BB0744 resides in the periplasm. Despite its subsurface location, we were interested in testing whether BB0744 is required for borrelial pathogenesis. To this end, a bb0744 deletion was isolated in a B. burgdorferi strain B31 infectious background, complemented, and queried for the role of BB0744 following experimental infection. A combination of bioluminescent imaging, cultivation of infected tissues, and quantitative PCR (qPCR) demonstrated that Δbb0744 mutant B. burgdorferi bacteria were attenuated in the ability to colonize heart tissue, as well as skin locations distal to the site of infection. Furthermore, qPCR indicated a significantly reduced spirochetal load in distal skin and joint tissue infected with Δbb0744 mutant B. burgdorferi. Complementation with bb0744 restored infectivity, indicating that the defect seen in Δbb0744 mutant B. burgdorferi was due to the loss of BB0744. Taken together, these results suggest that BB0744 is necessary for tissue tropism, particularly in heart tissue, alters the ability of B. burgdorferi to disseminate efficiently, or both. Additional studies are warranted to address the mechanism employed by BB0744 that alters the pathogenic potential of B. burgdorferi.

  8. Geographic Differences in Genetic Locus Linkages for Borrelia burgdorferi

    PubMed Central

    Travinsky, Bridgit; Bunikis, Jonas

    2010-01-01

    Borrelia burdorferi genotype in the northeastern United States is associated with Lyme borreliosis severity. Analysis of DNA sequences of the outer surface protein C gene and rrs-rrlA intergenic spacer from extracts of Ixodes spp. ticks in 3 US regions showed linkage disequilibrium between the 2 loci within a region but not consistently between regions. PMID:20587192

  9. Blood feeding on large grazers affects the transmission of Borrelia burgdorferi sensu lato by Ixodes ricinus.

    PubMed

    Pacilly, F C A; Benning, M E; Jacobs, F; Leidekker, J; Sprong, H; Van Wieren, S E; Takken, W

    2014-10-01

    The presence of Ixodes ricinus and their associated Borrelia infections on large grazers was investigated. Carcases of freshly shot red deer, mouflon and wild boar were examined for the presence of any stage of I. ricinus. Questing ticks were collected from locations where red deer and wild boar are known to occur. Presence of Borrelia burgdorferi s.l. DNA was examined in a fraction of the collected ticks. Larvae, nymphs and adult ticks were found on the three large grazers. Red deer had the highest tick burden, with many of the nymphs and adult females attached for engorgement. Most larvae had not attached. The mean number of ticks on the animals varied from 13 to 67. Ticks were highly aggregated amongst the animals: some animals had no ticks, while others had high numbers. Larvae and nymphs were mostly found on the ears, while adult ticks were attached to the axillae. The Borrelia infection rate of questing nymphs was 8.5%. Unengorged wandering nymphs on deer had a Borrelia infection rate of 12.5%, while only 0.9% of feeding nymphs carried a Borrelia infection. The infection rate of unengorged adult male ticks was 4.5%, and that of feeding female ticks was 0.7%. The data suggest that ticks feeding on red deer and wild boar lose their Borrelia infections. The implications of the results are discussed with respect to Borrelia epidemiology and maintenance of a Borrelia reservoir as well as the role of reproductive hosts for Ixodes ricinus. PMID:25113977

  10. Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts.

    PubMed

    Miller, Jennifer C; Stevenson, Brian

    2006-05-01

    The spirochete Borrelia burgdorferi is the causative agent of Lyme disease and is transmitted to humans and other vertebrate hosts through the bites of ixodid ticks. B. burgdorferi Erp (OspE-F related lipoprotein) family members are encoded on members of the 32 kb circular plasmid-like prophage family (cp32s). Many Erp proteins serve as receptors for the complement inhibitory factor H molecules of numerous vertebrate hosts, providing one mechanism by which the bacteria potentially evade the innate immune system. Indirect immunofluorescence analyses (IFA) have demonstrated that Erp expression is temporally regulated throughout the mammal-tick infectious cycle, indicating that Erp proteins perform an important role (or even roles) during mammalian infection. However, it was not previously known whether Erp proteins are continually produced by B. burgdorferi throughout the course of mammalian infection. To address this issue, quantitative RT-PCR (q-RT-PCR) was utilized to assess erp transcription levels by bacteria within numerous different tissues of both mice and non-human primates (NHPs) chronically infected with B. burgdorferi. Q-RT-PCR results obtained using both animal models indicated that while the majority of erp genes were detectably transcribed during chronic infection, differences in expression levels were noted. These data strongly suggest that Erp proteins contribute to B. burgdorferi persistence within chronically infected host tissues, perhaps by protecting the bacteria from complement-mediated killing. PMID:16530008

  11. Borrelia burgdorferi: Carbon Metabolism and the Tick-Mammal Enzootic Cycle.

    PubMed

    Corona, Arianna; Schwartz, Ira

    2015-06-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a zoonotic pathogen that is maintained in a natural cycle that typically involves mammalian reservoir hosts and a tick vector of the Ixodes species. During each stage of the enzootic cycle, B. burgdorferi is exposed to environments that differ in temperature, pH, small molecules, and most important, nutrient sources. B. burgdorferi has a highly restricted metabolic capacity because it does not contain a tricarboxylic acid cycle, oxidative phosphorylation, or any pathways for de novo biosynthesis of carbohydrates, amino acids, or lipids. Thus, B. burgdorferi relies solely on glycolysis for ATP production and is completely dependent on the transport of nutrients and cofactors from extracellular sources. Herein, pathways for carbohydrate uptake and utilization in B. burgdorferi are described. Regulation of these pathways during the different phases of the enzootic cycle is discussed. In addition, a model for differential control of nutrient flux through the glycolytic pathway as the spirochete transits through the enzootic cycle is presented.

  12. Analysis and comparison of plasmid profiles of Borrelia burgdorferi sensu lato strains.

    PubMed Central

    Xu, Y; Johnson, R C

    1995-01-01

    The relationship between plasmid profiles and genospecies of the Lyme disease borreliae was investigated by using 40 strains from diverse biological and geographical sources. The genospecies of the strains were determined by examination of rRNA gene restriction patterns with cDNA probes complementary to the 16S and 23S rRNAs of Escherichia coli. Plasmid profiles were obtained by pulsed-field gel electrophoresis. The number of plasmids per strain and the size of these plasmids ranged from 4 to 10 and from 13.3 to 57.7 kb, respectively. The strains all contained a single large plasmid of 50 to 57.7 kb, with the exception of two Borrelia garinii strains that contained two or three of the large plasmids. The large plasmids of Borrelia burgdorferi sensu stricto strains ranged in size from 51.4 to 52.7 kb and were consistently smaller than the 54.0- to 57.7-kb plasmids present in B. garinii and Borrelia afzelii. The exceptions of this observation were the two B. garinii strains with multiple large plasmids; in this case the large plasmids were 50.6 to 53 kb. Although a large degree of heterogeneity in the sizes and frequencies of occurrence of smaller plasmids was observed, there were some differences among the three genospecies. The differences in plasmids were further studied by using two BamHI DNA fragments from a 28.7-kb plasmid of B. burgdorferi sensu stricto 297 as probes. Both probes hybridized with the 27- to 29-kb plasmids of B. burgdorferi sensu stricto strains. In contrast, two patterns of hybridization were observed with B. garinii and B. afzelii.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8567905

  13. Vectors as Epidemiological Sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity

    PubMed Central

    Walter, Katharine S.; Carpi, Giovanna; Evans, Benjamin R.; Caccone, Adalgisa; Diuk-Wasser, Maria A.

    2016-01-01

    Hosts including humans, other vertebrates, and arthropods, are frequently infected with heterogeneous populations of pathogens. Within-host pathogen diversity has major implications for human health, epidemiology, and pathogen evolution. However, pathogen diversity within-hosts is difficult to characterize and little is known about the levels and sources of within-host diversity maintained in natural populations of disease vectors. Here, we examine genomic variation of the Lyme disease bacteria, Borrelia burgdorferi (Bb), in 98 individual field-collected tick vectors as a model for study of within-host processes. Deep population sequencing reveals extensive and previously undocumented levels of Bb variation: the majority (~70%) of ticks harbor mixed strain infections, which we define as levels Bb diversity pre-existing in a diverse inoculum. Within-tick diversity is thus a sample of the variation present within vertebrate hosts. Within individual ticks, we detect signatures of positive selection. Genes most commonly under positive selection across ticks include those involved in dissemination in vertebrate hosts and evasion of the vertebrate immune complement. By focusing on tick-borne Bb, we show that vectors can serve as epidemiological and evolutionary sentinels: within-vector pathogen diversity can be a useful and unbiased way to survey circulating pathogen diversity and identify evolutionary processes occurring in natural transmission cycles. PMID:27414806

  14. Vectors as Epidemiological Sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity.

    PubMed

    Walter, Katharine S; Carpi, Giovanna; Evans, Benjamin R; Caccone, Adalgisa; Diuk-Wasser, Maria A

    2016-07-01

    Hosts including humans, other vertebrates, and arthropods, are frequently infected with heterogeneous populations of pathogens. Within-host pathogen diversity has major implications for human health, epidemiology, and pathogen evolution. However, pathogen diversity within-hosts is difficult to characterize and little is known about the levels and sources of within-host diversity maintained in natural populations of disease vectors. Here, we examine genomic variation of the Lyme disease bacteria, Borrelia burgdorferi (Bb), in 98 individual field-collected tick vectors as a model for study of within-host processes. Deep population sequencing reveals extensive and previously undocumented levels of Bb variation: the majority (~70%) of ticks harbor mixed strain infections, which we define as levels Bb diversity pre-existing in a diverse inoculum. Within-tick diversity is thus a sample of the variation present within vertebrate hosts. Within individual ticks, we detect signatures of positive selection. Genes most commonly under positive selection across ticks include those involved in dissemination in vertebrate hosts and evasion of the vertebrate immune complement. By focusing on tick-borne Bb, we show that vectors can serve as epidemiological and evolutionary sentinels: within-vector pathogen diversity can be a useful and unbiased way to survey circulating pathogen diversity and identify evolutionary processes occurring in natural transmission cycles. PMID:27414806

  15. Resurgence of Persisting Non-Cultivable Borrelia burgdorferi following Antibiotic Treatment in Mice

    PubMed Central

    Hodzic, Emir; Imai, Denise; Feng, Sunlian; Barthold, Stephen W.

    2014-01-01

    The agent of Lyme borreliosis, Borrelia burgdorferi, evades host immunity and establishes persistent infections in its varied mammalian hosts. This persistent biology may pose challenges to effective antibiotic treatment. Experimental studies in dogs, mice, and non-human primates have found persistence of B. burgdorferi DNA following treatment with a variety of antibiotics, but persisting spirochetes are non-cultivable. Persistence of B. burgdorferi DNA has been documented in humans following treatment, but the significance remains unknown. The present study utilized a ceftriaxone treatment regimen in the C3H mouse model that resulted in persistence of non-cultivable B. burgdorferi in order to determine their long-term fate, and to examine their effects on the host. Results confirmed previous studies, in which B. burgdorferi could not be cultured from tissues, but low copy numbers of B. burgdorferi flaB DNA were detectable in tissues at 2, 4 and 8 months after completion of treatment, and the rate of PCR-positive tissues appeared to progressively decline over time. However, there was resurgence of spirochete flaB DNA in multiple tissues at 12 months, with flaB DNA copy levels nearly equivalent to those found in saline-treated mice. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, flaB DNA was acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues by immunofluorescence and immunohistochemistry, respectively. A number of host cytokines were up- or down-regulated in tissues of both saline- and antibiotic-treated mice in the absence of histopathology, indicating host response to the presence of non-cultivable, despite the lack of inflammation in tissues. PMID:24466286

  16. Borrelia burgdorferi Harbors a Transport System Essential for Purine Salvage and Mammalian Infection

    PubMed Central

    Jain, Sunny; Sutchu, Selina; Rosa, Patricia A.; Byram, Rebecca

    2012-01-01

    Borrelia burgdorferi is the tick-borne bacterium that causes the multistage inflammatory disease Lyme disease. B. burgdorferi has a reduced genome and lacks the enzymes required for de novo synthesis of purines for synthesis of RNA and DNA. Therefore, this obligate pathogen is dependent upon the tick vector and mammalian host environments for salvage of purine bases for nucleic acid biosynthesis. This pathway is vital for B. burgdorferi survival throughout its infectious cycle, as key enzymes in the purine salvage pathway are essential for the ability of the spirochete to infect mice and critical for spirochete replication in the tick. The transport of preformed purines into the spirochete is the first step in the purine salvage pathway and may represent a novel therapeutic target and/or means to deliver antispirochete molecules to the pathogen. However, the transport systems critical for purine salvage by B. burgdorferi have yet to be identified. Herein, we demonstrate that the genes bbb22 and bbb23, present on B. burgdorferi's essential plasmid circular plasmid 26 (cp26), encode key purine transport proteins. BBB22 and/or BBB23 is essential for hypoxanthine transport and contributes to the transport of adenine and guanine. Furthermore, B. burgdorferi lacking bbb22-23 was noninfectious in mice up to a dose of 1 × 107 spirochetes. Together, our data establish that bbb22-23 encode purine permeases critical for B. burgdorferi mammalian infectivity, suggesting that this transport system may serve as a novel antimicrobial target for the treatment of Lyme disease. PMID:22710875

  17. Amino acid sequence heterogeneity of the chromosomal encoded Borrelia burgdorferi sensu lato major antigen P100.

    PubMed

    Fellinger, W; Farencena, A; Redl, B; Sambri, V; Cevenini, R; Stöffler, G

    1995-04-01

    The entire nucleotide sequence of the chromosomal encoded major antigen p100 of the European Borrelia garinii isolate B29 was determined and the deduced amino acid sequence was compared to the homologous antigen p83 of the North American Borrelia burgdorferi sensu stricto strain B31 and the p100 of the European Borrelia afzelii (group VS461) strain PKo. p100 of strain B29 shows 87% amino acid sequence identity to strain B31 and 79.2% to strain PKo, p100 of strain B31 and PKo shows 62.5% identity to each other. In addition, partial nucleotide sequences of the most heterogeneous region of the p100 gene of two other Borrelia garinii isolates (PBi and VS286) have been determined and the deduced amino acid sequences were compared with all p100 of Borrelia garinii published so far. We found an amino acid sequence identity between 88.6 and 100% within the same genospecies. The N-terminal part of the p100 proteins is highly conserved whereas a striking heterogeneous region within the C-terminal part of the proteins was observed.

  18. Occurrence of Borrelia burgdorferi s.l. in different genera of mosquitoes (Culicidae) in Central Europe.

    PubMed

    Melaun, Christian; Zotzmann, Sina; Santaella, Vanesa Garcia; Werblow, Antje; Zumkowski-Xylander, Helga; Kraiczy, Peter; Klimpel, Sven

    2016-03-01

    Lyme disease or Lyme borreliosis is a vector-borne infectious disease caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Some stages of the borrelial transmission cycle in ticks (transstadial, feeding and co-feeding) can potentially occur also in insects, particularly in mosquitoes. In the present study, adult as well as larval mosquitoes were collected at 42 different geographical locations throughout Germany. This is the first study, in which German mosquitoes were analyzed for the presence of Borrelia spp. Targeting two specific borrelial genes, flaB and ospA encoding for the subunit B of flagellin and the outer surface protein A, the results show that DNA of Borrelia afzelii, Borrelia bavariensis and Borrelia garinii could be detected in ten Culicidae species comprising four distinct genera (Aedes, Culiseta, Culex, and Ochlerotatus). Positive samples also include adult specimens raised in the laboratory from wild-caught larvae indicating that transstadial and/or transovarial transmission might occur within a given mosquito population.

  19. Invasion of the lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity.

    PubMed

    Hamer, Sarah A; Tsao, Jean I; Walker, Edward D; Hickling, Graham J

    2010-08-01

    Lyme disease risk is increasing in the United States due in part to the spread of blacklegged ticks Ixodes scapularis, the principal vector of the spirochetal pathogen Borrelia burgdorferi. A 5-year study was undertaken to investigate hypothesized coinvasion of I. scapularis and B. burgdorferi in Lower Michigan. We tracked the spatial and temporal dynamics of the tick and spirochete using mammal, bird, and vegetation drag sampling at eight field sites along coastal and inland transects originating in a zone of recent I. scapularis establishment. We document northward invasion of these ticks along Michigan's west coast during the study period; this pattern was most evident in ticks removed from rodents. B. burgdorferi infection prevalences in I. scapularis sampled from vegetation in the invasion zone were 9.3% and 36.6% in nymphs and adults, respectively, with the majority of infection (95.1%) found at the most endemic site. There was no evidence of I. scapularis invasion along the inland transect; however, low-prevalence B. burgdorferi infection was detected in other tick species and in wildlife at inland sites, and at northern coastal sites in years before the arrival of I. scapularis. These infections suggest that cryptic B. burgdorferi transmission by other vector-competent tick species is occurring in the absence of I. scapularis. Other Borrelia spirochetes, including those that group with B. miyamotoi and B. andersonii, were present at a low prevalence within invading ticks and local wildlife. Reports of Lyme disease have increased significantly in the invasion zone in recent years. This rapid blacklegged tick invasion--measurable within 5 years--in combination with cryptic pathogen maintenance suggests a complex ecology of Lyme disease emergence in which wildlife sentinels can provide an early warning of disease emergence.

  20. Structural mechanisms underlying sequence-dependent variations in GAG affinities of decorin binding protein A, a Borrelia burgdorferi adhesin.

    PubMed

    Morgan, Ashli M; Wang, Xu

    2015-05-01

    Decorin-binding protein A (DBPA) is an important surface adhesin of the bacterium Borrelia burgdorferi, the causative agent of Lyme disease. DBPA facilitates the bacteria's colonization of human tissue by adhering to glycosaminoglycan (GAG), a sulfated polysaccharide. Interestingly, DBPA sequence variation among different strains of Borrelia spirochetes is high, resulting in significant differences in their GAG affinities. However, the structural mechanisms contributing to these differences are unknown. We determined the solution structures of DBPAs from strain N40 of B. burgdorferi and strain PBr of Borrelia garinii, two DBPA variants whose GAG affinities deviate significantly from strain B31, the best characterized version of DBPA. Our structures revealed that significant differences exist between PBr DBPA and B31/N40 DBPAs. In particular, the C-terminus of PBr DBPA, unlike C-termini from B31 and N40 DBPAs, is positioned away from the GAG-binding pocket and the linker between helices one and two of PBr DBPA is highly structured and retracted from the GAG-binding pocket. The repositioning of the C-terminus allowed the formation of an extra GAG-binding epitope in PBr DBPA and the retracted linker gave GAG ligands more access to the GAG-binding epitopes than other DBPAs. Characterization of GAG ligands' interactions with wild-type (WT) PBr and mutants confirmed the importance of the second major GAG-binding epitope and established the fact that the two epitopes are independent of one another and the new epitope is as important to GAG binding as the traditional epitope.

  1. Borrelia burgdorferi stimulation of chemokine secretion by cells of monocyte lineage in patients with Lyme arthritis

    PubMed Central

    2010-01-01

    Introduction Joint fluid in patients with Lyme arthritis often contains high levels of CCL4 and CCL2, which are chemoattractants for monocytes and some T cells, and CXCL9 and CXCL10, which are chemoattractants for CD4+ and CD8+ T effector cells. These chemokines are produced primarily by cells of monocyte lineage in TH1-type immune responses. Our goal was to begin to learn how infection with Borrelia burgdorferi leads to the secretion of these chemokines, using patient cell samples. We hypothesized that B. burgdorferi stimulates chemokine secretion from monocytes/macrophages in multiple ways, thereby linking innate and adaptive immune responses. Methods Peripheral blood mononuclear cells (PBMC) from 24 Lyme arthritis patients were stimulated with B. burgdorferi, interferon (IFN)-γ, or both, and the levels of CCL4, CCL2, CXCL9 and CXCL10 were measured in culture supernatants. CD14+ monocytes/macrophages from PBMC and synovial fluid mononuclear cells (SFMC) were stimulated in the same way, using available samples. CXCR3, the receptor for CXCL9 and CXCL10, and CCR5, the receptor for CCL4, were assessed on T cells from PBMC and SFMC. Results In patients with Lyme arthritis, B. burgdorferi but not IFN-γ induced PBMC to secrete CCL4 and CCL2, and B. burgdorferi and IFN-γ each stimulated the production of CXCL9 and CXCL10. However, with the CD14+ cell fraction, B. burgdorferi alone stimulated the secretion of CCL4; B. burgdorferi and IFN-γ together induced CCL2 secretion, and IFN-γ alone stimulated the secretion of CXCL9 and CXCL10. The percentage of T cells expressing CXCR3 or CCR5 was significantly greater in SFMC than PBMC, confirming that TH1 effector cells were recruited to inflamed joints. However, when stimulated with B. burgdorferi or IFN-γ, SFMC and PBMC responded similarly. Conclusions B. burgdorferi stimulates PBMC or CD14+ monocytes/macrophages directly to secrete CCL4, but spirochetal stimulation of other intermediate cells, which are present in PBMC

  2. The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia

    PubMed Central

    2013-01-01

    Background Lyme neuroborreliosis (LNB), caused by the spirochete Borrelia burgdorferi, affects both the peripheral and the central nervous systems. Radiculitis or nerve root inflammation, which can cause pain, sensory loss, and weakness, is the most common manifestation of peripheral LNB in humans. We previously reported that rhesus monkeys infected with B. burgdorferi develop radiculitis as well as inflammation in the dorsal root ganglia (DRG), with elevated levels of neuronal and satellite glial cell apoptosis in the DRG. We hypothesized that B. burgdorferi induces inflammatory mediators in glial and neuronal cells and that this inflammatory milieu precipitates glial and neuronal apoptosis. Methods To model peripheral neuropathy in LNB we incubated normal rhesus DRG tissue explants with live B. burgdorferi ex vivo and identified immune mediators, producer cells, and verified the presence of B. burgdorferi in tissue sections by immunofluorescence staining and confocal microscopy. We also set up primary cultures of DRG cells from normal adult rhesus macaques and incubated the cultures with live B. burgdorferi. Culture supernatants were subjected to multiplex ELISA to detect immune mediators, while the cells were evaluated for apoptosis by the in situ TUNEL assay. A role for inflammation in mediating apoptosis was assessed by evaluating the above phenomena in the presence and absence of various concentrations of the anti-inflammatory drug dexamethasone. As Schwann cells ensheath the dorsal roots of the DRG, we evaluated the potential of live B. burgdorferi to induce inflammatory mediators in human Schwann cell (HSC) cultures. Results Rhesus DRG tissue explants exposed to live B. burgdorferi showed localization of CCL2 and IL-6 in sensory neurons, satellite glial cells and Schwann cells while IL-8 was seen in satellite glial cells and Schwann cells. Live B. burgdorferi induced elevated levels of IL-6, IL-8 and CCL2 in HSC and DRG cultures and apoptosis of sensory

  3. Culturing Borrelia burgdorferi from spleen and kidney tissues of wild-caught white-footed mice, Peromyscus leucopus.

    PubMed

    Anderson, J F; Johnson, R C; Magnarelli, L A; Hyde, F W

    1986-12-01

    Borrelia burgdorferi was isolated most frequently from tissue of spleen (n = 13) and kidney (n = 10) and less often from blood (n = 5) of wild-caught Peromyscus leucopus. Prevalence of infection tended to be highest at sites where Lyme disease was most common (e.g., 5 of 6 mice were positive in East Haddam, Connecticut). Spirochetes were not isolated in Danbury or New Hartford, areas where this malady is rare. However, in Fairfield, where the disease is also uncommon, 4 of 9 mice were infected. Larval and nymphal I. dammini, containing borreliae, parasitized P. leucopus at all sites where B. burgdorferi was cultured from mice. Borreliae were also detected in D. variabilis feeding on hosts at two of the sites. P. leucopus appears to be an excellent animal to identify focal areas of B. burgdorferi.

  4. Geographic distribution of white-tailed deer with ticks and antibodies to Borrelia burgdorferi in Connecticut.

    PubMed

    Magnarelli, L A; Anderson, J F; Cartter, M L

    1993-01-01

    Ticks and blood specimens were collected from white-tailed deer (Odocoileus virginianus) in Connecticut and analyzed to identify foci for Lyme borreliosis. Males and females of Ixodes scapularis, the chief vector of Borrelia burgdorferi, were collected from deer in five of eight counties during 1989-1991. Analysis by indirect fluorescent antibody (IFA) staining of midgut tissues showed that prevalence of infection was highest (9.5% of 367 ticks) in south central and southeastern Connecticut. Infected I. scapularis also were collected from southwestern regions of the state (12.1% of 99 ticks), but prevalence of infection in northern counties was considerably lower (0.8% of 124 ticks). Deer sera, obtained in 1980 and 1989-1991, were analyzed by an enzyme-linked immunosorbent assay or by IFA staining methods. Antibodies to B. burgdorferi were detected in sera collected from all eight counties in Connecticut. Deer had been infected by this spirochete in at least 50 towns, 17 (34%) of which are in south central and southeastern parts of the state. Borrelia burgdorferi is widely distributed in I. scapularis populations in Connecticut. PMID:8256460

  5. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics.

    PubMed

    Groshong, Ashley M; Blevins, Jon S

    2014-01-01

    Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.

  6. Crystal structure of the infectious phenotype-associated outer surface protein BBA66 from the Lyme disease agent Borrelia burgdorferi.

    PubMed

    Brangulis, Kalvis; Petrovskis, Ivars; Kazaks, Andris; Tars, Kaspars; Ranka, Renate

    2014-02-01

    Borrelia burgdorferi, the causative agent of Lyme disease is transmitted to the mammalian host organisms by infected Ixodes ticks. Transfer of the spirochaetal bacteria from Ixodes ticks to the warm-blooded mammalian organism provides a challenge for the bacteria to adapt and survive in the different environmental conditions. B. burgdorferi has managed to differentially express genes in response to the encountered changes such as temperature and pH variance or metabolic rate to survive in both environments. In recent years, much interest has been turned on genes that are upregulated during the borrelial transfer to mammalian organisms as this could reveal the proteins important in the pathogenesis of Lyme disease. BBA66 is one of the upregulated outer surface proteins thought to be important in the pathogenesis of B. burgdorferi as it has been found out that BBA66 is necessary during the transmission and propagation phase to initiate Lyme disease. As there is still little known about the pathogenesis of B. burgdorferi, we have solved the crystal structure of the outer surface protein BBA66 at 2.25Å resolution. A monomer of BBA66 consists of 6 α-helices packed in a globular domain, and the overall folding is similar to the homologous proteins BBA64, BBA73, and CspA. Structure-based sequence alignment with the homologous protein BBA64 revealed that the conserved residues are mainly located inwards the core region of the protein and thus may be required to maintain the overall fold of the protein. Unlike the other homologous proteins, BBA66 has an atypically long disordered region at the N terminus thought to act as a "tether" between the structural domain and the cell surface.

  7. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks.

    PubMed

    Crippa, Mara; Rais, Olivier; Gern, Lise

    2002-01-01

    Borrelia burgdorferi sensu lato (sl), the agent of Lyme disease, is transmitted to the host during the blood meal of Ixodes ticks. In most unfed ticks, spirochetes are present in the midgut and migrate during blood feeding to the salivary glands, from which they are transmitted to the host via saliva. In the present study, the efficiency of Ixodes ricinus ticks to transmit B. afzelii and B. burgdorferi sensu stricto (ss) and their infectivity for mice were examined in relation to the duration of the blood meal. In addition, we investigated whether these two Borrelia species can penetrate intact skin. Three modes of infection of mice were studied: tick-bite infection, inoculation of tick homogenates, and transcutaneous infection by topical application of tick homogenates on mouse skin. Transmission of B. burgdorferi sl from I. ricinus nymphs to mouse increased with duration of tick attachment. B. afzelii-infected ticks start to transmit infection earlier (< or = 48 h) than B. burgdorferi ss-infected ticks. As previously shown for B. burgdorferi ss in Ixodes scapularis, B. burgdorferi ss and B. afzelii in unfed I. ricinus were noninfectious for mice when tick homogenates were inoculated. However, the inoculation of homogenates of ticks fed for 24 h readily produced infection in mice. Therefore, B. burgdorferi ss and B. afzelii spirochetes are potentially infectious in the tick before natural transmission can occur. None of the mice (n = 33) became infected by transcutaneous transmission when tick homogenates were applied on mouse skin, showing that B. burgdorferi ss and B. afzelii are unable to penetrate intact skin, in contrast to relapsing fever spirochetes. This study also shows that B. afzelii is transmitted by I. ricinus to the host earlier than B. burgdorferi ss and that I. ricinus seems to be a more efficient vector of B. afzelii than B. burgdorferi ss.

  8. Prevalence of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in Ixodes scapularis (Acari: Ixodidae) adults in New Jersey, 2000-2001.

    PubMed

    Schulze, Terry L; Jordan, Robert A; Hung, Robert W; Puelle, Rose S; Markowski, Daniel; Chomsky, Martin S

    2003-07-01

    Using polymerase chain reaction, we analyzed 529 Ixodes scapularis Say adults collected from 16 of New Jersey's 21 counties for the presence of Borrelia burgdorferi, the etiological agent of Lyme disease. Overall, 261 (49.3%) were positive. B. burgdorferi was detected in ticks obtained from each county and from 53 of the 58 (93.1%) municipalities surveyed. The observed statewide prevalence in New Jersey is similar to those reported from other northeastern and mid-Atlantic states.

  9. Role of Fc Gamma Receptors in Triggering Host Cell Activation and Cytokine Release by Borrelia burgdorferi

    PubMed Central

    Talkington, Jeffrey; Nickell, Steven P.

    2001-01-01

    Borrelia burgdorferi, the spirochetal bacterium that causes human Lyme disease, encodes numerous lipoproteins which have the capacity to trigger the release of proinflammatory cytokines from a variety of host cell types, and it is generally believed that these cytokines contribute to the disease process in vivo. We previously reported that low-passage-number infectious B. burgdorferi spirochetes express a novel lipidation-independent activity which induces secretion of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) by the mouse MC/9 mast cell line. Using RNase protection assays, we determined that mast cells exposed in vitro to low-passage-number, but not high-passage-number, B. burgdorferi spirochetes show increased expression of additional mRNAs representing several chemokines, including macrophage-inflammatory protein 1α (MIP-1α), MIP-1β, and TCA3, as well as the proinflammatory cytokine interleukin-6. Furthermore, mast cell TNF-α secretion can be inhibited by the phosphatidylinositol 3-kinase inhibitor wortmannin and also by preincubation with purified mouse immunoglobulin G1 (IgG1) and IgG2a, but not mouse IgG3, and by a mouse Fc gamma receptor II and III (FcγRII/III)-specific rat monoclonal antibody, suggesting the likely involvement of host FcγRIII in B. burgdorferi-mediated signaling. A role for passively adsorbed rabbit or bovine IgG or serum components in B. burgdorferi-mediated FcγR signaling was excluded in control experiments. These studies confirm that low-passage-number B. burgdorferi spirochetes express a novel activity which upregulates the expression of a variety of host cell chemokine and cytokine genes, and they also establish a novel antibody-independent role for FcγRs in transduction of activation signals by bacterial products. PMID:11119532

  10. Molecular Dissection of a Borrelia burgdorferi In Vivo Essential Purine Transport System

    PubMed Central

    Jain, Sunny; Showman, Adrienne C.

    2015-01-01

    The Lyme disease spirochete Borrelia burgdorferi is dependent on purine salvage from the host environment for survival. The genes bbb22 and bbb23 encode purine permeases that are essential for B. burgdorferi mouse infectivity. We now demonstrate the unique contributions of each of these genes to purine transport and murine infection. The affinities of spirochetes carrying bbb22 alone for hypoxanthine and adenine were similar to those of spirochetes carrying both genes. Spirochetes carrying bbb22 alone were able to achieve wild-type levels of adenine saturation but not hypoxanthine saturation, suggesting that maximal hypoxanthine uptake requires the presence of bbb23. Moreover, the purine transport activity conferred by bbb22 was dependent on an additional distal transcriptional start site located within the bbb23 open reading frame. The initial rates of uptake of hypoxanthine and adenine by spirochetes carrying bbb23 alone were below the level of detection. However, these spirochetes demonstrated a measurable increase in hypoxanthine uptake over a 30-min time course. Our findings indicate that bbb22-dependent adenine transport is essential for B. burgdorferi survival in mice. The bbb23 gene was dispensable for B. burgdorferi mouse infectivity, yet its presence was required along with that of bbb22 for B. burgdorferi to achieve maximal spirochete loads in infected mouse tissues. These data demonstrate that both genes, bbb22 and bbb23, are critical for B. burgdorferi to achieve wild-type infection of mice and that the differences in the capabilities of the two transporters may reflect distinct purine salvage needs that the spirochete encounters throughout its natural infectious cycle. PMID:25776752

  11. Induction of Host Matrix Metalloproteinases by Borrelia burgdorferi Differs in Human and Murine Lyme Arthritis

    PubMed Central

    Behera, Aruna K.; Hildebrand, Ethan; Scagliotti, Joanna; Steere, Allen C.; Hu, Linden T.

    2005-01-01

    Matrix metalloproteinases (MMPs) are induced from host tissues in response to Borrelia burgdorferi. Upregulation of MMPs may play a role in the dissemination of the organism through extracellular matrix tissues, but it can also result in destructive pathology. Although mice are a well-accepted model for Lyme arthritis, there are significant differences compared to human disease. We sought to determine whether MMP expression could account for some of these differences. MMP expression patterns following B. burgdorferi infection were analyzed in primary human chondrocytes, synovial fluid samples from patients with Lyme arthritis, and cartilage tissue from Lyme arthritis-susceptible and -resistant mice by using a gene array, real-time PCR, an enzyme-linked immunosorbent assay, and immunohistochemistry. B. burgdorferi infection significantly induced transcription of MMP-1, -3, -13, and -19 from primary human chondrocyte cells. Transcription of MMP-10 and tissue inhibitor of metalloprotease 1 was increased with B. burgdorferi infection, but protein expression was only minimally increased. The synovial fluid levels of MMPs from patients with high and low spirochete burdens were consistent with results seen in the in vitro studies. B. burgdorferi-susceptible C3H/HeN mice infected with B. burgdorferi showed induction of MMP-3 and MMP-19 but no other MMP or tissue inhibitor of metalloprotease. As determined by immunohistochemistry, MMP-3 expression was increased only in chondrocytes near the articular surface. The levels of MMPs were significantly lower in the more Lyme arthritis-resistant BALB/c and C57BL/6 mice. Differences between human and murine Lyme arthritis may be related to the lack of induction of collagenases, such MMP-1 and MMP-13, in mouse joints. PMID:15618147

  12. Rrp2, a prokaryotic enhancer-like binding protein, is essential for viability of Borrelia burgdorferi.

    PubMed

    Groshong, Ashley M; Gibbons, Nora E; Yang, X Frank; Blevins, Jon S

    2012-07-01

    The Lyme disease spirochete, Borrelia burgdorferi, exists in two diverse niches (i.e., an arthropod tick vector and mammalian host) during its enzootic life cycle. To effectively adapt to these unique environments, the bacterium alters the expression of numerous genes, including several major outer surface (lipo)proteins that are required for infection and transmission. An enhancer-binding protein (EBP), known as Rrp2, is one identified activator of the RpoN/RpoS alternative sigma factor cascade. Because initial efforts to generate an rrp2 deletion strain were unsuccessful, the role of Rrp2 in the activation of the RpoN/RpoS pathway was first defined using a strain of B. burgdorferi carrying an rrp2 point mutant that was defective in its ability to activate RpoN-dependent transcription. The fact that subsequent attempts to disrupt rrp2 have also been unsuccessful has led investigators to hypothesize that Rrp2 has other undefined functions which are essential for B. burgdorferi survival and independent of its EBP function. We used a lac-based inducible expression system to generate a conditional rrp2 mutant in virulent B. burgdorferi. In this strain, an isopropyl-β-D-thiogalactopyranoside-inducible copy of the rrp2 gene is expressed in trans from a borrelial shuttle vector. We found that the chromosomal copy of rrp2 could be inactivated only when rrp2 was induced, and the maintenance of rrp2 expression was required for the growth of the mutants. In addition, the overexpression of rrp2 is detrimental to B. burgdorferi growth in a manner that is independent of the RpoN/RpoS pathway. These studies provide the first direct evidence that rrp2 is an essential gene in B. burgdorferi.

  13. Borrelia burgdorferi Not Confirmed in Human-Biting Amblyomma americanum Ticks from the Southeastern United States

    PubMed Central

    Nadolny, Robyn M.; Gibbons, Jennifer A.; Auckland, Lisa D.; Vince, Mary A.; Elkins, Chad E.; Murphy, Michael P.; Hickling, Graham J.; Eshoo, Mark W.; Carolan, Heather E.; Crowder, Chris D.; Pilgard, Mark A.; Hamer, Sarah A.

    2015-01-01

    The predominant human-biting tick throughout the southeastern United States is Amblyomma americanum. Its ability to transmit pathogens causing Lyme disease-like illnesses is a subject of ongoing controversy. Results of previous testing by the Department of Defense Human Tick Test Kit Program and other laboratories indicated that it is highly unlikely that A. americanum transmits any pathogen that causes Lyme disease. In contrast, a recent publication by Clark and colleagues (K. L. Clark, B. Leydet, and S. Hartman, Int. J. Med. Sci. 10:915–931, 2013) reported detection of Lyme group Borrelia in A. americanum using a nested-flagellin-gene PCR. We evaluated this assay by using it and other assays to test 1,097 A. americanum ticks collected from humans. Using the Clark assay, in most samples we observed nonspecific amplification and nonrepeatability of results on subsequent testing of samples. Lack of reaction specificity and repeatability is consistent with mispriming, likely due to high primer concentrations and low annealing temperatures in this protocol. In six suspect-positive samples, Borrelia lonestari was identified by sequencing of an independent gene region; this is not a Lyme group spirochete and is not considered zoonotic. B. burgdorferi was weakly amplified from one pool using some assays, but not others, and attempts to sequence the amplicon of this pool failed, as did attempts to amplify and sequence B. burgdorferi from the five individual samples comprising this pool. Therefore, B. burgdorferi was not confirmed in any sample. Our results do not support the hypothesis that A. americanum ticks are a vector for Lyme group Borrelia infections. PMID:25788545

  14. Human Risk of Infection with Borrelia burgdorferi, the Lyme Disease Agent, in Eastern United States

    PubMed Central

    Diuk-Wasser, Maria A.; Hoen, Anne Gatewood; Cislo, Paul; Brinkerhoff, Robert; Hamer, Sarah A.; Rowland, Michelle; Cortinas, Roberto; Vourc'h, Gwenaël; Melton, Forrest; Hickling, Graham J.; Tsao, Jean I.; Bunikis, Jonas; Barbour, Alan G.; Kitron, Uriel; Piesman, Joseph; Fish, Durland

    2012-01-01

    The geographic pattern of human risk for infection with Borrelia burgdorferi sensu stricto, the tick-borne pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field sampling in 304 sites of the density of Ixodes scapularis host-seeking nymphs infected with B. burgdorferi, which is closely associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model a continuous 8 km×8 km resolution predictive surface of human risk, including confidence intervals for each pixel. Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone including sites with uninfected I. scapularis populations. Given frequent under- and over-diagnoses of Lyme disease, this map could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the spread of infection. PMID:22302869

  15. Patient isolates of Borrelia burgdorferi sensu lato with genotypic and phenotypic similarities of strain 25015.

    PubMed

    Picken, R N; Cheng, Y; Strle, F; Picken, M M

    1996-11-01

    Strain 25015 is an atypical tick isolate that belongs to a distinct genomic group (DN127) within the general taxon Borrelia burgdorferi sensu lato. Similarities between this strain and a white-footed mouse isolate from Illinois, strain CT39, have been reported. In the course of isolating B. burgdorferi sensu lato in culture from Slovenian patients, 9 isolates were identified with the same genetic profiles as strains 25015 and CT39, as evidenced by restriction enzyme MluI digestion patterns of genomic DNA. The aim of the present study was to molecularly characterize all 11 isolates to examine the extent of their genotypic and phenotypic similarity. The results of molecular studies suggest a close relationship between the patient isolates and strains 25015 and CT39. However, CT39 and several patient isolates possessed unique characteristics that reflect their discrete ontogeny. PMID:8896519

  16. Reservoir Targeted Vaccine Against Borrelia burgdorferi: A New Strategy to Prevent Lyme Disease Transmission

    PubMed Central

    Richer, Luciana Meirelles; Brisson, Dustin; Melo, Rita; Ostfeld, Richard S.; Zeidner, Nordin; Gomes-Solecki, Maria

    2014-01-01

    A high prevalence of infection with Borrelia burgdorferi in ixodid ticks is correlated with a high incidence of Lyme disease. The transmission of B. burgdorferi to humans can be disrupted by targeting 2 key elements in its enzootic cycle: the reservoir host and the tick vector. In a prospective 5-year field trial, we show that oral vaccination of wild white-footed mice resulted in outer surface protein A–specific seropositivity that led to reductions of 23% and 76% in the nymphal infection prevalence in a cumulative, time-dependent manner (2 and 5 years, respectively), whereas the proportion of infected ticks recovered from control plots varied randomly over time. Significant decreases in tick infection prevalence were observed within 3 years of vaccine deployment. Implementation of such a long-term public health measure could substantially reduce the risk of human exposure to Lyme disease. PMID:24523510

  17. Reservoir targeted vaccine against Borrelia burgdorferi: a new strategy to prevent Lyme disease transmission.

    PubMed

    Richer, Luciana Meirelles; Brisson, Dustin; Melo, Rita; Ostfeld, Richard S; Zeidner, Nordin; Gomes-Solecki, Maria

    2014-06-15

    A high prevalence of infection with Borrelia burgdorferi in ixodid ticks is correlated with a high incidence of Lyme disease. The transmission of B. burgdorferi to humans can be disrupted by targeting 2 key elements in its enzootic cycle: the reservoir host and the tick vector. In a prospective 5-year field trial, we show that oral vaccination of wild white-footed mice resulted in outer surface protein A-specific seropositivity that led to reductions of 23% and 76% in the nymphal infection prevalence in a cumulative, time-dependent manner (2 and 5 years, respectively), whereas the proportion of infected ticks recovered from control plots varied randomly over time. Significant decreases in tick infection prevalence were observed within 3 years of vaccine deployment. Implementation of such a long-term public health measure could substantially reduce the risk of human exposure to Lyme disease.

  18. Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States.

    PubMed

    Diuk-Wasser, Maria A; Hoen, Anne Gatewood; Cislo, Paul; Brinkerhoff, Robert; Hamer, Sarah A; Rowland, Michelle; Cortinas, Roberto; Vourc'h, Gwenaël; Melton, Forrest; Hickling, Graham J; Tsao, Jean I; Bunikis, Jonas; Barbour, Alan G; Kitron, Uriel; Piesman, Joseph; Fish, Durland

    2012-02-01

    The geographic pattern of human risk for infection with Borrelia burgdorferi sensu stricto, the tick-borne pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field sampling in 304 sites of the density of Ixodes scapularis host-seeking nymphs infected with B. burgdorferi, which is closely associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model a continuous 8 km×8 km resolution predictive surface of human risk, including confidence intervals for each pixel. Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone including sites with uninfected I. scapularis populations. Given frequent under- and over-diagnoses of Lyme disease, this map could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the spread of infection.

  19. Motility is crucial for the infectious life cycle of Borrelia burgdorferi.

    PubMed

    Sultan, Syed Z; Manne, Akarsh; Stewart, Philip E; Bestor, Aaron; Rosa, Patricia A; Charon, Nyles W; Motaleb, M A

    2013-06-01

    The Lyme disease spirochete, Borrelia burgdorferi, exists in a zoonotic cycle involving an arthropod tick and mammalian host. Dissemination of the organism within and between these hosts depends upon the spirochete's ability to traverse through complex tissues. Additionally, the spirochete outruns the host immune cells while migrating through the dermis, suggesting the importance of B. burgdorferi motility in evading host clearance. B. burgdorferi's periplasmic flagellar filaments are composed primarily of a major protein, FlaB, and minor protein, FlaA. By constructing a flaB mutant that is nonmotile, we investigated for the first time the absolute requirement for motility in the mouse-tick life cycle of B. burgdorferi. We found that whereas wild-type cells are motile and have a flat-wave morphology, mutant cells were nonmotile and rod shaped. These mutants were unable to establish infection in C3H/HeN mice via either needle injection or tick bite. In addition, these mutants had decreased viability in fed ticks. Our studies provide substantial evidence that the periplasmic flagella, and consequently motility, are critical not only for optimal survival in ticks but also for infection of the mammalian host by the arthropod tick vector. PMID:23529620

  20. Prevalence of Borrelia burgdorferi and granulocytic and monocytic ehrlichiae in Ixodes ricinus ticks from southern Germany.

    PubMed

    Baumgarten, B U; Röllinghoff, M; Bogdan, C

    1999-11-01

    A total of 287 adult Ixodes ricinus ticks, collected in two regions of southern Germany (Frankonia and Baden-Württemberg) where Borrelia burgdorferi infections are known to be endemic, were examined for the presence of 16S ribosomal DNA specific for the Ehrlichia phagocytophila genogroup, E. chaffeensis, E. canis, and B. burgdorferi by nested PCR. Totals of 2.2% (6 of 275) and 21.8% (65 of 275) of the ticks were positive for the E. phagocytophila genogroup and B. burgdorferi, respectively. Two ticks (0.7%) were coinfected with both bacteria. Of 12 engorged I. ricinus ticks collected from two deer, 8 (67%) were positive for the E. phagocytophila genogroup and one (8%) was positive for B. burgdorferi. There was no evidence of infection with E. canis or E. chaffeensis in the investigated tick population. The nucleotide sequences of the 546-bp Ehrlichia PCR products differed at one or two positions from the original sequence of the human granulocytic ehrlichiosis (HGE) agent (S.-M. Chen, J. S. Dumler, J. S. Bakken, and D. H. Walker, J. Clin. Microbiol. 32:589-595, 1994). Three groups of sequence variants were detected; two of these were known to occur in other areas in Europe or the United States, whereas one has not been reported before. Thus, in the German I. ricinus tick population closely related granulocytic ehrlichiae are prevalent, which might represent variants of E. phagocytophila or the HGE agent. PMID:10523532

  1. Live Attenuated Borrelia burgdorferi Targeted Mutants in an Infectious Strain Background Protect Mice from Challenge Infection.

    PubMed

    Hahn, Beth L; Padmore, Lavinia J; Ristow, Laura C; Curtis, Michael W; Coburn, Jenifer

    2016-08-01

    Borrelia burgdorferi, B. garinii, and B. afzelii are all agents of Lyme disease in different geographic locations. If left untreated, Lyme disease can cause significant and long-term morbidity, which may continue after appropriate antibiotic therapy has been administered and live bacteria are no longer detectable. The increasing incidence and geographic spread of Lyme disease are renewing interest in the vaccination of at-risk populations. We took the approach of vaccinating mice with two targeted mutant strains of B. burgdorferi that, unlike the parental strain, are avirulent in mice. Mice vaccinated with both strains were protected against a challenge with the parental strain and a heterologous B. burgdorferi strain by either needle inoculation or tick bite. In ticks, the homologous strain was eliminated but the heterologous strain was not, suggesting that the vaccines generated a response to antigens that are produced by the bacteria both early in mammalian infection and in the tick. Partial protection against B. garinii infection was also conferred. Protection was antibody mediated, and reactivity to a variety of proteins was observed. These experiments suggest that live attenuated B. burgdorferi strains may be informative regarding the identification of protective antigens produced by the bacteria and recognized by the mouse immune system in vivo Further work may illuminate new candidates that are effective and safe for the development of Lyme disease vaccines. PMID:27335385

  2. Human Coinfection with Borrelia burgdorferi and Babesia microti in the United States

    PubMed Central

    Knapp, Kristen L.; Rice, Nancy A.

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, and Babesia microti, a causative agent of babesiosis, are increasingly implicated in the growing tick-borne disease burden in the northeastern United States. These pathogens are transmitted via the bite of an infected tick vector, Ixodes scapularis, which is capable of harboring and inoculating a host with multiple pathogens simultaneously. Clinical presentation of the diseases is heterogeneous and ranges from mild flu-like symptoms to near-fatal cardiac arrhythmias. While the reason for the variability is not known, the possibility exists that concomitant infection with both B. burgdorferi and B. microti may synergistically increase disease severity. In an effort to clarify the current state of understanding regarding coinfection with B. burgdorferi and B. microti, in this review, we discuss the geographical distribution and pathogenesis of Lyme disease and babesiosis in the United States, the immunological response of humans to B. burgdorferi or B. microti infection, the existing knowledge regarding coinfection disease pathology, and critical factors that have led to ambiguity in the literature regarding coinfection, in order to eliminate confusion in future experimental design and investigation. PMID:26697208

  3. In vitro and in vivo induction of tumor necrosis factor alpha by Borrelia burgdorferi.

    PubMed Central

    Defosse, D L; Johnson, R C

    1992-01-01

    Tumor necrosis factor alpha (TNF-alpha) is an immunoregulatory cytokine with many biological activities including the mediation of inflammation. We examined sera and synovial fluids from patients seropositive for infection with Borrelia burgdorferi using a radioimmunoassay specific for TNF-alpha. Significant elevation of TNF-alpha was found in the sera and synovial fluids of patients examined, while controls showed no elevation. Sera of mice infected with B. burgdorferi contained elevated levels of TNF-alpha which varied during the course of a 24-day infection. To determine whether B. burgdorferi is capable of inducing TNF-alpha production, spirochetes were added to adherent human peripheral blood mononuclear cells or mouse peritoneal exudate cells and 24 h later supernatants were assayed. TNF-alpha induction occurred in a dose-dependent manner. The maximum stimulation occurred when a ratio of 1 to 10 spirochetes per mononuclear cell was used. At optimal concentrations, induction was not diminished by inactivation of spirochetes or pretreatment with polymyxin B. These results suggest that an increase in TNF-alpha production may occur as a result of infection with B. burgdorferi. PMID:1541526

  4. Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine.

    PubMed

    Kumar, Manish; Kaur, Simarjot; Kariu, Toru; Yang, Xiuli; Bossis, Ioannis; Anderson, John F; Pal, Utpal

    2011-11-01

    The surface-exposed antigens of Borrelia burgdorferi represent important targets for induction of protective host immune responses. BBA52 is preferentially expressed by B. burgdorferi in the feeding tick, and a targeted deletion of bba52 interferes with vector-host transitions in vivo. In this study, we demonstrate that BBA52 is an outer membrane surface-exposed protein and that disulfide bridges take part in the homo-oligomeric assembly of native protein. BBA52 antibodies lack detectable borreliacidal activities in vitro. However, active immunization studies demonstrated that BBA52 vaccinated mice were significantly less susceptible to subsequent tick-borne challenge infection. Similarly, passive transfer of BBA52 antibodies in ticks completely blocked B. burgdorferi transmission from feeding ticks to naïve mice. Taken together, these studies highlight the role of BBA52 in spirochete dissemination from ticks to mice and demonstrate the potential of BBA52 antibody-mediated strategy to complement the ongoing efforts to develop vaccines for blocking the transmission of B. burgdorferi.

  5. GENETIC AND IMMUNOLOGICAL EVIDENCES OF BORRELIA BURGDORFERI IN DOG IN THAILAND.

    PubMed

    Sthitmatee, Nattawooti; Jinawan, Wanna; Jaisan, Nawaporn; Tangjitjaroen, Weerapongse; Chailangkarn, Sasisophin; Sodarat, Chollada; Ekgatat, Monaya; Padungtod, Pawin

    2016-01-01

    Lyme disease is a tick-borne zoonotic disease caused by spirochete Borrelia burgdorferi. It is transmitted from animals to humans by the bite of infected ticks of the genus Ixodes. Although Lyme disease has been reported in China and Japan, the disease has never been reported in Thailand. Blood samples and ticks were collected from 402 dogs from 7 and 3 animal clinics in Chiang Mai and Phuket Provinces, Thailand, respectively. Blood samples were tested for antibodies against B. burgdorferi, Anaplasma spp, Ehrlichia spp and Dirofilaria immitis using a commercial kit, and positive blood samples were subjected to nested PCR assay for B. burgdorferi fla, ospA and ospC, amplicons of which also were sequenced. Only one dog (from Chiang Mai) was positive for B. burgdorferi, with 97% to 100% genetic identity, depending on the sequences used for comparison, with strains from United State of America. All 376 ticks collected were Rhipicephalus sanguineus, but no tick was found on the infected dog. Further investigations of the infection source and vector are needed to understand potential risks of Lyme disease to dogs and humans in Thailand.

  6. Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic Tigecycline

    PubMed Central

    Brorson, Øystein; Brorson, Sverre-Henning; Scythes, John; MacAllister, James; Wier, Andrew; Margulis, Lynn

    2009-01-01

    Persistence of tissue spirochetes of Borrelia burgdorferi as helices and round bodies (RBs) explains many erythema-Lyme disease symptoms. Spirochete RBs (reproductive propagules also called coccoid bodies, globular bodies, spherical bodies, granules, cysts, L-forms, sphaeroplasts, or vesicles) are induced by environmental conditions unfavorable for growth. Viable, they grow, move and reversibly convert into motile helices. Reversible pleiomorphy was recorded in at least six spirochete genera (>12 species). Penicillin solution is one unfavorable condition that induces RBs. This antibiotic that inhibits bacterial cell wall synthesis cures neither the second “Great Imitator” (Lyme borreliosis) nor the first: syphilis. Molecular-microscopic techniques, in principle, can detect in animals (insects, ticks, and mammals, including patients) helices and RBs of live spirochetes. Genome sequences of B. burgdorferi and Treponema pallidum spirochetes show absence of >75% of genes in comparison with their free-living relatives. Irreversible integration of spirochetes at behavioral, metabolic, gene product and genetic levels into animal tissue has been documented. Irreversible integration of spirochetes may severely impair immunological response such that they persist undetected in tissue. We report in vitro inhibition and destruction of B. burgdorferi (helices, RBs = “cysts”) by the antibiotic Tigecycline (TG; Wyeth), a glycylcycline protein-synthesis inhibitor (of both 30S and 70S ribosome subunits). Studies of the pleiomorphic life history stages in response to TG of both B. burgdorferi and Treponema pallidum in vivo and in vitro are strongly encouraged. PMID:19843691

  7. Seroprevalence of Borrelia burgdorferi antibodies in white-tailed deer from Texas.

    PubMed

    Adetunji, Shakirat A; Krecek, Rosina C; Castellanos, Gabrielle; Morrill, John C; Blue-McLendon, Alice; Cook, Walt E; Esteve-Gassent, Maria D

    2016-08-01

    Lyme Disease is caused by the bacterial pathogen Borrelia burgdorferi, and is transmitted by the tick-vector Ixodes scapularis. It is the most prevalent arthropod-borne disease in the United States. To determine the seroprevalence of B. burgdorferi antibodies in white-tailed deer (Odocoileus virginianus) from Texas, we analyzed serum samples (n = 1493) collected during the 2001-2015 hunting seasons, using indirect ELISA. Samples with higher sero-reactivity (0.803 and above) than the negative control group (0.662) were further tested using a more specific standardized western immunoblot assay to rule out false positives. Using ELISA, 4.7% of the samples were sero-reactive against B. burgdorferi, and these originated in two eco-regions in Texas (Edwards Plateau and South Texas Plains). However, only 0.5% of the total samples were sero-reactive by standardized western immunoblot assay. Additionally, both ELISA and standardized western immunoblot assay results correlated with an increased incidence in human Lyme Disease cases reported in Texas. This is the first longitudinal study to demonstrate fluctuation in sero-reactivity of white-tailed deer to B. burgdorferi sensu stricto antigens in southern United States. Future ecological and geographical studies are needed to assess the environmental factors governing the prevalence of Lyme Disease in non-endemic areas of the southern United States. PMID:27366674

  8. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex.

    PubMed

    Garcia, Brandon L; Zhi, Hui; Wager, Beau; Höök, Magnus; Skare, Jon T

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.

  9. A chromosomal Borrelia burgdorferi gene encodes a 22-kilodalton lipoprotein, P22, that is serologically recognized in Lyme disease.

    PubMed Central

    Lam, T T; Nguyen, T P; Fikrig, E; Flavell, R A

    1994-01-01

    We describe the isolation of the gene encoding a 22-kDa antigen from Borrelia burgdorferi, the etiologic agent of Lyme disease. The p22 gene is 582 nucleotides in length and encodes a protein of 194 amino acids with a predicted molecular mass of 21.8 kDa. The leader signal sequence of P22 consists of a positively charged short amino terminus, a central hydrophobic domain, and at the carboxyl terminus, a cleavage site that is presumably recognized and cleaved by a B. burgdorferi signal peptidase. P22 has 98.5% homology with the recently described B. burgdorferi protein IpLA7. P22 is processed as a lipoprotein, as demonstrated by [3H]palmitate labeling. Pulsed-field gel electrophoresis showed that p22, like LA7, is localized to the linear chromosome of B. burgdorferi. Examination of sera from patients with Lyme disease revealed that antibodies to P22 are rarely detected in patients with early-stage disease characterized by erythema migrans (2 of 20), and 35% of the patients with late-stage disease characterized by arthritis (9 of 26) developed antibodies to P22. Sera from patients with syphilis did not react with P22. When patients with late-stage disease were tested for their antibody reactivities to four other outer surface proteins (OspA), OspB, OspE, and OspF), 75% of these patients responded to P22 or to one or more outer surface proteins. Images PMID:8027338

  10. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    PubMed Central

    Wager, Beau; Höök, Magnus; Skare, Jon T.

    2016-01-01

    Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. PMID:26808924

  11. Linear chromosomal physical and genetic map of Borrelia burgdorferi, the Lyme disease agent.

    PubMed

    Casjens, S; Huang, W M

    1993-05-01

    A physical map of the 952 kbp chromosome of Borrelia burgdorferi Sh-2-82 has been constructed. Eighty-three intervals on the chromosome, defined by the cleavage sites of 15 restriction enzymes, are delineated. The intervals vary in size from 96 kbp to a few hundred bp, with an average size of 11.5 kbp. A striking feature of the map is its linearity; no other bacterial groups are known to have linear chromosomes. The two ends of the chromosome do not hybridize with one another, indicating that there are no large common terminal regions. The chromosome of this strain was found to be stable in culture; passage 6, 165 and 320 cultures have identical chromosomal restriction maps. We have positioned all previously known Borrelia burgdorferi chromosomal genes and several newly identified ones on this map. These include the gyrA/gyrB/dnaA/dnaN gene cluster, the rRNA gene cluster, fla, flgE, groEL (hsp60), recA, the rho/hip cluster, the dnaK (hsp70)/dnaJ/grpE cluster, the pheT/pheS cluster, and the genes which encode the potent immunogen proteins p22A, p39 and p83. Our electrophoretic analysis detects five linear and at least two circular plasmids in B. burgdorferi Sh-2-82. We have constructed a physical map of the 53 kbp linear plasmid and located the operon that encodes the two major outer surface proteins ospA and ospB on this plasmid. Because of the absence of functional genetic tools for this organism, these maps will serve as a basis for future mapping, cloning and sequencing studies of B. burgdorferi.

  12. Heterogeneity of BmpA (P39) among European isolates of Borrelia burgdorferi sensu lato and influence of interspecies variability on serodiagnosis.

    PubMed Central

    Roessler, D; Hauser, U; Wilske, B

    1997-01-01

    The molecular and antigenic variabilities of BmpA (P39) among European isolates of Borrelia burgdorferi were analyzed. The bmpA sequences of 12 isolates representing all three species of B. burgdorferi sensu lato pathogenic for humans were amplified by PCR, cloned, and sequenced. The BmpA protein of Borrelia garinii is heterogeneous, with an amino acid sequence identity ranging from 91 to 97%, whereas the BmpA proteins of Borrelia afzelii and B. burgdorferi sensu stricto strains appear to be highly conserved (>98.5% intraspecies identity). The interspecies identities ranged from 86 to 92%. Cluster analysis of BmpA reflected the subdivision of B. burgdorferi sensu lato isolates into the three species as well as a considerable heterogeneity among B. garinii strains. The BmpA protein of each species of B. burgdorferi sensu lato was recombinantly expressed in Escherichia coli, purified, and used to generate monoclonal antibodies. Seven BmpA-specific antibodies were identified; six of them recognized conserved epitopes of all three species, whereas one was specific for BmpA of B. afzelii and B. garinii. A monoclonal antibody (H1141) recommended by the Centers for Disease Control and Prevention for use in the standardization of immunoblots showed strong reactivity with BmpA of B. burgdorferi sensu stricto but no or only weak reactivity with BmpA of B. garinii and B. afzelii, respectively. Sera from 86 European patients with Lyme borreliosis in different stages and 73 controls were tested in immunoglobulin G (IgG) and IgM immunoblots with the recombinant BmpA proteins of the three species, revealing specificities of 98.6 to 100%. IgM antibodies against recombinant BmpA were only rarely detected (1.1 to 8.1%). With the BmpA proteins of B. afzelii and B. garinii, sensitivities for the IgG test (sera from stages I to III) were 36.0 and 34.9%, respectively, in contrast to 13.9% with BmpA of B. burgdorferi sensu stricto. Therefore, we recommend that recombinant BmpA of B

  13. Geographical distribution and prevalence of Borrelia burgdorferi genospecies in questing Ixodes ricinus from Romania: a countrywide study.

    PubMed

    Kalmár, Zsuzsa; Mihalca, Andrei D; Dumitrache, Mirabela O; Gherman, Călin M; Magdaş, Cristian; Mircean, Viorica; Oltean, Miruna; Domşa, Cristian; Matei, Ioana A; Mărcuţan, Daniel I; Sándor, Attila D; D'Amico, Gianluca; Paştiu, Anamaria; Györke, Adriana; Gavrea, Raluca; Marosi, Béla; Ionică, Angela; Burkhardt, Etelka; Toriay, Hortenzia; Cozma, Vasile

    2013-09-01

    The paper reports the prevalence and geographical distribution of Borrelia burgdorferi sensu lato (s.l.) and its genospecies in 12,221 questing Ixodes ricinus ticks collected at 183 locations from all the 41 counties of Romania. The unfed ticks were examined for the presence of B. burgdorferi s.l. by PCR targeting the intergenic spacer 5S-23S. Reverse line blot hybridization (RLB) and restriction fragment length polymorphism (RFLP) analysis were performed for identification of B. burgdorferi genospecies. The overall prevalence of infection was 1.4%, with an average local prevalence between 0.75% and 18.8%. B. burgdorferi s.l. was found in ticks of 55 of the 183 localities. The overall prevalence B. burgdorferi s.l. in ticks in the infected localities was 3.8%. The total infection prevalence was higher in female ticks than in other developmental stages. Three Borrelia genospecies were detected. The most widely distributed genospecies was B. afzelii, followed by B. garinii and B. burgdorferi sensu stricto (s.s.). The study is the first countrywide study and the first report of B. burgdorferi s.s. in Romania. The distribution maps show that higher prevalences were recorded in hilly areas, but Lyme borreliosis spirochetes were also present in forested lowlands, albeit with a lower prevalence.

  14. The chitobiose transporter, chbC, is required for chitin utilization in Borrelia burgdorferi

    PubMed Central

    2010-01-01

    Background The bacterium Borrelia burgdorferi, the causative agent of Lyme disease, is a limited-genome organism that must obtain many of its biochemical building blocks, including N-acetylglucosamine (GlcNAc), from its tick or vertebrate host. GlcNAc can be imported into the cell as a monomer or dimer (chitobiose), and the annotation for several B. burgdorferi genes suggests that this organism may be able to degrade and utilize chitin, a polymer of GlcNAc. We investigated the ability of B. burgdorferi to utilize chitin in the absence of free GlcNAc, and we attempted to identify genes involved in the process. We also examined the role of RpoS, one of two alternative sigma factors present in B. burgdorferi, in the regulation of chitin utilization. Results Using fluorescent chitinase substrates, we demonstrated an inherent chitinase activity in rabbit serum, a component of the B. burgdorferi growth medium (BSK-II). After inactivating this activity by boiling, we showed that wild-type cells can utilize chitotriose, chitohexose or coarse chitin flakes in the presence of boiled serum and in the absence of free GlcNAc. Further, we replaced the serum component of BSK-II with a lipid extract and still observed growth on chitin substrates without free GlcNAc. In an attempt to knockout B. burgdorferi chitinase activity, we generated mutations in two genes (bb0002 and bb0620) predicted to encode enzymes that could potentially cleave the β-(1,4)-glycosidic linkages found in chitin. While these mutations had no effect on the ability to utilize chitin, a mutation in the gene encoding the chitobiose transporter (bbb04, chbC) did block utilization of chitin substrates by B. burgdorferi. Finally, we provide evidence that chitin utilization in an rpoS mutant is delayed compared to wild-type cells, indicating that RpoS may be involved in the regulation of chitin degradation by this organism. Conclusions The data collected in this study demonstrate that B. burgdorferi can utilize

  15. Three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B afzelii, and B. garinii) identified from cerebrospinal fluid isolates by pulsed-field gel electrophoresis and PCR.

    PubMed Central

    Busch, U; Hizo-Teufel, C; Boehmer, R; Fingerle, V; Nitschko, H; Wilske, B; Preac-Mursic, V

    1996-01-01

    A total of 36 European Borrelia burgdorferi sensu lato cerebrospinal fluid isolates (mainly from southern Germany) were analyzed by pulsed-field gel electrophoresis (PFGE) for large restriction fragment pattern (LRFP) and linear plasmid profiles. Analyzing this large panel of isolates, we detected all three species of B. burgdorferi sensu lato pathogenic for humans in cerebrospinal fluid from patients with Lyme neuroborreliosis by PFGE typing after MluI digestion: 21 B. garinii (58%), 10 B. afzelii (28%), and 4 B. burgdorferi sensu stricto (11%) strains as well as 1 isolate with bands characteristic of both B. afzelii and B. garinii. Species classification by PFGE typing was confirmed by 16S rRNA-specific PCR. Eighteen isolates (11 B. garinii, 6 B. afzelii, and 1 B. burgdorferi sensu stricto isolate) were further characterized by LRFP with four different restriction enzymes (ApaI, KspI, SmaI, and XhoI). All B. afzelii isolates showed identical patterns for each restriction enzyme group. Considerable heterogeneity was demonstrated within the B. garinii group. Subsequent analysis of plasmid profiles revealed only marginal differences for B. afzelii strains but different patterns for B. garinii isolates. In one B. afzelii strain we found a linear plasmid of about 110 kbp not described before. LRFP analysis by PFGE is a suitable tool for the molecular characterization of B. burgdorferi sensu lato strains and allows determination not only of the species but also of the subtypes within B. garinii. PMID:8727878

  16. Oral Immunization with OspC Does Not Prevent Tick-Borne Borrelia burgdorferi Infection

    PubMed Central

    Melo, Rita; Richer, Luciana; Johnson, Daniel L.; Gomes-Solecki, Maria

    2016-01-01

    Oral vaccination strategies are of interest to prevent transmission of Lyme disease as they can be used to deliver vaccines to humans, pets, and to natural wildlife reservoir hosts of Borrelia burgdorferi. We developed a number of oral vaccines based in E. coli expressing recombinant OspC type K, OspB, BBK32 from B. burgdorferi, and Salp25, Salp15 from Ixodes scapularis. Of the five immunogenic candidates only OspC induced significant levels of antigen-specific IgG and IgA when administered to mice via the oral route. Antibodies to OspC did not prevent dissemination of B. burgdorferi as determined by the presence of spirochetes in ear, heart and bladder tissues four weeks after challenge. Next generation sequencing of genomic DNA from ticks identified multiple phyletic types of B. burgdorferi OspC (A, D, E, F, I, J, K, M, Q, T, X) in nymphs that engorged on vaccinated mice. PCR amplification of OspC types A and K from flat and engorged nymphal ticks, and from heart and bladder tissues collected after challenge confirmed sequencing analysis. Quantification of spirochete growth in a borreliacidal assay shows that both types of spirochetes (A and K) survived in the presence of OspC-K specific serum whereas the spirochetes were killed by OspA specific serum. We show that oral vaccination of C3H-HeN mice with OspC-K induced significant levels of antigen-specific IgG. However, these serologic antibodies did not protect mice from infection with B. burgdorferi expressing homologous or heterologous types of OspC after tick challenge. PMID:26990760

  17. Borrelia burgdorferi promotes the establishment of Babesia microti in the northeastern United States.

    PubMed

    Dunn, Jessica M; Krause, Peter J; Davis, Stephen; Vannier, Edouard G; Fitzpatrick, Meagan C; Rollend, Lindsay; Belperron, Alexia A; States, Sarah L; Stacey, Andrew; Bockenstedt, Linda K; Fish, Durland; Diuk-Wasser, Maria A

    2014-01-01

    Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis) and use the white-footed mouse (Peromyscus leucopus) as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R0) for B. microti to be below the threshold for persistence (<1), a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild. PMID:25545393

  18. Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells

    PubMed Central

    Sharma, Bijaya; Brown, Autumn V.; Matluck, Nicole E.; Hu, Linden T.

    2015-01-01

    Borrelia burgdorferi is the causative agent of Lyme disease, which affects an estimated 300,000 people annually in the United States. When treated early, the disease usually resolves, but when left untreated, it can result in symptoms such as arthritis and encephalopathy. Treatment of the late-stage disease may require multiple courses of antibiotic therapy. Given that antibiotic resistance has not been observed for B. burgdorferi, the reason for the recalcitrance of late-stage disease to antibiotics is unclear. In other chronic infections, the presence of drug-tolerant persisters has been linked to recalcitrance of the disease. In this study, we examined the ability of B. burgdorferi to form persisters. Killing growing cultures of B. burgdorferi with antibiotics used to treat the disease was distinctly biphasic, with a small subpopulation of surviving cells. Upon regrowth, these cells formed a new subpopulation of antibiotic-tolerant cells, indicating that these are persisters rather than resistant mutants. The level of persisters increased sharply as the culture transitioned from the exponential to stationary phase. Combinations of antibiotics did not improve killing. Daptomycin, a membrane-active bactericidal antibiotic, killed stationary-phase cells but not persisters. Mitomycin C, an anticancer agent that forms adducts with DNA, killed persisters and eradicated growing and stationary cultures of B. burgdorferi. Finally, we examined the ability of pulse dosing an antibiotic to eliminate persisters. After addition of ceftriaxone, the antibiotic was washed away, surviving persisters were allowed to resuscitate, and the antibiotic was added again. Four pulse doses of ceftriaxone killed persisters, eradicating all live bacteria in the culture. PMID:26014929

  19. Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi.

    PubMed

    Lawrenz, M B; Hardham, J M; Owens, R T; Nowakowski, J; Steere, A C; Wormser, G P; Norris, S J

    1999-12-01

    VlsE is a 35-kDa surface-exposed lipoprotein of Borrelia burgdorferi that was shown previously to undergo antigenic variation through segmental recombination of silent vls cassettes with vlsE during experimental mouse infections. Previous data had indicated that sera from North American Lyme disease patients and experimentally infected animals contained antibodies reactive with VlsE. In this study, sera from patients with Lyme disease, syphilis, and autoimmune conditions as well as from healthy controls were examined for reactivity with VlsE by Western blotting and enzyme-linked immunosorbent assay (ELISA). Strong Western blot reactivity to a recombinant VlsE cassette region protein was obtained consistently with Lyme disease sera. Although sera from Lyme disease patients also reacted with a band corresponding to VlsE in B. burgdorferi B31-5A3, interpretation was complicated by low levels of VlsE expression in in vitro-cultured B. burgdorferi and by the presence of comigrating bands. An ELISA using recombinant VlsE was compared with an ELISA using sonically disrupted B. burgdorferi as the antigen. For a total of 93 Lyme disease patient sera examined, the VlsE ELISA yielded sensitivities of 63% for culture-confirmed erythema migrans cases and 92% for later stages, as compared to 61 and 98%, respectively, for the "whole-cell" ELISA. The specificities of the two assays with healthy blood donor sera were comparable, but the VlsE ELISA was 90% specific with sera from syphilis patients, compared to 20% specificity for the whole-cell ELISA with this group. Neither assay showed reactivity with a panel of sera from 20 non-Lyme disease arthritis patients or 20 systemic lupus erythematosus patients. Our results indicate that VlsE may be useful in the immunodiagnosis of Lyme disease and may offer greater specificity than ELISAs using whole B. burgdorferi as the antigen.

  20. Human Antibody Responses to VlsE Antigenic Variation Protein of Borrelia burgdorferi

    PubMed Central

    Lawrenz, M. B.; Hardham, J. M.; Owens, R. T.; Nowakowski, J.; Steere, A. C.; Wormser, G. P.; Norris, S. J.

    1999-01-01

    VlsE is a 35-kDa surface-exposed lipoprotein of Borrelia burgdorferi that was shown previously to undergo antigenic variation through segmental recombination of silent vls cassettes with vlsE during experimental mouse infections. Previous data had indicated that sera from North American Lyme disease patients and experimentally infected animals contained antibodies reactive with VlsE. In this study, sera from patients with Lyme disease, syphilis, and autoimmune conditions as well as from healthy controls were examined for reactivity with VlsE by Western blotting and enzyme-linked immunosorbent assay (ELISA). Strong Western blot reactivity to a recombinant VlsE cassette region protein was obtained consistently with Lyme disease sera. Although sera from Lyme disease patients also reacted with a band corresponding to VlsE in B. burgdorferi B31-5A3, interpretation was complicated by low levels of VlsE expression in in vitro-cultured B. burgdorferi and by the presence of comigrating bands. An ELISA using recombinant VlsE was compared with an ELISA using sonically disrupted B. burgdorferi as the antigen. For a total of 93 Lyme disease patient sera examined, the VlsE ELISA yielded sensitivities of 63% for culture-confirmed erythema migrans cases and 92% for later stages, as compared to 61 and 98%, respectively, for the “whole-cell” ELISA. The specificities of the two assays with healthy blood donor sera were comparable, but the VlsE ELISA was 90% specific with sera from syphilis patients, compared to 20% specificity for the whole-cell ELISA with this group. Neither assay showed reactivity with a panel of sera from 20 non-Lyme disease arthritis patients or 20 systemic lupus erythematosus patients. Our results indicate that VlsE may be useful in the immunodiagnosis of Lyme disease and may offer greater specificity than ELISAs using whole B. burgdorferi as the antigen. PMID:10565921

  1. Borrelia burgdorferi promotes the establishment of Babesia microti in the northeastern United States.

    PubMed

    Dunn, Jessica M; Krause, Peter J; Davis, Stephen; Vannier, Edouard G; Fitzpatrick, Meagan C; Rollend, Lindsay; Belperron, Alexia A; States, Sarah L; Stacey, Andrew; Bockenstedt, Linda K; Fish, Durland; Diuk-Wasser, Maria A

    2014-01-01

    Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis) and use the white-footed mouse (Peromyscus leucopus) as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R0) for B. microti to be below the threshold for persistence (<1), a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild.

  2. Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells.

    PubMed

    Sharma, Bijaya; Brown, Autumn V; Matluck, Nicole E; Hu, Linden T; Lewis, Kim

    2015-08-01

    Borrelia burgdorferi is the causative agent of Lyme disease, which affects an estimated 300,000 people annually in the United States. When treated early, the disease usually resolves, but when left untreated, it can result in symptoms such as arthritis and encephalopathy. Treatment of the late-stage disease may require multiple courses of antibiotic therapy. Given that antibiotic resistance has not been observed for B. burgdorferi, the reason for the recalcitrance of late-stage disease to antibiotics is unclear. In other chronic infections, the presence of drug-tolerant persisters has been linked to recalcitrance of the disease. In this study, we examined the ability of B. burgdorferi to form persisters. Killing growing cultures of B. burgdorferi with antibiotics used to treat the disease was distinctly biphasic, with a small subpopulation of surviving cells. Upon regrowth, these cells formed a new subpopulation of antibiotic-tolerant cells, indicating that these are persisters rather than resistant mutants. The level of persisters increased sharply as the culture transitioned from the exponential to stationary phase. Combinations of antibiotics did not improve killing. Daptomycin, a membrane-active bactericidal antibiotic, killed stationary-phase cells but not persisters. Mitomycin C, an anticancer agent that forms adducts with DNA, killed persisters and eradicated growing and stationary cultures of B. burgdorferi. Finally, we examined the ability of pulse dosing an antibiotic to eliminate persisters. After addition of ceftriaxone, the antibiotic was washed away, surviving persisters were allowed to resuscitate, and the antibiotic was added again. Four pulse doses of ceftriaxone killed persisters, eradicating all live bacteria in the culture. PMID:26014929

  3. Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells.

    PubMed

    Sharma, Bijaya; Brown, Autumn V; Matluck, Nicole E; Hu, Linden T; Lewis, Kim

    2015-08-01

    Borrelia burgdorferi is the causative agent of Lyme disease, which affects an estimated 300,000 people annually in the United States. When treated early, the disease usually resolves, but when left untreated, it can result in symptoms such as arthritis and encephalopathy. Treatment of the late-stage disease may require multiple courses of antibiotic therapy. Given that antibiotic resistance has not been observed for B. burgdorferi, the reason for the recalcitrance of late-stage disease to antibiotics is unclear. In other chronic infections, the presence of drug-tolerant persisters has been linked to recalcitrance of the disease. In this study, we examined the ability of B. burgdorferi to form persisters. Killing growing cultures of B. burgdorferi with antibiotics used to treat the disease was distinctly biphasic, with a small subpopulation of surviving cells. Upon regrowth, these cells formed a new subpopulation of antibiotic-tolerant cells, indicating that these are persisters rather than resistant mutants. The level of persisters increased sharply as the culture transitioned from the exponential to stationary phase. Combinations of antibiotics did not improve killing. Daptomycin, a membrane-active bactericidal antibiotic, killed stationary-phase cells but not persisters. Mitomycin C, an anticancer agent that forms adducts with DNA, killed persisters and eradicated growing and stationary cultures of B. burgdorferi. Finally, we examined the ability of pulse dosing an antibiotic to eliminate persisters. After addition of ceftriaxone, the antibiotic was washed away, surviving persisters were allowed to resuscitate, and the antibiotic was added again. Four pulse doses of ceftriaxone killed persisters, eradicating all live bacteria in the culture.

  4. Borrelia burgdorferi Promotes the Establishment of Babesia microti in the Northeastern United States

    PubMed Central

    Dunn, Jessica M.; Krause, Peter J.; Davis, Stephen; Vannier, Edouard G.; Fitzpatrick, Meagan C.; Rollend, Lindsay; Belperron, Alexia A.; States, Sarah L.; Stacey, Andrew; Bockenstedt, Linda K.; Fish, Durland; Diuk-Wasser, Maria A.

    2014-01-01

    Babesia microti and Borrelia burgdorferi, the respective causative agents of human babesiosis and Lyme disease, are maintained in their enzootic cycles by the blacklegged tick (Ixodes scapularis) and use the white-footed mouse (Peromyscus leucopus) as primary reservoir host. The geographic range of both pathogens has expanded in the United States, but the spread of babesiosis has lagged behind that of Lyme disease. Several studies have estimated the basic reproduction number (R0) for B. microti to be below the threshold for persistence (<1), a finding that is inconsistent with the persistence and geographic expansion of this pathogen. We tested the hypothesis that host coinfection with B. burgdorferi increases the likelihood of B. microti transmission and establishment in new areas. We fed I. scapularis larva on P. leucopus mice that had been infected in the laboratory with B. microti and/or B. burgdorferi. We observed that coinfection in mice increases the frequency of B. microti infected ticks. To identify the ecological variables that would increase the probability of B. microti establishment in the field, we integrated our laboratory data with field data on tick burden and feeding activity in an R0 model. Our model predicts that high prevalence of B. burgdorferi infected mice lowers the ecological threshold for B. microti establishment, especially at sites where larval burden on P. leucopus is lower and where larvae feed simultaneously or soon after nymphs infect mice, when most of the transmission enhancement due to coinfection occurs. Our studies suggest that B. burgdorferi contributes to the emergence and expansion of B. microti and provides a model to predict the ecological factors that are sufficient for emergence of B. microti in the wild. PMID:25545393

  5. Detection of Invasive Borrelia burgdorferi Strains in North-Eastern Piedmont, Italy.

    PubMed

    Pintore, M D; Ceballos, L; Iulini, B; Tomassone, L; Pautasso, A; Corbellini, D; Rizzo, F; Mandola, M L; Bardelli, M; Peletto, S; Acutis, P L; Mannelli, A; Casalone, C

    2015-08-01

    Following reports of human cases of Lyme borreliosis from the Ossola Valley, a mountainous area of Piemonte, north-western Italy, the abundance and altitudinal distribution of ticks, and infection of these vectors with Borrelia burgdorferi sensu lato were evaluated. A total of 1662 host-seeking Ixodes ricinus were collected by dragging from April to September 2011 at locations between 400 and 1450 m above sea level. Additional 104 I. ricinus were collected from 35 hunted wild animals (4 chamois, 8 roe deer, 23 red deer). Tick density, expressed as the number of ticks per 100 m(2), resulted highly variable among different areas, ranging from 0 to 105 larvae and from 0 to 22 nymphs. A sample of 352 ticks (327 from dragging and 25 from wild animals) was screened by a PCR assay targeting a fragment of the 16S rRNA gene of B. burgdorferi s.l. Positive samples were confirmed with a PCR assay specific for the 5S-23S rRNA intergenic spacer region and sequenced. Four genospecies were found: B. afzelii (prevalence 4.0%), B. lusitaniae (4.0%), B. garinii (1.5%) and B. valaisiana (0.3%). Phylogenetic analysis based on the ospC gene showed that most of the Borrelia strains from pathogenic genospecies had the potential for human infection and for invasion of secondary body sites. PMID:25220838

  6. Fluorescent membrane markers elucidate the association of Borrelia burgdorferi with tick cell lines

    PubMed Central

    Teixeira, R.C.; Baêta, B.A.; Ferreira, J.S.; Medeiros, R.C.; Maya-Monteiro, C.M.; Lara, F.A.; Bell-Sakyi, L.; Fonseca, A.H.

    2016-01-01

    This study aimed to describe the association of Borrelia burgdorferi s.s. with ixodid tick cell lines by flow cytometry and fluorescence and confocal microscopy. Spirochetes were stained with a fluorescent membrane marker (PKH67 or PKH26), inoculated into 8 different tick cell lines and incubated at 30°C for 24 h. PKH efficiently stained B. burgdorferi without affecting bacterial viability or motility. Among the tick cell lines tested, the Rhipicephalus appendiculatus cell line RA243 achieved the highest percentage of association/internalization, with both high (90%) and low (10%) concentrations of BSK-H medium in tick cell culture medium. Treatment with cytochalasin D dramatically reduced the average percentage of cells with internalized spirochetes, which passed through a dramatic morphological change during their internalization by the host cell as observed in time-lapse photography. Almost all of the fluorescent bacteria were seen to be inside the tick cells. PKH labeling of borreliae proved to be a reliable and valuable tool to analyze the association of spirochetes with host cells by flow cytometry, confocal and fluorescence microscopy. PMID:27332772

  7. Evaluation of the importance of VlsE antigenic variation for the enzootic cycle of borrelia burgdorferi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls l...

  8. Establishment of enzyme-linked immunosorbent assay using purified recombinant 83-kilodalton antigen of Borrelia burgdorferi sensu stricto and Borrelia afzelii for serodiagnosis of Lyme disease.

    PubMed

    Rauer, S; Kayser, M; Neubert, U; Rasiah, C; Vogt, A

    1995-10-01

    The 83-kDa antigen of Borrelia burgdorferi was expressed as a recombinant protein in Escherichia coli and purified for use in an enzyme-linked immunosorbent assay (p83-ELISA). Antibodies to the 83-kDa antigen of both the immunoglobulin G (IgG) and IgM isotypes could be detected in all stages of Lyme disease. Sensitivity varied, depending on the clinical stage of illness. In early stages, as defined for 118 patients with erythema migrans, it was found to be 20% (24 of 118 patients: 7 with IgM, 16 with IgG, and 1 with IgM and IgG). Of the patients with late-stage Lyme arthritis and acrodermatitis chronica atrophicans, 94% (16 of 17:2 with IgM and IgG and 14 with IgG) and 86% (36 of 42:2 with IgG and IgM and 34 with IgG) revealed positive results in the p83-ELISA, respectively. p83 displays sequence heterogeneity according to the genomospecies, but when the reactions of serum specimens from acrodermatitis chronica atrophicans patients and arthritis patients with p83 derived from representative strains of B. burgdorferi sensu stricto and Borrelia afzelii in ELISAs were compared, no differences in specificity and sensitivity were seen. When 82 serum specimens from healthy controls were tested, none had IgG and only 3 (4%) had IgM antibodies, indicating a high specificity. Positive reactions with antibodies against Treponema pallidum (1 of 37 patients; IgG) and Epstein-Barr virus (1 of 44 patients; IgM) and with autoantibodies of various specificities (1 of 53 patients; IgG) were seen with < 3% of the serum samples te11111111111111111111 high speficicity for B. burgdorferi.2+ 13% for IgM antibodies, the IgM p83-ELISA provided little diagnostic information for Lyme disease, whereas the IgG p83-ELISA appears to be a suita ;e test for serodiagnosis of advanced-stage Lyme disease.

  9. Patterns of tick infestation and their Borrelia burgdorferi s.l. infection in wild birds in Portugal.

    PubMed

    Norte, A C; da Silva, L P; Tenreiro, P J Q; Felgueiras, M S; Araújo, P M; Lopes, P B; Matos, C; Rosa, A; Ferreira, P J S G; Encarnação, P; Rocha, A; Escudero, R; Anda, P; Núncio, M S; Lopes de Carvalho, I

    2015-09-01

    Wild birds may act as reservoirs for zoonotic pathogens and may be mechanical carriers of pathogen infected vector ticks through long distances during migration. The aim of this study was to assess tick infestation patterns in birds in Portugal and the prevalence of tick infection by Borrelia burgdorferi s.l. using PCR techniques. Seven tick species were collected from birds including Haemaphysalis punctata, Hyalomma spp., Ixodes acuminatus, Ixodes arboricola, Ixodes frontalis, Ixodes ricinus and Ixodes ventalloi. We found that I. frontalis and Hyalomma spp. were the most common ticks infesting birds of several species and that they were widespread in Portugal. Turdus merula was the bird species that presented the highest diversity of infesting ticks and had one of the highest infestation intensities. B. burgdorferi s.l. was detected in 7.3% (37/505) of Ixodidae ticks derived from birds. The most common genospecies was Borrelia turdi (6.9%), detected in ticks collected from Parus major, T. merula and Turdus philomelos, but Borrelia valaisiana (0.2%) and one Borrelia sp. (0.2%) similar to Borrelia bissettii (96% of similarity of the flaB gene in Blastn) were also detected. This study contributed to a better knowledge of the Ixodidae tick fauna parasitizing birds in Western Europe and to the assessment of the prevalence of B. burgdorferi s.l. associated with birds and their ticks.

  10. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation

    PubMed Central

    2013-01-01

    Background Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. “bavariensis” (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. “finlandensis” (1). Results Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. Conclusions Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues. PMID:24112474

  11. Reactivity of human Lyme borreliosis sera with a 39-kilodalton antigen specific to Borrelia burgdorferi.

    PubMed Central

    Simpson, W J; Schrumpf, M E; Schwan, T G

    1990-01-01

    Borrelia burgdorferi is the causative agent of Lyme borreliosis, a spirochetal illness with a variety of acute clinical manifestations that may lead to debilitating neurological and arthritic complications. Diagnosis is difficult because symptoms mimic a variety of unrelated clinical conditions, spirochetes cannot always be isolated from infected patients, and current serological tests are frequently inconclusive because of the presence of cross-reacting non-B. burgdorferi antibodies. To identify antigens specific to B. burgdorferi that could be used in the serodiagnosis of Lyme borreliosis, we screened a Borrelia DNA expression library in Escherichia coli for antigens reactive with human Lyme borreliosis sera. One clone carried a 6.3-kilobase EcoRI chromosomal fragment (pSPR33), which encoded two species-specific antigens with molecular masses of 28 (P28) and 39 (P39) kilodaltons (kDa). These two antigens were immunologically distinct from OspA, OspB, and the 41-kDa flagellin. Ninety-four serum specimens from patients having Lyme borreliosis were tested for reactivity with P39. All of 33 the serum specimens with immunofluorescence assay titers of greater than or equal to 1:256, 13 of 17 serum specimens with titers of 1:128, and 14 of 44 serum specimens with titers of less than or equal to 1:64 reacted with P39. Notably, many sera reactive to P39 did not appear to react with the 41-kDa flagellin. Therefore, antibody to P39 could be mistaken for antibody to the 41-kDa flagellin in tests of human sera by Western blot (immunoblot). Twenty-five control serum specimens, which included sera from syphilitic, relapsing fever, and amyotrophic lateral sclerosis patients as well as from 10 normal individuals, did not react to P39. Our data suggest that P39 may be a useful antigen for the serological confirmation of Lyme borreliosis. Images PMID:2380361

  12. Identification and characterization of a surface-exposed, 66-kilodalton protein from Borrelia burgdorferi.

    PubMed Central

    Probert, W S; Allsup, K M; LeFebvre, R B

    1995-01-01

    The surface-exposed antigens of Borrelia burgdorferi represent important targets for the development of a protective immune response. We have identified a proteinase K-accessible, 66-kDa protein from B. burgdorferi and have demonstrated that at least a portion of this protein is surface exposed. The 66-kDa protein was purified by sequential extraction of spirochetes with butanol and Triton X-114 followed by preparative gel electrophoresis. Polyclonal antibodies developed against the purified 66-kDa protein were Borrelia spp. specific, whereas a monoclonal antibody, Route 66, displayed a genospecies-specific pattern of recognition for the 66-kDa protein. N-terminal amino acid sequence was obtained from an internal fragment, a truncated version, and the full-length form of the 66-kDa protein. A search of protein and gene databases for homologous sequences yielded a match with the predicted amino acid sequence from a segment of B. burgdorferi chromosomal DNA (P. A. Rosa, D. Hogan, and T. G. Schwan, J. Clin. Microbiol. 29:524-532, 1991). The construction of primers based on this DNA sequence and the N-terminal amino acid sequence allowed the amplification and cloning of the 66-kDa-protein gene. The identity of the cloned gene was verified by the recognition of the expressed gene product by Route 66. Pulsed-field gel electrophoresis and Southern blot analysis were performed to confirm the chromosomal location of the 66-kDa-protein gene. This study describes the identification and cloning of the first chromosomally encoded, surface-exposed protein from B. burgdoferi. PMID:7729905

  13. Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    SciTech Connect

    Casjens S. R.; Dunn J.; Mongodin, E. F.; Qiu, W.-G.; Luft, B. J.; Schutzer, S. E.; Gilcrease, E. B.; Huang, W. M.; Vujadinovic, M.; Aron, J. K.; Vargas, L. C.; Freeman, S.; Radune, D.; Weidman, J. F.; Dimitrov, G. I.; Khouri, H. M.; Sosa, J. E.; Halpin, R. A.; Fraser, C. M.

    2012-03-14

    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33-40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi {approx}900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short {le}20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant.

  14. A monoclonal antibody to OspA inhibits association of Borrelia burgdorferi with human endothelial cells.

    PubMed Central

    Comstock, L E; Fikrig, E; Shoberg, R J; Flavell, R A; Thomas, D D

    1993-01-01

    Previously, it has been shown that polyclonal antibodies to Borrelia burgdorferi and some monoclonal antibodies (MAbs) to borrelia major surface proteins caused inhibition of adherence of the bacteria to cultured human umbilical vein endothelial (HUVE) cells. In this study, fragment antigen binding (Fab) molecules generated from the immunoglobulin G fraction of rabbit anti-recombinant OspA serum were found to inhibit the adherence of B. burgdorferi to HUVE cells by 73%. Subsequently, MAbs were generated for use in determining whether or how B. burgdorferi outer surface proteins (Osps) A and/or B are involved in mediating attachment to, and/or invasion of, HUVE cells by B. burgdorferi. Twenty-two MAbs were generated to borrelial proteins with apparent molecular masses (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 19, 31 (OspA), 34 (OspB), and 35 kDa. Fab molecules from one anti-OspA MAb, 9B3D, demonstrated an inhibitory effect on bacterial association with HUVE cells. None of the other MAbs, including the other anti-OspA MAbs, showed an inhibitory effect on cell association of greater than 5%. This effect of Fab 9B3D was concentration dependent and plateaued at approximately 6 micrograms of Fab per ml (nearly 80% inhibition of the bacterial association with the monolayer). Penetration assays and cell association experiments performed by using immunofluorescence also suggested that the inhibitory action of 9B3D occurs at the level of adherence. MAb 9B3D recognized the OspA of every North American strain tested (n = 19) but only 3 [corrected] of 20 strains from western Europe, Russia, and Japan, suggesting that the North American strains and strains from other parts of the world may use different molecules and/or different OspA epitopes to interact with endothelial cells. Immunoblots of Escherichia coli expressing different OspA fusion peptides suggested that the 9B3D epitope resides in the carboxy-terminal half of OspA. MAb 9B3D

  15. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients.

    PubMed

    Brisson, Dustin; Baxamusa, Nilofer; Schwartz, Ira; Wormser, Gary P

    2011-01-01

    Plant and animal biodiversity are essential to ecosystem health and can provide benefits to humans ranging from aesthetics to maintaining air quality. Although the importance of biodiversity to ecology and conservation biology is obvious, such measures have not been applied to strains of an invasive bacterium found in human tissues during infection. In this study, we compared the strain biodiversity of Borrelia burgdorferi found in tick populations with that found in skin, blood, synovial fluid or cerebrospinal fluid of Lyme disease patients. The biodiversity of B. burgdorferi strains is significantly greater in tick populations than in the skin of patients with erythema migrans. In turn, strains from skin are significantly more diverse than strains at any of the disseminated sites. The cerebrospinal fluid of patients with neurologic Lyme disease harbored the least pathogen biodiversity. These results suggest that human tissues act as niches that can allow entry to or maintain only a subset of the total pathogen population. These data help to explain prior clinical observations on the natural history of B. burgdorferi infection and raise several questions that may help to direct future research to better understand the pathogenesis of this infection.

  16. Borrelia burgdorferi has minimal impact on the Lyme disease reservoir host Peromyscus leucopus.

    PubMed

    Schwanz, Lisa E; Voordouw, Maarten J; Brisson, Dustin; Ostfeld, Richard S

    2011-02-01

    The epidemiology of vector-borne zoonotic diseases is determined by encounter rates between vectors and hosts. Alterations to the behavior of reservoir hosts caused by the infectious agent have the potential to dramatically alter disease transmission and human risk. We examined the effect of Borrelia burgdorferi, the etiological agent of Lyme disease, on one of its most important reservoir hosts, the white-footed mouse, Peromyscus leucopus. We mimic natural infections in mice using the vector (Black-legged ticks, Ixodes scapularis) and examine the immunological and behavioral responses of mouse hosts. Despite producing antibodies against B. burgdorferi, infected mice did not have elevated white blood cells compared with uninfected mice. In addition, infected and uninfected mice did not differ in their wheel-running activity. Our results suggest that infection with the spirochete B. burgdorferi has little impact on the field activity of white-footed mice. Lyme disease transmission appears to be uncomplicated by pathogen-altered behavior of this reservoir host. PMID:20569016

  17. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi

    PubMed Central

    Iyer, Radha; Schwartz, Ira

    2016-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. PMID:27600075

  18. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin.

    PubMed

    Kim, Doo; Kordick, Dorsey; Divers, Thomas; Chang, Yung Fu

    2006-12-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05 - 6.25 microgram/ml and 6.25 - 25.0 microgram/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05 - 0.39 microgram/ml and 0.20 - 0.78 microgram/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05 - 0.39 microgram/ml and 0.05 - 0.39 microgram/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (>or=100 microgram/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (

  19. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin

    PubMed Central

    Kim, Doo; Kordick, Dorsey; Divers, Thomas

    2006-01-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05-6.25 µg/ml and 6.25-25.0 µg/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05-0.39 µg/ml and 0.20-0.78 µg/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05-0.39 µg/ml and 0.05-0.39 µg/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (≥100 µg/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (≤0.01 µg/ml). PMID:17106227

  20. Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi

    PubMed Central

    Gomes-Solecki, Maria

    2014-01-01

    Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans. PMID:25309883

  1. Borrelia burgdorferi BmpA Is a Laminin-Binding Protein▿

    PubMed Central

    Verma, Ashutosh; Brissette, Catherine A.; Bowman, Amy; Stevenson, Brian

    2009-01-01

    The Borrelia burgdorferi BmpA outer surface protein plays a significant role in mammalian infection by the Lyme disease spirochete and is an important antigen for the serodiagnosis of human infection. B. burgdorferi adheres to host extracellular matrix components, including laminin. The results of our studies indicate that BmpA and its three paralogous proteins, BmpB, BmpC, and BmpD, all bind to mammalian laminin. BmpA did not bind mammalian type I or type IV collagens or fibronectin. BmpA-directed antibodies significantly inhibited the adherence of live B. burgdorferi to laminin. The laminin-binding domain of BmpA was mapped to the carboxy-terminal 80 amino acids. Solubilized collagen inhibited BmpA-laminin binding, suggesting interactions through the collagen-binding domains of laminin. These results, together with previous data, indicate that BmpA and its paralogs are targets for the development of preventative and curative therapies for Lyme disease. PMID:19703983

  2. Mechanisms generating long range correlation in nucleotide composition of the Borrelia Burgdorferi genome

    NASA Astrophysics Data System (ADS)

    Mackiewicz, P.; Gierlik, A.; Kowalczuk, M.; Szczepanik, D.; Dudek, M. R.; Cebrat, S.

    1999-12-01

    We have analysed protein coding and intergenic sequences in the Borrelia burgdorferi (the Lyme disease bacterium) genome using different kinds of DNA walks. Genes occupying the leading strand of DNA have significantly different nucleotide composition from genes occupying the lagging strand. Nucleotide compositional bias of the two DNA strands reflects the aminoacid composition of proteins. 96% of genes coding for ribosomal proteins lie on the leading DNA strand, which suggests that the positions of these as well as other genes are non-random. In the B. burgdorferi genome, the asymmetry in intergenic DNA sequences is lower than the asymmetry in the third positions in codons. All these characters of the B. burgdorferi genome suggest that both replication-associated mutational pressure and recombination mechanisms have established the specific structure of the genome and now any recombination leading to inversion of a gene in respect to the direction of replication is forbidden. This property of the genome allows us to assume that it is in a steady state, which enables us to fix some parameters for simulations of DNA evolution.

  3. Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi.

    PubMed

    Gomes-Solecki, Maria

    2014-01-01

    Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention recently revised the probable number of cases by 10-fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans.

  4. Borrelia burgdorferi has minimal impact on the Lyme disease reservoir host Peromyscus leucopus.

    PubMed

    Schwanz, Lisa E; Voordouw, Maarten J; Brisson, Dustin; Ostfeld, Richard S

    2011-02-01

    The epidemiology of vector-borne zoonotic diseases is determined by encounter rates between vectors and hosts. Alterations to the behavior of reservoir hosts caused by the infectious agent have the potential to dramatically alter disease transmission and human risk. We examined the effect of Borrelia burgdorferi, the etiological agent of Lyme disease, on one of its most important reservoir hosts, the white-footed mouse, Peromyscus leucopus. We mimic natural infections in mice using the vector (Black-legged ticks, Ixodes scapularis) and examine the immunological and behavioral responses of mouse hosts. Despite producing antibodies against B. burgdorferi, infected mice did not have elevated white blood cells compared with uninfected mice. In addition, infected and uninfected mice did not differ in their wheel-running activity. Our results suggest that infection with the spirochete B. burgdorferi has little impact on the field activity of white-footed mice. Lyme disease transmission appears to be uncomplicated by pathogen-altered behavior of this reservoir host.

  5. In vitro susceptibilities of Leptospira spp. and Borrelia burgdorferi isolates to amoxicillin, tilmicosin, and enrofloxacin.

    PubMed

    Kim, Doo; Kordick, Dorsey; Divers, Thomas; Chang, Yung Fu

    2006-12-01

    Antimicrobial susceptibility testing was conducted with 6 different spirochetal strains (4 strains of Leptospira spp. and 2 strains of Borrelia burgdorferi) against 3 antimicrobial agents, commonly used in equine and bovine practice. The ranges of MIC and MBC of amoxicillin against Leptospira spp. were 0.05 - 6.25 microgram/ml and 6.25 - 25.0 microgram/ml, respectively. And the ranges of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of amoxicillin against B. burgdorferi were 0.05 - 0.39 microgram/ml and 0.20 - 0.78 microgram/ml, respectively. The ranges of MIC and MBC of enrofloxacin against Leptospira spp. were 0.05 - 0.39 microgram/ml and 0.05 - 0.39 microgram/ml, respectively. Two strains of B. burgdorferi were resistant to enrofloxacin at the highest concentration tested for MBC (>or=100 microgram/ml). Therefore, the potential role of tilmicosin in the treatment of leptospirosis and borreliosis should be further evaluated in animal models to understand whether the in vivo studies will confirm in vitro results. All spirochetal isolates were inhibited (MIC) and were killed (MBC) by tilmicosin at concentrations below the limit of testing (

  6. Microarray-Based Comparative Genomic and Transcriptome Analysis of Borrelia burgdorferi.

    PubMed

    Iyer, Radha; Schwartz, Ira

    2016-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is maintained in nature in a cycle involving a tick vector and a mammalian host. Adaptation to the diverse conditions of temperature, pH, oxygen tension and nutrient availability in these two environments requires the precise orchestration of gene expression. Over 25 microarray analyses relating to B. burgdorferi genomics and transcriptomics have been published. The majority of these studies has explored the global transcriptome under a variety of conditions and has contributed substantially to the current understanding of B. burgdorferi transcriptional regulation. In this review, we present a summary of these studies with particular focus on those that helped define the roles of transcriptional regulators in modulating gene expression in the tick and mammalian milieus. By performing comparative analysis of results derived from the published microarray expression profiling studies, we identified composite gene lists comprising differentially expressed genes in these two environments. Further, we explored the overlap between the regulatory circuits that function during the tick and mammalian phases of the enzootic cycle. Taken together, the data indicate that there is interplay among the distinct signaling pathways that function in feeding ticks and during adaptation to growth in the mammal. PMID:27600075

  7. BB0238, a presumed tetratricopeptide repeat-containing protein, is required during Borrelia burgdorferi mammalian infection.

    PubMed

    Groshong, Ashley M; Fortune, Danielle E; Moore, Brendan P; Spencer, Horace J; Skinner, Robert A; Bellamy, William T; Blevins, Jon S

    2014-10-01

    The Lyme disease spirochete, Borrelia burgdorferi, occupies both a tick vector and mammalian host in nature. Considering the unique enzootic life cycle of B. burgdorferi, it is not surprising that a large proportion of its genome is composed of hypothetical proteins not found in other bacterial pathogens. bb0238 encodes a conserved hypothetical protein of unknown function that is predicted to contain a tetratricopeptide repeat (TPR) domain, a structural motif responsible for mediating protein-protein interactions. To evaluate the role of bb0238 during mammalian infection, a bb0238-deficient mutant was constructed. The bb0238 mutant was attenuated in mice infected via needle inoculation, and complementation of bb0238 expression restored infectivity to wild-type levels. bb0238 expression does not change in response to varying culture conditions, and thus, it appears to be constitutively expressed under in vitro conditions. bb0238 is expressed in murine tissues during infection, though there was no significant change in expression levels among different tissue types. Localization studies indicate that BB0238 is associated with the inner membrane of the spirochete and is therefore unlikely to promote interaction with host ligands during infection. B. burgdorferi clones containing point mutations in conserved residues of the putative TPR motif of BB0238 demonstrated attenuation in mice that was comparable to that in the bb0238 deletion mutant, suggesting that BB0238 may contain a functional TPR domain.

  8. Analysis of promoters in Borrelia burgdorferi by use of a transiently expressed reporter gene.

    PubMed Central

    Sohaskey, C D; Arnold, C; Barbour, A G

    1997-01-01

    A transient chloramphenicol acetyltransferase (CAT) expression system was developed for Borrelia burgdorferi. An Escherichia coli vector containing a promoterless Streptococcus agalactiae cat gene was constructed. Promoters for ospA, ospC, and flaB were placed upstream of this cat gene, and CAT assays were performed in E. coli from these stably maintained plasmids. The plasmids with putative promoters ospA and flaB were found to be approximately 20-fold more active than were the plasmids with ospC or no promoter. The level of activity correlated well with the resistance to chloramphenicol that each plasmid provided. Next, the nonreplicative plasmid constructs were transformed by electroporation into B. burgdorferi. CAT assays were performed by both thin-layer chromatography and the fluor diffusion method. Measurement of CAT activity demonstrated that the ospA promoter was again about 20-fold more active than the promoterless cat gene. The flaB and ospC promoters increased the activity seven- and threefold, respectively, over that with the promoterless construct. This simple transient-expression assay was shown to be an effective method to study promoter function in B. burgdorferi in the absence of a well-developed genetic system. PMID:9352937

  9. Novel methods for surveying reservoir hosts and vectors of Borrelia burgdorferi in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Seifert, Veronica Aili

    Lyme disease is the most prevalent tick-borne disease in North America and presents challenges to clinicians, researchers and the public in diagnosis, treatment and prevention. Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is a zoonotic pathogen obligate upon hematophagous arthropod vectors and propagates in small mammal reservoir hosts. Identifying factors governing zoonotic diseases within regions of high-risk provides local health and agricultural agencies with necessary information to formulate public policy and implement treatment protocols to abate the rise and expansion of infectious disease outbreaks. In the United States, the documented primary reservoir host of Lyme disease is the white-footed mouse, Peromyscus leucopus, and the arthropod vector is the deer tick, Ixodes scapularis. Reducing the impact of Lyme disease will need novel methods for identifying both the reservoir host and the tick vector. The reservoir host, Peromyscus leucopus is difficult to distinguish from the virtually identical Peromyscus maniculatus that also is present in Northern Minnesota, a region where Lyme disease is endemic. Collection of the Ixodes tick, the Lyme disease vector, is difficult as this is season dependent and differs from year to year. This study develops new strategies to assess the extent of Borrelia burgdorferi in the local environment of Northern Minnesota. A selective and precise method to identify Peromyscus species was developed. This assay provides a reliable and definitive method to identify the reservoir host, Peromyscus leucopus from a physically identical and sympatric Peromyscus species, Peromyscus maniculatus. A new strategy to collect ticks for measuring the disbursement of Borrelia was employed. Students from local high schools were recruited to collect ticks. This strategy increased the available manpower to cover greater terrain, provided students with valuable experience in research methodology, and highlighted the

  10. Study of the protein complex, pore diameter, and pore-forming activity of the Borrelia burgdorferi P13 porin.

    PubMed

    Bárcena-Uribarri, Iván; Thein, Marcus; Barbot, Mariam; Sans-Serramitjana, Eulalia; Bonde, Mari; Mentele, Reinhard; Lottspeich, Friedrich; Bergström, Sven; Benz, Roland

    2014-07-01

    P13 is one of the major outer membrane proteins of Borrelia burgdorferi. Previous studies described P13 as a porin. In the present study some structure and function aspects of P13 were studied. P13 showed according to lipid bilayer studies a channel-forming activity of 0.6 nanosiemens in 1 m KCl. Single channel and selectivity measurements demonstrated that P13 had no preference for either cations or anions and showed no voltage-gating up to ±100 mV. Blue native polyacrylamide gel electrophoresis was used to isolate and characterize the P13 protein complex in its native state. The complex had a high molecular mass of about 300 kDa and was only composed of P13 monomers. The channel size was investigated using non-electrolytes revealing an apparent diameter of about 1.4 nm with a 400-Da molecular mass cut-off. Multichannel titrations with different substrates reinforced the idea that P13 forms a general diffusion channel. The identity of P13 within the complex was confirmed by second dimension SDS-PAGE, Western blotting, mass spectrometry, and the use of a p13 deletion mutant strain. The results suggested that P13 is the protein responsible for the 0.6-nanosiemens pore-forming activity in the outer membrane of B. burgdorferi.

  11. Distribution of the Lyme Disease Spirochete Borrelia burgdorferi in Naturally and Experimentally Infected Western Gray Squirrels (Sciurus griseus)

    PubMed Central

    Jensen, Kelly; Salkeld, Daniel J.; Lane, Robert S.

    2010-01-01

    Abstract The dynamics of Borrelia burgdorferi infections within its natural hosts are poorly understood. We necropsied four wild-caught western gray squirrels (Sciurus griseus) that were acquired during a previous study that evaluated the reservoir competence of this rodent for the Lyme disease spirochete. One animal was infected experimentally, whereas the others were infected in the wild before capture. To investigate dissemination of B. burgdorferi and concurrent histopathologic lesions in different tissues, blood specimens, synovial and cerebrospinal fluid, ear-punch biopsies, and diverse tissue samples from skin and various organs were taken and examined by culture, polymerase chain reaction, and histology. Borrelia-positive cultures were obtained from three of the squirrels, that is, from skin biopsies (7 of 20 samples), ear-punch biopsies (2 of 8), and one (1 of 5) lymph node. Sequencing of amplicons confirmed B. burgdorferi sensu stricto (s.s.) infection in 9 of 10 culture-positive samples and in DNA extracted from all 10 positive cultures. The experimentally infected squirrel yielded most of the positive samples. In contrast, bodily fluids, all other organ specimens from these animals, and all samples from one naturally infected squirrel were negative for Borrelia for both assays. None of the necropsied squirrels exhibited specific clinical signs associated with B. burgdorferi. Similarly, necropsy and histological examination of tissues indicated the presence of underlying infectious processes, none of which could be ascribed conclusively to B. burgdorferi infection. Based on these results, obtained from a small number of animals investigated at a single time point, we suggest that B. burgdorferi s.s. infection in S. griseus may result in rather localized dissemination of spirochetes, and that mild or nonclinical disease might be more common after several months of infection duration. Since spirochetes could be detected in squirrels 7–21 months

  12. SERUM ANTIBODIES TO BORRELIA BURGDORFERI, ANAPLASMA PHAGOCYTOPHILUM, AND BABESIA MICROTI IN RECAPTURED WHITE-FOOTED MICE

    PubMed Central

    Magnarelli, Louis A.; Williams, Scott C.; Norris, Steven J.; Fikrig, Erol

    2013-01-01

    A mark-release-recapture study was conducted during 2007 through 2010 in six, tick-infested sites in Connecticut, United States to measure changes in antibody titers for Borrelia burgdorferi sensu stricto, Anaplasma phagocytophilum, and Babesia microti in Peromyscus leucopus (white-footed mice). There was an overall recapture rate of 40%, but only four tagged mice were caught in ≥2 yr. Sera from 561 mice were analyzed for total antibodies to B. burgdorferi and A. phagocytophilum by using whole-cell or recombinant (VlsE or protein 44) antigens in a solid-phase enzyme-linked immunosorbent assay or to whole-cell B. microti by indirect fluorescent antibody staining. Antibody prevalences were highly variable for B. burgdorferi (from 56% to 98%), A. phagocytophilum (from 11% to 85%), and B. microti (from 11% to 84%) depending on the site and time of sampling. Of 463 mice with antibodies, 206 (45%) had antibodies to all three pathogens. Changes in antibody status for some mice from negative to positive (117 seroconversions) or from positive to negative (55 reversions) were observed. Seroconversions were observed in 10.1% of 417 mice for B. burgdorferi, 18.0% of 306 mice for A. phagocytophilum, and 6.6% of 304 mice for B. microti; reversion rates were 5.3, 5.9, and 4.9%, respectively. Antibodies to all pathogens persisted in some mice over several weeks while, in others, there were marked declines in titration end points to negative status. The latter may indicate elimination of a certain pathogen, such as A. phagocytophilum, or that mouse immune systems ceased to produce antibodies despite an existing patent infection. PMID:23568904

  13. Diversity of Antibody Responses to Borrelia burgdorferi in Experimentally Infected Beagle Dogs

    PubMed Central

    Grosenbaugh, Deborah A.

    2014-01-01

    Lyme borreliosis (LB) is a common infection of domestic dogs in areas where there is enzootic transmission of the agent Borrelia burgdorferi. While immunoassays based on individual subunits have mostly supplanted the use of whole-cell preparations for canine serology, only a limited number of informative antigens have been identified. To more broadly characterize the antibody responses to B. burgdorferi infection and to assess the diversity of those responses in individual dogs, we examined sera from 32 adult colony-bred beagle dogs that had been experimentally infected with B. burgdorferi through tick bites and compared those sera in a protein microarray with sera from uninfected dogs in their antibody reactivities to various recombinant chromosome- and plasmid-encoded B. burgdorferi proteins, including 24 serotype-defining OspC proteins of North America. The profiles of immunogenic proteins for the dogs were largely similar to those for humans and natural-reservoir rodents; these proteins included the decorin-binding protein DbpB, BBA36, BBA57, BBA64, the fibronectin-binding protein BBK32, VlsE, FlaB and other flagellar structural proteins, Erp proteins, Bdr proteins, and all of the OspC proteins. In addition, the canine sera bound to the presumptive lipoproteins BBB14 and BB0844, which infrequently elicited antibodies in humans or rodents. Although the beagle, like most other domestic dog breeds, has a small effective population size and features extensive linkage disequilibrium, the group of animals studied here demonstrated diversity in antibody responses in measures of antibody levels and specificities for conserved proteins, such as DbpB, and polymorphic proteins, such as OspC. PMID:24695775

  14. Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio.

    PubMed

    Wang, Peng; Glowacki, Meaghan N; Hoet, Armando E; Needham, Glen R; Smith, Kathleen A; Gary, Richard E; Li, Xin

    2014-01-01

    Lyme disease, the most common vector-borne disease in the United States, is caused by a tick-borne infection with Borrelia burgdorferi. Currently, Ohio is considered by the Centers for Disease Control and Prevention (CDC) to be non-endemic for Lyme disease. The low incidence of Lyme disease in this state was largely attributed to the absence of the transmitting vector, Ixodes scapularis, commonly known as the blacklegged tick. However, a tick surveillance program established by Ohio Department of Health indicated that the number of I. scapularis in Ohio had increased sharply in recent years, from 0 - 5 ticks per year during 1983-2008 to 15 in 2009, 40 in 2010, and 184 in 2011. During the fall deer hunting season, examination of deer heads submitted to Ohio Department of Agriculture found 29 I. scapularis from 7 counties in 2010 and 1,830 from 25 counties in 2011. As of 2012, the tick had been found in 57 of the 88 counties of Ohio. In addition, all three active stages (larva, nymph, and adult) of I. scapularis were found in Tiverton Township of Coshocton County, demonstrating the presence of established tick populations at this central Ohio location. Of 530 nymphal or adult I. scapularis analyzed by quantitative polymerase chain reaction (qPCR), 32 (6.1%) tested positive for the B. burgdorferi flaB gene, ranging from 36 to 390,000 copies per tick. Antibodies to B. burgdorferi antigens were detected in 2 of 10 (20%) field-captured Peromyscus leucopus from Tiverton Township, and in 41 of 355 (11.5%) dogs residing in Ohio. Collectively, these data suggest that the enzootic life cycle of B. burgdorferi has become established in Ohio, which poses risk of Lyme disease to people and animals in the area. PMID:24926441

  15. Serum antibodies to Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti in recaptured white-footed mice.

    PubMed

    Magnarelli, Louis A; Williams, Scott C; Norris, Steven J; Fikrig, Erol

    2013-04-01

    A mark-release-recapture study was conducted during 2007 through 2010 in six, tick-infested sites in Connecticut, United States to measure changes in antibody titers for Borrelia burgdorferi sensu stricto, Anaplasma phagocytophilum, and Babesia microti in Peromyscus leucopus (white-footed mice). There was an overall recapture rate of 40%, but only four tagged mice were caught in ≥2 yr. Sera from 561 mice were analyzed for total antibodies to B. burgdorferi and A. phagocytophilum by using whole-cell or recombinant (VlsE or protein 44) antigens in a solid-phase enzyme-linked immunosorbent assay or to whole-cell B. microti by indirect fluorescent antibody staining. Antibody prevalences were highly variable for B. burgdorferi (from 56% to 98%), A. phagocytophilum (from 11% to 85%), and B. microti (from 11% to 84%) depending on the site and time of sampling. Of 463 mice with antibodies, 206 (45%) had antibodies to all three pathogens. Changes in antibody status for some mice from negative to positive (117 seroconversions) or from positive to negative (55 reversions) were observed. Seroconversions were observed in 10.1% of 417 mice for B. burgdorferi, 18.0% of 306 mice for A. phagocytophilum, and 6.6% of 304 mice for B. microti; reversion rates were 5.3, 5.9, and 4.9%, respectively. Antibodies to all pathogens persisted in some mice over several weeks while, in others, there were marked declines in titration end points to negative status. The latter may indicate elimination of a certain pathogen, such as A. phagocytophilum, or that mouse immune systems ceased to produce antibodies despite an existing patent infection. PMID:23568904

  16. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening.

    PubMed

    Pothineni, Venkata Raveendra; Wagh, Dhananjay; Babar, Mustafeez Mujtaba; Inayathullah, Mohammed; Solow-Cordero, David; Kim, Kwang-Min; Samineni, Aneesh V; Parekh, Mansi B; Tayebi, Lobat; Rajadas, Jayakumar

    2016-01-01

    Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%-20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as lead

  17. Borrelia burgdorferi Genetic Markers and Disseminated Disease in Patients with Early Lyme Disease▿

    PubMed Central

    Jones, Kathryn L.; Glickstein, Lisa J.; Damle, Nitin; Sikand, Vijay K.; McHugh, Gail; Steere, Allen C.

    2006-01-01

    Three genetic markers of Borrelia burgdorferi have been associated with disseminated disease: the OspC type, the 16S-23S rRNA intergenic spacer type (RST), and vlsE. Here, we modified previous methods so as to identify the three markers by PCR and restriction fragment length polymorphism in parallel, analyzed B. burgdorferi isolates from erythema migrans (EM) skin lesions in 91 patients, and correlated the results with evidence of dissemination. OspC type A was found approximately twice as frequently in patients with disseminated disease, whereas type K was identified approximately twice as often in those without evidence of dissemination, but these trends were not statistically significant. The remaining seven types identified were found nearly equally in patients with or without evidence of dissemination. RST 1 strains were significantly associated with dissemination (P = 0.03), whereas RST 2 and RST 3 strains tended to have an inverse association with this outcome. The vlsE gene was identified in all 91 cases, using primer sets specific for an N-terminal sequence of B. burgdorferi strain B31 (vlsEB31) or strain 297 (vlsE297), but neither marker was associated with dissemination. Specific combinations of the three genetic markers usually occurred together. OspC type A was always found with RST 1 and vlsEB31, type K was always identified with RST 2 and more often with vlsE297, and types E and I were almost always found with RST 3 and equally often with vlsEB31 and vlsE297. We conclude that B. burgdorferi strains vary in their capacity to disseminate, but almost all strains isolated from EM lesions sometimes caused disseminated disease. PMID:17035489

  18. Borrelia burgdorferi genetic markers and disseminated disease in patients with early Lyme disease.

    PubMed

    Jones, Kathryn L; Glickstein, Lisa J; Damle, Nitin; Sikand, Vijay K; McHugh, Gail; Steere, Allen C

    2006-12-01

    Three genetic markers of Borrelia burgdorferi have been associated with disseminated disease: the OspC type, the 16S-23S rRNA intergenic spacer type (RST), and vlsE. Here, we modified previous methods so as to identify the three markers by PCR and restriction fragment length polymorphism in parallel, analyzed B. burgdorferi isolates from erythema migrans (EM) skin lesions in 91 patients, and correlated the results with evidence of dissemination. OspC type A was found approximately twice as frequently in patients with disseminated disease, whereas type K was identified approximately twice as often in those without evidence of dissemination, but these trends were not statistically significant. The remaining seven types identified were found nearly equally in patients with or without evidence of dissemination. RST 1 strains were significantly associated with dissemination (P=0.03), whereas RST 2 and RST 3 strains tended to have an inverse association with this outcome. The vlsE gene was identified in all 91 cases, using primer sets specific for an N-terminal sequence of B. burgdorferi strain B31 (vlsEB31) or strain 297 (vlsE297), but neither marker was associated with dissemination. Specific combinations of the three genetic markers usually occurred together. OspC type A was always found with RST 1 and vlsEB31, type K was always identified with RST 2 and more often with vlsE297, and types E and I were almost always found with RST 3 and equally often with vlsEB31 and vlsE297. We conclude that B. burgdorferi strains vary in their capacity to disseminate, but almost all strains isolated from EM lesions sometimes caused disseminated disease.

  19. Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio.

    PubMed

    Wang, Peng; Glowacki, Meaghan N; Hoet, Armando E; Needham, Glen R; Smith, Kathleen A; Gary, Richard E; Li, Xin

    2014-01-01

    Lyme disease, the most common vector-borne disease in the United States, is caused by a tick-borne infection with Borrelia burgdorferi. Currently, Ohio is considered by the Centers for Disease Control and Prevention (CDC) to be non-endemic for Lyme disease. The low incidence of Lyme disease in this state was largely attributed to the absence of the transmitting vector, Ixodes scapularis, commonly known as the blacklegged tick. However, a tick surveillance program established by Ohio Department of Health indicated that the number of I. scapularis in Ohio had increased sharply in recent years, from 0 - 5 ticks per year during 1983-2008 to 15 in 2009, 40 in 2010, and 184 in 2011. During the fall deer hunting season, examination of deer heads submitted to Ohio Department of Agriculture found 29 I. scapularis from 7 counties in 2010 and 1,830 from 25 counties in 2011. As of 2012, the tick had been found in 57 of the 88 counties of Ohio. In addition, all three active stages (larva, nymph, and adult) of I. scapularis were found in Tiverton Township of Coshocton County, demonstrating the presence of established tick populations at this central Ohio location. Of 530 nymphal or adult I. scapularis analyzed by quantitative polymerase chain reaction (qPCR), 32 (6.1%) tested positive for the B. burgdorferi flaB gene, ranging from 36 to 390,000 copies per tick. Antibodies to B. burgdorferi antigens were detected in 2 of 10 (20%) field-captured Peromyscus leucopus from Tiverton Township, and in 41 of 355 (11.5%) dogs residing in Ohio. Collectively, these data suggest that the enzootic life cycle of B. burgdorferi has become established in Ohio, which poses risk of Lyme disease to people and animals in the area.

  20. Emergence of Ixodes scapularis and Borrelia burgdorferi, the Lyme disease vector and agent, in Ohio

    PubMed Central

    Wang, Peng; Glowacki, Meaghan N.; Hoet, Armando E.; Needham, Glen R.; Smith, Kathleen A.; Gary, Richard E.; Li, Xin

    2014-01-01

    Lyme disease, the most common vector-borne disease in the United States, is caused by a tick-borne infection with Borrelia burgdorferi. Currently, Ohio is considered by the Centers for Disease Control and Prevention (CDC) to be non-endemic for Lyme disease. The low incidence of Lyme disease in this state was largely attributed to the absence of the transmitting vector, Ixodes scapularis, commonly known as the blacklegged tick. However, a tick surveillance program established by Ohio Department of Health indicated that the number of I. scapularis in Ohio had increased sharply in recent years, from 0 - 5 ticks per year during 1983–2008 to 15 in 2009, 40 in 2010, and 184 in 2011. During the fall deer hunting season, examination of deer heads submitted to Ohio Department of Agriculture found 29 I. scapularis from 7 counties in 2010 and 1,830 from 25 counties in 2011. As of 2012, the tick had been found in 57 of the 88 counties of Ohio. In addition, all three active stages (larva, nymph, and adult) of I. scapularis were found in Tiverton Township of Coshocton County, demonstrating the presence of established tick populations at this central Ohio location. Of 530 nymphal or adult I. scapularis analyzed by quantitative polymerase chain reaction (qPCR), 32 (6.1%) tested positive for the B. burgdorferi flaB gene, ranging from 36 to 390,000 copies per tick. Antibodies to B. burgdorferi antigens were detected in 2 of 10 (20%) field-captured Peromyscus leucopus from Tiverton Township, and in 41 of 355 (11.5%) dogs residing in Ohio. Collectively, these data suggest that the enzootic life cycle of B. burgdorferi has become established in Ohio, which poses risk of Lyme disease to people and animals in the area. PMID:24926441

  1. Identification of Lysine Residues in the Borrelia burgdorferi DbpA Adhesin Required for Murine Infection

    PubMed Central

    Fortune, Danielle E.; Lin, Yi-Pin; Deka, Ranjit K.; Groshong, Ashley M.; Moore, Brendan P.; Hagman, Kayla E.; Leong, John M.; Tomchick, Diana R.

    2014-01-01

    Decorin-binding protein A (DbpA) of Borrelia burgdorferi mediates bacterial adhesion to heparin and dermatan sulfate associated with decorin. Lysines K82, K163, and K170 of DbpA are known to be important for in vitro interaction with decorin, and the DbpA structure, initially solved by nuclear magnetic resonance (NMR) spectroscopy, suggests these lysine residues colocalize in a pocket near the C terminus of the protein. In the current study, we solved the structure of DbpA from B. burgdorferi strain 297 using X-ray crystallography and confirmed the existing NMR structural data. In vitro binding experiments confirmed that recombinant DbpA proteins with mutations in K82, K163, or K170 did not bind decorin, which was due to an inability to interact with dermatan sulfate. Most importantly, we determined that the in vitro binding defect observed upon mutation of K82, K163, or K170 in DbpA also led to a defect during infection. The infectivity of B. burgdorferi expressing individual dbpA lysine point mutants was assessed in mice challenged via needle inoculation. Murine infection studies showed that strains expressing dbpA with mutations in K82, K163, and K170 were significantly attenuated and could not be cultured from any tissue. Proper expression and cellular localization of the mutated DbpA proteins were examined, and NMR spectroscopy determined that the mutant DbpA proteins were structurally similar to wild-type DbpA. Taken together, these data showed that lysines K82, K163, and K170 potentiate the binding of DbpA to dermatan sulfate and that an interaction(s) mediated by these lysines is essential for B. burgdorferi murine infection. PMID:24842928

  2. Diversity of antibody responses to Borrelia burgdorferi in experimentally infected beagle dogs.

    PubMed

    Baum, Elisabeth; Grosenbaugh, Deborah A; Barbour, Alan G

    2014-06-01

    Lyme borreliosis (LB) is a common infection of domestic dogs in areas where there is enzootic transmission of the agent Borrelia burgdorferi. While immunoassays based on individual subunits have mostly supplanted the use of whole-cell preparations for canine serology, only a limited number of informative antigens have been identified. To more broadly characterize the antibody responses to B. burgdorferi infection and to assess the diversity of those responses in individual dogs, we examined sera from 32 adult colony-bred beagle dogs that had been experimentally infected with B. burgdorferi through tick bites and compared those sera in a protein microarray with sera from uninfected dogs in their antibody reactivities to various recombinant chromosome- and plasmid-encoded B. burgdorferi proteins, including 24 serotype-defining OspC proteins of North America. The profiles of immunogenic proteins for the dogs were largely similar to those for humans and natural-reservoir rodents; these proteins included the decorin-binding protein DbpB, BBA36, BBA57, BBA64, the fibronectin-binding protein BBK32, VlsE, FlaB and other flagellar structural proteins, Erp proteins, Bdr proteins, and all of the OspC proteins. In addition, the canine sera bound to the presumptive lipoproteins BBB14 and BB0844, which infrequently elicited antibodies in humans or rodents. Although the beagle, like most other domestic dog breeds, has a small effective population size and features extensive linkage disequilibrium, the group of animals studied here demonstrated diversity in antibody responses in measures of antibody levels and specificities for conserved proteins, such as DbpB, and polymorphic proteins, such as OspC.

  3. Use of an endogenous plasmid locus for stable in trans complementation in Borrelia burgdorferi.

    PubMed

    Kasumba, Irene N; Bestor, Aaron; Tilly, Kit; Rosa, Patricia A

    2015-02-01

    Targeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirochete Borrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers than B. burgdorferi plasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle. B. burgdorferi has over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochete in vivo but relatively unstable during in vitro cultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number and in vivo stability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into the bbe02 locus, a site on lp25 that was previously shown to be nonessential during both in vitro and in vivo growth. We demonstrate the functional utility of this strategy by restoring infectivity to an ospC mutant through complementation at this site on lp25 and stable maintenance of the ospC gene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation in B. burgdorferi.

  4. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening

    PubMed Central

    Pothineni, Venkata Raveendra; Wagh, Dhananjay; Babar, Mustafeez Mujtaba; Inayathullah, Mohammed; Solow-Cordero, David; Kim, Kwang-Min; Samineni, Aneesh V; Parekh, Mansi B; Tayebi, Lobat; Rajadas, Jayakumar

    2016-01-01

    Lyme disease is the most common zoonotic bacterial disease in North America. It is estimated that >300,000 cases per annum are reported in USA alone. A total of 10%–20% of patients who have been treated with antibiotic therapy report the recrudescence of symptoms, such as muscle and joint pain, psychosocial and cognitive difficulties, and generalized fatigue. This condition is referred to as posttreatment Lyme disease syndrome. While there is no evidence for the presence of viable infectious organisms in individuals with posttreatment Lyme disease syndrome, some researchers found surviving Borrelia burgdorferi population in rodents and primates even after antibiotic treatment. Although such observations need more ratification, there is unmet need for developing the therapeutic agents that focus on removing the persisting bacterial form of B. burgdorferi in rodent and nonhuman primates. For this purpose, high-throughput screening was done using BacTiter-Glo assay for four compound libraries to identify candidates that stop the growth of B. burgdorferi in vitro. The four chemical libraries containing 4,366 compounds (80% Food and Drug Administration [FDA] approved) that were screened are Library of Pharmacologically Active Compounds (LOPAC1280), the National Institutes of Health Clinical Collection, the Microsource Spectrum, and the Biomol FDA. We subsequently identified 150 unique compounds, which inhibited >90% of B. burgdorferi growth at a concentration of <25 µM. These 150 unique compounds comprise many safe antibiotics, chemical compounds, and also small molecules from plant sources. Of the 150 unique compounds, 101 compounds are FDA approved. We selected the top 20 FDA-approved molecules based on safety and potency and studied their minimum inhibitory concentration and minimum bactericidal concentration. The promising safe FDA-approved candidates that show low minimum inhibitory concentration and minimum bactericidal concentration values can be chosen as

  5. Distribution and molecular analysis of Lyme disease spirochetes, Borrelia burgdorferi, isolated from ticks throughout California.

    PubMed Central

    Schwan, T G; Schrumpf, M E; Karstens, R H; Clover, J R; Wong, J; Daugherty, M; Struthers, M; Rosa, P A

    1993-01-01

    Previous studies describing the occurrence and molecular characteristics of Lyme disease spirochetes, Borrelia burgdorferi, from California have been restricted primarily to isolates obtained from the north coastal region of this large and ecologically diverse state. Our objective was to look for and examine B. burdorferi organisms isolated from Ixodes pacificus ticks collected from numerous regions spanning most parts of California where this tick is found. Thirty-one isolates of B. burgdorferi were examined from individual or pooled I. pacificus ticks collected from 25 counties throughout the state. One isolate was obtained from ticks collected at Wawona Campground in Yosemite National Park, documenting the occurrence of the Lyme disease spirochete in an area of intensive human recreational use. One isolate from an Ixodes neotomae tick from an additional county was also examined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblot analysis, agarose gel electrophoresis, Southern blot analysis, and the polymerase chain reaction were used to examine the molecular and genetic determinants of these uncloned, low-passage-number isolates. All of the isolates were identified as B. burgdorferi by their protein profiles and reactivities with monoclonal and polyclonal antibodies, and all the isolates were typed by the polymerase chain reaction as North American-type spirochetes (B. burgdorferi sensu stricto). Although products of the ospAB locus were identified in protein analyses in all of the isolates, several isolates contained deleted forms of this locus that would result in the expression of chimeric OspA-OspB proteins. The analysis of OspC demonstrated that this protein was widely conserved among the isolates but was also quite variable in its molecular mass and the amount of it that was expressed. Images PMID:8308101

  6. Xenodiagnosis to Detect Borrelia burgdorferi Infection: A First-in-Human Study

    PubMed Central

    Marques, Adriana; Telford, Sam R.; Turk, Siu-Ping; Chung, Erin; Williams, Carla; Dardick, Kenneth; Krause, Peter J.; Brandeburg, Christina; Crowder, Christopher D.; Carolan, Heather E.; Eshoo, Mark W.; Shaw, Pamela A.; Hu, Linden T.

    2014-01-01

    Background. Animal studies suggest that Borrelia burgdorferi, the agent of Lyme disease, may persist after antibiotic therapy and can be detected by various means including xenodiagnosis using the natural tick vector (Ixodes scapularis). No convincing evidence exists for the persistence of viable spirochetes after recommended courses of antibiotic therapy in humans. We determined the safety of using I. scapularis larvae for the xenodiagnosis of B. burgdorferi infection in humans. Methods. Laboratory-reared larval I. scapularis ticks were placed on 36 subjects and allowed to feed to repletion. Ticks were tested for B. burgdorferi by polymerase chain reaction (PCR), culture, and/or isothermal amplification followed by PCR and electrospray ionization mass spectroscopy. In addition, attempts were made to infect immunodeficient mice by tick bite or inoculation of tick contents. Xenodiagnosis was repeated in 7 individuals. Results. Xenodiagnosis was well tolerated with no severe adverse events. The most common adverse event was mild itching at the tick attachment site. Xenodiagnosis was negative in 16 patients with posttreatment Lyme disease syndrome (PTLDS) and/or high C6 antibody levels and in 5 patients after completing antibiotic therapy for erythema migrans. Xenodiagnosis was positive for B. burgdorferi DNA in a patient with erythema migrans early during therapy and in a patient with PTLDS. There is insufficient evidence, however, to conclude that viable spirochetes were present in either patient. Conclusions. Xenodiagnosis using Ixodes scapularis larvae was safe and well tolerated. Further studies are needed to determine the sensitivity of xenodiagnosis in patients with Lyme disease and the significance of a positive result. Clinical Trials Registration NCT01143558. PMID:24523212

  7. Life history of Ixodes (Ixodes) jellisoni (Acari: Ixodidae) and its vector competence for Borrelia burgdorferi sensu lato.

    PubMed

    Lane, R S; Peavey, C A; Padgett, K A; Hendson, M

    1999-05-01

    Ixodes (Ixodes) jellisoni Cooley & Kohls, a nonhuman biting and little known tick, is one of 4 members of the I. ricinus complex in the United States. A localized population of I. jellisoni inhabiting a grassland biotope in Mendocino County, CA, was studied from 1993 to 1997. Rodent trapping in all seasons revealed that the only host of both immature and adult I. jellisoni was the heteromyid rodent Dipodomys californicus Merriam. Field investigations suggested that I. jellisoni is nidicolous in habit, and laboratory findings demonstrated that it reproduces parthenogenetically. Known parthenogenetic females (n = 4) produced an average of 530 eggs of which 74% hatched, which was comparable to the fecundity and fertility of wild-caught females (n = 8). After the transstadial molt, 57 F1 or F2 nymphs derived from 2 wild-caught or 4 laboratory-reared, unmated females produced only females. Ixodes jellisoni males were not found on 112 wild-caught D. californicus individuals that were captured an average of 2 times. Collectively, these findings suggest that I. jellisoni may be obligatorily parthenogenetic. Borrelial isolates were obtained from 85% of 58 D. californicus and 33% of 21 I. jellisoni females removed from this rodent. None of the 7 infected female ticks passed borreliae ovarially to its F1 larval progeny. Eight D. californicus and 5 I. jellisoni-derived isolates that were genetically characterized belonged to 2 restriction pattern groups of Borrelia burgdorferi s.l. Neither restriction pattern group has been assigned to a particular genospecies yet. After placement on naturally infected D. californicus, noninfected larval ticks acquired and transstadially passed spirochetes as efficiently as (group 1 borreliae) or 6 times more efficiently (group 2 borreliae) than Ixodes pacificus Cooley & Kohls. As few as 1-4 infected I. jellisoni nymphs were capable of transmitting group 1 or group 2 borreliae to naive D. californicus. We conclude that I. jellisoni is a

  8. Differences in prevalence of Borrelia burgdorferi and Anaplasma spp. infection among host-seeking Dermacentor occidentalis, Ixodes pacificus, and Ornithodoros coriaceus ticks in northwestern California

    PubMed Central

    Lane, Robert S.; Mun, Jeomhee; Peribáñez, Miguel A.; Fedorova, Natalia

    2010-01-01

    Previous studies revealed that the Pacific Coast tick (Dermacentor occidentalis) is infected occasionally with the agents of Lyme disease (Borrelia burgdorferi) or human granulocytic anaplasmosis (Anaplasma phagocytophilum) and that it is an inefficient experimental vector of B. burgdorferi. The relationship of the pajahuello tick (Ornithodoros coriaceus) to each of these bacterial zoonotic agents has not been reported. The primary bridging vector of both bacterial zoonotic agents to humans is the western black-legged tick (Ixodes pacificus). Because of the spatial and temporal overlap of D. occidentalis and O. coriaceus populations with those of I. pacificus in natural foci of B. burgdorferi and A. phagocytophilum in northwestern California, we conducted field and laboratory studies to determine if the Pacific Coast tick or the pajahuello tick potentially may serve as secondary vectors of either bacterium. Our findings reconfirmed that wild-caught D. occidentalis ticks are infected infrequently with B. burgdorferi or A. phagocytophilum, but some adult ticks from dense woodlands or chaparral were found to contain 2 important veterinary pathogens for the first time (Anaplasma bovis, A. ovis). The high prevalence of A. bovis infection (4.3%, n=185 ticks) within chaparral-derived ticks suggests that D. occidentalis could be an efficient vector of this rickettsia. Experimental attempts to transmit borreliae or Anaplasma spp. that may have been present in >100 wild-caught D. occidentalis adults to naïve rabbits were unsuccessful. Anaplasma spp. were not detected in O. coriaceus, but one (4.3%) of 23 nymphs was infected with B. bissettii. This finding and an antecedent report of a B. burgdorferi-like spirochete from the same tick species demonstrate that O. coriaceus sometimes acquires and transstadially passes Lyme disease group spirochetes. I. pacificus nymphs inhabiting a woodland nidus of B. burgdorferi and A. phagocytophilum had a 5-fold higher prevalence of

  9. Differences in prevalence of Borrelia burgdorferi and Anaplasma spp. infection among host-seeking Dermacentor occidentalis, Ixodes pacificus, and Ornithodoros coriaceus ticks in northwestern California.

    PubMed

    Lane, Robert S; Mun, Jeomhee; Peribáñez, Miguel A; Fedorova, Natalia

    2010-12-01

    Previous studies revealed that the Pacific Coast tick (Dermacentor occidentalis) is infected occasionally with the agents of Lyme disease (Borrelia burgdorferi) or human granulocytic anaplasmosis (Anaplasma phagocytophilum) and that it is an inefficient experimental vector of B. burgdorferi. The relationship of the pajahuello tick (Ornithodoros coriaceus) to each of these bacterial zoonotic agents has not been reported. The primary bridging vector of both bacterial zoonotic agents to humans is the western black-legged tick (Ixodes pacificus). Because of the spatial and temporal overlap of D. occidentalis and O. coriaceus populations with those of I. pacificus in natural foci of B. burgdorferi and A. phagocytophilum in northwestern California, we conducted field and laboratory studies to determine if the Pacific Coast tick or the pajahuello tick potentially may serve as secondary vectors of either bacterium. Our findings reconfirmed that wild-caught D. occidentalis ticks are infected infrequently with B. burgdorferi or A. phagocytophilum, but some adult ticks from dense woodlands or chaparral were found to contain 2 important veterinary pathogens for the first time (Anaplasma bovis, A. ovis). The high prevalence of A. bovis infection (4.3%, n=185 ticks) within chaparral-derived ticks suggests that D. occidentalis could be an efficient vector of this rickettsia. Experimental attempts to transmit borreliae or Anaplasma spp. that may have been present in >100 wild-caught D. occidentalis adults to naïve rabbits were unsuccessful. Anaplasma spp. were not detected in O. coriaceus, but one (4.3%) of 23 nymphs was infected with B. bissettii. This finding and an antecedent report of a B. burgdorferi-like spirochete from the same tick species demonstrate that O. coriaceus sometimes acquires and transstadially passes Lyme disease group spirochetes. I. pacificus nymphs inhabiting a woodland nidus of B. burgdorferi and A. phagocytophilum had a 5-fold higher prevalence of

  10. The Heterogeneity, Distribution, and Environmental Associations of Borrelia burgdorferi Sensu Lato, the Agent of Lyme Borreliosis, in Scotland

    PubMed Central

    James, Marianne C.; Gilbert, Lucy; Bowman, Alan S.; Forbes, Ken J.

    2014-01-01

    Lyme borreliosis is an emerging infectious human disease caused by the Borrelia burgdorferi sensu lato complex of bacteria with reported cases increasing in many areas of Europe and North America. To understand the drivers of disease risk and the distribution of symptoms, which may improve mitigation and diagnostics, here we characterize the genetics, distribution, and environmental associations of B. burgdorferi s.l. genospecies across Scotland. In Scotland, reported Lyme borreliosis cases have increased almost 10-fold since 2000 but the distribution of B. burgdorferi s.l. is so far unstudied. Using a large survey of over 2200 Ixodes ricinus tick samples collected from birds, mammals, and vegetation across 25 sites we identified four genospecies: Borrelia afzelii (48%), Borrelia garinii (36%), Borrelia valaisiana (8%), and B. burgdorferi sensu stricto (7%), and one mixed genospecies infection. Surprisingly, 90% of the sequence types were novel and, importantly, up to 14% of samples were mixed intra-genospecies co-infections, suggesting tick co-feeding, feeding on multiple hosts, or multiple infections in hosts. B. garinii (hosted by birds) was considerably more genetically diverse than B. afzelii (hosted by small mammals), as predicted since there are more species of birds than small mammals and birds can import strains from mainland Europe. Higher proportions of samples contained B. garinii and B. valaisiana in the west, while B. afzelii and B. garinii were significantly more associated with mixed/deciduous than with coniferous woodlands. This may relate to the abundance of transmission hosts in different regions and habitats. These data on the genetic heterogeneity within and between Borrelia genospecies are a first step to understand pathogen spread and could help explain the distribution of patient symptoms, which may aid local diagnosis. Understanding the environmental associations of the pathogens is critical for rational policy making for disease risk

  11. Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in alphabeta T-cell receptor transgenic mice.

    PubMed Central

    Infante-Duarte, C; Kamradt, T

    1997-01-01

    Induction of the appropriate T helper cell (Th) subset is crucial for the resolution of infectious diseases and the prevention of immunopathology. Some pathogens preferentially induce Th1 or Th2 responses. How microorganisms influence Th phenotype development is unknown. We asked if Borrelia burgdorferi, the spirochete which causes Lyme arthritis, can promote a cytokine milieu in which T cells which are not specific for B. burgdorferi are induced to produce proinflammatory cytokines. Using alphabeta T-cell receptor transgenic mice as a source of T cells with a defined specificity other than for B. burgdorferi, we found that B. burgdorferi induced Th1 phenotype development in ovalbumin-specific transgenic T cells. Small synthetic lipopeptides corresponding to the N-terminal sequences of B. burgdorferi outer surface lipoproteins had similar effects. B. burgdorferi and its lipopeptides induced host cells to produce interleukin-12. When the peptides were used in delipidated form, they did not induce Th1 development. These findings may be of pathogenic importance, since it is currently assumed that a Th2-mediated antibody response is protective against B. burgdorferi. Bacteria associated with reactive arthritis, namely, Yersinia enterocolitica, Shigella flexneri, and Salmonella enteritidis, had different effects. The molecular definition of pathogen-host interactions determining cytokine production should facilitate rational therapeutic interventions directing the host response towards the desired cytokine response. Here, we describe small synthetic molecules capable of inducing Th1 phenotype development. PMID:9317013

  12. Avidity determination of Borrelia burgdorferi-specific IgG antibodies in Lyme disease.

    PubMed

    Rauer, S; Beitlich, P; Neubert, U; Rasiah, C; Kaiser, R

    2001-01-01

    The avidity indices of Borrelia burgdorferi-specific IgG antibodies were estimated using ELISA in sera from patients with different stages of Lyme disease. In addition, sera from healthy students with proof of borrelial-specific IgG antibodies from standard serology were tested. Low avidity indices were detected predominantly in sera from patients with early-stage Lyme disease [erythema migrans (EM); n = 25]. High avidity indices were found in healthy students (n = 72) and in most of the patients with neuroborreliosis (NB; n = 44) and chronic late-stage Lyme disease [acrodermatitis chronica atrophicans (ACA); n = 36]. In conclusion, early-stage Lyme disease (EM) could be differentiated from advanced and chronic stages (NB, ACA) and from "seropositive" healthy persons using avidity determination in the majority of patients in this study.

  13. Genetic diversity among Borrelia burgdorferi isolates from wood rats and kangaroo rats in California.

    PubMed Central

    Zingg, B C; Brown, R N; Lane, R S; LeFebvre, R B

    1993-01-01

    Twenty-nine Borrelia burgdorferi isolates, obtained from dusky-footed wood rats (Neotoma fuscipes) and California kangaroo rats (Dipodomys californicus) in California, were analyzed genetically. Chromosomal DNA was examined by restriction endonuclease analysis (REA) and gene probe restriction fragment length polymorphism. Pulsed-field gel electrophoresis was used to analyze the plasmid profiles of the isolates. REA, the method with the greatest discrimination, disclosed 24 distinct restriction patterns among the 29 isolates. These restriction patterns were sorted into four restriction fragment length polymorphism groups on the basis of their gene hybridization patterns. Results of the REA and plasmid profile analysis supported this grouping. The degree of genetic diversity among Californian isolates demonstrated by our findings is greater than that previously reported among other groups of North American isolates and is similar or greater than the diversity reported among European isolates. Images PMID:7905880

  14. Elimination of Borrelia burgdorferi from vector ticks feeding on OspA-immunized mice.

    PubMed

    Fikrig, E; Telford, S R; Barthold, S W; Kantor, F S; Spielman, A; Flavell, R A

    1992-06-15

    Although recombinant outer surface protein A (OspA) of Borrelia burgdorferi protects mice against injected Lyme disease spirochetes, the mode of protection has not yet been explored. Indeed, the efficacy of vaccine-induced immunity against a realistic vector-mediated challenge remains unexplored. Accordingly, we determined whether this immunogen protects mice against spirochetes delivered by nymphal Ixodes dammini ticks. Following challenge by tick bite, no spirochetes could be cultured from immunized mice, and no characteristic histopathology was found. The spirochete was not detected in ticks that fed on immunized animals and was present in virtually all ticks that fed on nonimmunized mice. We conclude that OspA-immunized mice are protected from spirochetal infection, at least in part, because the spirochete is destroyed in the infecting tick.

  15. Borrelia burgdorferi Sensu Lato Spirochetes in Wild Birds in Northwestern California: Associations with Ecological Factors, Bird Behavior and Tick Infestation

    PubMed Central

    Newman, Erica A.; Eisen, Lars; Eisen, Rebecca J.; Fedorova, Natalia; Hasty, Jeomhee M.; Vaughn, Charles; Lane, Robert S.

    2015-01-01

    Although Borrelia burgdorferi sensu lato (s.l.) are found in a great diversity of vertebrates, most studies in North America have focused on the role of mammals as spirochete reservoir hosts. We investigated the roles of birds as hosts for subadult Ixodes pacificus ticks and potential reservoirs of the Lyme disease spirochete B. burgdorferi sensu stricto (s.s.) in northwestern California. Overall, 623 birds representing 53 species yielded 284 I. pacificus larvae and nymphs. We used generalized linear models and zero-inflated negative binomial models to determine associations of bird behaviors, taxonomic relationships and infestation by I. pacificus with borrelial infection in the birds. Infection status in birds was best explained by taxonomic order, number of infesting nymphs, sampling year, and log-transformed average body weight. Presence and counts of larvae and nymphs could be predicted by ground- or bark-foraging behavior and contact with dense oak woodland. Molecular analysis yielded the first reported detection of Borrelia bissettii in birds. Moreover, our data suggest that the Golden-crowned Sparrow (Zonotrichia atricapilla), a non-resident species, could be an important reservoir for B. burgdorferi s.s. Of 12 individual birds (9 species) that carried B. burgdorferi s.l.-infected larvae, no birds carried the same genospecies of B. burgdorferi s.l. in their blood as were present in the infected larvae removed from them. Possible reasons for this discrepancy are discussed. Our study is the first to explicitly incorporate both taxonomic relationships and behaviors as predictor variables to identify putative avian reservoirs of B. burgdorferi s.l. Our findings underscore the importance of bird behavior to explain local tick infestation and Borrelia infection in these animals, and suggest the potential for bird-mediated geographic spread of vector ticks and spirochetes in the far-western United States. PMID:25714376

  16. Borrelia burgdorferi sensu lato spirochetes in wild birds in northwestern California: associations with ecological factors, bird behavior and tick infestation.

    PubMed

    Newman, Erica A; Eisen, Lars; Eisen, Rebecca J; Fedorova, Natalia; Hasty, Jeomhee M; Vaughn, Charles; Lane, Robert S

    2015-01-01

    Although Borrelia burgdorferi sensu lato (s.l.) are found in a great diversity of vertebrates, most studies in North America have focused on the role of mammals as spirochete reservoir hosts. We investigated the roles of birds as hosts for subadult Ixodes pacificus ticks and potential reservoirs of the Lyme disease spirochete B. burgdorferi sensu stricto (s.s.) in northwestern California. Overall, 623 birds representing 53 species yielded 284 I. pacificus larvae and nymphs. We used generalized linear models and zero-inflated negative binomial models to determine associations of bird behaviors, taxonomic relationships and infestation by I. pacificus with borrelial infection in the birds. Infection status in birds was best explained by taxonomic order, number of infesting nymphs, sampling year, and log-transformed average body weight. Presence and counts of larvae and nymphs could be predicted by ground- or bark-foraging behavior and contact with dense oak woodland. Molecular analysis yielded the first reported detection of Borrelia bissettii in birds. Moreover, our data suggest that the Golden-crowned Sparrow (Zonotrichia atricapilla), a non-resident species, could be an important reservoir for B. burgdorferi s.s. Of 12 individual birds (9 species) that carried B. burgdorferi s.l.-infected larvae, no birds carried the same genospecies of B. burgdorferi s.l. in their blood as were present in the infected larvae removed from them. Possible reasons for this discrepancy are discussed. Our study is the first to explicitly incorporate both taxonomic relationships and behaviors as predictor variables to identify putative avian reservoirs of B. burgdorferi s.l. Our findings underscore the importance of bird behavior to explain local tick infestation and Borrelia infection in these animals, and suggest the potential for bird-mediated geographic spread of vector ticks and spirochetes in the far-western United States.

  17. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi

    PubMed Central

    Esteve-Gassent, Maria D.; Smith, Trever C.; Small, Christina M.; Thomas, Derek P.; Seshu, J.

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA) capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560), and outer surface protein A (OspA, BBA15) were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC), Decorin binding protein A (DbpA), fibronectin binding protein (BBK32), RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox−⁄− and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of the sod

  18. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi.

    PubMed

    Esteve-Gassent, Maria D; Smith, Trever C; Small, Christina M; Thomas, Derek P; Seshu, J

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA) capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560), and outer surface protein A (OspA, BBA15) were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC), Decorin binding protein A (DbpA), fibronectin binding protein (BBK32), RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of the sod

  19. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi.

    PubMed

    Esteve-Gassent, Maria D; Smith, Trever C; Small, Christina M; Thomas, Derek P; Seshu, J

    2015-01-01

    Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA) capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE) and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat). HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348) exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560), and outer surface protein A (OspA, BBA15) were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC), Decorin binding protein A (DbpA), fibronectin binding protein (BBK32), RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of the sod

  20. Effectiveness of Stevia Rebaudiana Whole Leaf Extract Against the Various Morphological Forms of Borrelia Burgdorferi in Vitro.

    PubMed

    Theophilus, P A S; Victoria, M J; Socarras, K M; Filush, K R; Gupta, K; Luecke, D F; Sapi, E

    2015-12-01

    Lyme disease is a tick-borne multisystemic disease caused by Borrelia burgdorferi. Administering antibiotics is the primary treatment for this disease; however, relapse often occurs when antibiotic treatment is discontinued. The reason for relapse remains unknown, but recent studies suggested the possibilities of the presence of antibiotic resistant Borrelia persister cells and biofilms. In this study, we evaluated the effectiveness of whole leaf Stevia extract against B. burgdorferi spirochetes, persisters, and biofilm forms in vitro. The susceptibility of the different forms was evaluated by various quantitative techniques in addition to different microscopy methods. The effectiveness of Stevia was compared to doxycycline, cefoperazone, daptomycin, and their combinations. Our results demonstrated that Stevia had significant effect in eliminating B. burgdorferi spirochetes and persisters. Subculture experiments with Stevia and antibiotics treated cells were established for 7 and 14 days yielding, no and 10% viable cells, respectively compared to the above-mentioned antibiotics and antibiotic combination. When Stevia and the three antibiotics were tested against attached biofilms, Stevia significantly reduced B. burgdorferi forms. Results from this study suggest that a natural product such as Stevia leaf extract could be considered as an effective agent against B. burgdorferi. PMID:26716015

  1. Effectiveness of Stevia Rebaudiana Whole Leaf Extract Against the Various Morphological Forms of Borrelia Burgdorferi in Vitro.

    PubMed

    Theophilus, P A S; Victoria, M J; Socarras, K M; Filush, K R; Gupta, K; Luecke, D F; Sapi, E

    2015-12-01

    Lyme disease is a tick-borne multisystemic disease caused by Borrelia burgdorferi. Administering antibiotics is the primary treatment for this disease; however, relapse often occurs when antibiotic treatment is discontinued. The reason for relapse remains unknown, but recent studies suggested the possibilities of the presence of antibiotic resistant Borrelia persister cells and biofilms. In this study, we evaluated the effectiveness of whole leaf Stevia extract against B. burgdorferi spirochetes, persisters, and biofilm forms in vitro. The susceptibility of the different forms was evaluated by various quantitative techniques in addition to different microscopy methods. The effectiveness of Stevia was compared to doxycycline, cefoperazone, daptomycin, and their combinations. Our results demonstrated that Stevia had significant effect in eliminating B. burgdorferi spirochetes and persisters. Subculture experiments with Stevia and antibiotics treated cells were established for 7 and 14 days yielding, no and 10% viable cells, respectively compared to the above-mentioned antibiotics and antibiotic combination. When Stevia and the three antibiotics were tested against attached biofilms, Stevia significantly reduced B. burgdorferi forms. Results from this study suggest that a natural product such as Stevia leaf extract could be considered as an effective agent against B. burgdorferi.

  2. Effectiveness of Stevia Rebaudiana Whole Leaf Extract Against the Various Morphological Forms of Borrelia Burgdorferi in Vitro

    PubMed Central

    Theophilus, P. A. S.; Victoria, M. J.; Socarras, K. M.; Filush, K. R.; Gupta, K.; Luecke, D. F.; Sapi, E.

    2015-01-01

    Lyme disease is a tick-borne multisystemic disease caused by Borrelia burgdorferi. Administering antibiotics is the primary treatment for this disease; however, relapse often occurs when antibiotic treatment is discontinued. The reason for relapse remains unknown, but recent studies suggested the possibilities of the presence of antibiotic resistant Borrelia persister cells and biofilms. In this study, we evaluated the effectiveness of whole leaf Stevia extract against B. burgdorferi spirochetes, persisters, and biofilm forms in vitro. The susceptibility of the different forms was evaluated by various quantitative techniques in addition to different microscopy methods. The effectiveness of Stevia was compared to doxycycline, cefoperazone, daptomycin, and their combinations. Our results demonstrated that Stevia had significant effect in eliminating B. burgdorferi spirochetes and persisters. Subculture experiments with Stevia and antibiotics treated cells were established for 7 and 14 days yielding, no and 10% viable cells, respectively compared to the above-mentioned antibiotics and antibiotic combination. When Stevia and the three antibiotics were tested against attached biofilms, Stevia significantly reduced B. burgdorferi forms. Results from this study suggest that a natural product such as Stevia leaf extract could be considered as an effective agent against B. burgdorferi. PMID:26716015

  3. Host, habitat and climate preferences of Ixodes angustus (Acari: Ixodidae) and infection with Borrelia burgdorferi and Anaplasma phagocytophilum in California, USA.

    PubMed

    Stephenson, Nicole; Wong, Johnny; Foley, Janet

    2016-10-01

    The Holarctic tick Ixodes angustus is a competent vector for Borrelia burgdorferi, the etiologic agent of Lyme disease, and possibly Anaplasma phagocytophilum, the etiologic agent of granulocytic anaplasmosis, as well. From 2005 to 2013, we collected host-feeding I. angustus individuals from live-trapped small mammals and by flagging vegetation from 12 study sites in northern and central California, and tested for B. burgdorferi sensu lato, A. phagocytophilum, and Rickettsia spp. DNA by real-time PCR. Among 261 I. angustus collected (259 from hosts and two by flagging), the most common hosts were tree squirrels (20 % of ticks) and chipmunks (37 %). The PCR-prevalence for A. phagocytophilum and B. burgdorferi in ticks was 2 % and zero, respectively. The minimum infection prevalence on pooled DNA samples was 10 % for Rickettsia spp. DNA sequencing of the ompA gene identified this rickettsia as Candidatus Rickettsia angustus, a putative endosymbiont. A zero-inflated negative binomial mixed effects model was used to evaluate geographical and climatological predictors of I. angustus burden. When host species within study site and season within year were included in the model as nested random effects, all significant variables revealed that I. angustus burden increased as temperature decreased. Together with published data, these findings suggest that I. angustus is a host generalist, has a broad geographic distribution, is more abundant in areas with lower temperature within it's range, and is rarely infected with the pathogens A. phagocytophilum and B. burgdorferi.

  4. The Borrelia burgdorferi 37-Kilodalton Immunoblot Band (P37) Used in Serodiagnosis of Early Lyme Disease Is the flaA Gene Product

    PubMed Central

    Gilmore, Robert D.; Murphree, Rendi L.; James, Angela M.; Sullivan, Sarah A.; Johnson, Barbara J. B.

    1999-01-01

    The 37-kDa protein (P37) of Borrelia burgdorferi is an antigen that elicits an early immunoglobulin M (IgM) antibody response in Lyme disease patients. The P37 gene was cloned from a B. burgdorferi genomic library by screening with antibody from a Lyme disease patient who had developed a prominent humoral response to the P37 antigen. DNA sequence analysis of this clone revealed the identity of P37 to be FlaA, an outer sheath protein of the periplasmic flagella. Recombinant P37 expression was accomplished in Escherichia coli by using a gene construct with the leader peptide deleted and fused to a 38-kDa E. coli protein. The recombinant antigen was reactive in IgM immunoblots using serum samples from patients clinically diagnosed with early Lyme disease that had been scored positive for B. burgdorferi anti-P37 reactivity. Lyme disease patient samples serologically negative for the B. burgdorferi P37 protein did not react with the recombinant. Recombinant P37 may be a useful component of a set of defined antigens for the serodiagnosis of early Lyme disease. This protein can be utilized as a marker in diagnostic immunoblots, aiding in the standardization of the present generation of IgM serologic tests. PMID:9986810

  5. Host, habitat and climate preferences of Ixodes angustus (Acari: Ixodidae) and infection with Borrelia burgdorferi and Anaplasma phagocytophilum in California, USA.

    PubMed

    Stephenson, Nicole; Wong, Johnny; Foley, Janet

    2016-10-01

    The Holarctic tick Ixodes angustus is a competent vector for Borrelia burgdorferi, the etiologic agent of Lyme disease, and possibly Anaplasma phagocytophilum, the etiologic agent of granulocytic anaplasmosis, as well. From 2005 to 2013, we collected host-feeding I. angustus individuals from live-trapped small mammals and by flagging vegetation from 12 study sites in northern and central California, and tested for B. burgdorferi sensu lato, A. phagocytophilum, and Rickettsia spp. DNA by real-time PCR. Among 261 I. angustus collected (259 from hosts and two by flagging), the most common hosts were tree squirrels (20 % of ticks) and chipmunks (37 %). The PCR-prevalence for A. phagocytophilum and B. burgdorferi in ticks was 2 % and zero, respectively. The minimum infection prevalence on pooled DNA samples was 10 % for Rickettsia spp. DNA sequencing of the ompA gene identified this rickettsia as Candidatus Rickettsia angustus, a putative endosymbiont. A zero-inflated negative binomial mixed effects model was used to evaluate geographical and climatological predictors of I. angustus burden. When host species within study site and season within year were included in the model as nested random effects, all significant variables revealed that I. angustus burden increased as temperature decreased. Together with published data, these findings suggest that I. angustus is a host generalist, has a broad geographic distribution, is more abundant in areas with lower temperature within it's range, and is rarely infected with the pathogens A. phagocytophilum and B. burgdorferi. PMID:27416728

  6. Signaling through CD14 attenuates the inflammatory response to Borrelia burgdorferi, the agent of Lyme disease.

    PubMed

    Benhnia, Mohammed Rafii-El-Idrissi; Wroblewski, Danielle; Akhtar, Muhammad Naveed; Patel, Raina A; Lavezzi, Wendy; Gangloff, Sophie C; Goyert, Sanna M; Caimano, Melissa J; Radolf, Justin D; Sellati, Timothy J

    2005-02-01

    Lyme disease is a chronic inflammatory disorder caused by the spirochetal bacterium, Borrelia burgdorferi. In vitro evidence suggests that binding of spirochetal lipoproteins to CD14, a pattern recognition receptor expressed on monocytes/macrophages and polymorphonuclear cells, is a critical requirement for cellular activation and the subsequent release of proinflammatory cytokines that most likely contribute to symptomatology and clinical manifestations. To test the validity of this notion, we assessed the impact of CD14 deficiency on Lyme disease in C3H/HeN mice. Contrary to an anticipated diminution in pathology, CD14(-/-) mice exhibited more severe and persistent inflammation than did CD14(+/+) mice. This disparity reflects altered gene regulation within immune cells that may engender the higher bacterial burden and serum cytokine levels observed in CD14(-/-) mice. Comparing their in vitro stimulatory activity, live spirochetes, but not lysed organisms, were a potent CD14-independent stimulus of cytokine production, triggering an exaggerated response by CD14(-/-) macrophages. Collectively, our in vivo and in vitro findings support the provocative notion that: 1) pattern recognition by CD14 is entirely dispensable for elaboration of an inflammatory response to B. burgdorferi, and 2) CD14-independent signaling pathways are inherently more destructive than CD14-dependent pathways. Continued study of CD14-independent signaling pathways may provide mechanistic insight into the inflammatory processes that underlie development of chronic inflammation.

  7. Borrelia burgdorferi infection regulates CD1 expression in human cells and tissues via IL1-β

    PubMed Central

    Yakimchuk, Konstantin; Roura-Mir, Carme; Magalhaes, Kelly Grace; De Jong, Annemieke; Kasmar, Anne G.; Granter, Scott R.; Budd, Ralph; Steere, Allen; Pena-Cruz, Victor; Kirschning, Carsten; Cheng, Tan-Yun; Moody, D. Branch

    2011-01-01

    The appearance of newly translated group 1 CD1 proteins (CD1a, CD1b, CD1c) on maturing myeloid DC to effective lipid antigen presenting cells. Here we show that Borrelia burgdorferi, the causative agent of Lyme disease, triggers appearance of group 1 CD1 proteins at high density on the surface of human myeloid DC during infection. Within human skin, CD1b and CD1c expression was low or absent prior to infection, but increased significantly after experimental infections and in erythema migrans lesions from Lyme Disease patients. The induction of CD1 was initiated by borrelial lipids acting through TLR-2 within minutes, but required 3 days for maximum effect. The delay in CD1 protein appearance involved a multi-step process whereby TLR-2 stimulated cells release soluble factors, which are sufficient to transfer the CD1-inducing effect in trans to other cells. Analysis of these soluble factors identified IL-1β as a previously unknown pathway leading to group 1 CD1 protein function. These studies establish that upregulation of group 1 CD1 proteins is an early event in B. burgdorferi infection and suggest a stepwise mechanism whereby bacterial cell walls, TLR activation and cytokine release cause DC precursors to express group 1 CD1 proteins. PMID:21246541

  8. Borrelia burgdorferi infection regulates CD1 expression in human cells and tissues via IL1-β.

    PubMed

    Yakimchuk, Konstantin; Roura-Mir, Carme; Magalhaes, Kelly G; de Jong, Annemieke; Kasmar, Anne G; Granter, Scott R; Budd, Ralph; Steere, Allen; Pena-Cruz, Victor; Kirschning, Carsten; Cheng, Tan-Yun; Moody, D Branch

    2011-03-01

    The appearance of group 1 CD1 proteins (CD1a, CD1b and CD1c) on maturing myeloid DC is a key event that converts myeloid DC to effective lipid APC. Here, we show that Borrelia burgdorferi, the causative agent of Lyme disease, triggers appearance of group 1 CD1 proteins at high density on the surface of human myeloid DC during infection. Within human skin, CD1b and CD1c expression was low or absent prior to infection, but increased significantly after experimental infections and in erythema migrans lesions from Lyme disease patients. The induction of CD1 was initiated by borrelial lipids acting through TLR-2 within minutes, but required 3 days for maximum effect. The delay in CD1 protein appearance involved a multi-step process whereby TLR-2 stimulated cells release soluble factors, which are sufficient to transfer the CD1-inducing effect in trans to other cells. Analysis of these soluble factors identified IL-1β as a previously unknown pathway leading to group 1 CD1 protein function. This study establishes that upregulation of group 1 CD1 proteins is an early event in B. burgdorferi infection and suggests a stepwise mechanism whereby bacterial cell walls, TLR activation and cytokine release cause DC precursors to express group 1 CD1 proteins.

  9. Confirmation of Borrelia burgdorferi sensu stricto and Anaplasma phagocytophilum in Ixodes scapularis, Southwestern Virginia.

    PubMed

    Herrin, Brian H; Zajac, Anne M; Little, Susan E

    2014-11-01

    To determine the prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum in a newly established population of Ixodes scapularis in the mountainous region of southwestern Virginia, questing adult ticks were collected and the identity and infection status of each tick was confirmed by PCR and sequencing. A total of 364 adult ticks were tested from three field sites. B. burgdorferi sensu stricto was identified in a total of 32/101 (32%) ticks from site A, 49/154 (32%) ticks from site B, and 36/101 (36%) ticks from site C, for a total prevalence rate of 33% (117/356). In addition, A. phagocytophilum was detected in 3/364 (0.8%) ticks, one from site A and two from site B. The prevalence of both pathogens in ticks at these sites is similar to that reported from established endemic areas. These data document the presence of I. scapularis and the agent of Lyme disease in a newly established area of the Appalachian region, providing further evidence of range expansion of both the tick and public and veterinary health risk it creates.

  10. Borrelia burgdorferi strain-specific Osp C-mediated immunity in mice.

    PubMed Central

    Bockenstedt, L K; Hodzic, E; Feng, S; Bourrel, K W; de Silva, A; Montgomery, R R; Fikrig, E; Radolf, J D; Barthold, S W

    1997-01-01

    Antibodies to the outer surface proteins (Osps) A, B, and C of the spirochete Borrelia burgdorferi can prevent infection in animal models of Lyme borreliosis. We have previously demonstrated that immune serum from mice infected with B. burgdorferi N40 can also prevent challenge infection and induce disease regression in infected mice. The antigens targeted by protective and disease-modulating antibodies are presently unknown, but they do not include Osp A or Osp B. Because Osp C antibodies are present in immune mouse serum, we investigated the ability of hyperimmune serum to recombinant Osp C (N40) to protect mice against challenge infection with N40 spirochetes. In both active and passive immunization studies, Osp C (N40) antiserum failed to protect mice from challenge infection with cultured organisms. Mice actively immunized with recombinant Osp C (N40) were susceptible to tick-borne challenge infection, and nymphal ticks remained infected after feeding on Osp C-hyperimmunized mice. In contrast, similar immunization studies performed with Osp C (PKo) antiserum prevented challenge infection of mice with a clone of PKo spirochetes pathogenic for mice. Both Osp C (N40) and Osp C (PKo) antisera showed minimal in vitro borreliacidal activity, and immunofluorescence studies localized Osp C beneath the outer membrane of both N40 and PKo spirochetes. We conclude that Osp C antibody-mediated immunity is strain specific and propose that differences in Osp C surface expression by spirochetes in vivo may account for strain-specific immunity. PMID:9353047

  11. Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation.

    PubMed

    Gautam, Aarti; Dixit, Saurabh; Philipp, Mario T; Singh, Shree R; Morici, Lisa A; Kaushal, Deepak; Dennis, Vida A

    2011-12-01

    Interleukin-10 (IL-10) modulates inflammatory responses elicited in vitro and in vivo by Borrelia burgdorferi, the Lyme disease spirochete. How IL-10 modulates these inflammatory responses still remains elusive. We hypothesize that IL-10 inhibits effector functions of multiple genes induced by B. burgdorferi in macrophages to control concomitantly elicited inflammation. Because macrophages are essential in the initiation of inflammation, we used mouse J774 macrophages and live B. burgdorferi spirochetes as the model target cell and stimulant, respectively. First, we employed transcriptome profiling to identify genes that were induced by stimulation of cells with live spirochetes and that were perturbed by addition of IL-10 to spirochete cultures. Spirochetes significantly induced upregulation of 347 genes at both the 4-h and 24-h time points. IL-10 inhibited the expression levels, respectively, of 53 and 65 of the 4-h and 24-h genes, and potentiated, respectively, at 4 h and 24 h, 65 and 50 genes. Prominent among the novel identified IL-10-inhibited genes also validated by quantitative real-time PCR (qRT-PCR) were Toll-like receptor 1 (TLR1), TLR2, IRAK3, TRAF1, IRG1, PTGS2, MMP9, IFI44, IFIT1, and CD40. Proteome analysis using a multiplex enzyme-linked immunosorbent assay (ELISA) revealed the IL-10 modulation/and or potentiation of RANTES/CCL5, macrophage inflammatory protein 2 (MIP-2)/CXCL2, IP-10/CXCL10, MIP-1α/CCL3, granulocyte colony-stimulating factor (G-CSF)/CSF3, CXCL1, CXCL5, CCL2, CCL4, IL-6, tumor necrosis factor alpha (TNF-α), IL-1α, IL-1β, gamma interferon (IFN-γ), and IL-9. Similar results were obtained using sonicated spirochetes or lipoprotein as stimulants. Our data show that IL-10 alters effectors induced by B. burgdorferi in macrophages to control concomitantly elicited inflammatory responses. Moreover, for the first time, this study provides global insight into potential mechanisms used by IL-10 to control Lyme disease inflammation.

  12. Identification of Additional Anti-Persister Activity against Borrelia burgdorferi from an FDA Drug Library

    PubMed Central

    Feng, Jie; Weitner, Megan; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Zhang, Ying

    2015-01-01

    Lyme disease is a leading vector-borne disease in the United States. Although the majority of Lyme patients can be cured with standard 2–4 week antibiotic treatment, 10%–20% of patients continue to suffer from prolonged post-treatment Lyme disease syndrome (PTLDS). While the cause for this is unclear, persisting organisms not killed by current Lyme antibiotics may be involved. In our previous study, we screened an FDA drug library and reported 27 top hits that showed high activity against Borrelia persisters. In this study, we present the results of an additional 113 active hits that have higher activity against the stationary phase B. burgdorferi than the currently used Lyme antibiotics. Many antimicrobial agents (antibiotics, antivirals, antifungals, anthelmintics or antiparasitics) used for treating other infections were found to have better activity than the current Lyme antibiotics. These include antibacterials such as rifamycins (3-formal-rifamycin, rifaximin, rifamycin SV), thiostrepton, quinolone drugs (sarafloxacin, clinafloxacin, tosufloxacin), and cell wall inhibitors carbenicillin, tazobactam, aztreonam; antifungal agents such as fluconazole, mepartricin, bifonazole, climbazole, oxiconazole, nystatin; antiviral agents zanamivir, nevirapine, tilorone; antimalarial agents artemisinin, methylene blue, and quidaldine blue; antihelmintic and antiparasitic agents toltrazuril, tartar emetic, potassium antimonyl tartrate trihydrate, oxantel, closantel, hycanthone, pyrimethamine, and tetramisole. Interestingly, drugs used for treating other non-infectious conditions including verteporfin, oltipraz, pyroglutamic acid, pidolic acid, and dextrorphan tartrate, that act on the glutathione/γ-glutamyl pathway involved in protection against free radical damage, and also the antidepressant drug indatraline, were found to have high activity against stationary phase B. burgdorferi. Among the active hits, agents that affect cell membranes, energy production, and

  13. Borrelia burgdorferi Sensu Lato in Siberian chipmunks (Tamias sibiricus) introduced in suburban forests in France.

    PubMed

    Vourc'h, Gwenaël; Marmet, Julie; Chassagne, Michelle; Bord, Séverine; Chapuis, Jean-Louis

    2007-01-01

    Numerous vertebrate reservoirs have been described for Borrelia burgdorferi sensu lato (sl), which includes the etiological agents of Lyme Borreliosis (LB). The Siberian chipmunk (Tamias sibiricus) is a rodent originating from Asia, where it is suspected to be a B. burgdorferi reservoir. It has been intentionally released into the wild in Europe since the 1970s, but has not yet been subject to any study regarding its association with the LB agent. In this paper we studied Siberian chipmunk infestation with the LB vector (Ixodes ricinus) and infection prevalence by LB spirochetes in a suburban introduced population. We compared these findings with known competent reservoir hosts, the bank vole (Myodes [clethrionomys] glareolus) and wood mouse (Apodemus sylvaticus). All Siberian chipmunks were infested with larvae and larval abundance was higher in this species (mean number of larvae [95% Confidence Interval]: 73.5 [46.0, 117.2]) than in the two other rodent species (bank voles: 4.4 [3.0, 6.3] and wood mice: 10.2 [4.9, 21.2]). Significant factors affecting abundance of larvae were host species and sampling season. Nymphs were most prevalent on chipmunks (86.2%, mean: 5.1 [3.3, 8.0]), one vole carried only two nymphs, and none of the mice had any nymphs. Nymph abundance in chipmunks was affected by sampling season and sex. Furthermore, the infection prevalence of B. burgdorferi sl in the Siberian chipmunk was the highest (33.3%) and predominantly of B. afzelii. The infection prevalence was 14.1% in bank voles, but no wood mouse was found to be infected. Our results suggest that the Siberian chipmunk may be an important reservoir host for LB.

  14. Development of a Multiantigen Panel for Improved Detection of Borrelia burgdorferi Infection in Early Lyme Disease

    PubMed Central

    Panas, Michael W.; Mao, Rong; Delanoy, Michelle; Flanagan, John J.; Binder, Steven R.; Rebman, Alison W.; Montoya, Jose G.; Soloski, Mark J.; Steere, Allen C.; Dattwyler, Raymond J.; Arnaboldi, Paul M.; Aucott, John N.

    2015-01-01

    The current standard for laboratory diagnosis of Lyme disease in the United States is serologic detection of antibodies against Borrelia burgdorferi. The Centers for Disease Control and Prevention recommends a two-tiered testing algorithm; however, this scheme has limited sensitivity for detecting early Lyme disease. Thus, there is a need to improve diagnostics for Lyme disease at the early stage, when antibiotic treatment is highly efficacious. We examined novel and established antigen markers to develop a multiplex panel that identifies early infection using the combined sensitivity of multiple markers while simultaneously maintaining high specificity by requiring positive results for two markers to designate a positive test. Ten markers were selected from our initial analysis of 62 B. burgdorferi surface proteins and synthetic peptides by assessing binding of IgG and IgM to each in a training set of Lyme disease patient samples and controls. In a validation set, this 10-antigen panel identified a higher proportion of early-Lyme-disease patients as positive at the baseline or posttreatment visit than two-tiered testing (87.5% and 67.5%, respectively; P < 0.05). Equivalent specificities of 100% were observed in 26 healthy controls. Upon further analysis, positivity on the novel 10-antigen panel was associated with longer illness duration and multiple erythema migrans. The improved sensitivity and comparable specificity of our 10-antigen panel compared to two-tiered testing in detecting early B. burgdorferi infection indicates that multiplex analysis, featuring the next generation of markers, could advance diagnostic technology to better aid clinicians in diagnosing and treating early Lyme disease. PMID:26447113

  15. Prednisolone reduces experimental arthritis, and inflammatory tissue destruction in SCID mice infected with Borrelia burgdorferi.

    PubMed

    Hurtenbach, U; Böggemeyer, E; Stehle, T; Museteanu, C; Del Pozo, E; Simon, M M

    1996-05-01

    Glucocorticosteroids (GC) are widely used as anti-inflammatory agents. The effects of Prednisolone on the development of Borrelia (B.) burgdorferi-induced clinical arthritis and organ inflammation was studied in severe combined immunodeficiency (SCID) mice. The drug was administered orally at a dose of 3, 10 and 30 mg/kg, starting shortly before experimental infection of the mice. A dose dependent inhibition of arthritic joint swelling was observed. Full protection was obtained with 30 mg/kg until 21 days after infection, subsequently, mild joint swelling developed but progression and severity of the disease was considerably less than in the other treated as well as in the untreated mice. Inhibition of clinical arthritis coincided with reduction of inflammatory cell infiltration in the joints, liver and muscle. Prednisolone was ineffective when application was initiated after arthritis was fully developed, i.e., 22 days after infection. Since the activated endothelium plays a critical role in development of inflammatory lesions, the expression of the cellular adhesion molecules (CAMs) E-selectin, P-selectin, ICAM-1 and VCAM-1 was determined in vitro using the bEnd3 endothelial cell line. Stimulation with a sonicated B. burgdorferi preparation in the presence of the water-soluble compound Prednisolone-21-hemisuccinate considerably reduced expression of ICAM-1, and marginally also of E-selectin, whereas the level of P-selectin and VCAM-1 remained unaltered. Thus, downregulation of ICAM-1 might be a critical factor in Prednisolone-mediated inhibition of B. burgdorferi-induced inflammation; the flare up of the disease after the initial protection indicates that additional therapy, e.g. with antibiotics, is necessary.

  16. The Oms66 (p66) protein is a Borrelia burgdorferi porin.

    PubMed Central

    Skare, J T; Mirzabekov, T A; Shang, E S; Blanco, D R; Erdjument-Bromage, H; Bunikis, J; Bergström, S; Tempst, P; Kagan, B L; Miller, J N; Lovett, M A

    1997-01-01

    In this study we report the purification and characterization of a 66-kDa protein, designated Oms66, for outer membrane-spanning 66-kDa protein, that functions as a porin in the outer membrane (OM) of Borrelia burgdorferi. Oms66 was purified by fast-performance liquid chromatography and exhibited an average single-channel conductance of 9.62 +/- 0.37 nS in 1 M KCl, as evidenced by 581 individual insertional events in planar lipid bilayers. Electrophysiological characterization indicated that Oms66 was virtually nonselective between cations and anions and exhibited voltage-dependent closure with multiple substates. The amino acid sequence of tryptic peptides derived from purified Oms66 was identical to the deduced amino acid sequence of p66, a previously described surface-exposed protein of B. burgdorferi. Purified Oms66 was recognized by antiserum specific for p66 and serum from rabbits immune to challenge with virulent B. burgdorferi, indicating that p66 and Oms66 were identical proteins and that Oms66/p66 is an immunogenic protein in infected rabbits. In a methodology that reduces liposomal trapping and nonspecific interactions, native Oms66 was incorporated into liposomes, confirming that Oms66 is an outer membrane-spanning protein. Proteoliposomes containing Oms66 exhibited porin activity nearly identical to that of native, purified Oms66, indicating that reconstituted Oms66 retained native conformation. The use of proteoliposomes reconstituted with Oms66 and other Oms proteins provides an experimental system for determinating the relationship between conformation, protection, and biological function of these molecules. PMID:9284133

  17. Lyme Borreliosis: is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains?

    PubMed Central

    Hodzic, Emir

    2015-01-01

    The development of antibiotics changed the world of medicine and has saved countless human and animal lives. Bacterial resistance/tolerance to antibiotics have spread silently across the world and has emerged as a major public health concern. The recent emergence of pan-resistant bacteria can overcome virtually any antibiotic and poses a major problem for their successful control. Selection for antibiotic resistance may take place where an antibiotic is present in the skin, gut, and other tissues of humans and animals and in the environment. Borrelia burgdorferi, the etiological agents of Lyme borreliosis, evades host immunity and establishes persistent infections in its mammalian hosts. The persistent infection poses a challenge to the effective antibiotic treatment, as demonstrated in various animal models. An increasingly heterogeneous subpopulation of replicatively attenuated spirochetes arises following treatment, and these persistent antimicrobial tolerant/resistant spirochetes are non-cultivable. The non-cultivable spirochetes resurge in multiple tissues at 12 months after treatment, with B. burgdorferi-specific DNA copy levels nearly equivalent to those found in shame-treated experimental animals. These attenuated spirochetes remain viable, but divide slowly, thereby being tolerant to antibiotics. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, spirochetes were acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues. A number of host cytokines were up- or down-regulated in tissues of both shame- and antibiotic-treated mice in the absence of histopathology, indicating a lack of host response to the presence of antimicrobial tolerant/resistant spirochetes. PMID:26295288

  18. Prednisolone reduces experimental arthritis, and inflammatory tissue destruction in SCID mice infected with Borrelia burgdorferi.

    PubMed

    Hurtenbach, U; Böggemeyer, E; Stehle, T; Museteanu, C; Del Pozo, E; Simon, M M

    1996-05-01

    Glucocorticosteroids (GC) are widely used as anti-inflammatory agents. The effects of Prednisolone on the development of Borrelia (B.) burgdorferi-induced clinical arthritis and organ inflammation was studied in severe combined immunodeficiency (SCID) mice. The drug was administered orally at a dose of 3, 10 and 30 mg/kg, starting shortly before experimental infection of the mice. A dose dependent inhibition of arthritic joint swelling was observed. Full protection was obtained with 30 mg/kg until 21 days after infection, subsequently, mild joint swelling developed but progression and severity of the disease was considerably less than in the other treated as well as in the untreated mice. Inhibition of clinical arthritis coincided with reduction of inflammatory cell infiltration in the joints, liver and muscle. Prednisolone was ineffective when application was initiated after arthritis was fully developed, i.e., 22 days after infection. Since the activated endothelium plays a critical role in development of inflammatory lesions, the expression of the cellular adhesion molecules (CAMs) E-selectin, P-selectin, ICAM-1 and VCAM-1 was determined in vitro using the bEnd3 endothelial cell line. Stimulation with a sonicated B. burgdorferi preparation in the presence of the water-soluble compound Prednisolone-21-hemisuccinate considerably reduced expression of ICAM-1, and marginally also of E-selectin, whereas the level of P-selectin and VCAM-1 remained unaltered. Thus, downregulation of ICAM-1 might be a critical factor in Prednisolone-mediated inhibition of B. burgdorferi-induced inflammation; the flare up of the disease after the initial protection indicates that additional therapy, e.g. with antibiotics, is necessary. PMID:8933206

  19. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella.

    PubMed Central

    Goldstein, S F; Charon, N W; Kreiling, J A

    1994-01-01

    Borrelia burgdorferi is a motile spirochete with multiple internal periplasmic flagella (PFs) attached near each end of the cell cylinder; these PFs overlap in the cell center. We analyzed the shape and motion of wild type and PF-deficient mutants using both photomicrography and video microscopy. We found that swimming cells resembled the dynamic movements of eukaryotic flagella. In contrast to helically shaped spirochetes, which propagate spiral waves, translating B. burgdorferi swam with a planar waveform with occasional axial twists; waves had a peak-to-peak amplitude of 0.85 micron and a wavelength of 3.19 microns. Planar waves began full-sized at the anterior end and propagated toward the back end of the cell. Concomitantly, these waves gyrated counter-clockwise as viewed from the posterior end along the cell axis. In nontranslating cells, wave propagation ceased. Either the waveform of nontranslating cells resembled the translating form, or the cells became markedly contorted. Cells of the PF-deficient mutant isolated by Sadziene et al. [Sadziene, A., Thomas, D. D., Bundoc, V. G., Holt, S. C. & Barbour, A. G. (1991) J. Clin. Invest. 88, 82-92] were found to be relatively straight. The results suggest that the shape of B. burgdorferi is dictated by interactions between the cell body and the PFs. In addition, the PFs from opposite ends of the cell are believed to interact with one another so that during the markedly distorted nontranslational form, the PFs from opposite ends rotate in opposing directions around one another, causing the cell to bend. Images PMID:8159765

  20. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella.

    PubMed

    Goldstein, S F; Charon, N W; Kreiling, J A

    1994-04-12

    Borrelia burgdorferi is a motile spirochete with multiple internal periplasmic flagella (PFs) attached near each end of the cell cylinder; these PFs overlap in the cell center. We analyzed the shape and motion of wild type and PF-deficient mutants using both photomicrography and video microscopy. We found that swimming cells resembled the dynamic movements of eukaryotic flagella. In contrast to helically shaped spirochetes, which propagate spiral waves, translating B. burgdorferi swam with a planar waveform with occasional axial twists; waves had a peak-to-peak amplitude of 0.85 micron and a wavelength of 3.19 microns. Planar waves began full-sized at the anterior end and propagated toward the back end of the cell. Concomitantly, these waves gyrated counter-clockwise as viewed from the posterior end along the cell axis. In nontranslating cells, wave propagation ceased. Either the waveform of nontranslating cells resembled the translating form, or the cells became markedly contorted. Cells of the PF-deficient mutant isolated by Sadziene et al. [Sadziene, A., Thomas, D. D., Bundoc, V. G., Holt, S. C. & Barbour, A. G. (1991) J. Clin. Invest. 88, 82-92] were found to be relatively straight. The results suggest that the shape of B. burgdorferi is dictated by interactions between the cell body and the PFs. In addition, the PFs from opposite ends of the cell are believed to interact with one another so that during the markedly distorted nontranslational form, the PFs from opposite ends rotate in opposing directions around one another, causing the cell to bend.

  1. Development of a Multiantigen Panel for Improved Detection of Borrelia burgdorferi Infection in Early Lyme Disease.

    PubMed

    Lahey, Lauren J; Panas, Michael W; Mao, Rong; Delanoy, Michelle; Flanagan, John J; Binder, Steven R; Rebman, Alison W; Montoya, Jose G; Soloski, Mark J; Steere, Allen C; Dattwyler, Raymond J; Arnaboldi, Paul M; Aucott, John N; Robinson, William H

    2015-12-01

    The current standard for laboratory diagnosis of Lyme disease in the United States is serologic detection of antibodies against Borrelia burgdorferi. The Centers for Disease Control and Prevention recommends a two-tiered testing algorithm; however, this scheme has limited sensitivity for detecting early Lyme disease. Thus, there is a need to improve diagnostics for Lyme disease at the early stage, when antibiotic treatment is highly efficacious. We examined novel and established antigen markers to develop a multiplex panel that identifies early infection using the combined sensitivity of multiple markers while simultaneously maintaining high specificity by requiring positive results for two markers to designate a positive test. Ten markers were selected from our initial analysis of 62 B. burgdorferi surface proteins and synthetic peptides by assessing binding of IgG and IgM to each in a training set of Lyme disease patient samples and controls. In a validation set, this 10-antigen panel identified a higher proportion of early-Lyme-disease patients as positive at the baseline or posttreatment visit than two-tiered testing (87.5% and 67.5%, respectively; P < 0.05). Equivalent specificities of 100% were observed in 26 healthy controls. Upon further analysis, positivity on the novel 10-antigen panel was associated with longer illness duration and multiple erythema migrans. The improved sensitivity and comparable specificity of our 10-antigen panel compared to two-tiered testing in detecting early B. burgdorferi infection indicates that multiplex analysis, featuring the next generation of markers, could advance diagnostic technology to better aid clinicians in diagnosing and treating early Lyme disease.

  2. Identification of Additional Anti-Persister Activity against Borrelia burgdorferi from an FDA Drug Library.

    PubMed

    Feng, Jie; Weitner, Megan; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Zhang, Ying

    2015-01-01

    Lyme disease is a leading vector-borne disease in the United States. Although the majority of Lyme patients can be cured with standard 2-4 week antibiotic treatment, 10%-20% of patients continue to suffer from prolonged post-treatment Lyme disease syndrome (PTLDS). While the cause for this is unclear, persisting organisms not killed by current Lyme antibiotics may be involved. In our previous study, we screened an FDA drug library and reported 27 top hits that showed high activity against Borrelia persisters. In this study, we present the results of an additional 113 active hits that have higher activity against the stationary phase B. burgdorferi than the currently used Lyme antibiotics. Many antimicrobial agents (antibiotics, antivirals, antifungals, anthelmintics or antiparasitics) used for treating other infections were found to have better activity than the current Lyme antibiotics. These include antibacterials such as rifamycins (3-formal-rifamycin, rifaximin, rifamycin SV), thiostrepton, quinolone drugs (sarafloxacin, clinafloxacin, tosufloxacin), and cell wall inhibitors carbenicillin, tazobactam, aztreonam; antifungal agents such as fluconazole, mepartricin, bifonazole, climbazole, oxiconazole, nystatin; antiviral agents zanamivir, nevirapine, tilorone; antimalarial agents artemisinin, methylene blue, and quidaldine blue; antihelmintic and antiparasitic agents toltrazuril, tartar emetic, potassium antimonyl tartrate trihydrate, oxantel, closantel, hycanthone, pyrimethamine, and tetramisole. Interestingly, drugs used for treating other non-infectious conditions including verteporfin, oltipraz, pyroglutamic acid, pidolic acid, and dextrorphan tartrate, that act on the glutathione/γ-glutamyl pathway involved in protection against free radical damage, and also the antidepressant drug indatraline, were found to have high activity against stationary phase B. burgdorferi. Among the active hits, agents that affect cell membranes, energy production, and reactive

  3. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion

    PubMed Central

    Caine, Jennifer A.; Coburn, Jenifer

    2016-01-01

    Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit the bloodstream to achieve rapid dissemination to distal tissue sites during infection. Travel through the bloodstream requires evasion of immune surveillance and pathogen clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes greater than 19 adhesive outer surface proteins many of which have been found to bind to host cells or components of the extracellular matrix. Several others bind to host complement regulatory factors, in vitro. Production of many of these adhesive proteins is tightly regulated by environmental cues, and some have been shown to aid in vascular interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work has described multifaceted and redundant roles of B. burgdorferi outer surface proteins in complement component interactions and tissue targeted adhesion and colonization, distinct from their previously identified in vitro binding capabilities. Recent insights into the multifunctional roles of previously well-characterized outer surface proteins such as BBK32, DbpA, CspA, and OspC have changed the way we think about the surface proteome of these organisms during the tick–mammal life cycle. With the combination of new and old in vivo models and in vitro techniques, the field has identified distinct ligand binding domains on BBK32 and DbpA that afford tissue colonization or blood survival to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, and bloodstream survival that, together, promote the survival of Borrelia spp. throughout maintenance in their multi-host lifestyle.

  4. Occurrence of Bartonella henselae and Borrelia burgdorferi sensu lato co-infections in ticks collected from humans in Germany.

    PubMed

    Mietze, A; Strube, C; Beyerbach, M; Schnieder, T; Goethe, R

    2011-06-01

    Bartonella (B.) henselae is the zoonotic agent of cat scratch disease. B. henselae has been associated with therapy-resistant Lyme disease in humans suggesting that B. henselae and Borrelia burgdorferi sensu lato might be transmitted concurrently by ticks. In the present study we found that 16 (6.9%) of 230 Ixodes ricinus collected from humans harboured DNA of Bartonella spp. Fifteen positive ticks were infected with B. henselae and one tick with B. clarridgeiae. Twenty-five percent of the 16 Bartonella positive ticks were co-infected with Borrelia burgdorferi sensu lato. Our data show that B. henselae is present in Ixodes ricinus and that ticks may serve as source of infection for humans.

  5. Plaques of Alzheimer's disease originate from cysts of Borrelia burgdorferi, the Lyme disease spirochete.

    PubMed

    MacDonald, Alan B

    2006-01-01

    Here is hypothesized a truly revolutionary notion that rounded cystic forms of Borrelia burgdorferi are the root cause of the rounded structures called plaques in the Alzheimer brain. Rounded "plaques' in high density in brain tissue are emblematic of Alzheimer's disease (AD). Plaques may be conceptualized as rounded "pock mark-like" areas of brain tissue injury. In this century, in brain tissue of AD, plaques are Amyloid Plaques according to the most up to date textbooks. In the last century, however, Dr. Alois Alzheimer did not require amyloid as the pathogenesis for either the disease or for the origin of its plaques. Surely, amyloid is an event in AD, but it may not be the primal cause of AD. Indeed in plaques, amyloid is regularly represented by the "congophilic core" structure which is so named because the waxy amyloid material binds the congo red stain and is congophilic. However an accepted subset of plaques in AD is devoid of a congophilic amyloid core region (these plaques "cotton wool" type plaques, lack a central congophilic core structure). Furthermore, there is "plaque diversity" in Alzheimer's; small, medium and large plaques parallel variable cystic diameters for Borrelia burgdorferi. Perturbations of AD plaque structure (i.e. young plaques devoid of a central core and older plaques with or without a central core structure) offer room for an alternate pathway for explanation of ontogeny of the plaque structures. If amyloid is not required to initiate all of the possible plaques in Alzheimer's, is it possible that amyloid just a by product of a more fundamental primal path to dementia? If a byproduct status is assigned to amyloid in the realm of plaque formation, then is amyloid also an epiphenomenon rather than a primary pathogenesis for Alzheimer's disease. In the "anatomy is destiny" model, cysts of borrelia are always round. Why then not accept roundness as a fundamental "structure determines function" argument for the answer to the mystery of

  6. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

    PubMed

    Toledo, Alvaro; Crowley, Jameson T; Coleman, James L; LaRocca, Timothy J; Chiantia, Salvatore; London, Erwin; Benach, Jorge L

    2014-03-11

    Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in

  7. Prevalence of Borrelia burgdorferi and Babesia microti in mice on islands inhabited by white-tailed deer.

    PubMed Central

    Anderson, J F; Johnson, R C; Magnarelli, L A; Hyde, F W; Myers, J E

    1987-01-01

    Borrelia burgdorferi and Babesia microti were isolated from 35 of 51 white-footed mice (Peromyscus leucopus) and meadow voles (Microtus pennsylvanicus) captured on two Narragansett Bay, R.I., islands inhabited by deer, the principal host for the adult stages of the vector tick, Ixodes dammini. Immature ticks parasitized mice from both islands. From 105 mice captured on four other islands not inhabited by deer neither pathogen was isolated, nor were I. dammini found. PMID:3555339

  8. Long-term survival of Borrelia burgdorferi lacking the hibernation promotion factor homolog in the unfed tick vector.

    PubMed

    Fazzino, Lisa; Tilly, Kit; Dulebohn, Daniel P; Rosa, Patricia A

    2015-12-01

    Borrelia burgdorferi, a causative agent of Lyme borreliosis, is a zoonotic pathogen that survives in nutrient-limited environments within a tick, prior to transmission to its mammalian host. Survival under these prolonged nutrient-limited conditions is thought to be similar to survival during stationary phase, which is characterized by growth cessation and decreased protein production. Multiple ribosome-associated proteins are implicated in stationary-phase survival of Escherichia coli. These proteins include hibernation-promoting factor (HPF), which dimerizes ribosomes and prevents translation of mRNA. Bioinformatic analyses indicate that B. burgdorferi harbors an hpf homolog, the bb0449 gene. BB0449 protein secondary structure modeling also predicted HPF-like structure and function. However, BB0449 protein was not localized in the ribosome-associated protein fraction of in vitro-grown B. burgdorferi. In wild-type B. burgdorferi, bb0449 transcript and BB0449 protein levels are low during various growth phases. These results are inconsistent with patterns of synthesis of HPF-like proteins in other bacterial species. In addition, two independently derived bb0449 mutants successfully completed the mouse-tick infectious cycle, indicating that bb0449 is not required for prolonged survival in the nutrient-limited environment in the unfed tick or any other stage of infection by B. burgdorferi. We suggest either that BB0449 is associated with ribosomes under specific conditions not yet identified or that BB0449 of B. burgdorferi has a function other than ribosome conformation modulation.

  9. Presence of multiple variants of Borrelia burgdorferi in the natural reservoir Peromyscus leucopus throughout a transmission season.

    PubMed

    Swanson, Katherine I; Norris, Douglas E

    2008-06-01

    White-footed mice (Peromyscus leucopus) serve as the principal reservoir for Borrelia burgdorferi and have been shown to remain infected for life. Complex infections with multiple genetic variants of B. burgdorferi occur in mice through multiple exposures to infected ticks or through exposure to ticks infected with multiple variants of B. burgdorferi. Using a combination of cloning and single strand conformation polymorphism (SSCP), B. burgdorferi ospC variation was assessed in serial samples collected from individual P. leucopus during a single transmission season. In individuals with ospC variation, at least seven ospC variants were recognized at each time point. One to four of these variants predominated at each time point; however, the predominant variants seldom remained consistent in an individual mouse throughout the entire sampling period. These results confirmed that mice in southern Maryland were persistently infected with multiple variants of B. burgdorferi throughout the transmission season. However, the presence of multiple ospC variants and the fluctuations in the frequency of these variants indicates that either new ospC variants are regularly introduced to this mouse population and predominate while the existing infections are cleared, or that the variation detected in the genetic profile at different time points reflects a complex mixture of B. burgdorferi populations whose relative frequencies may continually change.

  10. Long-Term Survival of Borrelia burgdorferi Lacking the Hibernation Promotion Factor Homolog in the Unfed Tick Vector

    PubMed Central

    Fazzino, Lisa; Dulebohn, Daniel P.

    2015-01-01

    Borrelia burgdorferi, a causative agent of Lyme borreliosis, is a zoonotic pathogen that survives in nutrient-limited environments within a tick, prior to transmission to its mammalian host. Survival under these prolonged nutrient-limited conditions is thought to be similar to survival during stationary phase, which is characterized by growth cessation and decreased protein production. Multiple ribosome-associated proteins are implicated in stationary-phase survival of Escherichia coli. These proteins include hibernation-promoting factor (HPF), which dimerizes ribosomes and prevents translation of mRNA. Bioinformatic analyses indicate that B. burgdorferi harbors an hpf homolog, the bb0449 gene. BB0449 protein secondary structure modeling also predicted HPF-like structure and function. However, BB0449 protein was not localized in the ribosome-associated protein fraction of in vitro-grown B. burgdorferi. In wild-type B. burgdorferi, bb0449 transcript and BB0449 protein levels are low during various growth phases. These results are inconsistent with patterns of synthesis of HPF-like proteins in other bacterial species. In addition, two independently derived bb0449 mutants successfully completed the mouse-tick infectious cycle, indicating that bb0449 is not required for prolonged survival in the nutrient-limited environment in the unfed tick or any other stage of infection by B. burgdorferi. We suggest either that BB0449 is associated with ribosomes under specific conditions not yet identified or that BB0449 of B. burgdorferi has a function other than ribosome conformation modulation. PMID:26438790

  11. Comparison of different strains of Borrelia burgdorferi sensu lato used as antigens in enzyme-linked immunosorbent assays.

    PubMed Central

    Magnarelli, L A; Anderson, J F; Johnson, R C; Nadelman, R B; Wormser, G P

    1994-01-01

    Eight strains of Borrelia burgdorferi sensu lato were tested with serum samples from persons who had Lyme borreliosis or syphilis in class-specific enzyme-linked immunosorbent assays (ELISAs). Antigens of B. burgdorferi sensu stricto, of Borrelia garinii, and of Borrelia spirochetes in group VS461 were prepared from cultured bacteria isolated from ticks, a white-footed mouse (Peromyscus leucopus), or human tissues in North America, the former Soviet Union, and Japan. Nearly all of the serum specimens that contained immunoglobulins to strain 2591, a Connecticut isolate, were also positive in antibody tests with the other seven strains. In general, all eight strains reacted similarly and were suitable as coating antigens in class-specific ELISAs. Assay sensitivities ranged from 82.6 to 100% in analyses for immunoglobulin M and G antibodies. Compared with reference antigen strain 2591, strains 231 (a tick isolate from Canada) and NCH-1 (a human skin isolate from Wisconsin) resulted in higher antibody titers in an ELISA. Syphilitic sera cross-reacted in all tests regardless of the antigen used. Key immunodominant proteins are shared among the closely related strains of B. burgdorferi sensu lato tested, but it is suspected that variations in antigen compositions among these spirochetes may sometimes affect assay performance for detecting serum antibodies. PMID:8051239

  12. Borrelia burgdorferi sensu lato in Ixodes cf. neuquenensis and Ixodes sigelos ticks from the Patagonian region of Argentina.

    PubMed

    Sebastian, Patrick S; Bottero, Maria Noelia Saracho; Carvalho, Luis; Mackenstedt, Ute; Lareschi, Marcela; Venzal, José M; Nava, Santiago

    2016-10-01

    This study was conducted to detect Borrelia burgdorferi sensu lato infection in ixodid ticks from the Patagonia region in the south of Argentina. Therefore, ticks were collected on rodents in the provinces of Chubut, Río Negro and Santa Cruz. These ticks were identified as nymphs of Ixodes cf. neuquenensis and Ixodes sigelos. The B. burgdorferi s.l. infection was tested by a battery of PCR methods targeting the gene flagellin (fla) and the rrfA-rrlB intergenic spacer region (IGS). Three pools of I. sigelos nymphs from Chubut and Santa Cruz provinces as well as one pool of I. cf. neuquenensis nymphs from Río Negro province were tested positive in the fla-PCR. The samples of I. sigelos were also positive for the IGS-PCR. Phylogenetically, the haplotypes found in the positive ticks belong to the B. burgdorferi s.l. complex, and they were closely related to Borrelia chilensis, a genospecies isolated from Ixodes stilesi in Chile. The pathogenic relevance of the Borrelia genospecies detected in both I. neuquenensis and I. sigelos is unknown. PMID:27372197

  13. Genotypic and phenotypic characterization of Borrelia burgdorferi isolated from ticks and small animals in Illinois.

    PubMed

    Picken, R N; Cheng, Y; Han, D; Nelson, J A; Reddy, A G; Hayden, M K; Picken, M M; Strle, F; Bouseman, J K; Trenholme, G M

    1995-09-01

    We have characterized 33 isolates of Borrelia burgdorferi from northern Illinois (32 isolates) and Wisconsin (1 isolate) representing the largest series of midwestern isolates investigated to date. The techniques used for molecular analysis of strains included (i) genospecies typing with species-specific PCR primers, (ii) plasmid profiling by pulsed-field gel electrophoresis of total genomic DNA, (iii) large-restriction-fragment pattern (LRFP) analysis by pulsed-field gel electrophoresis of MluI-digested genomic DNA (J. Belfaiza, D. Postic, E. Bellenger, G. Baranton, and I. Saint Girons, J. Clin. Microbiol. 31:2873-2877, 1993), (iv) sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total proteins, (v) microsequencing of high-performance liquid chromatography-purified peptides derived from proteins showing high levels of expression, (vi) amino acid composition analysis of proteins, and (vii) immunological analysis of proteins with a polyclonal antiserum of human origin. Five reference strains as well as two atypical tick isolates from California (DN127) and New York (25015) were included for comparison. All of the Illinois and Wisconsin isolates were typed as B. burgdorferi sensu stricto with genospecies-specific PCR primers. The isolates were found to be heterogeneous with regard to their plasmid and protein profiles. One isolate from Illinois possessed two large-molecular-size plasmids instead of the usual 49-kb plasmid. Fragment patterns resulting from MluI digestion of genomic DNA from the 33 isolates and strains DN127 and 25015 were separable into six distinct LRFPs, five of which have not previously been described. Strain 25015 and an isolate from Illinois (CT39) shared an unusual LRFP that is not typical of other B. burgdorferi sensu stricto strains, suggesting that they may represent a fifth species of B. burgdorferi sensu lato. Five of the 33 isolates and strains DN127 and 25015 showed high-level expression of proteins with molecular masses of

  14. The bba64 gene of Borrelia burgdorferi, the Lyme disease agent, is critical for mammalian infection via tick bite transmission.

    PubMed

    Gilmore, Robert D; Howison, Rebekah R; Dietrich, Gabrielle; Patton, Toni G; Clifton, Dawn R; Carroll, James A

    2010-04-20

    The spirochetal agent of Lyme disease, Borrelia burgdorferi, is transmitted by bites of Ixodes ticks to mammalian reservoir hosts and humans. The mechanism(s) by which the organism is trafficked from vector to host is poorly understood. In this study, we demonstrate that a B. burgdorferi mutant strain deficient in the synthesis of the bba64 gene product was incapable of infecting mice via tick bite even though the mutant was (i) infectious in mice when introduced by needle inoculation, (ii) acquired by larval ticks feeding on infected mice, and (iii) able to persist through tick molting stages. This finding of a B. burgdorferi gene required for pathogen transfer and/or survival from the tick to the susceptible host represents an important breakthrough toward understanding transmission mechanisms involved for the Lyme disease agent.

  15. First detection of Borrelia burgdorferi-antibodies in free-living birds of prey from Eastern Westphalia, Germany.

    PubMed

    Büker, M; Picozzi, K; Kolb, S; Hatt, J-M

    2013-07-01

    Borrelia (B.) burgdorferi sensu lato, the causative agent of Lyme disease, is the most important arthropod-borne zoonosis-pathogen in the Northern hemisphere. Besides small mammals, birds, primarily Passeriformes and sea birds, play an important role in the transmission, distribution and maintenance of this disease. Previous studies on birds have focused mainly on the detection of Borrelia-infected ticks. However, the presence or absence of an infected tick cannot be taken as an indicator of the infective status of the avian host; to date this area of research has not been explored. In this study, serological analyses of blood collected from free-living birds of prey (n = 29) at the rehabilitation centre in Eastern Westphalia, Germany, highlights that birds of prey are also susceptible to B. burgdorferi and react immunologically to an infection. Increased antibody-levels could be found by using a modified Indirect Immunofluorescent-testing in two common buzzards, Buteo buteo, and two eagle owls, Bubo bubo. Further research regarding the serological diagnostics of B. burgdorferi within the avian host is required. In the future, it should be taken into account that birds of prey can be reservoirs for B. burgdorferi, as well as carriers of infected ticks; although at present their epidemiological importance is still to be confirmed. PMID:23823746

  16. Isolation of live Borrelia burgdorferi sensu lato spirochaetes from patients with undefined disorders and symptoms not typical for Lyme borreliosis.

    PubMed

    Rudenko, N; Golovchenko, M; Vancova, M; Clark, K; Grubhoffer, L; Oliver, J H

    2016-03-01

    Lyme borreliosis is a multisystem disorder with a diverse spectrum of clinical manifestations, caused by spirochaetes of the Borrelia burgdorferi sensu lato complex. It is an infectious disease that can be successfully cured by antibiotic therapy in the early stages; however, the possibility of the appearance of persistent signs and symptoms of disease following antibiotic treatment is recognized. It is known that Lyme borreliosis mimics multiple diseases that were never proven to have a spirochaete aetiology. Using complete modified Kelly-Pettenkofer medium we succeeded in cultivating live B. burgdorferi sensu lato spirochaetes from samples taken from people who suffered from undefined disorders, had symptoms not typical for Lyme borreliosis, but who had undergone antibiotic treatment due to a suspicion of having Lyme disease even though they were seronegative. We report the first recovery of live B. burgdorferi sensu stricto from residents of southeastern USA and the first successful cultivation of live Borrelia bissettii-like strain from residents of North America. Our results support the fact that B. bissettii is responsible for human Lyme borreliosis worldwide along with B. burgdorferi s.s. The involvement of new spirochaete species in Lyme borreliosis changes the understanding and recognition of clinical manifestations of this disease.

  17. Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp operons of three isolates of different geographic origins.

    PubMed Central

    Jonsson, M; Noppa, L; Barbour, A G; Bergström, S

    1992-01-01

    Biochemical and immunochemical studies of the outer membrane proteins of Borrelia burgdorferi have shown that the OspA and OspB proteins from strains of different geographic origins may differ considerably in their reactivities with monoclonal antibodies and in their apparent molecular weights. To further characterize this variation in Osp proteins between strains, the osp operons and deduced translation products from two strains, one from Sweden (ACAI) and one from eastern Russia (Ip90), were studied. Polyacrylamide gel electrophoresis and Western blot (immunoblot) analyses confirmed differences between ACAI, Ip90, and the North American strain B31 in their Osp proteins. The sequences of the ospA and ospB genes of ACAI and Ip90 were compared with that of the previously studied osp operon of B31 (S. Bergström, V. G. Bundoc, and A. G. Barbour, Mol. Microbiol. 3:479-486, 1989). The osp genes of ACAI and Ip90, like the corresponding genes of B31, were found on plasmids with apparent sizes of about 50 kb and are cotranscribed as a single unit. Pairwise comparisons of the nucleotide sequences revealed that the ospA genes of ACAI and Ip90 were 85 and 86% identical, respectively, to the ospA gene of strain B31 and 86% identical to each other. The ospB sequences of these two strains were 79% identical to the ospB gene of B31 and 81% identical to each other. There was significantly greater similarity between the ospA genes of the three different strains than there was between the ospA and ospB genes within each strain. These studies suggest that the duplication of osp genes in B. burgdorferi occurred before the geographical dispersion of strains represented by ACAI, Ip90, and B31. Images PMID:1563773

  18. Expression of the bmpB Gene of Borrelia burgdorferi Is Modulated by Two Distinct Transcription Termination Events

    PubMed Central

    Ramamoorthy, Ramesh; McClain, Natalie A.; Gautam, Aarti; Scholl-Meeker, Dorothy

    2005-01-01

    bmp gene family 36 of Borrelia burgdorferi, the agent of Lyme disease, comprises four paralogs: bmpA, bmpB, bmpC, and bmpD. The bmpA and bmpB genes constitute an operon. All four genes have been found to be transcribed in cultured spirochetes. Expression from the bmpAB operon results in three distinct transcripts of 1.1, 1.6, and 2.4 kb, and the relative expression of bmpA mRNA is three- to fourfold greater than that of bmpB mRNA. However, thus far only expression of the BmpA protein has been demonstrated. Therefore, in this study we characterized the origins of the three transcripts and compared the relative expression of the BmpA and BmpB proteins. Northern blotting revealed that the three distinct transcripts originated from a single promoter located upstream of bmpA but terminated either 3′ to the bmpA (1.1-kb RNA) or bmpB (2.4-kb RNA) gene or, most unusually, within the bmpB gene (1.6-kb RNA). Termination within the bmpB gene was associated with a functional Rho-independent transcription terminator. At the protein level, we also observed a 4.3-fold greater abundance of BmpA compared to that of BmpB. These studies identify a transcription termination mechanism in B. burgdorferi resulting in the disparate expression of the two genes of the bmpAB operon. PMID:15805505

  19. Neutrophil extracellular traps entrap and kill Borrelia burgdorferi sensu stricto spirochetes and are not affected by Ixodes ricinus tick saliva.

    PubMed

    Menten-Dedoyart, Catherine; Faccinetto, Céline; Golovchenko, Maryna; Dupiereux, Ingrid; Van Lerberghe, Pierre-Bernard; Dubois, Sophie; Desmet, Christophe; Elmoualij, Benaissa; Baron, Frédéric; Rudenko, Nataliia; Oury, Cécile; Heinen, Ernst; Couvreur, Bernard

    2012-12-01

    Lyme disease is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. They are transmitted mainly by Ixodes ricinus ticks. After a few hours of infestation, neutrophils massively infiltrate the bite site. They can kill Borrelia via phagocytosis, oxidative burst, and hydrolytic enzymes. However, factors in tick saliva promote propagation of the bacteria in the host even in the presence of a large number of neutrophils. The neutrophil extracellular trap (NET) consists in the extrusion of the neutrophil's own DNA, forming traps that can retain and kill bacteria. The production of reactive oxygen species is apparently associated with the onset of NETs (NETosis). In this article, we describe NET formation at the tick bite site in vivo in mice. We show that Borrelia burgdorferi sensu stricto spirochetes become trapped and killed by NETs in humans and that the bacteria do not seem to release significant nucleases to evade this process. Saliva from I. ricinus did not affect NET formation by human neutrophils or its stability. However, it greatly decreased neutrophil reactive oxygen species production, suggesting that a strong decrease of hydrogen peroxide does not affect NET formation. Finally, round bodies trapped in NETs were observed, some of them staining as live bacteria. This observation could help contribute to a better understanding of the early steps of Borrelia invasion and erythema migrans formation after tick bite. PMID:23109724

  20. Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere

    PubMed Central

    Ivanova, Larisa B.; Tomova, Alexandra; González-Acuña, Daniel; Murúa, Roberto; Moreno, Claudia X.; Hernández, Claudio; Cabello, Javier; Cabello, Carlos; Daniels, Thomas J.; Godfrey, Henry P.; Cabello, Felipe C.

    2014-01-01

    Summary Borrelia burgdorferi sensu lato (s.l.), transmitted by Ixodes spp. ticks, is the causative agent of Lyme disease. Although Ixodes spp. ticks are distributed in both Northern and Southern Hemispheres, evidence for the presence of B. burgdorferi s.l. in South America apart from Uruguay is lacking. We now report the presence of culturable spirochetes with flat-wave morphology and borrelial DNA in endemic Ixodes stilesi ticks collected in Chile from environmental vegetation and long-tailed rice rats (Oligoryzomys longicaudatus). Cultured spirochetes and borrelial DNA in ticks were characterized by multilocus sequence typing and by sequencing five other loci (16S and 23S ribosomal genes, 5S-23S intergenic spacer, flaB, ospC). Phylogenetic analysis placed this spirochete as a new genospecies within the Lyme borreliosis group. Its plasmid profile determined by PCR and pulsed-field gel electrophoresis differed from that of B. burgdorferi B31A3. We propose naming this new South American member of the Lyme borreliosis group Borrelia chilensis VA1, in honor of its country of origin. PMID:24148079

  1. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin.

    PubMed

    Troxell, Bryan; Xu, Haijun; Yang, X Frank

    2012-06-01

    Borrelia burgdorferi, the causative agent of Lyme disease, exists in nature through a complex life cycle involving ticks of the Ixodes genus and mammalian hosts. During its life cycle, B. burgdorferi experiences fluctuations in oxygen tension and may encounter reactive oxygen species (ROS). The key metalloenzyme to degrade ROS in B. burgdorferi is SodA. Although previous work suggests that B. burgdorferi SodA is an iron-dependent superoxide dismutase (SOD), later work demonstrates that B. burgdorferi is unable to transport iron and contains an extremely low intracellular concentration of iron. Consequently, the metal cofactor for SodA has been postulated to be manganese. However, experimental evidence to support this hypothesis remains lacking. In this study, we provide biochemical and genetic data showing that SodA is a manganese-dependent enzyme. First, B. burgdorferi contained SOD activity that is resistant to H(2)O(2) and NaCN, characteristics associated with Mn-SODs. Second, the addition of manganese to the Chelex-treated BSK-II enhanced SodA expression. Third, disruption of the manganese transporter gene bmtA, which significantly lowers the intracellular manganese, greatly reduced SOD activity and SodA expression, suggesting that manganese regulates the level of SodA. In addition, we show that B. burgdorferi is resistant to streptonigrin, a metal-dependent redox cycling compound that produces ROS, and that SodA plays a protective role against the streptonigrin. Taken together, our data demonstrate the Lyme disease spirochete encodes a manganese-dependent SOD that contributes to B. burgdorferi defense against intracellular superoxide.

  2. Ecology of Borrelia burgdorferi in ticks (Acari: Ixodidae), rodents, and birds in the Sierra Nevada foothills, Placer County, California.

    PubMed

    Wright, S A; Thompson, M A; Miller, M J; Knerl, K M; Elms, S L; Karpowicz, J C; Young, J F; Kramer, V L

    2000-11-01

    This study examined the prevalence of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner in host-seeking adult and nymphal Ixodes pacificus Cooley & Kohls and estimated the I. pacificus infestation and B. burgdorferi infection of rodent and avian hosts in the western Sierra Nevada foothills of northern California. Additionally, we identified species likely to participate in an enzootic cycle for B. burgdorferi in this yellow pine transition habitat. Evidence of infection with B. burgdorferi was identified in 7.3 and 5.4% of host-seeking I. pacificus adults and nymphs, respectively. Mean numbers of I. pacificus observed on rodents were 1.15 for Neotoma fuscipes Baird and 0.18 for Peromyscus spp. One of 104 ear punch tissues obtained from woodrats and none from 49 Peromyscus spp. yielded B. burgdorferi. A total of 291 collected birds representing 34 species had a mean of 0.27 I. pacificus per bird. The mean I. pacificus infestation of ground-dwelling birds was 2.5 ticks per bird. Forty-nine of 92 (53%) blood smears collected from birds were reactive to a B. burgdorferi specific antibody. This study presents the identification of a B. burgdorferi-like spirochete in birds in western North America. The tick burden and spirochete infection of birds suggests that birds may be involved in a local B. burgdorferi enzootic cycle and likely participate in the transport of ticks and spirochetes to other locations while rodents from this site do not appear to be major contributors. PMID:11126549

  3. Molecular characterization, genomic arrangement, and expression of bmpD, a new member of the bmp class of genes encoding membrane proteins of Borrelia burgdorferi.

    PubMed Central

    Ramamoorthy, R; Povinelli, L; Philipp M, T

    1996-01-01

    An expression library made with Borrelia burgdorferi DNA in the vector lambda ZapII was screened with serum from a monkey infected with the Lyme disease agent. This serum killed B. burgdorferi in vitro by an antibody-dependent, complement-mediated mechanism and contained antibodies to at least seven spirochetal antigens, none of which were the major outer surface proteins OspA or OspB. Among several positive clones, a clone containing the B. burgdorferi bmpA gene encoding the immunodominant antigen P39 was obtained. Chromosome walking and DNA sequence analysis permitted the identification of two additional upstream genes homologous to the bmpA gene and its related companion, bmpB. The first of these was the recently characterized bmpC gene, and adjacent to it was the fourth and new member of this class, which has been designated bmpD. The gene product encoded by bmpD is 34l residues long, contains a signal sequence with a potential signal peptidase II cleavage site, and has 26% identity with TmpC of Treponema pallidum. Southern blotting confirmed the tandem arrangement of all four bmp genes in the chromosome of B. burgdorferi JD1. However, Northern (RNA) blotting revealed that bmpD is expressed as a monocistronic transcript, which indicates that it is not part of an operon at the bmp locus. The bmpD gene was found to be conserved in representative members of the three species of the B. burgdorferi sensu lato complex, suggesting that it serves an important biological function in the spirochete. PMID:8606088

  4. Evolution and Distribution of the ospC Gene, a Transferable Serotype Determinant of Borrelia burgdorferi

    PubMed Central

    Barbour, Alan G.; Travinsky, Bridgit

    2010-01-01

    Borrelia burgdorferi, an emerging bacterial pathogen, is maintained in nature by transmission from one vertebrate host to another by ticks. One of the few antigens against which mammals develop protective immunity is the highly polymorphic OspC protein, encoded by the ospC gene on the cp26 plasmid. Intragenic recombination among ospC genes is known, but the extent to which recombination extended beyond the ospC locus itself is undefined. We accessed and supplemented collections of DNA sequences of ospC and other loci from ticks in three U.S. regions (the Northeast, the Midwest, and northern California); a total of 839 ospC sequences were analyzed. Three overlapping but distinct populations of B. burgdorferi corresponded to the geographic regions. In addition, we sequenced 99 ospC flanking sequences from different lineages and compared the complete cp26 sequences of 11 strains as well as the cp26 bbb02 loci of 56 samples. Besides recombinations with traces limited to the ospC gene itself, there was evidence of lateral gene transfers that involved (i) part of the ospC gene and one of the two flanks or (ii) the entire ospC gene and different lengths of both flanks. Lateral gene transfers resulted in different linkages between the ospC gene and loci of the chromosome or other plasmids. By acquisition of the complete part or a large part of a novel ospC gene, an otherwise adapted strain would assume a new serotypic identity, thereby being comparatively fitter in an area with a high prevalence of immunity to existing OspC types. PMID:20877579

  5. Birds and their ticks in northwestern California: minimal contribution to Borrelia burgdorferi enzootiology.

    PubMed

    Slowik, T J; Lane, R S

    2001-08-01

    Birds and their attendant ticks were surveyed for infection with the Lyme disease spirochete Borrelia burgdorferi, in chaparral and woodland-grass habitats in northwestern California from March to July, 1998 to 1999. In total, 234 birds were captured and recaptured (15%); nearly 2.5 times more birds were captured in chaparral than in woodland-grass. Overall, 34 species representing 15 families were collected during this study; of these, 24 species were caught in chaparral, 19 in woodland-grass, and 9 in both vegetational types. The most frequently captured birds were sage sparrows (Amphispiza belli) in chaparral, and American robins (Turdus migratorius) and oak titmice (Baelophus inornatus) in woodland-grass. Birds hosted 35 Ixodes pacificus (15 larvae, 20 nymphs) and 9 Haemaphysalis leporispalustris (3 larvae, 5 nymphs, 1 adult) ticks, of which 32 were removed from chaparral birds and 12 from woodland birds. The prevalence of tick infestation was 13% (21/167) in chaparral and 5% (3/67) in woodland-grass, but the relative and mean tick intensities of 0.19 and 1.5 for chaparral birds, and 0.18 and 4.0 for woodland birds, respectively, did not differ significantly by habitat. Spirochetes were not detected in either bird-blood or tick-tissue samples when tested by culture, immunofluorescence, or Giemsa-staining. In contrast, over 90% (86/94) of western fence lizards (Sceloporus occidentalis) collected in June or July were infested with an average of 6.9 and 8.9 immature I. pacificus in chaparral and woodland-grass, respectively. We conclude that birds contribute little to the enzootiology of B. burgdorferi in chaparral and woodland-grass habitats in northwestern California because of their limited parasitism by tick vectors and lack of detectable spirochetemias. PMID:11534638

  6. Birds and their ticks in northwestern California: minimal contribution to Borrelia burgdorferi enzootiology.

    PubMed

    Slowik, T J; Lane, R S

    2001-08-01

    Birds and their attendant ticks were surveyed for infection with the Lyme disease spirochete Borrelia burgdorferi, in chaparral and woodland-grass habitats in northwestern California from March to July, 1998 to 1999. In total, 234 birds were captured and recaptured (15%); nearly 2.5 times more birds were captured in chaparral than in woodland-grass. Overall, 34 species representing 15 families were collected during this study; of these, 24 species were caught in chaparral, 19 in woodland-grass, and 9 in both vegetational types. The most frequently captured birds were sage sparrows (Amphispiza belli) in chaparral, and American robins (Turdus migratorius) and oak titmice (Baelophus inornatus) in woodland-grass. Birds hosted 35 Ixodes pacificus (15 larvae, 20 nymphs) and 9 Haemaphysalis leporispalustris (3 larvae, 5 nymphs, 1 adult) ticks, of which 32 were removed from chaparral birds and 12 from woodland birds. The prevalence of tick infestation was 13% (21/167) in chaparral and 5% (3/67) in woodland-grass, but the relative and mean tick intensities of 0.19 and 1.5 for chaparral birds, and 0.18 and 4.0 for woodland birds, respectively, did not differ significantly by habitat. Spirochetes were not detected in either bird-blood or tick-tissue samples when tested by culture, immunofluorescence, or Giemsa-staining. In contrast, over 90% (86/94) of western fence lizards (Sceloporus occidentalis) collected in June or July were infested with an average of 6.9 and 8.9 immature I. pacificus in chaparral and woodland-grass, respectively. We conclude that birds contribute little to the enzootiology of B. burgdorferi in chaparral and woodland-grass habitats in northwestern California because of their limited parasitism by tick vectors and lack of detectable spirochetemias.

  7. Seroprevalence of Borrelia burgdorferi in occupationally exposed persons in the Belgrade area, Serbia

    PubMed Central

    Jovanovic, Dragutin; Atanasievska, Sonja; Protic-Djokic, Vesna; Rakic, Uros; Lukac-Radoncic, Elvira; Ristanovic, Elizabeta

    2015-01-01

    Lyme disease (LD) is a natural focal zoonotic disease caused by Borrelia burgdorferi, which is mainly transmitted through infected Ixodes ricinus tick bites. The presence and abundance of ticks in various habitats, the infectivity rate, as well as prolonged human exposure to ticks are factors that may affect the infection risk as well as the incidence of LD. In recent years, 20% to 25% of ticks infected with different borrelial species, as well as about 5,300 citizens with LD, have been registered in the Belgrade area. Many of the patients reported tick bites in city’s grassy areas. The aim of this study was to assess the seroprevalence of B. burgdorferi in high-risk groups (forestry workers and soldiers) in the Belgrade area, and to compare the results with healthy blood donors. A two-step algorithm consisting of ELISA and Western blot tests was used in the study. Immunoreactivity profiles were also compared between the groups. The results obtained showed the seroprevalence to be 11.76% in the group of forestry workers, 17.14% in the group of soldiers infected by tick bites and 8.57% in the population of healthy blood donors. The highest IgM reactivity was detected against the OspC protein, while IgG antibodies showed high reactivity against VlsE, p19, p41, OspC, OspA and p17. Further investigations in this field are necessary in humans and animals in order to improve protective and preventive measures against LD. PMID:26413064

  8. Seroprevalence study of Tick-borne encephalitis, Borrelia burgdorferi, Dengue and Toscana virus in Turin Province.

    PubMed

    Pugliese, Agostino; Beltramo, Tiziana; Torre, Donato

    2007-01-01

    Tick borne encephalitis virus (TBEV) is present in some European countries and it is transmitted by a tick bite. Ixodes ricinus is the main vector of the infection in Italy, where fortunately clinical neurological manifestations, typical of the more serious phase of the disease, are very rarely observed. This behaviour is different from other endemic Euroasiatic areas where numerous cases of encephalitis are described. However TBE transmission has not been widely investigated in Italy and available epidemiological data have been obtained only by studies performed in Central and Northern Regions of the country. In addition seroepidemiological researches were made prevalently on subjects at high risk of tick bite, such as hunters or forest guards from Trentin and Central Italy. No precise information about TBE virus diffusion was available in the Piedmont before our investigations. We found that hunters and wild boar breeders seem to be particularly exposed to the risk of TBE virus infection in Turin Province and in particular in the Susa valley, although no neurological involvement was observed in our population. In particular a seroprevalence of about 5% was detected by the use of purified antigens ELISA test, amongst the subjects at high risk of tick bite. Moreover low risk individuals showed a seroprevalence of below 2%. In addition a parallel seroepidemiological study was performed in Turin Province for Borrelia burgdorferi, the aetiological agent of Lyme disease, also transmitted by tick bite (e.g. Ixodes ricinus), for Dengue and Toscana (TOS) arboviruses, respectively transmitted by Aedes mosquitoes and phlebotomes. Data reported here demonstrate only a sporadic presence in our population of antibodies against Borrelia and Dengue infection. Moreover using an ELISA test performed with viral purified nucleoprotein, we reported a total percentage of about 3% of subjects positive for TOSV.

  9. First molecular evidence of [i]Borrelia burgdorferi[/i] sensu lato in goats, sheep, cattle and camels in Tunisia.

    PubMed

    Ben Said, Mourad; Belkahia, Hanène; Alberti, Alberto; Abdi, Khaoula; Zhioua, Manel; Daaloul-Jedidi, Monia; Messadi, Lilia

    2016-09-01

    Borrelia burgdorferi sensu lato (s.l.) are tick-transmitted spirochaetes of veterinary and human importance. Molecular epidemiology data on ruminants are still lacking in most countries of the world. Therefore, the aim of this study was to estimate the rate of B. burgdorferi s.l. infection in ruminants from Tunisia. A total of 1,021 ruminants (303 goats, 260 sheep, 232 cattle and 226 camels) from different bioclimatic areas in Tunisia were investigated for the presence of B. burgdorferi s.l. DNA in blood by real time PCR. Prevalence rates were 30.4% (92/303) in goats, 6.2% (16/260) in sheep, 1.3% (3/232) in cattle, and 1.8% (4/226) in camels. Only tick species belonging to Rhipicephalus and Hyalomma genera were found on the investigated animals. In small ruminants, the prevalence of B. burgdorferi s.l. varied significantly according to localities and farms. Goats located in humid areas were statistically more infected than those located in sub-humid areas. Prevalence rates varied significantly according to age and breed in sheep, and age and tick infestation in goats. This study provides the first insight into the presence of B. burgdorferi s.l. DNA in ruminants in Tunisia, and demonstrates that host species such as goats and sheep may play an important role in natural Lyme disease cycles in this country.

  10. Misdiagnosis of Late-Onset Lyme Arthritis by Inappropriate Use of Borrelia burgdorferi Immunoblot Testing with Synovial Fluid

    PubMed Central

    Barclay, Sam S.; Melia, Michael T.

    2012-01-01

    The primary objective of this study was to determine whether patients with putative late-onset Lyme arthritis based upon synovial fluid Borrelia burgdorferi IgM and IgG immunoblot testing offered by commercial laboratories satisfied conventional criteria for the diagnosis of Lyme arthritis. Secondary objectives included assessing the prior duration and responsiveness of associated antibiotic therapy. We conducted a retrospective analysis of 11 patients referred to an academic medical center infectious disease clinic during the years 2007 to 2009 with a diagnosis of Lyme disease based upon previously obtained synovial fluid B. burgdorferi immunoblot testing. Ten of the 11 (91%) patients with a diagnosis of late-onset Lyme arthritis based upon interpretation of synovial fluid B. burgdorferi immunoblot testing were seronegative and did not satisfy published criteria for the diagnosis of late-onset Lyme arthritis. None of the 10 patients had a clinical response to previously received antibiotics despite an average course of 72 days. Diagnosis of Lyme arthritis should not be based on synovial fluid B. burgdorferi immunoblot testing. This unvalidated test does not appear useful for the diagnosis of Lyme disease, and this study reinforces the longstanding recommendation to use B. burgdorferi immunoblot testing only on serum samples and not other body fluids. Erroneous interpretations of “positive” synovial fluid immunoblots may lead to inappropriate antibiotic courses and delays in diagnosis of other joint diseases. PMID:22971779

  11. A tightly regulated surface protein of Borrelia burgdorferi is not essential to the mouse-tick infectious cycle.

    PubMed

    Stewart, Philip E; Bestor, Aaron; Cullen, Jonah N; Rosa, Patricia A

    2008-05-01

    Borrelia burgdorferi synthesizes a variety of differentially regulated outer surface lipoproteins in the tick vector and in vertebrate hosts. Among these is OspD, a protein that is highly induced in vitro by conditions that mimic the tick environment. Using genetically engineered strains in which ospD is deleted, we demonstrate that this protein is not required for B. burgdorferi survival and infectivity in either the mouse or the tick. However, examination of both transcript levels and protein expression indicates that OspD expression is limited to a discrete window of time during B. burgdorferi replication within the tick. This time frame corresponds to tick detachment from the host following feeding, and expression of OspD continues during tick digestion of the blood meal but is low or undetectable after the tick has molted. The high level of OspD production correlates to the highest cell densities that B. burgdorferi is known to reach in vivo. Although OspD is nonessential to the infectious cycle of B. burgdorferi, the tight regulation of expression suggests a beneficial contribution of OspD to the spirochete during bacterial replication within the tick midgut. PMID:18332210

  12. First molecular evidence of [i]Borrelia burgdorferi[/i] sensu lato in goats, sheep, cattle and camels in Tunisia.

    PubMed

    Ben Said, Mourad; Belkahia, Hanène; Alberti, Alberto; Abdi, Khaoula; Zhioua, Manel; Daaloul-Jedidi, Monia; Messadi, Lilia

    2016-07-15

    Borrelia burgdorferi sensu lato (s.l.) are tick-transmitted spirochaetes of veterinary and human importance. Molecular epidemiology data on ruminants are still lacking in most countries of the world. Therefore, the aim of this study was to estimate the rate of B. burgdorferi s.l. infection in ruminants from Tunisia. A total of 1,021 ruminants (303 goats, 260 sheep, 232 cattle and 226 camels) from different bioclimatic areas in Tunisia were investigated for the presence of B. burgdorferi s.l. DNA in blood by real time PCR. Prevalence rates were 30.4% (92/303) in goats, 6.2% (16/260) in sheep, 1.3% (3/232) in cattle, and 1.8% (4/226) in camels. Only tick species belonging to Rhipicephalus and Hyalomma genera were found on the investigated animals. In small ruminants, the prevalence of B. burgdorferi s.l. varied significantly according to localities and farms. Goats located in humid areas were statistically more infected than those located in sub-humid areas. Prevalence rates varied significantly according to age and breed in sheep, and age and tick infestation in goats. This study provides the first insight into the presence of B. burgdorferi s.l. DNA in ruminants in Tunisia, and demonstrates that host species such as goats and sheep may play an important role in natural Lyme disease cycles in this country. PMID:27660865

  13. Borrelia burgdorferi Induces TLR2-Mediated Migration of Activated Dendritic Cells in an Ex Vivo Human Skin Model

    PubMed Central

    Wagemakers, Alex; van ‘t Veer, Cornelis; Oei, Anneke; van der Pot, Wouter J.; Ahmed, Kalam; van der Poll, Tom; Geijtenbeek, Teunis B. H.; Hovius, Joppe W. R.

    2016-01-01

    Borrelia burgdorferi is transmitted into the skin of the host where it encounters and interacts with two dendritic cell (DC) subsets; Langerhans cells (LCs) and dermal DCs (DDCs). These cells recognize pathogens via pattern recognition receptors, mature and migrate out of the skin into draining lymph nodes, where they orchestrate adaptive immune responses. In order to investigate the response of skin DCs during the early immunopathogenesis of Lyme borreliosis, we injected B. burgdorferi intradermally into full-thickness human skin and studied the migration of DCs out of the skin, the activation profile and phenotype of migrated cells. We found a significant increase in the migration of LCs and DDCs in response to B. burgdorferi. Notably, migration was prevented by blocking TLR2. DCs migrated from skin inoculated with higher numbers of spirochetes expressed significantly higher levels of CD83 and produced pro-inflammatory cytokines. No difference was observed in the expression of HLA-DR, CD86, CD38, or CCR7. To conclude, we have established an ex vivo human skin model to study DC-B. burgdorferi interactions. Using this model, we have demonstrated that B. burgdorferi-induced DC migration is mediated by TLR2. Our findings underscore the utility of this model as a valuable tool to study immunity to spirochetal infections. PMID:27695100

  14. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection.

    PubMed

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Zhang, Ying

    2015-01-01

    Lyme disease is the leading tick-borne disease in the USA. Whereas the majority of Lyme disease patients with early disease can be cured with standard treatment, some patients suffer from chronic fatigue and joint and muscular pain despite treatment, a syndrome called posttreatment Lyme disease syndrome. Although the cause is unclear, ineffective killing of Borrelia burgdorferi persisters by current Lyme disease antibiotics is one possible explanation. We took advantage of our recently developed high-throughput viability assay and screened the National Cancer Institute compound library collection consisting of 2526 compounds against stationary phase B. burgdorferi. We identified the top 30 new active hits, including the top six anthracycline antibiotics daunomycin 3-oxime, dimethyldaunomycin, daunomycin, NSC299187, NSC363998 and nogalamycin, along with other compounds, including prodigiosin, mitomycin, nanaomycin and dactinomycin, as having excellent activity against B. burgdorferi stationary phase culture. The anthracycline or anthraquinone compounds, which are known to have both anti-cancer and antibacterial activities, also had high activity against growing B. burgdorferi with low minimum inhibitory concentration. Future studies on the structure-activity relationship and mechanisms of action of anthracyclines/anthraquinones are warranted. In addition, drug combination studies with the anthracycline class of compounds and the current Lyme antibiotics to eradicate B. burgdorferi persisters in vitro and in animal models are needed to determine if they improve the treatment of Lyme disease. PMID:26954881

  15. An Invasive Mammal (the Gray Squirrel, Sciurus carolinensis) Commonly Hosts Diverse and Atypical Genotypes of the Zoonotic Pathogen Borrelia burgdorferi Sensu Lato

    PubMed Central

    Magierecka, Agnieszka; Gilbert, Lucy; Edoff, Alissa; Brereton, Amelia; Kilbride, Elizabeth; Denwood, Matt; Birtles, Richard; Biek, Roman

    2015-01-01

    Invasive vertebrate species can act as hosts for endemic pathogens and may alter pathogen community composition and dynamics. For the zoonotic pathogen Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, recent work shows invasive rodent species can be of high epidemiological importance and may support host-specific strains. This study examined the role of gray squirrels (Sciurus carolinensis) (n = 679), an invasive species in the United Kingdom, as B. burgdorferi sensu lato hosts. We found that gray squirrels were frequently infested with Ixodes ricinus, the main vector of B. burgdorferi sensu lato in the United Kingdom, and 11.9% were infected with B. burgdorferi sensu lato. All four genospecies that occur in the United Kingdom were detected in gray squirrels, and unexpectedly, the bird-associated genospecies Borrelia garinii was most common. The second most frequent infection was with Borrelia afzelii. Genotyping of B. garinii and B. afzelii produced no evidence for strains associated with gray squirrels. Generalized linear mixed models (GLMM) identified tick infestation and date of capture as significant factors associated with B. burgdorferi sensu lato infection in gray squirrels, with infection elevated in early summer in squirrels infested with ticks. Invasive gray squirrels appear to become infected with locally circulating strains of B. burgdorferi sensu lato, and further studies are required to determine their role in community disease dynamics. Our findings highlight the fact that the role of introduced host species in B. burgdorferi sensu lato epidemiology can be highly variable and thus difficult to predict. PMID:25888168

  16. Active and Passive Surveillance and Phylogenetic Analysis of Borrelia burgdorferi Elucidate the Process of Lyme Disease Risk Emergence in Canada

    PubMed Central

    Ogden, Nicholas H.; Bouchard, Catherine; Kurtenbach, Klaus; Margos, Gabriele; Lindsay, L. Robbin; Trudel, Louise; Nguon, Soulyvane; Milord, François

    2010-01-01

    Background Northward expansion of the tick Ixodes scapularis is driving Lyme disease (LD) emergence in Canada. Information on mechanisms involved is needed to enhance surveillance and identify where LD risk is emerging. Objectives We used passive and active surveillance and phylogeographic analysis of Borrelia burgdorferi to investigate LD risk emergence in Quebec. Methods In active surveillance, we collected ticks from the environment and from captured rodents. B. burgdorferi transmission was detected by serological analysis of rodents and by polymerase chain reaction assays of ticks. Spatiotemporal trends in passive surveillance data assisted interpretation of active surveillance. Multilocus sequence typing (MLST) of B. burgdorferi in ticks identified likely source locations of B. burgdorferi. Results In active surveillance, we found I. scapularis at 55% of sites, and we were more likely to find them at sites with a warmer climate. B. burgdorferi was identified at 13 I. scapularis–positive sites, but infection prevalence in ticks and animal hosts was low. Low infection prevalence in ticks submitted in passive surveillance after 2004—from the tick-positive regions identified in active surveillance—coincided with an exponential increase in tick submissions during this time. MLST analysis suggested recent introduction of B. burgdorferi from the northeastern United States. Conclusions These data are consistent with I. scapularis ticks dispersed from the United States by migratory birds, founding populations where the climate is warmest, and then establishment of B. burgdorferi from the United States several years after I. scapularis have established. These observations provide vital information for public health to minimize the impact of LD in Canada. PMID:20421192

  17. Decorin Binding Proteins of Borrelia burgdorferi Promote Arthritis Development and Joint Specific Post-Treatment DNA Persistence in Mice

    PubMed Central

    Salo, Jemiina; Jaatinen, Annukka; Söderström, Mirva; Viljanen, Matti K.; Hytönen, Jukka

    2015-01-01

    Decorin binding proteins A and B (DbpA and B) of Borrelia burgdorferi are of critical importance for the virulence of the spirochete. The objective of the present study was to further clarify the contribution of DbpA and B to development of arthritis and persistence of B. burgdorferi after antibiotic treatment in a murine model of Lyme borreliosis. With that goal, mice were infected with B. burgdorferi strains expressing either DbpA or DbpB, or both DbpA and B, or with a strain lacking the adhesins. Arthritis development was monitored up to 15 weeks after infection, and bacterial persistence was studied after ceftriaxone and immunosuppressive treatments. Mice infected with the B. burgdorferi strain expressing both DbpA and B developed an early and prominent joint swelling. In contrast, while strains that expressed DbpA or B alone, or the strain that was DbpA and B deficient, were able to colonize mouse joints, they caused only negligible joint manifestations. Ceftriaxone treatment at two or six weeks of infection totally abolished joint swelling, and all ceftriaxone treated mice were B. burgdorferi culture negative. Antibiotic treated mice, which were immunosuppressed by anti-TNF-alpha, remained culture negative. Importantly, among ceftriaxone treated mice, B. burgdorferi DNA was detected by PCR uniformly in joint samples of mice infected with DbpA and B expressing bacteria, while this was not observed in mice infected with the DbpA and B deficient strain. In conclusion, these results show that both DbpA and B adhesins are crucial for early and prominent arthritis development in mice. Also, post-treatment borrelial DNA persistence appears to be dependent on the expression of DbpA and B on B. burgdorferi surface. Results of the immunosuppression studies suggest that the persisting material in the joints of antibiotic treated mice is DNA or DNA containing remnants rather than live bacteria. PMID:25816291

  18. Interpretation criteria for standardized Western blots for three European species of Borrelia burgdorferi sensu lato.

    PubMed

    Hauser, U; Lehnert, G; Lobentanzer, R; Wilske, B

    1997-06-01

    Western blots (WBs; immunoblots) are a widely used tool for the serodiagnosis of Lyme borreliosis, but so far, no defined criteria for performance, analysis, and interpretation have been established in Europe. For the current study WBs were produced with strains PKa2 (Borrelia burgdorferi sensu stricto), PKo (Borrelia afzelii), and PBi (Borrelia garinii). To improve resolution we used gels of 17 cm in length. In a first step, 13 immunodominant proteins were identified with monoclonal antibodies. Then, the apparent molecular masses of all visually distinguishable bands were determined densitometrically. Approximately 40 bands of between 14 and 100 kDa were differentiated for each strain. From a study with 330 serum samples (from 189 patients with Lyme borreliosis and 141 controls), all observed bands were documented. To establish criteria for a positive WB result, the discriminating ability of a series of band combinations (interpretation rules) were evaluated separately for each strain (for immunoglobulin G [IgG] WB, > 40 combinations; for IgM WB, > 15 combinations). The following interpretation criteria resulting in specificities of greater than 96% were recommended: for IgG WB, at least one band of p83/100, p58, p56, OspC, p21, and p17a for PKa2; at least two bands of p83/100, p58, p43, p39, p30, OspC, p21, p17, and p14 for PKo; and at least one band of p83/100, p39, OspC, p21, and p17b for PBi; for IgM WB, at least one band of p39, OspC, and p17a or a strong p41 band for PKa2; at least one band of p39, OspC, and p17 or a strong p41 band for PKo; and at least one band of p39 and OspC or a strong p41 band for PBi. The overall sensitivity was the highest for PKo WB, followed by PBi and PKa2 WB, in decreasing order. Standardization of WB assays is necessary for comparison of results from different laboratories.

  19. Prevalence of Borrelia burgdorferi species and identification of Borrelia valaisiana in questing Ixodes ricinus in the Lyon region of France as determined by polymerase chain reaction-restriction fragment length polymorphism.

    PubMed

    Quessada, T; Martial-Convert, F; Arnaud, S; Leudet De La Vallee, H; Gilot, B; Pichot, J

    2003-03-01

    Many cases of Lyme borreliosis have been reported over the years in the region of Lyon, France. The identification and prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus were investigated by polymerase chain reaction (PCR) of the flagellin gene and restriction fragment length polymorphism (RFLP) analysis. Questing Ixodes ricinus larvae, nymphs and adults were collected by the flagging method from deciduous forests in four areas in the Lyon region of France between October 1994 and September 1995 and in June 1998. The overall prevalence of Borrelia burgdorferi sensu lato was 13.2% (91/688). No significant differences in prevalence were observed between the different stages and sex of the ixodids or between collection areas. The majority of infections were simple infections (82.4%; 75/91), most of which were due to Borrelia afzelii (41.4%), while coinfections (12.1%) were predominantly (54.5%) a combination of Borrelia valaisiana and Borrelia garinii. No tick was infected with more than two borrelial species, nor was Borrelia lusitaniae identified. The Borrelia valaisiana species was detected for the first time in France, confirming its widespread presence in Europe. This study confirms that the surroundings of Lyon are risk areas for contracting Lyme disease and that no particular clinical manifestations predominate due to the heterogeneous distribution of Borrelia genospecies. Moreover, the polymerase chain reaction restriction fragment length polymorphism analysis is a rapid and easy method for genotyping of Borrelia species.

  20. In vitro antimicrobial susceptibility testing of Borrelia burgdorferi: a microdilution MIC method and time-kill studies.

    PubMed Central

    Dever, L L; Jorgensen, J H; Barbour, A G

    1992-01-01

    The susceptibility of Borrelia burgdorferi, the causative agent of Lyme borreliosis, to various antimicrobial agents varies widely among published studies. These differences are probably due in part to variations in susceptibility testing techniques and growth endpoint determinations. We developed a microdilution method for determining the MICs of antibiotics against B. burgdorferi. The method incorporated BSK II medium, a final inoculum of 10(6) cells per ml, and a 72-h incubation period and was found to be simple and highly reproducible. A variety of antibiotics and strains of B. burgdorferi and one strain of Borrelia hermsii were examined by this method. MICs of penicillin, ceftriaxone, and erythromycin for the B31 strain of B. burgdorferi were 0.06, 0.03, and 0.03 microgram/ml, respectively. We compared the MICs obtained by the microdilution method with those obtained by a macrodilution method using similar criteria for endpoint determinations and found the values obtained by both methods to be in close agreement. To further investigate the bactericidal activities of penicillin, ceftriaxone, and erythromycin against strain B31, we used subsurface plating to determine MBCs and we also performed time-kill studies. The MBCs of penicillin, ceftriaxone, and erythromycin were 0.125, 0.03, and 0.06 micrograms/ml, respectively. Time-kill curves demonstrated a greater than or equal to 3-log10-unit killing after 72 h with penicillin, ceftriaxone, and erythromycin; ceftriaxone provided the greatest reduction in CFU. The described methods offer a more standardized and objective approach to susceptibility testing of B. burgdorferi. Images PMID:1400969

  1. Dual role for Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice

    PubMed Central

    Belperron, Alexia A.; Liu, Nengyin; Booth, Carmen J.; Bockenstedt, Linda K.

    2014-01-01

    Arthritis in mice infected with the Lyme disease spirochete, Borrelia burgdorferi, results from the influx of innate immune cells responding to the pathogen in the joint and is influenced in part by mouse genetics. Production of inflammatory cytokines by innate immune cells in vitro is largely mediated by Toll-like receptor (TLR) interaction with Borrelia lipoproteins, yet surprisingly mice deficient in TLR2 or the TLR signaling molecule MyD88 still develop arthritis comparable to that seen in wild type mice after B. burgdorferi infection. These findings suggest that other, MyD88-independent inflammatory pathways can contribute to arthritis expression. Clearance of B. burgdorferi is dependent on the production of specific antibody and phagocytosis of the organism. As Fc receptors (FcγR) are important for IgG-mediated clearance of immune complexes and opsonized particles by phagocytes, we examined the role that FcγR play in host defense and disease in B. burgdorferi-infected mice. B. burgdorferi-infected mice deficient in the Fc receptor common gamma chain (FcεRγ−/− mice) harbored ~10 fold more spirochetes than similarly infected wild type mice, and this was associated with a transient increase in arthritis severity. While the elevated pathogen burdens seen in B. burgdorferi-infected MyD88−/− mice were not affected by concomitant deficiency in FcγR, arthritis was reduced in FcεRγ−/−MyD88−/− mice in comparison to wild type or single knockout mice. Gene expression analysis from infected joints demonstrated that absence of both MyD88 and FcγR lowers mRNA levels of proteins involved in inflammation, including Cxcl1 (KC), Xcr1 (Gpr5), IL-1beta, and C reactive protein. Taken together, our results demonstrate a role for FcγR-mediated immunity in limiting pathogen burden and arthritis in mice during the acute phase of B. burgdorferi infection, and further suggest that this pathway contributes to the arthritis that develops in B. burgdorferi

  2. Borrelia burgdorferi infection in a natural population of Peromyscus Leucopus mice: a longitudinal study in an area where Lyme Borreliosis is highly endemic.

    PubMed

    Bunikis, Jonas; Tsao, Jean; Luke, Catherine J; Luna, Maria G; Fish, Durland; Barbour, Alan G

    2004-04-15

    Blood samples from Peromyscus leucopus mice captured at an enzootic site in Connecticut were examined for antibodies to and DNA of Borrelia burgdorferi, to characterize the dynamics of infection in this reservoir population. From trappings conducted over the course of 2 transmission seasons, 598 (75%) of 801 serum samples from 514 mice were found to be positive by enzyme immunoassay. Seropositivity correlated with date of capture and mouse age, was similar among locations within the site, increased from 57% to 93% over the course of the transmission season, and was associated with antibodies to outer surface protein (Osp) C, but not to OspA. Longitudinal samples from 184 mice revealed an incidence of 0.2 cases/mouse/week. Nineteen (10%) of 187 samples were found by polymerase chain reaction to be positive for B. burgdorferi, and, of those, 14 (74%) were found to be seropositive. Nearly the entire population of P. leucopus mice became infected with B. burgdorferi by late August, coinciding with the peak activity period of host-seeking larvae uninfected with the spirochete Ixodes scapularis, thereby perpetuating the agent through succeeding generations of ticks.

  3. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western palearctic.

    PubMed

    Estrada-Peña, Agustín; Ortega, Carmelo; Sánchez, Nely; Desimone, Lorenzo; Sudre, Bertrand; Suk, Jonathan E; Semenza, Jan C

    2011-06-01

    This meta-analysis of reports examining ticks throughout the Western Palearctic region indicates a distinct geographic pattern for Borrelia burgdorferi sensu lato prevalence in questing nymphal Ixodes ricinus ticks. The greatest prevalence was reported between the 5°E and 25°E longitudes based on an analysis of 123 collection points with 37,940 nymphal tick specimens (87.43% of total nymphs; 56.35% of total ticks in the set of reports over the target area). Climatic traits, such as temperature and vegetation stress, and their seasonality correlated with Borrelia prevalence in questing ticks. The greatest prevalence was associated with mild winter, high summer, and low seasonal amplitude of temperatures within the range of the tick vector, higher vegetation indices in the May-June period, and well-connected vegetation patches below a threshold at which rates suddenly drop. Classification of the target territory using a qualitative risk index derived from the abiotic variables produced an indicator of the probability of finding infected ticks in the Western Palearctic region. No specific temporal trends were detected in the reported prevalence. The ranges of the different B. burgdorferi sensu lato genospecies showed a pattern of high biodiversity between 4°W and 20°E, partially overlapping the area of highest prevalence in ticks. Borrelia afzelii and Borrelia garinii are the dominant species in central Europe (east of ∼25°E), but B. garinii may appear alone at southern latitudes and Borrelia lusitaniae is the main indicator species for meridional territories. PMID:21498767

  4. Increasing density and Borrelia burgdorferi infection of deer-infesting Ixodes dammini (Acari: Ixodidae) in Maryland.

    PubMed

    Amerasinghe, F P; Breisch, N L; Neidhardt, K; Pagac, B; Scott, T W

    1993-09-01

    A statewide survey of Ixodes dammini Spielman was done in November 1991 as a follow-up to a study in 1989. In total, 3,434 adult ticks were collected from 922 hunter-killed white-tailed deer processed at 22 check stations (1 per county in 22 of 23 counties in the state). Significantly more male than female ticks were collected. Tick infestation was significantly heavier on male than female deer. The pattern of tick distribution was similar to that in 1989, with low prevalence (percentage tick-infested deer) and abundance (mean ticks per deer) in the Appalachian region, moderate values in the Piedmont, and high values in the western and eastern Coastal Plains regions. The pattern of tick infection with Borrelia burgdorferi spirochetes (determined by polyclonal immunofluorescence assay) was similar to the tick distributional pattern. Overall, tick prevalence and abundance were higher in 1991 than in 1989, as was the spirochete infection rate in ticks. Multiple regression analysis of tick prevalence against six selected physical and biotic parameters (elevation, rainfall, summer and winter temperature, percentage of forest land, deer density) showed a significant relationship with rainfall and elevation in 1989 and elevation alone in 1991. A more extensive study in Caroline and Dorchester counties in the eastern Coastal Plains region (which showed exceptionally low tick density indices in a generally tick-abundant region in 1989) demonstrated that I. dammini was well established in Caroline but not in Dorchester County. PMID:8254631

  5. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi

    USGS Publications Warehouse

    Ginsberg, H.S.; Buckley, P.A.; Balmforth, M.G.; Zhioua, E.; Mitra, Siddhartha; Buckley, F.G.

    2005-01-01

    Reservoir competence of the Lyme disease spirochete, Borrelia burgdorferi, was tested for six species of native North American birds: American Robin, Gray Catbird, Brown Thrasher, Eastern Towhee, Song Sparrow, and Northern Cardinal. Wild birds collected by mistnetting on Fire Island, NY, were held in a field lab in cages over water, and locally collected larval ticks were placed on the birds, harvested from the water after engorgement, and tested for infection by DFA after molting to the nymphal stage. American Robins were competent reservoirs, infecting 16.1% of larvae applied to wild-caught birds, compared to 0% of control ticks placed on uninfected lab mice. Robins that were previously infected in the lab by nymphal feeding infected 81.8% of applied larvae. Wild-caught Song Sparrows infected 4.8% of applied larvae, and 21.1% when infected by nymphal feeding. Results suggest moderate levels of reservoir competence for Northern Cardinals, lower levels for Gray Catbirds, and little evidence of reservoir competence for Eastern Towhees or Brown Thrashers. Lower infection rates in larvae applied to wild-caught birds compared to birds infected in the lab suggest that infected birds display temporal variability in infectiousness to larval ticks. Engorged larvae drop from birds abundantly during daylight hours, so the abundance of these bird species in the peridomestic environment suggests that they might contribute infected ticks to lawns and gardens.

  6. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto

    PubMed Central

    Castillo-Ramírez, S.; Fingerle, V.; Jungnick, S.; Straubinger, R. K.; Krebs, S.; Blum, H.; Meinel, D. M.; Hofmann, H.; Guertler, P.; Sing, A.; Margos, G.

    2016-01-01

    The origin and population structure of Borrelia burgdorferi sensu stricto (s.s.), the agent of Lyme disease, remain obscure. This tick-transmitted bacterial species occurs in both North America and Europe. We sequenced 17 European isolates (representing the most frequently found sequence types in Europe) and compared these with 17 North American strains. We show that trans-Atlantic exchanges have occurred in the evolutionary history of this species and that a European origin of B. burgdorferi s.s. is marginally more likely than a USA origin. The data further suggest that some European human patients may have acquired their infection in North America. We found three distinct genetically differentiated groups: i) the outgroup species Borrelia bissettii, ii) two divergent strains from Europe, and iii) a group composed of strains from both the USA and Europe. Phylogenetic analysis indicated that different genotypes were likely to have been introduced several times into the same area. Our results demonstrate that irrespective of whether B. burgdorferi s.s. originated in Europe or the USA, later trans-Atlantic exchange(s) have occurred and have shaped the population structure of this genospecies. This study clearly shows the utility of next generation sequencing to obtain a better understanding of the phylogeography of this bacterial species. PMID:26955886

  7. An avian contribution to the presence of Ixodes pacificus (Acari: Ixodidae) and Borrelia burgdorferi on the Sutter Buttes of California.

    PubMed

    Wright, Stan A; Lemenager, Debbie A; Tucker, James R; Armijos, M Veronica; Yamamoto, Sheryl A

    2006-03-01

    Birds from 45 species were sampled during three spring seasons from an isolated canyon on the Sutter Buttes in California for the presence of subadult stages of Ixodes pacificus Cooley & Kohls, and for infection with Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner. These birds were found to have an infestation prevalence of 45%, a density of 1.7 ticks per bird, and an intensity of 3.8 ticks per infested bird. There was a significant difference in the I. pacificus infestations between canopy and ground-dwelling birds. Birds also demonstrated an overall infection with B. burgdorferi of 6.4% with significant difference between bird species. Amplification and subsequent sequencing of the 23s-5s rRNA intergenic spacer region of the Borrelia genome from one bird, a hermit thrush, Catharus guttatus (Nuttall), showed that the infection in this bird was caused by B. burgdorferi sensu stricto; the first such finding in a bird from the far west. Our results suggest that birds play a role in the distribution and maintenance of I. pacificus, and possibly of B. burgdoferi, at the Sutter Buttes, CA. PMID:16619623

  8. Ixodes ricinus as a vector of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in urban and suburban forests.

    PubMed

    Stańczak, Joanna; Gabre, Refaat Mohammed; Kruminis-Łozowska, Wiesława; Racewicz, Maria; Kubica-Biernat, Beata

    2004-01-01

    In the suburban and urban forests in the cities of Gdansk, Sopot and Gdynia (northern Poland), Ixodes ricinus ticks should be considered as the vector of pathogenic microorganisms that may cause significant diseases in wild and domestic animals and humans. These microorganisms include etiologic agents of Lyme disease, human anaplasmosis (HA) and babesiosis: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti, respectively. DNA extracts from 701 ticks collected in 15 localities were examined by PCR for the simultaneous detection of these 3 pathogens. Overall, 14 % were infected with A. phagocytophilum followed by 12.4 % with B. burgdorferi s.l. and 2.3 % with B. microti. In total, the percentage of infected females (32.9 %) was 2.4 times higher than in males (13.7 %) and 3.2 times higher than in nymphs (10.3 %). Among adult ticks (n = 303), 8.3 % were dually infected with A. phagocytophilum and B. burgdorferi s.l., 2.0 % with the agent of human anaplasmosis and B. microti and 0.3 % with borreliae and B. microti.

  9. Borrelia burgdorferi Oxidative Stress Regulator BosR Directly Represses Lipoproteins Primarily Expressed in the Tick during Mammalian Infection

    PubMed Central

    Wang, Peng; Dadhwal, Poonam; Cheng, Zhihui; Zianni, Michael R.; Rikihisa, Yasuko; Liang, Fang Ting; Li, Xin

    2013-01-01

    Summary Differential gene expression is a key strategy adopted by the Lyme disease spirochaete, Borrelia burgdorferi, for adaptation and survival in the mammalian host and the tick vector. Many B. burgdorferi surface lipoproteins fall into two distinct groups according to their expression patterns: one group primarily expressed in the tick and the other group primarily expressed in the mammal. Here, we show that the Fur homologue in this bacterium, also known as Borrelia oxidative stress regulator (BosR), is required for repression of outer surface protein A (OspA) and OspD in the mammal. Furthermore, BosR binds directly to sequences upstream of the ospAB operon and the ospD gene through recognition of palindromic motifs similar to those recognized by other Fur homologues but with a 1-bp variation in the spacer length. Putative BosR-binding sites have been identified upstream of 156 B. burgdorferi genes. Some of these genes share the same expression pattern as ospA and ospD. Most notably, 12 (67%) of the 18 genes previously identified in a genome-wide microarray study to be most significantly repressed in the mammal are among the putative BosR regulon. These data indicate that BosR may directly repress transcription of many genes that are down-regulated in the mammal. PMID:23869590

  10. Correction: In Vivo Expression Technology Identifies a Novel Virulence Factor Critical for Borrelia burgdorferi Persistence in Mice.

    PubMed

    Ellis, Tisha Choudhury; Jain, Sunny; Linowski, Angelika K; Rike, Kelli; Bestor, Aaron; Rosa, Patricia A; Halpern, Micah; Kurhanewicz, Stephanie; Jewett, Mollie W

    2014-06-01

    Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable.Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pnc A gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice.Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. The bbk46 gene was dispensable for B. burgdorferi infection in mice. Our findings highlight the power of the IVET-based approach for identification of B. burgdorferi in vivo-expressed genes, which might not be discovered using other genome-wide gene expression methods. Further investigation of the novel in vivo-expressed candidate genes will contribute to advancing the understanding of molecular mechanisms of B.burgdorferi survival and pathogenicity in the mammalian host. PMID:24950221

  11. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10-20 years after active Lyme disease.

    PubMed

    Kalish, R A; McHugh, G; Granquist, J; Shea, B; Ruthazer, R; Steere, A C

    2001-09-15

    The interpretation of serological results for patients who had Lyme disease many years ago is not well defined. We studied the serological status of 79 patients who had had Lyme disease 10-20 years ago and did not currently have signs or symptoms of active Lyme disease. Of the 40 patients who had had early Lyme disease alone, 4 (10%) currently had IgM responses to Borrelia burgdorferi, and 10 (25%) still had IgG reactivity to the spirochete, as determined by a 2-test approach (enzyme-linked immunosorbent assay and Western blot). Of the 39 patients who had had Lyme arthritis, 6 (15%) currently had IgM responses and 24 (62%) still had IgG reactivity to the spirochete. IgM or IgG antibody responses to B. burgdorferi may persist for 10-20 years, but these responses are not indicative of active infection.

  12. Mode of inoculation of the Lyme disease agent Borrelia burgdorferi influences infection and immune responses in inbred strains of mice.

    PubMed

    Gern, L; Schaible, U E; Simon, M M

    1993-04-01

    Mice were infected with Borrelia burgdorferi by infection via Ixodes ricinus and experimental inoculation to determine whether transmission rates of spirochetes and antibody responses are influenced. Mice infected by the natural route were substantially more infective for ticks; two- to sixfold more tick larvae were positive for B. burgdorferi than those fed on experimentally inoculated mice. In natural infection, spirochetemia may be greater or spirochetes may be more accessible for transmission. Thus, this form of xenodiagnosis could be used to determine levels of spirochetes in the vertebrate host. Similar levels of antibody were present in all mice; however, those infected by the natural route lacked antibodies to outer surface proteins (Osp) A and B. The small antigen dose given through a tick bite may not have been sufficient to induce rapid OspA or OspB antibodies, thereby allowing the later development of higher levels of spirochetemia.

  13. Quantification of Borrelia burgdorferi Membrane Proteins in Human Serum: A New Concept for Detection of Bacterial Infection.

    PubMed

    Cheung, Crystal S F; Anderson, Kyle W; Benitez, Kenia Y Villatoro; Soloski, Mark J; Aucott, John N; Phinney, Karen W; Turko, Illarion V

    2015-11-17

    The Borrelia burgdorferi spirochete is the causative agent of Lyme disease, the most common tick-borne disease in the United States. The low abundance of bacterial proteins in human serum during infection imposes a challenge for early proteomic detection of Lyme disease. To address this challenge, we propose to detect membrane proteins released from bacteria due to disruption of their plasma membrane triggered by the innate immune system. These membrane proteins can be separated from the bulk of serum proteins by high-speed centrifugation causing substantial sample enrichment prior to targeted protein quantification using multiple reaction monitoring mass spectrometry. This new approach was first applied to detection of B. burgdorferi membrane proteins supplemented in human serum. Our results indicated that detection of B. burgdorferi membrane proteins, which are ≈10(7) lower in abundance than major serum proteins, is feasible. Therefore, quantitative analysis was also carried out for serum samples from three patients with acute Lyme disease. We were able to demonstrate the detection of ospA, the major B. burgdorferi lipoprotein at the level of 4.0 fmol of ospA/mg of serum protein. The results confirm the concept and suggest that the proposed approach can be expanded to detect other bacterial infections in humans, particularly where existing diagnostics are unreliable. PMID:26491962

  14. Infestation of the southern alligator lizard (Squamata: Anguidae) by Ixodes pacificus (Acari: Ixodidae) and its susceptibility to Borrelia burgdorferi.

    PubMed

    Wright, S A; Lane, R S; Clover, J R

    1998-11-01

    To investigate the reservoir potential of the southern alligator lizard, Elgaria multicarinata (Blainville), for the Lyme disease spirochete, Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner, 14 lizards were collected from 1 county on each side of the northern Central Valley of California. Seven animals were collected from a Placer County site (Drivers Flat) and a Yolo County site (Cache Creek) where B. burgdorferi had been isolated previously from Ixodes pacificus Cooley & Kohls. Overall, the mean abundance of I. pacificus on all 14 lizards was 34.1 (range, 3-63) for larvae and 11.0 (range, 1-28) for nymphs. In captivity, field-attached I. pacificus larvae and nymphs required, on average, 12.6 (range, 1-37) and 14.4 (range, 5-44) d to feed to repletion, respectively. The prevalence of B. burgdorferi infection in host-seeking I. pacificus nymphs was 1.4% in Cache Creek Canyon and 9.9% in Drivers Flat. Attempts to isolate spirochetes from lizard blood or ticks that had fed on lizards and subsequently molted were unsuccessful as were efforts to cultivate spirochetes in lizard sera. These data suggest that the southern alligator lizard is not a competent reservoir for B. burgdorferi, although it is an important host for I. pacificus subadults. PMID:9835700

  15. Avian hosts of Ixodes pacificus (Acari: Ixodidae) and the detection of Borrelia burgdorferi in larvae feeding on the Oregon junco.

    PubMed

    Wright, S A; Tucker, J R; Donohue, A M; Castro, M B; Kelley, K L; Novak, M G; Macedo, P A

    2011-07-01

    Larval and nymphal western blacklegged tick, Ixodes pacificus Cooley & Kohls (Acari: Ixodidae), were collected from birds, rodents, and lizards at Quail Ridge Reserve located in Napa County in northwestern California. Species from three vertebrate classes were sampled simultaneously from two transects during two consecutive spring seasons. Feeding larval and nymphal ticks were removed and preserved for counting, examination and testing for the presence of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner. Mean infestations with I. pacificus subadults on lizards were 10.0, on birds 2.9, and on rodents 1.3. I. pacificus larvae (204) collected from 10 avian species and (215) collected from two rodent species were tested for the presence of B. burgdorferi s.s. via real-time polymerase chain reaction. Three B. burgdorferi-infected larvae were taken from two Junco hyemalis and two infected larvae from one Neotoma fuscipes Baird. This is the detection of B. burgdorferi ss in an Ixodes pacificus larvae feeding on a Junco hyemalis L., [corrected] in western North America. PMID:21845945

  16. Borrelia burgdorferi enzyme-linked immunosorbent assay for discrimination of OspA vaccination from spirochete infection.

    PubMed Central

    Zhang, Y Q; Mathiesen, D; Kolbert, C P; Anderson, J; Schoen, R T; Fikrig, E; Persing, D H

    1997-01-01

    Recombinant Lyme disease vaccines based on purified preparations of outer surface protein A (OspA) have been shown to be effective in preventing transmission of Borrelia burgdorferi in experimental animal models and are now being tested in humans. Since the most widely used screening tests for Lyme disease are based on a whole-cell sonicate of B. burgdorferi, serologic false positivity in vaccinated persons could result from reactivity to OspA within the antigen preparation. In order to avoid serologic false positivity in vaccinated subjects, we developed an immunoassay based on a low-passage-number, naturally occurring variant of B. burgdorferi which lacks the plasmid encoding OspA and OspB. The use of an antigen preparation derived from this organism provided sensitive and specific detection of B. burgdorferi seropositivity in experimental animals and in human Lyme disease cases. The OspA-B-negative enzyme-linked immunosorbent assay (ELISA) also appeared to be capable of discriminating the vaccinated state from vaccine failure and natural infection in experimental animals. Sera from human subjects participating in a vaccine trial gave false-positive results with an ELISA based on an OspA-containing strain, but no such reactivity was observed when the OspA-negative ELISA was used. We conclude that low-passage-number OspA-B-negative isolates in immunoassays may become useful for the immunologic discrimination of the vaccinated state, natural infection, and vaccine failure. PMID:8968914

  17. A Seventeen-Year Epidemiological Surveillance Study of Borrelia burgdorferi Infections in Two Provinces of Northern Spain

    PubMed Central

    Lledó, Lourdes; Gegúndez, María Isabel; Giménez-Pardo, Consuelo; Álamo, Rufino; Fernández-Soto, Pedro; Nuncio, María Sofia; Saz, José Vicente

    2014-01-01

    This paper reports a 17-year seroepidemiological surveillance study of Borrelia burgdorferi infection, performed with the aim of improving our knowledge of the epidemiology of this pathogen. Serum samples (1,179) from patients (623, stratified with respect to age, sex, season, area of residence and occupation) bitten by ticks in two regions of northern Spain were IFA-tested for B. burgdorferi antibodies. Positive results were confirmed by western blotting. Antibodies specific for B. burgdorferi were found in 13.3% of the patients; 7.8% were IgM positive, 9.6% were IgG positive, and 4.33% were both IgM and IgG positive. Five species of ticks were identified in the seropositive patients: Dermacentor marginatus (41.17% of such patients) Dermacentor reticulatus (11.76%), Rhiphicephalus sanguineus (17.64%), Rhiphicephalus turanicus (5.88%) and Ixodes ricinus (23.52%). B. burgdorferi DNA was sought by PCR in ticks when available. One tick, a D. reticulatus male, was found carrying the pathogen. The seroprevalence found was similar to the previously demonstrated in similar studies in Spain and other European countries. PMID:24487455

  18. Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe

    PubMed Central

    Tschirren, Barbara

    2015-01-01

    Although parasite-mediated selection is assumed to be the main driver of immune gene evolution, empirical evidence that parasites induce allele frequency changes at host immune genes in time and/or space remains scarce. Here, I show that the frequency of a protective gene variant of the innate immune receptor Toll-like receptor 2 in natural bank vole (Myodes glareolus) populations is positively associated with the strength of Borrelia burgdorferi sensu lato infection risk across the European continent. Thereby, this study provides rare evidence for the role of spatially variable infection pressures in moulding the vertebrate immune system. PMID:26018834

  19. Borrelia burgdorferi infection in white-footed mice (Peromyscus leucopus) in hemlock (Tsuga canadensis) habitat in western Pennsylvania.

    PubMed

    Lord, R D; Humphreys, J G; Lord, V R; McLean, R G; Garland, C L

    1992-07-01

    White-footed mice (Peromyscus leucopus) were captured and their tissues sampled from 27 sites in seven counties of western Pennsylvania in 1990 for isolation and identification of Borrelia burgdorferi. Two hundred sixty mice were captured from which there were 27 isolations. Significantly more mice were captured and significantly more isolations made from hemlock (Tsuga canadensis) habitat than from deciduous species forest. Hemlock habitat is sparse and focal but evidently increases winter survival of mice, and thus possibly results in increased infection rates in mice.

  20. Role of small mammals in the ecology of Borrelia burgdorferi in a peri-urban park in north coastal California.

    PubMed

    Peavy, C A; Lane, R S; Kleinjan, J E

    1997-08-01

    The role of small mammals other than woodrats in the enzootiology of the Lyme disease spirochete, Borrelia burgorferi, was assessed in the peri-urban park. Mammals were collected monthly from September through to April. Following tick removal, the animals were tested for B. burgdorferi by culture of ear-punch biopsies. Larvae and nymphs that were intermediate in morphology between Ixodes spinipalpis and Ixodes neotomae occurred on several species of rodents (Peromyscus truei, Peromyscus californicus, Microtus californicus, Rattus rattus and Reithrodontomys megalotis) and the brush rabbit (Sylvilagus bachmani). Morphometric analyses of these I. spinipalpis-like ticks and the offspring from two I. neotomae females from the site suggest that I. neotomae may bo conspecific with I. spinipalpis. Borrelia burgdorferi was isolated from eight out of 109 (7.3%), three out of 16 (18.8%), two out of 38 (5.3%) and two out of six (33.3%) P. truei, P. maniculatus, M. californicus and R. rattus, respectively. One bush rabbit yielded the first isolate of B. burgdorferi from a lagomorph in western North America. This isolate and three others derived from unfed I. spinipalpis-like nymphs failed to produce infection when inoculated intradermally into 11-12 P. maniculatus each. Likewise, no spirochetes were detected in 420 Ixodes pacificus nymphs derived from larvae fed on animals inoculated with these isolates. An additional isolate, derived from an I. spinipalpis-like nymph, was recovered by ear-punch biopsies from five our of 12 (42%) needle-inoculated P. maniculatus. However, spirochetes were not detected in 20 I. pacificus nymphs fed as larvae on each of five mice (two infected and three uninfected) inoculated with this isolate. We conclude that brush rabbits and several species of rodents besides woodrats may contribute to the maintenance of B. burgdorferi because they harbour the spirochete and are fed upon by competent enzootic vectors. PMID:9291589

  1. Antibody profile to Borrelia burgdorferi in veterinarians from Nuevo León, Mexico, a non-endemic area of this zoonosis

    PubMed Central

    Skinner-Taylor, Cassandra M.; Salinas, José A.; Arevalo-Niño, Katiushka; Galán-Wong, Luis J.; Maldonado, Guadalupe; Garza-Elizondo, Mario A.

    2016-01-01

    Objectives Lyme disease is a tick-borne disease caused by infections with Borrelia. Persons infected with Borrelia can be asymptomatic or can develop disseminated disease. Diagnosis and recognition of groups at risk of infection with Borrelia burgdorferi is of great interest to contemporary rheumatology. There are a few reports about Borrelia infection in Mexico, including lymphocytoma cases positive to B. burgdorferi sensu stricto by PCR and a patient with acrodermatitis chronica atrophicans. Veterinarians have an occupational risk due to high rates of tick contact. The aim of this work was to investigate antibodies to Borrelia in students at the Faculty of Veterinary Medicine and Zootechnics, at Nuevo León, Mexico, and determine the antibody profile to B. burgdorferi antigens. Material and methods Sera were screened using a C6 ELISA, IgG and IgM ELISA using recombinant proteins from B. burgdorferi, B. garinii and B. afzelii. Sera with positive or grey-zone values were tested by IgG Western blot to B. burgdorferi sensu stricto. Results All volunteers reported tick exposures and 72.5% remembered tick bites. Only nine persons described mild Lyme disease related symptoms, including headaches, paresthesias, myalgias and arthralgias. None of the volunteers reported erythema migrans. Nine samples were confirmed by IgG Western blot. The profile showed 89% reactivity to OspA, 67% to p83, and 45% to BmpA. Conclusions Positive sera samples shared antibody reactivity to the markers of late immune response p83 and BmpA, even if individuals did not present symptoms of Lyme arthritis or post-Lyme disease. The best criterion to diagnose Lyme disease in our country remains to be established, because it is probable that different strains coexist in Mexico. This is the first report of antibodies to B. burgdorferi in Latin American veterinarians. Veterinarians and high-risk people should be alert to take precautionary measures to prevent tick-borne diseases. PMID:27504018

  2. Initial characterization of the FlgE hook high molecular weight complex of Borrelia burgdorferi.

    PubMed

    Miller, Kelly A; Motaleb, Md A; Liu, Jun; Hu, Bo; Caimano, Melissa J; Miller, Michael R; Charon, Nyles W

    2014-01-01

    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility. PMID:24859001

  3. Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife

    PubMed Central

    Vuong, Holly B.; Canham, Charles D.; Fonseca, Dina M.; Brisson, Dustin; Morin, Peter J.; Smouse, Peter E.; Ostfeld, Richard S.

    2014-01-01

    Borrelia burgdorferi s.s., the bacterium that causes Lyme disease in North America, circulates among a suite of vertebrate hosts and their tick vector. The bacterium can be differentiated at the outer surface protein C (ospC) locus into 25 genotypes. Wildlife hosts can be infected with a suite of ospC types but knowledge on the transmission efficiencies of these naturally infected hosts to ticks is still lacking. To evaluate the occupancy and detection of ospC types in wildlife hosts, we adapted a likelihood-based species patch occupancy model to test for the occurrence probabilities (ψ – “occupancy”) and transmission efficiencies (ε – “detection”) of each ospC type. We detected differences in ospC occurrence and transmission efficiencies from the null models with HIS (human invasive strains) types A and K having the highest occurrence estimates, but both HIS and non-HIS types having high transmission efficiencies. We also examined ospC frequency patterns with respect to strains known to be invasive in humans across the host species and phylogenetic groups. We found that shrews and to a lesser extent, birds, were important host groups supporting relatively greater frequencies of HIS to non-HIS types. This novel method of simultaneously assessing occurrence and transmission of ospC types provides a powerful tool in assessing disease risk at the genotypic level in naturally infected wildlife hosts and offers the opportunity to examine disease risk at the community level. PMID:24382473

  4. Initial characterization of the FlgE hook high molecular weight complex of Borrelia burgdorferi.

    PubMed

    Miller, Kelly A; Motaleb, Md A; Liu, Jun; Hu, Bo; Caimano, Melissa J; Miller, Michael R; Charon, Nyles W

    2014-01-01

    The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility.

  5. Neurogenic Exacerbation of Microglial and Astrocyte Responses to Neisseria meningitidis and Borrelia burgdorferi1

    PubMed Central

    Chauhan, Vinita S.; Sterka, David G.; Gray, David L.; Bost, Kenneth L.; Marriott, Ian

    2008-01-01

    Although glial cells are recognized for their roles in maintaining neuronal function, there is growing appreciation of the ability of resident CNS cells to initiate and/or augment inflammation following trauma or infection. The tachykinin, substance P (SP), is well known to augment inflammatory responses at peripheral sites and its presence throughout the CNS raises the possibility that this neuropeptide might serve a similar function within the brain. In support of this hypothesis, we have recently demonstrated the expression of high affinity receptors for SP (Neurokinin-1 (NK-1) receptors) on microglia and shown that this tachykinin can significantly elevate bacterially induced inflammatory prostanoid production by isolated cultures of these cells. In the present study, we demonstrate that endogenous SP/NK-1R interactions are an essential component in the initiation and/or progression of CNS inflammation in vivo following exposure to two clinically relevant bacterial CNS pathogens, Neisseria meningitidis and Borrelia burgdorferi. We show that in vivo elevations in inflammatory cytokine production and decreases in the production of an immunosuppressive cytokine are markedly attenuated in mice genetically deficient in the expression of the NK-1R or in mice treated with a specific NK-1R antagonist. Furthermore, we have used isolated cultures of microglia and astrocytes to demonstrate that SP can augment inflammatory cytokine production by these resident CNS cell types following exposure to either of these bacterial pathogens. Taken together, these studies indicate a potentially important role for neurogenic exacerbation of resident glial immune responses in CNS inflammatory diseases, such as bacterial meningitis. PMID:18523290

  6. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto.

    PubMed Central

    Wang, I N; Dykhuizen, D E; Qiu, W; Dunn, J J; Bosler, E M; Luft, B J

    1999-01-01

    The outer surface protein, OspC, is highly variable in Borrelia burgdorferi sensu stricto, the agent of Lyme disease. We have shown that even within a single population OspC is highly variable. The variation of ospA and ospC in the 40 infected deer ticks collected from a single site on Shelter Island, New York, was determined using PCR-SSCP. There is very strong apparent linkage disequilibrium between ospA and ospC alleles, even though they are located on separate plasmids. Thirteen discernible SSCP mobility classes for ospC were identified and the DNA sequence for each was determined. These sequences, combined with 40 GenBank sequences, allow us to define 19 major ospC groups. Sequences within a major ospC group are, on average, <1% different from each other, while sequences between major ospC groups are, on average, approximately 20% different. The tick sample contains 11 major ospC groups, GenBank contains 16 groups, with 8 groups found in both samples. Thus, the ospC variation within a local population is almost as great as the variation of a similar-sized sample of the entire species. The Ewens-Watterson-Slatkin test of allele frequency showed significant deviation from the neutral expectation, indicating balancing selection for these major ospC groups. The variation represented by major ospC groups needs to be considered if the OspC protein is to be used as a serodiagnostic antigen or a vaccine. PMID:9872945

  7. Live Borrelia burgdorferi preferentially activate interleukin-1 beta gene expression and protein synthesis over the interleukin-1 receptor antagonist.

    PubMed Central

    Miller, L C; Isa, S; Vannier, E; Georgilis, K; Steere, A C; Dinarello, C A

    1992-01-01

    Lyme arthritis is one of the few forms of chronic arthritis in which the cause is known with certainty. Because cytokines are thought to contribute to the pathogenesis of chronic arthritis, we investigated the effect of the Lyme disease spirochete, Borrelia burgdorferi, on the gene expression and synthesis of IL-1 beta and the IL-1 receptor antagonist (IL-1ra) in human peripheral blood mononuclear cells. Live B. burgdorferi induced fivefold more IL-1 beta than IL-1 alpha and sevenfold more IL-1 beta than IL-1ra; LPS or sonicated B. burgdorferi induced similar amounts of all three cytokines. This preferential induction of IL-1 beta was most dramatic in response to a low passage, virulent preparation of B. burgdorferi vs. three high passage avirulent strains. No difference in induction of IL-1ra was seen between these strains. The marked induction of IL-1 beta was partially diminished by heat-treatment and abrogated by sonication; IL-1ra was not affected. This suggested that a membrane component(s) accounted for the preferential induction of IL-1 beta. However, recombinant outer surface protein beta induced little IL-1 beta. By 4 h after stimulation, B. burgdorferi induced sixfold more IL-1 beta protein than LPS. In contrast to LPS-induced IL-1 beta mRNA which reached maximal accumulation after 3 h, B. burgdorferi-induced IL-1 beta mRNA showed biphasic elevations at 3 and 18 h. B. burgdorferi-induced IL-1ra mRNA peaked at 12 h, whereas LPS-induced IL-1ra mRNA peaked at 9 h. IL-1 beta synthesis increased in response to increasing numbers of spirochetes, whereas IL-1ra synthesis did not. The preferential induction by B. burgdorferi of IL-1 beta over IL-1ra is an example of excess agonist over antagonist synthesis induced by a microbial pathogen, and may contribute to the destructive lesion of Lyme arthritis. Images PMID:1387885

  8. Prevalence of the Lyme Disease Spirochete, Borrelia burgdorferi, in Blacklegged Ticks, Ixodes scapularis at Hamilton-Wentworth, Ontario

    PubMed Central

    Scott, John D.; Anderson, John F.; Durden, Lance A.; Smith, Morgan L.; Manord, Jodi M.; Clark, Kerry L.

    2016-01-01

    Lyme disease has emerged as a major health concern in Canada, where the etiological agent, Borrelia burgdorferi sensu lato (s.l.), a spirochetal bacterium, is typically spread by the bite of certain ticks. This study explores the presence of B. burgdorferi s.l. in blacklegged ticks, Ixodes scapularis, collected at Dundas, Ontario (a locality within the region of Hamilton-Wentworth). Using passive surveillance, veterinarians and pet groomers were asked to collect blacklegged ticks from dogs and cats with no history of travel. Additionally, I. scapularis specimens were submitted from local residents and collected by flagging. Overall, 12 (41%) of 29 blacklegged ticks were infected with B. burgdorferi s.l. Using polymerase chain reaction (PCR) and DNA sequencing, two borrelial amplicons were characterized as B. burgdorferi sensu stricto (s.s.), a genospecies pathogenic to humans and certain domestic animals. Notably, three different vertebrate hosts each had two engorged I. scapularis females removed on the same day and, likewise, one cat had three repeat occurrences of this tick species. These multiple infestations suggest that a population of I. scapularis may be established in this area. The local public health unit has been underreporting the presence of B. burgdorferi s.l.-infected I. scapularis in the area encompassing Dundas. Our findings raise concerns about the need to erect tick warning signs in parkland areas. Veterinarians, medical professionals, public health officials, and the general public must be vigilant that Lyme disease-carrying blacklegged ticks pose a public health risk in the Dundas area and the surrounding Hamilton-Wentworth region. PMID:27226771

  9. DhhP, a Cyclic di-AMP Phosphodiesterase of Borrelia burgdorferi, Is Essential for Cell Growth and Virulence

    PubMed Central

    Ye, Meiping; Zhang, Jun-Jie; Fang, Xin; Lawlis, Gavin B.; Troxell, Bryan; Zhou, Yan; Gomelsky, Mark

    2014-01-01

    Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn2+- or Mg2+-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to β-lactamase antibiotics, suggesting that c-di-AMP's functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σS factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence. PMID:24566626

  10. Exposure to Borrelia burgdorferi and other tick-borne pathogens in Gettysburg National Military Park, South-Central Pennsylvania, 2009.

    PubMed

    Han, George S; Stromdahl, Ellen Y; Wong, David; Weltman, Andre C

    2014-04-01

    Since 1998, Lyme disease cases have increased in south-central Pennsylvania, which includes Gettysburg National Military Park (NMP). Limited information is available about tick populations or pathogens in this area, and no data regarding frequency of tick bites or prevention measures among Gettysburg NMP employees are available. To address these gaps, ticks were collected, classified, and replaced (to minimize disruptions to tick populations) at two sites within Gettysburg NMP during April-September, 2009, among eight nonremoval samplings. On two additional occasions during May and June, 2009, ticks were collected and removed from the two original sites plus 10 additional sites and tested for tick-borne pathogens by using PCR. A self-administered anonymous survey of Gettysburg NMP employees was conducted to determine knowledge, attitudes, and practices regarding tick-borne diseases. Peak Ixodes scapularis nymph populations were observed during May-July. Of 115 I. scapularis ticks tested, 21% were infected with Borrelia burgdorferi, including 18% of 74 nymphs and 27% of 41 adults; no other pathogen was identified. The entomologic risk index was calculated at 1.3 infected nymphs/hour. An adult and nymph Amblyomma americanum were also found, representing the first confirmed field collection of this tick in Pennsylvania, but no pathogens were detected. The survey revealed that most park employees believed Lyme disease was a problem at Gettysburg NMP and that they frequently found ticks on their skin and clothing. However, use of personal preventive measures was inconsistent, and 6% of respondents reported contracting Lyme disease while employed at Gettysburg NMP. These findings indicate a need to improve surveillance for tick bites among employees and enhance prevention programs for park staff and visitors. PMID:24689815

  11. Borrelia burgdorferi DNA in the urine of treated patients with chronic Lyme disease symptoms. A PCR study of 97 cases.

    PubMed

    Bayer, M E; Zhang, L; Bayer, M H

    1996-01-01

    The presence of Borrelia burgdorferi DNA was established by PCR from urine samples of 97 patients clinically diagnosed as presenting with symptoms of chronic Lyme disease. All patients had shown erythema chronica migrans following a deer tick bite. Most of the patients had been antibiotic-treated for extended periods of time. We used three sets of primer pairs with DNA sequences for the gene coding of outer surface protein A (OspA) and of a genomic sequence of B. burgdorferi to study samples of physician-referred patients from the mideastern USA. Controls from 62 healthy volunteers of the same geographic areas were routinely carried through the procedures in parallel with patients' samples. Of the 97 patients, 72 (74.2%) were found with positive PCR and the rest with negative PCR. The 62 healthy volunteers were PCR negative. It is proposed that a sizeable group of patients diagnosed on clinical grounds as having chronic Lyme disease may still excrete Borrelia DNA, and may do so in spite of intensive antibiotic treatment.

  12. Homogeneous Inflammatory Gene Profiles Induced in Human Dermal Fibroblasts in Response to the Three Main Species of Borrelia burgdorferi sensu lato

    PubMed Central

    Meddeb, Mariam; Carpentier, Wassila; Cagnard, Nicolas; Nadaud, Sophie; Grillon, Antoine; Barthel, Cathy; De Martino, Sylvie Josiane; Jaulhac, Benoît; Boulanger, Nathalie

    2016-01-01

    In Lyme borreliosis, the skin is the key site for bacterial inoculation by the infected tick and for cutaneous manifestations. We previously showed that different strains of Borrelia burgdorferi sensu stricto isolated from tick and from different clinical stages of the Lyme borreliosis (erythema migrans, and acrodermatitis chronica atrophicans) elicited a very similar transcriptional response in normal human dermal fibroblasts. In this study, using whole transcriptome microarray chips, we aimed to compare the transcriptional response of normal human dermal fibroblasts stimulated by 3 Borrelia burgdorferi sensu lato strains belonging to 3 main pathogenic species (B. afzelii, B. garinii and B. burgdorferi sensu stricto) in order to determine whether “species-related” inflammatory pathways could be identified. The three Borrelia strains tested exhibited similar transcriptional profiles, and no species-specific fingerprint of transcriptional changes in fibroblasts was observed. Conversely, a common core of chemokines/cytokines (CCL2, CXCL1, CXCL2, CXCL6, CXCL10, IL-6, IL-8) and interferon-related genes was stimulated by all the 3 strains. Dermal fibroblasts appear to play a key role in the cutaneous infection with Borrelia, inducing a homogeneous inflammatory response, whichever Borrelia species was involved. PMID:27706261

  13. Temporal expression analysis of the Borrelia burgdorferi paralogous gene family 54 genes BBA64, BBA65, and BBA66 during persistent infection in mice.

    PubMed

    Gilmore, Robert D; Howison, Rebekah R; Schmit, Virginia L; Nowalk, Andrew J; Clifton, Dawn R; Nolder, Christi; Hughes, Jessica L; Carroll, James A

    2007-06-01

    Members of the Borrelia burgdorferi paralogous gene family 54 (pgf 54) are regulated by conditions simulating mammalian infection and are thought to be instrumental in borrelial host survival and pathogenesis. To explore the activities of these genes in vivo, a comprehensive analysis of pgf 54 genes BBA64, BBA65, and BBA66 was performed to assess the genetic stability, host antibody responses, and kinetics of gene expression in the murine model of persistent infection. DNA sequencing of pgf 54 genes obtained from re-isolates at 1 year postinfection demonstrated that all genes of this family are stable and do not undergo recombination to generate variant antigens during persistent infection. Antibodies against BBA64 and BBA66 appeared soon after infection and were detectable throughout the infection, suggesting that there was gene expression during infection. However, quantitative reverse transcription-PCR revealed that BBA64 gene expression was considerably decreased in Borrelia residing in the mouse ear tissue compared to the expression in cultured spirochetes by 20 days postinfection and that the levels of expression remained low throughout the infection. Conversely, transcription of the BBA65 and BBA66 genes was increased, and both of these genes were continuously expressed until 100 days postinfection; this was followed by periods of differential expression late in infection. The expression profile of the BBA64 gene suggests that this gene has an important role during tick-to-host transmission and early infection, whereas the expression profile of the BBA65 and BBA66 genes suggests that these genes have a role in persistent infection. The differential regulation of pgf 54 genes observed during infection may help confer a survival advantage during persistent infection, influencing mechanisms for B. burgdorferi dissemination, tissue tropism, or evasion of the adaptive immune response. PMID:17371862

  14. Soluble proteins isolated from Borrelia burgdorferi by extraction with Triton X-114 confer resistance to experimental infection.

    PubMed

    Rao, T D; Frey, A B

    1998-10-01

    Fractionation of Borrelia burgdorferi was made by extraction of infectious spirochetes using the detergent Triton X-114. Gel electrophoresis analysis of hydrophilic and hydrophobic proteins demonstrated that detergent extraction resulted in two populations of proteins with nonoverlapping electrophoretic profiles. Immunoblot analysis with monoclonal antibodies reactive with two abundant membrane proteins demonstrated that hydrophilic proteins were uncontaminated with hydrophobic proteins. In addition, assay of thymidine incorporation into and secretion of tumor necrosis factor-alpha from splenocytes cocultured in vitro with either detergent or aqueous phase proteins showed that lymphocyte mitogenic and macrophage activation activities of B. burgdorferi were completely absent from the hydrophilic phase proteins. The Triton X-114 aqueous and detergent phase proteins were used to immunize BALB/c and separately microMT/microMT (B cell knockout) mice that were subsequently challenged with infectious B. burgdorferi. The hydrophilic phase proteins were able to induce protective resistance to infection in either strain of mice demonstrating that potential candidate vaccine antigens are contained in the biochemical class of antigens which is devoid of both lymphocyte mitogen activity and major outer surface proteins. Furthermore, the ability to vaccinate B cell knockout mice suggests that the humoral antispirochete immune response is not the exclusive basis for protective immunity.

  15. Detection of Babesia microti and Borrelia burgdorferi in host-seeking Ixodes scapularis (Acari: Ixodidae) in Monmouth County, New Jersey.

    PubMed

    Schulze, Terry L; Jordan, Robert A; Healy, Sean P; Roegner, Vivien E

    2013-03-01

    The etiological agents that cause human babesiosis (Babesia microti) and Lyme disease (Borrelia burgdorferi) share a common tick vector (Ixodes scapularis Say) and rodent reservoir (Peromyscus leucopus), but because the geographical distribution of babesiosis is more restricted than Lyme disease, it was not considered a nationally notifiable disease until 2011. Although recent studies have shown dramatic increases in the number of cases of babesiosis and expansion of its range, little is known about infection and coinfection prevalence of these pathogens in the primary tick vector. Of the 478 I. scapularis nymphs collected within six Monmouth County, NJ, municipalities between 2004 and 2006, 4.0 and 10.0% were infected with B. microti and B. burgdorferi, respectively, while 2.9% were coinfected. Analysis of the 610 I. scapularis adults collected during the same period yielded an infection prevalence of 8.2% for B. microti and 45.2% for B. burgdorferi, while 6.2% were coinfected. The potential public health importance of these findings is discussed. PMID:23540127

  16. Borrelia burgdorferi in tick cell culture modulates expression of outer surface proteins A and C in response to temperature.

    PubMed

    Obonyo, M; Munderloh, U G; Fingerle, V; Wilske, B; Kurtti, T J

    1999-07-01

    The Lyme disease spirochete Borrelia burgdorferi sensu stricto downregulates outer surface protein A (OspA) and upregulates outer surface protein C (OspC) during tick feeding. The switching of these proteins correlates with increased spirochetal infectivity for the mammal. We examined the effect of temperature on differential expression of OspA and OspC by B. burgdorferi cocultivated with a cell line isolated from the vector tick Ixodes scapularis. The effect of incubation at 31, 34, or 37 degrees C on expression of OspA and OspC by B. burgdorferi JMNT and N40 was analyzed by indirect fluorescent-antibody microscopy, polyacrylamide gel electrophoresis, and immunoblotting. The amount of OspA relative to the amount of flagellin was highest in spirochetes cocultivated with tick cells at 31 degrees C and declined with increasing temperature in both strains. OspC production was enhanced in spirochetes cocultivated with tick cells at 37 degrees C. Spirochetes grown axenically in BSK-H medium also produced more OspC at 37 degrees C, but OspA content was not appreciably affected by temperature. Our findings indicate that temperature, along with cultivation in a tick cell culture system, plays a role in the differential expression of OspA and enhances differential expression of OspC by spirochetes.

  17. OspA immunization decreases transmission of Borrelia burgdorferi spirochetes from infected Peromyscus leucopus mice to larval Ixodes scapularis ticks.

    PubMed

    Tsao, J; Barbour, A G; Luke, C J; Fikrig, E; Fish, D

    2001-01-01

    Recombinant outer surface protein A (OspA) vaccination of wild animal reservoirs has potential application for reducing Borrelia burgdorferi transmission in nature and subsequent risk of human infection. As a major reservoir host, the white-footed mouse (Peromyscus leucopus) is a candidate for a vaccination program designed to reduce infection prevalence in vector ticks. In this study we characterized the effect of various levels of immunization with recombinant OspA-glutathione transferase fusion protein on transmission dynamics from infected P. leucopus to larval ticks. Control mice were vaccinated with glutathione transferase alone. All mice were experimentally infected with B. burgdorferi before vaccination. The immune responses of the immunized mice were assessed by enzyme-linked immunosorbent assay for antibodies to OspA. Transmission of B. burgdorferi from infected mice was determined by xenodiagnosis with uninfected larval ticks. Spirochetes in ticks were counted by direct immunofluorescence assay. The concentration of antibody to OspA increased with each OspA vaccination but most markedly after the first and second vaccinations. In comparison with control mice, there was reduced transmission by OspA-vaccinated mice to uninfected ticks. One, two, or three doses of OspA reduced infection prevalence in xenodiagnostic ticks by 48%, 92%, or 99% and the numbers of spirochetes per tick by 84%, 98%, or 99%, respectively. This study suggests that vaccination of P. leucopus with OspA could reduce transmission to the tick vector in nature despite prior infection of the reservoir host.

  18. Relationship between immunity to Borrelia burgdorferi outer-surface protein A (OspA) and Lyme arthritis.

    PubMed

    Steere, Allen C; Drouin, Elise E; Glickstein, Lisa J

    2011-02-01

    Antibiotic-refractory Lyme arthritis may result from Borrelia burgdorferi-induced autoimmunity in affected joints. Such patients usually have certain HLA-DRB1 molecules that bind an epitope of B. burgdorferi outer-surface protein A (OspA₁₆₃₋₁₇₅), and cellular and humoral immune responses to OspA are greater in patients with antibiotic-refractory arthritis than in those with antibiotic-responsive arthritis. Recent work in a mouse model suggests that, during B. burgdorferi infection, OspA in genetically susceptible individuals stimulates a particularly strong T(H)1 response, which may be one of several factors that can help set the stage for a putative autoimmune response in affected joints. However, vaccination with OspA did not induce arthritis in this mouse model, and case and control comparisons in human vaccine trials did not show an increased frequency of arthritis among OspA-vaccinated individuals. Thus, a vaccine-induced immune response to OspA does not replicate the sequence of events needed in the natural infection to induce antibiotic-refractory Lyme arthritis.

  19. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission.

    PubMed

    Narasimhan, Sukanya; Coumou, Jeroen; Schuijt, Tim J; Boder, Eric; Hovius, Joppe W; Fikrig, Erol

    2014-08-01

    Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized a yeast surface display library of tick gut proteins to perform a global screen for tick gut proteins that might interact with Borrelia membrane proteins. A putative fibronectin type III domain-containing tick gut protein (Ixofin3D) was most frequently identified from this screen and prioritized for further analysis. Immunization against Ixofin3D and RNA interference-mediated reduction in expression of Ixofin3D resulted in decreased spirochete burden in tick salivary glands and in the murine host. Microscopic examination showed decreased aggregation of spirochetes on the gut epithelium concomitant with reduced expression of Ixofin3D. Our observations suggest that the interaction between Borrelia and Ixofin3D facilitates spirochete congregation to the gut during transmission, and provides a "molecular exit" direction for spirochete egress from the gut.

  20. A Tick Gut Protein with Fibronectin III Domains Aids Borrelia burgdorferi Congregation to the Gut during Transmission

    PubMed Central

    Schuijt, Tim J.; Boder, Eric; Hovius, Joppe W.; Fikrig, Erol

    2014-01-01

    Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized a yeast surface display library of tick gut proteins to perform a global screen for tick gut proteins that might interact with Borrelia membrane proteins. A putative fibronectin type III domain-containing tick gut protein (Ixofin3D) was most frequently identified from this screen and prioritized for further analysis. Immunization against Ixofin3D and RNA interference-mediated reduction in expression of Ixofin3D resulted in decreased spirochete burden in tick salivary glands and in the murine host. Microscopic examination showed decreased aggregation of spirochetes on the gut epithelium concomitant with reduced expression of Ixofin3D. Our observations suggest that the interaction between Borrelia and Ixofin3D facilitates spirochete congregation to the gut during transmission, and provides a “molecular exit” direction for spirochete egress from the gut. PMID:25102051

  1. Genetic Diversity of Borrelia burgdorferi and Detection of B. bissettii-Like DNA in Serum of North-Coastal California Residents▿

    PubMed Central

    Girard, Yvette A.; Fedorova, Natalia; Lane, Robert S.

    2011-01-01

    In North America, Lyme borreliosis (LB) is a tick-borne disease caused by infection with the spirochete Borrelia burgdorferi. We studied the genetic diversity of LB spirochetes in north-coastal California residents. Spirochete DNA was detected in 23.7% (27/114) of the study subjects using a PCR protocol optimized for increased sensitivity in human sera. Californians were most commonly infected with B. burgdorferi ospC genotype A, a globally widespread spirochete associated with high virulence in LB patients. Sequence analysis of rrf-rrl and p66 loci in 11% (3/27) of the PCR-positive study subjects revealed evidence of infection with an organism closely related to B. bissettii. This spirochete, heretofore associated with LB only in Europe, is widely distributed among ticks and wildlife in North America. Further molecular testing of sera from residents in areas where LB is endemic is warranted to enhance our understanding of the geographic distribution and frequency of occurrence of B. bissettii-like infections. PMID:21177909

  2. Assessing the Contribution of Songbirds to the Movement of Ticks and Borrelia burgdorferi in the Midwestern United States During Fall Migration.

    PubMed

    Schneider, Sarah C; Parker, Christine M; Miller, James R; Page Fredericks, L; Allan, Brian F

    2015-03-01

    The geographic distributions of Ixodes scapularis (black-legged tick) and the bacterium Borrelia burgdorferi (the causative agent of Lyme disease) are expanding in the USA. To assess the role of migratory songbirds in the spread of this tick and pathogen, we captured passerines in central Illinois during the fall of 2012. We compared forested sites in regions where I. scapularis populations were either previously or not yet established. Ticks were removed from birds and blood samples were taken from select avian species. Ticks were identified by morphology and molecular techniques were used to detect B. burgdorferi and other tick-borne pathogens in ticks and avian blood samples. Ixodes spp. were detected on 10 of 196 migrants (5.1%), with I. scapularis larvae found on 2 individuals. Borrelia burgdorferi sensu stricto was detected in the blood of 9 of 29 birds sampled (31%), yet only 1 infected bird was infested by ticks. The ticks were mostly Haemaphysalis leporispalustris and I. dentatus larvae, and none tested positive for B. burgdorferi. Infestation of birds by Ixodes spp. differed significantly by region, while B. burgdorferi infection did not. These data suggest that migratory birds may play a larger role in the dispersal of B. burgdorferi than previously realized. PMID:25297819

  3. Human seroprevalence against Borrelia burgdorferi sensu lato in two comparable regions of the eastern Alps is not correlated to vector infection rates.

    PubMed

    Sonnleitner, S T; Margos, G; Wex, F; Simeoni, J; Zelger, R; Schmutzhard, E; Lass-Flörl, C; Walder, G

    2015-04-01

    Seroprevalences were determined by testing sera of 1607 blood donors from North, East, and South Tyrol. In the Tyrols, the continental divide delimitates areas with high seroprevalences of IgG antibodies against Borrelia burgdorferi sensu lato in the North (7.2%) from areas with low seroprevalences in the South (1.5%). To determine Borrelia prevalences in unfed Ixodes ricinus ticks, 755 questing ticks were tested by PCR. Prevalences in nymphal and adult ticks were found to be 19.7% (n=132) and 21.5% (n=205) in North Tyrol and 23% (n=43) and 23.7% (n=376) in South Tyrol, respectively. Sequencing of 46 Borrelia-positive ticks yielded 74% Borrelia (B.) afzelii, 11% B. garinii, 7% B. lusitaniae, 7% B. burgdorferi sensu stricto, and 2% B. valaisiana infections. Distinct genetic clusters could not be delimitated on either side of the continental divide. This study describes occurrence and geographic dispersion of Borrelia spp. in the Tyrols, discusses possible reasons for significant differences in human seroprevalence, and indicates that prevalence of Borrelia in vector ticks is not a direct predictive factor for the local seroprevalence in humans. PMID:25661649

  4. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the Northeastern United States.

    PubMed

    Qiu, Wei-Gang; Dykhuizen, Daniel E; Acosta, Michael S; Luft, Benjamin J

    2002-03-01

    Over 80% of reported cases of Lyme disease in the United States occur in coastal regions of northeastern and mid-Atlantic states. The genetic structure of the Lyme disease spirochete (Borrelia burgdorferi) and its main tick vector (Ixodes scapularis) was studied concurrently and comparatively by sampling natural populations of I. scapularis ticks along the East Coast from 1996 to 1998. Borrelia is genetically highly diverse at the outer surface protein ospC. Since Borrelia is highly clonal, the ospC alleles can be used to define clones. A newly designed reverse line blotting (RLB) assay shows that up to 10 Borrelia clones can infect a single tick. The clone frequencies in Borrelia populations are the same across the Northeast. On the other hand, I. scapularis populations show strong regional divergence (among northeastern, mid-Atlantic, and southern states) as well as local differentiation. The high genetic diversity within Borrelia populations and the disparity in the genetic structure between Borrelia and its tick vector are likely consequences of strong balancing selection on local Borrelia clones. Demographically, both Borrelia and I. scapularis populations in the Northeast show the characteristics of a species that has recently expanded from a population bottleneck. Major geological and ecological events, such as the last glacial maximum (18,000 years ago) and the modern-day expansion of tick habitats, are likely causes of the observed "founder effects" for the two organisms in the Northeast. We therefore conclude that the genetic structure of B. burgdorferi has been intimately shaped by the natural history of its main vector, the northern lineage of I. scapularis ticks. PMID:11901105

  5. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report

    PubMed Central

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain. PMID:27186082

  6. In Vivo Imaging Demonstrates That Borrelia burgdorferi ospC Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection.

    PubMed

    Skare, Jonathan T; Shaw, Dana K; Trzeciakowski, Jerome P; Hyde, Jenny A

    2016-01-01

    Borrelia burgdorferi is a spirochetal bacterium transmitted by the Ixodes tick that causes Lyme disease in humans due to its ability to evade the host immune response and disseminate to multiple immunoprotective tissues. The pathogen undergoes dynamic genetic alterations important for adaptation from the tick vector to the mammalian host, but little is known regarding the changes at the transcriptional level within the distal tissues they colonize. In this study, B. burgdorferi infection and gene expression of the essential virulence determinant ospC was quantitatively monitored in a spatial and temporal manner utilizing reporter bioluminescent borrelial strains with in vivo and ex vivo imaging. Although expressed from a shuttle vector, the PospC-luc construct exhibited a similar expression pattern relative to native ospC. Bacterial burden in skin, inguinal lymph node, heart, bladder and tibiotarsal joint varied between tissues and fluctuated over the course of infection possibly in response to unique cues of each microenvironment. Expression of ospC, when normalized for changes in bacterial load, presented unique profiles in murine tissues at different time points. The inguinal lymph node was infected with a significant B. burgdorferi burden, but showed minimal ospC expression. B. burgdorferi infected skin and heart induced expression of ospC early during infection while the bladder and tibiotarsal joint continued to display PospC driven luminescence throughout the 21 day time course. Localized skin borrelial burden increased dramatically in the first 96 hours following inoculation, which was not paralleled with an increase in ospC expression, despite the requirement of ospC for dermal colonization. Quantitation of bioluminescence representing ospC expression in individual tissues was validated by qRT-PCR of the native ospC transcript. Taken together, the temporal regulation of ospC expression in distal tissues suggests a role for this virulence determinant beyond

  7. In Vivo Imaging Demonstrates That Borrelia burgdorferi ospC Is Uniquely Expressed Temporally and Spatially throughout Experimental Infection

    PubMed Central

    Skare, Jonathan T.; Shaw, Dana K.; Trzeciakowski, Jerome P.

    2016-01-01

    Borrelia burgdorferi is a spirochetal bacterium transmitted by the Ixodes tick that causes Lyme disease in humans due to its ability to evade the host immune response and disseminate to multiple immunoprotective tissues. The pathogen undergoes dynamic genetic alterations important for adaptation from the tick vector to the mammalian host, but little is known regarding the changes at the transcriptional level within the distal tissues they colonize. In this study, B. burgdorferi infection and gene expression of the essential virulence determinant ospC was quantitatively monitored in a spatial and temporal manner utilizing reporter bioluminescent borrelial strains with in vivo and ex vivo imaging. Although expressed from a shuttle vector, the PospC-luc construct exhibited a similar expression pattern relative to native ospC. Bacterial burden in skin, inguinal lymph node, heart, bladder and tibiotarsal joint varied between tissues and fluctuated over the course of infection possibly in response to unique cues of each microenvironment. Expression of ospC, when normalized for changes in bacterial load, presented unique profiles in murine tissues at different time points. The inguinal lymph node was infected with a significant B. burgdorferi burden, but showed minimal ospC expression. B. burgdorferi infected skin and heart induced expression of ospC early during infection while the bladder and tibiotarsal joint continued to display PospC driven luminescence throughout the 21 day time course. Localized skin borrelial burden increased dramatically in the first 96 hours following inoculation, which was not paralleled with an increase in ospC expression, despite the requirement of ospC for dermal colonization. Quantitation of bioluminescence representing ospC expression in individual tissues was validated by qRT-PCR of the native ospC transcript. Taken together, the temporal regulation of ospC expression in distal tissues suggests a role for this virulence determinant beyond

  8. Lyme disease caused by Borrelia burgdorferi with two homeologous 16S rRNA genes: a case report.

    PubMed

    Lee, Sin Hang

    2016-01-01

    Lyme disease (LD), the most common tick-borne disease in North America, is believed to be caused exclusively by Borrelia burgdorferi sensu stricto and is usually diagnosed by clinical evaluation and serologic assays. As reported previously in a peer-reviewed article, a 13-year-old boy living in the Northeast of the USA was initially diagnosed with LD based on evaluation of his clinical presentations and on serologic test results. The patient was treated with a course of oral doxycycline for 28 days, and the symptoms resolved. A year later, the boy developed a series of unusual symptoms and did not attend school for 1 year. A LD specialist reviewed the case and found the serologic test band patterns nondiagnostic of LD. The boy was admitted to a psychiatric hospital. After discharge from the psychiatric hospital, a polymerase chain reaction test performed in a winter month when the boy was 16 years old showed a low density of B. burgdorferi sensu lato in the blood of the patient, confirmed by partial 16S rRNA (ribosomal RNA) gene sequencing. Subsequent DNA sequencing analysis presented in this report demonstrated that the spirochete isolate was a novel strain of B. burgdorferi with two homeologous 16S rRNA genes, which has never been reported in the world literature. This case report shows that direct DNA sequencing is a valuable tool for reliable molecular diagnosis of Lyme and related borrelioses, as well as for studies of the diversity of the causative agents of LD because LD patients infected by a rare or novel borrelial variant may produce an antibody pattern that can be different from the pattern characteristic of an infection caused by a typical B. burgdorferi sensu stricto strain.

  9. Detection of Borrelia burgdorferi Sensu Stricto ospC Alleles Associated with Human Lyme Borreliosis Worldwide in Non-Human-Biting Tick Ixodes affinis and Rodent Hosts in Southeastern United States

    PubMed Central

    Golovchenko, Maryna; Hönig, Václav; Mallátová, Nadja; Krbková, Lenka; Mikulášek, Peter; Fedorova, Natalia; Belfiore, Natalia M.; Grubhoffer, Libor; Lane, Robert S.; Oliver, James H.

    2013-01-01

    Comparative analysis of ospC genes from 127 Borrelia burgdorferi sensu stricto strains collected in European and North American regions where Lyme disease is endemic and where it is not endemic revealed a close relatedness of geographically distinct populations. ospC alleles A, B, and L were detected on both continents in vectors and hosts, including humans. Six ospC alleles, A, B, L, Q, R, and V, were prevalent in Europe; 4 of them were detected in samples of human origin. Ten ospC alleles, A, B, D, E3, F, G, H, H3, I3, and M, were identified in the far-western United States. Four ospC alleles, B, G, H, and L, were abundant in the southeastern United States. Here we present the first expanded analysis of ospC alleles of B. burgdorferi strains from the southeastern United States with respect to their relatedness to strains from other North American and European localities. We demonstrate that ospC genotypes commonly associated with human Lyme disease in European and North American regions where the disease is endemic were detected in B. burgdorferi strains isolated from the non-human-biting tick Ixodes affinis and rodent hosts in the southeastern United States. We discovered that some ospC alleles previously known only from Europe are widely distributed in the southeastern United States, a finding that confirms the hypothesis of transoceanic migration of Borrelia species. PMID:23263953

  10. [Seroprevalence of Borrelia burgdorferi and tick-borne encephalitis virus in a rural area of Samsun, Turkey].

    PubMed

    Aslan Başbulut, Eşe; Gözalan, Ayşegül; Sönmez, Cemile; Cöplü, Nilay; Körhasan, Berrin; Esen, Berrin; Akın, Levent; Ertek, Mustafa

    2012-04-01

    Lyme disease or lyme borreliosis is a zoonosis caused by Borrelia burgdorferi transmitted by ticks, especially Ixodes species. Lyme borreliosis is a multi-systemic disease that invades the skin, musculoskeletal, cardiovascular and central nervous systems. Tick-borne encephalitis (TBE) is an important arboviral infection caused by tick-borne encephalitis virus (TBEV). The central nervous system is affected and the disease most often manifests as meningitis, encephalitis or meningoencephalitis. Previous studies have shown that B.burgdorferi and TBEV can be transmitted by the same tick species (Ixodes ricinus). Although the geographic location and climate is similar to some south-eastern European countries where lyme borreliosis and TBE have been reported, the incidence and prevalence of these diseases in Turkey still remain unclear. The aim of this study was to determine the seroprevelance of B.burgdorferi and TBEV in healthy population in Tekkeköy (41° 8-13' North; 36° 24-31' East), a district of Samsun province, Turkey with evidence of tick-borne disease and to explore the possible correlations of life styles of healthy individuals and prevelance. The cross-sectional study population included 419 people selected using a random proportional sampling method. All participants were asked at interview to complete a questionnaire and peripheral blood samples were collected. From the blood samples, B.burgdorferi IgG and IgM antibodies were evaluated using commercial ELISA (Euroimmun, Germany) and confirmed with Western blot (WB, Euroimmun, Germany). ELISA method was also used to asses IgM and IgG antibodies against TBEV, and neutralization test was used for confirmation. Of the 419 samples, 17 (4%) were positive for B.burgdorferi IgG by ELISA, however 14 (14/419; 3.3%) of them were confirmed by WB. B.burgdorferi seropositivity was higher among people living in rural areas, at an altitude of ≥ 400 meters and in locations ecologically suitable for wild boar and rabbits

  11. Whole-Genome Sequences of Borrelia bissettii Borrelia valaisiana and Borrelia spielmanii

    SciTech Connect

    Schutzer S. E.; Dunn J.; Fraser-Liggett C. M.; Qiu W.-G.; Kraiczy P.; Mongodin E. F.; Luft B. J.; Casjens S. R.

    2012-01-01

    It has been known for decades that human Lyme disease is caused by the three spirochete species Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii. Recently, Borrelia valaisiana, Borrelia spielmanii, and Borrelia bissettii have been associated with Lyme disease. We report the complete genome sequences of B. valaisiana VS116, B. spielmanii A14S, and B. bissettii DN127.

  12. Antibody to a 39-kilodalton Borrelia burgdorferi antigen (P39) as a marker for infection in experimentally and naturally inoculated animals.

    PubMed Central

    Simpson, W J; Burgdorfer, W; Schrumpf, M E; Karstens, R H; Schwan, T G

    1991-01-01

    Borrelia burgdorferi expresses a conserved, species-specific 39-kDa protein (P39) that can stimulate antibodies during human infection. To confirm that anti-P39 antibodies are produced consistently in animals exposed to infectious spirochetes, white-footed mice, Peromyscus leucopus, and laboratory white mice, Mus musculus (strain BALB/c), were experimentally inoculated with either infectious or noninfectious B. burgdorferi and the antibody response to P39 was determined by immunoblot at 21 days postinoculation. All mice inoculated with approximately 10(7) infectious B. burgdorferi produced anti-P39 antibodies and were cultured positive for this spirochete. Mice inoculated with similar numbers of inactivated or viable noninfectious B. burgdorferi still producing P39 did not induce anti-P39 antibodies. By contrast, putative antiflagellin antibodies were detected in less than 18% of the infected animals, which supports the notion that antibody reactive with flagellin may not be reliable as a marker for B. burgdorferi exposure as was originally thought. Mice infected with B. burgdorferi following exposure to ticks (Ixodes dammini) produced anti-P39 antibodies no later than 7 days postinfection, indicating that P39 is an effective immunogen in natural infections. Notably, anti-P39 antibodies were the predominant B. burgdorferi reactive antibodies detected early in the infection. Our results indicate that anti-P39 antibodies are produced in response to an active infection and are therefore reliable markers for infection in experimentally and naturally inoculated animals. Images PMID:2007630

  13. Evidence of Anaplasma phagocytophilum and Borrelia burgdorferi infection in cats after exposure to wild-caught adult Ixodes scapularis.

    PubMed

    Lappin, Michael R; Chandrashekar, Ramaswamy; Stillman, Brett; Liu, Jiayou; Mather, Thomas N

    2015-07-01

    Cats are infected by Anaplasma phagocytophilum and Borrelia burgdorferi when exposed to infected Ixodes scapularis (black-legged ticks). The purpose of our study was to allow wild-caught I. scapularis to feed on healthy research cats (n = 4) and temporally evaluate for A. phagocytophilum DNA in blood by a polymerase chain reaction (PCR) assay as well as for antibody responses to the B. burgdorferi C6 peptide, to the A. phagocytophilum P44 peptide, and to a novel A. phagocytophilum peptide (P44-4). Prior to I. scapularis infestation, all cats were negative for antibodies against both organisms based on a kit optimized for dog serum, and negative for A. phagocytophilum DNA in blood using a conventional PCR assay. Using the pre-infestation samples, an enzyme-linked immunosorbent assay for detecting antibodies against the P44-4 peptide was optimized. Cats were infested with wild-caught I. scapularis for 7 days. Genomic DNA of A. phagocytophilum was amplified from the blood before antibodies were detected in all 4 cats. Antibodies against the C6 peptide, P44 peptide, and P44-4 peptide were detected in the sera of all 4 cats. Antibodies against P44-4 were detected prior to those against P44 in 3 out of 4 cats. The results suggest that a PCR assay should be considered in acutely ill cats with suspected anaplasmosis that are seronegative.

  14. Cellular and humoral immune responses to Borrelia burgdorferi antigens in patients with culture-positive early Lyme disease.

    PubMed

    Vaz, A; Glickstein, L; Field, J A; McHugh, G; Sikand, V K; Damle, N; Steere, A C

    2001-12-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA.

  15. Cellular and Humoral Immune Responses to Borrelia burgdorferi Antigens in Patients with Culture-Positive Early Lyme Disease

    PubMed Central

    Vaz, Austin; Glickstein, Lisa; Field, Jodie A.; McHugh, Gail; Sikand, Vijay K.; Damle, Nitin; Steere, Allen C.

    2001-01-01

    We determined cellular and humoral immune responses to Borrelia burgdorferi lysate and to recombinant flagellin (FlaB), OspC, and OspA in acute- and convalescent-phase samples from 39 culture-positive patients with erythema migrans and in 20 healthy control subjects. During the acute illness, a median of 4 days after the onset of erythema migrans, 51% of the patients had proliferative cellular responses and 72% had antibody responses to at least one of the borrelial antigens tested. During convalescence, at the conclusion of antibiotic therapy, 64% of the patients had proliferative cellular reactivity and 95% had antibody reactivity with at least one of the spirochetal antigens tested. In both acute- and convalescent-phase samples, cellular immune responses were found as frequently to OspA as to OspC and FlaB. Although antibody responses were also frequently seen to OspC and FlaB, only a few patients had marginal antibody reactivity with OspA. The percentage of patients with proliferative responses was similar in those with clinical evidence of localized or disseminated infection, whereas humoral reactivity was found more often in those with disseminated disease. We conclude that cellular and humoral responses to B. burgdorferi antigens are often found among patients with early Lyme disease. In contrast with the other antigens tested, cellular but not humoral reactivity was often found with OspA. PMID:11705918

  16. Relationship between Immunity to Borrelia burgdorferi Outer-surface Protein A (OspA) and Lyme Arthritis

    PubMed Central

    Drouin, Elise E.; Glickstein, Lisa J.

    2011-01-01

    Antibiotic-refractory Lyme arthritis may result from Borrelia burgdorferi–induced autoimmunity in affected joints. Such patients usually have certain HLA-DRB1 molecules that bind an epitope of B. burgdorferi outer-surface protein A (OspA163–175), and cellular and humoral immune responses to OspA are greater in patients with antibiotic-refractory arthritis than in those with antibiotic-responsive arthritis. Recent work in a mouse model suggests that, during B. burgdorferi infection, OspA in genetically susceptible individuals stimulates a particularly strong TH1 response, which may be one of several factors that can help set the stage for a putative autoimmune response in affected joints. However, vaccination with OspA did not induce arthritis in this mouse model, and case and control comparisons in human vaccine trials did not show an increased frequency of arthritis among OspA-vaccinated individuals. Thus, a vaccine-induced immune response to OspA does not replicate the sequence of events needed in the natural infection to induce antibiotic-refractory Lyme arthritis. PMID:21217173

  17. Minimal role of eastern fence lizards in Borrelia burgdorferi transmission in central New Jersey oak/pine woodlands

    USGS Publications Warehouse

    Rulison, Eric L.; Kerr, Kaetlyn T; Dyer, Megan C; Han, Seungeun; Burke, Russell L.; Tsao, Jean I.; Ginsberg, Howard S.

    2014-01-01

    The Eastern fence lizard, Sceloporus undulatus, is widely distributed in eastern and central North America, ranging through areas with high levels of Lyme disease, as well as areas where Lyme disease is rare or absent. We studied the potential role of S. undulatus in transmission dynamics of Lyme spirochetes by sampling ticks from a variety of natural hosts at field sites in central New Jersey, and by testing the reservoir competence of S. undulatus for Borrelia burgdorferi in the laboratory. The infestation rate of ticks on fence lizards was extremely low (proportion infested = 0.087, n = 23) compared to that on white footed mice and other small mammals (proportion infested = 0.53, n = 140). Of 159 nymphs that had fed as larvae on lizards that had previously been exposed to infected nymphs, none was infected with B. burgdorferi, compared with 79.9% of 209 nymphs that had fed as larvae on infected control mice. Simulations suggest that changes in the numbers of fence lizards in a natural habitat would have little effect on the infection rate of nymphal ticks with Lyme spirochetes. We conclude that in central New Jersey S. undulatus plays a minimal role in the enzootic transmission cycle of Lyme spirochetes.

  18. Treponema pallidum Lipoprotein TP0435 Expressed in Borrelia burgdorferi Produces Multiple Surface/Periplasmic Isoforms and mediates Adherence

    PubMed Central

    Chan, Kamfai; Nasereddin, Thayer; Alter, Laura; Centurion-Lara, Arturo; Giacani, Lorenzo; Parveen, Nikhat

    2016-01-01

    The ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface. TP0435 was previously believed to be exclusively located in T. pallidum periplasm. Furthermore, non-adherent B. burgdorferi strain expressing TP0435 acquires the ability to bind to a variety of host cells including placental cells and exhibits slow opsonophagocytosis in vitro similar to poor ex vivo phagocytosis of T. pallidum by host macrophages reported previously. This phenomenon of production of both surface and periplasmic immunogenic lipoprotein isoforms has possible implications in immune evasion of the obligate pathogen T. pallidum during infection. PMID:27161310

  19. Control of immature Ixodes scapularis (Acari: Ixodidae) on rodent reservoirs of Borrelia burgdorferi in a residential community of southeastern Connecticut.

    PubMed

    Dolan, Marc C; Maupin, Gary O; Schneider, Bradley S; Denatale, Christopher; Hamon, Nick; Cole, Chuck; Zeidner, Nordin S; Stafford, Kirby C

    2004-11-01

    A 3-yr community-based study was conducted on residential properties on Mason's Island, Mystic, CT, to determine the efficacy of a rodent-targeted acaricide (fipronil) to control immature Ixodes scapularis (Say) on Peromyscus leucopus. Results indicated that modified commercial bait boxes were effective as an acaricide delivery method for reducing nymphal and larval tick infestations on white-footed mice by 68 and 84%, respectively. Passive application of fipronil significantly reduced the infection rate of Borrelia burgdorferi among white-footed mice by 53%. Moreover, the abundance of questing I. scapularis adults on treated properties was reduced by 77% and fewer were infected with spirochetes (31%) compared with untreated sites (47%) after 3 yr of treatment. Likewise, the abundance of host-seeking nymphs was significantly reduced on treated properties by >50%. Finally, infection rates in flagged nymphal ticks for both B. burgdorferi and Anaplasma phagocytophilum were reduced by 67 and 64%, respectively, after only 2 yr of treatment. Results from this 3-yr trial indicate that the use of fipronil passively applied to reservoir animals by bait boxes is an environmentally acceptable means to control ticks, interrupt the natural disease transmission cycle, and reduce the risk of Lyme disease for residents of treated properties.

  20. Efficacy of sarolaner in the prevention of Borrelia burgdorferi and Anaplasma phagocytophilum transmission from infected Ixodes scapularis to dogs.

    PubMed

    Honsberger, Nicole A; Six, Robert H; Heinz, Thomas J; Weber, Angela; Mahabir, Sean P; Berg, Thomas C

    2016-05-30

    The efficacy of sarolaner (Simparica™, Zoetis) to prevent transmission primarily of Borrelia burgdorferi and secondarily of Anaplasma phagocytophilum from infected wild-caught Ixodes scapularis to dogs was evaluated in a placebo-controlled laboratory study. Twenty-four purpose-bred laboratory Beagles seronegative for B. burgdorferi and A. phagocytophilum antibodies were allocated randomly to one of three treatment groups: placebo administered orally on Days 0 and 7, or sarolaner at 2mg/kg administered orally on Day 0 (28 days prior to tick infestation) or on Day 7 (21 days prior to tick infestation). On Day 28, each dog was infested with approximately 25 female and 25 male wild caught adult I. scapularis that were determined to have prevalence of 57% for B. burgdorferi and 6.7% for A. phagocytophilum by PCR. In situ tick counts were conducted on Days 29 and 30. On Day 33, all ticks were counted and removed. Acaricidal efficacy was calculated based on the reduction of geometric mean live tick counts in the sarolaner-treated groups compared to the placebo-treated group for each tick count. Blood samples collected from each dog on Days 27, 49, 63, 77, 91 and 104 were tested for the presence of B. burgdorferi and A. phagocytophilum antibodies using the SNAP(®) 4Dx(®) Plus Test, and quantitatively assayed for B. burgdorferi antibodies using an ELISA test. Skin biopsies collected on Day 104 were tested for the presence of B. burgdorferi by bacterial culture and PCR. Geometric mean live tick counts for placebo-treated dogs were 14.8, 12.8, and 19.1 on Days 29, 30, and 33, respectively. The percent reductions in mean live tick counts at 1, 2, and 5 days after infestation were 86.3%, 100%, and 100% for the group treated with sarolaner 21 days prior to infestation, and 90.9%, 97.1%, and 100% for the group treated with sarolaner 28 days prior to infestation. Geometric mean live tick counts for both sarolaner-treated groups were significantly lower than those for the

  1. Borrelia burgdorferi migrates into joint capsules and causes an up-regulation of interleukin-8 in synovial membranes of dogs experimentally infected with ticks.

    PubMed Central

    Straubinger, R K; Straubinger, A F; Härter, L; Jacobson, R H; Chang, Y F; Summers, B A; Erb, H N; Appel, M J

    1997-01-01

    Twenty 6-week-old specific-pathogen-free beagles were infected with Borrelia burgdorferi by tick challenge, and five uninfected dogs served as controls. During the study, all dogs were monitored for infection, clinical signs, and antibody response against B. burgdorferi. During episodes of lameness or postmortem, synovial fluids from each dog were examined for volume, cell number, polymorphonuclear leukocyte (PMN) content, cell viability, and chemotactic activity. Twenty-five tissues collected postmortem from each dog were tested for interleukin-8 (IL-8) mRNA, tumor necrosis factor alpha (TNF-alpha) mRNA, presence of live spirochetes, and histopathological changes. Thirteen infected dogs (group A), which seroconverted rapidly (maximum titers within 50 to 90 days), developed acute and severe mono- or oligoarthritis almost exclusively in the limb closest to the tick bite (median incubation period, 66 days). Synovial fluids of the arthritic joints collected during episodes of lameness had significantly elevated volume, cell count, PMN proportion, cell viability, and chemotactic activity for PMNs. The remaining joints of the same animals contained synovial fluids with elevated chemotactic activity and cell viability. Twelve dogs tested positive for IL-8 mRNA in multiple tissues (synovia, pericardium, and peritoneum), and 10 dogs expressed TNF-alpha mRNA, but only in the tributary lymph nodes of the inflamed joints. Histological examinations revealed severe poly- or oligoarthritis and moderate to severe cortical hyperplasia in draining lymph nodes of the inflamed joints in all 13 dogs. Seven infected dogs with mild or no clinical signs (group B) seroconverted slowly (peak titers after 90 days), and only some joint fluids showed chemotactic activity, which on average was lower than that in inflamed and noninflamed joints from dogs in group A. Four dogs expressed IL-8 mRNA (in the synovia and pericardium), and three dogs had TNF-alpha mRNA in tributary lymph nodes

  2. Borrelia burgdorferi migrates into joint capsules and causes an up-regulation of interleukin-8 in synovial membranes of dogs experimentally infected with ticks.

    PubMed

    Straubinger, R K; Straubinger, A F; Härter, L; Jacobson, R H; Chang, Y F; Summers, B A; Erb, H N; Appel, M J

    1997-04-01

    Twenty 6-week-old specific-pathogen-free beagles were infected with Borrelia burgdorferi by tick challenge, and five uninfected dogs served as controls. During the study, all dogs were monitored for infection, clinical signs, and antibody response against B. burgdorferi. During episodes of lameness or postmortem, synovial fluids from each dog were examined for volume, cell number, polymorphonuclear leukocyte (PMN) content, cell viability, and chemotactic activity. Twenty-five tissues collected postmortem from each dog were tested for interleukin-8 (IL-8) mRNA, tumor necrosis factor alpha (TNF-alpha) mRNA, presence of live spirochetes, and histopathological changes. Thirteen infected dogs (group A), which seroconverted rapidly (maximum titers within 50 to 90 days), developed acute and severe mono- or oligoarthritis almost exclusively in the limb closest to the tick bite (median incubation period, 66 days). Synovial fluids of the arthritic joints collected during episodes of lameness had significantly elevated volume, cell count, PMN proportion, cell viability, and chemotactic activity for PMNs. The remaining joints of the same animals contained synovial fluids with elevated chemotactic activity and cell viability. Twelve dogs tested positive for IL-8 mRNA in multiple tissues (synovia, pericardium, and peritoneum), and 10 dogs expressed TNF-alpha mRNA, but only in the tributary lymph nodes of the inflamed joints. Histological examinations revealed severe poly- or oligoarthritis and moderate to severe cortical hyperplasia in draining lymph nodes of the inflamed joints in all 13 dogs. Seven infected dogs with mild or no clinical signs (group B) seroconverted slowly (peak titers after 90 days), and only some joint fluids showed chemotactic activity, which on average was lower than that in inflamed and noninflamed joints from dogs in group A. Four dogs expressed IL-8 mRNA (in the synovia and pericardium), and three dogs had TNF-alpha mRNA in tributary lymph nodes

  3. Interleukin-10 Alters Effector Functions of Multiple Genes Induced by Borrelia burgdorferi in Macrophages To Regulate Lyme Disease Inflammation ▿ †

    PubMed Central

    Gautam, Aarti; Dixit, Saurabh; Philipp, Mario T.; Singh, Shree R.; Morici, Lisa A.; Kaushal, Deepak; Dennis, Vida A.

    2011-01-01

    Interleukin-10 (IL-10) modulates inflammatory responses elicited in vitro and in vivo by Borrelia burgdorferi, the Lyme disease spirochete. How IL-10 modulates these inflammatory responses still remains elusive. We hypothesize that IL-10 inhibits effector functions of multiple genes induced by B. burgdorferi in macrophages to control concomitantly elicited inflammation. Because macrophages are essential in the initiation of inflammation, we used mouse J774 macrophages and live B. burgdorferi spirochetes as the model target cell and stimulant, respectively. First, we employed transcriptome profiling to identify genes that were induced by stimulation of cells with live spirochetes and that were perturbed by addition of IL-10 to spirochete cultures. Spirochetes significantly induced upregulation of 347 genes at both the 4-h and 24-h time points. IL-10 inhibited the expression levels, respectively, of 53 and 65 of the 4-h and 24-h genes, and potentiated, respectively, at 4 h and 24 h, 65 and 50 genes. Prominent among the novel identified IL-10-inhibited genes also validated by quantitative real-time PCR (qRT-PCR) were Toll-like receptor 1 (TLR1), TLR2, IRAK3, TRAF1, IRG1, PTGS2, MMP9, IFI44, IFIT1, and CD40. Proteome analysis using a multiplex enzyme-linked immunosorbent assay (ELISA) revealed the IL-10 modulation/and or potentiation of RANTES/CCL5, macrophage inflammatory protein 2 (MIP-2)/CXCL2, IP-10/CXCL10, MIP-1α/CCL3, granulocyte colony-stimulating factor (G-CSF)/CSF3, CXCL1, CXCL5, CCL2, CCL4, IL-6, tumor necrosis factor alpha (TNF-α), IL-1α, IL-1β, gamma interferon (IFN-γ), and IL-9. Similar results were obtained using sonicated spirochetes or lipoprotein as stimulants. Our data show that IL-10 alters effectors induced by B. burgdorferi in macrophages to control concomitantly elicited inflammatory responses. Moreover, for the first time, this study provides global insight into potential mechanisms used by IL-10 to control Lyme disease inflammation. PMID

  4. Lyme disease in California: interrelationship of Ixodes pacificus (Acari: Ixodidae), the western fence lizard (Sceloporus occidentalis), and Borrelia burgdorferi.

    PubMed

    Lane, R S; Loye, J E

    1989-07-01

    The relationship of immature western black-legged ticks, Ixodes pacificus Cooley and Kohls, to the western fence lizard, Sceloporus occidentalis Baird and Girard, and to the Lyme disease spirochete, Borrelia burgdorferi, was investigated in chaparral and woodland-grass habitats in northern California from 1984 to 1986. Immature ticks were found on lizards in spring and summer, but the prevalence and abundance of ticks on this host were considerably greater in spring. The peak of larval abundance preceded that of nymphs by several weeks, but there was considerable seasonal overlap between these parasitic stages. Larvae and nymphs attached primarily to the lateral nuchal pockets of lizards in chaparral (99.5%) and woodland-grass (91.8%). The numbers of larvae infesting lizards in spring fit the negative binomial distribution in woodland-grass but not in chaparral; insufficient data precluded similar analyses for nymphs. Tick loads did not differ significantly with respect to age or gender of the lizard. Spirochetal infection rates (range, 0-3.7%) in I. pacificus immatures were comparable in both habitats and were similar to those reported previously for adults of this tick. Overall, 1 (0.9%) of 117 larvae and 10 (1.8%) of 552 nymphs were infected with spirochetes resembling B. burgdorferi. Spirochetes were not observed in blood smears prepared from 261 wild-caught lizards, including five lizards fed upon by infected ticks at the time of collection. These and other findings suggest that S. occidentalis, although an important host of I. pacificus immatures, may be less important as a source for infecting ticks with B. burgdorferi. PMID:2769705

  5. Borrelia burgdorferi RST1 (OspC Type A) Genotype Is Associated with Greater Inflammation and More Severe Lyme Disease

    PubMed Central

    Strle, Klemen; Jones, Kathryn L.; Drouin, Elise E.; Li, Xin; Steere, Allen C.

    2011-01-01

    Evidence is emerging for differential pathogenicity among Borrelia burgdorferi genotypes in the United States. By using two linked genotyping systems, ribosomal RNA intergenic spacer type (RST) and outer surface protein C (OspC), we studied the inflammatory potential of B. burgdorferi genotypes in cells and patients with erythema migrans or Lyme arthritis. When macrophages were stimulated with 10 isolates of each RST1, RST2, or RST3 strain, RST1 (OspC type A)–stimulated cells expressed significantly higher levels of IL-6, IL-8, chemokine ligand (CCL) 3, CCL4, tumor necrosis factor, and IL-1β, factors associated with innate immune responses. In peripheral blood mononuclear cells, RST1 strains again stimulated significantly higher levels of these mediators. Moreover, compared with RST2, RST1 isolates induced significantly more interferon (IFN)-α, IFN-γ, and CXCL10, which are needed for adaptive immune responses; however, OspC type I (RST3) approached RST1 (OspC type A) in stimulating these adaptive immune mediators. Similarly, serum samples from patients with erythema migrans who were infected with the RST1 genotype had significantly higher levels of almost all of these mediators, including exceptionally high levels of IFN-γ–inducible chemokines, CCL2, CXCL9, and CXCL10; and this pronounced inflammatory response was associated with more symptomatic infection. Differences among genotypes were not as great in patients with Lyme arthritis, but those infected with RST1 strains more often had antibiotic-refractory arthritis. Thus, the B. burgdorferi RST1 (OspC type A) genotype, followed by the RST3 (OspC type I) genotype, causes greater inflammation and more severe disease, establishing a link between spirochetal virulence and host inflammation. PMID:21641395

  6. Canine infection with Dirofilaria immitis, Borrelia burgdorferi, Anaplasma spp., and Ehrlichia spp. in the United States, 2010–2012

    PubMed Central

    2014-01-01

    Background The geographic distribution of canine infection with vector-borne disease agents in the United States appears to be expanding. Methods To provide an updated assessment of geographic trends in canine infection with Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia spp., and Anaplasma spp., we evaluated results from an average of 3,588,477 dogs tested annually by veterinarians throughout the United States from 2010 – 2012. Results As in an earlier summary report, the percent positive test results varied by agent and region, with antigen of D. immitis and antibody to Ehrlichia spp. most commonly identified in the Southeast (2.9% and 3.2%, respectively) and antibody to both B. burgdorferi and Anaplasma spp. most commonly identified in the Northeast (13.3% and 7.1%, respectively) and upper Midwest (4.4% and 3.9%, respectively). Percent positive test results for D. immitis antigen were lower in every region considered, including in the Southeast, than previously reported. Percent positive test results for antibodies to B. burgdorferi and Ehrlichia spp. were higher nationally than previously reported, and, for antibodies to Anaplasma spp., were higher in the Northeast but lower in the Midwest and West, than in the initial report. Annual reports of human cases of Lyme disease, ehrlichiosis, and anaplasmosis were associated with percent positive canine test results by state for each respective tick-borne disease agent (R2 = 0.701, 0.457, and 0.314, respectively). Within endemic areas, percent positive test results for all three tick-borne agents demonstrated evidence of geographic expansion. Conclusions Continued national monitoring of canine test results for vector-borne zoonotic agents is an important tool for accurately mapping the geographic distribution of these agents, and greatly aids our understanding of the veterinary and public health threats they pose. PMID:24886589

  7. Lyme disease in California: interrelationship of Ixodes pacificus (Acari: Ixodidae), the western fence lizard (Sceloporus occidentalis), and Borrelia burgdorferi.

    PubMed

    Lane, R S; Loye, J E

    1989-07-01

    The relationship of immature western black-legged ticks, Ixodes pacificus Cooley and Kohls, to the western fence lizard, Sceloporus occidentalis Baird and Girard, and to the Lyme disease spirochete, Borrelia burgdorferi, was investigated in chaparral and woodland-grass habitats in northern California from 1984 to 1986. Immature ticks were found on lizards in spring and summer, but the prevalence and abundance of ticks on this host were considerably greater in spring. The peak of larval abundance preceded that of nymphs by several weeks, but there was considerable seasonal overlap between these parasitic stages. Larvae and nymphs attached primarily to the lateral nuchal pockets of lizards in chaparral (99.5%) and woodland-grass (91.8%). The numbers of larvae infesting lizards in spring fit the negative binomial distribution in woodland-grass but not in chaparral; insufficient data precluded similar analyses for nymphs. Tick loads did not differ significantly with respect to age or gender of the lizard. Spirochetal infection rates (range, 0-3.7%) in I. pacificus immatures were comparable in both habitats and were similar to those reported previously for adults of this tick. Overall, 1 (0.9%) of 117 larvae and 10 (1.8%) of 552 nymphs were infected with spirochetes resembling B. burgdorferi. Spirochetes were not observed in blood smears prepared from 261 wild-caught lizards, including five lizards fed upon by infected ticks at the time of collection. These and other findings suggest that S. occidentalis, although an important host of I. pacificus immatures, may be less important as a source for infecting ticks with B. burgdorferi.

  8. Outer Surface Protein OspC Is an Antiphagocytic Factor That Protects Borrelia burgdorferi from Phagocytosis by Macrophages

    PubMed Central

    Carrasco, Sebastian E.; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L.; Li, Hongxia; Sandusky, George E.; Condon, Keith W.

    2015-01-01

    Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγnull mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis. PMID:26438793

  9. Borrelia burgdorferi RST1 (OspC type A) genotype is associated with greater inflammation and more severe Lyme disease.

    PubMed

    Strle, Klemen; Jones, Kathryn L; Drouin, Elise E; Li, Xin; Steere, Allen C

    2011-06-01

    Evidence is emerging for differential pathogenicity among Borrelia burgdorferi genotypes in the United States. By using two linked genotyping systems, ribosomal RNA intergenic spacer type (RST) and outer surface protein C (OspC), we studied the inflammatory potential of B. burgdorferi genotypes in cells and patients with erythema migrans or Lyme arthritis. When macrophages were stimulated with 10 isolates of each RST1, RST2, or RST3 strain, RST1 (OspC type A)-stimulated cells expressed significantly higher levels of IL-6, IL-8, chemokine ligand (CCL) 3, CCL4, tumor necrosis factor, and IL-1β, factors associated with innate immune responses. In peripheral blood mononuclear cells, RST1 strains again stimulated significantly higher levels of these mediators. Moreover, compared with RST2, RST1 isolates induced significantly more interferon (IFN)-α, IFN-γ, and CXCL10, which are needed for adaptive immune responses; however, OspC type I (RST3) approached RST1 (OspC type A) in stimulating these adaptive immune mediators. Similarly, serum samples from patients with erythema migrans who were infected with the RST1 genotype had significantly higher levels of almost all of these mediators, including exceptionally high levels of IFN-γ-inducible chemokines, CCL2, CXCL9, and CXCL10; and this pronounced inflammatory response was associated with more symptomatic infection. Differences among genotypes were not as great in patients with Lyme arthritis, but those infected with RST1 strains more often had antibiotic-refractory arthritis. Thus, the B. burgdorferi RST1 (OspC type A) genotype, followed by the RST3 (OspC type I) genotype, causes greater inflammation and more severe disease, establishing a link between spirochetal virulence and host inflammation.

  10. The salt-sensitive structure and zinc inhibition of Borrelia burgdorferi protease BbHtrA.

    PubMed

    Russell, Theresa M; Tang, Xiaoling; Goldstein, Jason M; Bagarozzi, Dennis; Johnson, Barbara J B

    2016-02-01

    HtrA serine proteases are highly conserved and essential ATP-independent proteases with chaperone activity. Bacteria express a variable number of HtrA homologues that contribute to the virulence and pathogenicity of bacterial pathogens. Lyme disease spirochetes possess a single HtrA protease homologue, Borrelia burgdorferi HtrA (BbHtrA). Previous studies established that, like the human orthologue HtrA1, BbHtrA is proteolytically active against numerous extracellular proteins in vitro. In this study, we utilized size exclusion chromatography and blue native polyacrylamide gel electrophoresis (BN-PAGE) to demonstrate BbHtrA oligomeric structures that were substrate independent and salt sensitive. Examination of the influence of transition metals on the activity of BbHtrA revealed that this protease is inhibited by Zn(2+) > Cu(2+) > Mn(2+). Extending this analysis to two other HtrA proteases, E. coli DegP and HtrA1, revealed that all three HtrA proteases were reversibly inhibited by ZnCl2 at all micro molar concentrations examined. Commercial inhibitors for HtrA proteases are not available and physiologic HtrA inhibitors are unknown. Our observation of conserved zinc inhibition of HtrA proteases will facilitate structural and functional studies of additional members of this important class of proteases. PMID:26480895

  11. Borrelia burgdorferi sensu lato infection in larval Ixodes ricinus (Acari: Ixodidae) feeding on blackbirds in northwestern Italy.

    PubMed

    Mannelli, Alessandro; Nebbia, Patrizia; Tramuta, Clara; Grego, Elena; Tomassone, Laura; Ainardi, Romina; Venturini, Lucia; De Meneghi, Daniele; Meneguz, Pier Giuseppe

    2005-03-01

    Birds belonging to 59 species (n = 1,206) were live captured in Piemonte, northwestern Italy, in 2001. Ixodes ricinus (L.) larvae were collected from 59 birds belonging to nine species, and nymphs were recovered on 79 birds belonging to 10 species. Eurasian blackbirds, Turdus merula L., had significantly higher levels of infestation by ticks than other passerine species. Larval I. ricinus of blackbirds peaked in summer, when prevalence was 39% (95% confidence interval 24.2-55.5) and mean number of ticks per host was 3.3 (1.6-7.2), whereas nymphs peaked in spring, when prevalence was 72.2% (54.8-85.8) and mean number of ticks per host was 6.9 (4.4-10.7). Immature I. ricinus were coincidentally aggregated on blackbirds, with 15 blackbirds feeding 67.4% of nymphs and 40.3% of larvae, and coinfestation by both stages was relatively high in summer: Kappa = 0.64 (0.40-0.88). Borrelia burgdorferi sensu lato was identified by polymerase chain reaction (PCR) in 58.3% (35.9-78.5) of larvae with engorgement ratio > or = 3 that were collected from blackbirds. Larvae that were collected from other passerine species gave negative PCR results. Sixteen of 21 PCR-positive samples belonged to B. garinii (76.2%), and five (23.8%) were Borrelia valaisiana. Results of this study suggest that blackbirds play an important role as hosts for immature I. ricinus and as reservoir of Borrelia garinii in northwestern Italy.

  12. Recognition of Borrelia burgdorferi by NOD2 is central for the induction of an inflammatory reaction.

    PubMed

    Oosting, Marije; Berende, Anneleen; Sturm, Patrick; Ter Hofstede, Hadewych J M; de Jong, Dirk J; Kanneganti, Thirumala-Devi; van der Meer, Jos W M; Kullberg, Bart-Jan; Netea, Mihai G; Joosten, Leo A B

    2010-06-15

    Toll-like receptor 2 (TLR2) plays an important role in the recognition of Borrelia bacteria, the causative agent of Lyme disease, but the existence and importance of additional receptors in this process has been hypothesized. In the present study, we confirmed the role played by TLR2 in the recognition of Borrelia bacteria but also demonstrated a crucial role for the intracellular peptidoglycan receptor NOD2 for sensing the spirochete. Cells from individuals who were homozygous for the loss-of-function mutation 3020insC in the NOD2 gene were defective with respect to cytokine release after stimulation with Borrelia species, and this was confirmed in peritoneal macrophages from mice lacking RICK, the adaptor molecule used by NOD2. In contrast, NOD1 played no major role in the recognition of Borrelia spirochetes. This raises the intriguing possibility that recognition of Borrelia spirochetes is exerted by TLR2 in combination with NOD2 and that both receptors are necessary for an effective induction of cytokines by Borrelia species. The interplay between TLR2 and NOD2 might not only be necessary for the induction of a proper immune response but may also contribute to inflammatory-induced pathology. PMID:20441518

  13. BB0323 and Novel Virulence Determinant BB0238: Borrelia burgdorferi Proteins That Interact With and Stabilize Each Other and Are Critical for Infectivity

    PubMed Central

    Kariu, Toru; Sharma, Kavita; Singh, Preeti; Smith, Alexis A.; Backstedt, Brian; Buyuktanir, Ozlem; Pal, Utpal

    2015-01-01

    We have shown that Borrelia burgdorferi gene product BB0323 is essential for cell fission and pathogen persistence in vivo. Here we describe characterization of a conserved hypothetical protein annotated as BB0238, which specifically interacts with the N-terminal region of BB0323. We show that BB0238 is a subsurface protein, and similar to BB0323, exists in the periplasm and as a membrane-bound protein. Deletion of bb0238 in infectious B. burgdorferi did not affect microbial growth in vitro or survival in ticks, but the mutant was unable to persist in mice or transmit from ticks—defects that are restored on genetic complementation. Remarkably, BB0238 and BB0323 contribute to mutual posttranslational stability, because deletion of one causes dramatic reduction in the protein level of the other partner. Interference with the function of BB0238 or BB0323 and their interaction may provide novel strategies to combat B. burgdorferi infection. PMID:25139020

  14. Characterization of an anti-Borrelia burgdorferi OspA conformational epitope by limited proteolysis of monoclonal antibody-bound antigen and mass spectrometric peptide mapping.

    PubMed Central

    Legros, V.; Jolivet-Reynaud, C.; Battail-Poirot, N.; Saint-Pierre, C.; Forest, E.

    2000-01-01

    Lyme borreliosis is a multisystem disorder caused by the spirochete Borrelia burgdorferi that is transmitted to humans by the tick Ixodes dammini. The immune response against the 31 kDa OspA, which is one of the most abundant B. burgdorferi proteins, appears to be critical in preventing infection and tissue inflammation. Detailed knowledge of the immunological and molecular characteristics of the OspA protein is important for the development of reliable diagnostic assays. In this study, we characterized a new conformational epitope present within the middle part of B. burgdorferi OspA. Our approach used enzymatic proteolyses of the immune complex followed by mass spectrometric identification of the peptides bound to the antibody. It appears to be one of the first reports on the characterization of a discontinuous epitope using mass spectrometry. PMID:10850810

  15. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice

    PubMed Central

    Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat

    2015-01-01

    Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970

  16. Treatment with Doxycycline of Generalized Annular Elastolytic Giant Cell Granuloma Associated with Borrelia burgdorferi Infection

    PubMed Central

    Tas, B; Caglar, A; Ozdemir, B

    2015-01-01

    ABSTRACT This is a case of generalized annular elastolytic giant cell granuloma (AEGCG) associated with borrelia infection and genes of p-30, p-31, p-39. A possible cross-mediated reaction from the T-cell type which might have induced the AEGCG is discussed from the concept of “heat-shock proteins (HSPs) and molecular mimicry”. PMID:26624605

  17. Abundance of Ixodes ricinus and prevalence of Borrelia burgdorferi s.l. in the nature reserve Siebengebirge, Germany, in comparison to three former studies from 1978 onwards

    PubMed Central

    2012-01-01

    Background During the last decades, population densities of Ixodes ricinus and prevalences of Borrelia burgdorferi s.l. have increased in different regions in Europe. In the present study, we determined tick abundance and the prevalence of different Borrelia genospecies in ticks from three sites in the Siebengebirge, Germany, which were already examined in the years 1987, 1989, 2001 and 2003. Data from all investigations were compared. Methods In 2007 and 2008, host-seeking I. ricinus were collected by monthly blanket dragging at three distinct vegetation sites in the Siebengebirge, a nature reserve and a well visited local recreation area near Bonn, Germany. In both years, 702 ticks were tested for B. burgdorferi s.l. DNA by nested PCR, and 249 tick samples positive for Borrelia were further genotyped by reverse line blotting. Results A total of 1046 and 1591 I. ricinus were collected in 2007 and 2008, respectively. In comparison to previous studies at these sites, the densities at all sites increased from 1987/89 and/or from 2003 until 2008. Tick densities and Borrelia prevalences in 2007 and 2008, respectively, were not correlated for all sites and both years. Overall, Borrelia prevalence of all ticks decreased significantly from 2007 (19.5%) to 2008 (16.5%), thus reaching the same level as in 2001 two times higher than in 1987/89 (7.6%). Since 2001, single infections with a Borrelia genospecies predominated in all collections, but the number of multiple infections increased, and in 2007, for the first time, triple Borrelia infections occurred. Prevalences of Borrelia genospecies differed considerably between the three sites, but B. garinii or B. afzelii were always the most dominant genospecies. B. lusitaniae was detected for the first time in the Siebengebirge, also in co-infections with B. garinii or B. valaisiana. Conclusions Over the last two centuries tick densities have changed in the Siebengebirge at sites that remained unchanged by human activity since

  18. Function of the Borrelia burgdorferi FtsH Homolog Is Essential for Viability both In Vitro and In Vivo and Independent of HflK/C

    PubMed Central

    Chu, Chen-Yi; Bestor, Aaron; Hansen, Bryan; Lin, Tao; Gao, Lihui; Rosa, Patricia A.

    2016-01-01

    ABSTRACT In many bacteria, the FtsH protease and its modulators, HflK and HflC, form a large protein complex that contributes to both membrane protein quality control and regulation of the cellular response to environmental stress. Both activities are crucial to the Lyme disease pathogen Borrelia burgdorferi, which depends on membrane functions, such as motility, protein transport, and cell signaling, to respond to rapid changes in its environment. Using an inducible system, we demonstrate that FtsH production is essential for both mouse and tick infectivity and for in vitro growth of B. burgdorferi. FtsH depletion in B. burgdorferi cells resulted in membrane deformation and cell death. Overproduction of the protease did not have any detectable adverse effects on B. burgdorferi growth in vitro, suggesting that excess FtsH does not proteolytically overwhelm its substrates. In contrast, we did not observe any phenotype for cells lacking the protease modulators HflK and HflC (ΔHflK/C), although we examined morphology, growth rate, growth under stress conditions, and the complete mouse-tick infectious cycle. Our results demonstrate that FtsH provides an essential function in the life cycle of the obligate pathogen B. burgdorferi but that HflK and HflC do not detectably affect FtsH function. PMID:27094329

  19. Interaction of the Lyme Disease Spirochete Borrelia burgdorferi with Brain Parenchyma Elicits Inflammatory Mediators from Glial Cells as Well as Glial and Neuronal Apoptosis

    PubMed Central

    Ramesh, Geeta; Borda, Juan T.; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A.; Philipp, Mario T.

    2008-01-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-α and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1β, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  20. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis.

    PubMed

    Ramesh, Geeta; Borda, Juan T; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A; Philipp, Mario T

    2008-11-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-alpha and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1beta, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  1. Coinfection of western gray squirrel (Sciurus griseus) and other sciurid rodents with Borrelia burgdorferi sensu stricto and Anaplasma phagocytophilum in California.

    PubMed

    Nieto, Nathan C; Leonhard, Sarah; Foley, Janet E; Lane, Robert S

    2010-01-01

    Overlapping geographic distributions of tick-borne disease agents utilizing the same tick vectors are common, and coinfection of humans, domestic animals, wildlife, and ticks with both Borrelia burgdorferi and Anaplasma phagocytophilum has been frequently reported. This study was undertaken in order to evaluate the prevalence of both B. burgdorferi sensu stricto (hereinafter referred to as B. burgdorferi) and A. phagocytophilum in several species of sciurid rodents from northern California, USA. Rodents were either collected dead as road-kills or live-trapped in four state parks from 13 counties. Thirty-seven western gray squirrels (Sciurus griseus), nine nonnative eastern gray squirrels (S. carolinensis) and an eastern fox squirrel (S. niger), four Douglas squirrels (Tamiasciurus douglasii), and two northern flying squirrels (Glaucomys sabrinus) were tested by polymerase chain reaction (PCR) and serology for evidence of coinfection. Of the 14 individual S. griseus that were PCR-positive for B. burgdorferi, two (14%) also were PCR-positive for A. phagocytophilum and 11 (79%) had serologic evidence of A. phagocytophilum exposure. Two of the four Douglas squirrels were PCR positive for B. burgdorferi and seropositive to A. phagocytophilum. Evidence of coinfection with these zoonotic pathogens in western gray squirrels suggests that both bacteria may be maintained in a similar transmission cycle involving this sciurid and the western black-legged tick Ixodes pacificus, the primary bridging vector to humans in the far-western US. PMID:20090047

  2. Motor Rotation Is Essential for the Formation of the Periplasmic Flagellar Ribbon, Cellular Morphology, and Borrelia burgdorferi Persistence within Ixodes scapularis Tick and Murine Hosts

    PubMed Central

    Sultan, Syed Z.; Sekar, Padmapriya; Zhao, Xiaowei; Manne, Akarsh; Liu, Jun; Wooten, R. Mark

    2015-01-01

    Borrelia burgdorferi must migrate within and between its arthropod and mammalian hosts in order to complete its natural enzootic cycle. During tick feeding, the spirochete transmits from the tick to the host dermis, eventually colonizing and persisting within multiple, distant tissues. This dissemination modality suggests that flagellar motor rotation and, by extension, motility are crucial for infection. We recently reported that a nonmotile flaB mutant that lacks periplasmic flagella is rod shaped and unable to infect mice by needle or tick bite. However, those studies could not differentiate whether motor rotation or merely the possession of the periplasmic flagella was crucial for cellular morphology and host persistence. Here, we constructed and characterized a motB mutant that is nonmotile but retains its periplasmic flagella. Even though ΔmotB bacteria assembled flagella, part of the mutant cell is rod shaped. Cryoelectron tomography revealed that the flagellar ribbons are distorted in the mutant cells, indicating that motor rotation is essential for spirochetal flat-wave morphology. The ΔmotB cells are unable to infect mice, survive in the vector, or migrate out of the tick. Coinfection studies determined that the presence of these nonmotile ΔmotB cells has no effect on the clearance of wild-type spirochetes during murine infection and vice versa. Together, our data demonstrate that while flagellar motor rotation is necessary for spirochetal morphology and motility, the periplasmic flagella display no additional properties related to immune clearance and persistence within relevant hosts. PMID:25690096

  3. Drug Combinations against Borrelia burgdorferi Persisters In Vitro: Eradication Achieved by Using Daptomycin, Cefoperazone and Doxycycline

    PubMed Central

    Feng, Jie; Auwaerter, Paul G.; Zhang, Ying

    2015-01-01

    Although most Lyme disease patients can be cured with antibiotics doxycycline or amoxicillin using 2-4 week treatment durations, some patients suffer from persistent arthritis or post-treatment Lyme disease syndrome. Why these phenomena occur is unclear, but possibilities include host responses, antigenic debris, or B. burgdorferi organisms remaining despite antibiotic therapy. In vitro, B. burgdorferi developed increasing antibiotic tolerance as morphology changed from typical spirochetal form in log phase growth to variant round body and microcolony forms in stationary phase. B. burgdorferi appeared to have higher persister frequencies than E. coli as a control as measured by SYBR Green I/propidium iodide (PI) viability stain and microscope counting. To more effectively eradicate the different persister forms tolerant to doxycycline or amoxicillin, drug combinations were studied using previously identified drugs from an FDA-approved drug library with high activity against such persisters. Using a SYBR Green/PI viability assay, daptomycin-containing drug combinations were the most effective. Of studied drugs, daptomycin was the common element in the most active regimens when combined with doxycycline plus either beta-lactams (cefoperazone or carbenicillin) or an energy inhibitor (clofazimine). Daptomycin plus doxycycline and cefoperazone eradicated the most resistant microcolony form of B. burgdorferi persisters and did not yield viable spirochetes upon subculturing, suggesting durable killing that was not achieved by any other two or three drug combinations. These findings may have implications for improved treatment of Lyme disease, if persistent organisms or detritus are responsible for symptoms that do not resolve with conventional therapy. Further studies are needed to validate whether such combination antimicrobial approaches are useful in animal models and human infection. PMID:25806811

  4. Population genetic analysis of Borrelia burgdorferi isolates by multilocus enzyme electrophoresis.

    PubMed Central

    Boerlin, P; Peter, O; Bretz, A G; Postic, D; Baranton, G; Piffaretti, J C

    1992-01-01

    Fifty Borellia burgdorferi strains isolated from humans and ticks in Europe and the United States were analyzed by multilocus enzyme electrophoresis. Eleven genetic loci were characterized on the basis of the electrophoretic mobilities of their products. Ten loci were polymorphic. The average number of alleles per locus was 5.9, with a mean genetic diversity of 0.673 among electrophoretic types (ETs). The strains were grouped into 35 ETs constituting three main divisions (I, II, and III) separated at a genetic distance greater than 0.75. Divisions I, II, and III contained 13, 6, and 16 ETs, respectively. These findings, together with previous data from DNA hybridization and restriction enzyme analysis of rRNA genes, suggest that divisions I, II, and III may represent three distinct genomic species. All three divisions contained human clinical ETs. However, in division I, which includes the ET of the type strain of B. burgdorferi, the human pathogenic ETs constituted a single clone. The ETs of division I were from west-central Europe and the United States, whereas divisions II and III contained ETs from west-central and northern Europe but not from the United States. Finally, our data show that the genetic structure of B. burgdorferi populations is clonal. PMID:1548090

  5. Evaluation of granulocytic ehrlichiosis in dogs of Missouri, including serologic status to Ehrlichia canis, Ehrlichia equi and Borrelia burgdorferi.

    PubMed

    Stockham, S L; Schmidt, D A; Curtis, K S; Schauf, B G; Tyler, J W; Simpson, S T

    1992-01-01

    Canine granulocytic ehrlichiosis was diagnosed in 37 dogs by finding ehrlichial morulae in 0.1 to 26.2% of their blood neutrophils and eosinophils. All 37 dogs had clinical signs of arthritis or muscular stiffness. Titer to Ehrlichia canis was determined in sera from 31 of the 37 dogs; 25 dogs had titer ranging from 1:20 to 1:5,120. In the other 6 dogs, titer to E canis was less than 1:10. The most common hematologic abnormality in these dogs, other than rickettsiemia, was thrombocytopenia. Granulocytes infected with ehrlichial organisms were not found in another 10 dogs that had clinical signs of arthritis or muscular stiffness. Of these 10 dogs, 3 had titer to E canis ranging from 1:40 to 1:320. Titer in the other 7 dogs was less than 1:10. Ehrlichial morulae were not found in the granulocytes of 18 healthy dogs. Of these 18 dogs, 9 had titer to E canis ranging from 1:20 to 1:5,120. Titer in the other 9 dogs was less than 1:10 Titer to Borrelia burgdorferi was determined in dogs with granulocytic ehrlichiosis, arthritic dogs without detected rickettsiemia, and in healthy dogs. Low titer determined by 2 laboratories was considered to be nonspecific reaction in all 3 groups of dogs and, thus, did not indicate that the arthritic disorders were attributable to canine borreliosis. PMID:1539918

  6. Borrelia burgdorferi erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria.

    PubMed

    Stevenson, B; Bono, J L; Schwan, T G; Rosa, P

    1998-06-01

    Borrelia burgdorferi, the causative agent of Lyme disease, can contain multiple genes encoding different members of the Erp lipoprotein family. Some arthropod-borne bacteria increase the synthesis of proteins required for transmission or mammalian infection when cultures are shifted from cool, ambient air temperature to a warmer, blood temperature. We found that all of the erp genes known to be encoded by infectious isolate B31 were differentially expressed in culture after a change in temperature, with greater amounts of message being produced by bacteria shifted from 23 to 35 degrees C than in those maintained at 23 degrees C. Mice infected with B31 by tick bite produced antibodies that recognized each of the Erp proteins within 4 weeks of infection, suggesting that the Erp proteins are produced by the bacteria during the early stages of mammalian infection and may play roles in transmission from ticks to mammals. Several of the B31 Erp proteins were also recognized by antibodies from patients with Lyme disease and may prove to be useful antigens for diagnostic testing or as components of a protective vaccine. PMID:9596729

  7. Borrelia burgdorferi RevA Significantly Affects Pathogenicity and Host Response in the Mouse Model of Lyme Disease

    PubMed Central

    Byram, Rebecca; Gaultney, Robert A.; Floden, Angela M.; Hellekson, Christopher; Stone, Brandee L.; Bowman, Amy; Stevenson, Brian; Johnson, Barbara J. B.

    2015-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, expresses RevA and numerous outer surface lipoproteins during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA is poised to interact with the extracellular matrix of the host. To further define the role(s) of RevA during mammalian infection, we created a mutant that is unable to produce RevA. The mutant was still infectious to mice, although it was significantly less well able to infect cardiac tissues. Complementation of the mutant with a wild-type revA gene restored heart infectivity to wild-type levels. Additionally, revA mutants led to increased evidence of arthritis, with increased fibrotic collagen deposition in tibiotarsal joints. The mutants also induced increased levels of the chemokine CCL2, a monocyte chemoattractant, in serum, and this increase was abolished in the complemented strain. Therefore, while revA is not absolutely essential for infection, deletion of revA had distinct effects on dissemination, arthritis severity, and host response. PMID:26150536

  8. Borrelia burgdorferi RevA Significantly Affects Pathogenicity and Host Response in the Mouse Model of Lyme Disease.

    PubMed

    Byram, Rebecca; Gaultney, Robert A; Floden, Angela M; Hellekson, Christopher; Stone, Brandee L; Bowman, Amy; Stevenson, Brian; Johnson, Barbara J B; Brissette, Catherine A

    2015-09-01

    The Lyme disease spirochete, Borrelia burgdorferi, expresses RevA and numerous outer surface lipoproteins during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA is poised to interact with the extracellular matrix of the host. To further define the role(s) of RevA during mammalian infection, we created a mutant that is unable to produce RevA. The mutant was still infectious to mice, although it was significantly less well able to infect cardiac tissues. Complementation of the mutant with a wild-type revA gene restored heart infectivity to wild-type levels. Additionally, revA mutants led to increased evidence of arthritis, with increased fibrotic collagen deposition in tibiotarsal joints. The mutants also induced increased levels of the chemokine CCL2, a monocyte chemoattractant, in serum, and this increase was abolished in the complemented strain. Therefore, while revA is not absolutely essential for infection, deletion of revA had distinct effects on dissemination, arthritis severity, and host response.

  9. Serological reactivity to Ehrlichia canis, Anaplasma phagocytophilum, Neorickettsia risticii, Borrelia burgdorferi and Rickettsia conorii in dogs from northwestern Spain.

    PubMed

    Amusategui, Inmaculada; Tesouro, Miguel A; Kakoma, Ibulaimu; Sainz, Angel

    2008-12-01

    The aim of the present work was to investigate the seroprevalence against Ehrlichia canis (Ec), Anaplasma phagocytophilum (Ap), Neorickettsia risticii (Nr), Rickettsia conorii (Rc), and Borrelia burgdorferi (Bb) in two different clusters of canine samples from Northwestern Spain. Cluster 1 included 479 dogs presented at veterinary clinics located in Ourense and Pontevedra. Cluster II included 170 dogs from the public kennel of Ourense. All 649 canine serum samples were analyzed by immunofluorescent antibody test. Prevalences against the above-mentioned agents in cluster I were: Rc (24.6%), Bb (6.26%), Ec (3.13%), Ap (5.01%), and Nr (1.04%), whereas for cluster II were: Rc (50%), Bb (8.8%), Ec (54.7%), Ap (45.3%), and Nr (4.7%). Rc was significantly associated with age and history of exposure to ticks, and Bb showed a statistical relationship with age and clinical status. Ec and Ap were related to the occupation of the dogs, with stray dogs being the most frequently seropositive. Furthermore, seroreactivity against Ec and Ap was significantly higher in Ourense than in Pontevedra. The univariate analysis demonstrated a significant concomitant seroreactivity between Ec and Ap and between Rc and Ec and Ap antigens. The seroreactivity to Nr must be interpreted very cautiously as this infectious agent has been seldom reported outside North America.

  10. Prevalence of granulocytic Ehrlichia and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from Southwestern Finland and from Vormsi Island in Estonia.

    PubMed

    Mäkinen, Johanna; Vuorinen, Ilppo; Oksi, Jarmo; Peltomaa, Miikka; He, Qiushui; Marjamäki, Merja; Viljanen, Matti K

    2003-02-01

    Altogether, 343 adult and 111 nymphal Ixodes ricinus ticks collected from parks in Turku and suburban and rural islands of the Turku archipelago, Finland, and 100 adult I. ricinus ticks collected from Vormsi Island, Estonia, were included in this study. Using the polymerase chain reaction the ticks were examined for 16S rDNA of the Ehrlichia phagocytophila genogroup and for Borrelia burgdorferi sensu lato recA and flagellin genes. None of the Finnish ticks was found to be infected with E. phagocytophila, whereas 3% of the Estonian ticks were positive for this organism. The rate of Finnish ticks infected with B. burgdorferi sensu lato varied from 0% to 11.6% (mean 5%; 9% for adult and 4% for nymphal ticks). The corresponding rate for Estonian ticks was 15%. Borrelia afzelii was the most common genospecies in both Finnish (2.6%) and Estonian (12%) ticks. B. burgdorferi sensu stricto was detected in 2.0% of the Finnish ticks, but in none of the Estonian ticks. These results suggest that the E. phagocytophila genogroup is very rare in Finnish ticks, although the ticks were collected from an area endemic for Lyme borreliosis. In Estonia, E. phagocytophila is found in ticks and may cause disease.

  11. Surveillance for Ixodes pacificus and the tick-borne pathogens Anaplasma phagocytophilum and Borrelia burgdorferi in birds from California's Inner Coast Range.

    PubMed

    Dingler, Regina J; Wright, Stan A; Donohue, Ann M; Macedo, Paula A; Foley, Janet E

    2014-06-01

    We investigated the involvement of birds in the ecology of the western black-legged tick, Ixodes pacificus, and its associated zoonotic bacteria, Borrelia burgdorferi and Anaplasma phagocytophilum, at two interior coast-range study sites in northern California. Anaplasma phagocytophilum, the agent of granulocytic anaplasmosis (GA), and B. burgdorferi s.s., the agent of Lyme disease (LD), are tick-borne pathogens that are well established in California. We screened blood and ticks from 349 individual birds in 48 species collected in 2011 and 2012 using pathogen-specific PCR. A total of 617 immature I. pacificus was collected with almost three times as many larvae than nymphs. There were 7.5 times more I. pacificus at the Napa County site compared to the Yolo County site. Two of 74 (3%) nymphal pools from an Oregon junco (Junco hyemalis) and a hermit thrush (Catharus guttatus) and 4 individual larvae (all from Oregon juncos) were PCR-positive for B. burgdorferi. Blood samples from a golden-crowned sparrow (Zonotrichia atricapilla) and a European starling (Sturnus vulgaris) were positive for A. phagocytophilum DNA at very low levels. Birds that forage on ground or bark and nest on the ground, as well as some migratory species, are at an increased risk for acquiring I. pacificus. Our findings show that birds contribute to the ecologies of LD and GA in California by serving as a blood-meal source, feeding and transporting immature I. pacificus, and sometimes as a source of Borrelia infection. PMID:24690191

  12. Genetic diversity of Borrelia burgdorferi sensu stricto in Peromyscus leucopus, the primary reservoir of Lyme disease in a region of endemicity in southern Maryland.

    PubMed

    Anderson, Jennifer M; Norris, Douglas E

    2006-08-01

    In the north central and northeastern United States, Borrelia burgdorferi sensu stricto, the etiologic agent of Lyme disease (LD), is maintained in an enzootic cycle between the vector, Ixodes scapularis, and the primary reservoir host, Peromyscus leucopus. Genetic diversity of the pathogen based on sequencing of two plasmid-located genes, those for outer surface protein A (ospA) and outer surface protein C (ospC), has been examined in both tick and human specimens at local, regional, and worldwide population scales. Additionally, previous studies have only been conducted with tick or human specimens at the local population level in areas with high LD transmission rates. This study examined the genetic diversity of circulating borreliae in the reservoir population from a large region of the western coastal plains of southern Maryland, where moderate numbers of human LD cases are reported. Six ospA mobility classes, including two that were not previously described, and eight ospC groups were found among the P. leucopus samples. Twenty-five percent of all specimens were infected with more than one ospA or ospC variant. The frequency distribution of variants was homogeneous, both locally and spatially. The spirochete diversity found in Maryland was not as high as that observed among northern tick populations, yet similar genotypes were observed in both populations. These results also show that mice are important for maintaining Borrelia variants, even rare variants, and that reservoir populations should therefore be considered when assessing the diversity of B. burgdorferi.

  13. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library

    PubMed Central

    Feng, Jie; Shi, Wanliang; Zhang, Shuo; Sullivan, David; Auwaerter, Paul G.; Zhang, Ying

    2016-01-01

    Although currently recommended antibiotics for Lyme disease such as doxycycline or amoxicillin cure the majority of the patients, about 10–20% of patients treated for Lyme disease may experience lingering symptoms including fatigue, pain, or joint and muscle aches. Under experimental stress conditions such as starvation or antibiotic exposure, Borrelia burgdorferi can develop round body forms, which are a type of persister bacteria that appear resistant in vitro to customary first-line antibiotics for Lyme disease. To identify more effective drugs with activity against the round body form of B. burgdorferi, we established a round body persister model induced by exposure to amoxicillin (50 μg/ml) and then screened the Food and Drug Administration drug library consisting of 1581 drug compounds and also 22 drug combinations using the SYBR Green I/propidium iodide viability assay. We identified 23 drug candidates that have higher activity against the round bodies of B. burgdorferi than either amoxicillin or doxycycline. Eleven individual drugs scored better than metronidazole and tinidazole which have been previously described to be active against round bodies. In this amoxicillin-induced round body model, some drug candidates such as daptomycin and clofazimine also displayed enhanced activity which was similar to a previous screen against stationary phase B. burgdorferi persisters not exposure to amoxicillin. Additional candidate drugs active against round bodies identified include artemisinin, ciprofloxacin, nifuroxime, fosfomycin, chlortetracycline, sulfacetamide, sulfamethoxypyridazine and sulfathiozole. Two triple drug combinations had the highest activity against amoxicillin-induced round bodies and stationary phase B. burgdorferi persisters: artemisinin/cefoperazone/doxycycline and sulfachlorpyridazine/daptomycin/doxycycline. These findings confirm and extend previous findings that certain drug combinations have superior activity against B. burgdorferi

  14. Interleukin-10 anti-inflammatory response to Borrelia burgdorferi, the agent of Lyme disease: a possible role for suppressors of cytokine signaling 1 and 3.

    PubMed

    Dennis, Vida A; Jefferson, Ayanna; Singh, Shree R; Ganapamo, Frédéric; Philipp, Mario T

    2006-10-01

    It has been established that interleukin-10 (IL-10) inhibits inflammatory cytokines produced by macrophages in response to Borrelia burgdorferi or its lipoproteins. The mechanism by which IL-10 exerts this anti-inflammatory effect is still unknown. Recent findings indicate that suppressors of cytokine signaling (SOCS) proteins are induced by cytokines and Toll-like receptor (TLR)-mediated stimuli, and in turn they can down-regulate cytokine and TLR signaling in macrophages. Because it is known that SOCS are induced by IL-10 and that B. burgdorferi and its lipoproteins most likely interact via TLR2 or the heterodimers TLR2/1 and/or TLR2/6, we hypothesized that SOCS are induced by IL-10 and B. burgdorferi and its lipoproteins in macrophages and that SOCS may mediate the inhibition by IL-10 of concomitantly elicited cytokines. We report here that mouse J774 macrophages incubated with IL-10 and added B. burgdorferi spirochetes (freeze-thawed, live, or sonicated) or lipidated outer surface protein A (L-OspA) augmented their SOCS1/SOCS3 mRNA and protein expression, with SOCS3 being more abundant. Pam(3)Cys, a synthetic lipopeptide, also induced SOCS1/SOCS3 expression under these conditions, but unlipidated OspA was ineffective. Neither endogenous IL-10 nor the translation inhibitor cycloheximide blocked SOCS1/SOCS3 induction by B. burgdorferi and its lipoproteins, indicating that the expression of other genes is not required. This temporally correlated with the IL-10-mediated inhibition of the inflammatory cytokines IL-1beta, IL-6, IL-12p40, IL-18, and tumor necrosis factor alpha. Our data are evidence to suggest that expression of SOCS is part of the mechanism of IL-10-mediated inhibition of inflammatory cytokines elicited by B. burgdorferi and its lipoproteins.

  15. Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks collected from moose (Alces alces) and roe deer (Capreolus capreolus) in southern Norway.

    PubMed

    Kjelland, Vivian; Ytrehus, Bjørnar; Stuen, Snorre; Skarpaas, Tone; Slettan, Audun

    2011-06-01

    As part of a larger survey, ears from 18 roe deer (Capreolus capreolus) and 52 moose (Alces alces) shot in the 2 southernmost counties in Norway were collected and examined for Ixodes ricinus ticks. Seventy-two adult ticks, 595 nymphs, and 267 larvae from the roe deer, and 182 adult ticks, 433 nymphs, and 70 larvae from the moose were investigated for infection with Borrelia burgdorferi sensu lato (s.l.). The results showed the presence of B. burgdorferi s.l. DNA in 2.9% of the nymphs collected from roe deer and in 4.4% of the nymphs and 6.0% of the adults collected from moose. The spirochetes were not detected in adult ticks from roe deer, or in larvae feeding on roe deer or moose. In comparison, the mean infection prevalences in questing I. ricinus collected from the same geographical area were 0.5% infection in larvae, 24.5% in nymphs, and 26.9% in adults. The most prevalent B. burgdorferi genospecies identified in ticks collected from roe deer was B. afzelii (76.5%), followed by B. garinii (17.6%), and B. burgdorferi sensu stricto (5.9%). Only B. afzelii (76.7%) and B. garinii (23.3%) were detected in ticks collected from moose. The present study indicates a lower prevalence of B. burgdorferi infection in I. ricinus ticks feeding on roe deer and moose compared to questing ticks. This is the first study to report B. burgdorferi s.l. prevalence in ticks removed from cervids in Norway.

  16. Spread of Ixodes scapularis (Acari:Ixodidae) in Indiana: collections of adults in 1991-1994 and description of a Borrelia burgdorferi-infected population.

    PubMed

    Pinger, R R; Timmons, L; Karris, K

    1996-09-01

    Collection records for the adult black legged tick, Ixodes scapularis Say, in Indiana for the period 1991-1994 are presented and a new, established population of Borrelia burgdorferi-infected I. scapularis is described. The number of I. scapularis adults collected in Indiana increased progressively from 19 in 1991 to > 200 in 1994, and the number of Indiana counties reporting at least 1 adult increased from 13 to 29. Also, during this period, 4 countries in northwestern Indiana yielded > 10 specimens each, and B. burgdorferi-infected ticks were collected in 2 of these counties. An established population of I. scapularis, as evidenced by the presence of questing larvae, nymphs, and adults, was discovered in Jasper County in 1993. Twelve of 39 adults (31%) and 4 of 44 nymphs (9%) collected with cloth drags were infected with B. burgdorferi. Three of 49 (6%) white-footed mice, Peromyscus leucopus, collected from the site were also infected with B. burgdorferi. We believe that this focus was established at least 8 yr ago, and that a tick originating from this focus was responsible for a case of Lyme disease reported from this county in 1985.

  17. Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution

    PubMed Central

    Simon, Julie A; Marrotte, Robby R; Desrosiers, Nathalie; Fiset, Jessica; Gaitan, Jorge; Gonzalez, Andrew; Koffi, Jules K; Lapointe, Francois-Joseph; Leighton, Patrick A; Lindsay, Lindsay R; Logan, Travis; Milord, Francois; Ogden, Nicholas H; Rogic, Anita; Roy-Dufresne, Emilie; Suter, Daniel; Tessier, Nathalie; Millien, Virginie

    2014-01-01

    Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution. PMID:25469157

  18. Elimination of Borrelia burgdorferi and Anaplasma phagocytophilum in Rodent Reservoirs and Ixodes scapularis Ticks Using a Doxycycline Hyclate-Laden Bait

    PubMed Central

    Dolan, Marc C.; Schulze, Terry L.; Jordan, Robert A.; Dietrich, Gabrielle; Schulze, Christopher J.; Hojgaard, Andrias; Ullmann, Amy J.; Sackal, Cherilyn; Zeidner, Nordin S.; Piesman, Joseph

    2011-01-01

    A field trial was conducted in a Lyme disease-endemic area of New Jersey to determine the efficacy of a doxycyline hyclate rodent bait to prophylactically protect and cure small-mammal reservoirs and reduce infection rates in questing Ixodes scapularis ticks for Borrelia burgdorferi and Anaplasma phagocytophilum. The doxycycline-laden bait was formulated at a concentration of 500 mg/kg and delivered during the immature tick feeding season in rodent-targeted bait boxes. The percentage of infected small mammals recovered from treated areas after 2 years of treatment was reduced by 86.9% for B. burgdorferi and 74% for A. phagocytophilum. Infection rates in questing nymphal ticks for both B. burgdorferi and A. phagocytophilum were reduced by 94.3% and 92%, respectively. Results from this study indicate that doxycycline-impregnated bait is an effective means of reducing infection rates for B. burgdorferi and A. phagocytophilum in both rodent reservoirs and questing I. scapularis ticks. PMID:22144454

  19. Linkages of Weather and Climate With Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), Enzootic Transmission of Borrelia burgdorferi, and Lyme Disease in North America.

    PubMed

    Eisen, Rebecca J; Eisen, Lars; Ogden, Nicholas H; Beard, Charles B

    2016-03-01

    Lyme disease has increased both in incidence and geographic extent in the United States and Canada over the past two decades. One of the underlying causes is changes during the same time period in the distribution and abundance of the primary vectors: Ixodes scapularis Say and Ixodes pacificus Cooley and Kohls in eastern and western North America, respectively. Aside from short periods of time when they are feeding on hosts, these ticks exist in the environment where temperature and relative humidity directly affect their development, survival, and host-seeking behavior. Other important factors that strongly influence tick abundance as well as the proportion of ticks infected with the Lyme disease spirochete, Borrelia burgdorferi, include the abundance of hosts for the ticks and the capacity of tick hosts to serve as B. burgdorferi reservoirs. Here, we explore the linkages between climate variation and: 1) duration of the seasonal period and the timing of peak activity; 2) geographic tick distributions and local abundance; 3) enzootic B. burgdorferi transmission cycles; and 4) Lyme disease cases. We conclude that meteorological variables are most influential in determining host-seeking phenology and development, but, while remaining important cofactors, additional variables become critical when exploring geographic distribution and local abundance of ticks, enzootic transmission of B. burgdorferi, and Lyme disease case occurrence. Finally, we review climate change-driven projections for future impact on vector ticks and Lyme disease and discuss knowledge gaps and research needs.

  20. Environmental determinants of Ixodes ricinus ticks and the incidence of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland.

    PubMed

    James, M C; Bowman, A S; Forbes, K J; Lewis, F; McLeod, J E; Gilbert, L

    2013-02-01

    Lyme borreliosis (LB) is the most common arthropod-borne disease of humans in the Northern hemisphere. In Europe, the causative agent, Borrelia burgdorferi sensu lato complex, is principally vectored by Ixodes ricinus ticks. The aim of this study was to identify environmental factors influencing questing I. ricinus nymph abundance and B. burgdorferi s.l. infection in questing nymphs using a large-scale survey across Scotland. Ticks, host dung and vegetation were surveyed at 25 woodland sites, and climatic variables from a Geographical Information System (GIS) were extracted for each site. A total of 2397 10 m2 transect surveys were conducted and 13 250 I. ricinus nymphs counted. Questing nymphs were assayed for B. burgdorferi s.l. and the average infection prevalence was 5·6% (range 0·8-13·9%). More questing nymphs and higher incidence of B. burgdorferi s.l. infection were found in areas with higher deer abundance and in mixed/deciduous compared to coniferous forests, as well as weaker correlations with season, altitude, rainfall and ground vegetation. No correlation was found between nymph abundance and infection prevalence within the ranges encountered. An understanding of the environmental conditions associated with tick abundance and pathogen prevalence may be used to reduce risk of exposure and to predict future pathogen prevalence and distributions under environmental changes.

  1. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the

  2. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the

  3. Identification of Borrelia burgdorferi Ribosomal Protein L25 by the Phage Surface Display Method and Evaluation of the Protein's Value for Serodiagnosis

    PubMed Central

    Mueller, Markus; Bunk, Sebastian; Diterich, Isabel; Weichel, Michael; Rauter, Carolin; Hassler, Dieter; Hermann, Corinna; Crameri, Reto; Hartung, Thomas

    2006-01-01

    The phage surface display technique was used to identify Borrelia burgdorferi antigens. By affinity selection with immunoglobulin G from pooled sera of six Lyme borreliosis (LB) patients, the ribosomal protein L25 was identified. The diagnostic value of L25 was investigated by an enzyme-linked immunosorbent assay, using sera from 80 LB patients and 75 controls, and the use of the protein resulted in a specificity of 99% and a 23% sensitivity, which qualify L25 as a useful antigen when combined with others. PMID:17021109

  4. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France.

    PubMed

    Vourc'h, G; Abrial, D; Bord, S; Jacquot, M; Masséglia, S; Poux, V; Pisanu, B; Bailly, X; Chapuis, J-L

    2016-07-01

    Lyme borreliosis is a major zoonosis in Europe, with estimates of over 26,000 cases per year in France alone. The etiological agents are spirochete bacteria that belong to the Borrelia burgdorferi sensu lato (s. l.) complex and are transmitted by hard ticks among a large range of vertebrate hosts. In Europe, the tick Ixodes ricinus is the main vector. In the absence of a vaccine and given the current difficulties to diagnose and treat chronic Lyme syndromes, there is urgent need for prevention. In this context, accurate information on the spatial patterns of risk of exposure to ticks is of prime importance for public health. The objective of our study was to provide a snapshot map of the risk of human infection with B. burgdorferi s. l. pathogens in a periurban forest at a high resolution, and to analyze the factors that contribute to variation in this risk. Field monitoring took place over three weeks in May 2011 in the suburban Sénart forest (3,200ha; southeast of Paris), which receives over 3 million people annually. We sampled ticks over the entire forest area (from 220 forest stands with a total area of 35,200m(2)) and quantified the density of questing nymphs (DON), the prevalence of infection among nymphs (NIP), and the density of infected nymphs (DIN), which is the most important predictor of the human risk of Lyme borreliosis. For each of these response variables, we explored the relative roles of weather (saturation deficit), hosts (abundance indices of ungulates and Tamias sibiricus, an introduced rodent species), vegetation and forest cover, superficial soil composition, and the distance to forest roads. In total, 19,546 questing nymphs were collected and the presence of B. burgdorferi s. l. was tested in 3,903 nymphs by qPCR. The mean DON was 5.6 nymphs per 10m(2) (standard deviation=10.4) with an average NIP of 10.1% (standard deviation=0.11). The highest DIN was 8.9 infected nymphs per 10m(2), with a mean of 0.59 (standard deviation=0.6). Our

  5. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France.

    PubMed

    Vourc'h, G; Abrial, D; Bord, S; Jacquot, M; Masséglia, S; Poux, V; Pisanu, B; Bailly, X; Chapuis, J-L

    2016-07-01

    Lyme borreliosis is a major zoonosis in Europe, with estimates of over 26,000 cases per year in France alone. The etiological agents are spirochete bacteria that belong to the Borrelia burgdorferi sensu lato (s. l.) complex and are transmitted by hard ticks among a large range of vertebrate hosts. In Europe, the tick Ixodes ricinus is the main vector. In the absence of a vaccine and given the current difficulties to diagnose and treat chronic Lyme syndromes, there is urgent need for prevention. In this context, accurate information on the spatial patterns of risk of exposure to ticks is of prime importance for public health. The objective of our study was to provide a snapshot map of the risk of human infection with B. burgdorferi s. l. pathogens in a periurban forest at a high resolution, and to analyze the factors that contribute to variation in this risk. Field monitoring took place over three weeks in May 2011 in the suburban Sénart forest (3,200ha; southeast of Paris), which receives over 3 million people annually. We sampled ticks over the entire forest area (from 220 forest stands with a total area of 35,200m(2)) and quantified the density of questing nymphs (DON), the prevalence of infection among nymphs (NIP), and the density of infected nymphs (DIN), which is the most important predictor of the human risk of Lyme borreliosis. For each of these response variables, we explored the relative roles of weather (saturation deficit), hosts (abundance indices of ungulates and Tamias sibiricus, an introduced rodent species), vegetation and forest cover, superficial soil composition, and the distance to forest roads. In total, 19,546 questing nymphs were collected and the presence of B. burgdorferi s. l. was tested in 3,903 nymphs by qPCR. The mean DON was 5.6 nymphs per 10m(2) (standard deviation=10.4) with an average NIP of 10.1% (standard deviation=0.11). The highest DIN was 8.9 infected nymphs per 10m(2), with a mean of 0.59 (standard deviation=0.6). Our

  6. Ixodes scapularis and Borrelia burgdorferi among diverse habitats within a natural area in east-central Illinois.

    PubMed

    Rydzewski, Jennifer; Mateus-Pinilla, Nohra; Warner, Richard E; Hamer, Sarah; Weng, Hsin-Yi

    2011-10-01

    The distributions of the tick vector, Ixodes scapularis, and of the etiologic agent of Lyme disease, Borrelia burgdorferi (Bb), have continued expanding in Illinois over the past 20 years, but the extent of their spread is not well known. The role of multiple habitats in the establishment and maintenance of I. scapularis and Bb at local scales is not well understood, and the use of integrated approaches to evaluate local scale dynamics is rare. We evaluated habitat diversity and temporal changes of I. scapularis occurrence and Bb infection within a natural area in Piatt County, Illinois, where I. scapularis were first detected in 2002. Small mammals were trapped and attached ticks were collected in young forest, prairie, mature forest, and flood plain sites from 2005 to 2009. Small mammal abundance, and the prevalence (% mammals infested), mean intensity (I. scapularis per infested mammal), and relative density (I. scapularis per mammal trapped) of I. scapularis were computed for each habitat type and compared. Immature I. scapularis were tested for Bb infection using polymerase chain reaction techniques. Out of 2446 trapped small mammals, 388 were infested with I. scapularis. The prairie had the highest diversity of small mammal hosts. Prevalence, mean intensity, and relative density of I. scapularis and prevalence of Bb infection were highest for the prairie and young forest sites; in the former, all infection was associated with the prairie vole, Microtus ochrogaster. The minimum Bb infection prevalence of on-host I. scapularis collected in the natural area was 14% (n=56). Unlike previous studies solely focused on forested areas and Peromyscus leucopus, our study is the first to provide evidence of I. scapularis collected from prairie habitat and other reservoir hosts, particularly M. ochrogaster. PMID:21688974

  7. Human Lyme arthritis and the immunoglobulin G antibody response to the 37-kilodalton arthritis-related protein of Borrelia burgdorferi.

    PubMed

    Salazar, Carlos A; Rothemich, Monika; Drouin, Elise E; Glickstein, Lisa; Steere, Allen C

    2005-05-01

    In Borrelia burgdorferi-infected C3H-scid mice, antiserum to a differentially expressed, 37-kDa spirochetal outer-surface protein, termed arthritis-related protein (Arp), has been shown to prevent or reduce the severity of arthritis. In this study, we determined the immunoglobulin G (IgG) antibody responses to this spirochetal protein in single serum samples from 124 antibiotic-treated human patients with early or late manifestations of Lyme disease and in serial serum samples from 20 historic, untreated patients who were followed longitudinally from early infection through the period of arthritis. These 20 patients were representative of the spectrum of the severity and duration of Lyme arthritis. Among the 124 antibiotic-treated patients, 53% with culture-proven erythema migrans (EM) had IgG responses to recombinant glutathione S-transferase (GST)-Arp, as did 59% of the patients with facial palsy and 68% of those with Lyme arthritis. In addition, 75 to 80% of the 20 past, untreated patients had reactivity with this protein when EM was present, during initial episodes of joint pain, or during the maximal period of arthritis. There was no association at any of these three time points between GST-Arp antibody levels and the severity of the maximal attack of arthritis or the total duration of arthritis. Thus, after the first several weeks of infection, 60 to 80% of patients had IgG antibody responses to GST-Arp, but this response did not correlate with the severity or duration of Lyme arthritis.

  8. Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide

    PubMed Central

    Steere, Allen C.; Klitz, William; Drouin, Elise E.; Falk, Ben A.; Kwok, William W.; Nepom, Gerald T.; Baxter-Lowe, Lee Ann

    2006-01-01

    An association has previously been shown between antibiotic-refractory Lyme arthritis, the human histocompatibility leukocyte antigen (HLA)–DR4 molecule, and T cell recognition of an epitope of Borrelia burgdorferi outer-surface protein A (OspA163–175). We studied the frequencies of HLA-DRB1-DQA1-DQB1 haplotypes in 121 patients with antibiotic-refractory or antibiotic-responsive Lyme arthritis and correlated these frequencies with in vitro binding of the OspA163–175 peptide to 14 DRB molecules. Among the 121 patients, the frequencies of HLA-DRB1-DQA1-DQB1 haplotypes were similar to those in control subjects. However, when stratified by antibiotic response, the frequencies of DRB1 alleles in the 71 patients with antibiotic-refractory arthritis differed significantly from those in the 50 antibiotic-responsive patients (log likelihood test, P = 0.006; exact test, P = 0.008; effect size, Wn = 0.38). 7 of the 14 DRB molecules (DRB1*0401, 0101, 0404, 0405, DRB5*0101, DRB1*0402, and 0102) showed strong to weak binding of OspA163–175, whereas the other seven showed negligible or no binding of the peptide. Altogether, 79% of the antibiotic-refractory patients had at least one of the seven known OspA peptide–binding DR molecules compared with 46% of the antibiotic-responsive patients (odds ratio = 4.4; P < 0.001). We conclude that binding of a single spirochetal peptide to certain DRB molecules is a marker for antibiotic-refractory Lyme arthritis and might play a role in the pathogenesis of the disease. PMID:16585267

  9. Human Lyme Arthritis and the Immunoglobulin G Antibody Response to the 37-Kilodalton Arthritis-Related Protein of Borrelia burgdorferi

    PubMed Central

    Salazar, Carlos A.; Rothemich, Monika; Drouin, Elise E.; Glickstein, Lisa; Steere, Allen C.

    2005-01-01

    In Borrelia burgdorferi-infected C3H-scid mice, antiserum to a differentially expressed, 37-kDa spirochetal outer-surface protein, termed arthritis-related protein (Arp), has been shown to prevent or reduce the severity of arthritis. In this study, we determined the immunoglobulin G (IgG) antibody responses to this spirochetal protein in single serum samples from 124 antibiotic-treated human patients with early or late manifestations of Lyme disease and in serial serum samples from 20 historic, untreated patients who were followed longitudinally from early infection through the period of arthritis. These 20 patients were representative of the spectrum of the severity and duration of Lyme arthritis. Among the 124 antibiotic-treated patients, 53% with culture-proven erythema migrans (EM) had IgG responses to recombinant glutathione S-transferase (GST)-Arp, as did 59% of the patients with facial palsy and 68% of those with Lyme arthritis. In addition, 75 to 80% of the 20 past, untreated patients had reactivity with this protein when EM was present, during initial episodes of joint pain, or during the maximal period of arthritis. There was no association at any of these three time points between GST-Arp antibody levels and the severity of the maximal attack of arthritis or the total duration of arthritis. Thus, after the first several weeks of infection, 60 to 80% of patients had IgG antibody responses to GST-Arp, but this response did not correlate with the severity or duration of Lyme arthritis. PMID:15845501

  10. Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide.

    PubMed

    Steere, Allen C; Klitz, William; Drouin, Elise E; Falk, Ben A; Kwok, William W; Nepom, Gerald T; Baxter-Lowe, Lee Ann

    2006-04-17

    An association has previously been shown between antibiotic-refractory Lyme arthritis, the human histocompatibility leukocyte antigen (HLA)-DR4 molecule, and T cell recognition of an epitope of Borrelia burgdorferi outer-surface protein A (OspA163-175). We studied the frequencies of HLA-DRB1-DQA1-DQB1 haplotypes in 121 patients with antibiotic-refractory or antibiotic-responsive Lyme arthritis and correlated these frequencies with in vitro binding of the OspA163-175 peptide to 14 DRB molecules. Among the 121 patients, the frequencies of HLA-DRB1-DQA1-DQB1 haplotypes were similar to those in control subjects. However, when stratified by antibiotic response, the frequencies of DRB1 alleles in the 71 patients with antibiotic-refractory arthritis differed significantly from those in the 50 antibiotic-responsive patients (log likelihood test, P = 0.006; exact test, P = 0.008; effect size, Wn = 0.38). 7 of the 14 DRB molecules (DRB1*0401, 0101, 0404, 0405, DRB5*0101, DRB1*0402, and 0102) showed strong to weak binding of OspA163-175, whereas the other seven showed negligible or no binding of the peptide. Altogether, 79% of the antibiotic-refractory patients had at least one of the seven known OspA peptide-binding DR molecules compared with 46% of the antibiotic-responsive patients (odds ratio = 4.4; P < 0.001). We conclude that binding of a single spirochetal peptide to certain DRB molecules is a marker for antibiotic-refractory Lyme arthritis and might play a role in the pathogenesis of the disease.

  11. Human TLR8 is activated upon recognition of Borrelia burgdorferi RNA in the phagosome of human monocytes

    PubMed Central

    Cervantes, Jorge L.; La Vake, Carson J.; Weinerman, Bennett; Luu, Stephanie; O'Connell, Caitlin; Verardi, Paulo H.; Salazar, Juan C.

    2013-01-01

    Phagocytosed Borrelia burgdorferi (Bb), the Lyme disease spirochete, induces a robust and complex innate immune response in human monocytes, in which TLR8 cooperates with TLR2 in the induction of NF-κB-mediated cytokine production, whereas TLR8 is solely responsible for transcription of IFN-β through IRF7. We now establish the role of Bb RNA in TLR8-mediated induction of IFN-β. First, using TLR2-transfected HEK.293 cells, which were unable to phagocytose intact Bb, we observed TLR2 activation by lipoprotein-rich borrelial lysates and TLR2 synthetic ligands but not in response to live spirochetes. Purified Bb RNA, but not borrelial DNA, triggered TLR8 activation. Neither of these 2 ligands induced activation of TLR7. Using purified human monocytes we then show that phagocytosed live Bb, as well as equivalent amounts of borrelial RNA delivered into the phagosome by polyethylenimine (PEI), induces transcription of IFN-β and secretion of TNF-α. The cytokine response to purified Bb RNA was markedly impaired in human monocytes naturally deficient in IRAK-4 and in cells with knockdown TLR8 expression by small interfering RNA. Using confocal microscopy we provide evidence that TLR8 colocalizes with internalized Bb RNA in both early (EEA1) and late endosomes (LAMP1). Live bacterial RNA staining indicates that spirochetal RNA does not transfer from the phagosome into the cytosol. Using fluorescent dextran particles we show that phagosomal integrity in Bb-infected monocytes is not affected. We demonstrate, for the first time, that Bb RNA is a TLR8 ligand in human monocytes and that transcription of IFN-β in response to the spirochete is induced from within the phagosomal vacuole through the TLR8-MyD88 pathway. PMID:23906644

  12. Genetic Heterogeneity of Borrelia burgdorferi Sensu Lato in the Southern United States Based on Restriction Fragment Length Polymorphism and Sequence Analysis

    PubMed Central

    Lin, T.; Oliver, J. H.; Gao, L.; Kollars, T. M.; Clark, K. L.

    2001-01-01

    Fifty-six strains of Borrelia burgdorferi sensu lato, isolated from ticks and vertebrate animals in Missouri, South Carolina, Georgia, Florida, and Texas, were identified and characterized by PCR-restriction fragment length polymorphism (RFLP) analysis of rrf (5S)-rrl (23S) intergenic spacer amplicons. A total of 241 to 258 bp of intergenic spacers between tandemly duplicated rrf (5S) and rrl (23S) was amplified by PCR. MseI and DraI restriction fragment polymorphisms were used to analyze these strains. PCR-RFLP analysis results indicated that the strains represented at least three genospecies and 10 different restriction patterns. Most of the strains isolated from the tick Ixodes dentatus in Missouri and Georgia belonged to the genospecies Borrelia andersonii. Excluding the I. dentatus strains, most southern strains, isolated from the ticks Ixodes scapularis and Ixodes affinis, the cotton rat (Sigmodon hispidus), and cotton mouse (Peromyscus gossypinus) in Georgia and Florida, belonged to Borrelia burgdorferi sensu stricto. Seven strains, isolated from Ixodes minor, the wood rat (Neotoma floridana), the cotton rat, and the cotton mouse in South Carolina and Florida, belonged to Borrelia bissettii. Two strains, MI-8 from Florida and TXW-1 from Texas, exhibited MseI and DraI restriction patterns different from those of previously reported genospecies. Eight Missouri tick strains (MOK-3a group) had MseI patterns similar to that of B. andersonii reference strain 21038 but had a DraI restriction site in the spacer. Strain SCGT-8a had DraI restriction patterns identical to that of strain 25015 (B. bissettii) but differed from strain 25015 in its MseI restriction pattern. Strain AI-1 had the same DraI pattern as other southern strains in the B. bissettii genospecies but had a distinct MseI profile. The taxonomic status of these atypical strains needs to be further evaluated. To clarify the taxonomic positions of these atypical Borrelia strains, the complete sequences of

  13. Diagnostic value of proteins of three Borrelia species (Borrelia burgdorferi sensu lato) and implications for development and use of recombinant antigens for serodiagnosis of Lyme borreliosis in Europe.

    PubMed

    Hauser, U; Lehnert, G; Wilske, B

    1998-07-01

    More and more assays for the serodiagnosis of Lyme borreliosis (LB) are based on recombinant antigens. However, so far, there is no consensus as to which are the most specific and sensitive proteins and how they should be used in combination to obtain tests with the best discrimination abilities. The present study was preceded by a detailed analysis of Western blots (WB) using whole-cell lysates of Borrelia burgdorferi sensu stricto strain PKa2, B. afzelii PKo, and B. garinii PBi (U. Hauser, G. Lehnert, R. Lobentanzer, and B. Wilske, J. Clin. Microbiol. 35:1433-1444, 1997). For the present work, the data bank from that study, containing information about the reactivities of 330 sera (from patients at different stages of LB [n = 189]; control group, n = 141), was reused. The specificities and sensitivities of various combinations of proteins from different strains were calculated for different interpretation criteria. For immunoglobulin G (IgG) WB, the recommended combination of antigens available to date as recombinant proteins included p83/100 of PKa2, p83/100 of PKo, p39 of PKo, p39 of PBi, and OspC of PBi (interpretation criterion, at least one reactive band required for a positive WB; specificity, 96.5%; sensitivity, 56.1%). The further addition of p58 of PKo, p17 of PKo, or p14 of PKo was most favorable in terms of both a considerable gain of sensitivity and little loss of specificity. IgG Western blotting with a whole-cell lysate of strain PKo might be improved by the addition of OspC of PBi. For IgG WB, the best combination, out of all bands, was p83/100, p58, p39, p30, and p21 of all three strains and OspC of PBi, p17b of PBi, p56 of PKa2, p43 of PKo, p17 of PKo, and p14 of PKo (interpretation criterion, at least two reactive bands required for a positive WB; specificity, 97.2%; sensitivity, 61.4%). An interpretation criterion of at least two reactive bands is more reliable than one of only one reactive band. For IgM WB, the best combination was OspC of PKo

  14. Cerebrospinal fluid T-regulatory cells recognize Borrelia burgdorferi NAPA in chronic Lyme borreliosis.

    PubMed

    Amedei, A; Codolo, G; Ozolins, D; Ballerini, C; Biagioli, T; Jaunalksne, I; Zilevica, A; D Elios, S; De Bernard, M; D' Elios, M M

    2013-01-01

    The NapA protein of B. burgdorferi is essential for the persistence of spirochetes in ticks. One of the most intriguing aspects of NapA is its potential to interfere with the host immune system. Here, we investigated the role of the acquired immune responses induced by NapA in the cerebrospinal fluids (CSF) of patients with chronic Lyme borreliosis. We evaluated the cytokine profile induced in microglia cells and CSF T cells following NapA stimulation. We report here that NapA induced a regulatory T (Treg) response in the CSF of patients with chronic Lyme borreliosis and it is able to expand this suppressive response by promoting the production of TGF-beta and IL-10 by microglia cells. Collectively, these data strongly support a central role of NapA in promoting both Treg response and immune suppression in the CSF of patients with chronic Lyme borreliosis and suggest that NapA and the Treg pathway may represent novel therapeutic targets for the prevention and treatment of the disease. PMID:24355226

  15. Population structure of the lyme borreliosis spirochete Borrelia burgdorferi in the western black-legged tick (Ixodes pacificus) in Northern California.

    PubMed

    Girard, Yvette A; Travinsky, Bridgit; Schotthoefer, Anna; Fedorova, Natalia; Eisen, Rebecca J; Eisen, Lars; Barbour, Alan G; Lane, Robert S

    2009-11-01

    Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients. PMID:19783741

  16. Lyme disease risk not amplified in a species-poor vertebrate community: similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies.

    PubMed

    States, S L; Brinkerhoff, R J; Carpi, G; Steeves, T K; Folsom-O'Keefe, C; DeVeaux, M; Diuk-Wasser, M A

    2014-10-01

    The effect of biodiversity declines on human health is currently debated, but empirical assessments are lacking. Lyme disease provides a model system to assess relationships between biodiversity and human disease because the etiologic agent, Borrelia burgdorferi, is transmitted in the United States by the generalist black-legged tick (Ixodes scapularis) among a wide range of mammalian and avian hosts. The 'dilution effect' hypothesis predicts that species-poor host communities dominated by white-footed mice (Peromyscus leucopus) will pose the greatest human risk because P. leucopus infects the largest numbers of ticks, resulting in higher human exposure to infected I. scapularis ticks. P. leucopus-dominated communities are also expected to maintain a higher frequency of those B. burgdorferi outer surface protein C (ospC) genotypes that this host species more efficiently transmits ('multiple niche polymorphism' hypothesis). Because some of these genotypes are human invasive, an additive increase in human disease risk is expected in species-poor settings. We assessed these theoretical predictions by comparing I. scapularis nymphal infection prevalence, density of infected nymphs and B. burgdorferi genotype diversity at sites on Block Island, RI, where P. leucopus dominates the mammalian host community, to species-diverse sites in northeastern Connecticut. We found no support for the dilution effect hypothesis; B. burgdorferi nymphal infection prevalence was similar between island and mainland and the density of B. burgdorferi infected nymphs was higher on the mainland, contrary to what is predicted by the dilution effect hypothesis. Evidence for the multiple niche polymorphism hypothesis was mixed: there was lower ospC genotype diversity at island than mainland sites, but no overrepresentation of genotypes with higher fitness in P. leucopus or that are more invasive in humans. We conclude that other mechanisms explain similar nymphal infection prevalence in both

  17. Comparison of polymerase chain reaction and culture for detection of Borrelia burgdorferi in naturally infected Peromyscus leucopus and experimentally infected C.B-17 scid/scid mice.

    PubMed

    Hofmeister, E K; Markham, R B; Childs, J E; Arthur, R R

    1992-10-01

    Culture and the polymerase chain reaction (PCR) were compared for detection of Borrelia burgdorferi infection in wild-caught Peromyscus leucopus and experimentally inoculated C.B-17 scid/scid (severe combined immunodeficient) mice. PCR targeted highly conserved regions of the ospA gene and could detect one to five cultured organisms and 10 to 50 copies of molecularly cloned ospA DNA. Organs (kidney, spleen, and urinary bladder) and/or ear biopsy samples were obtained from 108 captured P. leucopus mice, and tissues were obtained from 7 experimentally inoculated mice. A simple sample-processing procedure with proteinase K and detergent treatment was used in the PCR analysis. Overall, B. burgdorferi was detected in 29 of 108 (27%) P. leucopus mice by culture and in 31 of 108 (29%) mice by PCR. As assessed by the kappa statistic, agreement between PCR and culture was high for ear and bladder (kappa = 0.80 and 0.65, respectively) and low for kidney and spleen (kappa = 0.37 and 0.03, respectively). While concordant results were obtained from 98 animals, PCR detected B. burgdorferi from 6 additional mice for which cultures were negative and culture detected B. burgdorferi from 4 animals which were PCR negative. Further phenol-chloroform extraction of DNA in a limited number of samples improved the sensitivity of PCR compared with that of culture. These results indicate that PCR may be as sensitive as culture for detecting B. burgdorferi in ear samples and that PCR analysis is suitable for establishing the infection status of animals in mark-release-recapture studies.

  18. Lyme disease risk not amplified in a species-poor vertebrate community: similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies

    PubMed Central

    States, S.L.; Brinkerhoff, R. J.; Carpi, G.; Steeves, T.K.; Folsom-O'Keefe, C.; DeVeaux, M.; Diuk-Wasser, M.A.

    2015-01-01

    The effect of biodiversity declines on human health are currently debated, but empirical assessments are lacking. Lyme disease provides a model system to assess relationships between biodiversity and human disease because the etiologic agent, Borrelia burgdorferi, is transmitted in the United States by the generalist black-legged tick (Ixodes scapularis) among a wide range of mammalian and avian hosts. The ‘dilution effect’ hypothesis predicts that species-poor host communities dominated by white-footed mice (Peromyscus leucopus) will pose the greatest human risk because P. leucopus infects the largest numbers of ticks, resulting in higher human exposure to infected I. scapularis ticks. P. leucopus-dominated communities are also expected to maintain a higher frequency of those B. burgdorferi outer surface protein C (ospC) genotypes that this host species more efficiently transmits (‘multiple niche polymorphism’ hypothesis). Because some of these genotypes are human invasive, an additive increase in human disease risk is expected in species-poor settings. We assessed these theoretical predictions by comparing I. scapularis nymphal infection prevalence, density of infected nymphs and B. burgdorferi genotype diversity at sites on Block Island, RI, where P. leucopus dominates the mammalian host community, to species-diverse sites in northeastern Connecticut. We found no support for the dilution effect hypothesis; B. burgdorferi nymphal infection prevalence was similar between island and mainland and the density of B. burgdorferi infected nymphs was higher on the mainland, contrary to what is predicted by the dilution effect hypothesis. Evidence for the multiple niche polymorphism hypothesis was mixed: there was lower ospC genotype diversity at island than mainland sites, but no overrepresentation of genotypes with higher fitness in P. leucopus or that are more invasive in humans. We conclude that other mechanisms explain similar nymphal infection prevalence in

  19. The MEK/ERK Pathway is the Primary Conduit for Borrelia burgdorferi-Induced Inflammation and P53-Mediated Apoptosis in Oligodendrocytes

    PubMed Central

    Parthasarathy, Geetha; Philipp, Mario T.

    2013-01-01

    Lyme neuroborreliosis (LNB) affects both the central and peripheral nervous systems. In a rhesus macaque model of LNB we had previously shown that brains of rhesus macaques inoculated with Borrelia burgdorferi release inflammatory mediators, and undergo oligodendrocyte and neuronal cell death. In vitro analysis of this phenomenon indicated that while B. burgdorferi can induce inflammation and apoptosis of oligodendrocytes per se, microglia are required for neuronal apoptosis. We hypothesized that the inflammatory milieu elicited by the bacterium in microglia or oligodendrocytes contributes to the apoptosis of neurons and glial cells, respectively, and that downstream signaling events in NFkB and/or MAPK pathways play a role in these phenotypes. To test these hypotheses in oligodendrocytes, several pathway inhibitors were used to determine their effect on inflammation and apoptosis, as induced by B. burgdorferi. In a human oligodendrocyte cell line (MO3.13), inhibition of the ERK pathway in the presence of B. burgdorferi markedly reduced inflammation, followed by the JNK, p38 and NFkB pathway inhibition. In addition to eliciting inflammation, B. burgdorferi also increased total p53 protein levels, and suppression of the ERK pathway mitigated this effect. While inhibition of p53 had a minimal effect in reducing inflammation, suppression of the ERK pathway or p53 reduced apoptosis as measured by active caspase-3 activity and the TUNEL assay. A similar result was seen in primary human oligodendrocytes wherein suppression of ERK or p53 reduced apoptosis. It is possible that inflammation and apoptosis in oligodendrocytes are divergent arms of MAPK pathways, particularly the MEK/ERK pathway. PMID:24114360

  20. Multiple antigen target approach using the Accuplex4 BioCD system to detect Borrelia burgdorferi antibodies in experimentally infected and vaccinated dogs.

    PubMed

    Moroff, Scott; Woodruff, Colby; Woodring, Todd; Sokolchik, Irene; Lappin, Michael R

    2015-09-01

    The primary objective of our study was to optimize detection of serum antibodies to Borrelia burgdorferi using a new commercial automated fluorescence system (Accuplex4 BioCD system, Antech Diagnostics, Lake Success, New York). The system used multiple natural and artificial peptides-outer surface proteins (OspA, OspC, OspF), an outer membrane protein (P39), and a proprietary synthetic peptide (small Lyme peptide [SLP])-and the results were compared with a commercially available enzyme-linked immunosorbent assay that uses a proprietary peptide (C6). Sera from 4 groups were evaluated: dogs vaccinated with 1 of 3 commercially available vaccines (n = 18); dogs infested with adult Ixodes scapularis (black-legged tick; n = 18); dogs previously vaccinated and then infested with I. scapularis (n = 18); and dogs with B. burgdorferi infection that were then vaccinated (n = 14). All of the vaccines evaluated induced OspA responses. However, antibodies against OspF or C6 were not induced in any of the vaccinated dogs. Additionally, the OspF antibodies had 100% sensitivity and specificity when compared to antibodies against C6 pept