Evaluation of Bosch-Based Systems Using Non-Traditional Catalysts at Reduced Temperatures
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew
2011-01-01
Oxygen and water resupply make open loop atmosphere revitalization (AR) systems unfavorable for long-term missions beyond low Earth orbit. Crucial to closing the AR loop are carbon dioxide reduction systems with low mass and volume, minimal power requirements, and minimal consumables. For this purpose, NASA is exploring using Bosch-based systems. The Bosch process is favorable over state-of-the-art Sabatier-based processes due to complete loop closure. However, traditional operation of the Bosch required high reaction temperatures, high recycle rates, and significant consumables in the form of catalyst resupply due to carbon fouling. A number of configurations have been proposed for next-generation Bosch systems. First, alternative catalysts (catalysts other than steel wool) can be used in a traditional single-stage Bosch reactor to improve reaction kinetics and increase carbon packing density. Second, the Bosch reactor may be split into separate stages wherein the first reactor stage is dedicated to carbon monoxide and water formation via the reverse water-gas shift reaction and the second reactor stage is dedicated to carbon formation. A series system will enable maximum efficiency of both steps of the Bosch reaction, resulting in optimized operation and maximum carbon formation rate. This paper details the results of testing of both single-stage and two-stage Bosch systems with alternative catalysts at reduced temperatures. These results are compared to a traditional Bosch system operated with a steel wool catalyst.
Bosch CO2 Reduction System Development
NASA Technical Reports Server (NTRS)
Holmes, R. F.; King, C. D.; Keller, E. E.
1976-01-01
Development of a Bosch process CO2 reduction unit was continued, and, by means of hardware modifications, the performance was substantially improved. Benefits of the hardware upgrading were demonstrated by extensive unit operation and data acquisition in the laboratory. This work was accomplished on a cold seal configuration of the Bosch unit.
NASA Technical Reports Server (NTRS)
Meissner, H. P.; Reid, R. C.
1972-01-01
Many previous studies have been carried out to elucidate certain aspects of the Bosch process wherein CO2 is reacted over an iron catalyst to form carbon and water at temperatures around 1100 F. These results are assembled, and with the aid of new experimental data, are used to analyze the various reactions involved. It is shown that CO2 and H2 will not usually react to deposit carbon unless water is removed in a recycle loop. The critical importance of large catalyst areas is stressed relative to catalyst pretreatment processes. It is shown that in most operating Bosch reactions, mass transfer controls the rate of reaction, and it is suggested that the carbon filaments found are the expected result of such a rate limiting process. Typical recycle gas mixtures are considered, and maximum water yields are determined from various cases. A few suggestions are made to improve Bosch reaction performance, and a number of unresolved problems are noted.
2012-03-01
the Haber - Bosch process, in which hydrogen is first produced from methane (eq. 1), then ammonia is produced from nitrogen and hydrogen: N2 (g...3H2 (g) - 2NH3 (g) (5) Agronomists have calculated that well over one-third of the world’s present population is fed by virtue of the Haber - Bosch ...fixation of nitrogen through the Haber - Bosch process, leading to a potential confluence of energy and fertilizer crises. Biological nitrogen fixation
Series Bosch System Development
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Evans, Christopher; Mansell, Matt; Swickrath, Michael
2012-01-01
State-of-the-art (SOA) carbon dioxide (CO2) reduction technology for the International Space Station produces methane as a byproduct. This methane is subsequently vented overboard. The associated loss of hydrogen ultimately reduces the mass of oxygen that can be recovered from CO2 in a closed-loop life support system. As an alternative to SOA CO2 reduction technology, NASA is exploring a Series-Bosch system capable of reducing CO2 with hydrogen to form water and solid carbon. This results in 100% theoretical recovery of oxygen from metabolic CO2. In the past, Bosch-based technology did not trade favorably against SOA technology due to a high power demand, low reaction efficiencies, concerns with carbon containment, and large resupply requirements necessary to replace expended catalyst cartridges. An alternative approach to Bosch technology, labeled "Series-Bosch," employs a new system design with optimized multi-stage reactors and a membrane-based separation and recycle capability. Multi-physics modeling of the first stage reactor, along with chemical process modeling of the integrated system, has resulted in a design with potential to trade significantly better than previous Bosch technology. The modeling process and resulting system architecture selection are discussed.
Performance Evaluation of Staged Bosch Process for CO2 Reduction to Produce Life Support Consumables
NASA Technical Reports Server (NTRS)
Vilekar, Saurabh A.; Hawley, Kyle; Junaedi, Christian; Walsh, Dennis; Roychoudhury, Subir; Abney. Morgan B.; Mansell, James M.
2012-01-01
Utilizing carbon dioxide to produce water and hence oxygen is critical for sustained manned missions in space, and to support both NASA's cabin Atmosphere Revitalization System (ARS) and In-Situ Resource Utilization (ISRU) concepts. For long term missions beyond low Earth orbit, where resupply is significantly more difficult and costly, open loop ARS, like Sabatier, consume inputs such as hydrogen. The Bosch process, on the other hand, has the potential to achieve complete loop closure and is hence a preferred choice. However, current single stage Bosch reactor designs suffer from a large recycle penalty due to slow reaction rates and the inherent limitation in approaching thermodynamic equilibrium. Developmental efforts are seeking to improve upon the efficiency (hence reducing the recycle penalty) of current single stage Bosch reactors which employ traditional steel wool catalysts. Precision Combustion, Inc. (PCI), with support from NASA, has investigated the potential for utilizing catalysts supported over short-contact time Microlith substrates for the Bosch reaction to achieve faster reaction rates, higher conversions, and a reduced recycle flows. Proof-of-concept testing was accomplished for a staged Bosch process by splitting the chemistry in two separate reactors, first being the reverse water-gas-shift (RWGS) and the second being the carbon formation reactor (CFR) via hydrogenation and/or Boudouard. This paper presents the results from this feasibility study at various operating conditions. Additionally, results from two 70 hour durability tests for the RWGS reactor are discussed.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Rabenberg, Ellen; Stanley, Christine M.; Edmunson, Jennifer; Alleman, James E.; Chen, Kevin; Dumez, Sam
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spent regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, James M.; Stanley, Christine; Edmunson, Jennifer; Dumez, Samuel; Chen, Kevin; Alleman, James E.
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spend regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Evolving Maturation of the Series-Bosch System
NASA Technical Reports Server (NTRS)
Stanley, Christine; Abney, Morgan B.; Barnett, Bill
2017-01-01
Human exploration missions to Mars and other destinations beyond low Earth orbit require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. In order to meet this requirement, NASA has continued the development of a Series-Bosch System, a two stage reactor process that reduces carbon dioxide (CO2) with hydrogen (H2) to produce water and solid carbon. Theoretically, the Bosch process can recover 100% of the oxygen (O2) from CO2 in the form of water, making it an attractive option for long duration missions. The Series Bosch system includes a reverse water gas shift (RWGS) reactor, a carbon formation reactor (CFR), an H2 extraction membrane, and a CO2 extraction membrane. In 2016, the results of integrated testing of the Series Bosch system showed great promise and resulted in design modifications to the CFR to further improve performance. This year, integrated testing was conducted with the modified reactor to evaluate its performance and compare it with the performance of the previous configuration. Additionally, a CFR with the capability to load new catalyst and remove spent catalyst in-situ was built. Flow demonstrations were performed to evaluate both the catalyst loading and removal process and the hardware performance. The results of the integrated testing with the modified CFR as well as the flow demonstrations are discussed in this paper.
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
NASA Technical Reports Server (NTRS)
Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel; Stanley, Christine M.; Paley, Steve
2017-01-01
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, to scale catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
NASA Technical Reports Server (NTRS)
Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel J.; Stanley, Christine M.; Donovan, Dave N.; Palsey, Mark S.
2017-01-01
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew
2010-01-01
Bosch-based reactors have been in development at NASA since the 1960's. Traditional operation involves the reduction of carbon dioxide with hydrogen over a steel wool catalyst to produce water and solid carbon. While the system is capable of completely closing the loop on oxygen and hydrogen for Atmosphere Revitalization, steel wool requires a reaction temperature of 650C or higher for optimum performance. The single pass efficiency of the reaction over steel wool has been shown to be less than 10% resulting in a high recycle stream. Finally, the formation of solid carbon on steel wool ultimately fouls the catalyst necessitating catalyst resupply. These factors result in high mass, volume and power demands for a Bosch system. Interplanetary transportation and surface exploration missions of the moon, Mars, and near-earth objects will require higher levels of loop closure than current technology cannot provide. A Bosch system can provide the level of loop closure necessary for these long-term missions if mass, volume, and power can be kept low. The keys to improving the Bosch system lie in reactor and catalyst development. In 2009, the National Aeronautics and Space Administration refurbished a circa 1980's developmental Bosch reactor and built a sub-scale Bosch Catalyst Test Stand for the purpose of reactor and catalyst development. This paper describes the baseline performance of two commercially available steel wool catalysts as compared to performance reported in the 1960's and 80's. Additionally, the results of sub-scale testing of alternative Bosch catalysts, including nickel- and cobalt-based catalysts, are discussed.
NASA Technical Reports Server (NTRS)
Manning, M. P.; Reid, R. C.; Sophonpanich, C.
1982-01-01
The effectiveness of ruthenium and the alloys 50Ru50Fe and 33Ru67Fe as alternatives to iron, nickel, and cobalt catalysts in recovering oxygen from metabolic carbon dioxide was investigated. Carbon deposition boundaries over the unsupported alloys are reported. Experiments were also carried out over 50Ru50Fe and 97Ru3Fe3 catalysts supported on gamma-alumina to determine their performance in the synthesis of low molecular weight olefins. High production of ethylene and propylene would be beneficial for an improvement of an overall Bosch process, as a gas phase containing high olefin content would enhance carbon deposition in a Bosch reactor.
Razon, Luis F
2012-03-01
In this paper, an alternative means for nitrogen fixation that may consume less energy and release less greenhouse gases than the Haber-Bosch process is explored. A life-cycle assessment was conducted on a process to: culture the cyanobacterium, Anabaena sp. ATCC 33047, in open ponds; harvest the biomass and exopolysaccharides and convert these to biogas; strip and convert the ammonia from the biogas residue to ammonium sulfate; dry the ammonium sulfate solution to ammonium sulfate crystals and transport the finished product. The results suggest that substantial reductions in non-renewable energy use and greenhouse gas emissions may be realized. The study opens the possibility that Haber-Bosch ammonia may be replaced with ammonia from a biomass process which simultaneously generates renewable energy. The process is intrinsically safer than the Haber-Bosch process. However, there are trade-offs in terms of land use and possibly, water. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch
NASA Astrophysics Data System (ADS)
König, Jens; Bauer, Thorsten
2011-03-01
Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.
NASA Astrophysics Data System (ADS)
Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao
2006-01-01
In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. McKellar; Manohar S. Sohal; Lila Mulloth
2010-03-01
NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developedmore » and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.« less
Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization
NASA Technical Reports Server (NTRS)
Barton, Katherine; Abney, Morgan B.
2011-01-01
Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.
Bosch Reactor Development for High Percentage Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Howard, David; Abney, Morgan
2015-01-01
This next Generation Life Support Project entails the development and demonstration of Bosch reaction technologies to improve oxygen recovery from metabolically generated oxygen and/or space environments. A primary focus was placed on alternate carbon formation reactor concepts to improve useful catalyst life for space vehicle applications, and make use of in situ catalyst resources for non-terrestrial surface missions. Current state-of-the-art oxygen recovery systems onboard the International Space Station are able to effectively recover approximately 45 percent of the oxygen consumed by humans and exhausted in the form of carbon dioxide (CO2). Excess CO2 is vented overboard and the oxygen contained in the molecules is lost. For long-duration missions beyond the reaches of Earth for resupply, it will be necessary to recover greater amounts of constituents such as oxygen that are necessary for sustaining life. Bosch technologies theoretically recover 100 percent of the oxygen from CO2, producing pure carbon as the sole waste product. Challenges with this technology revolve around the carbon product fouling catalyst materials, drastically limiting catalyst life. This project successfully demonstrated techniques to extend catalyst surface area exposure times to improve catalyst life for vehicle applications, and demonstrated the use of Martian and lunar regolith as viable catalyst Bosch Reactor Development for High Percentage Oxygen Recovery From Carbon Dioxide materials for surface missions. The Bosch process generates carbon nanotube formation within the regolith, which has been shown to improve mechanical properties of building materials. Production of bricks from post reaction regolith for building and radiation shielding applications were also explored.
NREL, Bosch, and Bonneville Power Administration | Energy Systems
Bonneville Power Administration Analyze Residential Energy Storage and Sizing NREL, Bosch, and Bonneville lacks sizing standards or broad application guidelines. This combined with battery lifespan uncertainty uptake. The NREL, Bosch, Bonneville partnership will establish practical guidance for sizing, use case
2003-12-01
hydrogen from syngas produced from steam methane reforming was commercialized. Haber and Bosch discovered the synthesis of ammonia from H2 and N2 in...reforming, in the catalytic process developed in the early 1900s by Fritz Haber and Carl Bosch using a promoted iron catalyst discovered by Alwin Mittasch...Derived Syngas December 2003 • NREL/TP-510-34929 P.L. Spath and D.C. Dayton National Renewable Energy Laboratory 1617 Cole Boulevard
Reexamining Psychokinesis: Comment on Bosch, Steinkamp, and Boller (2006)
ERIC Educational Resources Information Center
Radin, Dean; Nelson, Roger; Dobyns, York; Houtkooper, Joop
2006-01-01
H. Bosch, F. Steinkamp, and E. Boller's (see record 2006-08436-001) review of the evidence for psychokinesis confirms many of the authors' earlier findings. The authors agree with Bosch et al. that existing studies provide statistical evidence for psychokinesis, that the evidence is generally of high methodological quality, and that effect sizes…
A mature Bosch CO2 reduction technology. [for long-duration space missions
NASA Technical Reports Server (NTRS)
King, C. D.; Holmes, R. F.
1976-01-01
The reduction of CO2 is one of the steps in closing the oxygen loop for long-duration manned space missions. Several units utilizing the Bosch process, which catalytically reduces CO2 with hydrogen, have been built and operated during the past decade. Each contributed substantial information affecting subsequent designs. Early challenges were primarily concerned with carbon control, materials durability, and reliability of reaction initiation. These were followed by concern about power consumption, expendable weight, volume, and process rate control. Suitable materials and techniques for carbon containment and process reliability have been demonstrated. Power requirements have been reduced by almost an order of magnitude. Methods for significant reductions in expendable weight and volume have been developed. The technology is at a state of maturity directly applicable to designs for space missions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
...... 5/1/09-4/30/10 Alcatel Vacuum Technology Audi AG AVIAC Avio (formerly known as FiatAvio) Bosch... Audi AG Avio (formerly known as FiatAvio) BAUER Maschinen GmbH Bosch Rexroth AG BSH Bosch und Siemens... Bearings and Parts Thereof, A-475-201.... 5/1/09-4/30/10 Audi AG Avio, S.p.A. (formerly known as FiatAvio...
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Barnett, Bill; Stanley, Christine M.; Junaedi, Christian; Vilekar, Saurabh A.; Kent, Ryan
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a RWGS reactor containing Incofoam(TradeMark) catalyst and designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith(TradeMark) technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The Microlith(TradeMark) RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with the Incofoam(TradeMark) RWGS reactor. Separately, in 2015, a fully integrated demonstration of an S-Bosch system was conducted. In an effort to mitigate risk, a second integrated test was conducted to evaluate the effect of membrane failure on a closed-loop Bosch system. Here, we report and discuss the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level. 1
Ongoing Development of a Series Bosch Reactor System
NASA Technical Reports Server (NTRS)
Abney, Morgan; Mansell, Matt; DuMez, Sam; Thomas, John; Cooper, Charlie; Long, David
2013-01-01
Future manned missions to deep space or planetary surfaces will undoubtedly require highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian and Lunar regolith simulant for the carbon deposition step.
Ongoing Development of a Series Bosch Reactor System
NASA Technical Reports Server (NTRS)
Abney, Morgan B; Mansell, J. Matthew; Stanley, Christine; Edmunson, Jennifer; DuMez, Samuel J.; Chen, Kevin
2013-01-01
Future manned missions to deep space or planetary surfaces will undoubtedly incorporate highly robust, efficient, and regenerable life support systems that require minimal consumables. To meet this requirement, NASA continues to explore a Bosch-based carbon dioxide reduction system to recover oxygen from CO2. In order to improve the equivalent system mass of Bosch systems, we seek to design and test a "Series Bosch" system in which two reactors in series are optimized for the two steps of the reaction, as well as to explore the use of in situ materials as carbon deposition catalysts. Here we report recent developments in this effort including assembly and initial testing of a Reverse Water-Gas Shift reactor (RWGSr) and initial testing of two gas separation membranes. The RWGSr was sized to reduce CO2 produced by a crew of four to carbon monoxide as the first stage in a Series Bosch system. The gas separation membranes, necessary to recycle unreacted hydrogen and CO2, were similarly sized. Additionally, we report results of preliminary experiments designed to determine the catalytic properties of Martian regolith simulant for the carbon formation step.
Performance characterization of a Bosch CO sub 2 reduction subsystem
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Hallick, T. M.; Schubert, F. H.
1980-01-01
The performance of Bosch hardware at the subsystem level (up to five-person capacity) in terms of five operating parameters was investigated. The five parameters were: (1) reactor temperature, (2) recycle loop mass flow rate, (3) recycle loop gas composition (percent hydrogen), (4) recycle loop dew point and (5) catalyst density. Experiments were designed and conducted in which the five operating parameters were varied and Bosch performance recorded. A total of 12 carbon collection cartridges provided over approximately 250 hours of operating time. Generally, one cartridge was used for each parameter that was varied. The Bosch hardware was found to perform reliably and reproducibly. No startup, reaction initiation or carbon containment problems were observed. Optimum performance points/ranges were identified for the five parameters investigated. The performance curves agreed with theoretical projections.
Proceeding of the 1999 Particle Accelerator Conference. Volume 4
1999-04-02
III M.L. Furste, R.M. Graves, A. Hamilton, L.R. Hughey, R.P. Madden’, R.E. Vest, NIST, Gaithersburg, MD, W.S. Trzeciak, R.A. Bosch , Synchrotron...1999 INFRARED EDGE RADIATION BEAMLINE AT ALADDIN T. E. May, R. A. Bosch and R. L. Julian, Synchrotron Radiation Center, University of Wisconsin-Madison...enhanced. The amide I profile 5 REFERENCES 0.3 liqu phase [1] M. A. Green, R. A. Bosch and W. S. Trzeciak, "Study of radiation 0.2- along the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fregosi, D.; Ravula, S.; Brhlik, D.
2015-04-22
Bosch has developed and demonstrated a novel DC microgrid system designed to maximize utilization efficiency for locally generated photovoltaic energy while offering high reliability, safety, redundancy, and reduced cost compared to equivalent AC systems. Several demonstration projects validating the system feasibility and expected efficiency gains have been completed and additional ones are in progress. This work gives an overview of the Bosch DC microgrid system and presents key results from a large simulation study done to estimate the energy savings of the Bosch DC microgrid over conventional AC systems. The study examined the system performance in locations across the Unitedmore » States for several commercial building types and operating profiles and found that the Bosch DC microgrid uses generated PV energy 6%–8% more efficiently than traditional AC systems.« less
Bosch CO2 Reduction System Development
NASA Technical Reports Server (NTRS)
Holmes, R. F.; King, C. D.; Keller, E. E.
1975-01-01
Refinements in the design of a Bosch CO2 reduction unit for spacecraft O2 production are described. Sealing of the vacuum insulation jacket was simplified so that high vacuum and high insulation performance are easily maintained. The device includes a relatively simple concentric shell recuperative heat exchanger which operates at approximately 95% temperature effectiveness and helps lower power consumption. The influence of reactor temperature, pressure, and recycle gas composition on power consumption was investigated. In general, precise control is not required since power consumption is not very sensitive to moderate variations of these parameters near their optimum values. There are two process rate control modes which match flow rate to process demand. Catalyst conditioning, support, and packing pattern developments assure consistent starts, reduced energy consumption, and extended cartridge life. Operation levels for four or five men were maintained with overall power input values of 50 to 60 watts per man.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fregosi, Daniel; Ravula, Sharmila; Brhlik, Dusan
2015-06-07
Bosch has developed and demonstrated a novel direct current (DC) microgrid system that maximizes the efficiency of locally generated photovoltaic energy while offering high reliability, safety, redundancy, and reduced cost compared to equivalent alternating current (AC) systems. Several demonstration projects validating the system feasibility and expected efficiency gains have been completed and additional ones are in progress. This paper gives an overview of the Bosch DC microgrid system and presents key results from a large simulation study done to estimate the energy savings of the Bosch DC microgrid over conventional AC systems. The study examined the system performance in locationsmore » across the United States for several commercial building types and operating profiles. It found that the Bosch DC microgrid uses generated PV energy 6%-8% more efficiently than traditional AC systems.« less
NASA Astrophysics Data System (ADS)
Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo
2004-05-01
The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .
REPLACING SOLVENT CLEANING WITH AQUEOUS CLEANING
The report documents actions taken by Robert Bosch Corp., Charleston, SC, in replacing the cleaning solvents 1, 1, 2- trichloro-1, 2, 2-trifluoroethane (CFC-113) and trichloroethylene (TCE) with aqueous solutions. Bosch has succeeded in eliminating all their CFC-113 use and so f...
Simply scan--optical methods for elemental carbon measurement in diesel exhaust particulate.
Forder, James A
2014-08-01
This article describes a performance assessment of three optical methods, a Magee Scientific OT21 Transmissometer, a Hach-Lange Microcolor II difference gloss meter, and a combination of an office scanner with Adobe Photoshop software. The optical methods measure filter staining as a proxy for elemental carbon in diesel exhaust particulate (DEP) exposure assessment and the suitability of each as a replacement for the existing Bosch meter optical method. Filters loaded with DEP were produced from air in a non-coal mine and the exhaust gases from a mobile crane. These were measured with each apparatus and then by combustion to obtain a reference elemental carbon value. The results from each apparatus were then plotted against both the Bosch number and reference elemental carbon values. The equations of the best fit lines for these plots were derived, and these gave functions for elemental carbon and Bosch number from the output of each new optical method. For each optical method, the range of DEP loadings which can be measured has been determined, and conversion equations for elemental carbon and Bosch number have been obtained. All three optical methods studied will effectively quantify blackness as a measure of elemental carbon. Of these the Magee Scientific OT21 transmissometer has the best performance. The Microcolor II and scanner/photoshop methods will in addition allow conversion to Bosch number which may be useful if historical Bosch data are available and functions for this are described. The scanner/photoshop method demonstrates a technique to obtain measurements of DEP exposure without the need to purchase specialized instrumentation. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-22
... determined for this company continues to be 5.47 percent. Germany: ``BSH Bosch and Siemens Hausgerate GmbH'' has been changed to ``BSH Bosch und Siemens Hausgerate GmbH;'' ``Volkswagon AG'' has been changed to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... third columns, the table is corrected to read as set forth below. Margin Company (percent) France: Audi... GmbH 0.00 Robert Bosch GmbH Power Tools and Hagglunds Drives........ 0.00 Italy: Audi AG 0.00 Bosch...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... state identification number or foreign country equivalent, passport number, financial account number, or... for licensing certain patents which may be used in the implementation of two industry standards... elimination of the direct competition between Robinair and Bosch would allow the combined entity to exercise...
Where simplicity meets complexity: hydra, a model for host-microbe interactions.
Augustin, René; Fraune, Sebastian; Franzenburg, Sören; Bosch, Thomas C G
2012-01-01
For a long time, the main purpose of microbiology and immunology was to study pathogenic bacteria and infectious disease; the potential benefit of commensal bacteria remained unrecognised. Discovering that individuals from Hydra to man are not solitary, homogenous entities but consist of complex communities of many species that likely evolved during a billion years of coexistence (Fraune and Bosch 2010) led to the hologenome theory of evolution (Zilber-Rosenberg and Rosenberg 2008) which considers the holobiont with its hologenome as the unit of selection in evolution. Defining the individual microbe-host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Untangling the complex interactions requires simple animal models with only a few specific bacterial species. Such models can function as living test tubes and may be key to dissecting the fundamental principles that underlie all host-microbe interactions. Here we introduce Hydra (Bosch et al. 2009) as such a model with one of the simplest epithelia in the animal kingdom (only two cell layers), with few cell types derived from only three distinct stem cell lineages, and with the availability of a fully sequenced genome and numerous genomic tools including transgenesis. Recognizing the entire system with its inputs, outputs and the interconnections (Fraune and Bosch 2010; Bosch et al. 2009; Fraune and Bosch 2007; Fraune et al. 2009a) we here present observations which may have profound impact on understanding a strictly microbe-dependent life style and its evolutionary consequences.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... Jungbunzlauer Canada Inc. FRANCE: Ball Bearings and Parts Thereof A-427- 5/1/10-4/30/11 801 Audi AG Bosch... Zubehor GmbH GERMANY: Ball Bearings and Parts Thereof A-428- 5/1/10-4/30/11 801 Audi AG Bayerische Motoren... Audi AG Bosch Rexroth S.p.A. Caterpillar Overseas S.A.R.L. Caterpillar of Australia Pty. Ltd...
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, Matthew J.; Stanley, Christine; Barnett, Bill; Junaedi, Christian; Vilekar, Saurabh A.; Ryan, Kent
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a NASA-designed RWGS reactor designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith® technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with NASA's RWGS reactor. The test results will be provided in this paper. Separately, in 2015, a semi-continuous CF reactor was designed and fabricated at NASA based on the results from batch CF reactor testing. The batch CF reactor and the semi-continuous CF reactor were individually integrated with an upstream RWGS reactor to demonstrate the system operation and to evaluate performance. Here, we compare the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level.
Overproduction of Hydrogen From an Anaerobic Bacterium
2008-12-01
fixation of nitrogen ( Haber - Bosch process), mostly to produce fertilizer. Nitrogenase provides a catalytic alternative to the commercial fixation of...the culture and suggests a uniquely simple hydrogen reactor design based on renewable feedstocks. 1. INTRODUCTION Hydrogen is an ideal... renewable feedstocks. Clostridium phytofermentans is a recently- discovered anaerobic bacterium, reported to possess cellulase enzymes that degrade
ERIC Educational Resources Information Center
Wilson, David B.; Shadish, William R.
2006-01-01
The H. Bosch, F. Steinkamp, and E. Boller (see record 2006-08436-001) meta-analysis reaches mixed and cautious conclusions about the possibility of psychokinesis. The authors argue that, for both methodological and philosophical reasons, it is nearly impossible to draw any conclusions from this body of research. The authors do not agree that any…
Carbon dioxide reduction by the Bosch process
NASA Technical Reports Server (NTRS)
Manning, M. P.; Reid, R. C.
1975-01-01
Prototype units for carrying out the reduction of carbon dioxide to elementary carbon have been built and operated successfully. In some cases, however, startup difficulties have been reported. Moreover, the recycle reactor product has been reported to contain only small amounts of water and undesirably high yields of methane. This paper presents the results of the first phase of an experimental study that was carried out to define the mechanisms occurring in the reduction process. Conclusions are drawn and possible modifications to the present recycle process are suggested.
Microbes and the Next Nitrogen Revolution.
Pikaar, Ilje; Matassa, Silvio; Rabaey, Korneel; Bodirsky, Benjamin Leon; Popp, Alexander; Herrero, Mario; Verstraete, Willy
2017-07-05
The Haber Bosch process is among the greatest inventions of the 20th century. It provided agriculture with reactive nitrogen and ultimately mankind with nourishment for a population of 7 billion people. However, the present agricultural practice of growing crops for animal production and human food constitutes a major threat to the sustainability of the planet in terms of reactive nitrogen pollution. In view of the shortage of directly feasible and cost-effective measures to avoid these planetary nitrogen burdens and the necessity to remediate this problem, we foresee the absolute need for and expect a revolution in the use of microbes as a source of protein. Bypassing land-based agriculture through direct use of Haber Bosch produced nitrogen for reactor-based production of microbial protein can be an inspiring concept for the production of high quality animal feed and even straightforward supply of proteinaceous products for human food, without significant nitrogen losses to the environment and without the need for genetic engineering to safeguard feed and food supply for the generations to come.
Consequent use of IT tools as a driver for cost reduction and quality improvements
NASA Astrophysics Data System (ADS)
Hein, Stefan; Rapp, Roberto; Feustel, Andreas
2013-10-01
The semiconductor industry drives a lot of efforts in the field of cost reductions and quality improvements. The consequent use of IT tools is one possibility to support these goals. With the extensions of its 150mm Fab to 200mm Robert Bosch increased the systematic use of data analysis and Advanced Process Control (APC).
New Methods of Sample Preparation for Atom Probe Specimens
NASA Technical Reports Server (NTRS)
Kuhlman, Kimberly, R.; Kowalczyk, Robert S.; Ward, Jennifer R.; Wishard, James L.; Martens, Richard L.; Kelly, Thomas F.
2003-01-01
Magnetite is a common conductive mineral found on Earth and Mars. Disk-shaped precipitates approximately 40 nm in diameter have been shown to have manganese and aluminum concentrations. Atom-probe field-ion microscopy (APFIM) is the only technique that can potentially quantify the composition of these precipitates. APFIM will be used to characterize geological and planetary materials, analyze samples of interest for geomicrobiology; and, for the metrology of nanoscale instrumentation. Prior to APFIM sample preparation was conducted by electropolishing, the method of sharp shards (MSS), or Bosch process (deep reactive ion etching) with focused ion beam (FIB) milling as a final step. However, new methods are required for difficult samples. Many materials are not easily fabricated using electropolishing, MSS, or the Bosch process, FIB milling is slow and expensive, and wet chemistry and the reactive ion etching are typically limited to Si and other semiconductors. APFIM sample preparation using the dicing saw is commonly used to section semiconductor wafers into individual devices following manufacture. The dicing saw is a time-effective method for preparing high aspect ratio posts of poorly conducting materials. Femtosecond laser micromachining is also suitable for preparation of posts. FIB time required is reduced by about a factor of 10 and multi-tip specimens can easily be fabricated using the dicing saw.
HARM processing techniques for MEMS and MOEMS devices using bonded SOI substrates and DRIE
NASA Astrophysics Data System (ADS)
Gormley, Colin; Boyle, Anne; Srigengan, Viji; Blackstone, Scott C.
2000-08-01
Silicon-on-Insulator (SOI) MEMS devices (1) are rapidly gaining popularity in realizing numerous solutions for MEMS, especially in the optical and inertia application fields. BCO recently developed a DRIE trench etch, utilizing the Bosch process, and refill process for high voltage dielectric isolation integrated circuits on thick SOI substrates. In this paper we present our most recently developed DRIE processes for MEMS and MOEMS devices. These advanced etch techniques are initially described and their integration with silicon bonding demonstrated. This has enabled process flows that are currently being utilized to develop optical router and filter products for fiber optics telecommunications and high precision accelerometers.
Carbon Dioxide Reduction Technology Trade Study
NASA Technical Reports Server (NTRS)
Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.
2011-01-01
For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system analysis and comparison among the technologies was made based on ESM, technology readiness level and reliability. Those technologies with potential were recommended for development.
1998-06-01
MICROPROCES- SING, H.-J. Kahlert and B. Burghardt, MicroLas Lasersystem GmbH, Robert- Bosch - Breite 10, 37079 Göttingen, Germany G-V2 14-30-14:45...Inst.f Phys. Chem., Univ. Göttingen, Tammannstr. 6, 37077 Göttingen, Germany, * present address: MicroLas Lasersystem GmbH, Robert- Bosch -Breite 10...SYNTHESIS OF CN-BCN LAYERS ON DIAMOND FILMS IN BORAZINE AND AMMONIA , M. Ugarov, V. Ageev. A. Karabutov, E. Loubnin, S. Pimenov, V. Konov, Natural
Two-Organism Concept for the Conversion of Cellulosic Feedstocks to Fuel
2010-08-01
economic importance as fully 1 % of the world’s energy supplies are consumed in the industrial fixation of nitrogen ( Haber - Bosch process), mostly to...mmol of non-cellular organic ammonia (most of the ammonia was presumably incorporated into cells for growth). The production of ethanol, expected to...Oxygen Gas Output from C. vulgaris Monitoring 10 2.1.6 Quantification of Organic Ammonia Produced by Cpnit-1 1 2.1.7 Quantification of Ethanol
NASA Technical Reports Server (NTRS)
Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya
2016-01-01
The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.
The study on injection parameters of selected alternative fuels used in diesel engines
NASA Astrophysics Data System (ADS)
Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.
2016-09-01
The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).
Bawankar, Pritam; Shanbhag, Nita; K., S. Smitha; Dhawan, Bodhraj; Palsule, Aratee; Kumar, Devesh; Chandel, Shailja
2017-01-01
Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early diagnosis through effective screening programs is likely to improve vision outcomes. The ETDRS seven-standard-field 35-mm stereoscopic color retinal imaging (ETDRS) of the dilated eye is elaborate and requires mydriasis, and is unsuitable for screening. We evaluated an image analysis application for the automated diagnosis of DR from non-mydriatic single-field images. Patients suffering from diabetes for at least 5 years were included if they were 18 years or older. Patients already diagnosed with DR were excluded. Physiologic mydriasis was achieved by placing the subjects in a dark room. Images were captured using a Bosch Mobile Eye Care fundus camera. The images were analyzed by the Retinal Imaging Bosch DR Algorithm for the diagnosis of DR. All subjects also subsequently underwent pharmacological mydriasis and ETDRS imaging. Non-mydriatic and mydriatic images were read by ophthalmologists. The ETDRS readings were used as the gold standard for calculating the sensitivity and specificity for the software. 564 consecutive subjects (1128 eyes) were recruited from six centers in India. Each subject was evaluated at a single outpatient visit. Forty-four of 1128 images (3.9%) could not be read by the algorithm, and were categorized as inconclusive. In four subjects, neither eye provided an acceptable image: these four subjects were excluded from the analysis. This left 560 subjects for analysis (1084 eyes). The algorithm correctly diagnosed 531 of 560 cases. The sensitivity, specificity, and positive and negative predictive values were 91%, 97%, 94%, and 95% respectively. The Bosch DR Algorithm shows favorable sensitivity and specificity in diagnosing DR from non-mydriatic images, and can greatly simplify screening for DR. This also has major implications for telemedicine in the use of screening for retinopathy in patients with diabetes mellitus. PMID:29281690
Bawankar, Pritam; Shanbhag, Nita; K, S Smitha; Dhawan, Bodhraj; Palsule, Aratee; Kumar, Devesh; Chandel, Shailja; Sood, Suneet
2017-01-01
Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early diagnosis through effective screening programs is likely to improve vision outcomes. The ETDRS seven-standard-field 35-mm stereoscopic color retinal imaging (ETDRS) of the dilated eye is elaborate and requires mydriasis, and is unsuitable for screening. We evaluated an image analysis application for the automated diagnosis of DR from non-mydriatic single-field images. Patients suffering from diabetes for at least 5 years were included if they were 18 years or older. Patients already diagnosed with DR were excluded. Physiologic mydriasis was achieved by placing the subjects in a dark room. Images were captured using a Bosch Mobile Eye Care fundus camera. The images were analyzed by the Retinal Imaging Bosch DR Algorithm for the diagnosis of DR. All subjects also subsequently underwent pharmacological mydriasis and ETDRS imaging. Non-mydriatic and mydriatic images were read by ophthalmologists. The ETDRS readings were used as the gold standard for calculating the sensitivity and specificity for the software. 564 consecutive subjects (1128 eyes) were recruited from six centers in India. Each subject was evaluated at a single outpatient visit. Forty-four of 1128 images (3.9%) could not be read by the algorithm, and were categorized as inconclusive. In four subjects, neither eye provided an acceptable image: these four subjects were excluded from the analysis. This left 560 subjects for analysis (1084 eyes). The algorithm correctly diagnosed 531 of 560 cases. The sensitivity, specificity, and positive and negative predictive values were 91%, 97%, 94%, and 95% respectively. The Bosch DR Algorithm shows favorable sensitivity and specificity in diagnosing DR from non-mydriatic images, and can greatly simplify screening for DR. This also has major implications for telemedicine in the use of screening for retinopathy in patients with diabetes mellitus.
Application of a multi-beam vibrometer on industrial components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendel, Karl
2014-05-27
Laser Doppler vibrometry is a well proven tool for the non-contact measurement of vibration. The scanning of several measurement points allows to visualize the deflection shape of the component, ideally a 3D-operating deflection shape, if a 3-D scanner is applied. Measuring the points sequentially, however, requires stationary behavior during the measurement time. This cannot be guaranteed for many real objects. Therefore, a multipoint laser Doppler vibrometer has been developed by Polytec and the University of Stuttgart with Bosch as industrial partner. A short description of the measurement system is given. Applications for the parallel measurement of the vibration of severalmore » points are shown for non-stationary vibrating Bosch components such as power-tools or valves.« less
Putting A Human Face on Equilibrium
NASA Astrophysics Data System (ADS)
Glickstein, Neil
2005-03-01
A short biography of chemist Fritz Haber is used to personalize the abstract concepts of equilibrium chemistry for high school students in an introductory course. In addition to giving the Haber Bosch process an historic, an economic, and a scientific background the reading and subsequent discussion allows students for whom the human perspective is of paramount importance a chance to investigate the irony of balance or equilibrium in Haber's life story. Since the inclusion of the Haber biography, performance in the laboratory and on examinations for those students who are usually only partially engaged has dramatically improved.
Army Demonstration of Light Obscuration Particle Counters for Monitoring Aviation Fuel Contamination
2013-05-07
Hydraulic industry has utilized this technology for decades and created a mature process •Hydraulic industry has developed recognized calibration ...Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18/16/13 14/10/7 Pamas/Parker/Particle Solutions 19/17/12 U.S. Army 19...17/14/13* Diesel Fuel World Wide Fuel Charter 4th 18/16/13 DEF (AUST) 5695B 18/16/13 Bosch/Cummins 18/16/13 Donaldson 22/21/18 14/13/11 12/9/6 P ll
Understanding Nitrogen Fixation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul J. Chirik
The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactionsmore » are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from atmospheric nitrogen could, in principle, be more energy-efficient. This is particularly attractive given the interest in direct hydrazine fuel cells.« less
Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.
Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han
2016-10-01
The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.
Nitrogen reduction and functionalization by a multimetallic uranium nitride complex
NASA Astrophysics Data System (ADS)
Falcone, Marta; Chatelain, Lucile; Scopelliti, Rosario; Živković, Ivica; Mazzanti, Marinella
2017-07-01
Molecular nitrogen (N2) is cheap and widely available, but its unreactive nature is a challenge when attempting to functionalize it under mild conditions with other widely available substrates (such as carbon monoxide, CO) to produce value-added compounds. Biological N2 fixation can do this, but the industrial Haber-Bosch process for ammonia production operates under harsh conditions (450 degrees Celsius and 300 bar), even though both processes are thought to involve multimetallic catalytic sites. And although molecular complexes capable of binding and even reducing N2 under mild conditions are known, with co-operativity between metal centres considered crucial for the N2 reduction step, the multimetallic species involved are usually not well defined, and further transformation of N2-binding complexes to achieve N-H or N-C bond formation is rare. Haber noted, before an iron-based catalyst was adopted for the industrial Haber-Bosch process, that uranium and uranium nitride materials are very effective heterogeneous catalysts for ammonia production from N2. However, few examples of uranium complexes binding N2 are known, and soluble uranium complexes capable of transforming N2 into ammonia or organonitrogen compounds have not yet been identified. Here we report the four-electron reduction of N2 under ambient conditions by a fully characterized complex with two UIII ions and three K+ centres held together by a nitride group and a flexible metalloligand framework. The addition of H2 and/or protons, or CO to the resulting complex results in the complete cleavage of N2 with concomitant N2 functionalization through N-H or N-C bond-forming reactions. These observations establish that a molecular uranium complex can promote the stoichiometric transformation of N2 into NH3 or cyanate, and that a flexible, electron-rich, multimetallic, nitride-bridged core unit is a promising starting point for the design of molecular complexes capable of cleaving and functionalizing N2 under mild conditions.
1986-04-21
the Didacta Association, among others. Mr. Merkle , chairman of the board for Bosch, will [deliver the keynote speech] to the...concerning the Dan-F and Rolf oil fields and the Roar gas field. Incidentally, last year A.P. Miller declared to the Energy Ministry that the company
This report describes the implementation and testing of control measures to reduce airborne asbestos generated by the drilling of asbestos-containing flooring materials, an OSHA Class III asbestos maintenance activity. Bosch 11224 and 11222 rotary drills were fitted with shrouds ...
Formation of metal and dielectric liners using a solution process for deep trench capacitors.
Ham, Yong-Hyun; Kim, Dong-Pyo; Baek, Kyu-Ha; Park, Kun-Sik; Kim, Moonkeun; Kwon, Kwang-Ho; Shin, Hong-Sik; Lee, Kijun; Do, Lee-Mi
2012-07-01
We demonstrated the feasibility of metal and dielectric liners using a solution process for deep trench capacitor application. The deep Si trench via with size of 10.3 microm and depth of 71 microm were fabricated by Bosch process in deep reactive ion etch (DRIE) system. The aspect ratio was about 7. Then, nano-Ag ink and poly(4-vinylphenol) (PVPh) were used to form metal and dielectric liners, respectively. The thicknesses of the Ag and PVPh liners were about 144 and 830 nm, respectively. When the curing temperature of Ag film increased from 120 to 150 degrees C, the sheet resistance decreased rapidly from 2.47 to 0.72 Omega/sq and then slightly decreased to 0.6 Omega/sq with further increasing the curing temperature beyond 150 degrees C. The proposed liner formation method using solution process is a simple and cost effective process for the high capacity of deep trench capacitor.
Catalytic synthesis of ammonia-a "never-ending story"?
Schlögl, Robert
2003-05-09
Nitrogen atoms are essential for the function of biological molecules and thus are and important component of fertilizers and medicaments. Bonds to nitrogen also find nonbiological uses in dyes, explosives, and resins. The synthesis of all these materials requires ammonia as an activated nitrogen building block. This situation is true for natural processes and the chemical industry. Knowledge of the various techniques for the preparation of ammonia is thus of fundamental importance for chemistry. The Haber-Bosch synthesis was the first heterogeneous catalytic system employed in the chemical industry and is still in use today. Understanding the mechanism and the translation of the knowledge into technical perfection has become a fundamental criterion for scientific development in catalysis research.
Surface Participation Effects in Titanium Nitride and Niobium Resonators
NASA Astrophysics Data System (ADS)
Dove, Allison; Kreikebaum, John Mark; Livingston, William; Delva, Remy; Qiu, Yanjie; Lolowang, Reinhard; Ramasesh, Vinay; O'Brien, Kevin; Siddiqi, Irfan
Improving the coherence time of superconducting qubits requires a precise understanding of the location and density of surface defects. Superconducting microwave resonators are commonly used for quantum state readout and are a versatile testbed to systematically characterize materials properties as a function of device geometry and fabrication method. We report on sputter deposited titanium nitride and niobium on silicon coplanar waveguide resonators patterned using reactive ion etches to define the device geometry. We discuss the impact of different growth conditions (temperature and electrical bias) and processing techniques on the internal quality factor (Q) of these devices. In particular, to investigate the effect of surface participation, we use a Bosch process to etch many-micron-deep trenches in the silicon substrate and quantify the impact of etch depth and profile on the internal Q. This research was supported by the ARO.
How a century of ammonia synthesis changed the world
NASA Astrophysics Data System (ADS)
Erisman, Jan Willem; Sutton, Mark A.; Galloway, James; Klimont, Zbigniew; Winiwarter, Wilfried
2008-10-01
On 13 October 1908, Fritz Haber filed his patent on the ``synthesis of ammonia from its elements'' for which he was later awarded the 1918 Nobel Prize in Chemistry. A hundred years on we live in a world transformed by and highly dependent upon Haber-Bosch nitrogen.
NASA Technical Reports Server (NTRS)
Gilmour, I.; Hill, H. G. M.; Pearson, V. K.; Sephton, M. A.; Nuth, J. A., III
2002-01-01
The high molecular weight organic products of Fischer-Tropsch/Haber-Bosch syntheses on the surfaces of Fe-silicate catalysts have been studied by GCMS. Additional information is contained in the original extended abstract.
Advanced Integrated TPS and Non Equilibrium Chemistry Instrumentation
2007-06-01
RESPECT and Dipl.-Ing. A. Preci for his contributions in the field of numerical analysis. Thanks to Dr.-Ing. Wolfgang Röck who developed the...Rhode-Saint-Genèse, Belgium, published in RTO EN-8, October 1999. [4] K. Pauly , M. Bosch, H. Schlingloff, H. Ruppe, M. Landgraf, R. Schleucher, F
Demystifying the GMAT: Four Faces of Fairness
ERIC Educational Resources Information Center
Rudner, Lawrence M.
2011-01-01
To articulate a guiding principle at the Graduate Management Admission Council (GMAC), CEO Dave Wilson often quotes Harry Bosch, the protagonist of several Michael Connelly novels, who said, "Everybody matters, or no one matters." With management education now a global field, and with 52 percent of the GMAT (Graduate Management Admission Test)…
Fleet DNA Brings Fleet Data to Life, Informs R&D | NREL
understand the broad operational range of commercial vehicles across vocations and weight classes. This commercial vehicle and equipment manufacturing realm-including Cummins, Robert Bosch, Peterbilt, Volvo, Ford Rosa, NREL 34672 The Fleet DNA clearinghouse of commercial vehicle operations data features over 11.5
The effects of DRIE operational parameters on vertically aligned micropillar arrays
NASA Astrophysics Data System (ADS)
Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An
2013-03-01
Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.
Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes
NASA Astrophysics Data System (ADS)
Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank
2017-05-01
In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.
Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.
Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank
2017-05-01
In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.
Formation of ammonia from dinitrogen under primordial conditions
NASA Astrophysics Data System (ADS)
Weigand, W.; Dörr, M.; Robl, C.; Kreisel, G.; Grunert, R.; Käßbohrer, J.; Brand, W.; Werner, R.; Popp, J.; Tarcea, N.
2002-11-01
Ammonia is one of the most largely industrially produced basic compounds, leading to a variety of important secondary products. In the chemical industry, ammonia is produced in large amounts via the HABER-BOSCH-process. In contrast to the industrial process, the nitrogenase enzyme operates in organisms under very mild conditions at atmospheric pressure and ambient temperature. In this article, we describe a method for the synthesis of ammonia from molecular nitrogen using H2S and freshly precipitated iron sulfide as a mediator thus serving as a primordial inorganic substitute for the enzyme nitrogenase. The reductand, as well as the reaction conditions (atmospheric nitrogen pressure and temperatures on the order of 70 - 80°C) are rather mild and therefore comparable to the biological processes. The driving force of the overall reaction is believed to be the oxidation of iron sulfide to iron disulfide, and the formation of hydrogen from H2S. The reactions reported in this article may support the theory of an archaic nitrogen-fixing Fe-S cluster.
A Field Study Examining Success Factors of University-School-Collaboration
ERIC Educational Resources Information Center
Wegner, Claas; Janzen, Nadeshda; Zehne, Carolin
2015-01-01
With decreasing numbers of students pursuing a career in science (OECD, 2008), the call for educational reforms building a basis for an interest in science is great. Cooperation between schools and universities are an important aspect of these reforms, as they aim at sparking an interest in science (Robert Bosch Foundation, 2005). The Ministry of…
ERIC Educational Resources Information Center
Burger-Veltmeijer, Agnes E. J.; Minnaert, Alexander E. M. G.; van den Bosch, Els J.
2015-01-01
Recently, Burger-Veltmeijer, Minnaert & Van den Bosch (2014) constructed a conceptual framework, called the Strengths and Weaknesses Heuristic ("S&W Heuristic") which might provide systematicity and coherence in research as well as psycho-educational praxis, regarding assessments of Intellectually Gifted (IG) students with…
1990-08-10
Active Genome of HIV-2 (Meeting Abstract). Fourth International Conference on AIDS. Book II., 1988. Franchini, G., Kanki, P.J., Bosch, M.L., Fargnoli...Factors with the HTLV-IlI LTR Target Sequences In Vitro. Haematology and Blood Transfusion, Vol. 3i, pp. 423-429, 1987. Siekevitz, M., Josephs, S.F
2002-07-04
Emmanuel Boss and Ronald Zaneveld for IOP measurements; Jeffrey Bowles, Mary Kappus , Megan Carney, and Bosch Aerospace for PHILLS data collection; and...Opt. Express 10: 210–221. , M. KAPPUS , J. BOWLES, J. FISHER, J. ANTONIADES, AND M. CARNEY. 1999. Calibration, characterization, and first results with
ERIC Educational Resources Information Center
Albareda-Castellot, Barbara; Pons, Ferran; Sebastian-Galles
2011-01-01
Contrasting results have been reported regarding the phonetic acquisition of bilinguals. A lack of discrimination has been observed for certain native contrasts in 8-month-old Catalan-Spanish bilingual infants (Bosch & Sebastian-Galles, 2003a), though not in French-English bilingual infants (Burns, Yoshida, Hill & Werker, 2007; Sundara, Polka &…
The Influence of Bilingualism on the Preference for the Mouth Region of Dynamic Faces
ERIC Educational Resources Information Center
Ayneto, Alba; Sebastian-Galles, Nuria
2017-01-01
Bilingual infants show an extended period of looking at the mouth of talking faces, which provides them with additional articulatory cues that can be used to boost the challenging situation of learning two languages (Pons, Bosch & Lewkowicz, 2015). However, the eye region also provides fundamental cues for emotion perception and recognition,…
USDA-ARS?s Scientific Manuscript database
A classic paper on the integrated control concept appeared in the later part of the 1950’s, led by Vernon Stern, Ray Smith, Robert van den Bosch, and Kenneth Hagen. Numerous concepts and definitions were formulated at that time. In this presentation, a short philosophical summary will be presented...
Nitrogenase Inspired Peptide-Functionalized Catalyst for Efficient, Emission-Free Ammonia Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gellett, Wayne; Ayers, Katherine; Renner, Julie
Ammonia production is one of the most important industrial processes in the world, as the major component of fertilizer to sustain higher food production. It is also one of the most energy intensive and carbon intensive chemical processes worldwide, primarily due to the steam methane reforming step to produce hydrogen for the reaction. Currently, ammonia is produced via the Haber Bosch process, which requires high temperature and pressure, and has low equilibrium efficiency. Due to these reaction conditions, the process is most economical at extremely large scale (100,000s of tons per day). In order to enable more distributed production scalesmore » which better match with renewable energy input and sustainable reactant sources, alternative methods of ammonia synthesis are needed, which scale more effectively and economically. One such approach is electrochemical synthesis based on ion exchange membrane cells. Peptide templating to form catalyst nanoparticles of controlled size, combined with peptide surface adsorbtion to model the nitrogenase active site, was used to develop novel catalyst materials and deposit them on electrodes.« less
Ammonia Synthesis at Low Pressure.
Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi
2017-08-23
Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.
Scalloping minimization in deep Si etching on Unaxis DSE tools
NASA Astrophysics Data System (ADS)
Lai, Shouliang; Johnson, Dave J.; Westerman, Russ J.; Nolan, John J.; Purser, David; Devre, Mike
2003-01-01
Sidewall smoothness is often a critical requirement for many MEMS devices, such as microfludic devices, chemical, biological and optical transducers, while fast silicon etch rate is another. For such applications, the time division multiplex (TDM) etch processes, so-called "Bosch" processes are widely employed. However, in the conventional TDM processes, rough sidewalls result due to scallop formation. To date, the amplitude of the scalloping has been directly linked to the silicon etch rate. At Unaxis USA Inc., we have developed a proprietary fast gas switching technique that is effective for scalloping minimization in deep silicon etching processes. In this technique, process cycle times can be reduced from several seconds to as little as a fraction of second. Scallop amplitudes can be reduced with shorter process cycles. More importantly, as the scallop amplitude is progressively reduced, the silicon etch rate can be maintained relatively constant at high values. An optimized experiment has shown that at etch rate in excess of 7 μm/min, scallops with length of 116 nm and depth of 35 nm were obtained. The fast gas switching approach offers an ideal manufacturing solution for MEMS applications where extremely smooth sidewall and fast etch rate are crucial.
Meteorites, Organics and Fischer-Tropsch Type Reaction: Production and Destruction
NASA Technical Reports Server (NTRS)
Johnson, Natasha M.; Burton, A. S.; Nurth, J. A., III
2011-01-01
There has been an ongoing debate about the relative importance about the various chemical reactions that fonned organics in the early solar system. One proposed method that has long been recognized as a potential source of organics is Fischer-Tropsch type (FTT) synthesis. This process is commonly used in industry to produce fuels (i.e., complex hydrocarbons) by catalytic hydrogenation of carbon monoxide. Hill and Nuth were the first to publish results of FTT experiments that also included Haber-Bosch (HB) processes (hydrogenation of nitrogen. Their findings included the production of nitrilebearing compounds as well as trace amounts of methyl amine. Previous experience with these reactions revealed that the organic coating deposited on the grains is also an efficient catalyst and that the coating is composed of insoluble organic matter (10M) and could be reminiscent of the organic matrix found in some meteorites. This current set of FTT-styled experiments tracks the evolution of a set of organics, amino acids, in detail.
Beneficial and Deleterious Bacterial - Host Interactions in Chronic Wound Pathophysiology
2015-04-02
Lactobacillus plantarum supernatants disrupted biofilms made by a laboratory strain of P. aeruginosa by 43% and a P. aeruginosa clini- cal strain...that used L. plantarum topically,73–75 Lactobacillus septicemia is possi- ble in severely immunocompromised individuals, and seems to be strain...Bosch A, Yantorno OM, Valdez JC. Antipathogenic properties of Lactobacillus plantarum on Pseudomonas aeruginosa: the potential use of its
Determinate Composition of FMUs for Co-Simulation
2013-08-18
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or... advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component...the Naval Research Laboratory (NRL #N0013-12-1-G015), and the following compa- nies: Bosch, National Instruments, and Toyota ). This work was also
76 FR 73677 - Certain Wiper Blades; Institution of Investigation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... section 337 of the Tariff Act of 1930, as amended, 19 U.S.C. 1337, on behalf of Robert Bosch LLC of... patent''); U.S. Patent No. 6,944,905 (``the '905 patent''); U.S. Patent No. 6,973,698 (``the '698 patent... '926 patent; claims 1, 3, 4, 8, 10, 11, 13, and 15-18 of the '905 patent; claim 1 of the '698 patent...
A Rare Terminal Dinitrogen Complex of Chromium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mock, Michael T.; Chen, Shentan; Rousseau, Roger J.
The reduction of dinitrogen to ammonia from N2 and H2 is currently carried out by the Haber-Bosch process, an energy intensive process that requires high pressures and high temperatures and accounts for the production of millions of tons of ammonia per year. The development of a catalytic, energy-efficient process for N2 reduction is of great interest and remains a formidable challenge. In this communication, we are reporting the preparation, characterization and computational electronic structure analysis of a rare 'Chatt-type' ((P-P)2M(N2)2, P-P = diphosphine ligand) complex of chromium, cis-[Cr(N2)2(PPh2NBn2)2] and its reactivity with CO. This complex is supported by the diphosphinemore » ligand PPh2NBn2, containing non-coordinating pendant amine bases, to serve as proton relays. Future studies for this complex are aimed at answering fundamental questions regarding the role of proton relays in the second coordination sphere in their ability to facilitate proton movement from an external acid to metal-bound dinitrogen ligands in the challenging multi-proton/electron reduction of N2 to ammonia.« less
Globalising Synthetic Nitrogen: The Interwar Inauguration of a New Industry.
Travis, Anthony S
2017-02-01
The most spectacular development in industrial chemistry during the early twentieth century concerned the capture of atmospheric nitrogen by the Haber-Bosch high-pressure ammonia process at the German chemical enterprise Badische Anilin- & Soda-Fabrik (BASF), of Ludwigshafen. This firm, confident that its complex process could not be readily imitated, set out to dominate the global nitrogen fertiliser market. The response was the emergence of rival high-pressure ammonia processes in Western Europe, the United States, and Japan during the 1920s. This article is an historical appreciation of the settings in which several countries, often driven by concerns over national security, were encouraged to develop and adopt non-BASF high-pressure nitrogen capture technologies. Moreover, synthetic ammonia was at the forefront of large-scale strategic self-sufficiency and state sponsored programmes in three countries - Italy, Russia, and Japan - at the very same time when the newer technologies became available. As a result, the chemical industries of these nations, under the influences of fascism, communism, and colonial modernisation projects, began moving into the top ranks.
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.
1976-01-01
Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).
The Haber Bosch-harmful algal bloom (HB-HAB) link
NASA Astrophysics Data System (ADS)
Glibert, Patricia M.; Maranger, Roxane; Sobota, Daniel J.; Bouwman, Lex
2014-10-01
Large-scale commercialization of the Haber-Bosch (HB) process is resulting in intensification of nitrogen (N) fertilizer use worldwide. Globally N fertilizer use is far outpacing that of phosphorus (P) fertilizer. Much of the increase in N fertilizers is also now in the form of urea, a reduced form of N. Incorporation of these fertilizers into agricultural products is inefficient leading to significant environmental pollution and aquatic eutrophication. Of particular concern is the increased occurrence of harmful algal blooms (HABs) in waters receiving nutrient enriched runoff. Many phytoplankton causing HABs have physiological adaptive strategies that make them favored under conditions of elevated N : P conditions and supply of chemically reduced N (ammonium, urea). We propose that the HB-HAB link is a function of (1) the inefficiency of incorporation of N fertilizers in the food supply chain, the leakiness of the N cycle from crop to table, and the fate of lost N relative to P to the environment; and (2) adaptive physiology of many HABs to thrive in environments in which there is excess N relative to classic nutrient stoichiometric proportions and where chemically reduced forms of N dominate. The rate of HAB expansion is particularly pronounced in China where N fertilizer use has escalated very rapidly, where soil retention is declining, and where blooms have had large economic and ecological impacts. There, in addition to increased use of urea and high N : P based fertilizers overall, escalating aquaculture production adds to the availability of reduced forms of N, as does atmospheric deposition of ammonia. HABs in both freshwaters and marginal seas in China are highly related to these overall changing N loads and ratios. Without more aggressive N control the future outlook in terms of HABs is likely to include more events, more often, and they may also be more toxic.
High Productivity DRIE solutions for 3D-SiP and MEMS Volume Manufacturing
NASA Astrophysics Data System (ADS)
Puech, M.; Thevenoud, JM; Launay, N.; Arnal, N.; Godinat, P.; Andrieu, B.; Gruffat, JM
2006-04-01
Emerging 3D-SiP technologies and high volume MEMS applications require high productivity mass production DRIE systems. The Alcatel DRIE product range has recently been optimised to reach the highest process and hardware production performances. A study based on sub-micron high aspect ratio structures encountered in the most stringent 3D-SiP has been carried out. The optimization of the Bosch process parameters has resulted in ultra high silicon etch rates, with unrivalled uniformity and repeatability leading to excellent process. In parallel, most recent hardware and proprietary design optimization including vacuum pumping lines, process chamber, wafer chucks, pressure control system, gas delivery are discussed. These improvements have been monitored in a mass production environment for a mobile phone application. Field data analysis shows a significant reduction of cost of ownership thanks to increased throughput and much lower running costs. These benefits are now available for all 3D-SiP and high volume MEMS applications. The typical etched patterns include tapered trenches for CMOS imagers, through silicon via holes for die stacking, well controlled profile angle for 3D high precision inertial sensors, and large exposed area features for inkjet printer heads and Silicon microphones.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly
2012-01-01
Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes.
Space station integrated propulsion and fluid systems study
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Shepard, D.; Rossier, R.
1988-01-01
The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems.
Optical spatial differentiator based on subwavelength high-contrast gratings
NASA Astrophysics Data System (ADS)
Dong, Zhewei; Si, Jiangnan; Yu, Xuanyi; Deng, Xiaoxu
2018-04-01
An optical spatial differentiator based on subwavelength high-contrast gratings (HCGs) is proposed experimentally. The spatial differentiation property of the subwavelength HCG is analyzed by calculating its spatial spectral transfer function based on the periodic waveguide theory. By employing the FDTD solutions, the performance of the subwavelength HCG spatial differentiator was investigated numerically. The subwavelength HCG differentiator with the thickness at the nanoscale was fabricated on the quartz substrate by electron beam lithography and Bosch deep silicon etching. Observed under an optical microscope with a CCD camera, the spatial differentiation of the incident field profile was obtained by the subwavelength HCG differentiator in transmission without Fourier lens. By projecting the images of slits, letter "X," and a cross on the subwavelength HCG differentiator, edge detections of images were obtained in transmission. With the nanoscale HCG structure and simple optical implementation, the proposed optical spatial differentiator provides the prospects for applications in optical computing systems and parallel data processing.
Wang, Jun; Yu, Liang; Hu, Lin; Chen, Gang; Xin, Hongliang; Feng, Xiaofeng
2018-05-15
Electrochemical reduction of N 2 to NH 3 provides an alternative to the Haber-Bosch process for sustainable, distributed production of NH 3 when powered by renewable electricity. However, the development of such process has been impeded by the lack of efficient electrocatalysts for N 2 reduction. Here we report efficient electroreduction of N 2 to NH 3 on palladium nanoparticles in phosphate buffer solution under ambient conditions, which exhibits high activity and selectivity with an NH 3 yield rate of ~4.5 μg mg -1 Pd h -1 and a Faradaic efficiency of 8.2% at 0.1 V vs. the reversible hydrogen electrode (corresponding to a low overpotential of 56 mV), outperforming other catalysts including gold and platinum. Density functional theory calculations suggest that the unique activity of palladium originates from its balanced hydrogen evolution activity and the Grotthuss-like hydride transfer mechanism on α-palladium hydride that lowers the free energy barrier of N 2 hydrogenation to *N 2 H, the rate-limiting step for NH 3 electrosynthesis.
Refurbishment of one-person regenerative air revitalization system
NASA Technical Reports Server (NTRS)
Powell, Ferolyn T.
1989-01-01
Regenerative processes for the revitalization of spacecraft atmospheres and reclamation of waste waters are essential for making long-term manned space missions a reality. Processes studied include: static feed water electrolysis for oxygen generation, Bosch carbon dioxide reduction, electrochemical carbon dioxide concentration, vapor compression distillation water recovery, and iodine monitoring. The objectives were to: provide engineering support to Marshall Space Flight Center personnel throughout all phases of the test program, e.g., planning through data analysis; fabricate, test, and deliver to Marshall Space Flight Center an electrochemical carbon dioxide module and test stand; fabricate and deliver an iodine monitor; evaluate the electrochemical carbon dioxide concentrator subsystem configuration and its ability to ensure safe utilization of hydrogen gas; evaluate techniques for recovering oxygen from a product oxygen and carbon dioxide stream; and evaluate the performance of an electrochemical carbon dioxide concentrator module to operate without hydrogen as a method of safe haven operation. Each of the tasks were related in that all focused on providing a better understanding of the function, operation, and performance of developmental pieces of environmental control and life support system hardware.
Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT
NASA Astrophysics Data System (ADS)
Kirpo, Maksims
2013-05-01
Silicon crystals for high efficiency solar cells are produced mainly by the Czochralski (CZ) crystal growth method. Computer simulations of the CZ process established themselves as a basic tool for optimization of the growth process which allows to reduce production costs keeping high quality of the crystalline material. The author shows the application of the general Computational Fluid Dynamics (CFD) code ANSYS FLUENT to solution of the static two-dimensional (2D) axisymmetric global model of the small industrial furnace for growing of silicon crystals with a diameter of 100 mm. The presented numerical model is self-sufficient and incorporates the most important physical phenomena of the CZ growth process including latent heat generation during crystallization, crystal-melt interface deflection, turbulent heat and mass transport, oxygen transport, etc. The demonstrated approach allows to find the heater power for the specified pulling rate of the crystal but the obtained power values are smaller than those found in the literature for the studied furnace. However, the described approach is successfully verified with the respect to the heater power by its application for the numerical simulations of the real CZ pullers by "Bosch Solar Energy AG".
Simulating industrial plasma reactors - A fresh perspective
NASA Astrophysics Data System (ADS)
Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash
2016-09-01
A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.
2012-01-01
Martin B. Zimmerman, “Market Incentives for Safe Commercial Airline Operation,” American Economic Review, Vol. 78, No. 5, 1988, pp. 913–935. Bosch...Modeling,” in Stuart Johnson, Martin C. Libicki, and Gregory F. Treverton, eds., New Challenges, New Tools for Defense Decisionmaking, Santa Monica, Calif...677–725. Persico, Nicola, and Petra E. Todd, “Passenger Profiling, Imperfect Screening, and Airport Security,” American Economic Review, Vol. 95
2016-12-08
RVIL Kirtland AFB, NM 87117-5776 Official Record Copy AFRL /RVBYI/Jeannette van den Bosch 1 cy Approved for public release; distribution is... AFRL -RV-PS- TR-2017-0156 AFRL -RV-PS- TR-2017-0156 IMPACT OF POLARIZING NON-LAMBERTIAN SURFACE AND VOLUME SCATTERING ON POLARIZED LIGHT...3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government
2014-05-01
temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection... diesel engine operating conditions. The objective of this report is to demonstrate the modeling capability of a recently adopted 3D-Computational Fluid
Bridging the Semantic Gap Between Heterogeneous Modeling Formalisms and FMI
2014-04-25
Naval Research Laboratory (NRL #N0013-12-1-G015), and the following companies: Bosch, National Instruments, and Toyota ). 1 of contract, these two...but only on the interconnections of the FMUs in the network). To our knowledge , the question how to create FMUs has not been formally addressed. This...unbounded length. The main characteristic of SDF is that the number of tokens that each actor consumes from its input queues and produces to its output
Spatio-Temporal Nonlinear Filtering With Applications to Information Assurance and Counter Terrorism
2011-11-14
2009): 279. doi: 10.1016/j.comnet.2008.10.001 2011/11/07 14:36:13 44 Jelena Mirkovic, Peter Reiher, Christos Papadopoulos, Alefiya Hussain, Marla Shepard ...Applications to Remote Sensing,” Department of Statistics and Department of Computer Sciences, University of Chicago , September, 2011 (Invited). 2. A.G... Chicago , IL April 13, 2010, Edward H. Bosch Organizer. 58. Andrea Bertozzi, Invited talk, Plenary talk, Joint SIAM/RSME-SCM-SEMA Meeting on Emerging
High-productivity DRIE solutions for 3D-SiP and MEMS volume manufacturing
NASA Astrophysics Data System (ADS)
Puech, M.; Thevenoud, J. M.; Launay, N.; Arnal, N.; Godinat, P.; Andrieu, B.; Gruffat, J. M.
2006-12-01
Emerging 3D-SiP technologies and high volume MEMS applications require high productivity mass production DRIE systems. The Alcatel DRIE product range has recently been optimized to reach the highest process and hardware production performances. A study based on sub-micron high aspect ratio structures encountered in the most stringent 3D-SiP has been carried out. The optimization of the Bosch process parameters have shown ultra high silicon etch rate, with unrivaled uniformity and repeatability leading to excellent process yields. In parallel, most recent hardware and proprietary design optimization including vacuum pumping lines, process chamber, wafer chucks, pressure control system, gas delivery are discussed. A key factor for achieving the highest performances was the recognized expertise of Alcatel vacuum and plasma science technologies. These improvements have been monitored in a mass production environment for a mobile phone application. Field data analysis shows a significant reduction of cost of ownership thanks to increased throughput and much lower running costs. These benefits are now available for all 3D-SiP and high volume MEMS applications. The typical etched patterns include tapered trenches for CMOS imagers, through silicon via holes for die stacking, well controlled profile angle for 3D high precision inertial sensors, and large exposed area features for inkjet printer head and Silicon microphones.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly
2011-01-01
Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. The National Aeronautics and Space Administration (NASA) is currently exploring the Sabatier reaction, the Bosch reaction, and co-electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. While all three techniques have demonstrated the capacity to reduce CO2 in the laboratory, there is interest in understanding how all three techniques would perform at a system-level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily re-scaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental e orts. Comparison to experimental data is provided were available for veri cation purposes.
Synthesis of Fuels and Value-Added Nitrogen-Containing Compounds from N2
2014-11-24
The Haber - Bosch ammonia synthesis is one of the great technological achievements of the 20th century, having revolutionized agriculture and hence the...catalytic synthesis of ammonia or hydrazine compatible with renewable (CO2-free) hydrogen. N Ph N Ph N V Ar iPr iPr N THF N N Ph N Ph N V Ar Ar THF...atom transfer from renewable H2. Concurrent with these efforts, we have also been exploring related molybdenum platforms for ammonia oxidation. The
2013-05-01
release level prototyping as: The R&D prototype is typically funded by the organization, rather than the client . The work is done in an R&D...performance) with hopes that this capability could be offered to multiple clients . The clustering prototype is developed in the organization’s R&D...ICSE Conference 2013) [5] A. Martini, L. Pareto , and J. Bosch, “Enablers and inhibitors for speed with reuse,” Proceedings of the 16th Software
Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration
NASA Astrophysics Data System (ADS)
Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.
Oxygen concentration and separation is an essential factor for air recycling in a CELSS. Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of O2 from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.
United States Army Unilateral and Coalition Operations in the 1965 Dominican Republic Intervention
1986-11-01
perceptions held by Latin American leaders. This study identifies several differe- es in perception within the western hemisphere regarding both the possibe...k:’. A- k ’- ’-P’ýJ A A -AA Juan Bosch and his newly formed Dominican Revolutionary Party ( Partido Revolucionario Dominicano), known as the PRD...Ie inon, wetnen, And teenagaer alikeO Meld iemmeiedlally i-41allei upcn his servi~c tchiofs to ,.,uLbia. their 1’nc~ es an#) crush fth rebellion. At
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew;
2014-01-01
Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.
Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.
Brown, Katherine A; Harris, Derek F; Wilker, Molly B; Rasmussen, Andrew; Khadka, Nimesh; Hamby, Hayden; Keable, Stephen; Dukovic, Gordana; Peters, John W; Seefeldt, Lance C; King, Paul W
2016-04-22
The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3. Copyright © 2016, American Association for the Advancement of Science.
Lee, Hiang Kwee; Koh, Charlynn Sher Lin; Lee, Yih Hong; Liu, Chong; Phang, In Yee; Han, Xuemei; Tsung, Chia-Kuang; Ling, Xing Yi
2018-01-01
Electrochemical nitrogen-to-ammonia fixation is emerging as a sustainable strategy to tackle the hydrogen- and energy-intensive operations by Haber-Bosch process for ammonia production. However, current electrochemical nitrogen reduction reaction (NRR) progress is impeded by overwhelming competition from the hydrogen evolution reaction (HER) across all traditional NRR catalysts and the requirement for elevated temperature/pressure. We achieve both excellent NRR selectivity (~90%) and a significant boost to Faradic efficiency by 10 percentage points even at ambient operations by coating a superhydrophobic metal-organic framework (MOF) layer over the NRR electrocatalyst. Our reticular chemistry approach exploits MOF’s water-repelling and molecular-concentrating effects to overcome HER-imposed bottlenecks, uncovering the unprecedented electrochemical features of NRR critical for future theoretical studies. By favoring the originally unfavored NRR, we envisage our electrocatalytic design as a starting point for high-performance nitrogen-to-ammonia electroconversion directly from water vapor–abundant air to address increasing global demand of ammonia in (bio)chemical and energy industries. PMID:29536047
Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, K. A.; Harris, D. F.; Wilker, M. B.
The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3. The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complexmore » under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.« less
Zhang, Xiaoping; Kong, Rong-Mei; Du, Huitong; Xia, Lian; Qu, Fengli
2018-05-22
The development of a sustainable route to ammonia production is one of the most attractive targets in chemistry. The primary method of ammonia production, Haber-Bosch process, can bring about excessive consumption of fossil fuels and large CO2 emission. In this communication, we develop a VN nanowire array on carbon cloth (VN/CC) as a high-performance catalyst for the nitrogen reduction reaction (NRR) under ambient conditions. Such an electrocatalyst achieves high ammonia yield (2.48 × 10-10 mol-1 s-1 cm-2) and faradaic efficiency (3.58%) at -0.3 V versus RHE in 0.1 M HCl, outperforming most reported results for N2 fixation under ambient conditions, and even comparing favorably with those obtained under high temperatures and/or pressures. This work not only provides us an attractive catalyst material for the NRR in acidic media, but would also open up an exciting new avenue to the rational design and fabrication of transition metal nitrides for the NRR.
Ammonia formation by a thiolate-bridged diiron amide complex as a nitrogenase mimic
NASA Astrophysics Data System (ADS)
Li, Yang; Li, Ying; Wang, Baomin; Luo, Yi; Yang, Dawei; Tong, Peng; Zhao, Jinfeng; Luo, Lun; Zhou, Yuhan; Chen, Si; Cheng, Fang; Qu, Jingping
2013-04-01
Although nitrogenase enzymes routinely convert molecular nitrogen into ammonia under ambient temperature and pressure, this reaction is currently carried out industrially using the Haber-Bosch process, which requires extreme temperatures and pressures to activate dinitrogen. Biological fixation occurs through dinitrogen and reduced NxHy species at multi-iron centres of compounds bearing sulfur ligands, but it is difficult to elucidate the mechanistic details and to obtain stable model intermediate complexes for further investigation. Metal-based synthetic models have been applied to reveal partial details, although most models involve a mononuclear system. Here, we report a diiron complex bridged by a bidentate thiolate ligand that can accommodate HN=NH. Following reductions and protonations, HN=NH is converted to NH3 through pivotal intermediate complexes bridged by N2H3- and NH2- species. Notably, the final ammonia release was effected with water as the proton source. Density functional theory calculations were carried out, and a pathway of biological nitrogen fixation is proposed.
Licht, Stuart; Cui, Baochen; Wang, Baohui; Li, Fang-Fang; Lau, Jason; Liu, Shuzhi
2014-08-08
The Haber-Bosch process to produce ammonia for fertilizer currently relies on carbon-intensive steam reforming of methane as a hydrogen source. We present an electrochemical pathway in which ammonia is produced by electrolysis of air and steam in a molten hydroxide suspension of nano-Fe2O3. At 200°C in an electrolyte with a molar ratio of 0.5 NaOH/0.5 KOH, ammonia is produced at 1.2 volts (V) under 2 milliamperes per centimeter squared (mA cm(-2)) of applied current at coulombic efficiency of 35% (35% of the applied current results in the six-electron conversion of N2 and water to ammonia, and excess H2 is cogenerated with the ammonia). At 250°C and 25 bar of steam pressure, the electrolysis voltage necessary for 2 mA cm(-2) current density decreased to 1.0 V. Copyright © 2014, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junhua Jiang; Ted Aulich
An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly dependsmore » upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.« less
NASA Technical Reports Server (NTRS)
McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.
2010-01-01
CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.
Martirez, John Mark P.; Carter, Emily A.
2017-01-01
Despite more than a century of advances in catalyst and production plant design, the Haber-Bosch process for industrial ammonia (NH3) synthesis still requires energy-intensive high temperatures and pressures. We propose taking advantage of sunlight conversion into surface plasmon resonances in Au nanoparticles to enhance the rate of the N2 dissociation reaction, which is the bottleneck in NH3 production. We predict that this can be achieved through Mo doping of the Au surface based on embedded multireference correlated wave function calculations. The Au component serves as a light-harvesting antenna funneling energy onto the Mo active site, whereby excited-state channels (requiring 1.4 to 1.45 eV, near-infrared–to–visible plasmon resonances) may be accessed. This effectively lowers the energy barriers to 0.44 to 0.77 eV/N2 (43 to 74 kJ/mol N2) from 3.5 eV/N2 (335 kJ/mol N2) in the ground state. The overall process requires three successive surface excitation events, which could be facilitated by amplified resonance energy transfer due to plasmon local field enhancement. PMID:29291247
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
A Model Description Document for the Emulation Simulation Computer Model was already published. The model consisted of a detailed model (emulation) of a SAWD CO2 removal subsystem which operated with much less detailed (simulation) models of a cabin, crew, and condensing and sensible heat exchangers. The purpose was to explore the utility of such an emulation simulation combination in the design, development, and test of a piece of ARS hardware, SAWD. Extensions to this original effort are presented. The first extension is an update of the model to reflect changes in the SAWD control logic which resulted from test. Also, slight changes were also made to the SAWD model to permit restarting and to improve the iteration technique. The second extension is the development of simulation models for more pieces of air and water processing equipment. Models are presented for: EDC, Molecular Sieve, Bosch, Sabatier, a new condensing heat exchanger, SPE, SFWES, Catalytic Oxidizer, and multifiltration. The third extension is to create two system simulations using these models. The first system presented consists of one air and one water processing system. The second consists of a potential air revitalization system.
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
A user's Manual for the Emulation Simulation Computer Model was published previously. The model consisted of a detailed model (emulation) of a SAWD CO2 removal subsystem which operated with much less detailed (simulation) models of a cabin, crew, and condensing and sensible heat exchangers. The purpose was to explore the utility of such an emulation/simulation combination in the design, development, and test of a piece of ARS hardware - SAWD. Extensions to this original effort are presented. The first extension is an update of the model to reflect changes in the SAWD control logic which resulted from the test. In addition, slight changes were also made to the SAWD model to permit restarting and to improve the iteration technique. The second extension is the development of simulation models for more pieces of air and water processing equipment. Models are presented for: EDC, Molecular Sieve, Bosch, Sabatier, a new condensing heat exchanger, SPE, SFWES, Catalytic Oxidizer, and multifiltration. The third extension is to create two system simulations using these models. The first system presented consists of one air and one water processing system, the second a potential Space Station air revitalization system.
Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration
NASA Technical Reports Server (NTRS)
Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.
1987-01-01
Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.
NASA Astrophysics Data System (ADS)
Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.
2016-01-01
In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.
Medium- and Heavy-Duty Vehicle Field Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth J; Prohaska, Robert S
This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.
A shallow crustal earthquake doublet from the Trans-Mexican volcanic belt (Central Mexico)
NASA Astrophysics Data System (ADS)
Quintanar, L.; Rodríguez-González, M.; Campos-Enríquez, O.
2003-04-01
The trans-Mexican volcanic belt is an active volcanic arc related to subduction along the Middle America trench and characterized by shallow seismicity and synvolcanic to postvolcanic extensional arc-parallel faulting. The Mezquital graben is a major intra-arc basin of the central trans-Mexican volcanic belt. A doublet of moderate shallow shocks occurred in March and October 1976 in the region of this graben. These earthquakes were recorded by the Mexican National Seismological network, in particular by the Bosch-Omori seismograph (T_0 = 18 s) at the Tacubaya Observatory in Mexico City. We have carefully relocated the two main shocks and their major aftershocks by reading the original records and using a modified crustal velocity model for this region. A difference of ˜50 km is observed between the locations reported by the Mexican Seismological Service and those obtained in this study, which are additionally supported by the damage distribution of these earthquakes. A first motion analysis, based on regional and teleseismic records, defines for the March and October shocks normal fault mechanisms, characterized by E-W striking fault planes, which coincides with the orientation of the master faults of the Mezquital graben. After calculating the instrumental response, the source parameters were obtained from the Bosch-Omori seismograph records by body-wave modeling. For the March earthquake, we estimate a seismic moment of 4.5×1023 dyne-cm (equivalent to M_w=5.0) and a stress drop of 0.7 MPa assuming a circular rupture model (radius = 3 km). Given the poor quality of the Bosch-Omori record for the October earthquake, we used the comparison, between both events, of long-period (T=20 sec) teleseismic records at 2 stations to obtain its corresponding source parameters. By assuming a similar stress drop as for the March event, we obtain a M_0 of 5.6×1023 dyne-cm and M_w = 5.1 with a rupture length of 6.5 km. According to gravity data, the regional E-W faults are longer than reported. In particular, our detailed measurements indicate that the master of the Mezquital graben continue westward in the subsurface. In a more regional context, additional magnetic available information points that El Mezquital graben and Aljibes half-graben might be connected, as suggested by other authors, at their northern limits, by part of the same fault system. This is the first earthquake doublet reported from Central Mexico and the biggest seismic event in that zone during the last 50 years. The presence of moderate seismicity in this zone should therefore be taken into account when assessing its seismic hazard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Claus
Kick-off of the Bosch scope of work for the REGIS project started in October 2012. The primary work-packages included in the Bosch scope of work were the following: overall project management, development of the EGR sensor (design of sensor element, design of protection tube, and design of mounting orientation), development of EGR system control strategy, build-up of prototype sensors, evaluation of system performance with the new sensor and the new control strategy, long-term durability testing, and development of a 2nd generation sensor concept for continued technology development after the REGIS project. The University of Clemson was a partner with Boschmore » in the REGIS project. The Clemson scope of work for the REGIS project started in June 2013. The primary work-packages included in the Clemson scope of work were the following: development of EGR system control strategy, and evaluation of system performance with the new sensor and new control strategy. This project was split into phase I, phase II and phase III. Phase I work was completed by the end of June 2014 and included the following primary work packages: development of sensor technical requirements, assembly of engine testbench at Clemson, design concept for sensor housing, connector, and mounting orientation, build-up of EGR flow test benches at Bosch, and build-up of first sensor prototypes. Phase II work was completed by the end of June 2015 and included the following primary work pack ages: development of an optimizing function and demonstration of robustness of sensor, system control strategy implementation and initial validation, completion of engine in the loop testing of developed control algorithm, completion of sensor testing including characteristic line, synthetic gas test stand, and pressure dependency characterization, demonstration of benefits of control w/o sensing via simulation, development of 2nd generation sensor concept. Notable technical achievements from phase II were the following: publication of two new technical papers by Clemson detailing the control strategies used for the EGR system control. The two papers was published in the 2016 SAE World Congress in April 2016. The titles of each paper are, “Physics-Based Exhaust Pressure and Temperature Estimation for Low Pressure EGR Control in Turbocharged Gasoline Engines,” by K. Siokos, and “A Control Algorithm for Low Pressure – EGR Systems using a Smith Predictor with Intake Oxygen Sensor Feedback”, by R. Koli. All phase III work packages have been completed. The primary work packages in phase III were the following: completion of long-term sensor durability testing, final demonstration of benefits of EGR control w/o sensing, final decision of the second generation sensor development path.« less
The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China.
Gu, Baojing; Dong, Xiaoli; Peng, Changhui; Luo, Weidong; Chang, Jie; Ge, Ying
2012-12-01
Urbanization is an important process that alters the regional and global nitrogen biogeochemistry. In this study, we test how long-term urbanization (1952-2004) affects the nitrogen flows, emissions and drivers in the Greater Shanghai Area (GSA) based on the coupled human and natural systems (CHANS) approach. Results show that: (1) total nitrogen input to the GSA increased from 57.7 to 587.9 Gg N yr(-1) during the period 1952-2004, mainly attributing to fossil fuel combustion (43%), Haber-Bosch nitrogen fixation (31%), and food/feed import (26%); (2) per capita nitrogen input increased from 13.5 to 45.7 kg N yr(-1), while per gross domestic product (GDP) nitrogen input reduced from 22.2 to 0.9 g N per Chinese Yuan, decoupling of nitrogen with GDP; (3) emissions of reactive nitrogen to the environment transformed from agriculture dominated to industry and human living dominated, especially for air pollution. This study provides decision-makers a novel view of nitrogen management. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fritz Haber: December 9, 1868-January 29, 1934.
Witschi, H
2000-08-14
Fritz Haber (1868-1934) was a German physical chemist. Nobel laureate and foreign member of the US National Academy of Sciences. His greatest accomplishment in science was the development of a practical method to prepare nitrogen from air (nitrogen fixation or Haber-Bosch process). While working on the toxicity of war gases. he formulated 'Haber's rule', also known as C x T= constant in order to characterize the toxicity of an inhalant. Between 1919 and 1933. he was one of the leading figures in revitalizing science in Germany. At his institute in Berlin worked such luminaries as Albert Einstein, Lise Meitner and Otto Hahn. His last paper described what became known as the Haber-Weiss reaction. After his death he was for a long time forgotten by the Nazis because he was Jewish and after World War II by the Allies because of his work on war gases in World War I. And yet he was one of the truly great modern scientists. not only because of his science, but also because of the role he played in science politics and policies.
Bio-inspired Fabrication of Complex Hierarchical Structure in Silicon.
Gao, Yang; Peng, Zhengchun; Shi, Tielin; Tan, Xianhua; Zhang, Deqin; Huang, Qiang; Zou, Chuanping; Liao, Guanglan
2015-08-01
In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.
Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori
2016-12-14
NH 3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH 3 from atmospheric N 2 and oceanic H 2 O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH 3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH 3 . Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N 2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.
Technologically Reflective Individuals as Enablers of Social Innovation*
Rau, Christiane; Gassmann, Oliver; van den Hende, Ellis
2015-01-01
This paper identifies technologically reflective individuals and demonstrates their ability to develop innovations that benefit society. Technological reflectiveness (TR) is the tendency to think about the societal impact of an innovation, and those who display this capability in public are individuals who participate in online idea competitions focused on technical solutions for social problems (such as General Electric's eco‐challenge, the James Dyson Award, and the BOSCH Technology Horizon Award). However, technologically reflective individuals also reflect in private settings (e.g., when reading news updates), thus requiring a scale to identify them. This paper describes the systematic development of an easy‐to‐administer multi‐item scale to measure an individual's level of TR. Applying the TR scale in an empirical study on a health monitoring system confirmed that individuals' degree of TR relates positively to their ability to generate (1) more new product features and uses, (2) features with higher levels of societal impact, and (3) features that are more elaborated. This scale allows firms seeking to implement co‐creation in their new product development (NPD) process and sustainable solutions to identify such individuals. Thus, this paper indicates that companies wishing to introduce new technological products with a positive societal impact may profit from involving technologically reflective individuals in the NPD process. PMID:27134342
Technologically Reflective Individuals as Enablers of Social Innovation.
Schweitzer, Fiona; Rau, Christiane; Gassmann, Oliver; van den Hende, Ellis
2015-11-01
This paper identifies technologically reflective individuals and demonstrates their ability to develop innovations that benefit society. Technological reflectiveness (TR) is the tendency to think about the societal impact of an innovation, and those who display this capability in public are individuals who participate in online idea competitions focused on technical solutions for social problems (such as General Electric's eco-challenge, the James Dyson Award, and the BOSCH Technology Horizon Award). However, technologically reflective individuals also reflect in private settings (e.g., when reading news updates), thus requiring a scale to identify them. This paper describes the systematic development of an easy-to-administer multi-item scale to measure an individual's level of TR. Applying the TR scale in an empirical study on a health monitoring system confirmed that individuals' degree of TR relates positively to their ability to generate (1) more new product features and uses, (2) features with higher levels of societal impact, and (3) features that are more elaborated. This scale allows firms seeking to implement co-creation in their new product development (NPD) process and sustainable solutions to identify such individuals. Thus, this paper indicates that companies wishing to introduce new technological products with a positive societal impact may profit from involving technologically reflective individuals in the NPD process.
NASA Astrophysics Data System (ADS)
Yang, Simon; Gruber, Nicolas
2016-10-01
Over the last 100 years, anthropogenic emissions have led to a strong increase of atmospheric nitrogen deposition over the ocean, yet the resulting impacts and feedbacks are neither well understood nor quantified. To this end, we run a suite of simulations with the ocean component of the Community Earth System Model v1.2 forced with five scenarios of nitrogen deposition over the period from 1850 through 2100, while keeping all other forcings unchanged. Even though global oceanic net primary production increases little in response to this fertilization, the higher export and the resulting expansion of the oxygen minimum zones cause an increase in pelagic and benthic denitrification and burial by about 5%. In addition, the enhanced availability of fixed nitrogen in the surface ocean reduces global ocean N2 fixation by more than 10%. Despite the compensating effects through these negative feedbacks that eliminate by the year 2000 about 60% of the deposited nitrogen, the anthropogenic nitrogen input forced the upper ocean N budget into an imbalance of between 9 and 22 Tg N yr-1 depending on the deposition scenario. The excess nitrogen accumulates to highly detectable levels and causes in most areas a distinct negative trend in the δ15N of the oceanic fixed nitrogen pools—a trend we refer to as the 15N Haber-Bosch effect. Changes in surface nitrate utilization and the nitrogen feedbacks induce further changes in the δ15N of NO3-, making it a good but complex recorder of the overall impact of the changes in atmospheric deposition.
NASA Technical Reports Server (NTRS)
Michailova, M N; Neumann, M B
1936-01-01
In the present report a comparison is made between the scale obtained with mixtures of cetane and l-methyl naphthalene in a bomb, and that obtained with the same fuels in a Waukesha engine. The tests were conducted in a metal bomb heated by a Nichrome spiral. The fuel was injected into the bomb from a Bosch jet by means of a specially constructed plunger pump. The instant injection and the pressure curve in the bomb were registered by a beam of light which was reflected from a mirror connected to the needle of the jet and to a membrane indicator.
Ladino, Lady Diana; Hunter, Gary; Téllez-Zenteno, José Francisco
2013-10-01
The impact of health and disease has led many artists to depict these themes for thousands of years. Specifically, epilepsy has been the subject of many famous works, likely because of the dramatic and misunderstood nature of the clinical presentation. It often evokes religious and even mythical processes. Epilepsy surgical treatment has revolutionized the care of selected patients and is a relatively recent advance. Epilepsy surgery has been depicted in very few artistic works. The first portrait showing a potential surgical treatment for patients with epilepsy was painted in the 12th century. During the Renaissance, Bosch famously provided artistic commentary on traditional beliefs in "The stone of madness". Several of these works demonstrate a surgeon extracting a stone from a patient's head, at one time believed to be the source of all "folly", including epileptic seizures, psychosis, intellectual disability, depression, and a variety of other illnesses. There are some contemporary art pieces including themes around epilepsy surgery, all of them depicting ancient Inca Empire procedures such as trepanning. This article reviews the most relevant artistic works related with epilepsy surgery and also its historical context at the time the work was produced. We also present a painting from the Mexican artist Eduardo Urbano Merino that represents the patient's journey through refractory epilepsy, investigations, and ultimately recovery. Through this work, the artist intends to communicate hope and reassurance to patients going through this difficult process. © 2013.
Synthesis of Stacked-Cup Carbon Nanotubes in a Metal Free Low Temperature System
NASA Technical Reports Server (NTRS)
Kimura, Yuki; Nuth, Joseph A.; Johnson, Natasha M.; Farmer, Kevin D.; Roberts, Kenneth P.; Hussaini, Syed R.
2011-01-01
Stacked-cup carbon nanotubes were formed by either Fischer-Tropsch type or Haber Bosch type reactions in a metal free system. Graphite particles were used as the catalyst. The samples were heated at 600 C in a gas mixture of CO 75 Torr, N2 75 Torr and H2 550 Torr for three days. Trans mission electron microscope analysis of the catalyst surface at the completion of the experiment recognized the growth of nanotubes. They were 10-50 nm in diameter and approximately 1 micrometer in length. They had a hollow channel of 5-20 nm in the center. The nanotubes may have grown on graphite surfaces by the CO disproportionation reaction and the surface tension of the carbon nucleus may have determined the diameter. Although, generally, the diameter of a carbon nanotube depends on the size of the cataly1ic particles, the diameter of the nanotubes on graphite particles was independent of the particle size and significantly confined within a narrow range compared with that produced using catalytic amorphous iron-silicate nanoparticles. Therefore, they must have an unknown formation process that is different than the generally accepted mechanism.
Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong
2018-05-04
A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Klimarev, S I
2003-01-01
A waveguide SHF plasmotron was chosen for carbon dioxide and hydrogen recycling in a low-temperature plasma in the Bosch reactor. To increase electric intensity within the discharge capacitor, thickness of the waveguide thin wall was changed for 10 mm. A method for calculating the compensated exponential smooth transition to align two similar lines (waveguides) with sections of 72 x 34 mm and 72 x 10 mm to transfer SHF energies from the generator to plasma was proposed. Calculation of the smooth transition has been used in final refinement of the HSF plasmotron design as a component of a physical-chemical LSS.
Transfusion strategy for acute upper gastrointestinal bleeding.
Handel, James; Lang, Eddy
2015-09-01
Clinical question Does a hemoglobin transfusion threshold of 70 g/L yield better patient outcomes than a threshold of 90 g/L in patients with acute upper gastrointestinal bleeding? Article chosen Villanueva C, Colomo A, Bosch A, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med 2013;368(1):11-21. Study objectives The authors of this study measured mortality, from any cause, within the first 45 days, in patients with acute upper gastrointestinal bleeding, who were managed with a hemoglobin threshold for red cell transfusion of either 70 g/L or 90 g/L. The secondary outcome measures included rate of further bleeding and rate of adverse events.
Packaging of electro-microfluidic devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.
2003-04-15
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Packaging of electro-microfluidic devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.
2002-01-01
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Bosch osteotomy and scarf osteotomy for hallux valgus correction.
Maffulli, Nicola; Longo, Umile Giuseppe; Oliva, Francesco; Denaro, Vincenzo; Coppola, Cristiano
2009-10-01
Minimally invasive distal metatarsal osteotomies are becoming broadly accepted for correction of hallux valgus. We compared the duration of surgery, the length of hospital stay, the American Orthopaedic Foot and Ankle Society (AOFAS) score, and the Foot and Ankle Outcome Score (FAOS) in 36 patients who underwent a minimal incision subcapital osteotomy of the first metatarsal with 36 matched patients who had hallux valgus corrected by a scarf technique. The minimum follow-up was 2.1 years (mean, 2.5 years; range, 2.1-3.2 years). Patients having the osteotomy had similar AOFAS and FAOS scores with less operating time and earlier discharge. Less operative time may benefit the patients, and earlier discharge has financial implications for the hospital.
Advanced Oxygen Recovery via Series-Bosch Technology
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Atkins, Bobby; Evans, Chris; Nur, Mononita; Beassie, Rockford D.
2015-01-01
Oxygen recovery from metabolically-produced carbon dioxide (CO2) is of critical importance for long-duration manned space missions beyond low Earth orbit. On the International Space Station (ISS), oxygen is provided to the crew through electrolysis of water in the Oxygen Generation Assembly (OGA). Prior to 2011, this water was entirely resupplied from Earth. A CO2 Reduction Assembly based on the Sabatier reaction (1) was developed by Hamilton Sundstrand and delivered to ISS in 2010. The unit recovers oxygen by reducing metabolic CO2 with diatomic hydrogen (H2) to produce methane and product water. The water is cleaned by the Water Purification Assembly and recycled to the OGA for continued oxygen production. The methane product is vented overboard.
Imamura, Kazuya; Kawano, Yukiko; Miyahara, Shin-ichiro; Yamamoto, Tomokazu; Matsumura, Syo
2017-01-01
Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber–Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr2O3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr2O3. Furthermore, CO2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH3 synthesis, cleavage of the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 N bond. We expect that the use of this catalyst will be a starting point for achieving efficient ammonia synthesis. PMID:28451216
NASA Astrophysics Data System (ADS)
van den Bosch, Frank C.; Ogiya, Go
2018-04-01
To gain understanding of the complicated, non-linear, and numerical processes associated with the tidal evolution of dark matter subhaloes in numerical simulation, we perform a large suite of idealized simulations that follow individual N-body subhaloes in a fixed, analytical host halo potential. By varying both physical and numerical parameters, we investigate under what conditions the subhaloes undergo disruption. We confirm the conclusions from our more analytical assessment in van den Bosch et al. that most disruption is numerical in origin; as long as a subhalo is resolved with sufficient mass and force resolution, a bound remnant survives. This implies that state-of-the-art cosmological simulations still suffer from significant overmerging. We demonstrate that this is mainly due to inadequate force softening, which causes excessive mass loss and artificial tidal disruption. In addition, we show that subhaloes in N-body simulations are susceptible to a runaway instability triggered by the amplification of discreteness noise in the presence of a tidal field. These two processes conspire to put serious limitations on the reliability of dark matter substructure in state-of-the-art cosmological simulations. We present two criteria that can be used to assess whether individual subhaloes in cosmological simulations are reliable or not, and advocate that subhaloes that satisfy either of these two criteria be discarded from further analysis. We discuss the potential implications of this work for several areas in astrophysics.
Modeling reactive nitrogen in North America: recent ...
Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. The bulk of nitrogen in the environment is tightly bound as non-reactive N2. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media (Galloway et al., 2003). Human activity has perturbed this cycle through the combustion of fossil fuels and synthesis of fertilizers. The anthropogenic contribution to this cycle is now larger than natural sources in the United States and globally (Galloway et al., 2004). Reactive nitrogen enters the biosphere primarily from emissions of oxidized nitrogen to the atmosphere from combustion sources, as inorganic fertilizer applied to crops as reduced nitrogen fixed from atmospheric N2 through the Haber-Bosch process, as organic fertilizers such as manure, and through the cultivation of nitrogen fixing crops (Canfield et al., 2010). Both the United States (US) Clean Air Act and the Canadian Environmental Protection Act (CEPA) have substantially reduced the emissions of oxidized nitrogen in North America through NOx controls on smokestacks and exhaust pipes (Sickles and Shadwick, 2015; AQA, 2015). However, reduced nitrogen emissions have remained constant during the last few decades of emission reductions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) c
Food, Feed and Fuel: a Story About Nitrogen
NASA Astrophysics Data System (ADS)
Galloway, J. N.; Burke, M. B.; Mooney, H. A.; Steinfeld, H.
2008-12-01
Humans obtain metabolic energy by eating food. Nitrogen is required to grow food, but natural supplies of N for human purposes have been inadequate since the beginning of the twentieth century. The Haber-Bosch process now provides a virtually inexhaustible supply of nitrogen, limited primarily by the cost of energy. However, most nitrogen used in food production is lost to the environment, where it cascades through environmental reservoirs contributing to many of the major environmental issues of the day. Furthermore, growing international trade in nitrogen-containing commodities is increasingly replacing wind and water as an important international transporter of nitrogen around the globe. Finally, the rapid growth in crop-based biofuels, and its attendant effects on the global production and trade of all agricultural commodities, could greatly affect global patterns of N use and loss. In the light of the findings above, this paper examines the role of nitrogen in food, feed and fuel production. It describes the beneficial consequences for food production and the negative consequences associated with the commodity nitrogen cascade and the environmental nitrogen cascade. The paper reviews estimates of future projections of nitrogen demands for food and fuel, including the impact of changing diets in the developing world. The paper concludes by presenting the potential interactions among global change, agricultural production and the nitrogen and carbon cycles.
Method Of Packaging And Assembling Electro-Microfluidic Devices
Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.
2004-11-23
A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.
Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling.
Wang, Weizong; Patil, Bhaskar; Heijkers, Stjin; Hessel, Volker; Bogaerts, Annemie
2017-05-22
The conversion of atmospheric nitrogen into valuable compounds, that is, so-called nitrogen fixation, is gaining increased interest, owing to the essential role in the nitrogen cycle of the biosphere. Plasma technology, and more specifically gliding arc plasma, has great potential in this area, but little is known about the underlying mechanisms. Therefore, we developed a detailed chemical kinetics model for a pulsed-power gliding-arc reactor operating at atmospheric pressure for nitrogen oxide synthesis. Experiments are performed to validate the model and reasonable agreement is reached between the calculated and measured NO and NO 2 yields and the corresponding energy efficiency for NO x formation for different N 2 /O 2 ratios, indicating that the model can provide a realistic picture of the plasma chemistry. Therefore, we can use the model to investigate the reaction pathways for the formation and loss of NO x . The results indicate that vibrational excitation of N 2 in the gliding arc contributes significantly to activating the N 2 molecules, and leads to an energy efficient way of NO x production, compared to the thermal process. Based on the underlying chemistry, the model allows us to propose solutions on how to further improve the NO x formation by gliding arc technology. Although the energy efficiency of the gliding-arc-based nitrogen fixation process at the present stage is not comparable to the world-scale Haber-Bosch process, we believe our study helps us to come up with more realistic scenarios of entering a cutting-edge innovation in new business cases for the decentralised production of fertilisers for agriculture, in which low-temperature plasma technology might play an important role. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nitrogen Out of the Bottle: The Challenge of Managing the Genie
NASA Astrophysics Data System (ADS)
Galloway, J. N.
2012-12-01
Human activity converts more N2 to reactive nitrogen (Nr; all nitrogen species other than N2) than do natural terrestrial processes (mostly biological nitrogen fixation (BNF) in unmanaged ecosystems). Most of the Nr is created as a consequence of food production, fossil fuel combustion and industry. The Haber-Bosch process, invented in the early 20th century, now provides a virtually inexhaustible supply of nitrogen fertilizer. This one invention is responsible for the existence of about half of the world's population. That's the good news. The other news is that most of this nitrogen (and additional amounts from fossil fuel combustion and industry) is lost to the environment where it has exceeded the ability of the environment to convert it back to unreactive N2. The accumulating Nr contributes to smog, greenhouse effect, ecosystem eutrophication, acid rain and loss of stratospheric ozone in a sequential manner—the nitrogen cascade. Collectively these changes alter climate, decrease air quality, and diminish ecosystem sustainability. The challenge is how do we manage the genie—make sure we get the benefits of nitrogen, while minimizing the problems it causes. The paper will layout the possible, the probable and the improbable (but if it occurred, would be transformative) options for nitrogen management. Included will be the role that a nation vs. a person should play. The paper will also give examples of success stories, where nitrogen losses to the environment have been decreased, without impacting the service being provided—food and energy production. The paper will conclude with a forecast to the future, based upon the RCP scenarios for 2100.
Beam Flutter and Energy Harvesting in Internal Flow
NASA Astrophysics Data System (ADS)
Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae
2017-11-01
Aeroelastic flutter, largely studied for causing engineering failures, has more recently been used as a means of extracting energy from the flow. Particularly, flutter of a cantilever or an elastically mounted plate in a converging-diverging flow passage has shown promise as an energy harvesting concept for internal flow applications. The instability onset is observed as a function of throat velocity, internal wall geometry, fluid and structure material properties. To enable these devices, our work explores features of the fluid-structure coupled dynamics as a function of relevant nondimensional parameters. The flutter boundary is examined through stability analysis of a reduced order model, and corroborated with numerical simulations at low Reynolds number. Experiments for an energy harvester design are qualitatively compared to results from analytical and numerical work, suggesting a robust limit cycle ensues due to a subcritical Hopf bifurcation. Bosch Corporation.
Cost analysis of oxygen recovery systems
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1973-01-01
The design and development of equipment for flight use in earth-orbital programs, when optimally approached cost effectively, proceed through the following logical progression: (1) bench testing of breadboard designs, (2) the fabrication and evaluation of prototype equipment, (3) redesign to meet flight-imposed requirements, and (4) qualification and testing of a flight-ready system. Each of these steps is intended to produce the basic design information necessary to progress to the next step. The cost of each step is normally substantially less than that of the following step. An evaluation of the cost elements involved in each of the steps and their impact on total program cost are presented. Cost analyses of four leading oxygen recovery subsystems which include two carbon dioxide reduction subsystem, Sabatier and Bosch, and two water electrolysis subsystems, the solid polymer electrolyte and the circulating KOH electrolyte are described.
Enhancement of First Wall Damage in Iter Type Tokamak due to Lenr Effects
NASA Astrophysics Data System (ADS)
Lipson, Andrei G.; Miley, George H.; Momota, Hiromu
In recent experiments with pulsed periodic high current (J ~ 300-500 mA/cm2) D2-glow discharge at deuteron energies as low as 0.8-2.45 keV a large DD-reaction yield has been obtained. Thick target yield measurement show unusually high DD-reaction enhancement (at Ed = 1 keV the yield is about nine orders of magnitude larger than that deduced from standard Bosch and Halle extrapolation of DD-reaction cross-section to lower energies) The results obtained in these LENR experiments with glow discharge suggest nonnegligible edge plasma effects in the ITER TOKAMAK that were previously ignored. In the case of the ITER DT plasma core, we here estimate the DT reaction yield at the metal edge due to plasma ion bombardment of the first wall and/or divertor materials.
Instability in radiatively melted silicon films
NASA Astrophysics Data System (ADS)
Jackson, K. A.; Kurtze, Douglas A.
1985-04-01
Bosch and Lemons [Phys. Rev. Letters 47 (1981) 1151] were first to report that on heating of silicon with a laser, the heated area can break up into small regions of solid and liquid. Thus phenomenon produces undesirable surface roughness on silicon which has been melted using irradiation from a laser or heat lamps. It is due to the higher reflectivity of liquid silicon so that radiative heating produces small regions of superheated solid in contact with small regions of supercooled liquid. In this paper, the instabilities resulting from this unusual thermal situation have been analyzed. It is shown that a stable pattern can develop provided that the spacing between the solid and liquid is small enough. For a 1/2 μm thick layer of polysilicon on silica, the calculated stable spacing is less than about 10 μm, in accord with experiment.
NASA Astrophysics Data System (ADS)
Krivtsov, S. N.; Yakimov, I. V.; Ozornin, S. P.
2018-03-01
A mathematical model of a solenoid common rail fuel injector was developed. Its difference from existing models is control valve wear simulation. A common rail injector of 0445110376 Series (Cummins ISf 2.8 Diesel engine) produced by Bosch Company was used as a research object. Injector parameters (fuel delivery and back leakage) were determined by calculation and experimental methods. GT-Suite model average R2 is 0.93 which means that it predicts the injection rate shape very accurately (nominal and marginal technical conditions of an injector). Numerical analysis and experimental studies showed that control valve wear increases back leakage and fuel delivery (especially at 160 MPa). The regression models for determining fuel delivery and back leakage effects on fuel pressure and energizing time were developed (for nominal and marginal technical conditions).
A physical catalyst for the electrolysis of nitrogen to ammonia
Johnson, Daniel; Peng, Rui; Hensley, Dale K.; Bonnesen, Peter V.; Yang, Fengchang; Zhang, Fei; Tschaplinski, Timothy J.; Engle, Nancy L.; Wu, Zili; Meyer, Harry M.; Sumpter, Bobby G.
2018-01-01
Ammonia synthesis consumes 3 to 5% of the world’s natural gas, making it a significant contributor to greenhouse gas emissions. Strategies for synthesizing ammonia that are not dependent on the energy-intensive and methane-based Haber-Bosch process are critically important for reducing global energy consumption and minimizing climate change. Motivated by a need to investigate novel nitrogen fixation mechanisms, we herein describe a highly textured physical catalyst, composed of N-doped carbon nanospikes, that electrochemically reduces dissolved N2 gas to ammonia in an aqueous electrolyte under ambient conditions. The Faradaic efficiency (FE) achieves 11.56 ± 0.85% at −1.19 V versus the reversible hydrogen electrode, and the maximum production rate is 97.18 ± 7.13 μg hour−1 cm−2. The catalyst contains no noble or rare metals but rather has a surface composed of sharp spikes, which concentrates the electric field at the tips, thereby promoting the electroreduction of dissolved N2 molecules near the electrode. The choice of electrolyte is also critically important because the reaction rate is dependent on the counterion type, suggesting a role in enhancing the electric field at the sharp spikes and increasing N2 concentration within the Stern layer. The energy efficiency of the reaction is estimated to be 5.25% at the current FE of 11.56%. PMID:29719860
NASA Astrophysics Data System (ADS)
Richter, J. P.; Mollendorf, J. C.; DesJardin, P. E.
2016-11-01
Accurate knowledge of the absolute combustion gas composition is necessary in the automotive, aircraft, processing, heating and air conditioning industries where emissions reduction is a major concern. Those industries use a variety of sensor technologies. Many of these sensors are used to analyze the gas by pumping a sample through a system of tubes to reach a remote sensor location. An inherent characteristic with this type of sampling strategy is that the mixture state changes as the sample is drawn towards the sensor. Specifically, temperature and humidity changes can be significant, resulting in a very different gas mixture at the sensor interface compared with the in situ location (water vapor dilution effect). Consequently, the gas concentrations obtained from remotely sampled gas analyzers can be significantly different than in situ values. In this study, inherent errors associated with sampled combustion gas concentration measurements are explored, and a correction methodology is presented to determine the absolute gas composition from remotely measured gas species concentrations. For in situ (wet) measurements a heated zirconium dioxide (ZrO2) oxygen sensor (Bosch LSU 4.9) is used to measure the absolute oxygen concentration. This is used to correct the remotely sampled (dry) measurements taken with an electrochemical sensor within the remote analyzer (Testo 330-2LL). In this study, such a correction is experimentally validated for a specified concentration of carbon monoxide (5020 ppmv).
Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong
2008-01-01
In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).
Numerical investigation of the flow inside the combustion chamber of a plant oil stove
NASA Astrophysics Data System (ADS)
Pritz, B.; Werler, M.; Wirbser, H.; Gabi, M.
2013-10-01
Recently a low cost cooking device for developing and emerging countries was developed at KIT in cooperation with the company Bosch und Siemens Hausgeräte GmbH. After constructing an innovative basic design further development was required. Numerical investigations were conducted in order to investigate the flow inside the combustion chamber of the stove under variation of different geometrical parameters. Beyond the performance improvement a further reason of the investigations was to rate the effects of manufacturing tolerance problems. In this paper the numerical investigation of a plant oil stove by means of RANS simulation will be presented. In order to reduce the computational costs different model reduction steps were necessary. The simulation results of the basic configuration compare very well with experimental measurements and problematic behaviors of the actual stove design could be explained by the investigation.
Evaluation of a functional treatment for binge eating associated with bulimia nervosa.
Giddings, T D; Miltenberger, R G
2010-01-01
Binge-eating disorders (BED) are a common problem affecting up to 5 percent of the American population in any given 6-month period. Currently, the most widely accepted treatment is some variation of Cognitive Behavior Therapy, although the abstinence rates following this type of treatment are only around 50%. A recent study by Bosch et al. explored the effects of extinction with four women who engaged in binge-eating behavior associated with BED and bulimia nervosa (BN). The treatment was successful, with three of the four participants obtaining abstinence. To date, this has been the only study examining this procedure. The purpose of the current study was to further evaluate extinction of binge eating with four young women who met diagnostic criteria for BN. The results showed that the treatment decreased binge eating to zero for all four women, although one dropped out of the study shortly after beginning the intervention.
Graduate Biomedical Science Education Needs a New Philosophy.
Bosch, Gundula; Casadevall, Arturo
2017-12-19
There is a growing realization that graduate education in the biomedical sciences is successful at teaching students how to conduct research but falls short in preparing them for a diverse job market, communicating with the public, and remaining versatile scientists throughout their careers. Major problems with graduate level education today include overspecialization in a narrow area of science without a proper grounding in essential critical thinking skills. Shortcomings in education may also contribute to some of the problems of the biomedical sciences, such as poor reproducibility, shoddy literature, and the rise in retracted publications. The challenge is to modify graduate programs such that they continue to generate individuals capable of conducting deep research while at the same time producing more broadly trained scientists without lengthening the time to a degree. Here we describe our first experiences at Johns Hopkins and propose a manifesto for reforming graduate science education. Copyright © 2017 Bosch and Casadevall.
Versatile fusion source integrator AFSI for fast ion and neutron studies in fusion devices
NASA Astrophysics Data System (ADS)
Sirén, Paula; Varje, Jari; Äkäslompolo, Simppa; Asunta, Otto; Giroud, Carine; Kurki-Suonio, Taina; Weisen, Henri; JET Contributors, The
2018-01-01
ASCOT Fusion Source Integrator AFSI, an efficient tool for calculating fusion reaction rates and characterizing the fusion products, based on arbitrary reactant distributions, has been developed and is reported in this paper. Calculation of reactor-relevant D-D, D-T and D-3He fusion reactions has been implemented based on the Bosch-Hale fusion cross sections. The reactions can be calculated between arbitrary particle populations, including Maxwellian thermal particles and minority energetic particles. Reaction rate profiles, energy spectra and full 4D phase space distributions can be calculated for the non-isotropic reaction products. The code is especially suitable for integrated modelling in self-consistent plasma physics simulations as well as in the Serpent neutronics calculation chain. Validation of the model has been performed for neutron measurements at the JET tokamak and the code has been applied to predictive simulations in ITER.
NASA Astrophysics Data System (ADS)
Abbaspour, R.; Brown, D. K.; Bakir, M. S.
2017-02-01
This paper presents the fabrication and electrical characterization of high aspect-ratio (AR) sub-micron diameter through silicon vias (TSVs) for densely interconnected three-dimensional (3D) stacked integrated circuits (ICs). The fabricated TSV technology features an AR of 16:1 with 680 nm diameter copper (Cu) core and 920 nm overall diameter. To address the challenges in scaling TSVs, scallop-free low roughness nano-Bosch silicon etching and direct Cu electroplating on a titanium-nitride (TiN) diffusion barrier layer have been developed as key enabling modules. The electrical resistance of the sub-micron TSVs is measured to be on average 1.2 Ω, and the Cu resistivity is extracted to be approximately 2.95 µΩ cm. Furthermore, the maximum achievable current-carrying capacity (CCC) of the scaled TSVs is characterized to be approximately 360 µA for the 680 nm Cu core.
Martirez, John Mark P; Carter, Emily A
2016-02-23
The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.
The role of industrial nitrogen in the global nitrogen biogeochemical cycle
Gu, Baojing; Chang, Jie; Min, Yong; Ge, Ying; Zhu, Qiuan; Galloway, James N.; Peng, Changhui
2013-01-01
Haber-Bosch nitrogen (N) has been increasingly used in industrial products, e.g., nylon, besides fertilizer. Massive numbers of species of industrial reactive N (Nr) have emerged and produced definite consequences but receive little notice. Based on a comprehensive inventory, we show that (1) the industrial N flux has increased globally from 2.5 to 25.4 Tg N yr−1 from 1960 through 2008, comparable to the NOx emissions from fossil fuel combustion; (2) more than 25% of industrial products (primarily structural forms, e.g., nylon) tend to accumulate in human settlements due to their long service lives; (3) emerging Nr species define new N-assimilation and decomposition pathways and change the way that Nr is released to the environment; and (4) the loss of these Nr species to the environment has significant negative human and ecosystem impacts. Incorporating industrial Nr into urban environmental and biogeochemical models could help to advance urban ecology and environmental sciences. PMID:23999540
Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve
2016-01-01
Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.
Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Muscatello, Anthony C.; Meier, Anne J.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.
2016-01-01
Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.
Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve
2016-01-01
Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.
Neurological caricatures since the 15th century.
Lorusso, Lorenzo
2008-01-01
During the Renaissance, different artists began to draw medical illustrations from various viewpoints. Leonardo da Vinci was among those who sought to portray the emotional as well as the physical qualities of man. Other European artists described caricatural aspects of medical activities. In Northern Europe, Albrecht Durer, Hieronymus Bosch, and Pieter Brueghel were also famous for drawing caricatures. Later English artists, notably William Hogarth, Thomas Rowlandson, James Gillray, and the Cruikshanks, satirized life in general and the medical profession in particular. In Spain, Francisco Goya's works became increasingly macabre and satirical following his own mysterious illness and, in France, Honore Daumier used satire and humor to expose medical quackery. Also physicians such as Charles Bell and Jean-Martin Charcot were talented caricaturists. Their own personal artistic styles reflected their approach and gave a different "image" of neurology. Caricatures were popular portraits of developments in science and medicine and were frequently used whenever scientific language was too difficult to disseminate, in particular in the field of neurology.
Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter
2015-08-18
In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a "one-sensor-one-packaging_technology" concept. The second one uses a standard flip-chip bonding technique. The first sensor is a "floating-concept", capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not "floating" but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsson, Mikael
This 3-year project was a collaboration between University of California Irvine (UC Irvine), Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL), Argonne National Laboratory (ANL) and with an international collaborator at ForschungZentrum Jülich (FZJ). The project was led from UC Irvine under the direction of Profs. Mikael Nilsson and Hung Nguyen. The leads at PNNL, INL, ANL and FZJ were Dr. Liem Dang, Dr. Peter Zalupski, Dr. Nathaniel Hoyt and Dr. Giuseppe Modolo, respectively. Involved in this project at UC Irvine were three full time PhD graduate students, Tro Babikian, Ted Yoo, and Quynh Vo, and one MS student,more » Alba Font Bosch. The overall objective of this project was to study how the kinetics and thermodynamics of metal ion extraction can be described by molecular dynamic (MD) simulations and how the simulations can be validated by experimental data. Furthermore, the project includes the applied separation by testing the extraction systems in a single stage annular centrifugal contactor and coupling the experimental data with computational fluid dynamic (CFD) simulations. Specific objectives of the proposed research were: Study and establish a rigorous connection between MD simulations based on polarizable force fields and extraction thermodynamic and kinetic data. Compare and validate CFD simulations of extraction processes for An/Ln separation using different sizes (and types) of annular centrifugal contactors. Provide a theoretical/simulation and experimental base for scale-up of batch-wise extraction to continuous contactors. We approached objective 1 and 2 in parallel. For objective 1 we started by studying a well established extraction system with a relatively simple extraction mechanism, namely tributyl phosphate. What we found was that well optimized simulations can inform experiments and new information on TBP behavior was presented in this project, as well be discussed below. The second objective proved a larger challenge and most of the efforts were devoted to experimental studies.« less
Improvements to a five-phase ABS algorithm for experimental validation
NASA Astrophysics Data System (ADS)
Gerard, Mathieu; Pasillas-Lépine, William; de Vries, Edwin; Verhaegen, Michel
2012-10-01
The anti-lock braking system (ABS) is the most important active safety system for passenger cars. Unfortunately, the literature is not really precise about its description, stability and performance. This research improves a five-phase hybrid ABS control algorithm based on wheel deceleration [W. Pasillas-Lépine, Hybrid modeling and limit cycle analysis for a class of five-phase anti-lock brake algorithms, Veh. Syst. Dyn. 44 (2006), pp. 173-188] and validates it on a tyre-in-the-loop laboratory facility. Five relevant effects are modelled so that the simulation matches the reality: oscillations in measurements, wheel acceleration reconstruction, brake pressure dynamics, brake efficiency changes and tyre relaxation. The time delays in measurement and actuation have been identified as the main difficulty for the initial algorithm to work in practice. Three methods are proposed in order to deal with these delays. It is verified that the ABS limit cycles encircle the optimal braking point, without assuming any tyre parameter being a priori known. The ABS algorithm is compared with the commercial algorithm developed by Bosch.
Chan, Tze-Ming; Pramanik, Birendra; Aslanian, Robert; Gullo, Vincent; Patel, Mahesh; Cronin, Bart; Boyce, Chris; McCormick, Kevin; Berlin, Mike; Zhu, Xiaohong; Buevich, Alexei; Heimark, Larry; Bartner, Peter; Chen, Guodong; Pu, Haiyan; Hegde, Vinod
2009-02-20
Investigation of unexpected levels of impurities in Intron product has revealed the presence of low levels of impurities leached from the silicone tubing (Rehau RAU-SIK) on the Bosch filling line. In order to investigate the effect of these compounds (1a, 1b and 2) on humans, they were isolated identified and synthesized. They were extracted from the tubing by stirring in Intron placebo at room temperature for 72 h and were enriched on a reverse phase CHP-20P column, eluting with gradient aqueous ACN and were separated by HPLC. Structural elucidation of 1a, 1b and 2 by MS and NMR studies demonstrated them to be halogenated biphenyl carboxylic acids. The structures were confirmed by independent synthesis. Levels of extractable impurities in first filled vials of actual production are estimated to be in the range of 0.01-0.55 microg/vial for each leached impurity. Potential toxicity of these extractables does not represent a risk for patients under the conditions of clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuth, Joseph A.; Kimura, Yuki; Lucas, Christopher
It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from protostellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems frommore » the abundant H{sub 2}, CO, and N{sub 2} reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H{sub 2}, CO, and N{sub 2} at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.« less
The Formation of Graphite Whiskers in the Primitive Solar Nebula
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Kimura, Yuki; Lucas, Christopher; Ferguson, Frank; Johnson, Natasha M.
2010-01-01
It has been suggested that carbonaceous grains are efficiently destroyed in the interstellar medium and must either reform in situ at very low pressures and temperatures or in an alternative environment more conducive to grain growth. Graphite whiskers have been discovered associated with high-temperature phases in meteorites such as calcium aluminum inclusions and chondrules, and it has been suggested that the expulsion of such material from proto stellar nebulae could significantly affect the optical properties of the average interstellar grain population. We have experimentally studied the potential for Fischer-Tropsch and Haber-Bosch type reactions to produce organic materials in protostellar systems from the abundant H2, CO, and N2 reacting on the surfaces of available silicate grains. When graphite grains are repeatedly exposed to H2, CO, and N2 at 875 K abundant graphite whiskers are observed to form on or from the surfaces of the graphite grains. In a dense, turbulent nebula, such extended whiskers are very likely to be broken off, and fragments could be ejected either in polar jets or by photon pressure after transport to the outer reaches of the nebula.
ECLSS evolution: Advanced instrumentation interface requirements. Volume 3: Appendix C
NASA Technical Reports Server (NTRS)
1991-01-01
An Advanced ECLSS (Environmental Control and Life Support System) Technology Interfaces Database was developed primarily to provide ECLSS analysts with a centralized and portable source of ECLSS technologies interface requirements data. The database contains 20 technologies which were previously identified in the MDSSC ECLSS Technologies database. The primary interfaces of interest in this database are fluid, electrical, data/control interfaces, and resupply requirements. Each record contains fields describing the function and operation of the technology. Fields include: an interface diagram, description applicable design points and operating ranges, and an explaination of data, as required. A complete set of data was entered for six of the twenty components including Solid Amine Water Desorbed (SAWD), Thermoelectric Integrated Membrane Evaporation System (TIMES), Electrochemical Carbon Dioxide Concentrator (EDC), Solid Polymer Electrolysis (SPE), Static Feed Electrolysis (SFE), and BOSCH. Additional data was collected for Reverse Osmosis Water Reclaimation-Potable (ROWRP), Reverse Osmosis Water Reclaimation-Hygiene (ROWRH), Static Feed Solid Polymer Electrolyte (SFSPE), Trace Contaminant Control System (TCCS), and Multifiltration Water Reclamation - Hygiene (MFWRH). A summary of the database contents is presented in this report.
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen
2008-12-01
Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.
2D temperature field measurement in a direct-injection engine using LIF technology
NASA Astrophysics Data System (ADS)
Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua
2011-12-01
A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.
The Origin of Mucosal Immunity: Lessons from the Holobiont Hydra.
Schröder, Katja; Bosch, Thomas C G
2016-11-01
Historically, mucosal immunity-i.e., the portion of the immune system that protects an organism's various mucous membranes from invasion by potentially pathogenic microbes-has been studied in single-cell epithelia in the gastrointestinal and upper respiratory tracts of vertebrates. Phylogenetically, mucosal surfaces appeared for the first time about 560 million years ago in members of the phylum Cnidaria. There are remarkable similarities and shared functions of mucosal immunity in vertebrates and innate immunity in cnidarians, such as Hydra species. Here, we propose a common origin for both systems and review observations that indicate that the ultimately simple holobiont Hydra provides both a new perspective on the relationship between bacteria and animal cells and a new prism for viewing the emergence and evolution of epithelial tissue-based innate immunity. In addition, recent breakthroughs in our understanding of immune responses in Hydra polyps reared under defined short-term gnotobiotic conditions open up the potential of Hydra as an animal research model for the study of common mucosal disorders. Copyright © 2016 Schröder and Bosch.
A device for automatically measuring and supervising the critical care patient's urine output.
Otero, Abraham; Palacios, Francisco; Akinfiev, Teodor; Fernández, Roemi
2010-01-01
Critical care units are equipped with commercial monitoring devices capable of sensing patients' physiological parameters and supervising the achievement of the established therapeutic goals. This avoids human errors in this task and considerably decreases the workload of the healthcare staff. However, at present there still is a very relevant physiological parameter that is measured and supervised manually by the critical care units' healthcare staff: urine output. This paper presents a patent-pending device capable of automatically recording and supervising the urine output of a critical care patient. A high precision scale is used to measure the weight of a commercial urine meter. On the scale's pan there is a support frame made up of Bosch profiles that isolates the scale from force transmission from the patient's bed, and guarantees that the urine flows properly through the urine meter input tube. The scale's readings are sent to a PC via Bluetooth where an application supervises the achievement of the therapeutic goals. The device is currently undergoing tests at a research unit associated with the University Hospital of Getafe in Spain.
van den Bosch, Ralph; Taris, Toon W
2014-01-01
Previous research on authenticity has mainly focused on trait conceptualizations of authenticity (e.g., Wood et al., 2008), whereas in specific environments (e.g., at work) state conceptualizations of authenticity (cf. Van den Bosch & Taris, 2013) are at least as relevant. For example, working conditions are subject to change, and this could well have consequences for employees' perceived level of authenticity at work. The current study employs a work-specific, state-like conceptualization of authenticity to investigate the relations between authenticity at work, well-being, and work outcomes. A series of ten separate hierarchical regression analyses using data from 685 participants indicated that after controlling for selected work characteristics and demographic variables, authenticity at work accounted for on average 11% of the variance of various wellbeing and work outcomes. Of the three subscales of authenticity at work (i.e., authentic living, self-alienation, and accepting influence), self-alienation was the strongest predictor of outcomes, followed by authentic living and accepting external influence, respectively. These findings are discussed in the light of their practical and theoretical implications.
Study on stair-step liquid triggered capillary valve for microfluidic systems
NASA Astrophysics Data System (ADS)
Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim
2018-06-01
In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.
Reliability of lead-calcium automotive batteries in practical operations
NASA Astrophysics Data System (ADS)
Burghoff, H.-G.; Richter, G.
In order to reach a statistically sound conclusion on the suitability of maintenance-free, lead-calcium automotive batteries for practical operations, the failure behaviour of such batteries has been observed in a large-scale experiment carried out by Mercedes Benz AG and Robert Bosch GmbH in different climatic zones of North America. The results show that the average failure behaviour is not significantly different to that of batteries from other manufacturers using other grid alloy systems and operated under otherwise identical conditions; the cumulative failure probability after 30 months is 17%. The principal causes of failure are: (i) early failure: transport damage, filling errors, and short-circuits due to the outer plates being pushed up during plate-block assembly (manufacturing defect); (ii) statistical failure: short-circuits due to growth of positive plates caused by a reduction in the mechanical strength of the cast positive grid as a result of corrosion; (iii) late failure due to an increased occurrence of short-circuits, especially frequent in outer cell facing the engine of the vehicle (subjected to high temperature), and to defects caused by capacity decay. As expected, the batteries exhibit extremely low water loss in each cell. The poor cyclical performance of stationary batteries, caused by acid stratification and well-known from laboratory tests, has no detrimental effect on the batteries in use. After a thorough analysis of the corrosion process, the battery manufacturer changed the grid alloy and the method of its production, and thus limited the corrosion problem with cast lead-calcium grids and with it the possibility of plate growth. The mathematical methods used in this study, and in particular the characteristic factors derived from them, have proven useful for assessing the suitability of automotive batteries.
Ngo, Ha-Duong; Mukhopadhyay, Biswaijit; Ehrmann, Oswin; Lang, Klaus-Dieter
2015-01-01
In this paper we present and discuss two innovative liquid-free SOI sensors for pressure measurements in harsh environments. The sensors are capable of measuring pressures at high temperatures. In both concepts media separation is realized using a steel membrane. The two concepts represent two different strategies for packaging of devices for use in harsh environments and at high temperatures. The first one is a “one-sensor-one-packaging_technology” concept. The second one uses a standard flip-chip bonding technique. The first sensor is a “floating-concept”, capable of measuring pressures at temperatures up to 400 °C (constant load) with an accuracy of 0.25% Full Scale Output (FSO). A push rod (mounted onto the steel membrane) transfers the applied pressure directly to the center-boss membrane of the SOI-chip, which is placed on a ceramic carrier. The chip membrane is realized by Deep Reactive Ion Etching (DRIE or Bosch Process). A novel propertied chip housing employing a sliding sensor chip that is fixed during packaging by mechanical preloading via the push rod is used, thereby avoiding chip movement, and ensuring optimal push rod load transmission. The second sensor can be used up to 350 °C. The SOI chips consists of a beam with an integrated centre-boss with was realized using KOH structuring and DRIE. The SOI chip is not “floating” but bonded by using flip-chip technology. The fabricated SOI sensor chip has a bridge resistance of 3250 Ω. The realized sensor chip has a sensitivity of 18 mV/µm measured using a bridge current of 1 mA. PMID:26295235
NASA Astrophysics Data System (ADS)
Kharbikar, Bhushan N.; Kumar S., Harish; Kr., Sindhu; Srivastava, Rohit
2015-12-01
Chemotherapy Induced Nausea and Vomiting (CINV) is a serious health concern in the treatment of cancer patients. Conventional routes for administering anti-emetics (i.e. oral and parenteral) have several drawbacks such as painful injections, poor patient compliance, dependence on skilled personnel, non-affordability to majority of population (parenteral), lack of programmability and suboptimal bioavailability (oral). Hence, we have developed a trans-epidermal antiemetic drug delivery patch using out-of-plane hollow silicon microneedle array. Microneedles are pointed micron-scale structures that pierce the epidermal layer of skin to reach dermal blood vessels and can directly release the drug in their vicinity. They are painless by virtue of avoiding significant contact with dermal sensory nerve endings. This alternate approach gives same pharmacodynamic effects as par- enteral route at a sparse drug-dose requirement, hence negligible side-effects and improved patient compliance. Microneedle design attributes were derived by systematic study of human skin anatomy, natural micron-size structures like wasp-sting and cactus-spine and multi-physics simulations. We used deep reactive ion etching with Bosch process and optimized recipe of gases to fabricate high-aspect-ratio hollow silicon microneedle array. Finally, microneedle array and polydimethylsiloxane drug reservoir were assembled to make finished anti-emetic patch. We assessed microneedles mechanical stability, physico-chemical properties and performed in-vitro, ex- vivo and in-vivo studies. These studies established functional efficacy of the device in trans-epidermal delivery of anti-emetics, its programmability, ease of use and biosafety. Thus, out-of-plane hollow silicon microneedle array trans-epidermal antiemetic patch is a promising strategy for painless and effective management of CINV at low cost in mainstream healthcare.
Ogura, Yuta; Sato, Katsutoshi; Miyahara, Shin-ichiro; Kawano, Yukiko; Toriyama, Takaaki; Yamamoto, Tomokazu; Matsumura, Syo; Hosokawa, Saburo
2018-01-01
Ammonia is an important feedstock for producing fertiliser and is also a potential energy carrier. However, the process currently used for ammonia synthesis, the Haber–Bosch process, consumes a huge amount of energy; therefore the development of new catalysts for synthesising ammonia at a high rate under mild conditions (low temperature and low pressure) is necessary. Here, we show that Ru/La0.5Ce0.5O1.75 pre-reduced at an unusually high temperature (650 °C) catalysed ammonia synthesis at extremely high rates under mild conditions; specifically, at a reaction temperature of 350 °C, the rates were 13.4, 31.3, and 44.4 mmol g–1 h–1 at 0.1, 1.0, and 3.0 MPa, respectively. Kinetic analysis revealed that this catalyst is free of hydrogen poisoning under the conditions tested. Electron energy loss spectroscopy combined with O2 absorption capacity measurements revealed that the reduced catalyst consisted of fine Ru particles (mean diameter < 2.0 nm) that were partially covered with partially reduced La0.5Ce0.5O1.75 and were dispersed on a thermostable support. Furthermore, Fourier transform infrared spectra measured after N2 addition to the catalyst revealed that N2 adsorption on Ru atoms that interacted directly with the reduced La0.5Ce0.5O1.75 weakened the N 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 N bond and thus promoted its cleavage, which is the rate-determining step for ammonia synthesis. Our results indicate that high-temperature pre-reduction of this catalyst, which consists of Ru supported on a thermostable composite oxide with a cubic fluorite structure and containing reducible cerium, resulted in the formation of many sites that were highly active for N2 reduction by hydrogen. PMID:29719696
Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from CO2 Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Muscatello, Anthony
2015-01-01
Oxygen recovery from respiratory CO2 is an important aspect of human spaceflight. Methods exist to sequester the CO2, but production of oxygen needs further development. The current ISS Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction is the only real alternative to the Sabatier reaction, but in the last reaction in the cycle (Boudouard) the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling, find a use for this waste product, and increase efficiency, we propose testing various self-cleaning catalyst designs in an existing MSFC Boudouard reaction test bed and to determine which one is the most reliable in conversion and lack of fouling. Challenges include mechanical reliability of the cleaning method and maintaining high conversion efficiency with lower catalyst surface area. The above chemical reactions are well understood, but planned implementations are novel (TRL 2) and haven't been investigated at any level.
Insights on Li-TFSI diffusion in polyethylene oxide for battery applications
NASA Astrophysics Data System (ADS)
Molinari, Nicola; Mailoa, Jonathan; Kozinsky, Boris; Robert Bosch LLC Collaboration
Improving the energy density, safety and efficiency of lithium-ion (Li-ion) batteries is crucial for the future of energy storage and applications such as electric cars. A key step in the research of next-generation solid polymeric electrolyte materials is understanding the diffusion mechanism of Li-ion in polyethylene oxide (PEO) in order to guide the design of electrolytes materials with high Li-ion diffusion while, ideally, suppress counter-anion movement. In this work we use computer simulations to investigate this long-standing problem at a fundamental level. The system under study has Li-TFSI concentration and PEO chain length that are representative of practical application specifications; the interactions of the molecular model are described via the PCFF+ all-atom force-field. Validation of the model is performed by comparing trends against experiments for diffusivity and conductivity as a function of salt concentration. The analysis of Li-TFSI molecular dynamics trajectories reveals that 1. for high Li-TFSI concentration a significant fraction of Li-ion is coordinated by only TFSI and consistently move less than PEO-coordinated Li-ion, 2. PEO chain motion is key in enabling Li-ion movement. Robert Bosch LLC.
Why education can foster sustainability in the fashion market
NASA Astrophysics Data System (ADS)
Grundmeier, A.-M.
2017-10-01
This project focuses on exploring sustainable-oriented options for young people as they are the primary target group of an accelerating fashion industry. The fast fashion market has major problems along its globally organised supply chain regarding its social and environmental compatibility. The project is conducted within a greater urban area, using the city of Freiburg exemplarily. Pupils of the Staudinger Gesamtschule, the only comprehensive school in Freiburg, engage themselves exploratively in the perspective of sustainability within the fashion market and create a catalogue of measures for sustainable-oriented handling. The main focus of this research project is to evaluate sustainable-oriented course of actions by interviewing selected consumers and active participants as well as protagonists of the fashion market and textile research field. The empirical social research is conducted by using guidelines as an interviewing technique when contacting commercial and product enterprises as well as research institutes and welfare institutions. Explorations and interviews give pupils the opportunity to become familiar with the fields of work and its individual sustainability options within the fashion market. The project is promoted by the programme “Our Common Future” of the Robert Bosch Foundation, Germany.
AVC/H.264 patent portfolio license
NASA Astrophysics Data System (ADS)
Horn, Lawrence A.
2005-08-01
MPEG LA, LLC offers a joint patent license for the AVC (a/k/a H.264) Standard (ISO/IEC IS 14496-10:2004). Like MPEG LA's other licenses, the AVC Patent Portfolio License is offered for the convenience of the marketplace as an alternative enabling users to access essential intellectual property owned by many patent holders under a single license rather than negotiating licenses with each of them individually. The AVC Patent Portfolio License includes essential patents owned by Electronics and Telecommunications Research Institute (ETRI); France Telecom, societe anonyme; Fujitsu Limited; Koninklijke Philips Electronics N.V.; LG Electronics Inc.; Matsushita Electric Industrial Co., Ltd.; Microsoft Corporation; Mitsubishi Electric Corporation; Robert Bosch GmbH; Samsung Electronics Co., Ltd.; Sedna Patent Services, LLC; Sharp Kabushiki Kaisha; Siemens AG; Sony Corporation; The Trustees of Columbia University in the City of New York; Toshiba Corporation; and Victor Company of Japan, Limited. MPEG LA's objective is to provide worldwide access to as much AVC essential intellectual property as possible for the benefit of AVC users. Therefore, any party that believes it has essential patents is welcome to submit them for evaluation of their essentiality and inclusion in the License if found essential.
Solar upconversion with plasmon-enhanced bimolecular complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dionne, Jennifer
2017-04-14
Upconversion of sub-bandgap photons is a promising approach to exceed the Shockley-Queisser limit in solar technologies. However, due to the low quantum efficiencies and narrow absorption bandwidths of upconverters, existing systems have only led to fractional percent improvements in photovoltaic devices (~0.01%). In this project, we aimed to develop an efficient upconverting material that could improve cell efficiencies by at least one absolute percent. To achieve this goal, we first used thermodynamic calculations to determine cell efficiencies with realistic upconverting materials. Then, we designed, synthesized, and characterized nanoantennas that promise >100x enhancement in both the upconverter absorption cross-section and emissivemore » radiative rate. Concurrently, we optimized the upconverer by designing new ionic and molecular complexes that promise efficient solid-state upconversion. Lastly, with Bosch, we simulated record-efficiency semi-transparent cells that will allow for ready incorporation of our upconverting materials. While we were not successful in designing record efficiency upconverters during our three years of funding, we gained significant insight into the existing limitations of upconverters and how to best address these challenges. Ongoing work is aimed at addressing these limitations, to make upconversion a cost-competitive solar technology in future years.« less
Bentley, Walter J
2009-12-01
The foundation of an integrated pest management program involves valid treatment thresholds, accurate and simple monitoring methods, effective natural controls, selective pesticides and trained individuals who can implement the concept. The Integrated Control Concept written by Stern, Smith, van den Bosch and Hagen elucidated each of these points in an alfalfa ecosystem. Alfalfa hay (Medicago sativa L.) has a low per acre value, requires little hand labor and is primarily marketed in the USA. In contrast, fresh market table grape (Vitis vinifera L.) has a high per acre value, requires frequent hand labor operations, suffers unacceptable cosmetic damage and is marketed throughout both the USA and the world. Each of the components of a working IPM program is present in table grape production. Marketing grapes to foreign countries presents special problems with pests considered invasive and where residue tolerances for some selective insecticides are lacking. However, fresh market grape farmers are still able to deal with these special problems and utilize an IPM program that has resulted in a 42% reduction in broad-spectrum insecticide use from 1995 to 2007. (c) 2009 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popolo, A. Del; Delliou, M. Le, E-mail: adelpopolo@oact.inaf.it, E-mail: delliou@ift.unesp.br
2014-12-01
We continue the study of the impact of baryon physics on the small scale problems of the ΛCDM model, based on a semi-analytical model (Del Popolo, 2009). With such model, we show how the cusp/core, missing satellite (MSP), Too Big to Fail (TBTF) problems and the angular momentum catastrophe can be reconciled with observations, adding parent-satellite interaction. Such interaction between dark matter (DM) and baryons through dynamical friction (DF) can sufficiently flatten the inner cusp of the density profiles to solve the cusp/core problem. Combining, in our model, a Zolotov et al. (2012)-like correction, similarly to Brooks et al. (2013),more » and effects of UV heating and tidal stripping, the number of massive, luminous satellites, as seen in the Via Lactea 2 (VL2) subhaloes, is in agreement with the numbers observed in the MW, thus resolving the MSP and TBTF problems. The model also produces a distribution of the angular spin parameter and angular momentum in agreement with observations of the dwarfs studied by van den Bosch, Burkert, and Swaters (2001)« less
Preparation and emission characteristics of ethanol-diesel fuel blends.
Zhang, Run-Duo; He, Hong; Shi, Xiao-Yan; Zhang, Chang-Bin; He, Bang-Quan; Wang, Jian-Xin
2004-01-01
The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection (DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon (HC), and carbon monoxide (CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.
van der Aa, Anouk A M A; Mannaerts, Christophe K; van der Linden, Hans; Gayet, Maudy; Schrier, Bart Ph; Mischi, Massimo; Beerlage, Harrie P; Wijkstra, Hessel
2018-02-01
To determine the value of a three-dimensional (3D) greyscale transrectal ultrasound (TRUS)-guided prostate biopsy system and biopsy core pre-embedding method on concordance between Gleason scores of needle biopsies and radical prostatectomy (RP) specimens. Retrospective analysis of prostate biopsies and subsequent RP for PCa in the Jeroen Bosch Hospital, the Netherlands, from 2007 to 2016. Two cohorts were analysed: conventional 2D TRUS-guided biopsies and RP (2007-2013, n = 266) versus 3D TRUS-guided biopsies with pre-embedding (2013-2016, n = 129). The impact of 3D TRUS-guidance with pre-embedding on Gleason score (GS) concordance between biopsy and RP was evaluated using the κ-coefficient. Predictors of biopsy GS 6 upgrading were assessed using logistic regression models. Gleason concordance was comparable between the two cohorts with a κ = 0.44 for the 3D cohort, compared to κ = 0.42 for the 2D cohort. 3D TRUS-guidance with pre-embedding, did not significantly affect the risk of biopsy GS 6 upgrading in univariate and multivariate analysis. 3D TRUS-guidance with biopsy core pre-embedding did not improve Gleason concordance. Improved detection techniques are needed for recognition of low-grade disease upgrading.
Musial, G
2001-01-01
Starting with two statements made by two great artists and witnesses of the XXth century - Joseph Brodsky and the Polish poet, Tadeusz Rozewicz - the author discusses the roots of our current moral crisis to which we ourselves bear witness: in the unchecked population explosion (Brodsky), and in the sinister legacy of World War II, the effects of which we witness on a daily basis (Rozewicz). The author recalls a third witness: Czeslaw Milosz, who wrote that the world's progress exhibits an inevitable tendency toward nihilism. In his discourse with the three statements mentioned, the author refers to certain XXth century intellectuals - Ortega y Gasset, Cardinal Joseph Ratzinger, Mircea Eliade, Herbert Read - who confirm and develop the thesis of man s spiritual fall and rejection of transcendence through technology. The author further illustrates his thesis with examples taken from the scientific research concerning IT, cloning, euthanasia, as well as from the world of the arts from the apocalyptic works of Hieronymous Bosch and Pieter Bruegel the Elder to the latest performers. He invokes a worldview which, by rejecting the metaphysics of man s birth, aging, and death, also rejects the judeo-christian taboo of the human body as a "dwelling place for the spirit" (porno festivals, exhibitions of human corpses by Prof. von Hagens in Germany).
NASA Astrophysics Data System (ADS)
Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh
2011-12-01
The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.
Ségal, Alain
2011-01-01
The Piscina Probatica theme is the highly distinctive iconography in an impressive painted canvas from the ancient Rheims hôtel-Dieu, dating back to the late 15th or early 16th century. In the first place, it is interesting to note that the actual site of the pool has been located, so that archaeological findings bring confirmation to testament scriptures. Through the choice of the painted-canvas medium, and thanks to his great pictorial skill, the anonymous Rheims artist has given us a document of exceptional value, concerning the signs and symptoms of an illness which wrought havoc in the Rheims area in his own lifetime, namely ignis plaga or "mal des ardents". Other great artists of the same period, such as J. Bosch, have testified to the horror of the illness. As a matter-of-fact, the illness has been fully documented, from the 17th century onwards, and the medical expert H.A. Tessier, also acting as an agricultural expert, has demonstrated that ergotized rye is responsible for the fatal condition known as ergotism, and for the heavy toll it has levied on human lives in the course of centuries.
AVC/H.264 patent portfolio license
NASA Astrophysics Data System (ADS)
Skandalis, Dean A.
2006-08-01
MPEG LA, LLC offers a joint patent license for the AVC (a/k/a H.264) Standard (ISO/IEC IS 14496-10:2004). Like MPEG LA's other licenses, the AVC Patent Portfolio License is offered for the convenience of the marketplace as an alternative enabling users to access essential intellectual property owned by many patent holders under a single license rather than negotiating licenses with each of them individually. The AVC Patent Portfolio License includes essential patents owned by DAEWOO Electronics Corporation; Electronics and Telecommunications Research Institute (ETRI); France Telecom, societe anonyme; Fujitsu Limited; Hitachi, Ltd.; Koninklijke Philips Electronics N.V.; LG Electronics Inc.; Matsushita Electric Industrial Co., Ltd.; Microsoft Corporation; Mitsubishi Electric Corporation; Robert Bosch GmbH; Samsung Electronics Co., Ltd.; Sedna Patent Services, LLC; Sharp Kabushiki Kaisha; Siemens AG; Sony Corporation; The Trustees of Columbia University in the City of New York; Toshiba Corporation; UB Video Inc.; and Victor Company of Japan, Limited. Another is expected also to join as of August 1, 2006. MPEG LA's objective is to provide worldwide access to as much AVC essential intellectual property as possible for the benefit of AVC users. Therefore, any party that believes it has essential patents is welcome to submit them for evaluation of their essentiality and inclusion in the License if found essential.
Jütte, Robert
2014-07-01
Samuel Hahnemann (1755-1843) known today as the founder of homoeopathy, was - as far as we know - the first physician who administrated placebos to his patient on a systematic and regular basis. This study is based upon unpublished documents (e.g. patients' letters) in the Archives of the Institute for the History of Medicine of the Robert Bosch Foundation in Stuttgart. It also profited from the critical edition of Hahnemann's case journals and the editorial comments which have also been published in this series. Hahnemann differentiated clearly between homeopathic drugs and pharmaceutical substances which he considered as sham medicine (e.g. milk sugar). A close look at Hahnemann's case journals reveals that the percentage of placebo prescriptions was very high (between 54 and 85 percent). In most instances Hahnemann marked placebos with the paragraph symbol (§). The rationale behind this practice was that Hahnemann had encountered the well-known problem that patients were used to taking medicine on a daily basis as it was typical for the age of heroic medicine. The main reason for giving placebo was therefore to please the impatient patient who was used to frequent medications in allopathic medicine, not only every day but sometimes also hourly. Copyright © 2014 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
[Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].
Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan
2003-07-01
The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.
NASA Technical Reports Server (NTRS)
Ferrarese, Laura; Bosch, Frank C. Van Den; Ford, Holland C.; Jaffe, Walter; O'Connell, Robert W.
1994-01-01
We have used the Planetary Camera on the Hubble Space Telescope (HST) to study the morphology and surface brightness parameters of a luminosity-limited sample of fourteen elliptical galaxies in the Virgo cluster. The total apparent blue magnitudes of the galaxies range between 9.4 and 13.4. In this paper, the core brightness profiles are presented, while the overall morphology and the isophotal shapes are discussed in two companion papers (Jaffe et al. (1994); van den Bosch et al. (1994)). We show that, in spite of the spherical aberration affecting the HST primary mirror, deconvolution techniques allow recovery of the brightness profile up to 0.2 arcsec from the center of the galaxies. We find that none of the galaxies has an isothermal core. On the basis of their morphological and photometrical properties, the galaxies can be divided in two physically distinct groups, referred to as Type I and Type II. All of the Type I galaxies are classified as E1 to E3 in the Revised Shapley Ames Catalog (Sandage & Tammann 1981), while Type II galaxies are classified as E5 to E7. The characteristics of Type II galaxies are explained by the presence of disks component on both the 1 arcsec and the 10 arcsec scales, while Type I galaxies correspond to the classical disk-free ellipticals.
The influence of bilingualism on the preference for the mouth region of dynamic faces.
Ayneto, Alba; Sebastian-Galles, Nuria
2017-01-01
Bilingual infants show an extended period of looking at the mouth of talking faces, which provides them with additional articulatory cues that can be used to boost the challenging situation of learning two languages (Pons, Bosch & Lewkowicz, 2015). However, the eye region also provides fundamental cues for emotion perception and recognition, as well as communication. Here, we explored whether the adaptations resulting from learning two languages are specific to linguistic content or if they also influence the focus of attention when looking at dynamic faces. We recorded the eye gaze of bilingual and monolingual infants (8- and 12-month-olds) while watching videos of infants and adults portraying different emotional states (neutral, crying, and laughing). When looking at infant faces, bilinguals looked longer at the mouth region as compared to monolinguals regardless of age. However, when presented with adult faces, 8-month-old bilingual infants looked longer at the mouth region and less at the eye region compared to 8-month-old monolingual infants, but no effect of language exposure was found at 12 months of age. These findings suggest that the bias to the mouth region in bilingual infants at 8 months of age can be generalized to other audiovisual dynamic faces that do not contain linguistic information. We discuss the potential implications of such bias in early social and communicative development. © 2016 John Wiley & Sons Ltd.
Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Karr, Laurel J.; Paley, Mark S.; Donovan, David N.; Kramer, Teersa J.
2016-01-01
Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.
AVC/H.264 patent portfolio license
NASA Astrophysics Data System (ADS)
Horn, Lawrence A.
2004-11-01
MPEG LA, LLC recently announced terms of a joint patent license for the AVC (a/k/a H.264) Standard (ISO/IEC IS 14496-10: Information technology -- Coding of audio-visual objects -- Part 10: Advanced Video Coding | ITU-T Rec. H.264: Series H: Audiovisual and Multimedia Systems: Infrastructure of audiovisual services -- Coding of moving video: Advanced video coding for generic audiovisual services). Like MPEG LA"s other licenses, the AVC Patent Portfolio License is offered for the convenience of the marketplace as an alternative enabling users to access essential intellectual property owned by many patent holders under a single license rather than negotiating licenses with each of them individually. The AVC Patent Portfolio License includes essential patents owned by Columbia Innovation Enterprises; Electronics and Telecommunications Research Institute (ETRI); France Télécom, société anonyme; Fujitsu Limited; Koninklijke Philips Electronics N.V.; Matsushita Electric Industrial Co., Ltd.; Microsoft Corporation; Mitsubishi Electric Corporation; Robert Bosch GmbH; Samsung Electronics Co., Ltd.; Sharp Kabushiki Kaisha; Sony Corporation; Toshiba Corporation; and Victor Company of Japan, Limited. MPEG LA"s objective is to provide worldwide access to as much AVC essential intellectual property as possible for the benefit of AVC users. Therefore, any party that believes it has essential patents is welcome to submit them for evaluation of their essentiality and inclusion in the License if found essential.
Cost Effective Development of Usable Systems: Gaps between HCI and Software Architecture Design
NASA Astrophysics Data System (ADS)
Folmer, Eelke; Bosch, Jan
A software product with poor usability is likely to fail in a highly competitive market; therefore software developing organizations are paying more and more attention to ensuring the usability of their software. Practice, however, shows that product quality (which includes usability among others) is not that high as it could be. Studies of software projects (Pressman, 2001) reveal that organizations spend a relative large amount of money and effort on fixing usability problems during late stage development. Some of these problems could have been detected and fixed much earlier. This avoidable rework leads to high costs and because during development different tradeoffs have to be made, for example between cost and quality leads to systems with less than optimal usability. This problem has been around for a couple of decades especially after software engineering (SE) and human computer interaction (HCI) became disciplines on their own. While both disciplines developed themselves, several gaps appeared which are now receiving increased attention in research literature. Major gaps of understanding, both between suggested practice and how software is actually developed in industry, but also between the best practices of each of the fields have been identified (Carrol et al, 1994, Bass et al, 2001, Folmer and Bosch, 2002). In addition, there are gaps in the fields of differing terminology, concepts, education, and methods.
[From teratology to mythology: ancient legends].
Stahl, A; Tourame, P
2010-12-01
The mythology of the Greeks and Romans is full of monsters of fiction: giants, cyclops, centaurs, hydras, Gorgons… The accounts of travelers, reproduced in the Natural History of Pline l'Ancien reported the existence, in distant countries, of men with a dog's head (baboons), of men with a single tall foot (sciapode), beings whose face is embedded in the chest (or acephala blemmyes), to which must be added a wide variety of men with no mouth, no nose, or equipped with giant ears or feet turned backwards, as well as hermaphrodites. Teratology reports on monstrous births, which have constituted the factual basis from which the imagination conceived adults whose morphology corresponds to the monsters of legend. Newborns sirenomelia were behind the legend of sciapode and sirens. Cyclopia have inspired the legend of the cyclops. Anencephaly probably explains the description of headless or blemmyes. The genesis of the legend of baboons may have multiple origins: firstly the existence of people suffering from congenital hypertrichosis, on the other hand, the influence of Egyptian mythology where the god Anubis has a dog's head. The acardiac fetus may explain some monstrous forms, features the work of Hieronymus Bosch. The significance of the monsters of legend, their genesis, their persistence through the ages is complex. By approaching teratology, we added a new field of exploration of real monsters of antiquity and Middle Ages. Copyright © 2010. Published by Elsevier SAS.
Cissen, M; Meijerink, A M; D'Hauwers, K W; Meissner, A; van der Weide, N; Mochtar, M H; de Melker, A A; Ramos, L; Repping, S; Braat, D D M; Fleischer, K; van Wely, M
2016-09-01
Can an externally validated model, based on biological variables, be developed to predict successful sperm retrieval with testicular sperm extraction (TESE) in men with non-obstructive azoospermia (NOA) using a large nationwide cohort? Our prediction model including six variables was able to make a good distinction between men with a good chance and men with a poor chance of obtaining spermatozoa with TESE. Using ICSI in combination with TESE even men suffering from NOA are able to father their own biological child. Only in approximately half of the patients with NOA can testicular sperm be retrieved successfully. The few models that have been developed to predict the chance of obtaining spermatozoa with TESE were based on small datasets and none of them have been validated externally. We performed a retrospective nationwide cohort study. Data from 1371 TESE procedures were collected between June 2007 and June 2015 in the two fertility centres. All men with NOA undergoing their first TESE procedure as part of a fertility treatment were included. The primary end-point was the presence of one or more spermatozoa (regardless of their motility) in the testicular biopsies.We constructed a model for the prediction of successful sperm retrieval, using univariable and multivariable binary logistic regression analysis and the dataset from one centre. This model was then validated using the dataset from the other centre. The area under the receiver-operating characteristic curve (AUC) was calculated and model calibration was assessed. There were 599 (43.7%) successful sperm retrievals after a first TESE procedure. The prediction model, built after multivariable logistic regression analysis, demonstrated that higher male age, higher levels of serum testosterone and lower levels of FSH and LH were predictive for successful sperm retrieval. Diagnosis of idiopathic NOA and the presence of an azoospermia factor c gene deletion were predictive for unsuccessful sperm retrieval. The AUC was 0.69 (95% confidence interval (CI): 0.66-0.72). The difference between the mean observed chance and the mean predicted chance was <2.0% in all groups, indicating good calibration. In validation, the model had moderate discriminative capacity (AUC 0.65, 95% CI: 0.62-0.72) and moderate calibration: the predicted probability never differed by more than 9.2% of the mean observed probability. The percentage of men with Klinefelter syndrome among men diagnosed with NOA is expected to be higher than in our study population, which is a potential selection bias. The ability of the sperm retrieved to fertilize an oocyte and produce a live birth was not tested. This model can help in clinical decision-making in men with NOA by reliably predicting the chance of obtaining spermatozoa with TESE. This study was partly supported by an unconditional grant from Merck Serono (to D.D.M.B. and K.F.) and by the Department of Obstetrics and Gynaecology of Radboud University Medical Center, Nijmegen, The Netherlands, the Department of Obstetrics and Gynaecology, Jeroen Bosch Hospital, Den Bosch, The Netherlands, and the Department of Obstetrics and Gynaecology, Academic Medical Center, Amsterdam, The Netherlands. Merck Serono had no influence in concept, design nor elaboration of this study. Not applicable. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zingerle, Philipp; Fecher, Thomas; Pail, Roland; Gruber, Thomas
2016-04-01
One of the major obstacles in modern global gravity field modelling is the seamless combination of lower degree inhomogeneous gravity field observations (e.g. data from satellite missions) with (very) high degree homogeneous information (e.g. gridded and reduced gravity anomalies, beyond d/o 1000). Actual approaches mostly combine such data only on the basis of the coefficients, meaning that previously for both observation classes (resp. models) a spherical harmonic analysis is done independently, solving dense normal equations (NEQ) for the inhomogeneous model and block-diagonal NEQs for the homogeneous. Obviously those methods are unable to identify or eliminate effects as spectral leakage due to band limitations of the models and non-orthogonality of the spherical harmonic base functions. To antagonize such problems a combination of both models on NEQ-basis is desirable. Theoretically this can be achieved using NEQ-stacking. Because of the higher maximum degree of the homogeneous model a reordering of the coefficient is needed which leads inevitably to the destruction of the block diagonal structure of the appropriate NEQ-matrix and therefore also to the destruction of simple sparsity. Hence, a special coefficient ordering is needed to create some new favorable sparsity pattern leading to a later efficient computational solving method. Such pattern can be found in the so called kite-structure (Bosch, 1993), achieving when applying the kite-ordering to the stacked NEQ-matrix. In a first step it is shown what is needed to attain the kite-(NEQ)system, how to solve it efficiently and also how to calculate the appropriate variance information from it. Further, because of the massive computational workload when operating on large kite-systems (theoretically possible up to about max. d/o 100.000), the main emphasis is put on to the presentation of special distributed algorithms which may solve those systems parallel on an indeterminate number of processes and are therefore suitable for the application on supercomputers (such as SuperMUC). Finally, (if time or space) some in-detail problems are shown that occur when dealing with high degree spherical harmonic base functions (mostly due to instabilities of Legendre polynomials), introducing also an appropriate solution for each.
Green urea synthesis catalyzed by hematite nanowires in magnetic field
NASA Astrophysics Data System (ADS)
Yahya, Noorhana; Qureshi, Saima; Rehman, Zia ur; Alqasem, Bilal; Fai Kait, Chong
2017-04-01
The catalytic activity of hematite (α-Fe2O3) nanowires under the influence of magnetic field on urea synthesis is considered green. The adsorption and subsequent dissociative reaction of hydrogen, nitrogen and carbon dioxide gases on the α-Fe2O3 (111) nanowires were investigated using the density functional theory (DFT) method. The average adsorption energy is -4.12 kcal/mole at different sites. The adsorption of gases resulted in a difference in density and net spin of electrons from 68 to 120 and 0-21 respectively. In addition, it induces magnetic moment value of 36.33 μB, which confirms the enhanced magnetic behaviour of hematite. α-Fe2O3 nanowires (NWs) synthesized by heating iron wire in a box furnace at (750-800) °C and as synthesized α-Fe2O3 nanoparticles (NPs) were received to use as a catalyst in the magnetic reaction of urea synthesis. X-ray Diffractometer (XRD) confirms the peaks of rhombohedral structure of α-Fe2O3 and Raman spectrum analyses confirms the α-Fe2O3 peaks at 410 cm-1, 500 cm-1 and 616 cm-1. The needle-like shape of hematite nanowires with length ranging from 16-25) μm and diameter from 74 to 145 nm confirmed by Field emission scanning electron microscopy (FESEM). The magnetic properties of the nanowires exhibited different levels of saturation magnetization, for α-Fe2O3 perpendicularly aligned direction (13.18 emu/g) and random direction (10.73 emu/g). Urea synthesis was done under magnetic field ranges from 0.0 to 2.5 T. The activation energy of α-Fe2O3 NWs for urea production is lower than NPs in the range of 0-1 T, whereas it is reversed for higher magnetic induction values. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of urea at the peaks of 1690-1600 cm-1. This green urea employing magnetically induced method could be a contender to the Haber-Bosch process currently used by the current industry which utilizes high temperature and high pressure.
Development of a new model for short period ocean tidal variations of Earth rotation
NASA Astrophysics Data System (ADS)
Schuh, Harald
2015-08-01
Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.
A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Johnson, N. M.
2010-01-01
The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.
Hill, Hugh G M; Nuth, Joseph A
2003-01-01
The synthesis of important prebiotic molecules is fundamentally reliant on basic starting ingredients: water, organic species [e.g., methane (CH(4))], and reduced nitrogen compounds [e.g., ammonia (NH(3)), methyl cyanide (CH(3)CN) etc.]. However, modern studies conclude that the primordial Earth's atmosphere was too rich in CO, CO(2), and water to permit efficient synthesis of such reduced molecules as envisioned by the classic Miller-Urey experiment. Other proposed sources of terrestrial nitrogen reduction, like those within submarine vent systems, also seem to be inadequate sources of chemically reduced C-H-O-N compounds. Here, we demonstrate that nebular dust analogs have impressive catalytic properties for synthesizing prebiotic molecules. Using a catalyst analogous to nebular iron silicate condensate, at temperatures ranging from 500K to 900K, we catalyzed both the Fischer-Tropsch conversion of CO and H(2) to methane and water, and the corresponding Haber-Bosch synthesis of ammonia from N(2) and H(2). Remarkably, when CO, N(2), and H(2) were allowed to react simultaneously, these syntheses also yielded nitrogen-containing organics such as methyl amine (CH(3)NH(2)), acetonitrile (CH(3)CN), and N-methyl methylene imine (H(3)CNCH(2)). A fundamental consequence of this work for astrobiology is the potential for a natural chemical pathway to produce complex chemical building blocks of life throughout our own Solar System and beyond.
The debate about acclimatization in the Dutch East Indies (1840-1860).
de Knecht-van Eekelen, A.
2000-01-01
Around the middle of the nineteenth century, conflicting views were put forward on the influence of climate on health and disease in the Dutch East Indies. In this part of the world, old Hippocratic ideas influenced views on the cause of disease much longer than in the Netherlands. Moreover, Brunonian theories--which had been discarded in the Netherlands--fitted the discussion about the effect of temperature on the body. Additionally, scientific medicine was introduced. Scientific methods, such as the collection of meteorological and statistical data, were promoted by a small group of military health officers. However, the use of scientific data did not guarantee a clear-cut opinion on the causes of disease. Numbers proved as disputable as other, less objective, medical observations. Mortality statistics and numbers of patients especially were used as arguments in various discussions. The example of Bosch, who changed his views on the dangers of tropical climate, demonstrates that statistics could be used for different purposes. At first, in his position as General Inspector, he used them as an argument to provide better care for the military personnel; later, when retired and a civilian, he used them as justification for colonization in relation to an intended improvement of the living conditions of the natives. The dangers of tropical climate for the health of Europeans were played down as soon as other--primarily economic--motives for living in the tropics became strong enough. PMID:11769938
Deformational injection rate measuring method
NASA Astrophysics Data System (ADS)
Marčič, Milan
2002-09-01
After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.
Taj, M; Qureshi, R N; Farzana, T; Shamsi, T S; Ahmed, S S
2015-06-01
Patients with hematological disorders develop febrile neutropenia (FN); most of these events remain undetermined in origin. We performed a prospective study to determine the microbiological characteristics of infections and their response to the first-line antibiotic therapy in FN. The study was conducted at National Institute of Blood Disease and Bone Marrow Transplant. Two-hundred episodes of FN were assessed for the bacterial growth, antimicrobial susceptibility pattern and response to the first-line treatment of FN. All patients were given Ceftazidime and Amikacin Bosch Pharmaceutical (Pvt. Ltd), as first-line antibiotic in FN. Out of 200 episodes we had 108 clinically and microbiologically documented infections. The isolated frequencies for gram negative and gram positive organisms were n = 52 and 49 (48 and 45 %) respectively. Among gram negative micro-organisms, Escherichia coli (E. coli) was isolated in 15 (28.8 %), Klebsiella pneumonae in 4 (7.6 %) and Pseudomonas aeruginosa in 10 (19.2 %) were in highest frequencies. Methicillin sensitive staphylococci emerged as the frequently isolated gram-positive bacteria. Eight-one episodes (45.3 %) responded to the first-line treatment and death reported in 20 cases (10 %). Our study showed almost equal trend of gram positive and gram negative bacteria isolated from patients suffering from neutropenic fever. Empirical use of Ceftazidime and Amikacin as first-line antibiotics was able to cover the infection only in 45.3 % of episodes suffering from FN.
Do safety engineered devices reduce needle-stick injuries?
Schuurmans, J; Lutgens, S P; Groen, L; Schneeberger, P M
2018-05-05
Needle stick injuries (NSIs) are one of the most common health hazards facing health care workers (HCWs) across the globe. Needles with safety engineered devices (SEDs) have been developed to minimize the risk of exposure to blood-borne infections such as Hepatitis B virus (HBV), Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) associated with NSIs. To assess the effect of the introduction of SEDs in preventing NSIs among HCWs in the Jeroen Bosch Hospital (JBH), the Netherlands. We compared the incidence of reported NSIs before and after the introduction of SEDs. All HCWs who reported a NSI with a SED were interviewed in order to understand the underlying causes of the NSIs. Despite the introduction of SEDs the incidence of NSIs increased from 1.9/100 HCWs before the introduction of SEDs to 2.2/100 HCWs after the introduction of SEDs. The registration of reported SED related NSIs showed a significant decrease in the number of NSIs related to injection needles and blood sugar needles, while an unexpected significant increase in NSIs with nadroparin calcium needles and infusion needles was found. The most common causes reported for NSIs were unsafe disposal of the needles and problems with the safety feature. The application of SEDs has not led to a reduction of NSIs. The majority of NSIs caused by a needle with a SED can be prevented by stimulation of safe needle disposal, proper use of SEDs and provision of feedback to manufacturers to keep improving product design. Copyright © 2018. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Matter, Paul H.; Holt, Chris; Beachy, Michael; Gaydos, James; Farmer, Serene C.; Setlock, John
2016-01-01
A critical component in spacecraft life support loop closure is the removal of carbon dioxide (CO2, produced by the crew) from the cabin atmosphere and chemical reduction of this CO2 to recover the oxygen. In 2015, we initiated development of an oxygen recovery system for life support applications consisting of a solid oxide co-electrolyzer (SOCE) and a carbon formation reactor (CFR). The SOCE electrolyzes a combined stream of carbon dioxide (CO2) and water (H2O) gas mixtures to produce synthesis gas (e.g., CO and H2 gas) and pure dry oxygen as separate products. This SOCE is being developed from a NASA GRC solid oxide fuel cell and stack design originally developed for aeronautics long-duration power applications. The CFR, being developed by pHMatter LLC, takes the CO and H2 output from the SOCE, and converts it primarily to solid carbon (C(s)) and H2O and CO2. Although the solid carbon accumulates in the CFR, the innovative design allows easy removal of the carbon product, requiring minimal crew member (CM) time and low resupply mass (1.0 kg/year/CM) for replacement of the solid carbon catalyst, a significant improvement over previous Bosch reactor approaches. In this work, we will provide a status of our Phase I efforts in the development and testing of both the SOCE and CFR prototype units, along with an initial assessment of the combined SOCE-CFR system, including a mass and power projections, along with an estimate of the oxygen recovery rate.
Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Gonzalez-Perez, Violeta; Bose, Sownak; Boyarsky, Alexey; Cole, Shaun; Frenk, Carlos S.; Ruchayskiy, Oleg
2017-07-01
N-body dark matter simulations of structure formation in the Λ cold dark matter (ΛCDM) model predict a population of subhaloes within Galactic haloes that have higher central densities than inferred for the Milky Way satellites, a tension known as the 'too big to fail' problem. Proposed solutions include baryonic effects, a smaller mass for the Milky Way halo and warm dark matter (WDM). We test these possibilities using a semi-analytic model of galaxy formation to generate luminosity functions for Milky Way halo-analogue satellite populations, the results of which are then coupled to the Jiang & van den Bosch model of subhalo stripping to predict the subhalo Vmax functions for the 10 brightest satellites. We find that selecting the brightest satellites (as opposed to the most massive) and modelling the expulsion of gas by supernovae at early times increases the likelihood of generating the observed Milky Way satellite Vmax function. The preferred halo mass is 6 × 1011 M⊙, which has a 14 per cent probability to host a Vmax function like that of the Milky Way satellites. We conclude that the Milky Way satellite Vmax function is compatible with a CDM cosmology, as previously found by Sawala et al. using hydrodynamic simulations. Sterile neutrino-WDM models achieve a higher degree of agreement with the observations, with a maximum 50 per cent chance of generating the observed Milky Way satellite Vmax function. However, more work is required to check that the semi-analytic stripping model is calibrated correctly for each sterile neutrino cosmology.
Sensor for Injection Rate Measurements
Marcic, Milan
2006-01-01
A vast majority of the medium and high speed Diesel engines are equipped with multi-hole injection nozzles nowadays. Inaccuracies in workmanship and changing hydraulic conditions in the nozzles result in differences in injection rates between individual injection nozzle holes. The new deformational measuring method described in the paper allows injection rate measurement in each injection nozzle hole. The differences in injection rates lead to uneven thermal loads of Diesel engine combustion chambers. All today known measuring method, such as Bosch and Zeuch give accurate results of the injection rate in diesel single-hole nozzles. With multihole nozzles they tell us nothing about possible differences in injection rates between individual holes of the nozzle. At deformational measuring method, the criterion of the injected fuel is expressed by the deformation of membrane occurring due to the collision of the pressure wave against the membrane. The pressure wave is generated by the injection of the fuel into the measuring space. For each hole of the nozzle the measuring device must have a measuring space of its own into which fuel is injected as well as its measuring membrane and its own fuel outlet. During measurements procedure the measuring space must be filled with fuel to maintain an overpressure of 5 kPa. Fuel escaping from the measuring device is conducted into the graduated cylinders for measuring the volumetric flow through each hole of the nozzle.The membrane deformation is assessed by strain gauges. They are glued to the membrane and forming the full Wheatstone's bridge. We devoted special attention to the membrane shape and temperature compensation of the strain gauges.
Is the black hole in NGC 1277 really overmassive?
NASA Astrophysics Data System (ADS)
Emsellem, Eric
2013-08-01
A recent claim has been made by van den Bosch et al. that the fast-rotator galaxy NGC 1277 hosts an overmassive black hole with a mass (1.7 × 1010 M⊙) larger than half its (central) stellar spheroid mass. We revisit this claim here by examining the predictions from simple dynamical realizations based on new multi-Gaussian expansion (MGE) models of NGC 1277, using the same inclination i = 75°, and constant mass-to-light ratios. We present realizations which fit well the observed photometry taking into account an approximation for the extinction due to the central dust ring. The mass-to-light ratio M/L is fixed following scaling relations which predict a Salpeter-like initial mass function for such a luminous early-type fast rotator, 60 per cent higher than the one of the previously derived best-fitting model. A model without a black hole provides a surprisingly good fit of the observed kinematics outside the unresolved central region, but not, as expected, of the central dispersion and Gauss-Hermite h4 values. A model with a black hole mass of 5 × 109 M⊙ allows us to fit the central dispersion profile, consistently with models of the same mass and M/L in van den Bosch et al. It departs from the central h4 values by only about twice the given uncertainty. A slightly varying M/L or the addition of high-velocity stars in the central spatially unresolved region would further lower the need for a very massive black hole in the central region of NGC 1277. These results do not, by themselves, rule out the presence of a presumed overmassive black hole at the centre of NGC 1277. However, they lead us to advocate the use of 3σ (as opposed to 1σ) confidence intervals for derived MBH as better, more conservative, guidelines for such studies. We also caution for the use of ill-defined spheroidal components as an input for scaling relations, and emphasize the fact that a MBH in the range 2-5 × 109 M⊙ would represent less than 5 per cent of the spheroid bulge-like mass of our models and less than 2.5 per cent of its total stellar mass. This would make the black hole in NGC 1277 consistent or just twice as large as what a recent version of the MBH-σ predicts, well within the observed scatter. We examine the impact of the presence of an inner bar by running simulations from the same MGE model but with extreme anisotropies. An inner small (600 pc diameter) bar forms, and an end-on view does get closer to fitting the central dispersion profile (and fits the h3 amplitude) without the need for a central dark mass, while adding a black hole of 2.5 × 109 M⊙, in line with the prediction from scaling relations, allows us to fit the dispersion peak and h3 profiles. Both models, however, still fail to fit the central h4 value (overpredicting the mean velocity). The claimed large mass of the presumed black hole therefore mostly relies on the measured positive high central h4 (at high dispersion), which can be associated with broad wings in the line-of-sight velocity distribution (high-velocity stars). This emphasizes the need to go beyond medium-resolution long-slit kinematics, with e.g. high-resolution integral-field spectroscopic data. In the specific case of NGC 1277, molecular or ionized gas kinematics (if present) within the central arcsecond (or at large scale) may provide a strong discriminant between these various models. We finally briefly discuss the fact that NGC 1277 resembles a scaled-up version of e.g. NGC 4342, another nearly edge-on fast rotator with a potentially large (but not overmassive) black hole.
Dutra, Guilherme Moreira; Penido, Iago DE Souza; Pessali, Tiago Casarim; Netto-Ferreira, Andre Luiz
2017-11-08
Curimatus albula Lütken 1874 was described from the Ribeirão da Mata at Lagoa Santa, a tributary of Rio das Velhas, Rio São Francisco basin. The species validity was questioned by Lütken (1875) himself, who suggested that the species could be a synonym of Curimatus gilbert Quoy & Gaimard, a species described from the Rio Macacu, a coastal river tributary of Guanabara bay, Rio de Janeiro. That synonymy was only formally proposed by Eigenmann (1910), and followed by most subsequent authors (e. g. Nielsen, 1974; Vari, 1992), except for Fowler (1975), who erroneously listed C. albula as the senior synonym of C. gilbert. Vari (1989) posteriorly removed both nominal species from Curimatus Oken (= Curimata Bosch) reallocating them in Cyphocharax Fowler, based on the lack of synapomorphic conditions present in other valid curimatid genera. Vari (1989) considered that those nominal species belonged to a major group within Cyphocharax also including C. grandocule Fernández-Yépez, C. modestus Fernández-Yépez, C. santacatarinae Fernández-Yépez, and C. voga Hensel, based on the presence of a rhomboidal caudal pigmentation and "random body spotting". Later, Vari (1992) included C. grandocule along with C. albula in the synonymy of C. gilbert, and listed several characters allowing further distinction of that species from the remaining species of the group (i.e., number of vertebrae, scales in transverse series, and pigmentation characters). Among the characters involving the pigmentation pattern, Vari (1992) stressed the lack of randomly arranged dark spots on the lateral and dorsolateral surfaces of the body in C. gilbert (versus present in C. voga).
Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations
NASA Astrophysics Data System (ADS)
Sirén, P.; Varje, J.; Weisen, H.; Koskela, T.; contributors, JET
2017-09-01
The ASCOT Fusion Source Integrator (AFSI) has been used to calculate neutron production rates and spectra corresponding to the JET 19-channel neutron camera (KN3) and the time-of-flight spectrometer (TOFOR) as ideal diagnostics, without detector-related effects. AFSI calculates fusion product distributions in 4D, based on Monte Carlo integration from arbitrary reactant distribution functions. The distribution functions were calculated by the ASCOT Monte Carlo particle orbit following code for thermal, NBI and ICRH particle reactions. Fusion cross-sections were defined based on the Bosch-Hale model and both DD and DT reactions have been included. Neutrons generated by AFSI-ASCOT simulations have already been applied as a neutron source of the Serpent neutron transport code in ITER studies. Additionally, AFSI has been selected to be a main tool as the fusion product generator in the complete analysis calculation chain: ASCOT - AFSI - SERPENT (neutron and gamma transport Monte Carlo code) - APROS (system and power plant modelling code), which encompasses the plasma as an energy source, heat deposition in plant structures as well as cooling and balance-of-plant in DEMO applications and other reactor relevant analyses. This conference paper presents the first results and validation of the AFSI DD fusion model for different auxiliary heating scenarios (NBI, ICRH) with very different fast particle distribution functions. Both calculated quantities (production rates and spectra) have been compared with experimental data from KN3 and synthetic spectrometer data from ControlRoom code. No unexplained differences have been observed. In future work, AFSI will be extended for synthetic gamma diagnostics and additionally, AFSI will be used as part of the neutron transport calculation chain to model real diagnostics instead of ideal synthetic diagnostics for quantitative benchmarking.
Kao, David P; Lindenfeld, JoAnn; Macaulay, Dendy; Birnbaum, Howard G; Jarvis, John L; Desai, Urvi S; Page, Robert L
2016-01-01
Telehealth has the potential to improve chronic disease management and outcomes, but data regarding direct benefit of telehealth in patients with heart failure (HF) have been mixed. The objective of this study was to determine whether the Health Buddy Program (HBP) (Bosch Healthcare, Palo Alto, CA), a content-driven telehealth system coupled with care management, is associated with improved outcomes in Medicare beneficiaries with HF. This was a retrospective cohort study of 623 Medicare beneficiaries with HF offered HBP enrollment compared with a propensity score-matched control group of Medicare beneficiaries with HF from the Medicare 5% sample. Associations between availability of the HBP and all-cause mortality, hospitalization, hospital days, and emergency department visits were evaluated. Beneficiaries offered enrollment in the HBP had 24.9% lower risk-adjusted all-cause mortality over 3 years of follow-up (hazard ratio [HR] = 0.75; 95% confidence interval [CI], 0.63-0.89; p = 0.001). Patients who used the HBP at least once (36.9%) had 57.2% lower mortality compared with matched controls (HR = 0.43; 95% CI, 0.31-0.60; p < 0.001), whereas patients who did not use the HBP had no significant difference in survival (HR = 0.96; 95% CI, 0.78-1.19; p = 0.69). Patients offered the HBP also had fewer hospital admissions following enrollment (Δ = -0.05 admissions/quarter; p = 0.011), which was primarily observed in patients who used the HBP at least once (Δ = -0.10 admissions/quarter; p < 0.001). The HBP, a content-driven telehealth system coupled with care management, was associated with significantly better survival and reduced hospitalization in Medicare beneficiaries with HF. Prospective study is warranted to determine the mechanism of this association and opportunities for optimization.
Naranjo, Steven E; Ellsworth, Peter C
2009-01-01
Fifty years ago, Stern, Smith, van den Bosch and Hagen outlined a simple but sophisticated idea of pest control predicated on the complementary action of chemical and biological control. This integrated control concept has since been a driving force and conceptual foundation for all integrated pest management (IPM) programs. The four basic elements include thresholds for determining the need for control, sampling to determine critical densities, understanding and conserving the biological control capacity in the system and the use of selective insecticides or selective application methods, when needed, to augment biological control. Here we detail the development, evolution, validation and implementation of an integrated control (IC) program for whitefly, Bemisia tabaci (Genn.), in the Arizona cotton system that provides a rare example of the vision of Stern and his colleagues. Economic thresholds derived from research-based economic injury levels were developed and integrated with rapid and accurate sampling plans into validated decision tools widely adopted by consultants and growers. Extensive research that measured the interplay among pest population dynamics, biological control by indigenous natural enemies and selective insecticides using community ordination methods, predator:prey ratios, predator exclusion and demography validated the critical complementary roles played by chemical and biological control. The term ‘bioresidual’ was coined to describe the extended environmental resistance from biological control and other forces possible when selective insecticides are deployed. The tangible benefits have been a 70% reduction in foliar insecticides, a >$200 million saving in control costs and yield, along with enhanced utilization of ecosystem services over the last 14 years. Published in 2009 by John Wiley & Sons, Ltd. PMID:19834884
Heat Generation During Bone Drilling: A Comparison Between Industrial and Orthopaedic Drill Bits.
Hein, Christopher; Inceoglu, Serkan; Juma, David; Zuckerman, Lee
2017-02-01
Cortical bone drilling for preparation of screw placement is common in multiple surgical fields. The heat generated while drilling may reach thresholds high enough to cause osteonecrosis. This can compromise implant stability. Orthopaedic drill bits are several orders more expensive than their similarly sized, publicly available industrial counterparts. We hypothesize that an industrial bit will generate less heat during drilling, and the bits will not generate more heat after multiple cortical passes. We compared 4 4.0 mm orthopaedic and 1 3.97 mm industrial drill bits. Three types of each bit were drilled into porcine femoral cortices 20 times. The temperature of the bone was measured with thermocouple transducers. The heat generated during the first 5 drill cycles for each bit was compared to the last 5 cycles. These data were analyzed with analysis of covariance. The industrial drill bit generated the smallest mean increase in temperature (2.8 ± 0.29°C) P < 0.0001. No significant difference was identified comparing the first 5 cortices drilled to the last 5 cortices drilled for each bit. The P-values are as follows: Bosch (P = 0.73), Emerge (P = 0.09), Smith & Nephew (P = 0.08), Stryker (P = 0.086), and Synthes (P = 0.16). The industrial bit generated less heat during drilling than its orthopaedic counterparts. The bits maintained their performance after 20 drill cycles. Consideration should be given by manufacturers to design differences that may contribute to a more efficient cutting bit. Further investigation into the reuse of these drill bits may be warranted, as our data suggest their efficiency is maintained after multiple uses.
Prophylactic Use of Haloperidol and Changes in Glucose Levels in Hospitalized Older Patients.
van Keulen, Kris; Knol, Wilma; Schrijver, Edmée J M; van Marum, Rob J; van Strien, Astrid M; Nanayakkara, Prabath W B
2018-02-01
Treatment with antipsychotic drugs has been associated with glucose dysregulation in older outpatients, especially in the early stage of therapy. The underlying mechanism is, however, unclear. The aim of this study was to investigate changes in glucose levels during haloperidol use compared with the use of placebo among older hospitalized patients. This substudy was part of a larger multicenter, randomized, double blind, placebo-controlled clinical trial among hospitalized patients aged 70 years and older who had an increased risk of in-hospital delirium. Patients who were admitted to the Jeroen Bosch Hospital in 's-Hertogenbosch between June 2014 and February 2015 were invited to participate in the study. Participating patients were randomized for treatment and given 1 mg of haloperidol or a placebo twice daily for a maximum of 7 consecutive days (14 doses). Exclusion criteria for this substudy were the use of corticosteroids and changes in diabetes medication. Random blood samples to determine glucose levels were collected before day 1 and on day 6 of the study. Student independent sample t test was used to determine differences in glucose changes between both groups. Twenty-nine patients were included (haloperidol, n = 14; placebo, n = 15). The mean glucose level for placebo users was 139.3 mg/dL (SD, 50.1) on day 1 and 140.8 mg/dL (SD, 45.7) on day 6, and the mean glucose level for haloperidol users was 139.9 mg/dL (SD, 71.0) on day 1 and 150.2 mg/dL (SD, 39.1) on day 6. The difference was not statistically significant (P = 0.685). Short-term prophylactic use of haloperidol was not associated with changes in glucose levels in older hospitalized patients compared with those given a placebo in this small study.
Nock, Lukas
2016-01-01
Aim: Interprofessional teaching and learning is gaining significance in the health professions. At the same time, the development and implementation of such educational courses is demanding. Focusing on factors critical to success, the aim of this paper is to evaluate the experience gathered by eight grant projects in which interprofessional courses were designed. Emphasis is placed on the level of cooperation between the participating educational institutions, course content, the operative implementation of the course units and their permanent integration into curricula. Method: Data was collected in semi-structured, guideline-based interviews with project leaders and team members (n=43). University and vocational students who had attended the evaluated courses were also included in the survey (n=7) as a means to triangulate data. Analysis was carried out based on qualitative content analysis. Results: A participatory, dialogue-centered model of cooperation appears to be most suited for developing and implementing courses. Belonging to the factors critical to success are the time when courses are offered, the conditions for attendance, the different teaching and learning cultures of the professions involved, preparation and deployment of instructors, and the role played by project coordination. Permanently integrating interprofessional units into medical curricula revealed itself to be difficult. Conclusion: While the development and realization of interprofessional courses can be achieved easily enough in projects, curricular integration of the new course units is challenging. In respect to the latter, not only a large amount of staffing resources and time are required, but also the creation of the necessary system-level structures, not just within the educational institutions (organizational development) but also in the frameworks governing the professions. PMID:27280127
Nock, Lukas
2016-01-01
Interprofessional teaching and learning is gaining significance in the health professions. At the same time, the development and implementation of such educational courses is demanding. Focusing on factors critical to success, the aim of this paper is to evaluate the experience gathered by eight grant projects in which interprofessional courses were designed. Emphasis is placed on the level of cooperation between the participating educational institutions, course content, the operative implementation of the course units and their permanent integration into curricula. Data was collected in semi-structured, guideline-based interviews with project leaders and team members (n=43). University and vocational students who had attended the evaluated courses were also included in the survey (n=7) as a means to triangulate data. Analysis was carried out based on qualitative content analysis. A participatory, dialogue-centered model of cooperation appears to be most suited for developing and implementing courses. Belonging to the factors critical to success are the time when courses are offered, the conditions for attendance, the different teaching and learning cultures of the professions involved, preparation and deployment of instructors, and the role played by project coordination. Permanently integrating interprofessional units into medical curricula revealed itself to be difficult. While the development and realization of interprofessional courses can be achieved easily enough in projects, curricular integration of the new course units is challenging. In respect to the latter, not only a large amount of staffing resources and time are required, but also the creation of the necessary system-level structures, not just within the educational institutions (organizational development) but also in the frameworks governing the professions.
Watanabe, M; Ortega, E; Bergier, I; Silva, J S V
2012-08-01
The increasing human demand for food, raw material and energy has radically modified both the landscape and biogeochemical cycles in many river basins in the world. The interference of human activities on the Biosphere is so significant that it has doubled the amount of reactive nitrogen due to industrial fertiliser production (Haber-Bosch), fossil fuel burning and land-use change over the last century. In this context, the Brazilian La Plata Basin contributes to the alteration of the nitrogen cycle in South America because of its huge agricultural and grazing area that meets the demands of its large urban centres - Sao Paulo, for instance - and also external markets abroad. In this paper, we estimate the current inputs and outputs of anthropogenic nitrogen (in kg N.km(-2).yr(-1)) in the basin. In the results, we observe that soybean plays a very important role in the Brazilian La Plata, since it contributes with an annual entrance of about 1.8 TgN due to biological nitrogen fixation. Moreover, our estimate indicates that the export of soybean products accounts for roughly 1.0 TgN which is greater than the annual nitrogen riverine exports from Brazilian Parana, Paraguay and Uruguay rivers together. Complimentarily, we built future scenarios representing changes in the nitrogen cycle profile considering two scenarios of climate change for 2070-2100 (based on IPCC's A2 and B2) that will affect land-use, nitrogen inputs, and loss of such nutrients in the basin. Finally, we discuss how both scenarios will affect human well-being since there is a connection between nitrogen cycle and ecosystem services that affect local and global populations, such as food and fibre production and climate regulation.
Corsi-Cabrera, María; Figueredo-Rodríguez, Pedro; del Río-Portilla, Yolanda; Sánchez-Romero, Jorge; Galán, Lídice; Bosch-Bayard, Jorge
2012-01-01
Introduction: Cognitive and brain hyperactivation have been associated with trouble falling asleep and sleep misperception in patients with primary insomnia (PI). Activation and synchronization/temporal coupling in frontal and frontoparietal regions involved in executive control and endogenous attention might be implicated in these symptoms. Methods: Standard polysomnography (PSG) and electroencephalogram (EEG) were recorded in 10 unmedicated young patients (age 19-34 yr) with PI with no other sleep/medical condition, and in 10 matched control subjects. Absolute power, temporal coupling, and topographic source distribution (variable resolution electromagnetic tomography or VARETA) were obtained for all time spent in waking, Stage 1 and Stage 2 of the wake-sleep transition period (WSTP), and the first 3 consecutive min of N3. Subjective sleep quality and continuity were evaluated. Results: In comparison with control subjects, patients with PI exhibited significantly higher frontal beta power and current density, and beta and gamma frontoparietal temporal coupling during waking and Stage 1. Conclusion: These findings suggest that frontal deactivation and disengagement of brain regions involved in executive control, attention, and self-awareness are impaired in patients with PI. The persistence of this activated and coherent network during the wake-sleep transition period (WSTP) may contribute to a better understanding of underlying mechanisms involved in difficulty in falling asleep, in sleep misperception, and in the lighter, poorer, and nonrefreshing sleep experienced by some patients with PI. Citation: Corsi-Cabrera M; Figueredo-Roríguez P; del Río-Portilla Y; Sánchez-Romero J; Galán L; Bosch-Bayard J. Enhanced frontoparietal synchronized activation during the wake-sleep transition in patients with primary insomnia. SLEEP 2012;35(4):501-511. PMID:22467988
NASA Astrophysics Data System (ADS)
Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C
2009-03-01
An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O2) or a fluorocarbon (FC) gas (C4F8 or CHF3). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF3 and C4F8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF3 is roughly 30 times the flow of C4F8, and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O2 is FC-free but shows only tolerable anisotropic results at -120 °C. The downside of needing liquid nitrogen to perform cryogenic etching can be improved by using a new approach in which both the pulsed and mixed modes are combined into the so-called puffed mode. Alternatively, the use of tetra-ethyl-ortho-silicate (TEOS) as a silicon oxide precursor is proposed to enable sufficient inhibiting strength and improved profile control up to room temperature. Pulsed-mode processing, the second important aspect, is commonly performed in a cycle using two separate steps: etch and deposition. Sometimes, a three-step cycle is adopted using a separate step to clean the bottom of etching features. This study highlights an issue, known by the authors but not discussed before in the literature: the need for proper synchronization between gas and bias pulses to explore the benefit of three steps. The transport of gas from the mass flow controller towards the wafer takes time, whereas the application of bias to the wafer is relatively instantaneous. This delay causes a problem with respect to synchronization when decreasing the step time towards a value close to the gas residence time. It is proposed to upgrade the software with a delay time module for the bias pulses to be in pace with the gas pulses. If properly designed, the delay module makes it possible to switch on the bias exactly during the arrival of the gas for the bottom removal step and so it will minimize the ionic impact because now etch and deposition steps can be performed virtually without bias. This will increase the mask etch selectivity and lower the heat impact significantly. Moreover, the extra bottom removal step can be performed at (also synchronized!) low pressure and therefore opens a window for improved aspect ratios. The temperature control of the wafer, a third aspect of this study, at a higher etch rate and longer etch time, needs critical attention, because it drastically limits the DRIE performance. It is stressed that the exothermic reaction (high silicon loading) and ionic impact (due to metallic masks and/or exposed silicon) are the main sources of heat that might raise the wafer temperature uncontrollably, and they show the weakness of the helium backside technique using mechanical clamping. Electrostatic clamping, an alternative technique, should minimize this problem because it is less susceptible to heat transfer when its thermal resistance and the gap of the helium backside cavity are minimized; however, it is not a subject of the current study. Because oxygen-growth-based etch processes (due to their ultra thin inhibiting layer) rely more heavily on a constant wafer temperature than fluorocarbon-based processes, oxygen etches are more affected by temperature fluctuations and drifts during the etching. The fourth outcome of this review is a phenomenological model, which explains and predicts many features with respect to loading, flow and pressure behaviour in DRIE equipment including a diffusion zone. The model is a reshape of the flow model constructed by Mogab, who studied the loading effect in plasma etching. Despite the downside of needing a cryostat, it is shown that—when selecting proper conditions—a cryogenic two-step pulsed mode can be used as a successful technique to achieve high speed and selective plasma etching with an etch rate around 25 µm min-1 (<1% silicon load) with nearly vertical walls and resist etch selectivity beyond 1000. With the model in hand, it can be predicted that the etch rate can be doubled (50 µm min-1 at an efficiency of 33% for the fluorine generation from the SF6 feed gas) by minimizing the time the free radicals need to pass the diffusion zone. It is anticipated that this residence time can be reduced sufficiently by a proper inductive coupled plasma (ICP) source design (e.g. plasma shower head and concentrator). In order to preserve the correct profile at such high etch rates, the pressure during the bottom removal step should be minimized and, therefore, the synchronized three-step pulsed mode is believed to be essential to reach such high etch rates with sufficient profile control. In order to improve the etch rate even further, the ICP power should be enhanced; the upgrading of the turbopump seems not yet to be relevant because the throttle valve in the current study had to be used to restrict the turbo efficiency. In order to have a versatile list of state-of-the-art references, it has been decided to arrange it in subjects. The categories concerning plasma physics and applications are, for example, books, reviews, general topics, fluorine-based plasmas, plasma mixtures with oxygen at room temperature, wafer heat transfer and high aspect ratio trench (HART) etching. For readers 'new' to this field, it is advisable to study at least one (but rather more than one) of the reviews concerning plasma as found in the first 30 references. In many cases, a paper can be classified into more than one category. In such cases, the paper is directed to the subject most suited for the discussion of the current review. For example, many papers on heat transfer also treat cryogenic conditions and all the references dealing with highly anisotropic behaviour have been directed to the category HARTs. Additional pointers could get around this problem but have the disadvantage of creating a kind of written spaghetti. I hope that the adapted organization structure will help to have a quick look at and understanding of current developments in high aspect ratio plasma etching. Enjoy reading... Henri Jansen 18 June 2008
NASA Astrophysics Data System (ADS)
Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas
2016-04-01
In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake-level time series from Lagos Argentino and Viedma yields the amplitudes and phases of the lake tides for the four major tidal constituents M2, S2, O1 and K1. The maximum amplitude, corresponding to the semi-diurnal moon tide M2 in Lago Argentino, amounts to 3 mm. For the four lakes under investigation the theoretical amplitudes and phases of seven constituents (Q1, O1, P1, K1, N2, M2 and S2) are modelled accounting for the contributions of both the solid earth's body tides and the ocean tidal loading (Marderwald 2014). Both contributions involve a deformation of the earth surface and of the equipotential surfaces of the gravity field. For the load tide computation the global ocean tide model EOT11a (Savcenko and Bosch, 2012) and the Gutenberg-Bullen A earth model (Farrell, 1972) was applied and the conservation of water volume is taken into account. The comparison of the tidal signal extracted from the lake-level observations in Lagos Argentino and Viedma with the lake tide models indicates a phase shift which is most likely explained by an 1 hour phase lag of the employed global ocean tide model in the region of the highly fragmented Pacific coast. REFERENCES: Farrell, W. E., (1972). Deformation of the Earth by Surface Loads. Rev. Geophy. Space Phy., 10(3):761-797. Ivins, E., James, T., 2004. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31 (L24613). Doi:10.1029/2004GL021500. Klemann, V., E. R. Ivins, Z. Martinec, and D. Wolf (2007), Models of active glacial isostasy roofing warm subduction: Case of the South Patagonian Ice Field, J. Geophys. Res., 112, B09405, doi: 10.1029/2006JB004818. Lange, H., Casassa, G., Ivins, E. R., Schröder, L., Fritsche, M., Richter, A., Groh, A., Dietrich, R., (2014). Observed crustal uplift near the Southern Patagonian Icefield constrains improved viscoelastic Earth models. Geophysical Research Letters, DOI: 10.1002/2013GL058419. Marderwald ER, 2014. Modelado de las mareas de grandes lagos patagónicos. Licenciatura thesis, Universidad Nacional de La Plata, Argentina. Richter, A., Marderwald, E., Hormaechea, J.L., Mendoza, L., Perdomo, R., Connon, G., Scheinert, M., Horwath, M., Dietrich, R. (2015): Lake-level variations and tides in Lago Argentino, Patagonia: insights from pressure tide gauge records. Journal of Limnology (accepted), doi:10.4081/jlimnol.2015.1189. Richter A, Hormaechea JL, Dietrich R, Perdomo R, Fritsche M, Del Cogliano D, Liebsch G, Mendoza L, 2009. Anomalous ocean load tide signal observed in lake-level variations in Tierra del Fuego. Geophys. Res. Lett. 36:L05305. Savcenko, R., and W. Bosch (2012), EOT11a - Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry. Deutsches Geodätisches Forschungsinstitut (DGFI), Munich, Report Number 89.
NASA Astrophysics Data System (ADS)
2006-03-01
Venus Express mission controllers at the ESA Space Operations Centre (ESOC) in Darmstadt, Germany are making intensive preparations for orbit insertion. This comprises a series of telecommands, engine burns and manoeuvres designed to slow the spacecraft down from a velocity of 29000 km per hour relative to Venus, just before the first burn, to an entry velocity some 15% slower, allowing the probe to be captured into orbit around the planet. The spacecraft will have to ignite its main engine for 50 minutes in order to achieve deceleration and place itself into a highly elliptical orbit around the planet. Most of its 570 kg of onboard propellant will be used for this manoeuvre. The spacecraft’s solar arrays will be positioned so as to reduce the possibility of excessive mechanical load during engine ignition. Over the subsequent days, a series of additional burns will be done to lower the orbit apocentre and to control the pericentre. The aim is to end up in a 24-hour orbit around Venus early in May. The Venus orbit injection operations can be followed live at ESA establishments, with ESOC acting as focal point of interest (see attached programme). In all establishments, ESA specialists will be on hand for interviews. ESA TV will cover this event live from ESOC in Darmstadt. The live transmission will be carried free-to-air. For broadcasters, complete details of the various satellite feeds are listed at http://television.esa.int. The event will be covered on the web at venus.esa.int. The website will feature regular updates, including video coverage of the press conference and podcast from the control room at ESA’s Operations Centre. Media representatives wishing to follow the event at one of the ESA establishments listed below are requested to fill in the attached registration form and fax it back to the place of their choice. For further information, please contact: ESA Media Relations Division Tel : +33(0)1.53.69.7155 Fax: +33(0)1.53.69.7690 Venus Express Orbit Insertion - Tuesday 11 April 2006 ESA/ESOC, Robert Bosch Strasse, 5 - Darmstadt (Germany) PROGRAMME 07:30 - Doors open 08:45 - Start of local event, welcome addresses 09:10 - ESA TV live from Mission Control Room (MCR) starts 09:17 - Engine burn sequence starts 09:45 - Occultation of spacecraft by Venus starts 09:55 - Occultation ends 10:07 - Main engine burn ends 10:20 - Address by Jean-Jacques Dordain, ESA’s Director General, and other officials Break and buffet Interview opportunities 11:30-12:15 - Press Conference Jean-Jacques Dordain, Director General, ESA Prof. David Southwood, Director of Science, ESA Gaele Winters, Director of Operations and Infrastructure, ESA Manfred Warhaut, Flight Operations Director, ESA Håkan Svedhem, Venus Express Project Scientist, ESA Don McCoy, Venus Express Project Manager, ESA 13:15 - End of event at ESOC ACCREDITATION REQUEST FORM Venus Express Orbit Insertion - ESA/ESOC Darmstadt - 11 April 2006 First name:___________________ Surname:_____________________ Media:______________________________________________________ Address: ___________________________________________________ ____________________________________________________________ Tel:_______________________ Fax: ___________________________ Mobile :___________________ E-mail: ________________________ I will be attending the Venus Express Orbit Insertion event at the following site: [ ] Germany Location: ESA/ESOC Address: Robert Bosch Strasse 5, Darmstadt, Germany Opening hours: 07:30 - 13:00 Contact: Jocelyne Landeau-Constantin, Tel: +49.6151.902.696 - Fax: +49.6151.902.961 [ ] France Location: ESA HQ Address: 8/10, rue Mario Nikis - Paris 15, France Opening hours: 08:00 - 13:00 Contact: Anne-Marie Remondin - Tel: +33(0)1.53.69.7155 - fax: +33(0)1.53.69.7690 [ ] The Netherlands Location: Newton Room, ESA/ESTEC Address: Keplerlaan 1, Noordwijk, The Netherlands Opening hours: 08:30 - 12:30 Contact: Michel van Baal, tel. + 31 71 565 3006, fax + 31 71 565 5728 [ ] Italy Location: ESA/ESRIN Address: Via Galileo Galilei, Frascati (Rome), Italy Opening hours: 07:00 - 14:00 Contact: Franca Morgia - Tel: +39.06.9418.0951 - Fax: +39.06.9418.0952 [ ] Spain Location: ESA/ESAC Address: Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain Opening hours: 8:30 - 13:30 Contact: Monica Oerke, Tel + 34 91 813 13 27/59 - Fax: + 34 91 813 12 19
Similarities and Differences in Pacing Patterns in a 161-km and 101-km Ultra-Distance Road Race.
Tan, Philip L S; Tan, Frankie H Y; Bosch, Andrew N
2016-08-01
Tan, PLS, Tan, FHY, and Bosch, AN. Similarities and differences in pacing patterns in a 161-km and 101-km ultra-distance road race. J Strength Cond Res 30(8): 2145-2155, 2016-The purpose of this study was to establish and compare the pacing patterns of fast and slow finishers in a tropical ultra-marathon. Data were collected from the Craze Ultra-marathon held on the 22nd and 21st of September in 2012 and 2013, respectively. Finishers of the 161-km (N = 47) and 101-km (N = 120) categories of the race were divided into thirds (groups A-C) by merit of finishing time. Altogether, 17 and 11 split times were recorded for the 161-km and 101-km finishers, respectively, and used to calculate the mean running speed for each distance segment. Running speed for the first segment was normalized to 100, with all subsequent splits adjusted accordingly. Running speed during the last 5 km was calculated against the mean race pace to establish the existence of an end spurt. A reverse J-shaped pacing profile was demonstrated in all groups for both distance categories and only 38% of the finishers executed an end spurt. In the 101-km category, in comparison with groups B and C, group A maintained a significantly more even pace (p = 0.013 and 0.001, respectively) and completed the race at a significantly higher percent of initial starting speed (p = 0.001 and 0.001, respectively). Descriptive data also revealed that the top 5 finishers displayed a "herd-behavior" by staying close to the lead runner in the initial portion of the race. These findings demonstrate that to achieve a more even pace, recreational ultra-runners should adopt a patient sustainable starting speed, with less competitive runners setting realistic performance goals whereas competitive runners with a specific time goal to consider running in packs of similar pace.
Virtual Nitrogen Losses from Organic Food Production
NASA Astrophysics Data System (ADS)
Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.
2015-12-01
Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local scale, nitrogen losses from organic production are comparable to conventional production, but that organic production introduces less new reactive nitrogen to the global pool.
NASA Technical Reports Server (NTRS)
Burton, Aaron S.; Glavin, Daniel P.; Callahan, Michael P.; Dworkin, Jason P.; Jenniskens, Peter; Shaddad, Muawia H.
2011-01-01
Two new fragments of the Almahata Sitta meteorite and a sample of sand from the related strewn field in the Nubian Desert, Sudan, were analyzed for two to six carbon aliphatic primary amino acids by ultrahigh performance liquid chromatography with UV-fluorescence detection and time-of-flight mass spectrometry (LC-FT/ToF-MS). The distribution of amino acids in fragment #25, an H5 ordinary chondrite, and fragment #27, a polymict ureilite, were compared with results from the previously analyzed fragment #4, also a polymict ureilite. All three meteorite fragments contain 180-270 parts-per-billion (ppb) of amino acids, roughly 1000-fold lower than the total amino acid abundance of the Murchison carbonaceous chondrite. All of the Almahata Sitta fragments analyzed have amino acid distributions that differ from the Nubian Desert sand, which primarily contains L-alpha-amino acids. In addition, the meteorites contain several amino acids that were not detected in the sand, indicating that many of the amino acids are extraterrestrial in origin. Despite their petrological differences, meteorite fragments #25 and #27 contain similar amino acid compositions; however, the distribution of amino acids in fragment #27 was distinct from those in fragment #4, even though both arc polymict ureilites from the same parent body. Unlike in CM2 and CR2/3 meteorites, there are low relative abundances of alpha-amino acids in the Almahata Sitta meteorite fragments, which suggest that Strecker-type chemistry was not a significant amino acid formation mechanism. Given the high temperatures that asteroid 2008 TC3 appears to have experienced and lack of evidence for aqueous alteration on the asteroid, it is possible that the extraterrestrial amino acids detected in Almahata Sitta were formed by Fischer-Tropsch/Haber-Bosch type gas-grain reactions at elevated temperatures.
Management of Excess Reactive Nitrogen in the Environment
NASA Astrophysics Data System (ADS)
Galloway, J. N.; Theis, T.; Doering, O.
2011-12-01
Managing the impacts of excessive reactive nitrogen (Nr) in the environment is a complex problem that begins with the recognition of the obligate dietary need for Nr by all living populations. The human solution to this need has been to devise ways to bring Nr into the biosphere (via the Haber-Bosch process) to grow food. Other Nr is created as a by-product of fossil-fuel combustion. The net result is the introduction of more than five times the Nr created by natural processes in the U.S., only a fraction of which is converted back to diatomic nitrogen through denitrification. This presentation summarizes findings and recommendations of the newly-released US EPA Science Advisory Board's Integrated Nitrogen Committee report, "Reactive Nitrogen in the United States: An Analysis of Flows, Consequences, and Management Options", that deal specifically with approaches for solving the excess Nr problem. These can be grouped into four general areas: (1) Recognition of the Problem. Until there is recognition that excess Nr is a serious problem with economic, health, and societal consequences, there will be little willingness to expend resources on this issue. Education, communication and outreach are critically important to engender in regulators, and the public at large, sufficient will to undertake the large scale effort needed to reduce Nr in the environment. (2) Development of Integrated Regulatory Approaches. Given what is known about the way Nr behaves, efforts to deal with excess Nr must be organized in a way that reflects the nature of the problem. Unfortunately, most approaches tend to conceive of Nr issues within a narrowly focused disciplinary model, and our policy and regulatory institutions are often bound by enabling legislation that stresses source-by-source, chemical-by-chemical, and media-by-media. The resulting regulatory structure that has evolved for problems such as Nr that affect human health and the environment is apt to miss the complex nature of the problem. Such silos have to be broken down if the excess Nr problem is to be dealt with holistically. (3) Essential Monitoring and Research. The Committee recommends improved monitoring and research to enhance our understanding of Nr in the environment. In some cases our knowledge has such wide margins of error that we cannot identify or quantify important concentrations or flows sufficiently for necessary decisions. In other cases there is incomplete knowledge about the indirect impacts of Nr, while in still others there is a need for much better understanding of the efficacy of actions that might be taken to control Nr. (4) Setting Goals for Action. In spite of knowledge gaps identified by the Committee, there is sufficient understanding of the Nr problem to enable the responsible regulatory agencies to begin to decrease excess Nr entering the environment. The Committee suggests actions that might be taken by EPA or other management authorities using current technologies and regulatory authority to decrease Nr in the environment by 25% over the near (10-20 year) term, without negatively impacting dietary needs or economic trends.
NASA Astrophysics Data System (ADS)
Varas Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly
2017-04-01
The genesis of ultra-high pressure (UHP) garnet pyroxenites in orogenic peridotite massifs and its implications on the formation of chemical heterogeneities in the mantle and on basalt petrogenesis are still not fully understood. Some UHP (diamond-bearing) garnet pyroxenites have isotopic, and major and trace element compositions similar to the recycled oceanic crustal component observed in oceanic basalts [1-6]. These pyroxenites hence provide an exceptional opportunity to investigate in situ the nature and scale of the Earth's mantle chemical heterogeneities. Here, we present an integrated geochemical study of UHP garnet pyroxenites from the Ronda (Betic Belt, S. Spain) and Beni Bousera (Rif Belt, N. Morocco) peridotite massifs. This investigation encompasses, in the same sample, bulk rock major and trace elements, as well as Sr-Nd-Pb-Hf isotopic analyses. According to their Al2O3 content, we classify UHP garnet pyroxenites into three groups that have distinct trace elements and Sr-Nd-Pb-Hf isotopic signatures. Group A pyroxenites (Al2O3: 15 - 17.5 wt. %) are characterized by low initial 87Sr/86Sr, relatively high 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios, and highly variable 207Pb/204Pb and 208Pb/204Pb ratios. Group B pyroxenites (Al2O3 < 14 wt. %) have isotopic signatures characterized by relatively high initial 87Sr/86Sr and low 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios. Group C pyroxenites (Al2O3 ˜ 15 wt. %) display relatively low initial 87Sr/86Sr and 206Pb/204Pb ratios, high 143Nd/144Nd and 176Hf/177Hf ratios, and 207Pb/204Pb and 208Pb/204Pb ratios similar to Group B pyroxenites. The major and trace element, and isotopic compositions of the studied Ronda and Beni Bousera UHP garnet pyroxenites lend support to the "Marble Cake Mantle" model [7] for the genesis of these pyroxenites. This model envisions the mantle source of oceanic basalts as a mélange of subducted, ancient oceanic crust —-represented by garnet pyroxenites in orogenic peridotites—- intimately mixed with peridotites by mantle convection. The present study reveals, however, that besides this exotic component of ancient recycled oceanic crust, the genesis of these pyroxenites requires a previously unnoticed component of recycled lower continental crust akin to the lower crustal section of the lithosphere where these UHP garnet pyroxenites now reside in. The results of this study provide a new recipe for the marble cake hypothesis for the genesis of UHP garnet pyroxenites in orogenic peridotites. Furthermore, it establishes a connection between the genesis of UHP pyroxenites, the composition of the continental crust and the generation of Earth's mantle heterogeneities. References: [1] Pearson, D. G., Davies, G. R. & Nixon, P. H. (1993). Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. Journal of Petrology 34, 125-172. [2] Blichert-Toft, J., Albarède, F. & Kornprobst, J. (1999). Lu-Hf Isotope systematics of garnet pyroxenites from Beni Bousera, Morocco: implications for basalt origin. Science 283, 1303-1306. [3] Garrido, C. J. & Bodinier, J. L. (1999). Diversity of mafic rocks in the Ronda peridotite: Evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology 40, 729-754. [4] Marchesi, C., Garrido, C.J., Bosch, D., Bodinier, J.-L., Gervilla, F., Hidas, K., 2013. Mantle refertilization by melts of crustal-derived garnet pyroxenite: Evidence from the Ronda peridotite massif, southern Spain. Earth and Planetary Science Letters 362, 66-75. doi: 10.1016/j.epsl.2012.11.047. [5] Marchesi, C., Dale, C.W., Garrido, C.J., Pearson, D.G., Bosch, D., Bodinier, J.-L., Gervilla, F., Hidas, K., 2014. Fractionation of highly siderophile elements in refertilized mantle: Implications for the Os isotope composition of basalts. Earth and Planetary Science Letters 400, 33-44. doi: 10.1016/j.epsl.2014.05.025 [6] Montanini, A. & Tribuzio, R. (2015). Evolution of recycled crust within the mantle: Constraints from the garnet pyroxenites of the External Ligurian ophiolites (northern Apennines, Italy). Geology 43, 911-914. [7] Allègre, C. J. & Turcotte, D. L. (1986). Implications of a two-component marble-cake mantle. Nature 323, 123-127.
Organic Molecules in Meteorites
NASA Astrophysics Data System (ADS)
Martins, Zita
2015-08-01
Carbonaceous meteorites are primitive samples from the asteroid belt, containing 3-5wt% organic carbon. The exogenous delivery of organic matter by carbonaceous meteorites may have contributed to the organic inventory of the early Earth. The majority (>70%) of the meteoritic organic material consist of insoluble organic matter (IOM) [1]. The remaining meteoritic organic material (<30%) consists of a rich organic inventory of soluble organic compounds, including key compounds important in terrestrial biochemistry [2-4]. Different carbonaceous meteorites contain soluble organic molecules with different abundances and distributions, which may reflect the extension of aqueous alteration or thermal metamorphism on the meteorite parent bodies. Extensive aqueous alteration on the meteorite parent body may result on 1) the decomposition of α-amino acids [5, 6]; 2) synthesis of β- and γ-amino acids [2, 6-9]; 3) higher relative abundances of alkylated polycyclic aromatic hydrocarbons (PAHs) [6, 10]; and 4) higher L-enantiomer excess (Lee) value of isovaline [6, 11, 12].The soluble organic content of carbonaceous meteorites may also have a contribution from Fischer-Tropsch/Haber-Bosch type gas-grain reactions after the meteorite parent body cooled to lower temperatures [13, 14].The analysis of the abundances and distribution of the organic molecules present in meteorites helps to determine the physical and chemical conditions of the early solar system, and the prebiotic organic compounds available on the early Earth.[1] Cody and Alexander (2005) GCA 69, 1085. [2] Cronin and Chang (1993) in: The Chemistry of Life’s Origin. pp. 209-258. [3] Martins and Sephton (2009) in: Amino acids, peptides and proteins in organic chemistry. pp. 1-42. [4] Martins (2011) Elements 7, 35. [5] Botta et al. (2007) MAPS 42, 81. [6] Martins et al. (2015) MAPS, in press. [7] Cooper and Cronin (1995) GCA 59, 1003. [8] Glavin et al. (2006) MAPS. 41, 889. [9] Glavin et al. (2011) MAPS 45, 1948. [10] Elsila et al. (2005) GCA 5, 1349. [11] Glavin and Dworkin (2009) PNAS 106, 5487. [12] Pizzarello et al. (2003) GCA 67, 1589. [13] Chan et al. (2012) MAPS. 47, 1502. [14] Burton et al. (2011) MAPS 46, 1703.
Measurement of the inclusive electron spectrum from B meson decays and determination of | V u b |
Lees, J. P.; Poireau, V.; Tisserand, V.; ...
2017-04-01
Based on the full BABAR data sample of 466.5 millionmore » $$B\\bar{B}$$ pairs, we present measurements of the electron spectrum from semileptonic B meson decays. We fit the inclusive electron spectrum to distinguish Cabibbo-Kobayashi-Maskawa (CKM) suppressed B → X ueν decays from the CKM-favored B → X ceν decays, and from various other backgrounds, and determine the total semileptonic branching fraction B (B → Xeν) = ( 10.34 ± 0.04 stat ± 0.2 6 syst)%, averaged over B ± and B 0 mesons. We determine the spectrum and branching fraction for charmless B → X ueν decays and extract the CKM element | V ub| , by relying on four different QCD calculations based on the heavy quark expansion. While experimentally, the electron momentum region above 2.1 GeV / c is favored, because the background is relatively low, the uncertainties for the theoretical predictions are largest in the region near the kinematic endpoint. Detailed studies to assess the impact of these four predictions on the measurements of the electron spectrum, the branching fraction, and the extraction of the CKM matrix element |V ub| are presented, with the lower limit on the electron momentum varied from 0.8 GeV / c to the kinematic endpoint. We determine |V ub| using each of these different calculations and find, |V ub| = ( 3.794 ± 0.107 exp $$+ 0.292\\atop{ - 0.219 SF}$$ $$+ 0.078 \\atop{- 0.068 theory}$$ ) × 10 - 3 (De Fazio and Neubert), (4.563 ± 0.126 exp $$+ 0.230\\atop {- 0.208 SF}$$ $$+ 0.162\\atop{- 0.163 theory}$$ ) ×10 -3 (Bosch, Lange, Neubert, and Paz), (3.959 ± 0.104 exp $$+ 0.164\\atop{- 0.154 SF}$$ $$+ 0.042\\atop{ - 0.079 theory}$$ ) × 10 -3 (Gambino, Giordano, Ossola, and Uraltsev), (3.848 ± 0.108 exp $$+ 0.084\\atop{ - 0.070 theory}$$) × 10 -3 (dressed gluon exponentiation), where the stated uncertainties refer to the experimental uncertainties of the partial branching fraction measurement, the shape function parameters, and the theoretical calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lees, J. P.; Poireau, V.; Tisserand, V.
Based on the full BABAR data sample of 466.5 millionmore » $$B\\bar{B}$$ pairs, we present measurements of the electron spectrum from semileptonic B meson decays. We fit the inclusive electron spectrum to distinguish Cabibbo-Kobayashi-Maskawa (CKM) suppressed B → X ueν decays from the CKM-favored B → X ceν decays, and from various other backgrounds, and determine the total semileptonic branching fraction B (B → Xeν) = ( 10.34 ± 0.04 stat ± 0.2 6 syst)%, averaged over B ± and B 0 mesons. We determine the spectrum and branching fraction for charmless B → X ueν decays and extract the CKM element | V ub| , by relying on four different QCD calculations based on the heavy quark expansion. While experimentally, the electron momentum region above 2.1 GeV / c is favored, because the background is relatively low, the uncertainties for the theoretical predictions are largest in the region near the kinematic endpoint. Detailed studies to assess the impact of these four predictions on the measurements of the electron spectrum, the branching fraction, and the extraction of the CKM matrix element |V ub| are presented, with the lower limit on the electron momentum varied from 0.8 GeV / c to the kinematic endpoint. We determine |V ub| using each of these different calculations and find, |V ub| = ( 3.794 ± 0.107 exp $$+ 0.292\\atop{ - 0.219 SF}$$ $$+ 0.078 \\atop{- 0.068 theory}$$ ) × 10 - 3 (De Fazio and Neubert), (4.563 ± 0.126 exp $$+ 0.230\\atop {- 0.208 SF}$$ $$+ 0.162\\atop{- 0.163 theory}$$ ) ×10 -3 (Bosch, Lange, Neubert, and Paz), (3.959 ± 0.104 exp $$+ 0.164\\atop{- 0.154 SF}$$ $$+ 0.042\\atop{ - 0.079 theory}$$ ) × 10 -3 (Gambino, Giordano, Ossola, and Uraltsev), (3.848 ± 0.108 exp $$+ 0.084\\atop{ - 0.070 theory}$$) × 10 -3 (dressed gluon exponentiation), where the stated uncertainties refer to the experimental uncertainties of the partial branching fraction measurement, the shape function parameters, and the theoretical calculations.« less
An investigation of noncompliant toilet room designs for assisted toileting.
Sanford, Jon; Bosch, Sheila J
2013-01-01
By comparing an Americans with Disabilities Act Accessibility Guidelines (ADAAG) compliant design with alternative designs, this pilot study resulted in recommendations for designing patient bathrooms to facilitate assisted toileting. The ADA Accessibility Guidelines were developed primarily to address the needs of disabled populations, such as returning Vietnam veterans, with sufficient upper body strength to transfer independently directly from a wheelchair to the toilet. However, the majority of older persons with disabilities (90%) stand to transfer to the toilet, rather than laterally moving from the wheelchair to the toilet. The research used a repeated measures research design to evaluate caregiver responses during assisted toileting for various toilet configurations. The study included 20 patients who were transferred onto and off of a toilet for each of four different configurations by one or two caregivers. Toileting trials were videotaped and analyzed by an occupational therapist. Additionally, caregivers completed five-question, self-report surveys after each toileting trial. Survey data indicate that staff members prefer the largest of the tested configurations, where the centerline of the toilet is 30 inches from the sidewall, rather than the 18 inches required by the ADAAG, and where there are two fold-down grab bars provided. Caregivers perceived the grab bar locations as better for helping them safely transfer subjects in a modified (non-ADAAG) configuration, and also that the grab bar style in a modified configuration (non-ADAAG) improved safety when transferring subjects. Although caregivers were observed to safely transfer residents to and from the toilet for all configurations tested, regulations regarding accessibility of patient bathrooms should acknowledge the perceived benefits of increasing the distance from the sidewall to the centerline of the toilet to as much as 30 inches and allowing two fold-down grab bars instead of the required sidewall and back-wall grab bars. ADA, toilet room design, healthcare design, evidence-based design, human factors, safety, staffPreferred Citation: Sanford, J., & Bosch, S. (2013). An investigation of noncompliant toilet room designs for assisted toileting. Health Environments Research & Design Journal 6(2), pp 43-57.
Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.
Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi
2017-01-17
Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO 2 , SrTiO 3 , (Ga 1-x Zn x )(N 1-x O x ), CdS, and g-C 3 N 4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N 2 . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
NASA Astrophysics Data System (ADS)
Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo
2016-04-01
The Tertiary Magmatic Province of Veneto, known as Veneto Volcanic Province (VVP), in the North-East of Italy, represents the most important volcanic distric of Adria Plate. It is composed by five volcanic bodies: Val d'Adige, Marosticano, Mts. Lessini, Berici Hills and Euganean Hills. Most of the volcanic products are relatively undifferentiated lavas and range in composition from nephelinites to tholeiites. Often VVP nephelinites and basanites carry mantle xenoliths (mainly harzburgites and lherzolite). This study reports petrological comparison between Marosticano xenoliths (new outcrop) and xenoliths from the Lessinean and Val d'Adige areas already studied by many Authors (Siena & Coltorti 1989; Beccaluva et al., 2001, Gasperini et al., 2006). Mineral major elements analyses show that the Marosticano lherzolites and harzburgites reflect "more restitic" composition than the mantle domain beneath the other VVP districts (Lessini Mts. and Val d'Adige). In fact, olivine and pyroxene of Marosticano xenoliths have the highest mg# values of the entire district (Marosticano→90-93; literature→86-92). At comparable mg# (45-85 wt%) Marosticano spinels tend to be higher in Cr2O3 (23-44 wt%) contents with respect to the other VVP sp (7-25 wt%). It is worth noting that, Ni contents of Marosticano olivines in both harzburgites and lherzolites are higher (2650-3620 ppm) than those of the Lessinean xenoliths (1500- 3450 ppm), and similar to that of Val d'Adige lherzolites (3000-3500 ppm), approaching the contents of Archean cratonic mantle (Kelemen, 1998). In turn, Lessinean olivines properly fall in the Ni-mg# Phanerozoic field. At fixed pressure of 15 kbar, the equilibration temperature of Marosticano xenoliths are similar (Brey & Köhler: 920-1120°C) to those of Lessini (O'Neill & Wall: 990-1110°C; Beccaluva et al., 2007), but higher than those of Val d'Adige (Wells: 909-956°C; Gasperini et al., 2006). Finally, Marosticano mantle fragment show similar relatively high redox conditions (Δlog fO2: +1.2 to -0.7, Ballhaus, 1991) to Lessinean and Val d'Adige xenoliths which may indicate a local oxidation of the mantle below this portion of VVP. References • Beccaluva L., Bianchini G., Bonadiman C., Coltorti M., Milani L., Salvini L., Siena F., Tassinari R. (2007). Intraplate lithospheric and sublithospheric components in the Adriatic domain: Nephelinite to tholeiite magma generation in the Paleogene Veneto Volcanic Province, Southern Alps. Geological Society of America, 131-152. • Beccaluva L., Bonadiman C., Coltorti M., Salvini L., Siena F. (2001). Depletion events, nature of metasomatizing agent and timing of enrichment processes in lithospheric mantle xenoliths from the Veneto Volcanic Province. Journal of Petrology, 42, 173-187. • Gasperini D., Bosch D., Braga R., Bondi M., Macera P., Morten L. (2006). Ultramafic xenoliths from the Veneto Volcanic Province (Italy): Petrological and geochemical evidence for multiple metasomatism of the SE Alps mantle lithospere. Geochemical Journal, 40, 377-404. • Siena F., Coltorti M. (1989). Lithospheric mantle evolution: evidences from ultramafic xenoliths in the Lessinean volcanics (Northern Itlay). Chemical Geology, 77, 347-364.
Flora, Κ
2017-01-01
This article attempts an approach of madness by surrealism, as reflected in the pathway of the surrealist movement. In the light of enlargement of the concept of mental illness and the experience of madness, an approach is being attempted regarding the early surrealist views as they precursory appear e.g. from the case of Hieronymus Bosch to the meeting of the dominant psychiatry and the surrealist movement in the 19th and 20th century. Then, the paper attempts to present the main positions of representatives of the movement, such as Breton, Dali and Kalas. These three surrealists were chosen among others, for this brief report, as the representatives of three remarkable moments in the surrealistic route. Breton introduces the element of fiction and hyper-reality while he questions the distinction between normal and abnormal element. Dali with his paranoid critical method reconciles actual representations with mythical and symbolic elements, breaking through the limits between objectivity and subjectivity. Kalas puts forward the social origin of insanity along with the fundamental surrealist notions of individual freedom and will. For a more complete understanding of this attempt, it was considered useful to include elements of the main views on madness from the standpoint of a critical approach in psychiatry and psychology. The surrealistic view seems to be close to this critical approach which is likely to have been affected by it on the level in which the movements and scientific fields meet and interact. The relationship between surrealism, the notion and expression of madness and the absurd seems to be inherent to the very development of the movement through its core and individual pursuits. In conclusion, the relationship between surrealism and the notion and expression of the madness and the absurd seems to be inherent to the very birth of the movement through its main positions and pursuits. The question of so-called reality, its overshoot and the vision of a hyperreality that will incorporates the challenges and contradictions of this reality, are points loudly expressed through artistic activities and scientific researches and practices. A common ground to all these aspects is the liberation of desire, the questioning of rationality, the integration and acceptance of the absurd, as well as, the dispute of it as such, and finally the social change-driven by the individual psychological development.
Raymond, Christiana J; Dengel, Donald R; Bosch, Tyler A
2018-03-01
Raymond, CJ, Dengel, DR, and Bosch, TA. Total and segmental body composition examination in collegiate football players using multifrequency bioelectrical impedance analysis and dual X-ray absorptiometry. J Strength Cond Res 32(3): 772-782, 2018-The current study examined the influence of player position on the agreement between multifrequency bioelectrical impedance analysis (MfBIA) and dual X-ray absorptiometry (DXA) when assessing total and segmental percent body fat (BF%), fat mass (FM), and fat-free mass (FFM) in National Collegiate Athletic Association Division I collegiate football athletes. Forty-four male collegiate athletes (age = 19 ± 1 year; height = 1.9 ± 1.0 m; and body mass = 106.4 ± 18.8 kg) participated. Player positions included: offensive linemen (OL; n = 7), tight ends (TE; n = 4), wide receivers (WR; n = 9), defensive linemen (DL; n = 6), defensive backs (DB; n = 8), linebackers (LB; n = 6), and running backs (RB; n = 4). Total and segmental body composition measured using MfBIA were compared with values obtained using DXA. Compared with DXA, MfBIA underestimated BF% (3.0 ± 3.8%), total FM (2.5 ± 4.3 kg), arm FM (0.4 ± 0.8 kg), arm FFM (1.4 ± 0.9 kg), leg FM (2.8 ± 2.0 kg), and leg FFM (5.4 ± 2.4 kg) (all p < 0.001; arm FM p = 0.002) and overestimated total FFM (-2.4 ± 4.5 kg) (p < 0.001). Limits of agreement (LOAs) were: ±7.39% (BF%), ±8.50 kg (total FM), ±1.50 kg (arm FM), ±1.83 kg (arm FFM), ±3.83 kg (leg FM), ±4.62 kg (leg FFM), and ±8.83 kg (total FFM). No significant differences were observed between devices for trunk FM (-0.3 ± 3.0 kg; p = 0.565) and trunk FFM (0.4 ± 2.4 kg; p = 0.278), with LOAs of ±5.92 and ±4.69 kg, respectively. Player position significantly affected all between-device mean body composition measurement differences (adjusted p ≤ 0.05), with OL demonstrating the greatest effect on each variable. Therefore, MfBIA does not seem accurate in examining between-player body composition in college football players.
Signatures of Chemical Evolution in Protostellar Nebulae
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha
2011-01-01
A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or the Haber-Bosch reactions used in industry, the surface catalyzed reactions seen in our laboratory do not produce a simple product stream of methane or ammonia, respectively. Instead, such reactions produce a wide range of both aliphatic and aromatic hydrocarbons, as well as reduced nitrogen compounds such as ammonia, amines, amides and imides, as gas phase products together with a heavy, macromolecular, kerogen-like surface coating that remains on the grains. While CO and N2 will certainly be depleted by conversion into more complex and less volatile species via reaction on grain surfaces, it may be very difficult to monitor such changes from outside the system.
Estudio de la formación de galaxias espirales en un modelo de agregación jerárquica
NASA Astrophysics Data System (ADS)
Tissera, P.; Saiz, A.; Dominguez-Tenreiro, R.
El estudio de formación de galaxias espirales ha llevado al desarrollo de numerosos modelos teóricos (e.g. White & Rees 1978). En la actualidad, el modelo más aceptado predice la formación de una galaxia espiral a partir del colapso disipativo del gas en el pozo de potencial de un halo oscuro, conservando su momento angular específco (Fall & Efstathiou 1980). En los últimos años, ha sido posible realizar simulaciones numéricas hidrodinámicas, las cuales describen la evolución conjunta de la materia oscura y los bariones. Estos experimentos han señalado la dificultad de formar estructuras discoidales con propiedades consistentes con las observaciones, en modelos de agregación jerárquica. El problema principal se origina en la pérdida catastrófica de momento angular de la componente disipativa, durante el proceso de ensamblaje de los objetos, a través de la fusión de subestructura (Navarro & Steinmetz 1997). Estos experimentos no incluían procesos de formación estelar. En este trabajo, se expondrán resultados de simulaciones hidrodinámicas cosmológicas, incluyendo formación estelar (Tissera et al 1997), donde ha sido posible reproducir objetos discoidales con contrapartida observacional. El elemento fundamental ha sido la formación de bulbos estelares, los cuales han evitado la pérdida catastrófica de momento angular de los bariones. Se encontró que los discos exponenciales puramente gaseosos son altamente inestables y suceptibles de generar barras, responsables de la pérdida de momento angular y la caída violenta del gas hacia la región central. Estas inestabilidades son fácilmente inducidas durante interacciones y fusiones con objetos vecinos (Barnes & Hernquist 1996). Un bulbo estelar (o un objeto masivo y compacto) estabiliza el disco ante perturbaciones externas, asegurándole un potencial simétrico (Sellwood & Moore 1998, Van der Bosch 1998). En este caso, el gas en el disco no pierde completamente su momento angular intrínseco durante las fusiones, sino que, las sobrevive aportando una contribución distinta de cero, a partir de la cual el disco se regenera acretando en una segunda etapa, gas del halo de acuerdo al modelo tradicional de Fall & Efstathiou.
NASA Astrophysics Data System (ADS)
Stambaugh, Ronald D.
2014-01-01
This last year being an odd numbered year, the pages of Nuclear Fusion saw a large influx of expanded papers from the 2012 Fusion Energy Conference in San Diego. Many papers have focused on the scientific and technical challenges posed by ITER. Contributions are steadily increasing from the new superconducting tokamaks in Asia. The ITER Project continues to move ahead. Construction at the Cadarache site is quite remarkable. Buildings completed include the huge Poloidal Field Coils Winding Facility and the Headquarters building, which has been occupied by the ITER staff. Work is progressing on the Assembly building and the Cryostat Workshop. The base of the tokamak complex is being laid. Besides the construction that is taking place and will take place at the site, components from around the world have to navigate the complex route from Marseilles to the site. A test convoy replicating the dimensions and weights of the most exceptional ITER loads successfully traversed that route in 2013. We are pleased to report that the IAEA and ITER have finalized the agreement for ITER authors to publish papers in Nuclear Fusion . Nuclear Fusion is proud to continue its key role in providing the leading forum for the documentation of scientific progress and exchange of research results internationally toward fusion energy. Refereeing The Nuclear Fusion editorial office appreciates greatly the effort made by our referees to sustain the high quality of the journal. Since January 2005, we have been offering the most active referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. We have excluded our Board Members, Guest Editors of special editions and those referees who were already listed in previous years. The following people have been selected: J.M. Canik, Oak Ridge National Laboratory, USA I.T. Chapman, Culham Centre for Fusion Energy, UK L.-G. Eriksson, Commission of the European Communities, Belgium T. Evans, General Atomics, USA A. Hassanein, Purdue University, USA Y.-M. Jeon, National Fusion Research Institute, Spain S. Kajita, Nagoya University, Japan T.P. Kiviniemi, Aalto University, Finland R.M. More, Lawrence Livermore National Laboratory, USA F. Sattin, Associazione Euratom-ENEA-CNR, Italy J.A. Snipes, ITER Organization, France W. Suttrop, Max Planck Institute for Plasma Physics-Garching, Germany F.L. Tabares, Energy Environment and Technology Research Centre, Spain Y. Ueda, Osaka University, Japan V.S. Voitsenya, Kharkov Institute of Physics and Technology, Ukraine G. Xu, Chinese Academy of Sciences-Hefei Institutes of Physical Sciences, People's Republic of China In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion . At the end of this issue we give the full list of all referees for 2013. Our thanks to them! We also wish to express our thanks to Paul Thomas, who served as Guest Editor for the special issue of the overview and summary reports from the 24th Fusion Energy Conference in San Diego, October 2012. This issue is of great value as a summary of the major developments worldwide in fusion research in the last two years. Authors The winner of the 2013 Nuclear Fusion Award is D.G. Whyte for the paper: I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod [1], and we congratulate him and coauthors on this achievement. We also note special topic papers published in 2013: Technical challenges in the construction of the steady-state stellarator Wendestein 7-X by H.S. Bosch et al [2], Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER by I.T. Chapman et al [3] and IFMIF: overview of the validation activities by J. Knaster et al [4]. The Board of Editors The Board of Editors has had a substantial turnover in members. For their great service to the journal, we wish to thank the following outgoing Board Members whose term of service was reached at the end of 2012: Keith Burrell, Atsushi Fukuyama, Guenter Janeschitz, Myeun Kwon, Alberto Loarte, Derek Stork, Tony Taylor and Kazuo Toi. We welcome the new Board Members who have joined the Board from the start of 2013: Pietro Barabaschi, Riccardo Betti, Rich Callis, Wonho Choi, Yasuaki Kishimoto, Joaquin Sánchez, Paul Thomas, Mickey Wade, Howard Wilson, Hiroshi Yamada and Steve Zinkle. We look forward to working with the Board to maintain the high standing of Nuclear Fusion . The Nuclear Fusion office and IOP Publishing Just as the journal depends on the authors, referees, and Board of Editors, so its success is also due to the tireless and largely unsung efforts of the IAEA Nuclear Fusion office in Vienna and IOP Publishing in Bristol. I would like to express my personal thanks to the team for the support that they have given to me, the authors and the referees. Season's greetings I would like to wish our readers, authors, referees, Board of Editors, and Vienna and Bristol office staff season's greetings and thank them for their contributions to Nuclear Fusion in 2013. References [1] Whyte D.G. et al 2010 I-mode: an H-mode energy confinement regime with L-mode particle transport in Alcator C-Mod Nucl. Fusion 50 105005 [2] Bosch H.-S. et al 2013 Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X Nucl. Fusion 53 126001 [3] Chapman I.T. et al 2013 Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER Nucl. Fusion 53 066001 [4] Knaster J. et al 2013 IFMIF: overview of the validation activities Nucl. Fusion 53 116001
HUBBLE UNCOVERS DUST DISK AROUND A MASSIVE BLACK HOLE
NASA Technical Reports Server (NTRS)
2002-01-01
Resembling a gigantic hubcap in space, a 3,700 light-year-diameter dust disk encircles a 300 million solar-mass black hole in the center of the elliptical galaxy NGC 7052. The disk, possibly a remnant of an ancient galaxy collision, will be swallowed up by the black hole in several billion years. Because the front end of the disk eclipses more stars than the back, it appears darker. Also, because dust absorbs blue light more effectively than red light, the disk is redder than the rest of the galaxy (this same phenomenon causes the Sun to appear red when it sets in a smoggy afternoon). This NASA Hubble Space Telescope image was taken with the Wide Field and Planetary Camera 2, in visible light. Details as small as 50 light-years across can be seen. Hubble's Faint Object Spectrograph (replaced by the STIS spectrograph in 1997) was used to observe hydrogen and nitrogen emission lines from gas in the disk. Hubble measurements show that the disk rotates like an enormous carousel, 341,000 miles per hour (155 kilometers per second) at 186 light-years from the center. The rotation velocity provides a direct measure of the gravitational force acting on the gas by the black hole. Though 300 million times the mass of our Sun, the black hole is still only 0.05 per cent of the total mass of the NGC 7052 galaxy. Despite its size, the disk is 100 times less massive than the black hole. Still, it contains enough raw material to make three million sun-like stars. The bright spot in the center of the disk is the combined light of stars that have crowded around the black hole due to its strong gravitational pull. This stellar concentration matches theoretical models linking stellar density to a central black hole's mass. NGC 7052 is a strong source of radio emission and has two oppositely directed `jets' emanating from the nucleus. (The jets are streams of energetic electrons moving in a strong magnetic field and unleashing radio energy). Because the jets in NGC 7052 are not perpendicular to the disk, it may indicate that the black hole and the dust disk in NGC 7052 do not have a common origin. One possibility is that the dust was acquired from a collision with a small neighboring galaxy, after the black hole had already formed. NGC 7052 is located in the constellation of Vulpecula, 191 million light-years from Earth. Credit: Roeland P. van der Marel (STScI), Frank C. van den Bosch (Univ. of Washington), and NASA. A caption and image files are available via the Internet at http://oposite.stsci.edu/pubinfo/1998/22.html.
NASA Astrophysics Data System (ADS)
Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine
2014-05-01
The Nile delta sedimentation constitutes a continuous high resolution (1.6 mm/year) record of Ethiopian African monsoon regime intensity. Multiproxy analyses performed on core MS27PT recovered in hemipelagic Nile sediment margin (<90 km outward of the Rosetta mouth of the Nile) allow the quantification of the Saharan aeolian dust and the Blue/White Nile River suspended matter frequency fluctuations during the last 21 cal. ka BP. The radiogenic Sr and Nd isotopes, clay mineralogy, bulk elemental composition and palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the LGM and the Late Holocene (~4 to 2 cal. ka BP), a dominant Blue/Atbara Nile River contribution during the early Holocene (15 to 8.4 cal. ka BP) and a probable White Nile River contribution during the Middle Holocene (8.4 to 4 cal. ka BP). The following main features are highlighted: 1. The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15 cal. ka BP. AHP extends until 8.4 cal. ka BP, and we suggest that the Ethiopian African Monsoon maximum between 12 and 8 cal. ka BP is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the Eastern Mediterranean Sea. 2. The transition between the AHP and the arid Late Holocene is gradual and occurs in two main phases between 8.4 and 6.5 cal. ka BP and 6.5 to 3.2 cal. ka BP. We suggest that the main rain belt shifted southward from 8.4 to ~4 cal. ka BP and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. 3. The aridification along the Nile catchments occurred from ~4 to 2 cal. ka BP. A dry period, which culminates at 3.2 cal. ka BP, and seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. We postulate that the decrease in thermo-haline water Mediterranean circulation could be part of a response to huge volumes of fresh-water delivered principally by the Nile River from 12 to 8.4 cal. ka BP in the eastern Mediterranean. We propose that the large hydrological change in Ethiopian latitude could be a trigger for the 8.2 ka cooling event recorded in high latitude. Revel R., Colin C., Bernasconi S., Combourieu-Nebout N., Ducassou E., Grousset F.E., Rolland Y., Migeon S., Brunet P., Zhaa Y., Bosch D., Mascle J.,. "21,000 years of Ethiopian African moonsoon variability recorded in sediments of the western Nile deep sea fan", Regional Environmental Change, in press.
Seismic hazard in Hawaii: High rate of large earthquakes and probabilistics ground-motion maps
Klein, F.W.; Frankel, A.D.; Mueller, C.S.; Wesson, R.L.; Okubo, P.G.
2001-01-01
The seismic hazard and earthquake occurrence rates in Hawaii are locally as high as that near the most hazardous faults elsewhere in the United States. We have generated maps of peak ground acceleration (PGA) and spectral acceleration (SA) (at 0.2, 0.3 and 1.0 sec, 5% critical damping) at 2% and 10% exceedance probabilities in 50 years. The highest hazard is on the south side of Hawaii Island, as indicated by the MI 7.0, MS 7.2, and MI 7.9 earthquakes, which occurred there since 1868. Probabilistic values of horizontal PGA (2% in 50 years) on Hawaii's south coast exceed 1.75g. Because some large earthquake aftershock zones and the geometry of flank blocks slipping on subhorizontal decollement faults are known, we use a combination of spatially uniform sources in active flank blocks and smoothed seismicity in other areas to model seismicity. Rates of earthquakes are derived from magnitude distributions of the modem (1959-1997) catalog of the Hawaiian Volcano Observatory's seismic network supplemented by the historic (1868-1959) catalog. Modern magnitudes are ML measured on a Wood-Anderson seismograph or MS. Historic magnitudes may add ML measured on a Milne-Shaw or Bosch-Omori seismograph or MI derived from calibrated areas of MM intensities. Active flank areas, which by far account for the highest hazard, are characterized by distributions with b slopes of about 1.0 below M 5.0 and about 0.6 above M 5.0. The kinked distribution means that large earthquake rates would be grossly under-estimated by extrapolating small earthquake rates, and that longer catalogs are essential for estimating or verifying the rates of large earthquakes. Flank earthquakes thus follow a semicharacteristic model, which is a combination of background seismicity and an excess number of large earthquakes. Flank earthquakes are geometrically confined to rupture zones on the volcano flanks by barriers such as rift zones and the seaward edge of the volcano, which may be expressed by a magnitude distribution similar to that including characteristic earthquakes. The island chain northwest of Hawaii Island is seismically and volcanically much less active. We model its seismic hazard with a combination of a linearly decaying ramp fit to the cataloged seismicity and spatially smoothed seismicity with a smoothing half-width of 10 km. We use a combination of up to four attenuation relations for each map because for either PGA or SA, there is no single relation that represents ground motion for all distance and magnitude ranges. Great slumps and landslides visible on the ocean floor correspond to catastrophes with effective energy magnitudes ME above 8.0. A crude estimate of their frequency suggests that the probabilistic earthquake hazard is at least an order of magnitude higher for flank earthquakes than that from submarine slumps.
NASA Astrophysics Data System (ADS)
Máirtín, Éamonn Ó.; Parry, Guillaume; Beltz, Glenn E.; McGarry, J. Patrick
2014-02-01
This paper, the second of two parts, presents three novel finite element case studies to demonstrate the importance of normal-tangential coupling in cohesive zone models (CZMs) for the prediction of mixed-mode interface debonding. Specifically, four new CZMs proposed in Part I of this study are implemented, namely the potential-based MP model and the non-potential-based NP1, NP2 and SMC models. For comparison, simulations are also performed for the well established potential-based Xu-Needleman (XN) model and the non-potential-based model of van den Bosch, Schreurs and Geers (BSG model). Case study 1: Debonding and rebonding of a biological cell from a cyclically deforming silicone substrate is simulated when the mode II work of separation is higher than the mode I work of separation at the cell-substrate interface. An active formulation for the contractility and remodelling of the cell cytoskeleton is implemented. It is demonstrated that when the XN potential function is used at the cell-substrate interface repulsive normal tractions are computed, preventing rebonding of significant regions of the cell to the substrate. In contrast, the proposed MP potential function at the cell-substrate interface results in negligible repulsive normal tractions, allowing for the prediction of experimentally observed patterns of cell cytoskeletal remodelling. Case study 2: Buckling of a coating from the compressive surface of a stent is simulated. It is demonstrated that during expansion of the stent the coating is initially compressed into the stent surface, while simultaneously undergoing tangential (shear) tractions at the coating-stent interface. It is demonstrated that when either the proposed NP1 or NP2 model is implemented at the stent-coating interface mixed-mode over-closure is correctly penalised. Further expansion of the stent results in the prediction of significant buckling of the coating from the stent surface, as observed experimentally. In contrast, the BSG model does not correctly penalise mixed-mode over-closure at the stent-coating interface, significantly altering the stress state in the coating and preventing the prediction of buckling. Case study 3: Application of a displacement to the base of a bi-layered composite arch results in a symmetric sinusoidal distribution of normal and tangential traction at the arch interface. The traction defined mode mixity at the interface ranges from pure mode II at the base of the arch to pure mode I at the top of the arch. It is demonstrated that predicted debonding patterns are highly sensitive to normal-tangential coupling terms in a CZM. The NP2, XN, and BSG models exhibit a strong bias towards mode I separation at the top of the arch, while the NP1 model exhibits a bias towards mode II debonding at the base of the arch. Only the SMC model provides mode-independent behaviour in the early stages of debonding. This case study provides a practical example of the importance of the behaviour of CZMs under conditions of traction controlled mode mixity, following from the theoretical analysis presented in Part I of this study.
Management of postoperative pain in abdominal surgery in Spain. A multicentre drug utilization study
Vallano, Antonio; Aguilera, Cristina; Arnau, Josep Maria; Baños, Josep-Eladi; Laporte, Joan-Ramon
1999-01-01
Participating centres: Hospital Universitario San Juan, Alicante: Maria Jesús Olaso, Javier Agulló, Clara Faura. Hospital Torrecárdenas, Almería: Carmen Fernández Sánchez, Miguel Lorenzo Campos, Juan Manuel Rodríguez Alonso. Hospital Quirúrgic Adriano, Barcelona: Carmen Alerany Pardo, Paquita Alvarez González, Teresa Martín Benito. Hospital Universitari del Mar-IMIM, Barcelona: Magí Farré, Maite Terán. Corporació Sanitària Parc Taulí, Sabadell: Montserrat Cañellas, Sergio Zavala, Josep Planell. Hospital Universitari de la Santa Creu i Sant Pau: Gonzalo Calvo, Rosa Morros, Silvia Mateo. Hospital General Vall d’Hebron, Barcelona: Carmen Bosch, María José Martínez. Hospital Universitario Virgen de la Victoria, Málaga: Maribel Lucena, José Antonio González, Gabriel Carranque. Hospital Clínico Universitario San Carlos, Madrid: Emilio Vargas, Amparo Gil López-Oliva, Míriam García Mateos. Hospital Universitario Marqués de Valdecilla, Santander: Mario González, Antonio Cuadrado. Hospital Universitario Virgen de la Macarena, Sevilla: Juan Antonio Durán, Pilar Máyquez, María Isabel Serrano. Hospital Universitario Virgen del Rocío, Sevilla: Jaume Torelló, Juan Ramón Castillo, María de las Nieves Merino. Aims Postoperative pain is common in hospital-admitted patients. Its management is determined by different therapeutic traditions and by the attitudes of health professionals in each hospital. The aim of this study was to describe the patterns of prescription and administration of analgesic drugs used for postoperative pain after abdominal surgery in Spanish hospitals, to know the prevalence and the severity of postoperative pain, and to determine the extent of variability in the management of postoperative pain among the participating centres. Methods The study was a multicentre descriptive cross-sectional drug utilization study in 12 Spanish hospitals. The subjects were an unselected sample of consecutive patients undergoing abdominal surgery, admitted between October 1994 and January 1995. For each patient, information about the surgical procedure and the use of analgesics was prospectively collected. The severity of postoperative pain was assessed during the first day after surgery by means of a six-category (none, mild, moderate, severe, very severe, and unbearable) rating scale and a visual analogue scale (VAS). Results Nine hundred and ninety-three patients (547 men) were included. The most common surgical procedures were inguinal hernia repair (315, 32%), cholecystectomy (268, 27%), appendectomy (140, 14%), bowel resection (137, 14%), and gastric surgery (58, 6%). Fifty-nine percent of patients (587) received nonopioid analgesics only, 9% (89) received opioid analgesics only, and 27% (263) received both opioid and nonopioid analgesics. The most frequently administered drugs were metamizole (667 patients) and pethidine (213 patients). Although in the majority of medical orders the administration of analgesics was scheduled at regular time intervals, the majority of actual doses were given ‘as-needed’. The average administered daily doses of all analgesics were lower than those prescribed. Thirty-eight percent (371/967) of patients rated their maximum pain on the first day as severe to unbearable. Wide interhospital variability was recorded in the surgical procedures which had been performed, in the analgesics used, and also in the pain scores referred by patients. The percentage of patients in each centre who suffered severe to unbearable pain varied from 22 to 67%. Conclusions In Spain many patients still suffer severe pain after abdominal surgery, and this seems to be due to an inadequate use of analgesics. Wide interhospital variability in the management of postoperative pain and in its prevalence was also recorded. PMID:10383545
National Bio-fuel Energy Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jezierski, Kelly
2010-12-27
The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D andmore » performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 °F in Michigan winters to 93 °F in the summertime), and both city and highway driving conditions.« less
NASA Astrophysics Data System (ADS)
Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio Claudio; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel
2014-05-01
During Late Oligocene-Early Miocene different domains formed in the region between Iberia and Africa in the westernmost Mediterranean, including thinned continental crust and a Flysch Trough turbiditic deposits likely floored by oceanic crust [1]. At this time, the Ronda peridotite likely constituted the subcontinental lithospheric mantle of the Alboran domain, which mantle lithosphere was undergoing strong thinning and melting [2] [3] coevally with Early Miocene extension in the overlying Alpujárride-Maláguide stacked crust [4, 5]. Intrusive Cr- rich pyroxenites in the Ronda massif records the geochemical processes occurring in the subcontinental mantle of the Alboran domain during the Late Oligocene [6]. Recent isotopic studies of these pyroxenites indicate that their mantle source was contaminated by a subduction component released by detrital crustal sediments [6]. This new data is consistent with a subduction setting for the late evolution of the Alboran lithospheric mantle just prior to its final intracrustal emplacement in the early Miocene Further detailed structural studies of the Ronda plagioclase peridotites-related to the initial stages of ductile emplacement of the peridotite-have led to Hidas et al. [7] to propose a geodynamic model where folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion followed by failed subduction initiation that ended into the intracrustal emplacement of peridotite into the Alboran wedge in the earliest Miocene. This hypothesis implies that the crustal component recorded in late, Cr-rich websterite dykes might come from underthrusted crustal rocks from the Flysch and/or Alpujárrides units that might have been involved in the earliest stages of this subduction initiation stage. To investigate the origin of crustal component in the mantle source of this late magmatic event recorded by Cr-pyroxenites, we have carried out a detail Sr-Nd-Pb-Hf isotopic study of a variety of Betic-Rif cordillera crustal rocks that might have been potentially subducted beneath the Alborán domain before the emplacement of Ronda peridotites. Isotopic data rules out potential crustal sources coming from pre-early Miocene Flysch Trough sediments and crustal rocks from the Blanca Unit currently underlying peridotite. Crustal rocks from the Jubrique Unit overlying the Ronda peridotite are the only crustal samples that may account for the relatively high 207Pb-208Pb/204Pb and low 206Pb/204Pb characteristic of the crustal contaminant added to the mantle source of late Cr-pyroxenites. These data strongly support Alboran geodynamic models that envisage slab roll-back as the tectonic mechanism responsible for Miocene lithospheric thinning, and provides a scenario where back-arc inversion leading to self-subduction of crustal units at the front of the Alboran wedge. REFERENCES 1. Durand-Delga, M., P. Rossi, P. Olivier, and D. Puglisi, Situation structurale et nature ophiolitique de roches basiques jurassiques associées aux flyschs maghrébins du Rif (Maroc) et de Sicile (Italie). Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, 2000. 331(1): p. 29-38. 2. Lenoir, X., C. Garrido, J.L. Bodinier, J.M. Dautria, and F. Gervilla, The Recrystallization Front of the Ronda Peridotite: Evidence for Melting and Thermal Erosion of Subcontinental Lithospheric Mantle beneath the Alboran Basin. Journal of Petrology, 2001. 42(1): p. 141-158. 3. Garrido, C.J., F. Gueydan, G. Booth-Rea, J. Precigout, K. Hidas, J.A. Padrón-Navarta, and C. Marchesi, Garnet lherzolite and garnet-spinel mylonite in the Ronda peridotite: Vestiges of Oligocene backarc mantle lithospheric extension in the western Mediterranean. Geology, 2011. 4. Balanyá, J.C., V. García-Dueñas, J.M. Azañón, and M. Sánchez-Gómez, Alternating contractional and extensional events in the Alpujarride nappes of the Alboran Domain (Betics, Gibraltar Arc). Tectonics, 1997. 16(2): p. 226-238. 5. Platt, J.P., M.J. Whitehouse, S.P. Kelley, A. Carter, and L. Hollick, Simultaneous extensional exhumation across the Alboran Basin: Implications for the causes of late orogenic extension. Geology, 2003. 31(3): p. 251-254. 6. Marchesi, C., C.J. Garrido, D. Bosch, J.-L. Bodinier, K. Hidas, J.A. Padrón-Navarta, and F. Gervilla, A Late Oligocene Suprasubduction Setting in the Westernmost Mediterranean Revealed by Intrusive Pyroxenite Dikes in the Ronda Peridotite (Southern Spain). The Journal of Geology, 2012. 120(2): p. 237-247. 7. Hidas, K., G. Booth-Rea, C.J. Garrido, J.M. Martínez-Martínez, J.A. Padrón-Navarta, Z. Konc, F. Giaconia, E. Frets, and C. Marchesi, Backarc basin inversion and subcontinental mantle emplacement in the crust: kilometre-scale folding and shearing at the base of the proto-Alborán lithospheric mantle (Betic Cordillera, southern Spain). Journal of the Geological Society, 2013. 170(1): p. 47-55.
Smartstones: a small e-compass, accelerometer and gyroscope embedded in stones
NASA Astrophysics Data System (ADS)
Gronz, Oliver; Hiller, Priska H.; Wirtz, Stefan; Becker, Kerstin; Iserloh, Thomas; Aberle, Jochen; Casper, Markus C.
2015-04-01
Pebbles or rock fragments influence soil erosion processes in various ways: they can protect the soil but also enhance the erosion as soon as they are moved by water and impact onto soil. So far, stone-embedded devices to measure the movements have been quite big, up to several decimetres, which does not allow for the analysis of pebbles from medium and coarse gravel classes. In this study, we used a novel device called Smartstones, which is significantly smaller. The Smartstone device's dimensions are 55 mm in length, 8 mm in diameter and an approximately 70 mm long flexible antenna (device developer: SMART-RFID solutions Rheinberg, Germany). It is powered by two button cells, contains an own data storage and is able to wait inactive for longer times until it is activated by movement. It communicates via active RFID (radio frequency identification) technology to a Linux gateway, which stores the sensor data in a database after transmission and is able to handle several devices simultaneously. The device contains a Bosch sensor that measures magnetic flux density, acceleration and rotation, in each case for / around three axes. In our study, the device has been used in a laboratory flume (270 cm in length, 5° to 10° slope, approx. 2 cm water level, mean flow velocities between 0.66 and 1 ms-1) in combination with a high speed camera to capture the movement of the pebbles. The simultaneous usage of two capture devices allows for a comparison of the results: movement patterns derived from image analysis and sensor data analysis. In the device's first software version, all three sensors - acceleration, compass, and gyroscope - were active. The acquisition of all values resulted in a sampling rate of 10 Hz. After the experiments using this setup, the data analysis of the high speed images and the device's data showed that the pebble reached rotation velocities beyond 5 rotations per second, even on the relatively short flume and low water levels. Thus, the device produced only sub-Nyquist sampling values and the rotation velocity of the pebble could not be derived correctly using solely the device's data. Consequently, the device's software was adapted by the developers: the second (and current) version of the device only acquires acceleration and compass, as the acquisition of the gyroscope's value does not allow for higher sampling rates. The second version samples every 12 ms. All aforementioned experiments have been repeated using the adapted device. For data analysis, the high-speed camera images were merged with the device data using a MATLAB script. Furthermore, the derived relative pebble orientation - yaw, pitch and roll - is illustrated using a rotated CAD model of the pebble. The pebble's orientation is derived from compass and accelerometer data using sensor fusion and algorithms for tilt compensated compasses. The results show that the device is perfectly able to capture the movement of the pebble such as rotation (including the rotation axis), sliding or saltation. The interacting forces between the pebble and the underground can be calculated from the acceleration data. However, the accelerometer data also showed that the range of the sensor is not sufficiently large: clipping of values occurred. According to present instrument specifications, the sensor is able to capture up to 4 g for each axis but the resulting vectors for acceleration along all three axes showed values greater than 4 g, even up to the theoretical maximum of approximately 6.9 g. Thus, an impact of this strength that only stresses one axis cannot be measured. As a result of this clipping, the derivation of the pebble's absolute position using double integration of acceleration values is associated with flaws. Besides this clipping, the derived position will deviate from the true position for larger distances or longer experiment durations as the noise of the data will be integrated, too. Several requirements for the next device version were formulated: The range of the accelerometer will be set to the sensor's maximum of 16 g. The device will be water proof. Data analysis will include further methods like Hidden Markov Models or Kalman Filtering as the tilt-compensation is actually not intended for irregular moving devices. These techniques are well-established for other devices and purposes like navigation using GPS. In near future, the Smartstone device will be used outside the laboratory in natural rills and rill experiments. In these experiments, the water is turbid and the pebble will not be visible at all, which does not allow for the usage of the high speed camera. However, the present results showed that the movement of the pebble in addition to the applied forces to the underground and the rill's sidewalls can be captured solely by the Smartstone.
NASA Astrophysics Data System (ADS)
Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo; Florencia Fahnestock, M.; Bryce, Julia G.; Marzoli, Andrea
2017-04-01
The Tertiary Magmatic Province of Veneto, known as Veneto Volcanic Province (VVP), in the Northern Italy, represents one of the most important volcanic provinces of the Adria Plate. It is composed by five volcanic districts: Val d'Adige, Marosticano, Mts. Lessini, Berici Hills and Euganean Hills. Most of the volcanic products are relatively undifferentiated lavas, from nephelinites to tholeiites in composition. Commonly VVP nephelinites and basanites carry mantle xenoliths. This study presents a petrological characterization of the new xenolith occurrence of Marosticano and comparison with previously studied VVP xenolith populations (i.e. from the Lessinean and Val d'Adige areas), which represent off-craton lithospheric mantle fragment affected by Na-alkaline silicate metasomatism (Siena & Coltorti 1989; Beccaluva et al., 2001; Gasperini et al., 2006). Marosticano (MA) peridotites are anhydrous spinel-bearing lherzolites and harzburgites, which are geochemically well distinguishible from the other VVP mantle xenoliths. Primary minerals record the "most restitic" composition of the VVP sampled mantle, even calling the geochemical features of a sub-cratonic mantle. Olivines in both lherzolites and harzburgites show high Ni contents compared with the Fo values (Ni→ lherzolite: 2600-3620 ppm; harzburgite: 2600-3540 ppm; Fo → lh: 91-92; hz: 90-93) that follow the trend of olivine from a cratonic area (Kelemen, 1998). Orthopyroxenes have mg# values with 1:1 ratio with coexisting olivines and Al2O3 contents always <4 wt%, even for the most fertile lherzolite. Low Al2O3 (<5 wt%) associated with high Cr2O3 (>0.5 wt%) contents are also the chemical characteristics of the clinopyroxenes. On the whole both MA pyroxenes show major element contents that recall the characteristics of those from cratonic (sp-bearing) peridotites (e.g. from Greenland, South Africa and Tanzania; Downes et al., 2004). In addition, the relationship between the high Fo content of olivine and the high chromium contents (cr#=(Cr/(Cr+Al)X100); lh: 30-53; hz: 38-67) in coexisting spinel, out of the typical OSMA array (Arai, 1994b) is observed in typical on-craton mantle rocks (Downes et al., 2004). To corroborate the cratonic "flavour" of these peridotites, in-situ trace element analyses show that Marosticano clinopyroxene have modified their residual characteristics by interaction with deep metasomatic melt, which was able to strong enrich in U, Th, LILE (Rb-Ba) and LREE with respect to the restitic preserved HREE and HFSE (e.g. Nb, Ta, Zr and Hf) contents. The general clinopyroxene trace element distribution and elemental ratios ((La/Yb)N and Ti/Eu; Coltorti et al., 1999) are consistent with enrichment provided by a carbonatitic rather than a silicate metasomatizing agent. To characterize the chemical-physical frame of the MA mantle segment, peridotites equilibration temperatures and oxygen fugacities were also estimated and compared with those of the other VVP xenoliths. The latter comparison leads to i) Marosticano samples record relatively high oxidation conditions (as Mts. Lessini peridotites) in agreement with the range assigned to continental lithosphere (Foley et al., 2011) and ii) these T-fO2 values account for CO2 mole fractions dissolved in a potential metasomatic melt close to 1, further supporting the carbonatitic nature of the infiltrating melt. In this case it can be speculated that the usually low oxidizing conditions of the cratonic mantle have been augmented by the interaction with a carbonatitic melt or with a CO2-rich fluid released by the reaction with a peridotitic matrix. References Arai, S., 1994b. Compositional variation of olivine chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites. Journal of Volcanology and Geothermal Research 59, 279-293. Beccaluva L., Bianchini G., Bonadiman C., Coltorti M., Milani L., Salvini L., Siena F., Tassinari R. (2007). Intraplate lithospheric and sublithospheric components in the Adriatic domain: Nephelinite to tholeiite magma generation in the Paleogene Veneto Volcanic Province, Southern Alps. Geological Society of America, 131-152. Beccaluva L., Bonadiman C., Coltorti M., Salvini L., Siena F. (2001). Depletion events, nature of metasomatizing agent and timing of enrichment processes in lithospheric mantle xenoliths from the Veneto Volcanic Province. Journal of Petrology, 42, 173-187. Coltorti, M., Bonadiman, C., Hinton, R.W., Siena, F., Upton, B.G.J. (1999). Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40, 133-165. Downes, H., MacDonald, R., Upton, B.G.J., Cox, K.G, Bodinier, J-L, Mason, P.R.D, James, D., Hill, P.G., Hearn, C. Jr (2004). Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming Carton. Journal of Petrology, 45, 1631-1662. Foley, S.F. (2011). A reappraisal of redox melting in the Earth's mantle as a function of tectonic setting and time. Journal of Petrology, 52, 1363-1391. Gasperini D., Bosch D., Braga R., Bondi M., Macera P., Morten L. (2006). Ultramafic xenoliths from the Veneto Volcanic Province (Italy): Petrological and geochemical evidence for multiple metasomatism of the SE Alps mantle lithospere. Geochemical Journal, 40, 377-404. Kelemen, P.B., Hart, S.R., Bernstein, S. (1998). Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164, 387-406. Ramsey, R.R, Tompkins, L.A. (1994). The geology, heavy mineral concentrate mineralogy, and diamond prospectivity of the Boa Esperança and Cana Verde pipes, Corrego D'anta, Minas Gerais, Brazil, in: Meyer, H.O.A and Leonardos, O.H. (Eds.), Proceeding of the Fifth International Kimberlite Conference 2. Companhia de Pesquisa de Recursors Minerais, Special Publications, 329-345. Siena F., Coltorti M. (1989). Lithospheric mantle evolution: evidences from ultramafic xenoliths in the Lessinean volcanics (Northern Itlay). Chemical Geology, 77, 347-364.
Cle Elum Supplementation and Research Facility : Monthly Progress Report November 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cle Elum Supplementation and Research Facility
2008-12-09
FISH PRODUCTION: Final shocking of eggs was finished in the incubation. Egg enumeration for the 2008 brood was completed and the eggs are being incubated in 38 degree Fahrenheit chilled water. Don Larsen of NOAA made a request of eggs for research purposes and was able to acquire supplemental line eggs 10,555. Estimated density at the time of ponding in Mid-March of 2009 is approximately 43,869 fry per raceway after calculating an average fry loss of 2%. The end of the month totals for the 2007 brood reports 773,807 juveniles on hand with an overall average of 31.4 fish permore » pound. Tagging continues on the 2007 brood and is on pace to wrap up in early December. FISH CULTURE: Ponds are cleaned as needed and due to the colder water temperatures, the feeding frequency has been changed to three days a week. All ponds are sampled at the end of the month. Growth for production fish are adjusted accordingly as temperature dictates feeding levels. Torrential rain on the 12th turned the Yakima River extremely turbid. Fish tagging operations were halted and the ensuing conditions at the facility intake screens became a concern. Water flow to the wet well became restricted so the decision was made to shut the surface water (river) pumps down and turn on well pumps No.1, No.4 and No.6 to run water to the facility head box. This operation continued for twenty-four hours at which point normal operations were optimal and fish tagging resumed, although the river didn't clear up enough to feed the fish until the 17th. WATER PRODUCTION: The current combined well and river water supply to the complex is 14,822 gallons/minute. Well No.2 is pumping water at a rate of 530 gallons per minute. All four river pumps are in operation and pumping 14,292 gallons/minute. ACCLIMATION SITES: Cle Elum staff has been working to prep the acclimation sites for the upcoming fish transfer before the snow falls. Thermographs at each site are changed weekly. AMB Tools performed routine maintenance on the compressor and Brown and Jackson pumped out the septic tank at the Jack Creek acclimation site. VEHICLE MAINTENANCE: Snow tires are now on all vehicles and snow blowers were installed on the John Deere tractor and lawn tractor. The snowplow was also installed on the Ford one ton. The four Snowmobiles were serviced by Yamaha Jacks of Ellensburg. MAINTENANCE BUILDING MAINTENANCE: Clean up occurs on Fridays of each week. HATCHERY BUILDING MAINTENANCE: Water has been turned on to vertical incubator islands one and two. After eggs were transferred to vertical stacks cleaning of troughs began. WDFW crew inventoried eggs from isolettes and then transferred them to the vertical incubators. RIVER PUMP STATION MAINTENANCE: All four pumps are in operation and supplying the facility with 14,292 gallons/minute of water to rearing ponds. WELL FIELD MAINTENANCE: Well pumps No.1, No.4 and No.6 were turned on to supplement water flow to the facility as mentioned previously. Well No.5 was powered up but a winterizing valve malfunction wouldn't allow operation, we are currently working on it at this time. Well No.2 is pumping 530 gallons per minute and supplies well water to incubation and chiller. The pumps meter is recorded weekly. Test holes are monitored weekly and results are faxed to CH2MHILL afterward. SAFETY AND TRAINING: Ice melt and sand bags are popular items at the facility this month as freezing temperatures cause ground to become slippery and hazardous. GROUNDS: Van Alden's Plumbing installed a new commode in resident house No.411 and also inspected a plumbing problem at resident No.1131. Cle Elum staff along with WDFW staff worked to locate the spawning channel building back to the position it was at to have Greg Wallace of Wallace Electric hook electricity back up to the spawning shed. MEETINGS AND TOURS: Charlie attended a policy meeting at Cle Elum on the 18th. The Internal projects annual review took place at Cle Elum on the 19th and 20th. Bill Bosch continues to visit monthly to incorporate data into the YKFP data base. PERSONNEL: IHS employees traveled to Cle Elum to administer flu shots to YN staffers and families as well as WDFW staffers.« less
NASA Astrophysics Data System (ADS)
Hidas, Károly; Garrido, Carlos J.; Marchesi, Claudio; Bodinier, Jean-Louis; Louni-Hacini, Amina; Azzouni-Sekkal, Abla; Konc, Zoltán; Dautria, Jean-Marie; Varas-Reus, Maria Isabel
2017-04-01
As a result of the Miocene collision between the Alborán domain and the south Iberian and Maghrebian passive margins, the Betic and the Rif-Tell mountains form an arc-shaped orogenic belt in the westernmost Mediterranean (e.g. [1]). This belt is characterized by the presence of subcontinental lithospheric mantle exhumed as orogenic peridotites [2-4], and entrained by basaltic magmatism. Mantle xenoliths entrained in Plio-Pleistocene alkali basalts in the innermost Betics in South Spain provided invaluable data to study the structure and composition of the subcontinental lithospheric mantle beneath the northern limb of this mountain belt [5-7]. In contrast, information from the southern limb is scarce, even though alkali basalts of the same age (< 4 Ma) in the Oran area of the Tell Atlas (North Algeria) contain large amounts of plagioclase to spinel facies peridotite mantle xenoliths with lherzolitic, harzburgitic and wehrlitic modal compositions [6]. Here we report detailed geochemical and textural study of metasomatized mantle xenoliths from this area. The studied spinel-facies mantle xenoliths normally have coarse granular and porphyroclastic textures, whereas in the plagioclase-bearing lithologies fine-grained equigranular fabric becomes abundant. Olivine and orthopyroxene of the coarse-grained lherzolites and harzburgites reflect usual major element geochemical compositions with Mg# in the range of 90-93. Clinopyroxene in these rocks have an overall depleted LREE pattern with slight variation in the most incompatible elements indicating cryptic metasomatism. The Crystal Preferred Orientation (CPO) of olivine shows an axial-[100] pattern characterized by a strong alignment of [100]-axes near or parallel to the peridotite lineation. Wehrlitic lithologies show more variable major element compositions and an important enrichment in LREE in clinopyroxene yet with MREE/HREE ratios comparable to those in harzburgite and lherzolite. Modal enrichment in clinopyroxene and development of fine-grained equigranular texture are both accompanied with a dispersion of olivine CPO. The lithological, textural and geochemical variations of these xenoliths indicate that wehrlite-forming melt-rock reactions took place in the shallow subcontinental lithospheric mantle beneath the southern limb of the Betic-Rif-Tell orogenic belt during the Neogene geodynamic evolution of the westernmost Mediterranean. REFERENCES 1. Platt, J.P., Behr, W.M., Johanesen, K., Williams, J.R., 2013. The Betic-Rif Arc and Its Orogenic Hinterland: A Review. Annual Review of Earth and Planetary Sciences 41, 313-357. 2. Hidas, K., Booth-Rea, G., Garrido, C.J., Martínez-Martínez, J.M., Padrón-Navarta, J.A., Konc, Z., Giaconia, F., Frets, E., Marchesi, C., 2013. Backarc basin inversion and subcontinental mantle emplacement in the crust: kilometre-scale folding and shearing at the base of the proto-Alborán lithospheric mantle (Betic Cordillera, southern Spain). Journal of the Geological Society 170, 47-55. 3. Frets, E.C., Tommasi, A., Garrido, C.J., Vauchez, A., Mainprice, D., Targuisti, K., Amri, I., 2014. The Beni Bousera peridotite (Rif Belt, Morocco): an oblique-slip low-angle shear zone thinning the Subcontinental Mantle Lithosphere. Journal of Petrology 55, 283-313. 4. Rampone, E., Vissers, R.L.M., Poggio, M., Scambelluri, M., Zanetti, A., 2010. Melt migration and intrusion during exhumation of the Alboran lithosphere: the Tallante mantle xenolith record (Betic Cordillera, SE Spain). Journal of Petrology 51, 295-325. 5. Hidas, K., Konc, Z., Garrido, C.J., Tommasi, A., Vauchez, A., Padrón-Navarta, J.A., Marchesi, C., Booth-Rea, G., Acosta-Vigil, A., Szabó, C., Varas-Reus, M.I., Gervilla, F., 2016. Flow in the western Mediterranean shallow mantle: Insights from xenoliths in Pliocene alkali basalts from SE Iberia (eastern Betics, Spain). Tectonics 35, 2657-2676. 6. Marchesi, C., Konc, Z., Garrido, C.J., Bosch, D., Hidas, K., Varas-Reus, M.I., Acosta-Vigil, A., 2017. Multi-stage evolution of the lithospheric mantle beneath the westernmost Mediterranean: Geochemical constraints from peridotite xenoliths in the eastern Betic Cordillera (SE Spain). Lithos, in press 7. Zerka, M., 2004. Le manteau sous la marge Maghrébine: relations infiltrations-réactions-cristallisations et cisaillements lithosphériques dans les enclaves ultramafiques du volcanisme alcalin Plio-Quaternaire d'Oranie, exemple des complexes d'Ain Temouchent et de la Basse Tafna (Algérie Nord-Occidentale). PhD thesis, Université d'Oran, Algeria, pp. 345. Funding: This research has been funded by a FP7-IRSES Marie Curie Action under Grant Agreement PIRSESGA-2013-612572
Catch crops impact on soil water infiltration in vineyards
NASA Astrophysics Data System (ADS)
Cerdà, Artemi; Bagarello, Vincenzo; Iovino, Massimo; Ferro, Vito; Keesstra, Saskia; Rodrigo-Comino, Jesús; García Diaz, Andrés; di Prima, Simone
2017-04-01
Infiltration is the key component of the hydrological cycle (Cerdà, 1999; Bagarello et al.,, 2014; Zema et al., 2016). Infiltration determines the partitioning of rainfall into runoff and subsurface flow (Cerdà, 1996; Bagarello et al., 2006; Wang et al., 2016). In the Mediterranean, agriculture resulted in the degradation of the soil structure, reduction of the organic matter and increase in the soil losses (Cerdà et al., 2009; Laudicina et al., 2015; Iovino et al., 2016; Willaarts et al., 2016). There is an urgent need to restore the agriculture soils to avoid floods, reduce the carbon emissions and avoid reservoir siltation (Aksakal et al., 2016; Ben Slimane et al., 2016; Yagüe et al., 2016). Catch Crops are widespread used due to their impact on the soil fertility (Mwango et al., 2016; Nishigaki et al., 2016 ; Nawaz et al., 2016). Catch crops also increase the amount of organic matter but little is known about the effect on soil infiltration. Two paired plots were selected in Les Alcusses (Moixent municipality) in Eastern Iberian Peninsula to compare the infiltration rates between a 8-years catch crop (Vicia sp) with a control (plough) soil. The measurements were carried out by means of ring infiltrometer in August 2014 and December 2014 under dry and wet conditions (Cerdà, 2001; Di Prima et al., 2016). The results show that the steady-state infiltration rates were 1.8 higher during the summer period, and that the catch crops did not increase the infiltration rates. Acknowledgements The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n 603498 (RECARE project) and the CGL2013- 47862-C2-1-R and CGL2016-75178-C2-2-R national research projects. References Aksakal, E. L., Sari, S., & Angin, I. (2016). Effects of vermicompost application on soil aggregation and certain physical properties. Land Degradation and Development, 27(4), 983-995. doi:10.1002/ldr.2350 Bagarello, V., Castellini, M., Di Prima, S., & Iovino, M. (2014). Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492-501. Bagarello, V., Elrick, D. E., Iovino, M., & Sgroi, A. (2006). A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils. Geoderma, 135, 322-334. Ben Slimane, A., Raclot, D., Evrard, O., Sanaa, M., Lefevre, I., & Le Bissonnais, Y. (2016). Relative contribution of Rill/Interrill and Gully/Channel erosion to small reservoir siltation in mediterranean environments. Land Degradation and Development, 27(3), 785-797. doi:10.1002/ldr.2387 Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast spain. Geoderma, 69(3-4), 217-232. Cerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under mediterranean climatic conditions. Water Resources Research, 35(1), 319-328. doi:10.1029/98WR01659 Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1), 59-68. doi:10.1046/j.1365-2389.2001.00354.x Cerdà, A., Morera, A. G., & Bodí, M. B. (2009). Soil and water losses from new citrus orchards growing on sloped soils in the western mediterranean basin. Earth Surface Processes and Landforms, 34(13), 1822-1830. doi:10.1002/esp.1889 di Prima, S., Lassabatère, L., Bagarello, V., Iovino, M., & Angulo-Jaramillo, R. (2016). Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20-34. Iovino, M., Castellini, M., Bagarello, V., & Giordano, G. (2016). Using static and dynamic indicators to evaluate soil physical quality in a sicilian area. Land Degradation and Development, 27(2), 200-210. doi:10.1002/ldr.2263 Laudicina, V. A., Novara, A., Barbera, V., Egli, M., & Badalucco, L. (2015). Long-term tillage and cropping system effects on chemical and biochemical characteristics of soil organic matter in a mediterranean semiarid environment. Land Degradation and Development, 26(1), 45-53. doi:10.1002/ldr.2293 Mamedov, A. I., Bar-Yosef, B., Levkovich, I., Rosenberg, R., Silber, A., Fine, P., & Levy, G. J. (2016). Amending soil with sludge, manure, humic acid, orthophosphate and phytic acid: Effects on infiltration, runoff and sediment loss. Land Degradation and Development, 27(6), 1629-1639. doi:10.1002/ldr.2474 Mwango, S. B., Msanya, B. M., Mtakwa, P. W., Kimaro, D. N., Deckers, J., & Poesen, J. (2016). Effectiveness OF mulching under miraba in controlling soil erosion, fertility restoration and crop yield in the usambara mountains, tanzania. Land Degradation and Development, 27(4), 1266-1275. doi:10.1002/ldr.2332 Nawaz, A., Farooq, M., Lal, R., Rehman, A., Hussain, T., & Nadeem, A. (2016). Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice-wheat systems. Land Degradation and Development, doi:10.1002/ldr.2578 Nishigaki, T., Shibata, M., Sugihara, S., Mvondo-Ze, A. D., Araki, S., & Funakawa, S. (2016). Effect of mulching with vegetative residues on soil water erosion and water balance in an oxisol cropped by cassava in east cameroon. Land Degradation and Development, doi:10.1002/ldr.2568 Wang, Y., Fan, J., Cao, L., & Liang, Y. (2016). Infiltration and runoff generation under various cropping patterns in the red soil region of china. Land Degradation and Development, 27(1), 83-91. doi:10.1002/ldr.2460 Willaarts, B. A., Oyonarte, C., Muñoz-Rojas, M., Ibáñez, J. J., & Aguilera, P. A. (2016). Environmental factors controlling soil organic carbon stocks in two contrasting mediterranean climatic areas of southern spain. Land Degradation and Development, 27(3), 603-611. doi:10.1002/ldr.2417 Yagüe, M. R., Domingo-Olivé, F., Bosch-Serra, À. D., Poch, R. M., & Boixadera, J. (2016). Dairy cattle manure effects on soil quality: Porosity, earthworms, aggregates and soil organic carbon fractions. Land Degradation and Development, 27(7), 1753-1762. doi:10.1002/ldr.2477 Zema, D. A., Labate, A., Martino, D., & Zimbone, S. M. (2016). Comparing different infiltration methods of the HEC-HMS model: The case study of the mésima torrent (southern italy). Land Degradation and Development, doi:10.1002/ldr.2591
Chemical tracers of shipping emissions in a Mediterranean harbour
NASA Astrophysics Data System (ADS)
Viana, M.; Amato, F.; Alastuey, A.; Querol, X.; Román, A.; García, M.
2009-04-01
Particle emissions from transport-related activities are known as one of the most important sources contributing to the PM mass concentrations in urban environments. However, only limited information is currently available in the literature on the contribution to PM levels by specific transport related sources such as shipping emissions, even though according to the latest IPCC report (Ribeiro et al., 2007), shipping emissions are receiving increased scrutiny by international and regional regulatory agencies because of their potential impact on air quality and human health in communities downwind from major shipping lanes and ports (Dominguez et al., 2008). One of the main reasons for this lack of information is the complexity in the detection of shipping emissions, given that no specific emission tracers have so far been identified as a consequence of the vast variability of combustion fuels burnt by vessels. The city of Melilla was selected for the study of shipping emissions due to its location on the South-Western sector of the Mediterranean basin, on the Northern coast of Morocco and less than 200 km from the Gibraltar Strait (35°17´40" N, 2°56´30" W). The city covers an extension of 13.4 km2, with a population of 70000 inhabitants. The monitoring station selected for the present study is representative of urban background levels, and it is located at approximately 150 m from the Melilla harbour. The harbour is mainly characterised by commercial traffic (passanger and container), although minerals and other loose materials are also stocked on the docks located farthest away from the monitoring site. PM10, PM2.5 and PM1 levels were determined on an hourly basis between 12/01/2008 and 19/12/2008 using a GRIMM laser spectrometer, which produced more than 8000 data points for each size fraction (24000 data points in total). In addition, PM10 and PM2.5 levels were sampled on quartz fibre filter substrates (Munktell) by means of high-volume samplers (PM1025 MCV, 30 m3/h) at a rate of 2 samples per week for each size fraction. This resulted in 78 and 77 valid PM10 and PM2.5 samples, respectively. All samples were weighed and analysed for major and trace elements following the methodology described by Querol et al. (2004). The data collected over the annual period was analysed as a function of the wind sectors defining the main PM sources: 0-45° (open sea), 45-135° (harbour) and 135-360° (land). PM levels and chemical composition were evaluated for each of these sectors, and initial results on hourly PM levels (24000 data points) showed striking similarities between the results from the open sea (46 µgPM10/m3, 22 µgPM2.5/m3, 14 µgPM1/m3) and the harbour (44 µgPM10/m3, 21 µgPM2.5/m3, 13 µgPM1/m3) sectors, which were markedly different from those recorded from the land (37 µgPM10/m3, 16 µgPM2.5/m3, 11 µgPM1/m3). This indicated that the impact of shipping emissions on urban background PM levels do not represent only harbour emissions, but also emissions produced during vessel traffic into and out of the harbour, and also across from Melilla and through the Gibraltar Strait. The same kind of analysis was carried out for the levels of tracers species and tracer ratios, in search for a marker of shipping emissions. Results showed that the V/Ni ratio followed a similar pattern to that detected for PM levels, with similar values for the open sea and harbour sectors (4.1 and 4.0, respectively), which differed widely from the ratio obtained from land (12.4). These results evidence the value of the V/Ni ratio as a marker for shipping emissions in Melilla. Further research is ongoing in search of other tracer species and/or tracer ratios. Furthermore, a source apportionment analysis will be carried our by means of PMF, which will be followed by a Multi-linear Engine (ME) analysis with pulling towards the marker V/Ni ratio and aimed at quantifying the impact on urban PM levels of shipping emissions in Melilla. Acknowledgements This work was funded by the Spanish Ministries of the Environment (SDG Air Quality and Industrial Environment, EG0X2006-M-Particulado-M1) and Science and Innovation (GRACCIE-SCD2007-00067). The authors would like to express their gratuitude to Alejandro Suárez from the Melilla Harbour Authority. References Dominguez G., et al. (2008) Discovery and measurement of an isotopically distinct source of sulfate in Earth's atmosphere. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 105 (35), 12769-12773. Ribeiro et al. (2007) in Contribution of Working Group III Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Cambridge University Press, Cambridge, UK).
Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach
NASA Astrophysics Data System (ADS)
Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.
Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.
Extensible packet processing architecture
Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.
2013-08-20
A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.
Cornwell, Brittany; Villamor, Eduardo; Mora-Plazas, Mercedes; Marin, Constanza; Monteiro, Carlos A; Baylin, Ana
2018-01-01
To determine if processed and ultra-processed foods consumed by children in Colombia are associated with lower-quality nutrition profiles than less processed foods. We obtained information on sociodemographic and anthropometric variables and dietary information through dietary records and 24 h recalls from a convenience sample of the Bogotá School Children Cohort. Foods were classified into three categories: (i) unprocessed and minimally processed foods, (ii) processed culinary ingredients and (iii) processed and ultra-processed foods. We also examined the combination of unprocessed foods and processed culinary ingredients. Representative sample of children from low- to middle-income families in Bogotá, Colombia. Children aged 5-12 years in 2011 Bogotá School Children Cohort. We found that processed and ultra-processed foods are of lower dietary quality in general. Nutrients that were lower in processed and ultra-processed foods following adjustment for total energy intake included: n-3 PUFA, vitamins A, B12, C and E, Ca and Zn. Nutrients that were higher in energy-adjusted processed and ultra-processed foods compared with unprocessed foods included: Na, sugar and trans-fatty acids, although we also found that some healthy nutrients, including folate and Fe, were higher in processed and ultra-processed foods compared with unprocessed and minimally processed foods. Processed and ultra-processed foods generally have unhealthy nutrition profiles. Our findings suggest the categorization of foods based on processing characteristics is promising for understanding the influence of food processing on children's dietary quality. More studies accounting for the type and degree of food processing are needed.
Dynamic control of remelting processes
Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.
2000-01-01
An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.
On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process
NASA Astrophysics Data System (ADS)
Hongzhi, Zhao; Jian, Zhang
2018-03-01
The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)
Performing a local reduction operation on a parallel computer
Blocksome, Michael A; Faraj, Daniel A
2013-06-04
A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.
Performing a local reduction operation on a parallel computer
Blocksome, Michael A.; Faraj, Daniel A.
2012-12-11
A parallel computer including compute nodes, each including two reduction processing cores, a network write processing core, and a network read processing core, each processing core assigned an input buffer. Copying, in interleaved chunks by the reduction processing cores, contents of the reduction processing cores' input buffers to an interleaved buffer in shared memory; copying, by one of the reduction processing cores, contents of the network write processing core's input buffer to shared memory; copying, by another of the reduction processing cores, contents of the network read processing core's input buffer to shared memory; and locally reducing in parallel by the reduction processing cores: the contents of the reduction processing core's input buffer; every other interleaved chunk of the interleaved buffer; the copied contents of the network write processing core's input buffer; and the copied contents of the network read processing core's input buffer.
Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd
2016-07-01
We introduce Process Overview, a situation awareness characterisation of the knowledge derived from monitoring process plants. Process Overview is based on observational studies of process control work in the literature. The characterisation is applied to develop a query-based measure called the Process Overview Measure. The goal of the measure is to improve coupling between situation and awareness according to process plant properties and operator cognitive work. A companion article presents the empirical evaluation of the Process Overview Measure in a realistic process control setting. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA based on data collected by process experts. Practitioner Summary: The Process Overview Measure is a query-based measure for assessing operator situation awareness from monitoring process plants in representative settings.
43 CFR 2804.19 - How will BLM process my Processing Category 6 application?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How will BLM process my Processing... process my Processing Category 6 application? (a) For Processing Category 6 applications, you and BLM must enter into a written agreement that describes how BLM will process your application. The final agreement...
43 CFR 2804.19 - How will BLM process my Processing Category 6 application?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How will BLM process my Processing... process my Processing Category 6 application? (a) For Processing Category 6 applications, you and BLM must enter into a written agreement that describes how BLM will process your application. The final agreement...
Process Correlation Analysis Model for Process Improvement Identification
Park, Sooyong
2014-01-01
Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data. PMID:24977170
Process correlation analysis model for process improvement identification.
Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong
2014-01-01
Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.
Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes
NASA Astrophysics Data System (ADS)
Guo, Jian-long; Bao, Yan-ping; Wang, Min
2017-12-01
During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition (process-II). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-I than by process-II. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-II. For process-I, the Al2O3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-II than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-II. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.
Application of agent-based system for bioprocess description and process improvement.
Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J
2010-01-01
Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which demonstrate how such a framework may enable the better integration of process operations by providing a plant-wide process description to facilitate process improvement. Copyright 2009 American Institute of Chemical Engineers
Electricity from sunlight. [low cost silicon for solar cells
NASA Technical Reports Server (NTRS)
Yaws, C. L.; Miller, J. W.; Lutwack, R.; Hsu, G.
1978-01-01
The paper discusses a number of new unconventional processes proposed for the low-cost production of silicon for solar cells. Consideration is given to: (1) the Battelle process (Zn/SiCl4), (2) the Battelle process (SiI4), (3) the Silane process, (4) the Motorola process (SiF4/SiF2), (5) the Westinghouse process (Na/SiCl4), (6) the Dow Corning process (C/SiO2), (7) the AeroChem process (SiCl4/H atom), and the Stanford process (Na/SiF4). Preliminary results indicate that the conventional process and the SiI4 processes cannot meet the project goal of $10/kg by 1986. Preliminary cost evaluation results for the Zn/SiCl4 process are favorable.
Composing Models of Geographic Physical Processes
NASA Astrophysics Data System (ADS)
Hofer, Barbara; Frank, Andrew U.
Processes are central for geographic information science; yet geographic information systems (GIS) lack capabilities to represent process related information. A prerequisite to including processes in GIS software is a general method to describe geographic processes independently of application disciplines. This paper presents such a method, namely a process description language. The vocabulary of the process description language is derived formally from mathematical models. Physical processes in geography can be described in two equivalent languages: partial differential equations or partial difference equations, where the latter can be shown graphically and used as a method for application specialists to enter their process models. The vocabulary of the process description language comprises components for describing the general behavior of prototypical geographic physical processes. These process components can be composed by basic models of geographic physical processes, which is shown by means of an example.
Process-based tolerance assessment of connecting rod machining process
NASA Astrophysics Data System (ADS)
Sharma, G. V. S. S.; Rao, P. Srinivasa; Surendra Babu, B.
2016-06-01
Process tolerancing based on the process capability studies is the optimistic and pragmatic approach of determining the manufacturing process tolerances. On adopting the define-measure-analyze-improve-control approach, the process potential capability index ( C p) and the process performance capability index ( C pk) values of identified process characteristics of connecting rod machining process are achieved to be greater than the industry benchmark of 1.33, i.e., four sigma level. The tolerance chain diagram methodology is applied to the connecting rod in order to verify the manufacturing process tolerances at various operations of the connecting rod manufacturing process. This paper bridges the gap between the existing dimensional tolerances obtained via tolerance charting and process capability studies of the connecting rod component. Finally, the process tolerancing comparison has been done by adopting a tolerance capability expert software.
Intranode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E
2014-01-07
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a computer node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Intranode data communications in a parallel computer
Archer, Charles J; Blocksome, Michael A; Miller, Douglas R; Ratterman, Joseph D; Smith, Brian E
2013-07-23
Intranode data communications in a parallel computer that includes compute nodes configured to execute processes, where the data communications include: allocating, upon initialization of a first process of a compute node, a region of shared memory; establishing, by the first process, a predefined number of message buffers, each message buffer associated with a process to be initialized on the compute node; sending, to a second process on the same compute node, a data communications message without determining whether the second process has been initialized, including storing the data communications message in the message buffer of the second process; and upon initialization of the second process: retrieving, by the second process, a pointer to the second process's message buffer; and retrieving, by the second process from the second process's message buffer in dependence upon the pointer, the data communications message sent by the first process.
Canadian Libraries and Mass Deacidification.
ERIC Educational Resources Information Center
Pacey, Antony
1992-01-01
Considers the advantages and disadvantages of six mass deacidification processes that libraries can use to salvage printed materials: the Wei T'o process, the Diethyl Zinc (DEZ) process, the FMC (Lithco) process, the Book Preservation Associates (BPA) process, the "Bookkeeper" process, and the "Lyophilization" process. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Heng; Ye, Ming; Walker, Anthony P.
Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less
Richardson-Klavehn, A; Gardiner, J M
1998-05-01
Depth-of-processing effects on incidental perceptual memory tests could reflect (a) contamination by voluntary retrieval, (b) sensitivity of involuntary retrieval to prior conceptual processing, or (c) a deficit in lexical processing during graphemic study tasks that affects involuntary retrieval. The authors devised an extension of incidental test methodology--making conjunctive predictions about response times as well as response proportions--to discriminate among these alternatives. They used graphemic, phonemic, and semantic study tasks, and a word-stem completion test with incidental, intentional, and inclusion instructions. Semantic study processing was superior to phonemic study processing in the intentional and inclusion tests, but semantic and phonemic study processing produced equal priming in the incidental test, showing that priming was uncontaminated by voluntary retrieval--a conclusion reinforced by the response-time data--and that priming was insensitive to prior conceptual processing. The incidental test nevertheless showed a priming deficit following graphemic study processing, supporting the lexical-processing hypothesis. Adding a lexical decision to the 3 study tasks eliminated the priming deficit following graphemic study processing, but did not influence priming following phonemic and semantic processing. The results provide the first clear evidence that depth-of-processing effects on perceptual priming can reflect lexical processes, rather than voluntary contamination or conceptual processes.
Improving operational anodising process performance using simulation approach
NASA Astrophysics Data System (ADS)
Liong, Choong-Yeun; Ghazali, Syarah Syahidah
2015-10-01
The use of aluminium is very widespread, especially in transportation, electrical and electronics, architectural, automotive and engineering applications sectors. Therefore, the anodizing process is an important process for aluminium in order to make the aluminium durable, attractive and weather resistant. This research is focused on the anodizing process operations in manufacturing and supplying of aluminium extrusion. The data required for the development of the model is collected from the observations and interviews conducted in the study. To study the current system, the processes involved in the anodizing process are modeled by using Arena 14.5 simulation software. Those processes consist of five main processes, namely the degreasing process, the etching process, the desmut process, the anodizing process, the sealing process and 16 other processes. The results obtained were analyzed to identify the problems or bottlenecks that occurred and to propose improvement methods that can be implemented on the original model. Based on the comparisons that have been done between the improvement methods, the productivity could be increased by reallocating the workers and reducing loading time.
Value-driven process management: using value to improve processes.
Melnyk, S A; Christensen, R T
2000-08-01
Every firm can be viewed as consisting of various processes. These processes affect everything that the firm does from accepting orders and designing products to scheduling production. In many firms, the management of processes often reflects considerations of efficiency (cost) rather than effectiveness (value). In this article, we introduce a well-structured process for managing processes that begins not with the process, but rather with the customer and the product and the concept of value. This process progresses through a number of steps which include issues such as defining value, generating the appropriate metrics, identifying the critical processes, mapping and assessing the performance of these processes, and identifying long- and short-term areas for action. What makes the approach presented in this article so powerful is that it explicitly links the customer to the process and that the process is evaluated in term of its ability to effectively serve the customers.
Method for routing events from key strokes in a multi-processing computer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, D.A.; Rustici, E.; Carter, K.H.
1990-01-23
The patent describes a method of routing user input in a computer system which concurrently runs a plurality of processes. It comprises: generating keycodes representative of keys typed by a user; distinguishing generated keycodes by looking up each keycode in a routing table which assigns each possible keycode to an individual assigned process of the plurality of processes, one of which processes being a supervisory process; then, sending each keycode to its assigned process until a keycode assigned to the supervisory process is received; sending keycodes received subsequent to the keycode assigned to the supervisory process to a buffer; next,more » providing additional keycodes to the supervisory process from the buffer until the supervisory process has completed operation; and sending keycodes stored in the buffer to processes assigned therewith after the supervisory process has completedoperation.« less
Issues Management Process Course # 38401
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binion, Ula Marie
The purpose of this training it to advise Issues Management Coordinators (IMCs) on the revised Contractor Assurance System (CAS) Issues Management (IM) process. Terminal Objectives: Understand the Laboratory’s IM process; Understand your role in the Laboratory’s IM process. Learning Objectives: Describe the IM process within the context of the CAS; Describe the importance of implementing an institutional IM process at LANL; Describe the process flow for the Laboratory’s IM process; Apply the definition of an issue; Use available resources to determine initial screening risk levels for issues; Describe the required major process steps for each risk level; Describe the personnelmore » responsibilities for IM process implementation; Access available resources to support IM process implementation.« less
Social network supported process recommender system.
Ye, Yanming; Yin, Jianwei; Xu, Yueshen
2014-01-01
Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.
Pascual, Carlos; Luján, Marcos; Mora, José Ramón; Chiva, Vicente; Gamarra, Manuela
2015-01-01
The implantation of total quality management models in clinical departments can better adapt to the 2009 ISO 9004 model. An essential part of implantation of these models is the establishment of processes and their stabilization. There are four types of processes: key, management, support and operative (clinical). Management processes have four parts: process stabilization form, process procedures form, medical activities cost estimation form and, process flow chart. In this paper we will detail the creation of an essential process in a surgical department, such as the process of management of the surgery waiting list.
T-Check in Technologies for Interoperability: Business Process Management in a Web Services Context
2008-09-01
UML Sequence Diagram) 6 Figure 3: BPMN Diagram of the Order Processing Business Process 9 Figure 4: T-Check Process for Technology Evaluation 10...Figure 5: Notional System Architecture 12 Figure 6: Flow Chart of the Order Processing Business Process 14 Figure 7: Order Processing Activities...features. Figure 3 (created with Intalio BPMS Designer [Intalio 2008]) shows a BPMN view of the Order Processing business process that is used in the
Chopra, Vikram; Bairagi, Mukesh; Trivedi, P; Nagar, Mona
2012-01-01
Statistical process control is the application of statistical methods to the measurement and analysis of variation process. Various regulatory authorities such as Validation Guidance for Industry (2011), International Conference on Harmonisation ICH Q10 (2009), the Health Canada guidelines (2009), Health Science Authority, Singapore: Guidance for Product Quality Review (2008), and International Organization for Standardization ISO-9000:2005 provide regulatory support for the application of statistical process control for better process control and understanding. In this study risk assessments, normal probability distributions, control charts, and capability charts are employed for selection of critical quality attributes, determination of normal probability distribution, statistical stability, and capability of production processes, respectively. The objective of this study is to determine tablet production process quality in the form of sigma process capability. By interpreting data and graph trends, forecasting of critical quality attributes, sigma process capability, and stability of process were studied. The overall study contributes to an assessment of process at the sigma level with respect to out-of-specification attributes produced. Finally, the study will point to an area where the application of quality improvement and quality risk assessment principles for achievement of six sigma-capable processes is possible. Statistical process control is the most advantageous tool for determination of the quality of any production process. This tool is new for the pharmaceutical tablet production process. In the case of pharmaceutical tablet production processes, the quality control parameters act as quality assessment parameters. Application of risk assessment provides selection of critical quality attributes among quality control parameters. Sequential application of normality distributions, control charts, and capability analyses provides a valid statistical process control study on process. Interpretation of such a study provides information about stability, process variability, changing of trends, and quantification of process ability against defective production. Comparative evaluation of critical quality attributes by Pareto charts provides the least capable and most variable process that is liable for improvement. Statistical process control thus proves to be an important tool for six sigma-capable process development and continuous quality improvement.
Streefland, M; Van Herpen, P F G; Van de Waterbeemd, B; Van der Pol, L A; Beuvery, E C; Tramper, J; Martens, D E; Toft, M
2009-10-15
A licensed pharmaceutical process is required to be executed within the validated ranges throughout the lifetime of product manufacturing. Changes to the process, especially for processes involving biological products, usually require the manufacturer to demonstrate that the safety and efficacy of the product remains unchanged by new or additional clinical testing. Recent changes in the regulations for pharmaceutical processing allow broader ranges of process settings to be submitted for regulatory approval, the so-called process design space, which means that a manufacturer can optimize his process within the submitted ranges after the product has entered the market, which allows flexible processes. In this article, the applicability of this concept of the process design space is investigated for the cultivation process step for a vaccine against whooping cough disease. An experimental design (DoE) is applied to investigate the ranges of critical process parameters that still result in a product that meets specifications. The on-line process data, including near infrared spectroscopy, are used to build a descriptive model of the processes used in the experimental design. Finally, the data of all processes are integrated in a multivariate batch monitoring model that represents the investigated process design space. This article demonstrates how the general principles of PAT and process design space can be applied for an undefined biological product such as a whole cell vaccine. The approach chosen for model development described here, allows on line monitoring and control of cultivation batches in order to assure in real time that a process is running within the process design space.
Processing approaches to cognition: the impetus from the levels-of-processing framework.
Roediger, Henry L; Gallo, David A; Geraci, Lisa
2002-01-01
Processing approaches to cognition have a long history, from act psychology to the present, but perhaps their greatest boost was given by the success and dominance of the levels-of-processing framework. We review the history of processing approaches, and explore the influence of the levels-of-processing approach, the procedural approach advocated by Paul Kolers, and the transfer-appropriate processing framework. Processing approaches emphasise the procedures of mind and the idea that memory storage can be usefully conceptualised as residing in the same neural units that originally processed information at the time of encoding. Processing approaches emphasise the unity and interrelatedness of cognitive processes and maintain that they can be dissected into separate faculties only by neglecting the richness of mental life. We end by pointing to future directions for processing approaches.
Global Sensitivity Analysis for Process Identification under Model Uncertainty
NASA Astrophysics Data System (ADS)
Ye, M.; Dai, H.; Walker, A. P.; Shi, L.; Yang, J.
2015-12-01
The environmental system consists of various physical, chemical, and biological processes, and environmental models are always built to simulate these processes and their interactions. For model building, improvement, and validation, it is necessary to identify important processes so that limited resources can be used to better characterize the processes. While global sensitivity analysis has been widely used to identify important processes, the process identification is always based on deterministic process conceptualization that uses a single model for representing a process. However, environmental systems are complex, and it happens often that a single process may be simulated by multiple alternative models. Ignoring the model uncertainty in process identification may lead to biased identification in that identified important processes may not be so in the real world. This study addresses this problem by developing a new method of global sensitivity analysis for process identification. The new method is based on the concept of Sobol sensitivity analysis and model averaging. Similar to the Sobol sensitivity analysis to identify important parameters, our new method evaluates variance change when a process is fixed at its different conceptualizations. The variance considers both parametric and model uncertainty using the method of model averaging. The method is demonstrated using a synthetic study of groundwater modeling that considers recharge process and parameterization process. Each process has two alternative models. Important processes of groundwater flow and transport are evaluated using our new method. The method is mathematically general, and can be applied to a wide range of environmental problems.
Dai, Heng; Ye, Ming; Walker, Anthony P.; ...
2017-03-28
A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Heng; Ye, Ming; Walker, Anthony P.
A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less
Social Network Supported Process Recommender System
Ye, Yanming; Yin, Jianwei; Xu, Yueshen
2014-01-01
Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced. PMID:24672309
A model for process representation and synthesis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1971-01-01
The problem of representing groups of loosely connected processes is investigated, and a model for process representation useful for synthesizing complex patterns of process behavior is developed. There are three parts, the first part isolates the concepts which form the basis for the process representation model by focusing on questions such as: What is a process; What is an event; Should one process be able to restrict the capabilities of another? The second part develops a model for process representation which captures the concepts and intuitions developed in the first part. The model presented is able to describe both the internal structure of individual processes and the interface structure between interacting processes. Much of the model's descriptive power derives from its use of the notion of process state as a vehicle for relating the internal and external aspects of process behavior. The third part demonstrates by example that the model for process representation is a useful one for synthesizing process behavior patterns. In it the model is used to define a variety of interesting process behavior patterns. The dissertation closes by suggesting how the model could be used as a semantic base for a very potent language extension facility.
Process and Post-Process: A Discursive History.
ERIC Educational Resources Information Center
Matsuda, Paul Kei
2003-01-01
Examines the history of process and post-process in composition studies, focusing on ways in which terms, such as "current-traditional rhetoric,""process," and "post-process" have contributed to the discursive construction of reality. Argues that use of the term post-process in the context of second language writing needs to be guided by a…
Improving operational anodising process performance using simulation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liong, Choong-Yeun, E-mail: lg@ukm.edu.my; Ghazali, Syarah Syahidah, E-mail: syarah@gapps.kptm.edu.my
The use of aluminium is very widespread, especially in transportation, electrical and electronics, architectural, automotive and engineering applications sectors. Therefore, the anodizing process is an important process for aluminium in order to make the aluminium durable, attractive and weather resistant. This research is focused on the anodizing process operations in manufacturing and supplying of aluminium extrusion. The data required for the development of the model is collected from the observations and interviews conducted in the study. To study the current system, the processes involved in the anodizing process are modeled by using Arena 14.5 simulation software. Those processes consist ofmore » five main processes, namely the degreasing process, the etching process, the desmut process, the anodizing process, the sealing process and 16 other processes. The results obtained were analyzed to identify the problems or bottlenecks that occurred and to propose improvement methods that can be implemented on the original model. Based on the comparisons that have been done between the improvement methods, the productivity could be increased by reallocating the workers and reducing loading time.« less
Feller processes: the next generation in modeling. Brownian motion, Lévy processes and beyond.
Böttcher, Björn
2010-12-03
We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.
Feller Processes: The Next Generation in Modeling. Brownian Motion, Lévy Processes and Beyond
Böttcher, Björn
2010-01-01
We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of Lévy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also Lévy processes, of which Brownian Motion is a special case, have become increasingly popular. Lévy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include Lévy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes. PMID:21151931
AIRSAR Automated Web-based Data Processing and Distribution System
NASA Technical Reports Server (NTRS)
Chu, Anhua; vanZyl, Jakob; Kim, Yunjin; Lou, Yunling; Imel, David; Tung, Wayne; Chapman, Bruce; Durden, Stephen
2005-01-01
In this paper, we present an integrated, end-to-end synthetic aperture radar (SAR) processing system that accepts data processing requests, submits processing jobs, performs quality analysis, delivers and archives processed data. This fully automated SAR processing system utilizes database and internet/intranet web technologies to allow external users to browse and submit data processing requests and receive processed data. It is a cost-effective way to manage a robust SAR processing and archival system. The integration of these functions has reduced operator errors and increased processor throughput dramatically.
Simplified process model discovery based on role-oriented genetic mining.
Zhao, Weidong; Liu, Xi; Dai, Weihui
2014-01-01
Process mining is automated acquisition of process models from event logs. Although many process mining techniques have been developed, most of them are based on control flow. Meanwhile, the existing role-oriented process mining methods focus on correctness and integrity of roles while ignoring role complexity of the process model, which directly impacts understandability and quality of the model. To address these problems, we propose a genetic programming approach to mine the simplified process model. Using a new metric of process complexity in terms of roles as the fitness function, we can find simpler process models. The new role complexity metric of process models is designed from role cohesion and coupling, and applied to discover roles in process models. Moreover, the higher fitness derived from role complexity metric also provides a guideline for redesigning process models. Finally, we conduct case study and experiments to show that the proposed method is more effective for streamlining the process by comparing with related studies.
Electrotechnologies to process foods
USDA-ARS?s Scientific Manuscript database
Electrical energy is being used to process foods. In conventional food processing plants, electricity drives mechanical devices and controls the degree of process. In recent years, several processing technologies are being developed to process foods directly with electricity. Electrotechnologies use...
Challenges associated with the implementation of the nursing process: A systematic review.
Zamanzadeh, Vahid; Valizadeh, Leila; Tabrizi, Faranak Jabbarzadeh; Behshid, Mojghan; Lotfi, Mojghan
2015-01-01
Nursing process is a scientific approach in the provision of qualified nursing cares. However, in practice, the implementation of this process is faced with numerous challenges. With the knowledge of the challenges associated with the implementation of the nursing process, the nursing processes can be developed appropriately. Due to the lack of comprehensive information on this subject, the current study was carried out to assess the key challenges associated with the implementation of the nursing process. To achieve and review related studies on this field, databases of Iran medix, SID, Magiran, PUBMED, Google scholar, and Proquest were assessed using the main keywords of nursing process and nursing process systematic review. The articles were retrieved in three steps including searching by keywords, review of the proceedings based on inclusion criteria, and final retrieval and assessment of available full texts. Systematic assessment of the articles showed different challenges in implementation of the nursing process. Intangible understanding of the concept of nursing process, different views of the process, lack of knowledge and awareness among nurses related to the execution of process, supports of managing systems, and problems related to recording the nursing process were the main challenges that were extracted from review of literature. On systematically reviewing the literature, intangible understanding of the concept of nursing process has been identified as the main challenge in nursing process. To achieve the best strategy to minimize the challenge, in addition to preparing facilitators for implementation of nursing process, intangible understanding of the concept of nursing process, different views of the process, and forming teams of experts in nursing education are recommended for internalizing the nursing process among nurses.
Challenges associated with the implementation of the nursing process: A systematic review
Zamanzadeh, Vahid; Valizadeh, Leila; Tabrizi, Faranak Jabbarzadeh; Behshid, Mojghan; Lotfi, Mojghan
2015-01-01
Background: Nursing process is a scientific approach in the provision of qualified nursing cares. However, in practice, the implementation of this process is faced with numerous challenges. With the knowledge of the challenges associated with the implementation of the nursing process, the nursing processes can be developed appropriately. Due to the lack of comprehensive information on this subject, the current study was carried out to assess the key challenges associated with the implementation of the nursing process. Materials and Methods: To achieve and review related studies on this field, databases of Iran medix, SID, Magiran, PUBMED, Google scholar, and Proquest were assessed using the main keywords of nursing process and nursing process systematic review. The articles were retrieved in three steps including searching by keywords, review of the proceedings based on inclusion criteria, and final retrieval and assessment of available full texts. Results: Systematic assessment of the articles showed different challenges in implementation of the nursing process. Intangible understanding of the concept of nursing process, different views of the process, lack of knowledge and awareness among nurses related to the execution of process, supports of managing systems, and problems related to recording the nursing process were the main challenges that were extracted from review of literature. Conclusions: On systematically reviewing the literature, intangible understanding of the concept of nursing process has been identified as the main challenge in nursing process. To achieve the best strategy to minimize the challenge, in addition to preparing facilitators for implementation of nursing process, intangible understanding of the concept of nursing process, different views of the process, and forming teams of experts in nursing education are recommended for internalizing the nursing process among nurses. PMID:26257793
Automated synthesis of image processing procedures using AI planning techniques
NASA Technical Reports Server (NTRS)
Chien, Steve; Mortensen, Helen
1994-01-01
This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.
NASA Astrophysics Data System (ADS)
Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal
2013-07-01
The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.
Laadan, Oren; Nieh, Jason; Phung, Dan
2012-10-02
Methods, media and systems for managing a distributed application running in a plurality of digital processing devices are provided. In some embodiments, a method includes running one or more processes associated with the distributed application in virtualized operating system environments on a plurality of digital processing devices, suspending the one or more processes, and saving network state information relating to network connections among the one or more processes. The method further include storing process information relating to the one or more processes, recreating the network connections using the saved network state information, and restarting the one or more processes using the stored process information.
NASA Astrophysics Data System (ADS)
Chi, Xu; Dongming, Guo; Zhuji, Jin; Renke, Kang
2010-12-01
A signal processing method for the friction-based endpoint detection system of a chemical mechanical polishing (CMP) process is presented. The signal process method uses the wavelet threshold denoising method to reduce the noise contained in the measured original signal, extracts the Kalman filter innovation from the denoised signal as the feature signal, and judges the CMP endpoint based on the feature of the Kalman filter innovation sequence during the CMP process. Applying the signal processing method, the endpoint detection experiments of the Cu CMP process were carried out. The results show that the signal processing method can judge the endpoint of the Cu CMP process.
Cheng, Xue Jun; McCarthy, Callum J; Wang, Tony S L; Palmeri, Thomas J; Little, Daniel R
2018-06-01
Upright faces are thought to be processed more holistically than inverted faces. In the widely used composite face paradigm, holistic processing is inferred from interference in recognition performance from a to-be-ignored face half for upright and aligned faces compared with inverted or misaligned faces. We sought to characterize the nature of holistic processing in composite faces in computational terms. We use logical-rule models (Fifić, Little, & Nosofsky, 2010) and Systems Factorial Technology (Townsend & Nozawa, 1995) to examine whether composite faces are processed through pooling top and bottom face halves into a single processing channel-coactive processing-which is one common mechanistic definition of holistic processing. By specifically operationalizing holistic processing as the pooling of features into a single decision process in our task, we are able to distinguish it from other processing models that may underlie composite face processing. For instance, a failure of selective attention might result even when top and bottom components of composite faces are processed in serial or in parallel without processing the entire face coactively. Our results show that performance is best explained by a mixture of serial and parallel processing architectures across all 4 upright and inverted, aligned and misaligned face conditions. The results indicate multichannel, featural processing of composite faces in a manner inconsistent with the notion of coactivity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Fuzzy image processing in sun sensor
NASA Technical Reports Server (NTRS)
Mobasser, S.; Liebe, C. C.; Howard, A.
2003-01-01
This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.
DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES
The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...
Reversing the conventional leather processing sequence for cleaner leather production.
Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari
2006-02-01
Conventional leather processing generally involves a combination of single and multistep processes that employs as well as expels various biological, inorganic, and organic materials. It involves nearly 14-15 steps and discharges a huge amount of pollutants. This is primarily due to the fact that conventional leather processing employs a "do-undo" process logic. In this study, the conventional leather processing steps have been reversed to overcome the problems associated with the conventional method. The charges of the skin matrix and of the chemicals and pH profiles of the process have been judiciously used for reversing the process steps. This reversed process eventually avoids several acidification and basification/neutralization steps used in conventional leather processing. The developed process has been validated through various analyses such as chromium content, shrinkage temperature, softness measurements, scanning electron microscopy, and physical testing of the leathers. Further, the performance of the leathers is shown to be on par with conventionally processed leathers through bulk property evaluation. The process enjoys a significant reduction in COD and TS by 53 and 79%, respectively. Water consumption and discharge is reduced by 65 and 64%, respectively. Also, the process benefits from significant reduction in chemicals, time, power, and cost compared to the conventional process.
NASA Astrophysics Data System (ADS)
Schellenberger, Lauren Brownback
Group processing is a key principle of cooperative learning in which small groups discuss their strengths and weaknesses and set group goals or norms. However, group processing has not been well-studied at the post-secondary level or from a qualitative or mixed methods perspective. This mixed methods study uses a phenomenological framework to examine the experience of group processing for students in an undergraduate biology course for preservice teachers. The effect of group processing on students' attitudes toward future group work and group processing is also examined. Additionally, this research investigated preservice teachers' plans for incorporating group processing into future lessons. Students primarily experienced group processing as a time to reflect on past performance. Also, students experienced group processing as a time to increase communication among group members and become motivated for future group assignments. Three factors directly influenced students' experiences with group processing: (1) previous experience with group work, (2) instructor interaction, and (3) gender. Survey data indicated that group processing had a slight positive effect on students' attitudes toward future group work and group processing. Participants who were interviewed felt that group processing was an important part of group work and that it had increased their group's effectiveness as well as their ability to work effectively with other people. Participants held positive views on group work prior to engaging in group processing, and group processing did not alter their atittude toward group work. Preservice teachers who were interviewed planned to use group work and a modified group processing protocol in their future classrooms. They also felt that group processing had prepared them for their future professions by modeling effective collaboration and group skills. Based on this research, a new model for group processing has been created which includes extensive instructor interaction and additional group processing sessions. This study offers a new perspective on the phenomenon of group processing and informs science educators and teacher educators on the effective implementation of this important component of small-group learning.
Properties of the Bivariate Delayed Poisson Process
1974-07-01
and Lewis (1972) in their Berkeley Symposium paper and here their analysis of the bivariate Poisson processes (without Poisson noise) is carried... Poisson processes . They cannot, however, be independent Poisson processes because their events are associated in pairs by the displace- ment centres...process because its marginal processes for events of each type are themselves (univariate) Poisson processes . Cox and Lewis (1972) assumed a
The Application of Six Sigma Methodologies to University Processes: The Use of Student Teams
ERIC Educational Resources Information Center
Pryor, Mildred Golden; Alexander, Christine; Taneja, Sonia; Tirumalasetty, Sowmya; Chadalavada, Deepthi
2012-01-01
The first student Six Sigma team (activated under a QEP Process Sub-team) evaluated the course and curriculum approval process. The goal was to streamline the process and thereby shorten process cycle time and reduce confusion about how the process works. Members of this team developed flowcharts on how the process is supposed to work (by…
Impact of Radio Frequency Identification (RFID) on the Marine Corps’ Supply Process
2006-09-01
Hypothetical Improvement Using a Real-Time Order Processing System Vice a Batch Order Processing System ................56 3. As-Is: The Current... Processing System Vice a Batch Order Processing System ................58 V. RESULTS ................................................69 A. SIMULATION...Time: Hypothetical Improvement Using a Real-Time Order Processing System Vice a Batch Order Processing System ................71 3. As-Is: The
Pletzer, Belinda; Scheuringer, Andrea; Scherndl, Thomas
2017-09-05
Sex differences have been reported for a variety of cognitive tasks and related to the use of different cognitive processing styles in men and women. It was recently argued that these processing styles share some characteristics across tasks, i.e. male approaches are oriented towards holistic stimulus aspects and female approaches are oriented towards stimulus details. In that respect, sex-dependent cognitive processing styles share similarities with attentional global-local processing. A direct relationship between cognitive processing and global-local processing has however not been previously established. In the present study, 49 men and 44 women completed a Navon paradigm and a Kimchi Palmer task as well as a navigation task and a verbal fluency task with the goal to relate the global advantage (GA) effect as a measure of global processing to holistic processing styles in both tasks. Indeed participants with larger GA effects displayed more holistic processing during spatial navigation and phonemic fluency. However, the relationship to cognitive processing styles was modulated by the specific condition of the Navon paradigm, as well as the sex of participants. Thus, different types of global-local processing play different roles for cognitive processing in men and women.
21 CFR 113.83 - Establishing scheduled processes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... competent processing authorities. If incubation tests are necessary for process confirmation, they shall... instituting the process. The incubation tests for confirmation of the scheduled processes should include the.... Complete records covering all aspects of the establishment of the process and associated incubation tests...
21 CFR 113.83 - Establishing scheduled processes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... competent processing authorities. If incubation tests are necessary for process confirmation, they shall... instituting the process. The incubation tests for confirmation of the scheduled processes should include the.... Complete records covering all aspects of the establishment of the process and associated incubation tests...
21 CFR 113.83 - Establishing scheduled processes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... competent processing authorities. If incubation tests are necessary for process confirmation, they shall... instituting the process. The incubation tests for confirmation of the scheduled processes should include the.... Complete records covering all aspects of the establishment of the process and associated incubation tests...
A mathematical study of a random process proposed as an atmospheric turbulence model
NASA Technical Reports Server (NTRS)
Sidwell, K.
1977-01-01
A random process is formed by the product of a local Gaussian process and a random amplitude process, and the sum of that product with an independent mean value process. The mathematical properties of the resulting process are developed, including the first and second order properties and the characteristic function of general order. An approximate method for the analysis of the response of linear dynamic systems to the process is developed. The transition properties of the process are also examined.
Standard services for the capture, processing, and distribution of packetized telemetry data
NASA Technical Reports Server (NTRS)
Stallings, William H.
1989-01-01
Standard functional services for the capture, processing, and distribution of packetized data are discussed with particular reference to the future implementation of packet processing systems, such as those for the Space Station Freedom. The major functions are listed under the following major categories: input processing, packet processing, and output processing. A functional block diagram of a packet data processing facility is presented, showing the distribution of the various processing functions as well as the primary data flow through the facility.
Yoo, Sooyoung; Cho, Minsu; Kim, Eunhye; Kim, Seok; Sim, Yerim; Yoo, Donghyun; Hwang, Hee; Song, Minseok
2016-04-01
Many hospitals are increasing their efforts to improve processes because processes play an important role in enhancing work efficiency and reducing costs. However, to date, a quantitative tool has not been available to examine the before and after effects of processes and environmental changes, other than the use of indirect indicators, such as mortality rate and readmission rate. This study used process mining technology to analyze process changes based on changes in the hospital environment, such as the construction of a new building, and to measure the effects of environmental changes in terms of consultation wait time, time spent per task, and outpatient care processes. Using process mining technology, electronic health record (EHR) log data of outpatient care before and after constructing a new building were analyzed, and the effectiveness of the technology in terms of the process was evaluated. Using the process mining technique, we found that the total time spent in outpatient care did not increase significantly compared to that before the construction of a new building, considering that the number of outpatients increased, and the consultation wait time decreased. These results suggest that the operation of the outpatient clinic was effective after changes were implemented in the hospital environment. We further identified improvements in processes using the process mining technique, thereby demonstrating the usefulness of this technique for analyzing complex hospital processes at a low cost. This study confirmed the effectiveness of process mining technology at an actual hospital site. In future studies, the use of process mining technology will be expanded by applying this approach to a larger variety of process change situations. Copyright © 2016. Published by Elsevier Ireland Ltd.
Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Miller, L.
1974-01-01
A two year study of the major process variables associated with the manufacturing process for sealed, nickel-cadmium, areospace cells is summarized. Effort was directed toward identifying the major process variables associated with a manufacturing process, experimentally assessing each variable's effect, and imposing the necessary changes (optimization) and controls for the critical process variables to improve results and uniformity. A critical process variable associated with the sintered nickel plaque manufacturing process was identified as the manual forming operation. Critical process variables identified with the positive electrode impregnation/polarization process were impregnation solution temperature, free acid content, vacuum impregnation, and sintered plaque strength. Positive and negative electrodes were identified as a major source of carbonate contamination in sealed cells.
Monitoring autocorrelated process: A geometric Brownian motion process approach
NASA Astrophysics Data System (ADS)
Li, Lee Siaw; Djauhari, Maman A.
2013-09-01
Autocorrelated process control is common in today's modern industrial process control practice. The current practice of autocorrelated process control is to eliminate the autocorrelation by using an appropriate model such as Box-Jenkins models or other models and then to conduct process control operation based on the residuals. In this paper we show that many time series are governed by a geometric Brownian motion (GBM) process. Therefore, in this case, by using the properties of a GBM process, we only need an appropriate transformation and model the transformed data to come up with the condition needs in traditional process control. An industrial example of cocoa powder production process in a Malaysian company will be presented and discussed to illustrate the advantages of the GBM approach.
Meta-control of combustion performance with a data mining approach
NASA Astrophysics Data System (ADS)
Song, Zhe
Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.
5 CFR 1653.13 - Processing legal processes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Processing legal processes. 1653.13 Section 1653.13 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD COURT ORDERS AND LEGAL PROCESSES AFFECTING THRIFT SAVINGS PLAN ACCOUNTS Legal Process for the Enforcement of a Participant's Legal...
5 CFR 1653.13 - Processing legal processes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Processing legal processes. 1653.13 Section 1653.13 Administrative Personnel FEDERAL RETIREMENT THRIFT INVESTMENT BOARD COURT ORDERS AND LEGAL PROCESSES AFFECTING THRIFT SAVINGS PLAN ACCOUNTS Legal Process for the Enforcement of a Participant's Legal...
A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji
Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.
O'Callaghan, Sean; De Souza, David P; Isaac, Andrew; Wang, Qiao; Hodkinson, Luke; Olshansky, Moshe; Erwin, Tim; Appelbe, Bill; Tull, Dedreia L; Roessner, Ute; Bacic, Antony; McConville, Malcolm J; Likić, Vladimir A
2012-05-30
Gas chromatography-mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface.
Wong, Quincy J J; Moulds, Michelle L
2012-12-01
Evidence from the depression literature suggests that an analytical processing mode adopted during repetitive thinking leads to maladaptive outcomes relative to an experiential processing mode. To date, in socially anxious individuals, the impact of processing mode during repetitive thinking related to an actual social-evaluative situation has not been investigated. We thus tested whether an analytical processing mode would be maladaptive relative to an experiential processing mode during anticipatory processing and post-event rumination. High and low socially anxious participants were induced to engage in either an analytical or experiential processing mode during: (a) anticipatory processing before performing a speech (Experiment 1; N = 94), or (b) post-event rumination after performing a speech (Experiment 2; N = 74). Mood, cognition, and behavioural measures were employed to examine the effects of processing mode. For high socially anxious participants, the modes had a similar effect on self-reported anxiety during both anticipatory processing and post-event rumination. Unexpectedly, relative to the analytical mode, the experiential mode led to stronger high standard and conditional beliefs during anticipatory processing, and stronger unconditional beliefs during post-event rumination. These experiments are the first to investigate processing mode during anticipatory processing and post-event rumination. Hence, these results are novel and will need to be replicated. These findings suggest that an experiential processing mode is maladaptive relative to an analytical processing mode during repetitive thinking characteristic of socially anxious individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mertens, Wilson C; Christov, Stefan C; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Cassells, Lucinda J; Marquard, Jenna L
2012-11-01
Chemotherapy ordering and administration, in which errors have potentially severe consequences, was quantitatively and qualitatively evaluated by employing process formalism (or formal process definition), a technique derived from software engineering, to elicit and rigorously describe the process, after which validation techniques were applied to confirm the accuracy of the described process. The chemotherapy ordering and administration process, including exceptional situations and individuals' recognition of and responses to those situations, was elicited through informal, unstructured interviews with members of an interdisciplinary team. The process description (or process definition), written in a notation developed for software quality assessment purposes, guided process validation (which consisted of direct observations and semistructured interviews to confirm the elicited details for the treatment plan portion of the process). The overall process definition yielded 467 steps; 207 steps (44%) were dedicated to handling 59 exceptional situations. Validation yielded 82 unique process events (35 new expected but not yet described steps, 16 new exceptional situations, and 31 new steps in response to exceptional situations). Process participants actively altered the process as ambiguities and conflicts were discovered by the elicitation and validation components of the study. Chemotherapy error rates declined significantly during and after the project, which was conducted from October 2007 through August 2008. Each elicitation method and the subsequent validation discussions contributed uniquely to understanding the chemotherapy treatment plan review process, supporting rapid adoption of changes, improved communication regarding the process, and ensuing error reduction.
Modeling interdependencies between business and communication processes in hospitals.
Brigl, Birgit; Wendt, Thomas; Winter, Alfred
2003-01-01
The optimization and redesign of business processes in hospitals is an important challenge for the hospital information management who has to design and implement a suitable HIS architecture. Nevertheless, there are no tools available specializing in modeling information-driven business processes and the consequences on the communication between information processing, tools. Therefore, we will present an approach which facilitates the representation and analysis of business processes and resulting communication processes between application components and their interdependencies. This approach aims not only to visualize those processes, but to also to evaluate if there are weaknesses concerning the information processing infrastructure which hinder the smooth implementation of the business processes.
Ott, Denise; Kralisch, Dana; Denčić, Ivana; Hessel, Volker; Laribi, Yosra; Perrichon, Philippe D; Berguerand, Charline; Kiwi-Minsker, Lioubov; Loeb, Patrick
2014-12-01
As the demand for new drugs is rising, the pharmaceutical industry faces the quest of shortening development time, and thus, reducing the time to market. Environmental aspects typically still play a minor role within the early phase of process development. Nevertheless, it is highly promising to rethink, redesign, and optimize process strategies as early as possible in active pharmaceutical ingredient (API) process development, rather than later at the stage of already established processes. The study presented herein deals with a holistic life-cycle-based process optimization and intensification of a pharmaceutical production process targeting a low-volume, high-value API. Striving for process intensification by transfer from batch to continuous processing, as well as an alternative catalytic system, different process options are evaluated with regard to their environmental impact to identify bottlenecks and improvement potentials for further process development activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SOI-CMOS Process for Monolithic, Radiation-Tolerant, Science-Grade Imagers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, George; Lee, Adam
In Phase I, Voxtel worked with Jazz and Sandia to document and simulate the processes necessary to implement a DH-BSI SOI CMOS imaging process. The development is based upon mature SOI CMOS process at both fabs, with the addition of only a few custom processing steps for integration and electrical interconnection of the fully-depleted photodetectors. In Phase I, Voxtel also characterized the Sandia process, including the CMOS7 design rules, and we developed the outline of a process option that included a “BOX etch”, that will permit a “detector in handle” SOI CMOS process to be developed The process flows weremore » developed in cooperation with both Jazz and Sandia process engineers, along with detailed TCAD modeling and testing of the photodiode array architectures. In addition, Voxtel tested the radiation performance of the Jazz’s CA18HJ process, using standard and circular-enclosed transistors.« less
Face to face with emotion: holistic face processing is modulated by emotional state.
Curby, Kim M; Johnson, Kareem J; Tyson, Alyssa
2012-01-01
Negative emotions are linked with a local, rather than global, visual processing style, which may preferentially facilitate feature-based, relative to holistic, processing mechanisms. Because faces are typically processed holistically, and because social contexts are prime elicitors of emotions, we examined whether negative emotions decrease holistic processing of faces. We induced positive, negative, or neutral emotions via film clips and measured holistic processing before and after the induction: participants made judgements about cued parts of chimeric faces, and holistic processing was indexed by the interference caused by task-irrelevant face parts. Emotional state significantly modulated face-processing style, with the negative emotion induction leading to decreased holistic processing. Furthermore, self-reported change in emotional state correlated with changes in holistic processing. These results contrast with general assumptions that holistic processing of faces is automatic and immune to outside influences, and they illustrate emotion's power to modulate socially relevant aspects of visual perception.
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2013 CFR
2013-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2012 CFR
2012-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
5 CFR 581.203 - Information minimally required to accompany legal process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... accompany legal process. 581.203 Section 581.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT... Process § 581.203 Information minimally required to accompany legal process. (a) Sufficient identifying information must accompany the legal process in order to enable processing by the governmental entity named...
20 CFR 405.725 - Effect of expedited appeals process agreement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... PROCESS FOR ADJUDICATING INITIAL DISABILITY CLAIMS Expedited Appeals Process for Constitutional Issues § 405.725 Effect of expedited appeals process agreement. After an expedited appeals process agreement is... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Effect of expedited appeals process agreement...
Common and distinct networks for self-referential and social stimulus processing in the human brain.
Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix
2016-09-01
Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.
Kumarapeli, P; De Lusignan, S; Ellis, T; Jones, B
2007-03-01
The Primary Care Data Quality programme (PCDQ) is a quality-improvement programme which processes routinely collected general practice computer data. Patient data collected from a wide range of different brands of clinical computer systems are aggregated, processed, and fed back to practices in an educational context to improve the quality of care. Process modelling is a well-established approach used to gain understanding and systematic appraisal, and identify areas of improvement of a business process. Unified modelling language (UML) is a general purpose modelling technique used for this purpose. We used UML to appraise the PCDQ process to see if the efficiency and predictability of the process could be improved. Activity analysis and thinking-aloud sessions were used to collect data to generate UML diagrams. The UML model highlighted the sequential nature of the current process as a barrier for efficiency gains. It also identified the uneven distribution of process controls, lack of symmetric communication channels, critical dependencies among processing stages, and failure to implement all the lessons learned in the piloting phase. It also suggested that improved structured reporting at each stage - especially from the pilot phase, parallel processing of data and correctly positioned process controls - should improve the efficiency and predictability of research projects. Process modelling provided a rational basis for the critical appraisal of a clinical data processing system; its potential maybe underutilized within health care.
Use of Analogies in the Study of Diffusion
ERIC Educational Resources Information Center
Letic, Milorad
2014-01-01
Emergent processes, such as diffusion, are considered more difficult to understand than direct processes. In physiology, most processes are presented as direct processes, so emergent processes, when encountered, are even more difficult to understand. It has been suggested that, when studying diffusion, misconceptions about random processes are the…
Is Analytic Information Processing a Feature of Expertise in Medicine?
ERIC Educational Resources Information Center
McLaughlin, Kevin; Rikers, Remy M.; Schmidt, Henk G.
2008-01-01
Diagnosing begins by generating an initial diagnostic hypothesis by automatic information processing. Information processing may stop here if the hypothesis is accepted, or analytical processing may be used to refine the hypothesis. This description portrays analytic processing as an optional extra in information processing, leading us to…
5 CFR 582.305 - Honoring legal process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Honoring legal process. 582.305 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Compliance With Legal Process § 582.305 Honoring legal process. (a) The agency shall comply with legal process, except where the process cannot be complied with because: (1) It...
5 CFR 582.305 - Honoring legal process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Honoring legal process. 582.305 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Compliance With Legal Process § 582.305 Honoring legal process. (a) The agency shall comply with legal process, except where the process cannot be complied with because: (1) It...
5 CFR 581.305 - Honoring legal process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Honoring legal process. 581.305 Section... GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Compliance With Process § 581.305 Honoring legal process. (a) The governmental entity shall comply with legal process, except where the process cannot be...
5 CFR 581.305 - Honoring legal process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Honoring legal process. 581.305 Section... GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Compliance With Process § 581.305 Honoring legal process. (a) The governmental entity shall comply with legal process, except where the process cannot be...
5 CFR 582.305 - Honoring legal process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Honoring legal process. 582.305 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Compliance With Legal Process § 582.305 Honoring legal process. (a) The agency shall comply with legal process, except where the process cannot be complied with because: (1) It...
5 CFR 581.305 - Honoring legal process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Honoring legal process. 581.305 Section... GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Compliance With Process § 581.305 Honoring legal process. (a) The governmental entity shall comply with legal process, except where the process cannot be...
Articulating the Resources for Business Process Analysis and Design
ERIC Educational Resources Information Center
Jin, Yulong
2012-01-01
Effective process analysis and modeling are important phases of the business process management lifecycle. When many activities and multiple resources are involved, it is very difficult to build a correct business process specification. This dissertation provides a resource perspective of business processes. It aims at a better process analysis…
An Integrated Model of Emotion Processes and Cognition in Social Information Processing.
ERIC Educational Resources Information Center
Lemerise, Elizabeth A.; Arsenio, William F.
2000-01-01
Interprets literature on contributions of social cognitive and emotion processes to children's social competence in the context of an integrated model of emotion processes and cognition in social information processing. Provides neurophysiological and functional evidence for the centrality of emotion processes in personal-social decision making.…
2010-04-01
NRL Stennis Space Center (NRL-SSC) for further processing using the NRL SSC Automated Processing System (APS). APS was developed for processing...have not previously developed automated processing for 73 hyperspectral ocean color data. The hyperspectral processing branch includes several
DISCRETE COMPOUND POISSON PROCESSES AND TABLES OF THE GEOMETRIC POISSON DISTRIBUTION.
A concise summary of the salient properties of discrete Poisson processes , with emphasis on comparing the geometric and logarithmic Poisson processes . The...the geometric Poisson process are given for 176 sets of parameter values. New discrete compound Poisson processes are also introduced. These...processes have properties that are particularly relevant when the summation of several different Poisson processes is to be analyzed. This study provides the
Management of processes of electrochemical dimensional processing
NASA Astrophysics Data System (ADS)
Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.
2017-09-01
In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.
The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and Data Processing Overview
2010-01-20
backscattering coefficients, and others. Several of these software modules will be developed within the Automated Processing System (APS), a data... Automated Processing System (APS) NRL developed APS, which processes satellite data into ocean color data products. APS is a collection of methods...used for ocean color processing which provide the tools for the automated processing of satellite imagery [1]. These tools are in the process of
[Study on culture and philosophy of processing of traditional Chinese medicines].
Yang, Ming; Zhang, Ding-Kun; Zhong, Ling-Yun; Wang, Fang
2013-07-01
According to cultural views and philosophical thoughts, this paper studies the cultural origin, thinking modes, core principles, general regulation and methods of processing, backtracks processing's culture and history which contains generation and deduction process, experienced and promoting process, and core value, summarizes processing's basic principles which are directed by holistic, objective, dynamic, balanced and appropriate thoughts; so as to propagate cultural characteristic and philosophical wisdom of traditional Chinese medicine processing, to promote inheritance and development of processing and to ensure the maximum therapeutic value of Chinese medical clinical.
Containerless automated processing of intermetallic compounds and composites
NASA Technical Reports Server (NTRS)
Johnson, D. R.; Joslin, S. M.; Reviere, R. D.; Oliver, B. F.; Noebe, R. D.
1993-01-01
An automated containerless processing system has been developed to directionally solidify high temperature materials, intermetallic compounds, and intermetallic/metallic composites. The system incorporates a wide range of ultra-high purity chemical processing conditions. The utilization of image processing for automated control negates the need for temperature measurements for process control. The list of recent systems that have been processed includes Cr, Mo, Mn, Nb, Ni, Ti, V, and Zr containing aluminides. Possible uses of the system, process control approaches, and properties and structures of recently processed intermetallics are reviewed.
A continuous process for the development of Kodak Aerochrome Infrared Film 2443 as a negative
NASA Astrophysics Data System (ADS)
Klimes, D.; Ross, D. I.
1993-02-01
A process for the continuous dry-to-dry development of Kodak Aerochrome Infrared Film 2443 as a negative (CIR-neg) is described. The process is well suited for production processing of long film lengths. Chemicals from three commercial film processes are used with modifications. Sensitometric procedures are recommended for the monitoring of processing quality control. Sensitometric data and operational aerial exposures indicate that films developed in this process have approximately the same effective aerial film speed as films processed in the reversal process recommended by the manufacturer (Kodak EA-5). The CIR-neg process is useful when aerial photography is acquired for resources management applications which require print reproductions. Originals can be readily reproduced using conventional production equipment (electronic dodging) in black and white or color (color compensation).
Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.
Understanding scaling through history-dependent processes with collapsing sample space.
Corominas-Murtra, Bernat; Hanel, Rudolf; Thurner, Stefan
2015-04-28
History-dependent processes are ubiquitous in natural and social systems. Many such stochastic processes, especially those that are associated with complex systems, become more constrained as they unfold, meaning that their sample space, or their set of possible outcomes, reduces as they age. We demonstrate that these sample-space-reducing (SSR) processes necessarily lead to Zipf's law in the rank distributions of their outcomes. We show that by adding noise to SSR processes the corresponding rank distributions remain exact power laws, p(x) ~ x(-λ), where the exponent directly corresponds to the mixing ratio of the SSR process and noise. This allows us to give a precise meaning to the scaling exponent in terms of the degree to which a given process reduces its sample space as it unfolds. Noisy SSR processes further allow us to explain a wide range of scaling exponents in frequency distributions ranging from α = 2 to ∞. We discuss several applications showing how SSR processes can be used to understand Zipf's law in word frequencies, and how they are related to diffusion processes in directed networks, or aging processes such as in fragmentation processes. SSR processes provide a new alternative to understand the origin of scaling in complex systems without the recourse to multiplicative, preferential, or self-organized critical processes.
NASA Astrophysics Data System (ADS)
Bian, X. X.; Gu, Y. Z.; Sun, J.; Li, M.; Liu, W. P.; Zhang, Z. G.
2013-10-01
In this study, the effects of processing temperature and vacuum applying rate on the forming quality of C-shaped carbon fiber reinforced epoxy resin matrix composite laminates during hot diaphragm forming process were investigated. C-shaped prepreg preforms were produced using a home-made hot diaphragm forming equipment. The thickness variations of the preforms and the manufacturing defects after diaphragm forming process, including fiber wrinkling and voids, were evaluated to understand the forming mechanism. Furthermore, both interlaminar slipping friction and compaction behavior of the prepreg stacks were experimentally analyzed for showing the importance of the processing parameters. In addition, autoclave processing was used to cure the C-shaped preforms to investigate the changes of the defects before and after cure process. The results show that the C-shaped prepreg preforms with good forming quality can be achieved through increasing processing temperature and reducing vacuum applying rate, which obviously promote prepreg interlaminar slipping process. The process temperature and forming rate in hot diaphragm forming process strongly influence prepreg interply frictional force, and the maximum interlaminar frictional force can be taken as a key parameter for processing parameter optimization. Autoclave process is effective in eliminating voids in the preforms and can alleviate fiber wrinkles to a certain extent.
Assessment of Advanced Coal Gasification Processes
NASA Technical Reports Server (NTRS)
McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John
1981-01-01
This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.
Integrated Process Modeling-A Process Validation Life Cycle Companion.
Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph
2017-10-17
During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.
Hughes, Brianna H; Greenberg, Neil J; Yang, Tom C; Skonberg, Denise I
2015-01-01
High-pressure processing (HPP) is used to increase meat safety and shelf-life, with conflicting quality effects depending on rigor status during HPP. In the seafood industry, HPP is used to shuck and pasteurize oysters, but its use on abalones has only been minimally evaluated and the effect of rigor status during HPP on abalone quality has not been reported. Farm-raised abalones (Haliotis rufescens) were divided into 12 HPP treatments and 1 unprocessed control treatment. Treatments were processed pre-rigor or post-rigor at 2 pressures (100 and 300 MPa) and 3 processing times (1, 3, and 5 min). The control was analyzed post-rigor. Uniform plugs were cut from adductor and foot meat for texture profile analysis, shear force, and color analysis. Subsamples were used for scanning electron microscopy of muscle ultrastructure. Texture profile analysis revealed that post-rigor processed abalone was significantly (P < 0.05) less firm and chewy than pre-rigor processed irrespective of muscle type, processing time, or pressure. L values increased with pressure to 68.9 at 300 MPa for pre-rigor processed foot, 73.8 for post-rigor processed foot, 90.9 for pre-rigor processed adductor, and 89.0 for post-rigor processed adductor. Scanning electron microscopy images showed fraying of collagen fibers in processed adductor, but did not show pressure-induced compaction of the foot myofibrils. Post-rigor processed abalone meat was more tender than pre-rigor processed meat, and post-rigor processed foot meat was lighter in color than pre-rigor processed foot meat, suggesting that waiting for rigor to resolve prior to processing abalones may improve consumer perceptions of quality and market value. © 2014 Institute of Food Technologists®
PROCESSING ALTERNATIVES FOR DESTRUCTION OF TETRAPHENYLBORATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D; Thomas Peters, T; Samuel Fink, S
Two processes were chosen in the 1980's at the Savannah River Site (SRS) to decontaminate the soluble High Level Waste (HLW). The In Tank Precipitation (ITP) process (1,2) was developed at SRS for the removal of radioactive cesium and actinides from the soluble HLW. Sodium tetraphenylborate was added to the waste to precipitate cesium and monosodium titanate (MST) was added to adsorb actinides, primarily uranium and plutonium. Two products of this process were a low activity waste stream and a concentrated organic stream containing cesium tetraphenylborate and actinides adsorbed on monosodium titanate (MST). A copper catalyzed acid hydrolysis process wasmore » built to process (3, 4) the Tank 48H cesium tetraphenylborate waste in the SRS's Defense Waste Processing Facility (DWPF). Operation of the DWPF would have resulted in the production of benzene for incineration in SRS's Consolidated Incineration Facility. This process was abandoned together with the ITP process in 1998 due to high benzene in ITP caused by decomposition of excess sodium tetraphenylborate. Processing in ITP resulted in the production of approximately 1.0 million liters of HLW. SRS has chosen a solvent extraction process combined with adsorption of the actinides to decontaminate the soluble HLW stream (5). However, the waste in Tank 48H is incompatible with existing waste processing facilities. As a result, a processing facility is needed to disposition the HLW in Tank 48H. This paper will describe the process for searching for processing options by SRS task teams for the disposition of the waste in Tank 48H. In addition, attempts to develop a caustic hydrolysis process for in tank destruction of tetraphenylborate will be presented. Lastly, the development of both a caustic and acidic copper catalyzed peroxide oxidation process will be discussed.« less
NASA Astrophysics Data System (ADS)
Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.
2018-03-01
Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.
A System-Oriented Approach for the Optimal Control of Process Chains under Stochastic Influences
NASA Astrophysics Data System (ADS)
Senn, Melanie; Schäfer, Julian; Pollak, Jürgen; Link, Norbert
2011-09-01
Process chains in manufacturing consist of multiple connected processes in terms of dynamic systems. The properties of a product passing through such a process chain are influenced by the transformation of each single process. There exist various methods for the control of individual processes, such as classical state controllers from cybernetics or function mapping approaches realized by statistical learning. These controllers ensure that a desired state is obtained at process end despite of variations in the input and disturbances. The interactions between the single processes are thereby neglected, but play an important role in the optimization of the entire process chain. We divide the overall optimization into two phases: (1) the solution of the optimization problem by Dynamic Programming to find the optimal control variable values for each process for any encountered end state of its predecessor and (2) the application of the optimal control variables at runtime for the detected initial process state. The optimization problem is solved by selecting adequate control variables for each process in the chain backwards based on predefined quality requirements for the final product. For the demonstration of the proposed concept, we have chosen a process chain from sheet metal manufacturing with simplified transformation functions.
Quantitative analysis of geomorphic processes using satellite image data at different scales
NASA Technical Reports Server (NTRS)
Williams, R. S., Jr.
1985-01-01
When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.
Remote Sensing Image Quality Assessment Experiment with Post-Processing
NASA Astrophysics Data System (ADS)
Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.
2018-04-01
This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.
NASA Astrophysics Data System (ADS)
Gatti, J. R.; Bhattacharjee, P. P.
2014-12-01
Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.
Process Materialization Using Templates and Rules to Design Flexible Process Models
NASA Astrophysics Data System (ADS)
Kumar, Akhil; Yao, Wen
The main idea in this paper is to show how flexible processes can be designed by combining generic process templates and business rules. We instantiate a process by applying rules to specific case data, and running a materialization algorithm. The customized process instance is then executed in an existing workflow engine. We present an architecture and also give an algorithm for process materialization. The rules are written in a logic-based language like Prolog. Our focus is on capturing deeper process knowledge and achieving a holistic approach to robust process design that encompasses control flow, resources and data, as well as makes it easier to accommodate changes to business policy.
HMI conventions for process control graphics.
Pikaar, Ruud N
2012-01-01
Process operators supervise and control complex processes. To enable the operator to do an adequate job, instrumentation and process control engineers need to address several related topics, such as console design, information design, navigation, and alarm management. In process control upgrade projects, usually a 1:1 conversion of existing graphics is proposed. This paper suggests another approach, efficiently leading to a reduced number of new powerful process graphics, supported by a permanent process overview displays. In addition a road map for structuring content (process information) and conventions for the presentation of objects, symbols, and so on, has been developed. The impact of the human factors engineering approach on process control upgrade projects is illustrated by several cases.
A novel processed food classification system applied to Australian food composition databases.
O'Halloran, S A; Lacy, K E; Grimes, C A; Woods, J; Campbell, K J; Nowson, C A
2017-08-01
The extent of food processing can affect the nutritional quality of foodstuffs. Categorising foods by the level of processing emphasises the differences in nutritional quality between foods within the same food group and is likely useful for determining dietary processed food consumption. The present study aimed to categorise foods within Australian food composition databases according to the level of food processing using a processed food classification system, as well as assess the variation in the levels of processing within food groups. A processed foods classification system was applied to food and beverage items contained within Australian Food and Nutrient (AUSNUT) 2007 (n = 3874) and AUSNUT 2011-13 (n = 5740). The proportion of Minimally Processed (MP), Processed Culinary Ingredients (PCI) Processed (P) and Ultra Processed (ULP) by AUSNUT food group and the overall proportion of the four processed food categories across AUSNUT 2007 and AUSNUT 2011-13 were calculated. Across the food composition databases, the overall proportions of foods classified as MP, PCI, P and ULP were 27%, 3%, 26% and 44% for AUSNUT 2007 and 38%, 2%, 24% and 36% for AUSNUT 2011-13. Although there was wide variation in the classifications of food processing within the food groups, approximately one-third of foodstuffs were classified as ULP food items across both the 2007 and 2011-13 AUSNUT databases. This Australian processed food classification system will allow researchers to easily quantify the contribution of processed foods within the Australian food supply to assist in assessing the nutritional quality of the dietary intake of population groups. © 2017 The British Dietetic Association Ltd.
Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E
2012-12-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.
Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.
2015-01-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402
Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L
2015-03-01
We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
1990-09-01
6 Logistics Systems ............ 7 GOCESS Operation . . . . . . . ..... 9 Work Order Processing . . . . ... 12 Job Order Processing . . . . . . . . . . 14...orders and job orders to the Material Control Section will be discussed separately. Work Order Processing . Figure 2 illustrates typical WO processing...logistics function. The JO processing is similar. Job Order Processing . Figure 3 illustrates typical JO processing in a GOCESS operation. As with WOs, this
Adaptive-optics optical coherence tomography processing using a graphics processing unit.
Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T
2014-01-01
Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.
Data processing system for the Sneg-2MP experiment
NASA Technical Reports Server (NTRS)
Gavrilova, Y. A.
1980-01-01
The data processing system for scientific experiments on stations of the "Prognoz" type provides for the processing sequence to be broken down into a number of consecutive stages: preliminary processing, primary processing, secondary processing. The tasks of each data processing stage are examined for an experiment designed to study gamma flashes of galactic origin and solar flares lasting from several minutes to seconds in the 20 kev to 1000 kev energy range.
General RMP Guidance - Appendix D: OSHA Guidance on PSM
OSHA's Process Safety Management (PSM) Guidance on providing complete and accurate written information concerning process chemicals, process technology, and process equipment; including process hazard analysis and material safety data sheets.
Elaboration Likelihood and the Counseling Process: The Role of Affect.
ERIC Educational Resources Information Center
Stoltenberg, Cal D.; And Others
The role of affect in counseling has been examined from several orientations. The depth of processing model views the efficiency of information processing as a function of the extent to which the information is processed. The notion of cognitive processing capacity states that processing information at deeper levels engages more of one's limited…
5 CFR 582.202 - Service of legal process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Service of legal process. 582.202 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.202 Service of legal process. (a) A person using this part shall serve interrogatories and legal process on the agent to receive process as...
5 CFR 582.202 - Service of legal process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Service of legal process. 582.202 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.202 Service of legal process. (a) A person using this part shall serve interrogatories and legal process on the agent to receive process as...
ERIC Educational Resources Information Center
Popyk, Marilyn K.
1986-01-01
Discusses the new automated office and its six major technologies (data processing, word processing, graphics, image, voice, and networking), the information processing cycle (input, processing, output, distribution/communication, and storage and retrieval), ergonomics, and ways to expand office education classes (versus class instruction). (CT)
ERIC Educational Resources Information Center
Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Friederici, Angela D.
2016-01-01
Successful communication in everyday life crucially involves the processing of auditory and visual components of speech. Viewing our interlocutor and processing visual components of speech facilitates speech processing by triggering auditory processing. Auditory phoneme processing, analyzed by event-related brain potentials (ERP), has been shown…
40 CFR 65.62 - Process vent group determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or Group 2B) for each process vent. Group 1 process vents require control, and Group 2A and 2B... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Process vent group determination. 65... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Process Vents § 65.62 Process vent group determination. (a) Group...
Code of Federal Regulations, 2010 CFR
2010-07-01
.../or Table 9 compounds are similar and often identical. (3) Biological treatment processes. Biological treatment processes in compliance with this section may be either open or closed biological treatment processes as defined in § 63.111. An open biological treatment process in compliance with this section need...
5 CFR 581.202 - Service of process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Service of process. 581.202 Section 581... GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Service of Process § 581.202 Service of process. (a) A... facilitate proper service of process on its designated agent(s). If legal process is not directed to any...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
30 CFR 828.11 - In situ processing: Performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false In situ processing: Performance standards. 828... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who conducts in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing...
Processing Depth, Elaboration of Encoding, Memory Stores, and Expended Processing Capacity.
ERIC Educational Resources Information Center
Eysenck, Michael W.; Eysenck, M. Christine
1979-01-01
The effects of several factors on expended processing capacity were measured. Expended processing capacity was greater when information was retrieved from secondary memory than from primary memory, when processing was of a deep, semantic nature than when it was shallow and physical, and when processing was more elaborate. (Author/GDC)
Cepeda, Nicholas J.; Blackwell, Katharine A.; Munakata, Yuko
2012-01-01
The rate at which people process information appears to influence many aspects of cognition across the lifespan. However, many commonly accepted measures of “processing speed” may require goal maintenance, manipulation of information in working memory, and decision-making, blurring the distinction between processing speed and executive control and resulting in overestimation of processing-speed contributions to cognition. This concern may apply particularly to studies of developmental change, as even seemingly simple processing speed measures may require executive processes to keep children and older adults on task. We report two new studies and a re-analysis of a published study, testing predictions about how different processing speed measures influence conclusions about executive control across the life span. We find that the choice of processing speed measure affects the relationship observed between processing speed and executive control, in a manner that changes with age, and that choice of processing speed measure affects conclusions about development and the relationship among executive control measures. Implications for understanding processing speed, executive control, and their development are discussed. PMID:23432836
NASA Astrophysics Data System (ADS)
Martini, Markus; Pinggera, Jakob; Neurauter, Manuel; Sachse, Pierre; Furtner, Marco R.; Weber, Barbara
2016-05-01
A process model (PM) represents the graphical depiction of a business process, for instance, the entire process from online ordering a book until the parcel is delivered to the customer. Knowledge about relevant factors for creating PMs of high quality is lacking. The present study investigated the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension, modelling, and reconciliation) were related to PM quality. Our results show that the WM function of relational integration was positively related to PM quality in both modelling groups. The ratio of comprehension phases was negatively related to PM quality in inexperienced modellers and the ratio of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling.
A new class of random processes with application to helicopter noise
NASA Technical Reports Server (NTRS)
Hardin, Jay C.; Miamee, A. G.
1989-01-01
The concept of dividing random processes into classes (e.g., stationary, locally stationary, periodically correlated, and harmonizable) has long been employed. A new class of random processes is introduced which includes many of these processes as well as other interesting processes which fall into none of the above classes. Such random processes are denoted as linearly correlated. This class is shown to include the familiar stationary and periodically correlated processes as well as many other, both harmonizable and non-harmonizable, nonstationary processes. When a process is linearly correlated for all t and harmonizable, its two-dimensional power spectral density S(x) (omega 1, omega 2) is shown to take a particularly simple form, being non-zero only on lines such that omega 1 to omega 2 = + or - r(k) where the r(k's) are (not necessarily equally spaced) roots of a characteristic function. The relationship of such processes to the class of stationary processes is examined. In addition, the application of such processes in the analysis of typical helicopter noise signals is described.
Martini, Markus; Pinggera, Jakob; Neurauter, Manuel; Sachse, Pierre; Furtner, Marco R.; Weber, Barbara
2016-01-01
A process model (PM) represents the graphical depiction of a business process, for instance, the entire process from online ordering a book until the parcel is delivered to the customer. Knowledge about relevant factors for creating PMs of high quality is lacking. The present study investigated the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension, modelling, and reconciliation) were related to PM quality. Our results show that the WM function of relational integration was positively related to PM quality in both modelling groups. The ratio of comprehension phases was negatively related to PM quality in inexperienced modellers and the ratio of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling. PMID:27157858
A new class of random processes with application to helicopter noise
NASA Technical Reports Server (NTRS)
Hardin, Jay C.; Miamee, A. G.
1989-01-01
The concept of dividing random processes into classes (e.g., stationary, locally stationary, periodically correlated, and harmonizable) has long been employed. A new class of random processes is introduced which includes many of these processes as well as other interesting processes which fall into none of the above classes. Such random processes are denoted as linearly correlated. This class is shown to include the familiar stationary and periodically correlated processes as well as many other, both harmonizable and non-harmonizable, nonstationary processes. When a process is linearly correlated for all t and harmonizable, its two-dimensional power spectral density S(x)(omega 1, omega 2) is shown to take a particularly simple form, being non-zero only on lines such that omega 1 to omega 2 = + or - r(k) where the r(k's) are (not necessarily equally spaced) roots of a characteristic function. The relationship of such processes to the class of stationary processes is examined. In addition, the application of such processes in the analysis of typical helicopter noise signals is described.
Martini, Markus; Pinggera, Jakob; Neurauter, Manuel; Sachse, Pierre; Furtner, Marco R; Weber, Barbara
2016-05-09
A process model (PM) represents the graphical depiction of a business process, for instance, the entire process from online ordering a book until the parcel is delivered to the customer. Knowledge about relevant factors for creating PMs of high quality is lacking. The present study investigated the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension, modelling, and reconciliation) were related to PM quality. Our results show that the WM function of relational integration was positively related to PM quality in both modelling groups. The ratio of comprehension phases was negatively related to PM quality in inexperienced modellers and the ratio of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling.
Rapid Automatized Naming in Children with Dyslexia: Is Inhibitory Control Involved?
Bexkens, Anika; van den Wildenberg, Wery P M; Tijms, Jurgen
2015-08-01
Rapid automatized naming (RAN) is widely seen as an important indicator of dyslexia. The nature of the cognitive processes involved in rapid naming is however still a topic of controversy. We hypothesized that in addition to the involvement of phonological processes and processing speed, RAN is a function of inhibition processes, in particular of interference control. A total 86 children with dyslexia and 31 normal readers were recruited. Our results revealed that in addition to phonological processing and processing speed, interference control predicts rapid naming in dyslexia, but in contrast to these other two cognitive processes, inhibition is not significantly associated with their reading and spelling skills. After variance in reading and spelling associated with processing speed, interference control and phonological processing was partialled out, naming speed was no longer consistently associated with the reading and spelling skills of children with dyslexia. Finally, dyslexic children differed from normal readers on naming speed, literacy skills, phonological processing and processing speed, but not on inhibition processes. Both theoretical and clinical interpretations of these results are discussed. Copyright © 2014 John Wiley & Sons, Ltd.
Ötes, Ozan; Flato, Hendrik; Winderl, Johannes; Hubbuch, Jürgen; Capito, Florian
2017-10-10
The protein A capture step is the main cost-driver in downstream processing, with high attrition costs especially when using protein A resin not until end of resin lifetime. Here we describe a feasibility study, transferring a batch downstream process to a hybrid process, aimed at replacing batch protein A capture chromatography with a continuous capture step, while leaving the polishing steps unchanged to minimize required process adaptations compared to a batch process. 35g of antibody were purified using the hybrid approach, resulting in comparable product quality and step yield compared to the batch process. Productivity for the protein A step could be increased up to 420%, reducing buffer amounts by 30-40% and showing robustness for at least 48h continuous run time. Additionally, to enable its potential application in a clinical trial manufacturing environment cost of goods were compared for the protein A step between hybrid process and batch process, showing a 300% cost reduction, depending on processed volumes and batch cycles. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Seung A; Kim, Chai-Youn; Lee, Seung-Hwan
2016-03-01
Psychophysiological and functional neuroimaging studies have frequently and consistently shown that emotional information can be processed outside of the conscious awareness. Non-conscious processing comprises automatic, uncontrolled, and fast processing that occurs without subjective awareness. However, how such non-conscious emotional processing occurs in patients with various psychiatric disorders requires further examination. In this article, we reviewed and discussed previous studies on the non-conscious emotional processing in patients diagnosed with anxiety disorder, schizophrenia, bipolar disorder, and depression, to further understand how non-conscious emotional processing varies across these psychiatric disorders. Although the symptom profile of each disorder does not often overlap with one another, these patients commonly show abnormal emotional processing based on the pathology of their mood and cognitive function. This indicates that the observed abnormalities of emotional processing in certain social interactions may derive from a biased mood or cognition process that precedes consciously controlled and voluntary processes. Since preconscious forms of emotional processing appear to have a major effect on behaviour and cognition in patients with these disorders, further investigation is required to understand these processes and their impact on patient pathology.
Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd
2016-03-01
The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings.
A Framework for Business Process Change Requirements Analysis
NASA Astrophysics Data System (ADS)
Grover, Varun; Otim, Samuel
The ability to quickly and continually adapt business processes to accommodate evolving requirements and opportunities is critical for success in competitive environments. Without appropriate linkage between redesign decisions and strategic inputs, identifying processes that need to be modified will be difficult. In this paper, we draw attention to the analysis of business process change requirements in support of process change initiatives. Business process redesign is a multifaceted phenomenon involving processes, organizational structure, management systems, human resource architecture, and many other aspects of organizational life. To be successful, the business process initiative should focus not only on identifying the processes to be redesigned, but also pay attention to various enablers of change. Above all, a framework is just a blueprint; management must lead change. We hope our modest contribution will draw attention to the broader framing of requirements for business process change.
Gnoth, S; Jenzsch, M; Simutis, R; Lübbert, A
2007-10-31
The Process Analytical Technology (PAT) initiative of the FDA is a reaction on the increasing discrepancy between current possibilities in process supervision and control of pharmaceutical production processes and its current application in industrial manufacturing processes. With rigid approval practices based on standard operational procedures, adaptations of production reactors towards the state of the art were more or less inhibited for long years. Now PAT paves the way for continuous process and product improvements through improved process supervision based on knowledge-based data analysis, "Quality-by-Design"-concepts, and, finally, through feedback control. Examples of up-to-date implementations of this concept are presented. They are taken from one key group of processes in recombinant pharmaceutical protein manufacturing, the cultivations of genetically modified Escherichia coli bacteria.
When teams shift among processes: insights from simulation and optimization.
Kennedy, Deanna M; McComb, Sara A
2014-09-01
This article introduces process shifts to study the temporal interplay among transition and action processes espoused in the recurring phase model proposed by Marks, Mathieu, and Zacarro (2001). Process shifts are those points in time when teams complete a focal process and change to another process. By using team communication patterns to measure process shifts, this research explores (a) when teams shift among different transition processes and initiate action processes and (b) the potential of different interventions, such as communication directives, to manipulate process shift timing and order and, ultimately, team performance. Virtual experiments are employed to compare data from observed laboratory teams not receiving interventions, simulated teams receiving interventions, and optimal simulated teams generated using genetic algorithm procedures. Our results offer insights about the potential for different interventions to affect team performance. Moreover, certain interventions may promote discussions about key issues (e.g., tactical strategies) and facilitate shifting among transition processes in a manner that emulates optimal simulated teams' communication patterns. Thus, we contribute to theory regarding team processes in 2 important ways. First, we present process shifts as a way to explore the timing of when teams shift from transition to action processes. Second, we use virtual experimentation to identify those interventions with the greatest potential to affect performance by changing when teams shift among processes. Additionally, we employ computational methods including neural networks, simulation, and optimization, thereby demonstrating their applicability in conducting team research. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Rena, Y G; Wang, J H; Li, H F; Zhang, J; Qi, P Y; Hu, Z
2013-01-01
Nitrous oxide (N2O) and methane (CH4) are two important greenhouse gases (GHG) emitted from biological nutrient removal (BNR) processes in municipal wastewater treatment plants (WWTP). In this study, three typical biological wastewater treatment processes were studied in WWTP of Northern China: pre-anaerobic carrousel oxidation ditch (A+OD) process, pre-anoxic anaerobic-anoxic-oxic (A-A/ A/O) process and reverse anaerobic-anoxic-oxic (r-A/ A/O) process. The N2O and CH4 emissions from these three different processes were measured in every processing unit of each WWTP. Results showed that N2O and CH4 were mainly discharged during the nitrification/denitrification process and the anaerobic/anoxic treatment process, respectively and the amounts of their formation and release were significantly influenced by different BNR processes implemented in these WWTP. The N2O conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 10.9% and 18.6% lower than that of A-A/A/O process and A+OD process, respectively. Similarly, the CH4 conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 89. I% and 80.8% lower than that of A-A/ A/O process and A+OD process, respectively. The factors influencing N2O and CH4 formation and emission in the three WWTP were investigated to explain the difference between these processes. The nitrite concentration and oxidation-reduction potential (ORP) value were found to be the dominant influencing factors affecting N2O and CH4 production, respectively. The flow-based emission factors of N2O and CH4 of the WWTP were figured out for better quantification of GHG emissions and further technical assessments of mitigation options.
Poll, Gerard H; Miller, Carol A; Mainela-Arnold, Elina; Adams, Katharine Donnelly; Misra, Maya; Park, Ji Sook
2013-01-01
More limited working memory capacity and slower processing for language and cognitive tasks are characteristics of many children with language difficulties. Individual differences in processing speed have not consistently been found to predict language ability or severity of language impairment. There are conflicting views on whether working memory and processing speed are integrated or separable abilities. To evaluate four models for the relations of individual differences in children's processing speed and working memory capacity in sentence imitation. The models considered whether working memory and processing speed are integrated or separable, as well as the effect of the number of operations required per sentence. The role of working memory as a mediator of the effect of processing speed on sentence imitation was also evaluated. Forty-six children with varied language and reading abilities imitated sentences. Working memory was measured with the Competing Language Processing Task (CLPT), and processing speed was measured with a composite of truth-value judgment and rapid automatized naming tasks. Mixed-effects ordinal regression models evaluated the CLPT and processing speed as predictors of sentence imitation item scores. A single mediator model evaluated working memory as a mediator of the effect of processing speed on sentence imitation total scores. Working memory was a reliable predictor of sentence imitation accuracy, but processing speed predicted sentence imitation only as a component of a processing speed by number of operations interaction. Processing speed predicted working memory capacity, and there was evidence that working memory acted as a mediator of the effect of processing speed on sentence imitation accuracy. The findings support a refined view of working memory and processing speed as separable factors in children's sentence imitation performance. Processing speed does not independently explain sentence imitation accuracy for all sentence types, but contributes when the task requires more mental operations. Processing speed also has an indirect effect on sentence imitation by contributing to working memory capacity. © 2013 Royal College of Speech and Language Therapists.
Zhong, Yi; Zhu, Jieqiang; Yang, Zhenzhong; Shao, Qing; Fan, Xiaohui; Cheng, Yiyu
2018-01-31
To ensure pharmaceutical quality, chemistry, manufacturing and control (CMC) research is essential. However, due to the inherent complexity of Chinese medicine (CM), CMC study of CM remains a great challenge for academia, industry, and regulatory agencies. Recently, quality-marker (Q-marker) was proposed to establish quality standards or quality analysis approaches of Chinese medicine, which sheds a light on Chinese medicine's CMC study. Here manufacture processes of Panax Notoginseng Saponins (PNS) is taken as a case study and the present work is to establish a Q-marker based research strategy for CMC of Chinese medicine. The Q-markers of Panax Notoginseng Saponins (PNS) is selected and established by integrating chemical profile with pharmacological activities. Then, the key processes of PNS manufacturing are identified by material flow analysis. Furthermore, modeling algorithms are employed to explore the relationship between Q-markers and critical process parameters (CPPs) of the key processes. At last, CPPs of the key processes are optimized in order to improving the process efficiency. Among the 97 identified compounds, Notoginsenoside R 1 , ginsenoside Rg 1 , Re, Rb 1 and Rd are selected as the Q-markers of PNS. Our analysis on PNS manufacturing show the extraction process and column chromatography process are the key processes. With the CPPs of each process as the inputs and Q-markers' contents as the outputs, two process prediction models are built separately for the extraction process and column chromatography process of Panax notoginseng, which both possess good prediction ability. Based on the efficiency models of extraction process and column chromatography process we constructed, the optimal CPPs of both processes are calculated. Our results show that the Q-markers derived from CMC research strategy can be applied to analyze the manufacturing processes of Chinese medicine to assure product's quality and promote key processes' efficiency simultaneously. Copyright © 2018 Elsevier GmbH. All rights reserved.
2012-01-01
Background Gas chromatography–mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. Results PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). Conclusions PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface. PMID:22647087
The Research Process on Converter Steelmaking Process by Using Limestone
NASA Astrophysics Data System (ADS)
Tang, Biao; Li, Xing-yi; Cheng, Han-chi; Wang, Jing; Zhang, Yun-long
2017-08-01
Compared with traditional converter steelmaking process, steelmaking process with limestone uses limestone to replace lime partly. A lot of researchers have studied about the new steelmaking process. There are much related research about material balance calculation, the behaviour of limestone in the slag, limestone powder injection in converter and application of limestone in iron and steel enterprises. The results show that the surplus heat of converter can meet the need of the limestone calcination, and the new process can reduce the steelmaking process energy loss in the whole steelmaking process, reduce carbon dioxide emissions, and improve the quality of the gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-04-01
Brief details are given of processes including: BGC-Lurgi slagging gasification, COGAS, Exxon catalytic coal gasification, FW-Stoic 2-stage, GI two stage, HYGAS, Koppers-Totzek, Lurgi pressure gasification, Saarberg-Otto, Shell, Texaco, U-Gas, W-D.IGI, Wellman-Galusha, Westinghouse, and Winkler coal gasification processes; the Rectisol process; the Catacarb and the Benfield processes for removing CO/SUB/2, H/SUB/2s and COS from gases produced by the partial oxidation of coal; the selectamine DD, Selexol solvent, and Sulfinol gas cleaning processes; the sulphur-tolerant shift (SSK) process; and the Super-meth process for the production of high-Btu gas from synthesis gas.
Working on the Boundaries: Philosophies and Practices of the Design Process
NASA Technical Reports Server (NTRS)
Ryan, R.; Blair, J.; Townsend, J.; Verderaime, V.
1996-01-01
While systems engineering process is a program formal management technique and contractually binding, the design process is the informal practice of achieving the design project requirements throughout all design phases of the systems engineering process. The design process and organization are systems and component dependent. Informal reviews include technical information meetings and concurrent engineering sessions, and formal technical discipline reviews are conducted through the systems engineering process. This paper discusses and references major philosophical principles in the design process, identifies its role in interacting systems and disciplines analyses and integrations, and illustrates the process application in experienced aerostructural designs.
Chemical processing of lunar materials
NASA Technical Reports Server (NTRS)
Criswell, D. R.; Waldron, R. D.
1979-01-01
The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.
NASA Astrophysics Data System (ADS)
Wang, Qiang
2017-09-01
As an important part of software engineering, the software process decides the success or failure of software product. The design and development feature of security software process is discussed, so is the necessity and the present significance of using such process. Coordinating the function software, the process for security software and its testing are deeply discussed. The process includes requirement analysis, design, coding, debug and testing, submission and maintenance. In each process, the paper proposed the subprocesses to support software security. As an example, the paper introduces the above process into the power information platform.
Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability
NASA Astrophysics Data System (ADS)
Lei, Wei
In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The sensing results confirm the proposed surface reaction path and once again reveal the complexity of ALD processes. The impact of this work includes: (1) It explores new ALD reactor designs which enable the implementation of in-situ process sensors for rapid process learning and enhanced manufacturability; (2) It demonstrates in the first time that in-situ QMS can reveal detailed process dynamics and film growth kinetics in wafer-scale ALD process, and thus can be used for ALD film thickness metrology. (3) Based on results from two different processes carried out in two different reactors, it is clear that ALD is a more complicated process than normally believed or advertised, but real-time observation of the operational chemistries in ALD by in-situ sensors provides critical insight to the process and the basis for more effective process control for ALD applications.
Implicit Processes, Self-Regulation, and Interventions for Behavior Change.
St Quinton, Tom; Brunton, Julie A
2017-01-01
The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior.
Huff, Mark J.; Bodner, Glen E.
2014-01-01
Whether encoding variability facilitates memory is shown to depend on whether item-specific and relational processing are both performed across study blocks, and whether study items are weakly versus strongly related. Variable-processing groups studied a word list once using an item-specific task and once using a relational task. Variable-task groups’ two different study tasks recruited the same type of processing each block. Repeated-task groups performed the same study task each block. Recall and recognition were greatest in the variable-processing group, but only with weakly related lists. A variable-processing benefit was also found when task-based processing and list-type processing were complementary (e.g., item-specific processing of a related list) rather than redundant (e.g., relational processing of a related list). That performing both item-specific and relational processing across trials, or within a trial, yields encoding-variability benefits may help reconcile decades of contradictory findings in this area. PMID:25018583
Continuous welding of unidirectional fiber reinforced thermoplastic tape material
NASA Astrophysics Data System (ADS)
Schledjewski, Ralf
2017-10-01
Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.
Economics of polysilicon process: A view from Japan
NASA Technical Reports Server (NTRS)
Shimizu, Y.
1986-01-01
The production process of solar grade silicon (SOG-Si) through trichlorosilane (TCS) was researched in a program sponsored by New Energy Development Organization (NEDO). The NEDO process consists of the following two steps: TCS production from by-product silicon tetrachloride (STC) and SOG-Si formation from TCS using a fluidized bed reactor. Based on the data obtained during the research program, the manufacturing cost of the NEDO process and other polysilicon manufacturing processes were compared. The manufacturing cost was calculated on the basis of 1000 tons/year production. The cost estimate showed that the cost of producing silicon by all of the new processes is less than the cost by the conventional Siemens process. Using a new process, the cost of producing semiconductor grade silicon was found to be virtually the same with any to the TCS, diclorosilane, and monosilane processes when by-products were recycled. The SOG-Si manufacturing processes using the fluidized bed reactor, which needs further development, shows a greater probablility of cost reduction than the filament processes.
Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System
NASA Astrophysics Data System (ADS)
Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka
Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.
Implicit Processes, Self-Regulation, and Interventions for Behavior Change
St Quinton, Tom; Brunton, Julie A.
2017-01-01
The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior. PMID:28337164
Models of recognition: a review of arguments in favor of a dual-process account.
Diana, Rachel A; Reder, Lynne M; Arndt, Jason; Park, Heekyeong
2006-02-01
The majority of computationally specified models of recognition memory have been based on a single-process interpretation, claiming that familiarity is the only influence on recognition. There is increasing evidence that recognition is, in fact, based on two processes: recollection and familiarity. This article reviews the current state of the evidence for dual-process models, including the usefulness of the remember/know paradigm, and interprets the relevant results in terms of the source of activation confusion (SAC) model of memory. We argue that the evidence from each of the areas we discuss, when combined, presents a strong case that inclusion of a recollection process is necessary. Given this conclusion, we also argue that the dual-process claim that the recollection process is always available is, in fact, more parsimonious than the single-process claim that the recollection process is used only in certain paradigms. The value of a well-specified process model such as the SAC model is discussed with regard to other types of dual-process models.
Integrating Thermal Tools Into the Mechanical Design Process
NASA Technical Reports Server (NTRS)
Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.
1999-01-01
The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.
Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li
2017-10-01
To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.
Ivezic, Nenad; Potok, Thomas E.
2003-09-30
A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.
Process yield improvements with process control terminal for varian serial ion implanters
NASA Astrophysics Data System (ADS)
Higashi, Harry; Soni, Ameeta; Martinez, Larry; Week, Ken
Implant processes in a modern wafer production fab are extremely complex. There can be several types of misprocessing, i.e. wrong dose or species, double implants and missed implants. Process Control Terminals (PCT) for Varian 350Ds installed at Intel fabs were found to substantially reduce the number of misprocessing steps. This paper describes those misprocessing steps and their subsequent reduction with use of PCTs. Reliable and simple process control with serial process ion implanters has been in increasing demand. A well designed process control terminal greatly increases device yield by monitoring all pertinent implanter functions and enabling process engineering personnel to set up process recipes for simple and accurate system operation. By programming user-selectable interlocks, implant errors are reduced and those that occur are logged for further analysis and prevention. A process control terminal should also be compatible with office personal computers for greater flexibility in system use and data analysis. The impact from the capability of a process control terminal is increased productivity, ergo higher device yield.
An Aspect-Oriented Framework for Business Process Improvement
NASA Astrophysics Data System (ADS)
Pourshahid, Alireza; Mussbacher, Gunter; Amyot, Daniel; Weiss, Michael
Recently, many organizations invested in Business Process Management Systems (BPMSs) in order to automate and monitor their processes. Business Activity Monitoring is one of the essential modules of a BPMS as it provides the core monitoring capabilities. Although the natural step after process monitoring is process improvement, most of the existing systems do not provide the means to help users with the improvement step. In this paper, we address this issue by proposing an aspect-oriented framework that allows the impact of changes to business processes to be explored with what-if scenarios based on the most appropriate process redesign patterns among several possibilities. As the four cornerstones of a BPMS are process, goal, performance and validation views, these views need to be aligned automatically by any approach that intends to support automated improvement of business processes. Our framework therefore provides means to reflect process changes also in the other views of the business process. A health care case study presented as a proof of concept suggests that this novel approach is feasible.
Structure and Randomness of Continuous-Time, Discrete-Event Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2017-10-01
Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.
Jang, H M; Park, S K; Ha, J H; Park, J M
2014-01-01
In this study, a process that combines the mesophilic anaerobic digestion (MAD) process with thermophilic aerobic digestion (TAD) for high-strength food wastewater (FWW) treatment was developed to examine the removal of organic matter and methane production. All effluent discharged from the MAD process was separated into solid and liquid portions. The liquid part was discarded and the sludge part was passed to the TAD process for further degradation. Then, the digested sludge from the TAD process was recycled back to the MAD unit to achieve low sludge discharge from the combined process. The reactor combination was operated in two phases: during Phase I, 40 d of total hydraulic retention time (HRT) was applied; during Phase II, 20 d was applied. HRT of the TAD process was fixed at 5 d. For a comparison, a control process (single-stage MAD) was operated with the same HRTs of the combined process. Our results indicated that the combined process showed over 90% total solids, volatile solids and chemical oxygen demand removal efficiencies. In addition, the combined process showed a significantly higher methane production rate than that of the control process. Consequently, the experimental data demonstrated that the combined MAD-TAD process was successfully employed for high-strength FWW treatment with highly efficient organic matter reduction and methane production.
Nilsson, Kerstin; Sandoff, Mette
2015-01-01
The purpose of this study is to gain better understanding of the roles and functions of process managers by describing Swedish process managers' experiences of leading processes involving patient care and treatment when working in a hierarchical health-care organization. This study is based on an explorative design. The data were gathered from interviews with 12 process managers at three Swedish hospitals. These data underwent qualitative and interpretative analysis with a modified editing style. The process managers' experiences of leading processes in a hierarchical health-care organization are described under three themes: having or not having a mandate, exposure to conflict situations and leading process development. The results indicate a need for clarity regarding process manager's responsibility and work content, which need to be communicated to all managers and staff involved in the patient care and treatment process, irrespective of department. There also needs to be an emphasis on realistic expectations and orientation of the goals that are an intrinsic part of the task of being a process manager. Generalizations from the results of the qualitative interview studies are limited, but a deeper understanding of the phenomenon was reached, which, in turn, can be transferred to similar settings. This study contributes qualitative descriptions of leading care and treatment processes in a functional, hierarchical health-care organization from process managers' experiences, a subject that has not been investigated earlier.
ERIC Educational Resources Information Center
Lamp, Sandra A.
2012-01-01
There is information available in the literature that discusses information technology (IT) governance and investment decision making from an executive-level perception, yet there is little information available that offers the perspective of process owners and process managers pertaining to their role in IT process improvement and investment…
43 CFR 2884.17 - How will BLM process my Processing Category 6 application?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How will BLM process my Processing...-WAY UNDER THE MINERAL LEASING ACT Applying for MLA Grants or TUPs § 2884.17 How will BLM process my... written agreement that describes how BLM will process your application. The final agreement consists of a...
43 CFR 2884.17 - How will BLM process my Processing Category 6 application?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How will BLM process my Processing...-WAY UNDER THE MINERAL LEASING ACT Applying for MLA Grants or TUPs § 2884.17 How will BLM process my... written agreement that describes how BLM will process your application. The final agreement consists of a...
15 CFR 15.3 - Acceptance of service of process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Acceptance of service of process. 15.3... Process § 15.3 Acceptance of service of process. (a) Except as otherwise provided in this subpart, any... employee by law is to be served personally with process. Service of process in this case is inadequate when...
Weaknesses in Applying a Process Approach in Industry Enterprises
NASA Astrophysics Data System (ADS)
Kučerová, Marta; Mĺkva, Miroslava; Fidlerová, Helena
2012-12-01
The paper deals with a process approach as one of the main principles of the quality management. Quality management systems based on process approach currently represents one of a proofed ways how to manage an organization. The volume of sales, costs and profit levels are influenced by quality of processes and efficient process flow. As results of the research project showed, there are some weaknesses in applying of the process approach in the industrial routine and it has been often only a formal change of the functional management to process management in many organizations in Slovakia. For efficient process management it is essential that companies take attention to the way how to organize their processes and seek for their continuous improvement.
Is Primary-Process Cognition a Feature of Hypnosis?
Finn, Michael T; Goldman, Jared I; Lyon, Gyrid B; Nash, Michael R
2017-01-01
The division of cognition into primary and secondary processes is an important part of contemporary psychoanalytic metapsychology. Whereas primary processes are most characteristic of unconscious thought and loose associations, secondary processes generally govern conscious thought and logical reasoning. It has been theorized that an induction into hypnosis is accompanied by a predomination of primary-process cognition over secondary-process cognition. The authors hypothesized that highly hypnotizable individuals would demonstrate more primary-process cognition as measured by a recently developed cognitive-perceptual task. This hypothesis was not supported. In fact, low hypnotizable participants demonstrated higher levels of primary-process cognition. Exploratory analyses suggested a more specific effect: felt connectedness to the hypnotist seemed to promote secondary-process cognition among low hypnotizable participants.
[Dual process in large number estimation under uncertainty].
Matsumuro, Miki; Miwa, Kazuhisa; Terai, Hitoshi; Yamada, Kento
2016-08-01
According to dual process theory, there are two systems in the mind: an intuitive and automatic System 1 and a logical and effortful System 2. While many previous studies about number estimation have focused on simple heuristics and automatic processes, the deliberative System 2 process has not been sufficiently studied. This study focused on the System 2 process for large number estimation. First, we described an estimation process based on participants’ verbal reports. The task, corresponding to the problem-solving process, consisted of creating subgoals, retrieving values, and applying operations. Second, we investigated the influence of such deliberative process by System 2 on intuitive estimation by System 1, using anchoring effects. The results of the experiment showed that the System 2 process could mitigate anchoring effects.
Object-processing neural efficiency differentiates object from spatial visualizers.
Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria
2008-11-19
The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.
Process simulation for advanced composites production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, M.D.; Ferko, S.M.; Griffiths, S.
1997-04-01
The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less
NASA Astrophysics Data System (ADS)
Nesladek, Pavel; Wiswesser, Andreas; Sass, Björn; Mauermann, Sebastian
2008-04-01
The Critical dimension off-target (CDO) is a key parameter for mask house customer, affecting directly the performance of the mask. The CDO is the difference between the feature size target and the measured feature size. The change of CD during the process is either compensated within the process or by data correction. These compensation methods are commonly called process bias and data bias, respectively. The difference between data bias and process bias in manufacturing results in systematic CDO error, however, this systematic error does not take into account the instability of the process bias. This instability is a result of minor variations - instabilities of manufacturing processes and changes in materials and/or logistics. Using several masks the CDO of the manufacturing line can be estimated. For systematic investigation of the unit process contribution to CDO and analysis of the factors influencing the CDO contributors, a solid understanding of each unit process and huge number of masks is necessary. Rough identification of contributing processes and splitting of the final CDO variation between processes can be done with approx. 50 masks with identical design, material and process. Such amount of data allows us to identify the main contributors and estimate the effect of them by means of Analysis of variance (ANOVA) combined with multivariate analysis. The analysis does not provide information about the root cause of the variation within the particular unit process, however, it provides a good estimate of the impact of the process on the stability of the manufacturing line. Additionally this analysis can be used to identify possible interaction between processes, which cannot be investigated if only single processes are considered. Goal of this work is to evaluate limits for CDO budgeting models given by the precision and the number of measurements as well as partitioning the variation within the manufacturing process. The CDO variation splits according to the suggested model into contributions from particular processes or process groups. Last but not least the power of this method to determine the absolute strength of each parameter will be demonstrated. Identification of the root cause of this variation within the unit process itself is not scope of this work.
Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming
2015-01-01
High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.
Consumers' conceptualization of ultra-processed foods.
Ares, Gastón; Vidal, Leticia; Allegue, Gimena; Giménez, Ana; Bandeira, Elisa; Moratorio, Ximena; Molina, Verónika; Curutchet, María Rosa
2016-10-01
Consumption of ultra-processed foods has been associated with low diet quality, obesity and other non-communicable diseases. This situation makes it necessary to develop educational campaigns to discourage consumers from substituting meals based on unprocessed or minimally processed foods by ultra-processed foods. In this context, the aim of the present work was to investigate how consumers conceptualize the term ultra-processed foods and to evaluate if the foods they perceive as ultra-processed are in concordance with the products included in the NOVA classification system. An online study was carried out with 2381 participants. They were asked to explain what they understood by ultra-processed foods and to list foods that can be considered ultra-processed. Responses were analysed using inductive coding. The great majority of the participants was able to provide an explanation of what ultra-processed foods are, which was similar to the definition described in the literature. Most of the participants described ultra-processed foods as highly processed products that usually contain additives and other artificial ingredients, stressing that they have low nutritional quality and are unhealthful. The most relevant products for consumers' conceptualization of the term were in agreement with the NOVA classification system and included processed meats, soft drinks, snacks, burgers, powdered and packaged soups and noodles. However, some of the participants perceived processed foods, culinary ingredients and even some minimally processed foods as ultra-processed. This suggests that in order to accurately convey their message, educational campaigns aimed at discouraging consumers from consuming ultra-processed foods should include a clear definition of the term and describe some of their specific characteristics, such as the type of ingredients included in their formulation and their nutritional composition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid communication: Global-local processing affects recognition of distractor emotional faces.
Srinivasan, Narayanan; Gupta, Rashmi
2011-03-01
Recent studies have shown links between happy faces and global, distributed attention as well as sad faces to local, focused attention. Emotions have been shown to affect global-local processing. Given that studies on emotion-cognition interactions have not explored the effect of perceptual processing at different spatial scales on processing stimuli with emotional content, the present study investigated the link between perceptual focus and emotional processing. The study investigated the effects of global-local processing on the recognition of distractor faces with emotional expressions. Participants performed a digit discrimination task with digits at either the global level or the local level presented against a distractor face (happy or sad) as background. The results showed that global processing associated with broad scope of attention facilitates recognition of happy faces, and local processing associated with narrow scope of attention facilitates recognition of sad faces. The novel results of the study provide conclusive evidence for emotion-cognition interactions by demonstrating the effect of perceptual processing on emotional faces. The results along with earlier complementary results on the effect of emotion on global-local processing support a reciprocal relationship between emotional processing and global-local processing. Distractor processing with emotional information also has implications for theories of selective attention.
Tomographical process monitoring of laser transmission welding with OCT
NASA Astrophysics Data System (ADS)
Ackermann, Philippe; Schmitt, Robert
2017-06-01
Process control of laser processes still encounters many obstacles. Although these processes are stable, a narrow process parameter window during the process or process deviations have led to an increase on the requirements for the process itself and on monitoring devices. Laser transmission welding as a contactless and locally limited joining technique is well-established in a variety of demanding production areas. For example, sensitive parts demand a particle-free joining technique which does not affect the inner components. Inline integrated non-destructive optical measurement systems capable of providing non-invasive tomographical images of the transparent material, the weld seam and its surrounding areas with micron resolution would improve the overall process. Obtained measurement data enable qualitative feedback into the system to adapt parameters for a more robust process. Within this paper we present the inline monitoring device based on Fourier-domain optical coherence tomography developed within the European-funded research project "Manunet Weldable". This device, after adaptation to the laser transmission welding process is optically and mechanically integrated into the existing laser system. The main target lies within the inline process control destined to extract tomographical geometrical measurement data from the weld seam forming process. Usage of this technology makes offline destructive testing of produced parts obsolete. 1,2,3,4
A quality-refinement process for medical imaging applications.
Neuhaus, J; Maleike, D; Nolden, M; Kenngott, H-G; Meinzer, H-P; Wolf, I
2009-01-01
To introduce and evaluate a process for refinement of software quality that is suitable to research groups. In order to avoid constraining researchers too much, the quality improvement process has to be designed carefully. The scope of this paper is to present and evaluate a process to advance quality aspects of existing research prototypes in order to make them ready for initial clinical studies. The proposed process is tailored for research environments and therefore more lightweight than traditional quality management processes. Focus on quality criteria that are important at the given stage of the software life cycle. Usage of tools that automate aspects of the process is emphasized. To evaluate the additional effort that comes along with the process, it was exemplarily applied for eight prototypical software modules for medical image processing. The introduced process has been applied to improve the quality of all prototypes so that they could be successfully used in clinical studies. The quality refinement yielded an average of 13 person days of additional effort per project. Overall, 107 bugs were found and resolved by applying the process. Careful selection of quality criteria and the usage of automated process tools lead to a lightweight quality refinement process suitable for scientific research groups that can be applied to ensure a successful transfer of technical software prototypes into clinical research workflows.
Negative Binomial Process Count and Mixture Modeling.
Zhou, Mingyuan; Carin, Lawrence
2015-02-01
The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters.
[Process management in the hospital pharmacy for the improvement of the patient safety].
Govindarajan, R; Perelló-Juncá, A; Parès-Marimòn, R M; Serrais-Benavente, J; Ferrandez-Martí, D; Sala-Robinat, R; Camacho-Calvente, A; Campabanal-Prats, C; Solà-Anderiu, I; Sanchez-Caparrós, S; Gonzalez-Estrada, J; Martinez-Olalla, P; Colomer-Palomo, J; Perez-Mañosas, R; Rodríguez-Gallego, D
2013-01-01
To define a process management model for a hospital pharmacy in order to measure, analyse and make continuous improvements in patient safety and healthcare quality. In order to implement process management, Igualada Hospital was divided into different processes, one of which was the Hospital Pharmacy. A multidisciplinary management team was given responsibility for each process. For each sub-process one person was identified to be responsible, and a working group was formed under his/her leadership. With the help of each working group, a risk analysis using failure modes and effects analysis (FMEA) was performed, and the corresponding improvement actions were implemented. Sub-process indicators were also identified, and different process management mechanisms were introduced. The first risk analysis with FMEA produced more than thirty preventive actions to improve patient safety. Later, the weekly analysis of errors, as well as the monthly analysis of key process indicators, permitted us to monitor process results and, as each sub-process manager participated in these meetings, also to assume accountability and responsibility, thus consolidating the culture of excellence. The introduction of different process management mechanisms, with the participation of people responsible for each sub-process, introduces a participative management tool for the continuous improvement of patient safety and healthcare quality. Copyright © 2012 SECA. Published by Elsevier Espana. All rights reserved.
Distributed processing method for arbitrary view generation in camera sensor network
NASA Astrophysics Data System (ADS)
Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki
2003-05-01
Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.
EEG alpha synchronization is related to top-down processing in convergent and divergent thinking
Benedek, Mathias; Bergner, Sabine; Könen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.
2011-01-01
Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing demands and to specific cognitive process involved in creative thinking. To this end, EEG was measured during a convergent and a divergent thinking task (i.e., creativity-related task) which once were processed involving low and once involving high internal processing demands. High internal processing demands were established by masking the stimulus (after encoding) and thus preventing further bottom-up processing. Frontal alpha synchronization was observed during convergent and divergent thinking only under exclusive top-down control (high internal processing demands), but not when bottom-up processing was allowed (low internal processing demands). We conclude that frontal alpha synchronization is related to top-down control rather than to specific creativity-related cognitive processes. Frontal alpha synchronization, which has been observed in a variety of different creativity tasks, thus may not reflect a brain state that is specific for creative cognition but can probably be attributed to high internal processing demands which are typically involved in creative thinking. PMID:21925520
Kennedy Space Center Payload Processing
NASA Technical Reports Server (NTRS)
Lawson, Ronnie; Engler, Tom; Colloredo, Scott; Zide, Alan
2011-01-01
This slide presentation reviews the payload processing functions at Kennedy Space Center. It details some of the payloads processed at KSC, the typical processing tasks, the facilities available for processing payloads, and the capabilities and customer services that are available.
ERIC Educational Resources Information Center
Miller, John
1994-01-01
Presents an approach to document numbering, document titling, and process measurement which, when used with fundamental techniques of statistical process control, reveals meaningful process-element variation as well as nominal productivity models. (SR)
USE OF INDICATOR ORGANISMS FOR DETERMINING PROCESS EFFECTIVENESS
Wastewaters, process effluents and treatment process residuals contain a variety of microorganisms. Many factors influence their densities as they move through collection systems and process equipment. Biological treatment systems rely on the catabolic processes of such microor...
Food processing by high hydrostatic pressure.
Yamamoto, Kazutaka
2017-04-01
High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm 2 ) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.
Li, Wen-Long; Qu, Hai-Bin
2016-10-01
In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.
Recollection is a continuous process: implications for dual-process theories of recognition memory.
Mickes, Laura; Wais, Peter E; Wixted, John T
2009-04-01
Dual-process theory, which holds that recognition decisions can be based on recollection or familiarity, has long seemed incompatible with signal detection theory, which holds that recognition decisions are based on a singular, continuous memory-strength variable. Formal dual-process models typically regard familiarity as a continuous process (i.e., familiarity comes in degrees), but they construe recollection as a categorical process (i.e., recollection either occurs or does not occur). A continuous process is characterized by a graded relationship between confidence and accuracy, whereas a categorical process is characterized by a binary relationship such that high confidence is associated with high accuracy but all lower degrees of confidence are associated with chance accuracy. Using a source-memory procedure, we found that the relationship between confidence and source-recollection accuracy was graded. Because recollection, like familiarity, is a continuous process, dual-process theory is more compatible with signal detection theory than previously thought.
A qualitative assessment of a random process proposed as an atmospheric turbulence model
NASA Technical Reports Server (NTRS)
Sidwell, K.
1977-01-01
A random process is formed by the product of two Gaussian processes and the sum of that product with a third Gaussian process. The resulting total random process is interpreted as the sum of an amplitude modulated process and a slowly varying, random mean value. The properties of the process are examined, including an interpretation of the process in terms of the physical structure of atmospheric motions. The inclusion of the mean value variation gives an improved representation of the properties of atmospheric motions, since the resulting process can account for the differences in the statistical properties of atmospheric velocity components and their gradients. The application of the process to atmospheric turbulence problems, including the response of aircraft dynamic systems, is examined. The effects of the mean value variation upon aircraft loads are small in most cases, but can be important in the measurement and interpretation of atmospheric turbulence data.
Szałatkiewicz, Jakub
2016-01-01
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804
Characterisation and Processing of Some Iron Ores of India
NASA Astrophysics Data System (ADS)
Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.
2013-10-01
Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.
Measuring health care process quality with software quality measures.
Yildiz, Ozkan; Demirörs, Onur
2012-01-01
Existing quality models focus on some specific diseases, clinics or clinical areas. Although they contain structure, process, or output type measures, there is no model which measures quality of health care processes comprehensively. In addition, due to the not measured overall process quality, hospitals cannot compare quality of processes internally and externally. To bring a solution to above problems, a new model is developed from software quality measures. We have adopted the ISO/IEC 9126 software quality standard for health care processes. Then, JCIAS (Joint Commission International Accreditation Standards for Hospitals) measurable elements were added to model scope for unifying functional requirements. Assessment (diagnosing) process measurement results are provided in this paper. After the application, it was concluded that the model determines weak and strong aspects of the processes, gives a more detailed picture for the process quality, and provides quantifiable information to hospitals to compare their processes with multiple organizations.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey
2003-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Thermal Stir Welding: A New Solid State Welding Process
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)
2002-01-01
Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.
Szałatkiewicz, Jakub
2016-08-10
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.
Bergerbest, Dafna; Goshen-Gottstein, Yonatan
2002-12-01
In three experiments, we explored automatic influences of memory in a conceptual memory task, as affected by a levels-of-processing (LoP) manipulation. We also explored the origins of the LoP effect by examining whether the effect emerged only when participants in the shallow condition truncated the perceptual processing (the lexical-processing hypothesis) or even when the entire word was encoded in this condition (the conceptual-processing hypothesis). Using the process-dissociation procedure and an implicit association-generation task, we found that the deep encoding condition yielded higher estimates of automatic influences than the shallow condition. In support of the conceptual processing hypothesis, the LoP effect was found even when the shallow task did not lead to truncated processing of the lexical units. We suggest that encoding for meaning is a prerequisite for automatic processing on conceptual tests of memory.
Exploring business process modelling paradigms and design-time to run-time transitions
NASA Astrophysics Data System (ADS)
Caron, Filip; Vanthienen, Jan
2016-09-01
The business process management literature describes a multitude of approaches (e.g. imperative, declarative or event-driven) that each result in a different mix of process flexibility, compliance, effectiveness and efficiency. Although the use of a single approach over the process lifecycle is often assumed, transitions between approaches at different phases in the process lifecycle may also be considered. This article explores several business process strategies by analysing the approaches at different phases in the process lifecycle as well as the various transitions.
System Engineering Concept Demonstration, Process Model. Volume 3
1992-12-01
Process or Process Model The System Engineering process must be the enactment of the aforementioned definitions. Therefore, a process is an enactment of a...Prototype Tradeoff Scenario demonstrates six levels of abstraction in the Process Model. The Process Model symbology is explained within the "Help" icon ...dnofing no- ubeq t"vidi e /hn -am-a. lmi IzyuO ..pu Row _e._n au"c.ue-w’ ’- anuiildyidwile b ie htplup ?~imsav D symbo ,,ue,.dvu ,,dienl Flw s--..,fu..I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eun, H.C.; Cho, Y.Z.; Choi, J.H.
A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)
An open system approach to process reengineering in a healthcare operational environment.
Czuchry, A J; Yasin, M M; Norris, J
2000-01-01
The objective of this study is to examine the applicability of process reengineering in a healthcare operational environment. The intake process of a mental healthcare service delivery system is analyzed systematically to identify process-related problems. A methodology which utilizes an open system orientation coupled with process reengineering is utilized to overcome operational and patient related problems associated with the pre-reengineered intake process. The systematic redesign of the intake process resulted in performance improvements in terms of cost, quality, service and timing.
Developing the JPL Engineering Processes
NASA Technical Reports Server (NTRS)
Linick, Dave; Briggs, Clark
2004-01-01
This paper briefly recounts the recent history of process reengineering at the NASA Jet Propulsion Laboratory, with a focus on the engineering processes. The JPL process structure is described and the process development activities of the past several years outlined. The main focus of the paper is on the current process structure, the emphasis on the flight project life cycle, the governance approach that lead to Flight Project Practices, and the remaining effort to capture process knowledge at the detail level of the work group.
Water-saving liquid-gas conditioning system
Martin, Christopher; Zhuang, Ye
2014-01-14
A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.
Model for Simulating a Spiral Software-Development Process
NASA Technical Reports Server (NTRS)
Mizell, Carolyn; Curley, Charles; Nayak, Umanath
2010-01-01
A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code), productivity (number of lines of code per hour), and number of defects per source line of code. The user provides the number of resources, the overall percent of effort that should be allocated to each process step, and the number of desired staff members for each step. The output of PATT includes the size of the product, a measure of effort, a measure of rework effort, the duration of the entire process, and the numbers of injected, detected, and corrected defects as well as a number of other interesting features. In the development of the present model, steps were added to the IEEE 12207 waterfall process, and this model and its implementing software were made to run repeatedly through the sequence of steps, each repetition representing an iteration in a spiral process. Because the IEEE 12207 model is founded on a waterfall paradigm, it enables direct comparison of spiral and waterfall processes. The model can be used throughout a software-development project to analyze the project as more information becomes available. For instance, data from early iterations can be used as inputs to the model, and the model can be used to estimate the time and cost of carrying the project to completion.
Magnitude processing of symbolic and non-symbolic proportions: an fMRI study.
Mock, Julia; Huber, Stefan; Bloechle, Johannes; Dietrich, Julia F; Bahnmueller, Julia; Rennig, Johannes; Klein, Elise; Moeller, Korbinian
2018-05-10
Recent research indicates that processing proportion magnitude is associated with activation in the intraparietal sulcus. Thus, brain areas associated with the processing of numbers (i.e., absolute magnitude) were activated during processing symbolic fractions as well as non-symbolic proportions. Here, we investigated systematically the cognitive processing of symbolic (e.g., fractions and decimals) and non-symbolic proportions (e.g., dot patterns and pie charts) in a two-stage procedure. First, we investigated relative magnitude-related activations of proportion processing. Second, we evaluated whether symbolic and non-symbolic proportions share common neural substrates. We conducted an fMRI study using magnitude comparison tasks with symbolic and non-symbolic proportions, respectively. As an indicator for magnitude-related processing of proportions, the distance effect was evaluated. A conjunction analysis indicated joint activation of specific occipito-parietal areas including right intraparietal sulcus (IPS) during proportion magnitude processing. More specifically, results indicate that the IPS, which is commonly associated with absolute magnitude processing, is involved in processing relative magnitude information as well, irrespective of symbolic or non-symbolic presentation format. However, we also found distinct activation patterns for the magnitude processing of the different presentation formats. Our findings suggest that processing for the separate presentation formats is not only associated with magnitude manipulations in the IPS, but also increasing demands on executive functions and strategy use associated with frontal brain regions as well as visual attention and encoding in occipital regions. Thus, the magnitude processing of proportions may not exclusively reflect processing of number magnitude information but also rather domain-general processes.
Liu, Xiaoqian; Tong, Yan; Wang, Jinyu; Wang, Ruizhen; Zhang, Yanxia; Wang, Zhimin
2011-11-01
Fufang Kushen injection was selected as the model drug, to optimize its alcohol-purification process and understand the characteristics of particle sedimentation process, and to investigate the feasibility of using process analytical technology (PAT) on traditional Chinese medicine (TCM) manufacturing. Total alkaloids (calculated by matrine, oxymatrine, sophoridine and oxysophoridine) and macrozamin were selected as quality evaluation markers to optimize the process of Fufang Kushen injection purification with alcohol. Process parameters of particulate formed in the alcohol-purification, such as the number, density and sedimentation velocity, were also determined to define the sedimentation time and well understand the process. The purification process was optimized as that alcohol is added to the concentrated extract solution (drug material) to certain concentration for 2 times and deposited the alcohol-solution containing drug-material to sediment for some time, i.e. 60% alcohol deposited for 36 hours, filter and then 80% -90% alcohol deposited for 6 hours in turn. The content of total alkaloids was decreased a little during the depositing process. The average settling time of particles with the diameters of 10, 25 microm were 157.7, 25.2 h in the first alcohol-purified process, and 84.2, 13.5 h in the second alcohol-purified process, respectively. The optimized alcohol-purification process remains the marker compositions better and compared with the initial process, it's time saving and much economy. The manufacturing quality of TCM-injection can be controlled by process. PAT pattern must be designed under the well understanding of process of TCM production.
Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am
2018-03-01
A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quality control process improvement of flexible printed circuit board by FMEA
NASA Astrophysics Data System (ADS)
Krasaephol, Siwaporn; Chutima, Parames
2018-02-01
This research focuses on the quality control process improvement of Flexible Printed Circuit Board (FPCB), centred around model 7-Flex, by using Failure Mode and Effect Analysis (FMEA) method to decrease proportion of defective finished goods that are found at the final inspection process. Due to a number of defective units that were found at the final inspection process, high scraps may be escaped to customers. The problem comes from poor quality control process which is not efficient enough to filter defective products from in-process because there is no In-Process Quality Control (IPQC) or sampling inspection in the process. Therefore, the quality control process has to be improved by setting inspection gates and IPCQs at critical processes in order to filter the defective products. The critical processes are analysed by the FMEA method. IPQC is used for detecting defective products and reducing chances of defective finished goods escaped to the customers. Reducing proportion of defective finished goods also decreases scrap cost because finished goods incur higher scrap cost than work in-process. Moreover, defective products that are found during process can reflect the abnormal processes; therefore, engineers and operators should timely solve the problems. Improved quality control was implemented for 7-Flex production lines from July 2017 to September 2017. The result shows decreasing of the average proportion of defective finished goods and the average of Customer Manufacturers Lot Reject Rate (%LRR of CMs) equal to 4.5% and 4.1% respectively. Furthermore, cost saving of this quality control process equals to 100K Baht.
Formulating poultry processing sanitizers from alkaline salts of fatty acids
USDA-ARS?s Scientific Manuscript database
Though some poultry processing operations remove microorganisms from carcasses; other processing operations cause cross-contamination that spreads microorganisms between carcasses, processing water, and processing equipment. One method used by commercial poultry processors to reduce microbial contam...
Fabrication Process for Cantilever Beam Micromechanical Switches
1993-08-01
Beam Design ................................................................... 13 B. Chemistry and Materials Used in Cantilever Beam Process...7 3. Photomask levels and composite...pp 410-413. 5 2. Cantilever Beam Fabrication Process The beam fabrication process incorporates four different photomasking levels with 62 processing
Reports of planetary geology program, 1983
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1984-01-01
Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.
ERIC Educational Resources Information Center
van den Broek, Paul; Helder, Anne
2017-01-01
As readers move through a text, they engage in various types of processes that, if all goes well, result in a mental representation that captures their interpretation of the text. With each new text segment the reader engages in passive and, at times, reader-initiated processes. These processes are strongly influenced by the readers'…
2001-09-01
measurable benefit in terms of process efficiency and effectiveness, business process reengineering (BPR) is becoming increasingly important. BPR suggests...technology by businesses in hopes of achieving a measurable benefit in terms of process efficiency and effectiveness, business process...KOPER-LITE ........................................13 E. HOW MIGHT THE MILITARY BENEFIT FROM PROCESS REENGINEERING EFFORTS
Code of Federal Regulations, 2010 CFR
2010-07-01
... accounting purposes when I do not process the gas? 206.181 Section 206.181 Mineral Resources MINERALS... Processing Allowances § 206.181 How do I establish processing costs for dual accounting purposes when I do not process the gas? Where accounting for comparison (dual accounting) is required for gas production...
Conceptual models of information processing
NASA Technical Reports Server (NTRS)
Stewart, L. J.
1983-01-01
The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.
Industrial application of semantic process mining
NASA Astrophysics Data System (ADS)
Espen Ingvaldsen, Jon; Atle Gulla, Jon
2012-05-01
Process mining relates to the extraction of non-trivial and useful information from information system event logs. It is a new research discipline that has evolved significantly since the early work on idealistic process logs. Over the last years, process mining prototypes have incorporated elements from semantics and data mining and targeted visualisation techniques that are more user-friendly to business experts and process owners. In this article, we present a framework for evaluating different aspects of enterprise process flows and address practical challenges of state-of-the-art industrial process mining. We also explore the inherent strengths of the technology for more efficient process optimisation.
Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong
2013-10-01
A processor-implemented method for determining aging of a processing unit in a processor the method comprising: calculating an effective aging profile for the processing unit wherein the effective aging profile quantifies the effects of aging on the processing unit; combining the effective aging profile with process variation data, actual workload data and operating conditions data for the processing unit; and determining aging through an aging sensor of the processing unit using the effective aging profile, the process variation data, the actual workload data, architectural characteristics and redundancy data, and the operating conditions data for the processing unit.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
Direct access inter-process shared memory
Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B
2013-10-22
A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.
Biotechnology in Food Production and Processing
NASA Astrophysics Data System (ADS)
Knorr, Dietrich; Sinskey, Anthony J.
1985-09-01
The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.