Bose-Einstein condensation and superfluidity of magnetoexcitons in bilayer graphene
Berman, Oleg L.; Lozovik, Yurii E.; Gumbs, Godfrey
2008-04-15
We propose experiments to observe Bose-Einstein condensation and superfluidity of quasi-two-dimensional spatially indirect magnetoexcitons in two-layer graphene. The energy spectrum of collective excitations, the sound spectrum, and the effective magnetic mass of magnetoexcitons are presented in the strong magnetic field regime. The superfluid density n{sub S} and the temperature of the Kosterlitz-Thouless phase transition T{sub c} are shown to be increasing functions of the excitonic density n but decreasing functions of B and the interlayer separation D.
El-Sherbini, Th.M.
2005-03-17
This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.
Approaching Bose-Einstein Condensation
ERIC Educational Resources Information Center
Ferrari, Loris
2011-01-01
Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…
Recent developments in Bose-Einstein condensation
Kalman, G.
1997-09-22
This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.
Diquark Bose-Einstein condensation
Nawa, K.; Nakano, E.; Yabu, H.
2006-08-01
Bose-Einstein condensation of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasichemical equilibrium theory at a relatively low-density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic framework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in the bound/resonant state. We obtained T{sub C}{approx}60-80 MeV for constituent quarks and T{sub C}{approx}130 MeV for current quarks at a moderate density ({rho}{sub b}{approx}3{rho}{sub 0}). The method is also developed to include interdiquark interactions into the quasichemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by {approx}50%.
Bose-Einstein condensation of erbium.
Aikawa, K; Frisch, A; Mark, M; Baier, S; Rietzler, A; Grimm, R; Ferlaino, F
2012-05-25
We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of magnetic Feshbach resonances at low magnetic fields. By means of evaporative cooling in an optical dipole trap, we produce pure condensates of 168Er, containing up to 7×10(4) atoms. Feshbach spectroscopy reveals an extraordinary rich loss spectrum with six loss resonances already in a narrow magnetic-field range up to 3 G. Finally, we demonstrate the application of a low-field Feshbach resonance to produce a tunable dipolar Bose-Einstein condensate and we observe its characteristic d-wave collapse. PMID:23003221
Bose-Einstein condensation. Twenty years after
Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D.
2015-02-23
The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.
Soliton resonance in bose-einstein condensate
NASA Technical Reports Server (NTRS)
Zak, Michail; Kulikov, I.
2002-01-01
A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.
Quantum metrology with Bose-Einstein condensates
Boixo, Sergio; Datta, Animesh; Davis, Matthew J.; Flammia, Steven T.; Shaji, Anil; Tacla, Alexandre B.; Caves, Carlton M.
2009-04-13
We show how a generalized quantum metrology protocol can be implemented in a two-mode Bose-Einstein condensate of n atoms, achieving a sensitivity that scales better than 1/n and approaches 1/n{sup 3/2} for appropriate design of the condensate.
Photon condensation: A new paradigm for Bose-Einstein condensation
NASA Astrophysics Data System (ADS)
Rajan, Renju; Ramesh Babu, P.; Senthilnathan, K.
2016-10-01
Bose-Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose-Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose-Einstein condensate. We also elaborate on the theoretical framework for atomic Bose-Einstein condensation, which includes statistical mechanics and the Gross-Pitaevskii equation. As an extension, we discuss Bose-Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck's law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.
Axions: Bose Einstein condensate or classical field?
NASA Astrophysics Data System (ADS)
Davidson, Sacha
2015-05-01
The axion is a motivated dark matter candidate, so it would be interesting to find features in Large Scale Structures specific to axion dark matter. Such features were proposed for a Bose Einstein condensate of axions, leading to confusion in the literature (to which I contributed) about whether axions condense due to their gravitational interactions. This note argues that the Bose Einstein condensation of axions is a red herring: the axion dark matter produced by the misalignment mechanism is already a classical field, which has the distinctive features attributed to the axion condensate (BE condensates are described as classical fields). This note also estimates that the rate at which axion particles condense to the field, or the field evaporates to particles, is negligible.
Bose-Einstein condensation of cesium.
Weber, Tino; Herbig, Jens; Mark, Michael; Nägerl, Hanns-Christoph; Grimm, Rudolf
2003-01-10
Bose-Einstein condensation of cesium atoms is achieved by evaporative cooling using optical trapping techniques. The ability to tune the interactions between the ultracold atoms by an external magnetic field is crucial to obtain the condensate and offers intriguing features for potential applications. We explore various regimes of condensate self-interaction (attractive, repulsive, and null interaction strength) and demonstrate properties of imploding, exploding, and non-interacting quantum matter. PMID:12471267
Bose-Einstein condensation of chromium.
Griesmaier, Axel; Werner, Jörg; Hensler, Sven; Stuhler, Jürgen; Pfau, Tilman
2005-04-29
We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which have an exceptionally large magnetic dipole moment and therefore underlie anisotropic long-range interactions. The preparation of the chromium condensate requires novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a critical temperature of T(c) approximately 700 nK, we observe Bose-Einstein condensation by the appearance of a two-component velocity distribution. We are able to produce almost pure condensates with more than 50,000 condensed 52Cr atoms.
Bose-Einstein condensation in microgravity.
van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J
2010-06-18
Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.
Astrophysical Bose-Einstein condensates and superradiance
NASA Astrophysics Data System (ADS)
Kühnel, Florian; Rampf, Cornelius
2014-11-01
We investigate gravitational analogue models to describe slowly rotating objects (e.g., dark-matter halos, or boson stars) in terms of Bose-Einstein condensates, trapped in their own gravitational potentials. We begin with a modified Gross-Pitaevskii equation, and show that the resulting background equations of motion are stable, as long as the rotational component is treated as a small perturbation. The dynamics of the fluctuations of the velocity potential are effectively governed by the Klein-Gordon equation of an "Eulerian metric," where we derive the latter by the use of a relativistic Lagrangian extrapolation. Superradiant scattering on such objects is studied. We derive conditions for its occurrence and estimate its strength. Our investigations might give an observational handle to phenomenologically constrain Bose-Einstein condensates.
Bose-Einstein Condensation in Microgravity
NASA Astrophysics Data System (ADS)
van Zoest, T.; Gaaloul, N.; Singh, Y.; Ahlers, H.; Herr, W.; Seidel, S. T.; Ertmer, W.; Rasel, E.; Eckart, M.; Kajari, E.; Arnold, S.; Nandi, G.; Schleich, W. P.; Walser, R.; Vogel, A.; Sengstock, K.; Bongs, K.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Schuldt, T.; Peters, A.; Könemann, T.; Müntinga, H.; Lämmerzahl, C.; Dittus, H.; Steinmetz, T.; Hänsch, T. W.; Reichel, J.
2010-06-01
Albert Einstein’s insight that it is impossible to distinguish a local experiment in a “freely falling elevator” from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.
Bose-Einstein condensation in microgravity.
van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J
2010-06-18
Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. PMID:20558713
Schrodinger Leopards in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.; Dounas-Frazer, Dimitri R.
2008-03-01
We present the complex quantum dynamics of vortices in Bose-Einstein condensates in a double well via exact diagonalization of a discretized Hamiltonian. When the barrier is high, vortices evolve into macroscopic superposition (NOON) states of a vortex in either well -- a Schrodinger cat with spots. Such Schrodinger leopard states are more robust than previously proposed NOON states, which only use two single particle modes of the double well potential.
Mechanocaloric and thermomechanical effects in Bose-Einstein-condensed systems
Marques, G.C.; Bagnato, V.S.; Muniz, S.R.; Spehler, D.
2004-05-01
In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid {sup 4}He, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.
Bose-Einstein condensation of sodium atoms
NASA Astrophysics Data System (ADS)
Mewes, Marc-Oliver
1997-10-01
Bose-Einstein Condensation in an ultracold gas of neutral sodium atoms has been observed and studied. This was achieved utilizing a combination of laser cooling techniques, magnetic trapping and evaporative cooling. A novel tightly confining dc magnetic trap was developed and demonstrated. This trap combines tight confinement with excellent optical access. Evaporative cooling in this trap produced Bose condensates of 5× 106 atoms, a tenfold improvement over previous results. The Bose-Einstein phase transition was studied and characterized by mapping out the condensed fraction as a function of temperature across the transition point. The characteristic mean-field interaction of particles in the condensate was investigated. Collective excitations of a dilute Bose condensate have been observed. These excitations are analogous to phonons in superfluid helium. The frequencies of the lowest modes were studied for a temperature close to 0 K and compared with theoretical predictions based on mean-field theory. The characteristic damping of one of the modes was measured and compared to damping of 'sound waves' in an ultra-cold gas above the Bose-Einstein transition. We have also demonstrated an output coupler for Bose condensed atoms in a magnetic trap. With short rf pulses Bose condensates were put into a superposition of trapped and untrapped hyperfine states. By varying the rf amplitude we could adjust the fraction of outcoupled atoms between 0 and 100%. This source produces pulses of coherent atoms and can be regarded as a pulsed 'atom laser'. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Topological objects in two-component Bose-Einstein condensates
Cho, Y. M.; Khim, Hyojoong; Zhang, Pengming
2005-12-15
We study the topological objects in two-component Bose-Einstein condensates. We compare two competing theories of two-component Bose-Einstein condensates, the popular Gross-Pitaevskii theory, and the recently proposed gauge theory of two-component Bose-Einstein condensate which has an induced vorticity interaction. We show that two theories produce very similar topological objects, in spite of the obvious differences in dynamics. Furthermore we show that the gauge theory of two-component Bose-Einstein condensates, with the U(1) gauge symmetry, is remarkably similar to the Skyrme theory. Just like the Skyrme theory this theory admits the non-Abelian vortex, the helical vortex, and the vorticity knot. We construct the lightest knot solution in two-component Bose-Einstein condensates numerically, and discuss how the knot can be constructed in the spin-(1/2) condensate of {sup 87}Rb atoms.
Bose-Einstein Condensation in Extended Microgravity
NASA Astrophysics Data System (ADS)
Scharringhausen, Marco; Quantus Team; Rasel, Ernst Maria
2012-07-01
The setup and the envisaged experiment timeline of the QUANTUS-III experiment onboard a sounding rocket to be started in the near future are presented. The major intention of QUANTUS-III is the stable generation of a number of Bose-Einstein condensates as a source for atom interferometry during several minutes of microgravity onboard the sounding rocket. Later missions aim at the realization of atom interferoemeters as precursor satellite missions. These condesates will be generated serially, allowing a large number of repeatable tests. Within such Bose-Einstein condensates, millions of atoms lose their identity and can be described by a single macroscopic wave function. During the expansion over several seconds, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. Cold quantum gases and, in particular, Bose-Einstein condensates represent a new state of matter which is nowadays established in many laboratories. They offer unique insights into a broad range of fundamental physics as well as prospects for novel quantum sensors. Microgravity will substantially extend the science of quantum gases towards nowadays inaccessible regimes at lowest temperatures, to macroscopic dimensions, and to unequalled durations of unperturbed evolution of these distinguished quantum objects. Right now, the QUANTUS-III experiment is in the development phase, taking heritage from QUANTUS-I and QUANTUS-II. Major components of the engineering model are available. Boundary conditions of the rocket, requirements of the experiment and interface considerations are presented. This include laser stabilization, vacuum technology and magnetic shielding. The planned trajectory of the rocket will have an apogee of 200 - 300 km and a total microgravity time of 4 - 7 minutes, both depending on the total experiment mass.
Bose-Einstein condensation in complex networks.
Bianconi, G; Barabási, A L
2001-06-11
The evolution of many complex systems, including the World Wide Web, business, and citation networks, is encoded in the dynamic web describing the interactions between the system's constituents. Despite their irreversible and nonequilibrium nature these networks follow Bose statistics and can undergo Bose-Einstein condensation. Addressing the dynamical properties of these nonequilibrium systems within the framework of equilibrium quantum gases predicts that the "first-mover-advantage," "fit-get-rich," and "winner-takes-all" phenomena observed in competitive systems are thermodynamically distinct phases of the underlying evolving networks.
Interference of Bose-Einstein condensates.
Band, Y B
2008-12-18
A formalism for describing the coherence and interference properties of two atomic clouds of Bose-Einstein condensates (BEC) is presented, which is applicable even in the opposite limits when the BEC clouds are initially coherent and when they are initially independent. First, we develop a mean-field theory wherein one mean-field mode is used, and then, for fragmented (i.e., independent) condensates, we use a mean-field theory with two modes. We then develop a full two-mode field theory, with a field operator composed of a sum of two terms containing matter wave mode functions phi1 and phi2, that multiply the destruction operators of the modes, a1 and a2. When atom-atom interactions are present and when the mode functions overlap, the matter wave mode functions phi1 and phi2 develop components moving to the right and left, and this results in interference fringes in the density. At the many-body level, another source of interference arises from expectation values of the form (a(i)+a(j)) with i double dagger j, which become nonzero due to tunneling and interactions. We detail how these two sources of interference affect the density profile and the density-density correlation functions of Bose-Einstein condensates in the coherent and in the fragmented regimes.
Vector azimuthons in two-component Bose-Einstein condensates
Lashkin, Volodymyr M.; Ostrovskaya, Elena A.; Desyatnikov, Anton S.; Kivshar, Yuri S.
2009-07-15
We introduce matter-wave vector azimuthons, i.e., spatially localized vortex states with azimuthal modulations of density, in multicomponent Bose-Einstein condensates. These localized states generalize spatially modulated vortex solitons introduced earlier in nonlinear optics [A. S. Desyatnikov, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. Lett. 95, 203904 (2005)] and Bose-Einstein condensates [V. M. Lashkin, Phys. Rev. A 77, 025602 (2008)]. We find, numerically, nonrotating and rotating two-component azimuthons in a Bose-Einstein condensate with a negative scattering length confined by a quasi-two-dimensional parabolic trap.
Nonlinear interferometry with Bose-Einstein condensates
Tacla, Alexandre B.; Boixo, Sergio; Datta, Animesh; Shaji, Anil; Caves, Carlton M.
2010-11-15
We analyze a proposed experiment [Boixo et al., Phys. Rev. Lett. 101, 040403 (2008)] for achieving sensitivity scaling better than 1/N in a nonlinear Ramsey interferometer that uses a two-mode Bose-Einstein condensate (BEC) of N atoms. We present numerical simulations that confirm the analytical predictions for the effect of the spreading of the BEC ground-state wave function on the ideal 1/N{sup 3/2} scaling. Numerical integration of the coupled, time-dependent, two-mode Gross-Pitaevskii equations allows us to study the several simplifying assumptions made in the initial analytic study of the proposal and to explore when they can be justified. In particular, we find that the two modes share the same spatial wave function for a length of time that is sufficient to run the metrology scheme.
Phase separation of two-component Bose-Einstein condensates
Liu, Zuhan
2009-10-15
Recently, coupled systems of nonlinear Schroedinger equations have been used extensively to describe mixtures Bose-Einstein condensates. In this paper, we study the distribution of two different hyperfine spin states of a binary mixture of three dimensional Bose-Einstein condensates. In a double condensate, an interface may occur due to large intraspecies and interspecies scattering lengths. We prove that there is an asymptotic separation of different phases in the strong coupling (Thomas-Fermi) limit.
Bose-Einstein condensation of dilute atomic gases
NASA Astrophysics Data System (ADS)
Wu, Biao
The Bose-Einstein condensation of dilute atomic gases is studied. The focus is on the interesting properties and the dynamical behavior of Bose-Einstein condensates (BECs1) under various external manipulations. We investigate how the interaction affects the interference pattern between two BEC clouds, and show how the interference pattern can be calculated. We then present a theory on the generation of dark solitons in BECs with a new experimental technique called phase imprint. By mapping this problem into a classic pendulum problem, we show how to design the phase step imprinted on a BEC cloud to generate desired dark solitons. We finally study the system of a BEC in an optical lattice, a nonlinear periodic system, which exhibits interesting new effects on the tunneling and superfluidity in terms of its Bloch bands and Bloch waves. 1In the dissertation, BEC stands for Bose-Einstein condensate, not Bose-Einstein condensation.
Nonequilibrium Bose-Einstein condensation of hot magnons
Vannucchi, Fabio Stucchi; Vasconcellos, Aurea Rosas; Luzzi, Roberto
2010-10-01
We present an analysis of the emergence of a nonequilibrium Bose-Einstein-type condensation of magnons in radio-frequency pumped magnetic thin films, which has recently been experimentally observed. A complete description of all the nonequilibrium processes involved is given. It is demonstrated that the phenomenon is another example of the emergence of Bose-Einstein-type condensation in nonequilibrium many-boson systems embedded in a thermal bath, a phenomenon evidenced decades ago by the renowned late Herbert Froehlich.
Soliton Creation During a Bose-Einstein Condensation
Damski, Bogdan; Zurek, Wojciech H.
2010-04-23
We use the stochastic Gross-Pitaevskii equation to study dynamics of Bose-Einstein condensation. We show that cooling into a Bose-Einstein condensate (BEC) can create solitons with density given by the cooling rate and by the critical exponents of the transition. Thus, counting solitons left in its wake should allow one to determine the critical exponents z and {nu} for a BEC phase transition. The same information can be extracted from two-point correlation functions.
Rotating trapped Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Fetter, A. L.
2008-01-01
Trapped Bose-Einstein condensates (BECs) differ considerably from the standard textbook example of a uniform Bose gas. In an isotropic harmonic potential V( r) = ½ Mω2 r 2, the single-particle ground state introduces a new intrinsic scale of length [the ground-state size d = √ ℏ/( Mω)] and energy [the ground-state energy E 0 = frac{3} {2} ℏω]. When the trap rotates at a low angular velocity, the behavior of a single vortex illustrates the crucial role of discrete quantized vorticity. For more rapid rotation, the condensate contains a vortex array. The resulting centrifugal forces expand the condensate radially and shrink it axially; thus, the condensate becomes effectively two dimensional. If the external rotation speed approaches the frequency of the radial harmonic confining potential, the condensate enters the "lowest-Landau-level" regime, and a simple description again becomes possible. Eventually, the system is predicted to make a quantum phase transition to a highly correlated state analogous to the fractional quantum Hall states of electrons in a strong magnetic field.
Nonlinear phenomena in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2008-05-01
We present a medley of results from the last three years on nonlinear phenomena in BECs [1]. These include exact dynamics of multi-component condensates in optical lattices [2], vortices and ring solitons [3], macroscopic quantum tunneling [4], nonlinear band theory [5], and a pulsed atomic soliton laser [6]. 1. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, ed. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag, 2008). 2. R. Mark Bradley, James E. Bernard, and L. D. Carr, e-print arXiv:0711.1896 (2007). 3. G. Herring, L. D. Carr, R. Carretero-Gonzalez, P. G. Kevrekidis, D. J. Frantzeskakis, Phys. Rev. A in press, e-print arXiv:0709.2193 (2007); L. D. Carr and C. W. Clark, Phys. Rev. A v. 74, p.043613 (2006); L. D. Carr and C. W. Clark, Phys. Rev. Lett. v. 97, p.010403 (2006). 4. L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys., v.38, p.3217 (2005) 5. B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A, v. 71, p.033622 (2005). 6. L. D. Carr and J. Brand, Phys. Rev. A, v.70, p.033607 (2004); L. D. Carr and J. Brand, Phys. Rev. Lett., v.92, p.040401 (2004).
Bose-Einstein-condensate heating by atomic losses
Dziarmaga, Jacek; Sacha, Krzysztof
2003-10-01
Atomic Bose-Einstein condensate is heated by atomic losses. The losses act as a heat reservoir for the condensate. The condensate is approaching a state of thermal equilibrium with a thermal depletion ranging from 1% for a uniform three-dimensional (3D) condensate to around 13% for a quasi-1D condensate in a harmonic trap.
Entanglement of two-mode Bose-Einstein condensates
Hines, Andrew P.; McKenzie, Ross H.; Milburn, Gerard J.
2003-01-01
We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates--a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and, thus, the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the two modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled cas000.
Nonlinear Phenomena in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2008-03-01
We present a medley of results from the last three years on nonlinear phenomena in BECs [1]. These include exact dynamics of multi-component condensates in optical lattices [2], vortices and ring solitons [3], macroscopic quantum tunneling [4], nonlinear band theory [5], and a pulsed atomic soliton laser [6]. 1. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, ed. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag, to appear, 2008) -- see L. D. Carr and Joachim Brand, e-print arXiv:0705.1139 (2007); Joachim Brand, L. D. Carr, B. P. Anderson, e-print arXiv:0705.1341 (2007). 2. R. Mark Bradley, James E. Bernard, and L. D. Carr, e-print arXiv:0711.1896 (2007). 3. G. Herring, L. D. Carr, R. Carretero-Gonzalez, P. G. Kevrekidis, D. J. Frantzeskakis, e-print arXiv:0709.2193 (2007); L. D. Carr and C. W. Clark, Phys. Rev. A v. 74, p.043613 (2006); L. D. Carr and C. W. Clark, Phys. Rev. Lett. v. 97, p.010403 (2006). 4. L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys., v.38, p.3217 (2005) 5. B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A, v. 71, p.033622 (2005). 6. L. D. Carr and J. Brand, Phys. Rev. A, v.70, p.033607 (2004); L. D. Carr and J. Brand, Phys. Rev. Lett., v.92, p.040401 (2004).
Vortex formation in a fast rotating Bose-Einstein condensate
Ghosh, Tarun Kanti
2004-04-01
We study rotational motion of an interacting atomic Bose-Einstein condensate confined in a quadratic-plus-quartic potential. We calculate the lowest energy surface mode frequency and show that a symmetric trapped (harmonic and quartic) Bose-Einstein condensate breaks the rotational symmetry of the Hamiltonian when rotational frequency is greater than one-half of the lowest energy surface mode frequency. We argue that the formation of a vortex is not possible in a noninteracting as well as in an attractive Bose-Einstein condensate confined in a harmonic trap due to the absence of the spontaneous shape deformation, but it can occur which leads to the vortex formation if we add an additional quartic potential. Moreover, the spontaneous shape deformation and consequently the formation of a vortex in an attractive system depends on the strengths of the two-body interaction and the quartic potential.
Quantum and thermal fluctuations of trapped Bose-Einstein condensates
Kruglov, V.I.; Collett, M.J.; Olsen, M.K.
2005-09-15
We quantize a semiclassical system defined by the Hamiltonian obtained from the asymptotic self-similar solution of the Gross-Pitaevskii equation for a trapped Bose-Einstein condensate with a linear gain term. On the basis of a Schroedinger equation derived in a space of ellipsoidal parameters, we analytically calculate the quantum mechanical and thermal variance in the ellipsoidal parameters for Bose-Einstein condensates in various shapes of trap. We show that, except for temperatures close to zero, dimensionless dispersions do not depend on the frequencies of the trap and they have the same dependence on dimensionless temperatures.
Impurities in Bose-Einstein Condensates: From Polaron to Soliton.
Shadkhoo, Shahriar; Bruinsma, Robijn
2015-09-25
We propose that impurities in a Bose-Einstein condensate which is coupled to a transversely laser-pumped multimode cavity form an experimentally accessible and analytically tractable model system for the study of impurities solvated in correlated liquids and the breakdown of linear-response theory [corrected]. As the strength of the coupling constant between the impurity and the Bose-Einstein condensate is increased, which is possible through Feshbach resonance methods, the impurity passes from a large to a small polaron state, and then to an impurity-soliton state. This last transition marks the breakdown of linear-response theory.
Space-time curvature signatures in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Matos, Tonatiuh; Gomez, Eduardo
2015-05-01
We derive a generalized Gross-Pitaevski (GP) equation for a Bose Einstein Condensate (BEC) immersed in a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the traditional GP equation where the gravitational field is added by hand as an external potential. We show that there is a small difference of order gz/c2 between them that could be measured in the future using Bose-Einstein Condensates. This represents the next order correction to the Newtonian gravity in a curved space-time.
Stability analysis for n-component Bose-Einstein condensate
Roberts, David C.; Ueda, Masahito
2006-05-15
We derive the dynamic and thermodynamic stability conditions for dilute multicomponent Bose-Einstein condensates (BECs). These stability conditions, generalized for n-component BECs, are found to be equivalent and are shown to be consistent with the phase diagrams of two- and three-component condensates that are derived from energetic arguments.
Emergent Gravitational Dynamics in Bose-Einstein Condensates
Sindoni, Lorenzo; Liberati, Stefano; Girelli, Florian
2009-12-15
We discuss a toy model for an emergent non-relativistic gravitational theory. Within a certain class of Bose-Einstein condensates, it is possible to show that, in a suitable regime, a modified version of non-relativistic Newtonian gravity does effectively describes the low energy dynamics of the coupled system condensate/quasi-particles.
Theoretical studies of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Das, Kunal Kashyap
This thesis is a theoretical study of Bose-Einstein Condensation (BEC) in harmonically-trapped, weakly-interacting dilute gases. The motivation for this study is the experimental realization of BEC in trapped alkali gases since 1995. The weak inter-particle interactions and diluteness of the gases allow for a fairly accurate mean-field treatment and justifies a discrete quasi-particle description as we use in this work. This thesis considers three specific topics in the rapidly growing field of BEC theory: (i) interference effects in BEC, (ii) interaction-induced energy shifts and damping of excitations of condensates and (iii) the properties of highly anisotropic condensates. The results are summarized here: i. We show that if two multiply occupied boson modes are in eigenstates of the Hermitian relative phase operator, then the visibility of fringes formed by the interference between the modes is necessarily less than unity. For large total occupation numbers the visibility V ≤ pi/4. States with definite relative phase and unit visibility do exist. They are related to coherent states and are not orthogonal (not eigenstates of a Hermitian phase operator). This visibility limitation may make it possible to investigate experimentally the physical role of the relative phase eigenstates in interference measurements on BEC. ii. We evaluate analytically the asymptotic energy shifts of the high energy Bogoliubov quasi-particle modes. In spherical geometry, those modes display a 1/ n dependence on their number of radial nodes n but only a weak dependence on their angular momenta l. We obtain similar results for cylindrical geometry. We derive an implicit equation for the widths or decay rates gamma of the modes from an assumption of exponential decay. We use the equation to do a detailed numerical study of the trends in the behavior of the widths as a function of temperature, energy, particle number and scattering lengths. In particular, we find that widths due to
Particle Correlations in Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Jiang, Zhang
The impact of interparticle correlations on the behavior of Bose-Einstein Condensates (BECs) is discussed using two approaches. In the first approach, the wavefunction of a BEC is encoded in the N-particle sector of an extended "catalytic state". Going to a time-dependent interaction picture, we can organize the effective Hamiltonian by powers of N -1/2 . Requiring the terms of order N 1/2 to vanish, we get the Gross-Pitaevskii Equation. Going to the next order, N0, we obtain the number-conserving Bogoliubov approximation. Our approach allows one to stay in the Schrodinger picture and to apply many techniques from quantum optics. Moreover, it is easier to track different orders in the Hamiltonian and to generalize to the multi-component case. In the second approach, I consider a state of N = l x n bosons that is derived by symmetrizing the n-fold tensor product of an arbitrary l-boson state. Particularly, we are interested in the pure state case for l = 2, which we call the Pair-Correlated State (PCS). I show that PCS reproduces the number-conserving Bogoliubov approximation; moreover, it also works in the strong interaction regime where the Bogoliubov approximation fails. For the two-site Bose-Hubbard model, I find numerically that the error (measured by trace distance of the two-particle RDMs) of PCS is less than two percent over the entire parameter space, thus making PCS a bridge between the super uid and Mott insulating phases. Amazingly, the error of PCS does not increase, in the time-dependent case, as the system evolves for longer times. I derive both time-dependent and -independent equations for the ground state and the time evolution of the PCS ansatz. The time complexity of simulating PCS does not depend on N and is linear in the number of orbitals in use. Compared to other methods, e.g, the Jastrow wavefunction, the Gutzwiller wavefunction, and the multi-configurational time-dependent Hartree method, our approach does not require quantum Monte Carlo nor
Entanglement Properties in Two-Component Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Jiang, Di-You
2016-10-01
We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.
Probing of the optical properties of Bose-Einstein condensates.
NASA Astrophysics Data System (ADS)
Vestergaard Hau, Lene
1998-05-01
Interactions between photons and Bose-Einstein condensates are studied experimentally and theoretically. Our goal is to get a detailed understanding of the interactions themselves as well as to develop tools for probing Bose condensates. We routinely create million atom condensates of sodium in the '4D' magnetic bottle by using a combination of laser and evaporative cooling. We have used absorption of near resonant laser light to image condensate wavefunctions directly in the magnetic botttle. The method is sensitive to details of the wavefunction, in particular to the condensate surface. This is of importance, for example, in studies of interactions between condensates and thermal clouds at temperatures close to the transition temperature for Bose-Einstein condensation.
Thermal spin fluctuations in spinor Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Melé-Messeguer, M.; Juliá-Díaz, B.; Polls, A.; Santos, L.
2013-03-01
We study the thermal activation of spin fluctuations in dynamically stable spinor Bose-Einstein condensates. We analyze the specific cases of a nondipolar spin-1 condensate in the state m=0, where thermal activation results from spin-changing collisions, and of a chromium condensate in the maximally stretched state m=-3, where thermal spin fluctuations are due to dipole-induced spin relaxation. In both cases, we show that the low energy associated to the spinor physics may be employed for thermometry purposes down to extremely low temperatures, typically impossible to measure in Bose-Einstein condensates with the usual thermometric techniques. Moreover, the peculiar dependence of the system's entropy with the applied Zeeman energy opens a possible route for adiabatic cooling.
Spin Echo in Spinor Dipolar Bose-Einstein Condensates
Yasunaga, Masashi; Tsubota, Makoto
2008-11-28
We theoretically propose and numerically realize spin echo in a spinor Bose-Einstein condensate (BEC). We investigate the influence on the spin echo of phase separation of the condensate. The equation of motion of the spin density exhibits two relaxation times. We use two methods to separate the relaxation times and hence demonstrate a technique to reveal magnetic dipole-dipole interactions in spinor BECs.
Texture Control in a Pseudospin Bose-Einstein Condensate
Ruben, Gary; Morgan, Michael J.; Paganin, David M.
2010-11-26
We describe a wave function engineering approach to the formation of textures in nonrotated multicomponent Bose-Einstein condensates. With numerical simulations of a viable two-component condensate experiment, we demonstrate the formation of a ballistically expanding regular lattice texture, composed of half-quantum vortices and spin-2 textures. The formation is described by a linear interference process in which the geometry and phase of three initially separated wave packets provide deterministic control over the resulting lattice texture.
Beyond Spontaneously Broken Symmetry in Bose-Einstein Condensates
Mullin, W. J.; Laloee, F.
2010-04-16
Spontaneous symmetry breaking (SSB) for Bose-Einstein condensates cannot treat phase off-diagonal effects, and thus cannot explain Bell inequality violations. We describe another situation that is beyond a SSB treatment: an experiment where particles from two (possibly macroscopic) condensate sources are used for conjugate measurements of the relative phase and populations. Off-diagonal phase effects are characterized by a 'quantum angle' and observed via 'population oscillations', signaling quantum interference of macroscopically distinct states.
Controlling chaos in the Bose-Einstein condensate
Cong Fuzhong Wang Zhixia; Hua Hongtu; Pang Shichun; Tong Shouyu
2012-03-15
The spatial structure of the Bose-Einstein condensate (BEC) is investigated and spatially chaotic distributions of the condensates are revealed. By means of changing the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are different periodic orbits according to different s-wave scattering lengths only if the Lyapunov exponent of the system is negative.
Bose-Einstein condensation on a microelectronic chip.
Hänsel, W; Hommelhoff, P; Hänsch, T W; Reichel, J
2001-10-01
Although Bose-Einstein condensates of ultracold atoms have been experimentally realizable for several years, their formation and manipulation still impose considerable technical challenges. An all-optical technique that enables faster production of Bose-Einstein condensates was recently reported. Here we demonstrate that the formation of a condensate can be greatly simplified using a microscopic magnetic trap on a chip. We achieve Bose-Einstein condensation inside the single vapour cell of a magneto-optical trap in as little as 700 ms-more than a factor of ten faster than typical experiments, and a factor of three faster than the all-optical technique. A coherent matter wave is emitted normal to the chip surface when the trapped atoms are released into free fall; alternatively, we couple the condensate into an 'atomic conveyor belt', which is used to transport the condensed cloud non-destructively over a macroscopic distance parallel to the chip surface. The possibility of manipulating laser-like coherent matter waves with such an integrated atom-optical system holds promise for applications in interferometry, holography, microscopy, atom lithography and quantum information processing.
Bose-Einstein condensation on a microelectronic chip
NASA Astrophysics Data System (ADS)
Hänsel, W.; Hommelhoff, P.; Hänsch, T. W.; Reichel, J.
2001-10-01
Although Bose-Einstein condensates of ultracold atoms have been experimentally realizable for several years, their formation and manipulation still impose considerable technical challenges. An all-optical technique that enables faster production of Bose-Einstein condensates was recently reported. Here we demonstrate that the formation of a condensate can be greatly simplified using a microscopic magnetic trap on a chip. We achieve Bose-Einstein condensation inside the single vapour cell of a magneto-optical trap in as little as 700ms-more than a factor of ten faster than typical experiments, and a factor of three faster than the all-optical technique. A coherent matter wave is emitted normal to the chip surface when the trapped atoms are released into free fall; alternatively, we couple the condensate into an `atomic conveyor belt', which is used to transport the condensed cloud non-destructively over a macroscopic distance parallel to the chip surface. The possibility of manipulating laser-like coherent matter waves with such an integrated atom-optical system holds promise for applications in interferometry, holography, microscopy, atom lithography and quantum information processing.
Entanglement entropy and mutual information in Bose-Einstein condensates
Ding Wenxin; Yang Kun
2009-07-15
In this paper we study the entanglement properties of free nonrelativistic Bose gases. At zero temperature, we calculate the bipartite block entanglement entropy of the system and find that it diverges logarithmically with the particle number in the subsystem. For finite temperatures, we study the mutual information between the two blocks. We first analytically study an infinite-range hopping model, then numerically study a set of long-range hopping models in one dimension that exhibit Bose-Einstein condensation. In both cases we find that a Bose-Einstein condensate, if present, makes a divergent contribution to the mutual information which is proportional to the logarithm of the number of particles in the condensate in the subsystem. The prefactor of the logarithmic divergent term is model dependent.
Scalar field as a Bose-Einstein condensate?
NASA Astrophysics Data System (ADS)
Castellanos, Elías; Escamilla-Rivera, Celia; Macías, Alfredo; Núñez, Darío
2014-11-01
We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.
Interferometry with Bose-Einstein condensates in microgravity.
Müntinga, H; Ahlers, H; Krutzik, M; Wenzlawski, A; Arnold, S; Becker, D; Bongs, K; Dittus, H; Duncker, H; Gaaloul, N; Gherasim, C; Giese, E; Grzeschik, C; Hänsch, T W; Hellmig, O; Herr, W; Herrmann, S; Kajari, E; Kleinert, S; Lämmerzahl, C; Lewoczko-Adamczyk, W; Malcolm, J; Meyer, N; Nolte, R; Peters, A; Popp, M; Reichel, J; Roura, A; Rudolph, J; Schiemangk, M; Schneider, M; Seidel, S T; Sengstock, K; Tamma, V; Valenzuela, T; Vogel, A; Walser, R; Wendrich, T; Windpassinger, P; Zeller, W; van Zoest, T; Ertmer, W; Schleich, W P; Rasel, E M
2013-03-01
Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Because of their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this Letter we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far field of a double slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity. PMID:23496709
Bloch oscillations of Bose-Einstein condensates: breakdown and revival.
Witthaut, D; Werder, M; Mossmann, S; Korsch, H J
2005-03-01
We investigate the dynamics of Bose-Einstein condensates in a tilted one-dimensional periodic lattice within the mean-field (Gross-Pitaevskii) description. Unlike in the linear case the Bloch oscillations decay because of nonlinear dephasing. Pronounced revival phenomena are observed. These are analyzed in detail in terms of a simple integrable model constructed by an expansion in Wannier-Stark resonance states. We also briefly discuss the pulsed output of such systems for stronger static fields.
Anisotropic Solitons in Dipolar Bose-Einstein Condensates
Tikhonenkov, I.; Vardi, A.; Malomed, B. A.
2008-03-07
Starting with a Gaussian variational ansatz, we predict anisotropic bright solitons in quasi-2D Bose-Einstein condensates consisting of atoms with dipole moments polarized perpendicular to the confinement direction. Unlike isotropic solitons predicted for the moments aligned with the confinement axis [Phys. Rev. Lett. 95, 200404 (2005)], no sign reversal of the dipole-dipole interaction is necessary to support the solitons. Direct 3D simulations confirm their stability.
Rotating Bose-Einstein condensates with attractive interactions
Kavoulakis, G.M.; Jackson, A.D.; Baym, Gordon
2004-10-01
We examine the phase diagram of a Bose-Einstein condensate of atoms, interacting with an attractive pseudopotential, in a quadratic-plus-quartic potential trap rotating at a given rate. Investigating the behavior of the gas as a function of interaction strength and rotational frequency of the trap, we find that the phase diagram has three distinct phases: one with vortex excitation, one with center-of-mass excitation, and an unstable phase in which the gas collapses.
Dipolar Bose-Einstein condensates with weak disorder
Krumnow, Christian; Pelster, Axel
2011-08-15
A homogeneous polarized dipolar Bose-Einstein condensate is considered in the presence of weak quenched disorder within mean-field theory at zero temperature. By first solving perturbatively the underlying Gross-Pitaevskii equation and then performing disorder ensemble averages for physical observables, it is shown that the anisotropy of the two-particle interaction is passed on to both the superfluid density and the sound velocity.
Bose-Einstein-condensate interferometer with macroscopic arm separation
Garcia, O.; Deissler, B.; Hughes, K. J.; Reeves, J. M.; Sackett, C. A.
2006-09-15
A Michelson interferometer using Bose-Einstein condensates is demonstrated with coherence times of up to 44 ms and arm separations up to 180 {mu}m. This arm separation is larger than that observed for any previous atom interferometer. The device uses atoms weakly confined in a magnetic guide and the atomic motion is controlled using Bragg interactions with an off-resonant standing-wave laser beam.
Magnons as a Bose-Einstein Condensate in Nanocrystalline Gadolinium
Kaul, S. N.; Mathew, S. P.
2011-06-17
The recent observation [S. P. Mathew et al., J. Phys. Conf. Ser. 200, 072047 (2010)] of the anomalous softening of spin-wave modes at low temperatures in nanocrystalline gadolinium is interpreted as a Bose-Einstein condensation (BEC) of magnons. A self-consistent calculation, based on the BEC picture, is shown to closely reproduce the observed temperature variations of magnetization and specific heat at constant magnetic fields.
Taming rogue waves in vector Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Vinayagam, P. S.; Radha, R.; Porsezian, K.
2013-10-01
Using gauge transformation method, we generate rogue waves for the two-component Bose-Einstein condensates (BECs) governed by the symmetric coupled Gross-Pitaevskii (GP) equations and study their dynamics. We also suggest a mechanism to tame the rogue waves either by manipulating the scattering length through Feshbach resonance or the trapping frequency, a phenomenon not witnessed in the domain of BECs, and we believe that these results may have wider ramifications in the management of rogons.
Hysteresis effects in rotating Bose-Einstein condensates
Jackson, B.; Barenghi, C. F.
2006-10-15
We study the formation of vortices in a dilute Bose-Einstein condensate confined in a rotating anisotropic trap. We find that the number of vortices and angular momentum attained by the condensate depend upon the rotation history of the trap and on the number of vortices present in the condensate initially. A simplified model based on hydrodynamic equations is developed, and used to explain this effect in terms of a shift in the resonance frequency of the quadrupole mode of the condensate in the presence of a vortex lattice. Differences between the spin-up and spin-down response of the condensate are found, demonstrating hysteresis phenomena in this system.
{sup 39}K Bose-Einstein Condensate with Tunable Interactions
Roati, G.; Zaccanti, M.; D'Errico, C.; Catani, J.; Inguscio, M.; Modugno, G.; Modugno, M.; Simoni, A.
2007-07-06
We produce a Bose-Einstein condensate of {sup 39}K atoms. Condensation of this species with a naturally small and negative scattering length is achieved by a combination of sympathetic cooling with {sup 87}Rb and direct evaporation, exploiting the magnetic tuning of both inter- and intraspecies interactions at Feshbach resonances. We explore the tunability of the self-interactions by studying the expansion and the stability of the condensate. We find that a {sup 39}K condensate is interesting for future experiments requiring a weakly-interacting Bose gas.
Fidelity Decay in Trapped Bose-Einstein Condensates
Manfredi, G.; Hervieux, P.-A.
2008-02-08
The quantum coherence of a Bose-Einstein condensate is studied using the concept of quantum fidelity (Loschmidt echo). The condensate is confined in an elongated anharmonic trap and subjected to a small random potential such as that created by a laser speckle. Numerical experiments show that the quantum fidelity stays constant until a critical time, after which it drops abruptly over a single trap oscillation period. The critical time depends logarithmically on the number of condensed atoms and on the perturbation amplitude. This behavior may be observable by measuring the interference fringes of two condensates evolving in slightly different potentials.
Dynamic properties of dilute Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Durfee, Dallin S.
In this thesis, a new apparatus for the study of Bose- Einstein condensation is described, and the first two experiments performed with the new device are discussed. The new instrument was constructed for the creation of dilute gas sodium Bose-Einstein condensates, and features an optical quality quartz cell, a high-flux spin-flip Zeeman slower, a tightly confining magnetic trap, and a high-resolution imaging system. The theory, design, and construction of each component is discussed, including a detailed explanation of non-destructive dispersive imaging. Bose-Einstein condensation was first achieved in the new apparatus in January of this year. Bose condensates consisting of 10 to 25 million atoms can be produced in this apparatus at a rate of two condensates per minute. The first two experiments performed with the new instrument probed the dynamic properties of dilute Bose condensates, allowing comparisons to be made with long standing theories of weakly-interacting degenerate Bose fluids. The first experiment was the study of ``surface wave'' excitations of Bose condensates. Standing and rotating quadrupole and octopole excitations were driven with a novel scanned optical dipole potential, a new tool which allows us to generate arbitrary two-dimensional perturbations to the trapping potential which confines the atoms. The second experiment studied the transition from dissipationless to dissipative flow in a Bose condensate. This study, performed by ``stirring'' the condensate with a focused laser, provided the first experimental evidence for the existence of a critical velocity for dissipation in dilute gas Bose condensates. This experiment is discussed in the context of earlier studies of the critical velocity of superfluid liquid helium. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Wave-function monopoles in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Busch, Th.; Anglin, J. R.
1999-10-01
Experimental preparation of multispecies Bose-Einstein condensates should permit the creation of topologically stable defects beyond the superfluid vortex. But the coldness and isolation of condensates should also permit the survival for observable durations of ``pseudodefects,'' such as the one-dimensional dark soliton: localized structures related to a defect but not topologically stable. In this paper we investigate the viability of pseudodefects beyond one dimension, by examining ``wave-function monopoles'' in two-species condensates in two dimensions. We identify interesting instabilities, including a ``dancing mode'' for monopoles of higher winding number, and (in a one-dimensional limit) ``superfluid roulette.''
Large atom number Bose-Einstein condensate machines
Streed, Erik W.; Chikkatur, Ananth P.; Gustavson, Todd L.; Boyd, Micah; Torii, Yoshio; Schneble, Dominik; Campbell, Gretchen K.; Pritchard, David E.; Ketterle, Wolfgang
2006-02-15
We describe experimental setups for producing large Bose-Einstein condensates of {sup 23}Na and {sup 87}Rb. In both, a high-flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transferred into a cloverleaf-style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio-frequency-induced forced evaporation. Typical condensates contain 20x10{sup 6} atoms. We discuss the similarities and differences between the techniques used for producing large {sup 87}Rb and {sup 23}Na condensates in the context of nearly identical setups.
Double Species Bose-Einstein Condensate with Tunable Interspecies Interactions
Thalhammer, G.; Barontini, G.; De Sarlo, L.; Catani, J.; Minardi, F.; Inguscio, M.
2008-05-30
We produce Bose-Einstein condensates of two different species, {sup 87}Rb and {sup 41}K, in an optical dipole trap in proximity of interspecies Feshbach resonances. We discover and characterize two Feshbach resonances, located around 35 and 79 G, by observing the three-body losses and the elastic cross section. The narrower resonance is exploited to create a double species condensate with tunable interactions. Our system opens the way to the exploration of double species Mott insulators and, more in general, of the quantum phase diagram of the two-species Bose-Hubbard model.
Three-vortex configurations in trapped Bose-Einstein condensates
Seman, J. A.; Henn, E. A. L.; Shiozaki, R. F.; Ramos, E. R. F.; Caracanhas, M.; Castilho, P.; Castelo Branco, C.; Tavares, P. E. S.; Poveda-Cuevas, F. J.; Magalhaes, K. M. F.; Bagnato, V. S.; Haque, M.; Roati, G.
2010-09-15
We report on the creation of three-vortex clusters in a {sup 87}Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulations, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation and as a vortex-antivortex-vortex cluster. The linear configurations are very likely experimental signatures of predicted stationary vortex clusters.
Texture control in a pseudospin Bose-Einstein condensate.
Ruben, Gary; Morgan, Michael J; Paganin, David M
2010-11-26
We describe a wave function engineering approach to the formation of textures in nonrotated multicomponent Bose-Einstein condensates. With numerical simulations of a viable two-component condensate experiment, we demonstrate the formation of a ballistically expanding regular lattice texture, composed of half-quantum vortices and spin-2 textures. The formation is described by a linear interference process in which the geometry and phase of three initially separated wave packets provide deterministic control over the resulting lattice texture.
Excitation spectrum of Bose-Einstein Condensates with modified dispersion
NASA Astrophysics Data System (ADS)
Mossman, Maren; Khamehchi, M. A.; Engels, Peter
2015-05-01
Bose-Einstein Condensates provide a flexible platform to model a wide variety of condensed matter phenomena. To this goal, Raman dressing schemes and dynamical lattices have emerged as a premier tool, allowing for a modification of the dispersion relation leading to spin-orbit coupling and artificial gauge fields. Using Bragg spectroscopy, we investigate the collective excitation spectrum of BECs with engineered dispersion relations and study consequences of a roton-like minimum that can be softened by changing Raman dressing parameters. We report on the current status and future directions of our experiments. This work is supported by NSF.
Winding up superfluid in a torus via Bose Einstein condensation
Das, Arnab; Sabbatini, Jacopo; Zurek, Wojciech H
2010-12-16
We simulate Bose-Einstein condensation at finite temperature in a ring employing stochastic Gross-Pitaevskii equation and show that cooling through the critical point can generate topologically stable quantized circulation of the newborn condensate around the ring. The resulting winding numbers exhibiting Gaussian distribution with dispersion following scaling behavior predicted by the Kibble-Zurek mechanism (KZM). This opens up possibilities for direct experimental study of the underlying phase transition and the basic principles of KZM extended to account for such circulations. We discuss the effect of inhomogeneity on the above phenomenon by considering the effect of tilting of the ring in the gravitational field.
Large magnetic storage ring for Bose-Einstein condensates
Arnold, A. S.; Garvie, C. S.; Riis, E.
2006-04-15
Cold atomic clouds and Bose-Einstein condensates have been stored in a 10 cm diameter vertically oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2 m, with a heating rate of less than 50 nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.
Skyrmions in a ferromagnetic Bose-Einstein condensate.
Al Khawaja, U; Stoof, H
2001-06-21
Multi-component Bose-Einstein condensates provide opportunities to explore experimentally the wealth of physics associated with the spin degrees of freedom. The ground-state properties and line-like vortex excitations of these quantum systems have been studied theoretically. In principle, nontrivial spin textures consisting of point-like topological excitations, or skyrmions, could exist in a multi-component Bose-Einstein condensate, owing to the superfluid nature of the gas. Although skyrmion excitations are already known in the context of nuclear physics and the quantum-Hall effect, creating these excitations in an atomic condensate would offer an opportunity to study their physical behaviour in much greater detail, while also enabling an ab initio comparison between theory and experiment. Here we investigate theoretically the stability of skyrmions in a fictitious spin-1/2 condensate of 87Rb atoms. We find that skyrmions can exist in such a gas only as a metastable state, but with a lifetime comparable to (or even longer than) the typical lifetime of the condensate itself.
Coherence and Squeezing of Bose-Einstein Condensates in Double Wells
NASA Astrophysics Data System (ADS)
Yi, Xiao-jie
2016-05-01
We investigate coherence and squeezing of a two-mode Bose-Einstein condensate trapped in a double-well potential. By analytically deriving the form of coherence and numerically calculating the squeezing parameter, we show that the coherence and the squeezing may be controlled by adjusting some parameters of the two-mode Bose-Einstein condensate.
Vortex formation during the growth of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Weiler, Chad; Neely, Tyler; Scherer, David; Anderson, Brian
2007-06-01
We experimentally study of the growth of Bose-Einstein condensates in harmonic trapping potentials with laser-induced perturbations to the potential well. We find that some time- independent perturbations can significantly impact the growth process and final state of the BEC. In particular, in numerical simulations and our experiments, we have observed the generation of vortices and vortex-antivortex pairs as a result of creating BECs in perturbed potentials. We will describe the results of our ongoing and completed experiments (D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, cond-mat/0610187, to be published in Phys. Rev. Lett.).
Nonlinear beam splitter in Bose-Einstein-condensate interferometers
Pezze, L.; Smerzi, A.; Berman, G. P.; Bishop, A. R.; Collins, L. A.
2006-09-15
A beam splitter is an important component of an atomic/optical Mach-Zehnder interferometer. Here we study a Bose-Einstein condensate beam splitter, realized with a double well potential of tunable height. We analyze how the sensitivity of a Mach-Zehnder interferometer is degraded by the nonlinear particle-particle interaction during the splitting dynamics. We distinguish three regimes, Rabi, Josephson and Fock, and associate to them a different scaling of the phase sensitivity with the total number of particles.
Bose-Einstein Condensation of Dark Matter Axions
Sikivie, P.; Yang, Q.
2009-09-11
We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.
Bose-Einstein condensation of dark matter axions.
Sikivie, P; Yang, Q
2009-09-11
We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.
Geometrical Pumping with a Bose-Einstein Condensate.
Lu, H-I; Schemmer, M; Aycock, L M; Genkina, D; Sugawa, S; Spielman, I B
2016-05-20
We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global-topological-properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by local-geometrical-properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave packet's position in each unit cell, i.e., the polarization. PMID:27258857
Entanglement generation in quantum networks of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Pyrkov, Alexey N.; Byrnes, Tim
2013-09-01
Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic particles, thus can be considered to be a ‘macroscopic’ qubit. One of the difficulties with such a system is how to effectively interact such qubits together in order to transfer quantum information and create entanglement. Here we propose a scheme of cavities containing spinor BECs coupled by optical fiber in order to achieve this task. We discuss entanglement generation and quantum state transfer between nodes using such macroscopic BEC qubits.
Stability of self-gravitating Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Schroven, Kris; List, Meike; Lämmerzahl, Claus
2015-12-01
We study the ground state and the first three radially excited states of a self-gravitating Bose-Einstein condensate with respect to the influence of two external parameters, the total mass and the strength of interactions between particles. For this we use the so-called Gross-Pitaevskii-Newton system. In this context we especially determine the case of very high total masses where the ground state solutions of the Gross-Pitaevskii-Newton system can be approximated with the Thomas-Fermi limit. Furthermore, stability properties of the computed radially excited states are examined by applying arguments of the catastrophe theory.
Early stage of superradiance from Bose-Einstein condensates
Buchmann, L. F.; Lambropoulos, P.; Nikolopoulos, G. M.; Zobay, O.
2010-08-15
We investigate the dynamics of matter and optical waves at the early stage of superradiant Rayleigh scattering from Bose-Einstein condensates. Our analysis is within a spatially dependent quantum model which is capable of providing analytic solutions for the operators of interest. The predictions of the present model are compared to the predictions of a closely related mean-field model, and we provide a procedure that allows one to calculate quantum expectation values by averaging over semiclassical solutions. The coherence properties of the outgoing scattered light are also analyzed, and it is shown that the corresponding correlation functions may provide detailed information about the internal dynamics of the system.
Geometrical Pumping with a Bose-Einstein Condensate.
Lu, H-I; Schemmer, M; Aycock, L M; Genkina, D; Sugawa, S; Spielman, I B
2016-05-20
We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global-topological-properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by local-geometrical-properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave packet's position in each unit cell, i.e., the polarization.
Levitating soliton of the Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Vysotina, N. V.; Rosanov, N. N.
2016-07-01
We have proposed a mechanical model that corresponds to the Newton equation for describing the dynamics of an oscillon, viz., a soliton-like cluster of the Bose-Einstein condensate (with atomic attraction) placed above an oscillating atomic mirror in a uniform gravitational field. The model describes the stochastic Fermi acceleration and periodic, quasi-periodic, and chaotic motion of the oscillon center, as well as hysteresis phenomena in the case of a slow variation of mirror oscillation frequency, which are in good agreement with the results obtained using the Gross-Pitaevskii equation.
Bose-Einstein condensation in binary mixture of Bose gases
Tran Huu Phat; Le Viet Hoa; Nguyen Tuan Anh Nguyen Van Long
2009-10-15
The Bose-Einstein condensation (BEC) in a binary mixture of Bose gases is studied by means of the Cornwall-Jackiw-Tomboulis (CJT) effective action approach. The equations of state (EoS) and various scenarios of phase transitions of the system are considered in detail, in particular, the numerical computations are carried out for symmetry restoration (SR), symmetry nonrestoration (SNR) and inverse symmetry breaking (ISB) for getting an insight into their physical nature. It is shown that due to the cross interaction between distinct components of mixture there occur two interesting phenomena: the high temperature BEC and the inverse BEC, which could be tested in experiments.
Rapidly rotating Bose-Einstein condensates in homogeneous traps
Correggi, M.; Rindler-Daller, T.; Yngvason, J.
2007-10-15
We extend the results of a previous paper on the Gross-Pitaevskii description of rotating Bose-Einstein condensates in two-dimensional traps to confining potentials of the form V(r)=r{sup s}, 2
Noise thermometry with two weakly coupled Bose-Einstein condensates.
Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K
2006-04-01
Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics. PMID:16711972
Geometrical Pumping with a Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Lu, H.-I.; Schemmer, M.; Aycock, L. M.; Genkina, D.; Sugawa, S.; Spielman, I. B.
2016-05-01
We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global—topological—properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by local—geometrical—properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave packet's position in each unit cell, i.e., the polarization.
Vortex dynamics in cubic-quintic Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Mithun, T.; Porsezian, K.; Dey, Bishwajyoti
2013-07-01
We study vortex dynamics in a trapped Bose-Einstein condensate with tunable two- and three-body interactions. The dynamics is governed by two-dimensional cubic-quintic Gross-Pitaevskii equation. A time-dependent variational method has been used to obtain critical rotational frequency and surface mode frequency analytically and are compared with numerical simulation results. An imaginary time propagation method and Crank-Nicolson scheme for discretization have been used for numerical simulation. The numerically calculated average value of the angular momentum per particle shows very clearly its dynamical relation with the time development of the vortex formation. The rotational frequency dependence of the variation of average value of the angular momentum per particle with time shows that vortices form much faster in time for higher rotational frequency. Similarly, the vortex forms much faster in time with an increase of the strength of the repulsive three-body interaction. The simulation of the vortex lattice formation in the condensate shows that the presence of the three-body interactions does not alter the vortex lattice pattern but it helps in the shape deformations of the condensate thereby leading to vortex lattice formation. Likewise, the three-body interactions enable the vortex lattice formation in Bose-Einstein condensates even with attractive two-body interactions and in purely quintic BEC.
Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates
Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.
2015-04-14
We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals in the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.
Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates
Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.
2015-04-14
We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less
Dissipative transport of a Bose-Einstein condensate
Dries, D.; Pollack, S. E.; Hitchcock, J. M.; Hulet, R. G.
2010-09-15
We investigate the effects of impurities, either correlated disorder or a single Gaussian defect, on the collective dipole motion of a Bose-Einstein condensate of {sup 7}Li in an optical trap. We find that this motion is damped at a rate dependent on the impurity strength, condensate center-of-mass velocity, and interatomic interactions. Damping in the Thomas-Fermi regime depends universally on the disordered potential strength scaled to the condensate chemical potential and the condensate velocity scaled to the speed of sound. The damping rate is comparatively small in the weakly interacting regime, and, in this case, is accompanied by strong condensate fragmentation. In situ and time-of-flight images of the atomic cloud provide evidence that this fragmentation is driven by dark soliton formation.
Thermalization of gluons with Bose-Einstein condensation.
Xu, Zhe; Zhou, Kai; Zhuang, Pengfei; Greiner, Carsten
2015-05-01
We study the thermalization of gluons far from thermal equilibrium in relativistic kinetic theory. The initial distribution of gluons is assumed to resemble that in the early stage of ultrarelativistic heavy ion collisions. Only elastic scatterings in static, nonexpanding gluonic matter are considered. At first we show that the occurrence of condensation in the limit of vanishing particle mass requires a general constraint for the scattering matrix element. Then the thermalization of gluons with Bose-Einstein condensation is demonstrated in a transport calculation. We see a continuously increasing overpopulation of low energy gluons, followed by a decrease to the equilibrium distribution, when the condensation occurs. The times of the completion of the gluon condensation and of the entropy production are calculated. These times scale inversely with the energy density.
Internal Josephson oscillations for distinct momenta Bose-Einstein condensates
Lim, Lih-King; Troppenz, T.; Morais Smith, C.
2011-11-15
The internal Josephson oscillations between an atomic Bose-Einstein condensate (BEC) and a molecular one are studied for atoms in a square optical lattice subjected to a staggered gauge field. The system is described by a Bose-Hubbard model with complex and anisotropic hopping parameters that are different for each species, i.e., atoms and molecules. When the flux per plaquette for each species is small, the system oscillates between two conventional zero-momentum condensates. However, there is a regime of parameters in which Josephson oscillations between a vortex-carrying atomic condensate (finite momentum BEC) and a conventional zero-momentum molecular condensate may be realized. The experimental observation of the oscillations between these qualitatively distinct BEC's is possible with state-of-the-art Ramsey interference techniques.
Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.
Berrada, T; van Frank, S; Bücker, R; Schumm, T; Schaff, J-F; Schmiedmayer, J
2013-01-01
Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors. PMID:23804159
Atom Interferometry on Sounding Rockets with Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Seidel, Stephan T.; Becker, Dennis; Lachmann, Maike D.; Herr, Waldemar; Rasel, Ernst M.; Quantus Collaboration
2016-05-01
One of the fundamental postulates of our description of nature is the universality of free fall, stating that the force exerted upon an object due to gravity is independent of its constitution. A precise test of this assumption is the comparison of the free fall of two ultra-cold clouds of different atomic species via atom interferometry. Since the sensitivity of the measurement is proportional to the square of the propagation time in the interferometer, it can be increased by performing the experiments in microgravity. In order to fully utilize the potential of the experiments the usage of a Bose-Einstein-Condensate as the initial state is necessary, because it is characterized by a small initial size and a low expansion velocity. As a step towards the transfer of such a system into space three sounding rocket missions with atom interferometers are currently being prepared. The launch of the first mission, aimed at the first demonstration of a Bose-Einstein-Condensate in space and an atom interferometer based on it is planned for 2016 from ESRANGE, Sweden. It will be followed by two more missions that extend the scientific goals to the creation of degenerate mixtures and dual-species atom interferometry. This research is funded by the German Space Agency DLR under Grant Number DLR 50 1131-37.
Vortex formation by merging multiple trapped Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Weiler, Chad; Neely, Tyler; Scherer, David; Anderson, Brian
2007-06-01
We have experimentally studied the merging of three trapped Bose-Einstein condensates. We find that, depending on the rate of merging, the final single BEC may contain a single vortex core (for slow merging rates), or multiple cores (for fast merging rates). Similarly, a triple-well trap may initiate the formation of three isolated BECs, but if the barriers between the wells are weak enough, the condensates merge together during their growth; this process can also lead to the formation of vortices in the final BEC. We interpret both scenarios in terms of interference between the initial uncorrelated condensates with indeterminate relative phases. We will discuss the results and interpretation of this experiment (D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, cond-mat/0610187, to be published in Phys. Rev. Lett.).
Vortex signatures in annular Bose-Einstein condensates
Cozzini, M.; Stringari, S.; Jackson, B.
2006-01-15
We consider a Bose-Einstein condensate confined in a 'Mexican hat' or sombrero potential, with a quartic minus quadratic radial dependence. We find conditions under which the ground state is annular in shape, with a hole in the center of the condensate. Rotation leads to the appearance of stable multiply quantized vortices, giving rise to a superfluid flow around the ring. The collective modes of the system are explored both numerically and analytically using the Gross-Pitaevskii and hydrodynamic equations. Potential experimental schemes to detect vorticity are proposed and evaluated, which include measuring the splitting of collective-mode frequencies, observing expansion following release from the trap, and probing the momentum distribution of the condensate.
Atom Interferometry with a Weakly Interacting Bose-Einstein Condensate
Fattori, M.; D'Errico, C.; Roati, G.; Inguscio, M.; Modugno, G.; Zaccanti, M.; Jona-Lasinio, M.; Modugno, M.
2008-02-29
We demonstrate the operation of an atom interferometer based on a weakly interacting Bose-Einstein condensate. We strongly reduce the interaction induced decoherence that usually limits interferometers based on trapped condensates by tuning the s-wave scattering length almost to zero via a magnetic Feshbach resonance. We employ a {sup 39}K condensate trapped in an optical lattice, where Bloch oscillations are forced by gravity. The fine-tuning of the scattering length down to 0.1 a{sub 0} and the micrometric sizes of the atomic sample make our system a very promising candidate for measuring forces with high spatial resolution. Our technique can be in principle extended to other measurement schemes opening new possibilities in the field of trapped atom interferometry.
Spin-Orbit Coupled Spinor Bose-Einstein Condensates
Wang Chunji; Gao Chao; Jian Chaoming; Zhai Hui
2010-10-15
An effective spin-orbit coupling can be generated in a cold atom system by engineering atom-light interactions. In this Letter we study spin-1/2 and spin-1 Bose-Einstein condensates with Rashba spin-orbit coupling, and find that the condensate wave function will develop nontrivial structures. From numerical simulation we have identified two different phases. In one phase the ground state is a single plane wave, and often we find the system splits into domains and an array of vortices plays the role of a domain wall. In this phase, time-reversal symmetry is broken. In the other phase the condensate wave function is a standing wave, and it forms a spin stripe. The transition between them is driven by interactions between bosons. We also provide an analytical understanding of these results and determine the transition point between the two phases.
Spin-orbit coupled spinor Bose-Einstein condensates.
Wang, Chunji; Gao, Chao; Jian, Chao-Ming; Zhai, Hui
2010-10-15
An effective spin-orbit coupling can be generated in a cold atom system by engineering atom-light interactions. In this Letter we study spin-1/2 and spin-1 Bose-Einstein condensates with Rashba spin-orbit coupling, and find that the condensate wave function will develop nontrivial structures. From numerical simulation we have identified two different phases. In one phase the ground state is a single plane wave, and often we find the system splits into domains and an array of vortices plays the role of a domain wall. In this phase, time-reversal symmetry is broken. In the other phase the condensate wave function is a standing wave, and it forms a spin stripe. The transition between them is driven by interactions between bosons. We also provide an analytical understanding of these results and determine the transition point between the two phases.
Kinetic approach to a relativistic Bose-Einstein condensate.
Meistrenko, Alex; van Hees, Hendrik; Zhou, Kai; Greiner, Carsten
2016-03-01
We apply a Boltzmann approach to the kinetic regime of a relativistic Bose-Einstein condensate of scalar bosons by decomposing the one-particle distribution function in a condensate part and a nonzero momentum part of excited modes, leading to a coupled set of evolution equations which are then solved efficiently with an adaptive higher order Runge-Kutta scheme. We compare our results to the partonic cascade Monte Carlo simulation BAMPS for a critical but far from equilibrium case of massless bosons. Motivated by the color glass condensate initial conditions in QCD with a strongly overpopulated initial glasma state, we also discuss the time evolution starting from an overpopulated initial distribution function of massive scalar bosons. In this system a self-similar evolution of the particle cascade with a nonrelativistic turbulent scaling in the infrared sector is observed as well as a relativistic exponent for the direct energy cascade, confirming a weak wave turbulence in the ultraviolet region.
Mode locking of a driven Bose-Einstein condensate
Nicolin, Alexandru I.; Jensen, Mogens H.; Carretero-Gonzalez, R.
2007-03-15
We consider the dynamics of a driven Bose-Einstein condensate with positive scattering length. Employing an accustomed variational treatment we show that when the scattering length is time modulated as a(1+{epsilon} sin[{omega}(t)t]), where {omega}(t) increases linearly in time, i.e., {omega}(t)={gamma}t, the response frequency of the condensate locks to the eigenfrequency for small values of {epsilon} and {gamma}. A simple analytical model is presented which explains this phenomenon by mapping it to an auto-resonance, i.e., close to resonance the reduced equations describing the collective behavior of the condensate are equivalent to those of a virtual particle trapped in a finite-depth energy minimum of an effective potential.
Scanning Cryogenic Magnetometry with a Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Lev, Benjamin; Straquadine, Joshua; Yang, Fan
2016-05-01
Microscopy techniques co-opted from nonlinear optics and high energy physics have complemented solid-state probes in elucidating exotic order manifest in condensed matter systems. We present a novel scanning magnetometer which adds the techniques of ultracold atomic physics to the condensed matter toolbox. Our device, the Scanning Quantum CRyogenic Atom Microscope (SQCRAMscope) uses a one-dimensional Bose-Einstein condensate of 87 Rb to image magnetic and electric fields near surfaces between room and cryogenic temperatures, and allows for rapid sample changes while retaining UHV compatibility for atomic experiments. We present our characterization of the spatial resolution and magnetic field sensitivity of the device, and discuss the advantages and applications of this magnetometry technique. In particular, we will discuss our plans for performing local transport measurements in technologically relevant materials such as Fe-based superconductors and topological insulators.
85Rb tunable-interaction Bose-Einstein condensate machine.
Altin, P A; Robins, N P; Döring, D; Debs, J E; Poldy, R; Figl, C; Close, J D
2010-06-01
We describe our experimental setup for creating stable Bose-Einstein condensates (BECs) of (85)Rb with tunable interparticle interactions. We use sympathetic cooling with (87)Rb in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume, crossed optical dipole trap, using the 155 G Feshbach resonance to manipulate the elastic and inelastic scattering properties of the (85)Rb atoms. Typical (85)Rb condensates contain 4 x 10(4) atoms with a scattering length of a=+200a(0). Many aspects of the design presented here could be adapted to other dual-species BEC machines, including those involving degenerate Fermi-Bose mixtures. Our minimalist apparatus is well suited to experiments on dual-species and spinor Rb condensates, and has several simplifications over the (85)Rb BEC machine at JILA, which we discuss at the end of this article. PMID:20590221
Moving impurity in an inhomogenous Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Mathew, Ranchu; Tiesinga, Eite
2016-05-01
We study the dynamics of a non-uniform Bose-Einstein condensate (BEC) under the influence of a moving weak point-like impurity. When the condensate density varies slowly compared to its healing length the critical velocity of the impurity, beyond which the condensate becomes unstable, can be calculated using the Local Density Approximation (LDA). This critical velocity corresponds to the smallest local sound speed. The LDA breaks down when the length scale of density variations is of the order of the healing length. We have calculated corrections to the critical velocity in this regime as an asymptotic expansion in the size of the BEC. We also discuss the experimental implications of our calculations by studying the stability of the atomic analogue of a Superconducting Quantum Interference Device (SQUID). The atom-SQUID consists of a BEC in a ring trap with rotating barrier. The impurity corresponds to imperfections in the ring trap.
Emergence of classical rotation in superfluid Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
White, Angela; Hennessy, Tara; Busch, Thomas
2016-03-01
Phase transitions can modify quantum behavior on mesoscopic scales and give access to new and unusual quantum dynamics. Here we investigate the superfluid properties of a rotating two-component Bose-Einstein condensate as a function of changes in the interaction energy and in particular through the phase transition from miscibility to immiscibility. We show that the breaking of one of the hallmarks of superfluid flow, namely, the quantization condition on circulation, is continuous throughout an azimuthal phase-separation process and displays intriguing flow dynamics. We find that the resulting currents are stable for long times and possess a boundary between the two condensate components that exhibits classical solid-body rotation, despite the quantum nature of superfluid flow. To support this coexistence of classical and quantum behavior the system develops a unique velocity flow profile, which includes unusual radial flow in regions near the boundary.
Nonlinear waves in coherently coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Congy, T.; Kamchatnov, A. M.; Pavloff, N.
2016-04-01
We consider a quasi-one-dimensional two-component Bose-Einstein condensate subject to a coherent coupling between its components, such as realized in spin-orbit coupled condensates. We study how nonlinearity modifies the dynamics of the elementary excitations. The spectrum has two branches, which are affected in different ways. The upper branch experiences a modulational instability, which is stabilized by a long-wave-short-wave resonance with the lower branch. The lower branch is stable. In the limit of weak nonlinearity and small dispersion it is described by a Korteweg-de Vries equation or by the Gardner equation, depending on the value of the parameters of the system.
Winding up superfluid in a torus via Bose Einstein condensation
NASA Astrophysics Data System (ADS)
Das, Arnab; Sabbatini, Jacopo; Zurek, Wojciech H.
2012-04-01
Phase transitions are usually treated as equilibrium phenomena, which yields telltale universality classes with scaling behavior of relaxation time and healing length. However, in second-order phase transitions relaxation time diverges near the critical point (``critical slowing down''). Therefore, every such transition traversed at a finite rate is a non-equilibrium process. Kibble-Zurek mechanism (KZM) captures this basic physics, predicting sizes of domains - fragments of broken symmetry - and the density of topological defects, long-lived relics of symmetry breaking that can survive long after the transition. To test KZM we simulate Bose-Einstein condensation in a ring using stochastic Gross-Pitaevskii equation and show that BEC formation can spontaneously generate quantized circulation of the newborn condensate. The magnitude of the resulting winding numbers and the time-lag of BEC density growth - both experimentally measurable - follow scalings predicted by KZM. Our results may also facilitate measuring the dynamical critical exponent for the BEC transition.
Bose-Einstein condensation in liquid 4He under pressure
Glyde, Henry R; Omar Diallo, Souleymane; Azuah, Richard T; Kirichek, Oleg; Taylor, Jon W.
2011-01-01
We present neutron scattering measurements of Bose-Einstein condensation, the atomic momen- tum distribution and Final State effects in liquid 4He under pressure. The condensate fraction at low temperature is found to decrease from n0 = 7.25 0.75% at SVP (p 0) to n0 = 3.2 0.75% at pressure p = 24 bar. This indicates an n0 = 3.0% in the liquid at the liquid/solid co-existence line (p = 25.3 bar). The atomic momentum distribution n(k) has high occupation of low k states and differs significantly from a Gaussian (e.g. a classical n(k)). Both n(k) and the Final state function broaden with increasing pressure, reflecting the increased localization of the 4He in space under increased pressure.
Phonon dispersion relation of an atomic Bose-Einstein condensate.
Shammass, I; Rinott, S; Berkovitz, A; Schley, R; Steinhauer, J
2012-11-01
We measure the time oscillations of a freely evolving standing wave of phonons in a Bose-Einstein condensate. We present the technique of short Bragg pulses, which stimulates the standing wave. The subsequent oscillations are observed in situ. The frequency of the oscillations gives the dispersion relation, the amplitude gives the static structure factor, and the decay gives the dephasing time. The new technique gives orders of magnitude more sensitivity than Bragg spectroscopy, allowing for the observation of deviations from the local density approximation. Specifically, it is seen that the phonons undergo a transition from three dimensions to one dimension, when their wavelength becomes longer than the transverse radius of the condensate. The one-dimensional regime contains an inflection point in the dispersion relation, a decrease in the superfluid critical velocity, a minimum in the group velocity, and an increase in the lifetime of the standing wave oscillations.
Scanning Cryogenic Magnetometry with a 1D Bose Einstein Condensate
NASA Astrophysics Data System (ADS)
Straquadine, Joshua; Yang, Fan; Lev, Benjamin
We present a novel scanning probe magnetometer suitable for cryogenic studies, in which the probe is a Bose-Einstein condensate of 87Rb. The system is designed for rapid sample changes and operation between 35 K and room temperature while remaining compatible with the UHV requirements of ultracold atom experiments. We demonstrate a spatial resolution (FWHM) of 2.6 μm and a repeatability of 1.9 +/- 1.0 nT. We also show that the system is operating close to the fundamental measurement limits set by photon shot noise and atom shot noise. Our scanning quantum cryogenic atom microscope is suitable for fundamental studies of transport and magnetism in condensed matter systems such as high-temperature superconductors and topological insulators. We discuss the advantages and applications of this magnetometry technique.
Momentum-space engineering of gaseous Bose-Einstein condensates
Edwards, Mark; Benton, Brandon; Heward, Jeffrey; Clark, Charles W.
2010-12-15
We show how the momentum distribution of gaseous Bose-Einstein condensates can be shaped by applying a sequence of standing-wave laser pulses. We present a theory, whose validity was demonstrated in an earlier experiment [L. Deng et al., Phys. Rev. Lett. 83, 5407 (1999)], of the effect of a two-pulse sequence on the condensate wavefunction in momentum space. We generalize the previous result to the case of N pulses of arbitrary intensity separated by arbitrary intervals and show how these parameters can be engineered to produce a desired final momentum distribution. We find that several momentum distributions, important in atom-interferometry applications, can be engineered with high fidelity with two or three pulses.
Bose-Einstein condensation in an ultra-hot gas of pumped magnons.
Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard
2014-03-11
Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.
Knot Solitons in Spinor Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Hall, David; Ray, Michael; Tiurev, Konstantin; Ruokokoski, Emmi; Gheorghe, Andrei Horia; Möttönen, Mikko
2016-05-01
Knots are familiar entities that appear at a captivating nexus of art, technology, mathematics and science. Following a lengthy period of theoretical investigation and development, they have recently attracted great experimental interest in classical contexts ranging from knotted DNA and nanostructures to vortex knots in fluids. We demonstrate here the controlled creation and detection of knot solitons in the quantum-mechanical order parameter of a spinor Bose-Einstein condensate. Images of the superfluid reveal the circular shape of the soliton core and its associated linked rings. Our observations of the knot soliton establish an experimental foundation for future studies of their stability, dynamics and applications within quantum systems. Supported in part by NSF Grant PHY-1205822.
Dynamics of nonautonomous rogue waves in Bose-Einstein condensate
Zhao, Li-Chen
2013-02-15
We study rogue waves of Bose-Einstein condensate (BEC) analytically in a time-dependent harmonic trap with a complex potential. Properties of the nonautonomous rogue waves are investigated analytically. It is reported that there are possibilities to 'catch' rogue waves through manipulating nonlinear interaction properly. The results provide many possibilities to manipulate rogue waves experimentally in a BEC system. - Highlights: Black-Right-Pointing-Pointer One more generalized rogue wave solutions are presented. Black-Right-Pointing-Pointer Present one possible way to catch a rouge wave. Black-Right-Pointing-Pointer Properties of rogue waves are investigated analytically for the first time. Black-Right-Pointing-Pointer Provide many possibilities to manipulate rogue waves in BEC.
Spatial structure of a collisionally inhomogeneous Bose-Einstein condensate
Li, Fei; Zhang, Dongxia; Rong, Shiguang; Xu, Ying
2013-11-15
The spatial structure of a collisionally inhomogeneous Bose-Einstein condensate (BEC) in an optical lattice is studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating amplitude of the current can force the system to pass from a single-periodic spatial structure into a very complex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Numerical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic spatial distribution via a quasiperiodic route.
Two-component Bose-Einstein condensates in periodic potential.
Kostov, N A; Enol'skii, V Z; Gerdjikov, V S; Konotop, V V; Salerno, M
2004-11-01
Coupled nonlinear Schrödinger (CNLS) equations with an external elliptic function potential model with high accuracy a quasi-one-dimensional interacting two-component Bose-Einstein condensate (BEC) trapped in a standing wave generated by a few laser beams. The construction of stationary solutions of the two-component CNLS equation with a periodic potential is detailed and their stability properties are studied by direct numerical simulations. Some of these solutions allow reduction to the Manakov system. From a physical point of view the trivial phase solutions can be interpreted as exact Bloch states at the edge of the Brillouin zone. Some of them are stable while others are found to be unstable against weak modulations of long wavelength. By numerical simulations it is shown that the modulationally unstable solutions lead to the formation of localized ground states of the coupled BEC system.
Neural networks using two-component Bose-Einstein condensates
Byrnes, Tim; Koyama, Shinsuke; Yan, Kai; Yamamoto, Yoshihisa
2013-01-01
The authors previously considered a method of solving optimization problems by using a system of interconnected network of two component Bose-Einstein condensates (Byrnes, Yan, Yamamoto New J. Phys. 13, 113025 (2011)). The use of bosonic particles gives a reduced time proportional to the number of bosons N for solving Ising model Hamiltonians by taking advantage of enhanced bosonic cooling rates. Here we consider the same system in terms of neural networks. We find that up to the accelerated cooling of the bosons the previously proposed system is equivalent to a stochastic continuous Hopfield network. This makes it clear that the BEC network is a physical realization of a simulated annealing algorithm, with an additional speedup due to bosonic enhancement. We discuss the BEC network in terms of neural network tasks such as learning and pattern recognition and find that the latter process may be accelerated by a factor of N. PMID:23989391
Spin-orbit coupled Bose-Einstein condensate under rotation.
Xu, Xiao-Qiang; Han, Jung Hoon
2011-11-11
We examine the combined effects of Rashba spin-orbit (SO) coupling and rotation on trapped spinor Bose-Einstein condensates. The nature of single particle states is thoroughly examined in the Landau level basis and is shown to support the formation of a half-quantum vortex. In the presence of weak s-wave interactions, the ground state at strong SO coupling develops ringlike structures with domains whose number shows step behavior with increasing rotation. For the fast rotation case, the vortex pattern favors a triangular lattice, accompanied by density depletion in the central region and a weakened Skyrmionic character as the SO coupling is enhanced. Giant vortex formation is facilitated when SO coupling and rotation are both strong.
Formation of molecules in an expanding Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Yurovsky, Vladimir; Ben-Reuven, Abraham
2004-05-01
A mean field theory [1] is extended to an inhomogeneous case of expanding hybrid atom-molecule Bose-Einstein condensates. This theory is applied to the recent MPI experiments [2] on ^87Rb demonstrating the formation of ultracold molecules due to Feshbach resonance. The subsequent dissociation of the molecules is treated using a non-mean-field parametric approximation [3]. The latter method is also used in determining optimal conditions for the formation of molecular BEC. [1] V. A. Yurovsky, A. Ben-Reuven, P. S. Julienne and C. J. Williams, Phys. Rev. A 60, R765 (1999); Phys. Rev. A 62, 043605 (2000). [2] S. Dürr, T. Volz, A. Marte, and G. Rempe, Phys. Rev. Lett. 92, 020406 (2004). [3] V. A. Yurovsky and A. Ben-Reuven, Phys. Rev. A 67, 043611 (2003).
STIRAP schemes for atomic Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Thomasen, Andreas M. D.; Byrnes, Tim
2016-09-01
In coherent control of Bose-Einstein condensates (BEC) the major limitation to successful high fidelity transfer using optical Raman transitions is spontaneous emission of radiation and the decoherence that this causes. We present a scheme based on stimulated Raman adiabatic passage (STIRAP) designed specifically for Rubidium 87. STIRAP is a method of population transfer that relies on the adiabatic theorem of quantum mechanics. Instead of transferring population between Hamiltonian ground states, one adiabatically evolves the ground states into some desired superposition. We show that one may thereby implement arbitrary rotations of spinor BECs with extremely high fidelities. Our simulations show that given a BEC with N = 104 atoms, we may do an arbitrary unitary rotation with an infidelity of about 10-7 that takes approximately 100 ns.
Bose-Einstein Condensates with Large Number of Vortices
Ho, Tin-Lun
2001-08-06
We show that as the number of vortices in a three dimensional Bose-Einstein condensate increases, the system reaches a ''quantum Hall'' regime where the density profile is a Gaussian in the xy plane and an inverted parabolic profile along z . The angular momentum of the system increases as the vortex lattice shrinks. However, Coriolis force prevents the unit cell of the vortex lattice from shrinking beyond a minimum size. Although the recent MIT experiment is not exactly in the quantum Hall regime, it is close enough for the present results to be used as a guide. The quantum Hall regime can be easily reached by moderate changes of the current experimental parameters.
Bell correlations in a Bose-Einstein condensate.
Schmied, Roman; Bancal, Jean-Daniel; Allard, Baptiste; Fadel, Matteo; Scarani, Valerio; Treutlein, Philipp; Sangouard, Nicolas
2016-04-22
Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlations--Bell correlations--between the spins of about 480 atoms in a Bose-Einstein condensate. We derive a Bell correlation witness from a many-particle Bell inequality involving only one- and two-body correlation functions. Our measurement on a spin-squeezed state exceeds the threshold for Bell correlations by 3.8 standard deviations. Our work shows that the strongest possible nonclassical correlations are experimentally accessible in many-body systems and that they can be revealed by collective measurements.
Matter-wave recombiners for trapped Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Berrada, T.; van Frank, S.; Bücker, R.; Schumm, T.; Schaff, J.-F.; Schmiedmayer, J.; Julía-Díaz, B.; Polls, A.
2016-06-01
Interferometry with trapped atomic Bose-Einstein condensates (BECs) requires the development of techniques to recombine the two paths of the interferometer and map the accumulated phase difference to a measurable atom number difference. We have implemented and compared two recombining procedures in a double-well-based BEC interferometer. The first procedure utilizes the bosonic Josephson effect and controlled tunneling of atoms through the potential barrier, similar to laser light in an optical fiber coupler. The second one relies on the interference of the reflected and transmitted parts of the BEC wave function when impinging on the potential barrier, analogous to light impinging on a half-silvered mirror. Both schemes were implemented successfully, yielding an interferometric contrast of ˜20 % and 42% respectively. Building efficient matter-wave recombiners represents an important step towards the coherent manipulation of external quantum superposition states of BECs.
Stabilization of ring dark solitons in Bose-Einstein condensates
Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.; Kaper, Tasso J.; Ma, Manjun
2015-09-14
Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, wheremore » appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.« less
Stabilization of ring dark solitons in Bose-Einstein condensates
Wang, Wenlong; Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.; Kaper, Tasso J.; Ma, Manjun
2015-09-14
Earlier work has shown that ring dark solitons in two-dimensional Bose-Einstein condensates are generically unstable. In this work, we propose a way of stabilizing the ring dark soliton via a radial Gaussian external potential. We investigate the existence and stability of the ring dark soliton upon variations of the chemical potential and also of the strength of the radial potential. Numerical results show that the ring dark soliton can be stabilized in a suitable interval of external potential strengths and chemical potentials. Furthermore, we also explore different proposed particle pictures considering the ring as a moving particle and find, where appropriate, results in very good qualitative and also reasonable quantitative agreement with the numerical findings.
Quantum turbulence in trapped atomic Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Tsatsos, Marios C.; Tavares, Pedro E. S.; Cidrim, André; Fritsch, Amilson R.; Caracanhas, Mônica A.; dos Santos, F. Ednilson A.; Barenghi, Carlo F.; Bagnato, Vanderlei S.
2016-03-01
Turbulence, the complicated fluid behavior of nonlinear and statistical nature, arises in many physical systems across various disciplines, from tiny laboratory scales to geophysical and astrophysical ones. The notion of turbulence in the quantum world was conceived long ago by Onsager and Feynman, but the occurrence of turbulence in ultracold gases has been studied in the laboratory only very recently. Albeit new as a field, it already offers new paths and perspectives on the problem of turbulence. Herein we review the general properties of quantum gases at ultralow temperatures paying particular attention to vortices, their dynamics and turbulent behavior. We review the recent advances both from theory and experiment. We highlight, moreover, the difficulties of identifying and characterizing turbulence in gaseous Bose-Einstein condensates compared to ordinary turbulence and turbulence in superfluid liquid helium and spotlight future possible directions.
Internal Josephson effects in spinor dipolar Bose-Einstein condensates
Yasunaga, Masashi; Tsubota, Makoto
2010-02-15
We theoretically study the internal Josephson effect, which is driven by spin-exchange interactions and magnetic dipole-dipole interactions, in a three-level system for spin-1 Bose-Einstein condensates, obtaining novel spin dynamics. We introduce single spatial mode approximations into the Gross-Pitaevskii equations and derive the Josephson-type equations, which are analogous to tunneling currents through three junctions between three superconductors. From an analogy with two interacting nonrigid pendulums, we identify unique varied oscillational modes, called the 0-{pi}, 0-running, running-running, 2n{pi} and running-2{pi}, single nonrigid pendulum, and two rigid pendulums phase modes. These Josephson modes in the three states are expected to be found in real atomic Bose gas systems.
Bell correlations in a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Schmied, Roman; Bancal, Jean-Daniel; Allard, Baptiste; Fadel, Matteo; Scarani, Valerio; Treutlein, Philipp; Sangouard, Nicolas
2016-04-01
Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlations—Bell correlations—between the spins of about 480 atoms in a Bose-Einstein condensate. We derive a Bell correlation witness from a many-particle Bell inequality involving only one- and two-body correlation functions. Our measurement on a spin-squeezed state exceeds the threshold for Bell correlations by 3.8 standard deviations. Our work shows that the strongest possible nonclassical correlations are experimentally accessible in many-body systems and that they can be revealed by collective measurements.
Rydberg Electrons in a Bose-Einstein Condensate.
Wang, Jia; Gacesa, Marko; Côté, R
2015-06-19
We investigate a hybrid system composed of ultracold Rydberg atoms immersed in an atomic Bose-Einstein condensate (BEC). The coupling between Rydberg electrons and BEC atoms leads to excitations of phonons, the exchange of which induces a Yukawa interaction between Rydberg atoms. Because of the small electron mass, the effective charge associated with this quasiparticle-mediated interaction can be large. Its range, equal to the BEC healing length, is tunable using Feshbach resonances to adjust the scattering length between BEC atoms. We find that for small healing lengths, the distortion of the BEC can "image" the Rydberg electron wave function, while for large healing lengths the induced attractive Yukawa potentials between Rydberg atoms are strong enough to bind them.
Quantum filaments in dipolar Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Wächtler, F.; Santos, L.
2016-06-01
Collapse in dipolar Bose-Einstein condensates may be arrested by quantum fluctuations. Due to the anisotropy of the dipole-dipole interactions, the dipole-driven collapse induced by soft excitations is compensated by the repulsive Lee-Huang-Yang contribution resulting from quantum fluctuations of hard excitations, in a similar mechanism as that recently proposed for Bose-Bose mixtures. The arrested collapse results in self-bound filamentlike droplets, providing an explanation for the intriguing results of recent dysprosium experiments. Arrested instability and droplet formation are general features directly linked to the nature of the dipole-dipole interactions, and should hence play an important role in all future experiments with strongly dipolar gases.
Two characteristic temperatures for a Bose-Einstein condensate of a finite number of particles
Idziaszek, Z.; Rzazewski, K.
2003-09-01
We consider two characteristic temperatures for a Bose-Einstein condensate, which are related to certain properties of the condensate statistics. We calculate them for an ideal gas confined in power-law traps and show that they approach the critical temperature in the limit of large number of particles. The considered characteristic temperatures can be useful in the studies of Bose-Einstein condensates of a finite number of atoms indicating the point of a phase transition.
Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator
Asjad, Muhammad; Saif, Farhan
2011-09-15
We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.
Coupling a single electron to a Bose-Einstein condensate.
Balewski, Jonathan B; Krupp, Alexander T; Gaj, Anita; Peter, David; Büchler, Hans Peter; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman
2013-10-31
The coupling of electrons to matter lies at the heart of our understanding of material properties such as electrical conductivity. Electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, which forms the basis for Bardeen-Cooper-Schrieffer superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate and show that the electron can excite phonons and eventually trigger a collective oscillation of the whole condensate. We find that the coupling is surprisingly strong compared to that of ionic impurities, owing to the more favourable mass ratio. The electron is held in place by a single charged ionic core, forming a Rydberg bound state. This Rydberg electron is described by a wavefunction extending to a size of up to eight micrometres, comparable to the dimensions of the condensate. In such a state, corresponding to a principal quantum number of n = 202, the Rydberg electron is interacting with several tens of thousands of condensed atoms contained within its orbit. We observe surprisingly long lifetimes and finite size effects caused by the electron exploring the outer regions of the condensate. We anticipate future experiments on electron orbital imaging, the investigation of phonon-mediated coupling of single electrons, and applications in quantum optics.
Atom loss resonances in a Bose-Einstein condensate.
Langmack, Christian; Smith, D Hudson; Braaten, Eric
2013-07-12
Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.
Vortices in spin-orbit-coupled Bose-Einstein condensates
Radic, J.; Sedrakyan, T. A.; Galitski, V.; Spielman, I. B.
2011-12-15
Realistic methods to create vortices in spin-orbit-coupled Bose-Einstein condensates are discussed. It is shown that, contrary to common intuition, rotation of the trap containing a spin-orbit condensate does not lead to an equilibrium state with static vortex structures but gives rise instead to nonequilibrium behavior described by an intrinsically time-dependent Hamiltonian. We propose here the following alternative methods to induce thermodynamically stable static vortex configurations: (i) to rotate both the lasers and the anisotropic trap and (ii) to impose a synthetic Abelian field on top of synthetic spin-orbit interactions. Effective Hamiltonians for spin-orbit condensates under such perturbations are derived for most currently known realistic laser schemes that induce synthetic spin-orbit couplings. The Gross-Pitaevskii equation is solved for several experimentally relevant regimes. The new interesting effects include spatial separation of left- and right-moving spin-orbit condensates, the appearance of unusual vortex arrangements, and parity effects in vortex nucleation where the topological excitations are predicted to appear in pairs. All these phenomena are shown to be highly nonuniversal and depend strongly on a specific laser scheme and system parameters.
Collapse of spin-orbit-coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Mardonov, Sh.; Sherman, E. Ya.; Muga, J. G.; Wang, Hong-Wei; Ban, Yue; Chen, Xi
2015-04-01
A finite-size quasi-two-dimensional Bose-Einstein condensate collapses if the attraction between atoms is sufficiently strong. Here we present a theory of collapse for condensates with the interatomic attraction and spin-orbit coupling. We consider two realizations of spin-orbit coupling: the axial Rashba coupling and the balanced, effectively one-dimensional Rashba-Dresselhaus one. In both cases spin-dependent "anomalous" velocity, proportional to the spin-orbit-coupling strength, plays a crucial role. For the Rashba coupling, this velocity forms a centrifugal component in the density flux opposite to that arising due to the attraction between particles and prevents the collapse at a sufficiently strong coupling. For the balanced Rashba-Dresselhaus coupling, the spin-dependent velocity can spatially split the initial state in one dimension and form spin-projected wave packets, reducing the total condensate density. Depending on the spin-orbit-coupling strength, interatomic attraction, and initial state, this splitting either prevents the collapse or modifies the collapse process. These results show that the collapse can be controlled by a spin-orbit coupling, thus extending the domain of existence of condensates of attracting atoms.
Spin-orbit-coupled Bose-Einstein condensates.
Lin, Y-J; Jiménez-García, K; Spielman, I B
2011-03-01
Spin-orbit (SO) coupling--the interaction between a quantum particle's spin and its momentum--is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom's intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose-Einstein condensate by dressing two atomic spin states with a pair of lasers. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling--equally applicable for bosons and fermions--sets the stage for the realization of topological insulators in fermionic neutral atom systems.
Stagflation: Bose-Einstein condensation in the early universe
NASA Astrophysics Data System (ADS)
Fukuyama, Takeshi; Morikawa, Masahiro
2009-09-01
Our universe experienced the accelerated expansion at least twice; an extreme inflationary acceleration in the early universe and the recent mild acceleration. By introducing the Bose-Einstein condensation (BEC) phase of a boson field, we have been developing a unified model of dark energy (DE) and dark matter (DM) for the later mild acceleration. In this scenario, two phases of BEC (=DE) and normal gas (=DM) transform with each other through BEC phase transition. This unified model has successfully explained the mild acceleration as an attractor. We extend this BEC cosmology to the early universe without introducing new ingredients. In this scenario, the inflation is naturally initiated by the condensation of the bosons in the huge vacuum energy. This inflation and even the cosmic expansion eventually terminates exactly at zero energy density. We call this stage as stagflation. At this stagflation era, particle production and the decay of BEC take place. The former makes the universe turn into the standard hot big bang stage and the latter makes the cosmological constant vanishingly small after the inflation. Furthermore, we calculate the density fluctuations produced in this model, which turns out to be in the range allowed by the present observational data. We also show that the stagflation is quite robust and easily appears when one allows negative region of the potential. Further, we comment on the possibility that BEC generation/decay series might have continued all the time in the cosmic history from the inflation to present.
Route to Quantum Turbulence in Trapped Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Allen, A.; Parker, Nick; Proukakis, Nick; Barenghi, Carlo
2013-05-01
Turbulence in superfluid Helium has been the subject of many experimental and theoretical investigations (for review see e.g. L. Skrbek and K.R. Sreenivasan, Phys. of Fluids 24, 011301 (2012)) and recently, experimentalists have been able to visualize vortex lines, reconnection events and Kelvin waves (E. Fonda et al. arXiv:1210.5194). Weakly interacting Bose-Einstein condensates however, present a unique opportunity to resolve the structure of vortices and in turn study the dynamics of a vortex tangle (as has recently been created in an atomic cloud E.A.L. Henn et al. Phys. Rev. Lett 103, 04301 (2009)). We investigate ways of generating turbulence in atomic systems by numerically stirring the condensate using a Gaussian `spoon' (analogous to a laser beam in the experiments), and study the isotropy of the resulting vortex tangle depending on whether the path the spoon stirs is circular or random. We model the system using the Gross-Pitaevskii Equation and extend our analysis to finite temperature using the Zaremba-Nikuni-Griffin (ZNG) formalism (E. Zaremba et al. Jour. Low Temp. Phys. 116, 277 (1999)), whereby the full dynamics of the noncondensate atoms are described by a semiclassical Boltzmann equation.
Winding up superfluid in a torus via Bose Einstein condensation
Das, Arnab; Sabbatini, Jacopo; Zurek, Wojciech H.
2012-01-01
Phase transitions are usually treated as equilibrium phenomena, which yields telltale universality classes with scaling behavior of relaxation time and healing length. However, in second-order phase transitions relaxation time diverges near the critical point (“critical slowing down”). Therefore, every such transition traversed at a finite rate is a non-equilibrium process. Kibble-Zurek mechanism (KZM) captures this basic physics, predicting sizes of domains – fragments of broken symmetry – and the density of topological defects, long-lived relics of symmetry breaking that can survive long after the transition. To test KZM we simulate Bose-Einstein condensation in a ring using stochastic Gross-Pitaevskii equation and show that BEC formation can spontaneously generate quantized circulation of the newborn condensate. The magnitude of the resulting winding numbers and the time-lag of BEC density growth – both experimentally measurable – follow scalings predicted by KZM. Our results may also facilitate measuring the dynamical critical exponent for the BEC transition. PMID:22500209
Number-conserving master equation theory for a dilute Bose-Einstein condensate
Schelle, Alexej; Wellens, Thomas; Buchleitner, Andreas; Delande, Dominique
2011-01-15
We describe the transition of N weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and noncondensate thermalization, we derive a master equation for the condensate subsystem in the presence of the noncondensate environment under the inclusion of all two-body interaction processes. We numerically monitor the condensate particle number distribution during condensate formation, and derive a condition under which the unique equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate is given by a Gibbs-Boltzmann thermal state of N noninteracting atoms.
Bose-Einstein condensate in a rapidly rotating nonsymmetric trap
Fetter, Alexander L.
2010-03-15
A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional harmonic trap can be described with the lowest Landau-level set of single-particle states. The condensate wave function {psi}(x,y) is a Gaussian {proportional_to}exp(-r{sup 2}/2), multiplied by an analytic function f(z) of the complex variable z=x+iy. The criterion for a quantum phase transition to a non-superfluid correlated many-body state is usually expressed in terms of the ratio of the number of particles to the number of vortices. Here a similar description applies to a rapidly rotating nonsymmetric two-dimensional trap with arbitrary quadratic anisotropy ({omega}{sub x}{sup 2}<{omega}{sub y}{sup 2}). The corresponding condensate wave function {psi}(x,y) is a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function f(z), where z=x+i{beta}{sub -}y is a stretched complex variable and 0{<=}{beta}{sub -{<=}}1 is a real parameter that depends on the trap anisotropy and the rotation frequency. Both in the mean-field Thomas-Fermi approximation and in the mean-field lowest Landau level approximation with many visible vortices, an anisotropic parabolic density profile minimizes the energy. An elongated condensate grows along the soft trap direction yet ultimately shrinks along the tight trap direction. The criterion for the quantum phase transition to a correlated state is generalized (1) in terms of N/L{sub z}, which suggests that a nonsymmetric trap should make it easier to observe this transition, or (2) in terms of a 'fragmented' correlated state, which suggests that a nonsymmetric trap should make it harder to observe this transition. An alternative scenario involves a crossover to a quasi one-dimensional condensate without visible vortices, as suggested by Aftalion et al., Phys. Rev. A 79, 011603(R) (2009).
Rabi-coupled countersuperflow in binary Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Usui, Ayaka; Takeuchi, Hiromitsu
2015-06-01
We show theoretically that periodic density patterns are stabilized in two counterpropagating Bose-Einstein condensates of atoms in different hyperfine states under Rabi coupling. In the presence of coupling, the relative velocity between the two components is localized around density depressions in quasi-one-dimensional systems. When the relative velocity is sufficiently small, the periodic pattern reduces to a periodic array of topological solitons as kinks of the relative phase. According to our variational and numerical analyses, the soliton solution is well characterized by the soliton width and density depression. We demonstrate the dependence of the depression and width on the Rabi frequency and the coupling constant of the intercomponent density-density interactions. The periodic pattern of the relative phase transforms continuously from a soliton array to a sinusoidal pattern as the period becomes smaller than the soliton width. These patterns become unstable when the localized relative velocity exceeds a critical value. The stability-phase diagram of this system is evaluated with a stability analysis of countersuperflow, by taking into account the finite-size effect owing to the density depression.
Shock Waves in a Bose-Einstein Condensate
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Zak, Michail
2005-01-01
A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.
Dynamics of three noncorotating vortices in Bose-Einstein condensates.
Koukouloyannis, V; Voyatzis, G; Kevrekidis, P G
2014-04-01
In this work we use standard Hamiltonian-system techniques in order to study the dynamics of three vortices with alternating charges in a confined Bose-Einstein condensate. In addition to being motivated by recent experiments, this system offers a natural vehicle for the exploration of the transition of the vortex dynamics from ordered to progressively chaotic behavior. In particular, it possesses two integrals of motion, the energy (which is expressed through the Hamiltonian H) and the angular momentum L of the system. By using the integral of the angular momentum, we reduce the system to a 2-degrees-of-freedom one with L as a parameter and reveal the topology of the phase space through the method of Poincaré surfaces of section. We categorize the various motions that appear in the different regions of the sections and we study the major bifurcations that occur to the families of periodic motions of the system. Finally, we correspond the orbits on the surfaces of section to the real space motion of the vortices in the plane.
Topological interface physics in spinor Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Borgh, Magnus; Ruostekoski, Janne
2013-05-01
We present an experimentally viable scheme whereby the physics of coherent interfaces between topologically distinct regions can be studied in an atomic quantum gas. The interface engineering is achieved using the internal spin structures of atoms together with local control over interaction strengths. We consider a coherent interface between polar and ferromagnetic regions of a spin-1 Bose-Einstein condensate and show that defects representing different topologies can connect continuously across the boundary. We show that energy minimization leads to nontrivial interface-crossing defect structures, demonstrating how the method can be used to study stability properties of field-theoretical solitons. We demonstrate, e.g., the formation of a half-quantum vortex arch, an Alice arch, on the interface, exhibiting the topological charge of a point defect. We also demonstrate an energetically stable connection of a coreless vortex to two half-quantum vortices. Our method can be extended to study interface physics in spin-2 and spin-3 BECs with richer phenomenology, or in strongly correlated optical-lattice systems. We acknowledge financial support from the Leverhulme Trust.
Manipulating localized matter waves in multicomponent Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Manikandan, K.; Muruganandam, P.; Senthilvelan, M.; Lakshmanan, M.
2016-03-01
We analyze vector localized solutions of two-component Bose-Einstein condensates (BECs) with variable nonlinearity parameters and external trap potentials through a similarity transformation technique which transforms the two coupled Gross-Pitaevskii equations into a pair of coupled nonlinear Schrödinger equations with constant coefficients under a specific integrability condition. In this analysis we consider three different types of external trap potentials: a time-independent trap, a time-dependent monotonic trap, and a time-dependent periodic trap. We point out the existence of different interesting localized structures; namely, rogue waves, dark- and bright-soliton rogue waves, and rogue-wave breatherlike structures for the above three cases of trap potentials. We show how the vector localized density profiles in a constant background get deformed when we tune the strength of the trap parameter. Furthermore, we investigate the nature of the trajectories of the nonautonomous rogue waves. We also construct the dark-dark rogue wave solution for the repulsive-repulsive interaction of two-component BECs and analyze the associated characteristics for the three different kinds of traps. We then deduce single-, two-, and three-composite rogue waves for three-component BECs and discuss the correlated characteristics when we tune the strength of the trap parameter for different trap potentials.
Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics
Yasir, Kashif Ammar; Liu, Wu-Ming
2015-01-01
Cavity-optomechanics, a rapidly developing area of research, has made a remarkable progress. A stunning manifestation of optomechanical phenomena is in exploiting the mechanical effects of light to couple the optical degree of freedom with mechanical degree of freedom. In this report, we investigate the controlled bistable dynamics of such hybrid optomechanical system composed of cigar-shaped Bose-Einstein condensate (BEC) trapped inside high-finesse optical cavity with one moving-end mirror and is driven by a single mode optical field. The numerical results provide evidence for controlled optical bistability in optomechanics using transverse optical field which directly interacts with atoms causing the coupling of transverse field with momentum side modes, exited by intra-cavity field. This technique of transverse field coupling is also used to control bistable dynamics of both moving-end mirror and BEC. The report provides an understanding of temporal dynamics of moving-end mirror and BEC with respect to transverse field. Moreover, dependence of effective potential of the system on transverse field has also been discussed. To observe this phenomena in laboratory, we have suggested a certain set of experimental parameters. These findings provide a platform to investigate the tunable behavior of novel phenomenon like electromagnetically induced transparency and entanglement in hybrid systems. PMID:26035206
Symmetry breaking and singularity structure in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.
2012-08-01
We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.
Subsonic and Supersonic Effects in Bose-Einstein Condensate
NASA Technical Reports Server (NTRS)
Zak, Michail
2003-01-01
A paper presents a theoretical investigation of subsonic and supersonic effects in a Bose-Einstein condensate (BEC). The BEC is represented by a time-dependent, nonlinear Schroedinger equation that includes terms for an external confining potential term and a weak interatomic repulsive potential proportional to the number density of atoms. From this model are derived Madelung equations, which relate the quantum phase with the number density, and which are used to represent excitations propagating through the BEC. These equations are shown to be analogous to the classical equations of flow of an inviscid, compressible fluid characterized by a speed of sound (g/Po)1/2, where g is the coefficient of the repulsive potential and Po is the unperturbed mass density of the BEC. The equations are used to study the effects of a region of perturbation moving through the BEC. The excitations created by a perturbation moving at subsonic speed are found to be described by a Laplace equation and to propagate at infinite speed. For a supersonically moving perturbation, the excitations are found to be described by a wave equation and to propagate at finite speed inside a Mach cone.
Manipulating localized matter waves in multicomponent Bose-Einstein condensates.
Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M
2016-03-01
We analyze vector localized solutions of two-component Bose-Einstein condensates (BECs) with variable nonlinearity parameters and external trap potentials through a similarity transformation technique which transforms the two coupled Gross-Pitaevskii equations into a pair of coupled nonlinear Schrödinger equations with constant coefficients under a specific integrability condition. In this analysis we consider three different types of external trap potentials: a time-independent trap, a time-dependent monotonic trap, and a time-dependent periodic trap. We point out the existence of different interesting localized structures; namely, rogue waves, dark- and bright-soliton rogue waves, and rogue-wave breatherlike structures for the above three cases of trap potentials. We show how the vector localized density profiles in a constant background get deformed when we tune the strength of the trap parameter. Furthermore, we investigate the nature of the trajectories of the nonautonomous rogue waves. We also construct the dark-dark rogue wave solution for the repulsive-repulsive interaction of two-component BECs and analyze the associated characteristics for the three different kinds of traps. We then deduce single-, two-, and three-composite rogue waves for three-component BECs and discuss the correlated characteristics when we tune the strength of the trap parameter for different trap potentials.
Manipulating localized matter waves in multicomponent Bose-Einstein condensates.
Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M
2016-03-01
We analyze vector localized solutions of two-component Bose-Einstein condensates (BECs) with variable nonlinearity parameters and external trap potentials through a similarity transformation technique which transforms the two coupled Gross-Pitaevskii equations into a pair of coupled nonlinear Schrödinger equations with constant coefficients under a specific integrability condition. In this analysis we consider three different types of external trap potentials: a time-independent trap, a time-dependent monotonic trap, and a time-dependent periodic trap. We point out the existence of different interesting localized structures; namely, rogue waves, dark- and bright-soliton rogue waves, and rogue-wave breatherlike structures for the above three cases of trap potentials. We show how the vector localized density profiles in a constant background get deformed when we tune the strength of the trap parameter. Furthermore, we investigate the nature of the trajectories of the nonautonomous rogue waves. We also construct the dark-dark rogue wave solution for the repulsive-repulsive interaction of two-component BECs and analyze the associated characteristics for the three different kinds of traps. We then deduce single-, two-, and three-composite rogue waves for three-component BECs and discuss the correlated characteristics when we tune the strength of the trap parameter for different trap potentials. PMID:27078349
Recent experiments with ring Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Eckel, S.; Kumar, A.; Anderson, N. W.; Campbell, G. K.
2016-05-01
Here, we present three recent results of our experiments with ring-shaped 23 Na Bose-Einstein condensates. First, we present results of the effect of temperature on the decay of persistent currents in the presence of a local, stationary perturbation, or weak link. When the weak link rotates, it can drive transitions between quantized persistent current states in the ring, that form hysteresis loops whose size depends strongly on temperature. We find that our data does not fit with a simple model of thermal activation. Second, we present a new method to measure the quantized persistent current state of the ring in a minimally-destructive way. This technique uses phonons as probes of the background flow through the Doppler effect. Finally, we present a set of experiments designed to reproduce the horizon problem in the early universe. Supersonic expansion of the ring creates causally-disconnected regions of BEC whose phase evolves at different rates. When the expansion stops and these regions are allowed to recombine, they form topological excitations. These excitations can be predicted using a simple theory that shows excellent agreement with the data.
Rapidly rotating Bose-Einstein condensates in strongly anharmonic traps
Correggi, M.; Rindler-Daller, T.; Yngvason, J.
2007-04-15
We study a rotating Bose-Einstein condensate in a strongly anharmonic trap (flat trap with a finite radius) in the framework of two-dimensional Gross-Pitaevskii theory. We write the coupling constant for the interactions between the gas atoms as 1/{epsilon}{sup 2} and we are interested in the limit {epsilon}{yields}0 (Thomas-Fermi limit) with the angular velocity {omega} depending on {epsilon}. We derive rigorously the leading asymptotics of the ground state energy and the density profile when {omega} tends to infinity as a power of 1/{epsilon}. If {omega}({epsilon})={omega}{sub 0}/{epsilon} a ''hole'' (i.e., a region where the density becomes exponentially small as 1/{epsilon}{yields}{infinity}) develops for {omega}{sub 0} above a certain critical value. If {omega}({epsilon})>>1/{epsilon} the hole essentially exhausts the container and a ''giant vortex'' develops with the density concentrated in a thin layer at the boundary. While we do not analyze the detailed vortex structure we prove that rotational symmetry is broken in the ground state for const vertical bar log {epsilon} vertical bar <{omega}({epsilon}) < or approx. const/{epsilon}.
Geometric ``charge'' pumping with a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Spielman, Ian
We realized a quantum ''charge'' pump for a Bose-Einstein condensate (BEC) in a novel bipartite magnetic lattice, whose bands are characterized by non-trivial topological invariants: the Zak phases. For each band, the Zak phase is determined by that band's integrated Berry curvature, a geometric quantity defined at each crystal momentum. We probed this Berry curvature in a charge pump experiment, by periodically and adiabatically driving the system. Unlike topological charge pumps in filled bands that yield quantized pumping, our BEC occupied just a single crystal momentum state allowing us to access its band's local geometry. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wavepacket's position in each unit cell, i.e., the polarization. Our magnetic lattice enabled us to observe this modulation by measuring the BEC's magnetization. While our periodic drive shifted the lattice potential by one unit cell per cycle, the displacement of the BEC, solely determined by the underlying Berry curvature, was always less than the lattice's displacement.
Bose-Einstein condensation in low dimensional layered structures
NASA Astrophysics Data System (ADS)
Salas, Patricia; Solis, M. A.
2008-03-01
Bose-Einstein condensation critical temperature, among other thermodynamic properties are reported for an ideal boson gas inside layered structures created by trapping potential of the Kronig-Penney type. We start with a big box where we introduce the Kronig-Penney potential in three directions to get a honey comb of cubes of side a size and walls of variable penetrability (P=mV0ab/^2), with bosons instead of bees. We are able to reduce the dimensions of the cubes to simulate bosons inside quantum dots. The critical temperature, starting from that of an ideal boson gas inside the big box, decreases as the small cube wall impenetrability increases arriving to a tiny but different from zero when the penetrability is zero (P-->∞). We also calculate the internal energy and the specific heat, and compare them to the ones obtained for the case of the same Kronig-Penney potential in one direction (simulating layers), and two directions (nanotubes).
Bragg Spectroscopy of a Strongly Interacting {sup 85}Rb Bose-Einstein Condensate
Papp, S. B.; Pino, J. M.; Wild, R. J.; Ronen, S.; Jin, D. S.; Cornell, E. A.; Wieman, C. E.
2008-09-26
We report on measurements of the excitation spectrum of a strongly interacting Bose-Einstein condensate. A magnetic-field Feshbach resonance is used to tune atom-atom interactions in the condensate and to reach a regime where quantum depletion and beyond mean-field corrections to the condensate chemical potential are significant. We use two-photon Bragg spectroscopy to probe the condensate excitation spectrum; our results demonstrate the onset of beyond mean-field effects in a gaseous Bose-Einstein condensate.
Beliaev theory of spinor Bose-Einstein condensates
Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito
2013-01-15
By generalizing the Green's function approach developed by Beliaev [S.T. Beliaev, Sov. Phys. JETP 7 (1958) 299; S.T. Beliaev, Sov. Phys. JETP 7 (1958) 289], we study effects of quantum fluctuations on the energy spectra of spin-1 spinor Bose-Einstein condensates, in particular, of a {sup 87}Rb condensate in the presence of an external magnetic field. We find that due to quantum fluctuations, the effective mass of magnons, which characterizes the quadratic dispersion relation of spin-wave excitations, increases compared with its mean-field value. The enhancement factor turns out to be the same for two distinct quantum phases: the ferromagnetic and polar phases, and it is a function of only the gas parameter. The lifetime of magnons in a spin-1 {sup 87}Rb spinor condensate is shown to be much longer than that of phonons due to the difference in their dispersion relations. We propose a scheme to measure the effective mass of magnons in a spinor Bose gas by utilizing the effect of magnons' nonlinear dispersion relation on the time evolution of the distribution of transverse magnetization. This type of measurement can be applied, for example, to precision magnetometry. - Highlights: Black-Right-Pointing-Pointer Second-order energy spectra for a spin-1 {sup 87}Rb spinor BEC under a quadratic Zeeman effect are found. Black-Right-Pointing-Pointer Effective mass of magnons increases due to quantum fluctuations. Black-Right-Pointing-Pointer Enhancement factor is the same for two quantum phases and also independent of external parameters. Black-Right-Pointing-Pointer Lifetime of magnons in a spin-1 {sup 87}Rb spinor BEC is much longer than that of phonons. Black-Right-Pointing-Pointer Experimental scheme to measure the effective mass of magnons is proposed.
Nonlinear Dynamics of Bose-Einstein Condensates with Long-Range Interactions
Wunner, G.; Cartarius, H.; Fabcic, T.; Koeberle, P.; Main, J.; Schwidder, T.
2008-11-13
The motto of this paper is: Let's face Bose-Einstein condensation through nonlinear dynamics. We do this by choosing variational forms of the condensate wave functions (of given symmetry classes), which convert the Bose-Einstein condensates via the time-dependent Gross-Pitaevskii equation into Hamiltonian systems that can be studied using the methods of nonlinear dynamics. We consider in particular cold quantum gases where long-range interactions between the neutral atoms are present, in addition to the conventional short-range contact interaction, viz. gravity-like interactions, and dipole-dipole interactions. The results obtained serve as a useful guide in the search for nonlinear dynamics effects in numerically exact quantum calculations for Bose-Einstein condensates. A main result is the prediction of the existence of stable islands as well as chaotic regions for excited states of dipolar condensates, which could be checked experimentally.
Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.
2009-09-15
The Bose-Einstein condensation (BEC) of magnetoexcitonic polaritons (magnetopolaritons) in two-dimensional (2D) electron-hole system embedded in a semiconductor microcavity in a high magnetic field B is predicted. There are two physical realizations of 2D electron-hole system under consideration: a graphene layer and quantum well (QW). A 2D gas of magnetopolaritons is considered in a planar harmonic potential trap. Two possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained. It is shown that the effective polariton mass M{sub eff} increases with magnetic field as B{sup 1/2}. The BEC critical temperature T{sub c}{sup (0)} decreases as B{sup -1/4} and increases with the spring constant of the parabolic trap. The Rabi splitting related to the creation of a magnetoexciton in a high magnetic field in graphene and QW is obtained. It is shown that Rabi splitting in graphene can be controlled by the external magnetic field since it is proportional to B{sup -1/4} while in a QW the Rabi splitting does not depend on the magnetic field when it is strong.
Bose-Einstein-condensate interferometer with macroscopic arm separation
NASA Astrophysics Data System (ADS)
Garcia-Salazar, Ofir
The basis of our study was to implement an atom interferometer using 87Rb Bose Einstein condensates which has advantages in sensitivity over current interferometers that use cold atoms and light. Interferometers are devices which can accurately measure phase differences between waves that interfere and originate from a coherent source (or sources). We developed a weakly confining waveguide having o x ≈ 3 Hz, oz ≈ 3 Hz, o y ≈ 1 Hz as characteristic oscillation frequencies. Weak confinement, specially along the "y" direction, means the condensate can displace along this axis and interaction energies of the atoms in the condensate are reduced [43]. We have been able to successfully demonstrate condensate interference in our waveguide using a Mach Zehnder configuration. Coherence times of up to 40 ms have been observed, and the maximum center to center separation of the condensates recorded was of 240 mum. At this separation length, the two clouds corresponding to each of the interferometer's arms are completely separated. To our knowledge, this is the first time a picture has been taken of two groups of atoms separated by a macroscopic distance while in a quantum superposition of being in either cloud. The coherence time and length measurements presented in our work have been among the longest ones achieved so far for interferometry using condensed atoms. Interference visibility of 60% was observed up to 40 ms. We believe technical limitations in the techniques used to manipulate the atoms are responsible for the sudden drop in visibility at 44 ms. For example, unwanted laser reflections and interference patterns in our chamber affect the techniques used to split and reflect the atoms. However, we see coherence up to 80 ms from shot to shot, suggesting we could dramatically improve coherence times. Because of the weak confinement of our trap, we expect to improve coherence times up to an order of magnitude before running into phase diffusion effects [27]. It is
Observation of phase defects in quasi-two-dimensional Bose-Einstein condensates.
Stock, Sabine; Hadzibabic, Zoran; Battelier, Baptiste; Cheneau, Marc; Dalibard, Jean
2005-11-01
We have observed phase defects in quasi-2D Bose-Einstein condensates close to the condensation temperature. Either a single or several equally spaced condensates are produced by selectively evaporating the sites of a 1D optical lattice. When several clouds are released from the lattice and allowed to overlap, dislocation lines in the interference patterns reveal nontrivial phase defects.
Pair-correlation function of a metastable helium Bose-Einstein condensate
Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz
2004-02-01
The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.
Properties of spin-orbit-coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Zhang, Yongping; Mossman, Maren Elizabeth; Busch, Thomas; Engels, Peter; Zhang, Chuanwei
2016-06-01
The experimental and theoretical research of spin-orbit-coupled ultracold atomic gases has advanced and expanded rapidly in recent years. Here, we review some of the progress that either was pioneered by our own work, has helped to lay the foundation, or has developed new and relevant techniques. After examining the experimental accessibility of all relevant spin-orbit coupling parameters, we discuss the fundamental properties and general applications of spin-orbit-coupled Bose-Einstein condensates (BECs) over a wide range of physical situations. For the harmonically trapped case, we show that the ground state phase transition is a Dicke-type process and that spin-orbit-coupled BECs provide a unique platform to simulate and study the Dicke model and Dicke phase transitions. For a homogeneous BEC, we discuss the collective excitations, which have been observed experimentally using Bragg spectroscopy. They feature a roton-like minimum, the softening of which provides a potential mechanism to understand the ground state phase transition. On the other hand, if the collective dynamics are excited by a sudden quenching of the spin-orbit coupling parameters, we show that the resulting collective dynamics can be related to the famous Zitterbewegung in the relativistic realm. Finally, we discuss the case of a BEC loaded into a periodic optical potential. Here, the spin-orbit coupling generates isolated flat bands within the lowest Bloch bands whereas the nonlinearity of the system leads to dynamical instabilities of these Bloch waves. The experimental verification of this instability illustrates the lack of Galilean invariance in the system.
Dynamics of Two-Component Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Baik, Eunsil
I explored the vortex dynamics in homonuclear species two-component Bose-Einstein condensates (BECs) based on the knowledge of vortex dynamics in one-component BECs. The vortex dynamics in BECs depends on the background fields induced by different external potentials and other vortices. The motion of vortices is numerically computed and the numerical results are compared to the theoretical formulas where possible. In the study of the vortex-vortex interaction dynamics in one-component BECs, a power law relationship between the motion of the vortices and their separation distance is depicted. In addition to that, the relationship between the linear and the angular velocities of the vortices is found to be similar to the relationship between the tangential and the angular velocities of classical fluid vortices. In the case of two-component BEC dynamics, two different cases are studied: one without atomic inter-conversion between the two components and the other with atomic inter-conversion. The stability analysis of the two-component BECs is conducted to identify the stable regions as well as the regions of mixed and separated states. When a vortex is seeded in one component, this vortex induces a hump in the other component at the same location as the vortex, which leads to the vortex-hump dynamics. The vortex-hump-vortex-hump interaction dynamics without atomic inter-conversion depicts a power law relation between the motion of vortex-humps and the separation distance; whereas, the vortex-hump-vortex-hump interaction dynamics with atomic inter-conversion reveals a more complex relation between the motion of vortex-humps and the separation distance.
Hidden vortices in a Bose-Einstein condensate in a rotating double-well potential
Wen Linghua; Xiong Hongwei; Wu Biao
2010-11-15
We study vortex formation in a Bose-Einstein condensate in a rotating double-well potential. In addition to the ordinary quantized vortices and elusive ghost vortices, 'hidden' vortices are found distributed along the central barrier. These hidden vortices are invisible like ghost vortices but carry angular momentum. Moreover, their core size is not given by the healing length, but is strongly influenced by the external potential. We find that the Feynman rule can be well satisfied only after including the hidden vortices. There is no critical rotation frequency for the formation of hidden vortices while there is one for the formation of ordinary visible vortices. Hidden vortices can be revealed in the free expansion of Bose-Einstein condensates. In addition, the hidden vortices in a Bose-Einstein condensate can appear in other external potentials, such as a rotating anisotropic toroidal trap.
Homogeneous one-dimensional Bose-Einstein condensate in the Bogoliubov’s regime
NASA Astrophysics Data System (ADS)
Castellanos, Elías
2016-08-01
We analyze the corrections caused by finite size effects upon the ground state properties of a homogeneous one-dimensional (1D) Bose-Einstein condensate. We assume from the very beginning that the Bogoliubov’s formalism is valid and consequently, we show that in order to obtain a well-defined ground state properties, finite size effects of the system must be taken into account. Indeed, the formalism described in the present paper allows to recover the usual properties related to the ground state of a homogeneous 1D Bose-Einstein condensate but corrected by finite size effects of the system. Finally, this scenario allows us to analyze the sensitivity of the system when the Bogoliubov’s regime is valid and when finite size effects are present. These facts open the possibility to apply these ideas to more realistic scenarios, e.g. low-dimensional trapped Bose-Einstein condensates.
Ultraslow, stopped, and compressed light in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Dutton, Zachary John
We present theoretical analysis and experimental results of methods to achieve and use ultraslow light (USL), stopped light, and compressed light in sodium Bose-Einstein condensates (BECs). We present applications of these methods to study and harness both the coherent and superfluid properties of BECs. A description of the propagation of probe and coupling laser fields in three-level Λ configuration atoms is presented in a semiclassical description. This formalism is used to derive how electromagnetically induced transparency (EIT) and USL arise. We present novel theoretical results on the effect a fourth level, and effects of nonlinearities associated with a strong probe. Experimental demonstration of ultraslow light is presented. A description which includes atomic motion in Bose-condensed samples of alkali atoms is developed in a mean field description and coupled Gross-Pitaevskii equations are derived. A numerical code which solves these equations is presented. An analytic and numerical analysis reveal the limits on ultraslow light and compressed light imposed by the external atomic dynamics. We then show that using USL and switching the coupling field off allows storage of the coherent probe pulse information (amplitude and phase) in the atomic fields. Switching the coupling beam back on writes the coherent information back onto the probe field. Experimental demonstration is presented. We present experimental data and theoretical analysis showing how stopping light in a BEC creates an atom laser with the highest reported phase space density flux to date. Alternatively, reviving the probe pulse after significant BEC dynamics can be used to process the information before it is written back onto the probe. Possible applications to quantum processing are discussed. We then present results on a light "roadblock", whereby blocking part of the coupling field spatially compresses probe pulses to sizes on the order of the condensate healing length. The compressed
Clark, Kevin B
2010-03-01
Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate
Clark, Kevin B
2010-03-01
Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate
Control of a Bose-Einstein condensate by dissipation: Nonlinear Zeno effect
Shchesnovich, V. S.; Konotop, V. V.
2010-05-15
We show that controlled dissipation can be used as a tool for exploring fundamental phenomena and managing mesoscopic systems of cold atoms and Bose-Einstein condensates. Even the simplest boson-Josephson junction, that is, a Bose-Einstein condensate in a double-well trap, subjected to removal of atoms from one of the two potential minima allows one to observe such phenomena as the suppression of losses and the nonlinear Zeno effect. In such a system the controlled dissipation can be used to create desired macroscopic states and implement controlled switching among different quantum regimes.
Occupation Statistics of a Bose-Einstein Condensate for a Driven Landau-Zener Crossing
Smith-Mannschott, Katrina; Chuchem, Maya; Cohen, Doron; Hiller, Moritz; Kottos, Tsampikos
2009-06-12
We consider an atomic Bose-Einstein condensate loaded in a biased double-well trap with tunneling rate K and interatomic interaction U. The Bose-Einstein condensate is prepared such that all N atoms are in the left well. We drive the system by sweeping the potential difference E between the two wells. Depending on the interaction u=NU/K and the sweep rate E, we distinguish three dynamical regimes: adiabatic, diabatic, and sudden and consider the occupation statistics of the final state. The analysis goes beyond mean-field theory and is complemented by a semiclassical picture.
Dynamic manipulation of Bose-Einstein condensates with a spatial light modulator
Boyer, V.; Godun, R. M.; Smirne, G.; Cassettari, D.; Chandrashekar, C. M.; Deb, A. B.; Foot, C. J.; Laczik, Z. J.
2006-03-15
We manipulate a Bose-Einstein condensate using the optical trap created by the diffraction of a laser beam on a fast ferroelectric liquid crystal spatial light modulator. The modulator acts as a phase grating which can generate arbitrary diffraction patterns and be rapidly reconfigured at rates up to 1 kHz to create smooth, time-varying optical potentials. The flexibility of the device is demonstrated with our experimental results for splitting a Bose-Einstein condensate and independently transporting the separate parts of the atomic cloud.
Bose-Einstein condensates in strong electric fields: Effective gauge potentials and rotating states
Kailasvuori, J.M.; Hansson, T.H.; Kavoulakis, G.M.
2002-11-01
Magnetically trapped atoms in Bose-Einstein condensates are spin polarized. Since the magnetic field is inhomogeneous, the atoms acquire Berry phases of the Aharonov-Bohm type during adiabatic motion. In the presence of an electric field, there is an additional Aharonov-Casher effect. Taking into account the limitations on the strength of the electric fields due to the polarizability of the atoms, we investigate the extent to which these effects can be used to induce rotation in a Bose-Einstein condensate.
Thermalization and Bose-Einstein condensation of quantum light in bulk nonlinear media
NASA Astrophysics Data System (ADS)
Chiocchetta, A.; Larré, P.-É.; Carusotto, I.
2016-07-01
We study the thermalization and the Bose-Einstein condensation of a paraxial, spectrally narrow beam of quantum light propagating in a lossless bulk Kerr medium. The spatiotemporal evolution of the quantum optical field is ruled by a Heisenberg equation analogous to the quantum nonlinear Schrödinger equation of dilute atomic Bose gases. Correspondingly, in the weak-nonlinearity regime, the phase-space density evolves according to the Boltzmann equation. Expressions for the thermalization time and for the temperature and the chemical potential of the eventual Bose-Einstein distribution are found. After discussing experimental issues, we introduce an optical setup allowing the evaporative cooling of a guided beam of light towards Bose-Einstein condensation. This might serve as a novel source of coherent light.
Bogoliubov theory of a Bose-Einstein condensate in the particle representation
Dziarmaga, Jacek; Sacha, Krzysztof
2003-03-01
In the number-conserving Bogoliubov theory of the Bose-Einstein condensate, the Bogoliubov transformation between quasiparticles and particles is nonlinear. We invert this nonlinear transformation and give a general expression for eigenstates of the Bogoliubov Hamiltonian in particle representation. The particle representation unveils the structure of a condensate multiparticle wave function. We give several examples to illustrate a general formalism.
Structure of vortex shedding past potential barriers moving in a Bose-Einstein condensate
Mironov, V. A.; Smirnov, A. I. Smirnov, L. A.
2010-05-15
The problem of excitation of a homogeneous Bose-Einstein condensate by axially symmetric potential barriers moving with respect to the condensate with both supersonic and subsonic velocities is considered in terms of the Gross-Pitaevskii equation. The specific features of the structure of the vortex shedding past the barriers are analyzed for both regimes of motion.
Engineered potentials in ultracold Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Campbell, Daniel L.
Bose-Einstein condensates (BECs) are a recent addition to the portfolio of quantum materials some of which have profound commercial and military applications e.g., superconductors, superfluids and light emitting diodes. BECs exist in the lowest motional modes of a trap and have the lowest temperatures achieved by mankind. With full control over the shape of the trap the experimentalist may explore an extremely diverse set of Hamiltonians which may be altered mid-experiment. These properties are particularly suited for realizing novel quantum systems. This thesis explores interaction-driven domain formation and the subsequent domain coarsening for two immiscible BEC components. Because quantum coherences associated with interactions in BECs can be derived from low energy scattering theory we compare our experimental results to both a careful simulation (performed by Brandon Anderson) and an analytical prediction. This result very carefully explores the question of how a metastable system relaxes at the extreme limit of low temperature. We also explore spin-orbit coupling (SOC) of a BEC which links the linear and discrete momentum transferable by two counterpropagating ''Raman'' lasers that resonantly couple the ground electronic states of our BECs. SOC is used similarly in condensed matter systems to describe coupling between charge carrier spin and crystal momentum and is a necessary component of the quantum spin Hall effect and topological insulators. SOC links the linear and discrete momentum transferable by two counterpropagating ''Raman'' lasers and a subset of the ground electronic states of our BEC. The phases of an effective 2-spin component spin-orbit coupling (SOC) in a spin-1 BEC are described in Lin et al. (2011). We measure the phase transition between two phases of a spin-1 BEC with SOC which cannot be mimicked by a spin-1/2 system. The order parameter that describes transitions between these two phases is insensitive to magnetic field fluctuations. I
Cosmological perturbations during the Bose-Einstein condensation of dark matter
Freitas, R.C.; Gonçalves, S.V.B. E-mail: sergio.vitorino@pq.cnpq.br
2013-04-01
In the present work, we analyze the evolution of the scalar and tensorial perturbations and the quantities relevant for the physical description of the Universe, as the density contrast of the scalar perturbations and the gravitational waves energy density during the Bose-Einstein condensation of dark matter. The behavior of these parameters during the Bose-Einstein phase transition of dark matter is analyzed in details. To study the cosmological dynamics and evolution of scalar and tensorial perturbations in a Universe with and without cosmological constant we use both analytical and numerical methods. The Bose-Einstein phase transition modifies the evolution of gravitational waves of cosmological origin, as well as the process of large-scale structure formation.
On the occurrence and detectability of Bose-Einstein condensation in helium white dwarfs
Benvenuto, O.G.; Vito, M.A. De E-mail: adevito@fcaglp.unlp.edu.ar
2011-02-01
It has been recently proposed that helium white dwarfs may provide promising conditions for the occurrence of the Bose-Einstein condensation. The argument supporting this expectation is that in some conditions attained in the core of these objects, the typical De Broglie wavelength associated with helium nuclei is of the order of the mean distance between neighboring nuclei. In these conditions the system should depart from classical behavior showing quantum effects. As helium nuclei are bosons, they are expected to condense. In order to explore the possibility of detecting the Bose-Einstein condensation in the evolution of helium white dwarfs we have computed a set of models for a variety of stellar masses and values of the condensation temperature. We do not perform a detailed treatment of the condensation process but mimic it by suppressing the nuclei contribution to the equation of state by applying an adequate function. As the cooling of white dwarfs depends on average properties of the whole stellar interior, this procedure should be suitable for exploring the departure of the cooling process from that predicted by the standard treatment. We find that the Bose-Einstein condensation has noticeable, but not dramatic effects on the cooling process only for the most massive white dwarfs compatible with a helium dominated interior ( ≈ 0.50M{sub s}un) and very low luminosities (say, Log(L/L{sub s}un) < −4.0). These facts lead us to conclude that it seems extremely difficult to find observable signals of the Bose-Einstein condensation. Recently, it has been suggested that the population of helium white dwarfs detected in the globular cluster NGC 6397 is a good candidate for detecting signals of the Bose-Einstein condensation. We find that these stars have masses too low and are too bright to have an already condensed interior.
Comment on 'Feshbach resonance and growth of a Bose-Einstein condensate'
Wu, Lei; Jiang, Ren-Jie; Pei, Yu-hua; Zhang, Jie-Fang
2007-03-15
Our analytical solution shows that the number of atoms continuously injected into Bose-Einstein condensate from the reservoir depends on the linear gain/loss coefficient, and cannot be controlled by applying the external magnetic field via Feshbach resonance reported by Yuce and Kilic [Phys. Rev. A 74, 033609 (2006)].
Bogoliubov space of a Bose-Einstein condensate and quantum spacetime fluctuations
Rivas, J. I.; Camacho, A.; Goeklue, E.
2012-08-24
We analyze the role that metric fluctuations could have on the features of a Bose-Einstein condensate. Particularly, the Bogoliubov space associated to it is considered and it will be shown that the pressure and the speed of sound of the ground state define an expression allowing us to determine the average size of these fluctuations.
Vortex structures of a two-component Bose-Einstein condensate for large anisotropies
Wei Ran; Mueller, Erich
2011-12-15
We calculate the vortex structures of an elongated two-component Bose-Einstein condensate. We study how these structures depend on the intracomponent and intercomponent interaction strengths. We present analytical and numerical results respectively at weak and strong interactions; finding lattices with different interlocking geometries: triangular, square, rectangular, and double core.
Zero-Temperature, Mean-Field Theory of Atomic Bose-Einstein Condensates
Edwards, Mark; Dodd, R. J.; Clark, Charles W.; Burnett, K.
1996-01-01
We review the application of zero-temperature, mean-field theory to current experimental atomic Bose-Einstein condensates. We assess the validity of the approximations made by comparing the mean-field results with a variety of experimental data.
Localization of two-component Bose-Einstein condensates in optical lattices.
Ostrovskaya, Elena A; Kivshar, Yuri S
2004-05-01
We study nonlinear localization of a two-component Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our theory shows that spin-dependent optical lattices can be used to effectively manipulate the nonlinear interactions between the BEC components, and to observe composite localized states of a BEC in both bands and gaps of the matter-wave spectrum.
Quantum Entanglement and Spin Squeezing of Two Species Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Li, Song-Song
2016-09-01
We investigate quantum entanglement and spin squeezing of two species Bose-Einstein condensates. By the rotating-wave approximation, we obtain the effective Hamiltonian and the wave function of the system. It's shown that more entanglement and squeezing may be achieved by increasing the population difference of particles.
Excess noise depletion of a Bose-Einstein condensate in an optical cavity.
Szirmai, G; Nagy, D; Domokos, P
2009-02-27
Quantum fluctuations of a cavity field coupled into the motion of ultracold bosons can be strongly amplified by a mechanism analogous to the Petermann excess noise factor in lasers with unstable cavities. For a Bose-Einstein condensate in a stable optical resonator, the excess noise effect amounts to a significant depletion on long time scales. PMID:19257722
On three-dimensional dynamics of oscillons of Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Rosanov, N. N.
2015-12-01
Three-dimensional motion of the center of the localized structure of atomic Bose-Einstein condensate in a dynamic trap has been analyzed. The transverse and longitudinal motions of the structure center are separated within the approximation of Newtonian-type mechanical equation. The transverse-motion equations are solved for the axisymmetric and quadratic transverse potentials.
Excess Noise Depletion of a Bose-Einstein Condensate in an Optical Cavity
Szirmai, G.; Nagy, D.; Domokos, P.
2009-02-27
Quantum fluctuations of a cavity field coupled into the motion of ultracold bosons can be strongly amplified by a mechanism analogous to the Petermann excess noise factor in lasers with unstable cavities. For a Bose-Einstein condensate in a stable optical resonator, the excess noise effect amounts to a significant depletion on long time scales.
The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks
Guo, Jin-Li; Suo, Qi; Shen, Ai-Zhong; Forrest, Jeffrey
2016-01-01
To depict the complex relationship among nodes and the evolving process of a complex system, a Bose-Einstein hypernetwork is proposed in this paper. Based on two basic evolutionary mechanisms, growth and preference jumping, the distribution of hyperedge cardinalities is studied. The Poisson process theory is used to describe the arrival process of new node batches. And, by using the Poisson process theory and a continuity technique, the hypernetwork is analyzed and the characteristic equation of hyperedge cardinalities is obtained. Additionally, an analytical expression for the stationary average hyperedge cardinality distribution is derived by employing the characteristic equation, from which Bose-Einstein condensation in the hypernetwork is obtained. The theoretical analyses in this paper agree with the conducted numerical simulations. This is the first study on the hyperedge cardinality in hypernetworks, where Bose-Einstein condensation can be regarded as a special case of hypernetworks. Moreover, a condensation degree is also discussed with which Bose-Einstein condensation can be classified. PMID:27669903
Optical analog of the Iordanskii force in a Bose-Einstein condensate
Leonhardt, U.; Oehberg, P.
2003-05-01
A vortex in a Bose-Einstein condensate generates the optical analog of the Aharonov-Bohm effect when illuminated with slow light. In contrast to the original Aharonov-Bohm effect the vortex will exchange forces with the light that leads to a measurable motion of the vortex.
Photon antibunching upon scattering by an atomic Bose-Einstein condensate
Ilichev, L. V. Chapovsky, P. L.
2010-05-15
Antibunching of photodetections from different modes is shown to arise when two quantized light modes are scattered by an atomic Bose-Einstein condensate. This effect appears because of the uncertainty in the position of the condensate wave function relative to the optical lattice formed by the light beams. It is shown how the information contained in the history of photodetections leads to a spatial localization of the condensate wave function.
Density Density Correlation Function for a Bose-Einstein Condensate Analog Black Hole
NASA Astrophysics Data System (ADS)
Anderson, Paul; Balbinot, Roberto; Fabbri, Alessandro; Parentani, Renaud
2013-04-01
The density density correlation function is computed for an analog black hole which consists of a Bose-Einstein condensate with an acoustic horizon. The method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used provided the profile of the flow varies smoothly on scales compared to the condensate healing length.
On the nature of Bose-Einstein condensation enhanced by localization
Jaeck, Thomas; Pule, Joseph V.; Zagrebnov, Valentin A.
2010-10-15
In a previous paper we established that for the perfect Bose gas and the mean-field Bose gas with an external random or weak potential, whenever there is generalized Bose-Einstein condensation in the eigenstates of the single particle Hamiltonian, there is also generalized condensation in the kinetic-energy states. In these cases Bose-Einstein condensation is produced or enhanced by the external potential. In the present paper we establish a criterion for the absence of condensation in single kinetic-energy states and prove that this criterion is satisfied for a class of random potentials and weak potentials. This means that the condensate is spread over an infinite number of states with low kinetic-energy without any of them being macroscopically occupied.
Dark matter as the Bose-Einstein condensation in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Atazadeh, K.; Darabi, F.; Mousavi, M.
2016-06-01
We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed.
Continuous measurement of atom-number moments of a Bose-Einstein condensate by photodetection
Prataviera, G.A.; Oliveira, M.C. de
2004-07-01
We propose a measurement scheme that allows determination of even moments of a Bose-Einstein condensate (BEC) atom number, in a ring cavity, by continuous photodetection of an off-resonant quantized optical field. A fast cavity photocounting process limits the heating of atomic samples with a relatively small number of atoms, being convenient for BECs on microchip scale applications. The measurement back-action introduces a counting-conditioned phase damping, suppressing the condensate typical collapse and revival dynamics.
Javanainen, Juha
2010-05-15
We study theoretically an atomic Bose-Einstein condensate in a double-well trap, both quantum-mechanically and classically, under conditions such that in the classical model an unstable equilibrium dissolves into large-scale oscillations of the atoms between the potential wells. Quantum mechanics alone does not exhibit such nonlinear dynamics, but measurements of the atom numbers in the potential wells may nevertheless cause the condensate to behave essentially classically.
Capillary instability in a two-component Bose-Einstein condensate
Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki
2011-05-15
Capillary instability and the resulting dynamics in an immiscible two-component Bose-Einstein condensate are investigated using the mean-field and Bogoliubov analyses. A long, cylindrical condensate surrounded by the other component is dynamically unstable against breakup into droplets due to the interfacial tension arising from the quantum pressure and interactions. A heteronuclear system confined in a cigar-shaped trap is proposed for realizing this phenomenon experimentally.
Energetically stable particlelike skyrmions in a trapped Bose-Einstein condensate.
Savage, C M; Ruostekoski, J
2003-07-01
We numerically show that a topologically nontrivial 3D Skyrmion can be energetically stable in a trapped two-component atomic Bose-Einstein condensate, for the parameters of 87Rb condensate experiments. The separate conservation of the two atomic species can stabilize the Skyrmion against shrinking to zero size, while drift of the Skyrmion due to the trap-induced density gradient can be prevented by rotation or by a laser potential.
Field effects on the vortex states in spin-orbit coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Xu, Liang-Liang; Liu, Yong-Kai; Feng, Shiping; Yang, Shi-Jie
2016-06-01
Multi-quantum vortices can be created in the ground state of rotating Bose-Einstein condensates with spin-orbit couplings. We investigate the effects of external fields, either a longitudinal field or a transverse field, on the vortex states. We reveal that both fields can effectively reduce the number of vortices. In the latter case we further find that the condensate density packets are pushed away in the horizontal direction and the vortices finally disappear to form a plane wave phase.
Josephson Effect in Trapped Spin-orbit Coupled Bose-Einstein Condensation
NASA Astrophysics Data System (ADS)
Tang, Wai Ho
Spin-orbit coupling (SOC) has given rise to many novel states of matter including topological insulators and superconductors. Recent experimental realization of SOC in neutral cold atom systems have opened a new avenue to study its effects in Bose-Einstein condensate. In this study, we discuss the Josephson-like mode in the spin-orbit coupled condensate, and study its decoherence due to thermal effect. We discuss experimental implications of our results.
Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice.
Hamner, C; Zhang, Yongping; Khamehchi, M A; Davis, Matthew J; Engels, P
2015-02-20
We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this theoretical picture by probing the dynamical instability of the system.
Spin-Orbit-Coupled Bose-Einstein Condensates in a One-Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Hamner, C.; Zhang, Yongping; Khamehchi, M. A.; Davis, Matthew J.; Engels, P.
2015-02-01
We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this theoretical picture by probing the dynamical instability of the system.
Vortex lattice disorder in pseudorandom potential in rotating Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Mithun, T.; Porsezian, K.; Dey, Bishwajyoti
2016-05-01
We numerically study the vortex lattice dynamics in presence of pseudorandom potential in rotating Bose-Einstein condensate. The rotating condensate displays highly ordered triangular vortex lattice. In presence of pseudorandom potential the vortex lattice gets distorted. The histogram of the distances between each pair of the vortices shows how the long-range order of the triangular vortex lattice is destroyed in presence of pseudorandom potential.
Kelvin-Tkachenko waves of few-vortex arrays in trapped Bose-Einstein condensates
Simula, T. P.; Machida, K.
2010-12-15
We have calculated the low-lying elementary excitations of three-dimensional few-vortex arrays in trapped Bose-Einstein condensates. The number of different Kelvin-Tkachenko vortex wave branches found matches the number of vortices in the condensate. The lowest odd-parity modes exhibit superfluid gyroscopic vortex motion. Experimentally, these modes could be excited and observed individually or in connection with the formation and decay of quantum turbulence.
Controlling chaos in a Bose-Einstein condensate loaded into a moving optical lattice potential
Wang Zhixia Zhang Xihe; Shen Ke
2008-11-15
The spatial structure of a Bose-Einstein condensate loaded into an optical lattice potential is investigated, and spatially chaotic distributions of the condensates are revealed. By means of changing of the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are different periodic orbits according to different s-wave scattering lengths only if the maximal Lyapunov exponent of the system is negative.
Number-Conserving Approaches for Atomic Bose-Einstein Condensates:. An Overview
NASA Astrophysics Data System (ADS)
Gardiner, Simon A.; Billam, Thomas P.
2013-02-01
Assuming the existence of a Bose-Einstein condensate composed of the majority of a sample of ultracold, trapped atoms, perturbative treatments to incorporate the non-condensate fraction are common. Here we describe how this may be carried out in an explicitly number-conserving fashion, providing a common framework for the work of various authors; we also briefly consider issues of implementation, validity, and application of such methods.
Magnon Kinetics and Bose-Einstein Condensation Studied in Phase Space
Demidov, V. E.; Dzyapko, O.; Buchmeier, M.; Demokritov, S. O.; Stockhoff, T.; Schmitz, G.; Melkov, G. A.
2008-12-19
Using a novel technique providing simultaneous resolution with respect to the wave vector and frequency of magnons, we observed the formation of a Bose-Einstein condensate documented by the narrowing of the magnon distribution in phase space. Based on the measured width of the distribution we determined the effective correlation length of the condensate, which appears to be anisotropic, reflecting the anisotropy of the magnon dispersion spectrum.
Composite structure of vortices in two-component Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Ivashin, Anatoly P.; Poluektov, Yuri M.
2015-10-01
In contrast to one-component Bose-Einstein condensate case, the vortices in two-component condensate can have various complicated structures. The vortices in a space-homogeneous Bose-Einstein condensate have been studied in this paper. It is shown that the vortex structure is described by three dimensionless parameters. This is totally different from the usual one-component condensate case,where an isolated vortex is described by a parameterless dimensionless equation. The two-component vortex structure strongly depends on the sign of "interaction" constant of the components. A few types of vortices with different qualitative structure are explored. We show that the "super-density vortices" can exist, when the "interaction" constant is positive. The "super-density vortices" have the near-axis density greater than the equilibrium density of a homogeneous space Bose-Einstein condensate. We also show that the vortices with opposite direction of the condensate component rotation near the axis and far off the axis can exist.
Observation of shock waves in a large Bose-Einstein condensate
Meppelink, R.; Koller, S. B.; Vogels, J. M.; Straten, P. van der; Ooijen, E. D. van; Heckenberg, N. R.; Rubinsztein-Dunlop, H.; Haine, S. A.; Davis, M. J.
2009-10-15
We observe the formation of shock waves in a Bose-Einstein condensate containing a large number of sodium atoms. The shock wave is initiated with a repulsive blue-detuned light barrier, intersecting the Bose-Einstein condensate, after which two shock fronts appear. We observe breaking of these waves when the size of these waves approaches the healing length of the condensate. At this time, the wave front splits into two parts and clear fringes appear. The experiment is modeled using an effective one-dimensional Gross-Pitaevskii-like equation and gives excellent quantitative agreement with the experiment, even though matter waves with wavelengths two orders of magnitude smaller than the healing length are present. In these experiments, no significant heating or particle loss is observed.
Bose-Einstein Condensate Coupled to a Nanomechanical Resonator on an Atom Chip
Treutlein, Philipp; Hunger, David; Camerer, Stephan; Haensch, Theodor W.; Reichel, Jakob
2007-10-05
We theoretically study the coupling of Bose-Einstein condensed atoms to the mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is an experimentally viable hybrid quantum system which allows one to explore the interface of quantum optics and condensed matter physics. We propose an experiment where easily detectable atomic spin flips are induced by the cantilever motion. This can be used to probe thermal oscillations of the cantilever with the atoms. At low cantilever temperatures, as realized in recent experiments, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics. With high but realistic cantilever quality factors, the strong coupling regime can be reached, either with single atoms or collectively with Bose-Einstein condensates. We discuss an implementation on an atom chip.
Coherent zero-field magnetization resonance in a dipolar spin-1 Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Zhang, Wenxian; Yi, S.; Chapman, M. S.; You, J. Q.
2015-08-01
With current magnetic-field shielding and high-precision detection in dipolar spinor Bose-Einstein condensates, it is possible to experimentally detect the low- or zero-field nonsecular dipolar dynamics. Here we analytically investigate the zero-field nonsecular magnetic dipolar interaction effect, with an emphasis on magnetization dynamics in a spin-1 Bose-Einstein condensate under the single spatial mode approximation within the mean-field theory. Due to the biaxial nature of the dipolar interaction, a novel resonance occurs in the condensate magnetization oscillation, in contrast to the previous assumption of a conserved magnetization in strong magnetic fields. Furthermore, we propose a dynamical-decoupling detection method for such a resonance, which cancels the stray magnetic fields in experiment but restores the magnetization dynamics. Our results shed light on the dipolar systems and may find potential applications beyond cold atoms.
Exploring matter-wave dynamics with a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Chang, Rockson
Bose-Einstein condensates of dilute gases provide a rich and versatile platform to study both single-particle and many-body quantum phenomena. This thesis describes several experiments using a Bose-Einstein condensate of Rb-87 as a model system to study novel matter-wave effects that traditionally arise in vastly different systems, yet are difficult to access. We study the scattering of a particle from a repulsive potential barrier in the non-asymptotic regime, for which the collision dynamics are on-going. Using a Bose-Einstein condensate interacting with a sharp repulsive potential, two distinct transient scattering effects are observed: one due to the momentary deceleration of particles atop the barrier, and one due to the abrupt discontinuity in phase written on the wavepacket in position-space, akin to quantum reflection. Both effects lead to a redistribution of momenta, resulting in a rich interference pattern that may be used to reconstruct the single-particle wavefunction. In a second experiment, we study the response of a particle in a periodic potential to an applied force. By abruptly applying an external force to a Bose-Einstein condensate in a one-dimensional optical lattice, we show that the initial response of a particle in a periodic potential is in fact characterized by the bare mass, and only over timescales long compared to that of interband dynamics is the usual effective mass an appropriate description. This breakdown of the effective mass description on fast timescales is difficult to observe in traditional solid state systems due to their large bandgaps and fast timescale of interband dynamics. Both these experiments make use of the condensate's long coherence length, and the ability to shape and modulate the external potential on timescales fast compared to the particle dynamics, allowing for observation of novel matter-wave effects.
A Ring with a Spin: Superfluidity in a toroidal Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Ramanathan, Anand Krishnan
2011-12-01
Superfluidity is a remarkable phenomenon. Superfluidity was initially characterized by flow without friction, first seen in liquid helium in 1938, and has been studied extensively since. Superfluidity is believed to be related to, but not identical to Bose-Einstein condensation, a statistical mechanical phenomena predicted by Albert Einstein in 1924 based on the statistics of Satyendra Nath Bose, where bosonic atoms make a phase transition to form a Bose-Einstein condensate (BEC), a gas which has macroscopic occupation of a single quantum state. Developments in laser cooling of neutral atoms and the subsequent realization of Bose-Einstein condensates in ultracold gases have opened a new window into the study of superfluidity and its relation to Bose-Einstein condensation. In our atomic sodium BEC experiment, we studied superfluidity and dissipationless flow in an all-optical toroidal trap, constructed using the combination of a horizontal "sheet"-like beam and vertical "ring"-like beam, which, like a circuit loop, allows flow around the ring. On inducing a single quantum of circulation in the condensate, the smoothness and uniformity of the toroidal BEC enabled the sustaining of a persistent current lasting 40 seconds, limited by the lifetime of the BEC due to background gas pressure. This success set the stage for further experiments studying superfluidity. In a first set of experiments, we studied the stability of the persistent current by inserting a barrier in the flow path of the ring. The superflow stopped abruptly at a barrier strength such that the local flow velocity at the barrier exceeded a critical velocity, which supported decay via the creation of a vortex-antivortex pair. Our precise control in inducing and arresting superflow in the BEC is a first step toward studying other aspects of superfluidity, such as the effect of temperature and dimensionality. This thesis discusses these experiments and also details partial-transfer absorption imaging, an
Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins
Khamehchi, M. A.; Qu, Chunlei; Mossman, M. E.; Zhang, Chuanwei; Engels, P.
2016-01-01
The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s–p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands. PMID:26924575
Generalized Bose-Einstein condensation into multiple states in driven-dissipative systems.
Vorberg, Daniel; Wustmann, Waltraut; Ketzmerick, Roland; Eckardt, André
2013-12-13
Bose-Einstein condensation, the macroscopic occupation of a single quantum state, appears in equilibrium quantum statistical mechanics and persists also in the hydrodynamic regime close to equilibrium. Here we show that even when a degenerate Bose gas is driven into a steady state far from equilibrium, where the notion of a single-particle ground state becomes meaningless, Bose-Einstein condensation survives in a generalized form: the unambiguous selection of an odd number of states acquiring large occupations. Within mean-field theory we derive a criterion for when a single state and when multiple states are Bose selected in a noninteracting gas. We study the effect in several driven-dissipative model systems, and propose a quantum switch for heat conductivity based on shifting between one and three selected states.
Bose-Einstein condensation of the classical axion field in cosmology?
Davidson, Sacha; Elmer, Martin E-mail: m.elmer@ipnl.in2p3.fr
2013-12-01
The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. To quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.
NASA Astrophysics Data System (ADS)
Cuesta, José A.; Sear, Richard P.
2002-03-01
Ideal bosons and a classical system of monomers that aggregate forming noninteracting ring polymers are known to have the same partition function. So, the ring polymers have a phase transition, the analogue of Bose-Einstein condensation of bosons. At this phase transition macroscopic polymers are formed. The link between these systems is made via Feynman's path integrals: these integrals are the same for the trajectories of the bosons in imaginary time and for the configurations of the polymers. We show that a transition of this general form occurs within a whole class of aggregating systems. Examples are the lamellae formation in suspensions of disclike micelles or the emulsification failure observed in water-oil-surfactant emulsions. As with bosons, the transition occurs even when aggregates do not interact. The λ-transition in 4He is believed to be Bose-Einstein condensation modified by interatomic interactions. We suggest that interaggregate interactions too only modify the transition we have found.
Magnetic Dipolar Interaction in a Bose-Einstein Condensate Atomic Interferometer
Fattori, M.; Roati, G.; D'Errico, C.; Inguscio, M.; Modugno, G.; Deissler, B.; Zaccanti, M.; Jona-Lasinio, M.; Santos, L.
2008-11-07
We study the role played by the magnetic dipole interaction in the decoherence of a lattice-based interferometer that employs an alkali Bose-Einstein condensate with a tunable scattering length. The different behavior we observe for two different orientations of the dipoles gives us evidence of the anisotropic character of the interaction. The experiment is correctly reproduced by a model we develop only if the long-range interaction between different lattice sites is taken into account. Our model indicates that dipolar interaction can be compensated by a proper choice of the scattering length and that the magnetic dipole interaction should not represent an obstacle for atom interferometry with Bose-Einstein condensates with a tunable interaction.
Developing density functional theory for Bose-Einstein condensates. The case of chemical bonding
Putz, Mihai V.
2015-01-22
Since the nowadays growing interest in Bose-Einstein condensates due to the expanded experimental evidence on various atomic systems within optical lattices in weak and strong coupling regimes, the connection with Density Functional Theory is firstly advanced within the mean field framework at three levels of comprehension: the many-body normalization condition, Thomas-Fermi limit, and the chemical hardness closure with the inter-bosonic strength and universal Hohenberg-Kohn functional. As an application the traditional Heitler-London quantum mechanical description of the chemical bonding for homopolar atomic systems is reloaded within the non-linear Schrödinger (Gross-Pitaevsky) Hamiltonian; the results show that a two-fold energetic solution is registered either for bonding and antibonding states, with the bosonic contribution being driven by the square of the order parameter for the Bose-Einstein condensate density in free (gas) motion, while the associate wave functions remain as in classical molecular orbital model.
Gap solitons in spin-orbit-coupled Bose-Einstein condensates in optical lattices
NASA Astrophysics Data System (ADS)
Zhang, Yongping; Xu, Yong; Busch, Thomas
2015-04-01
While different ways to realize spin-orbit coupling in Bose-Einstein condensates exist, not all are currently experimentally implementable. Here we present a detailed study of gap solitons in a Bose-Einstein condensate with experimentally realizable spin-orbit coupling and discuss two cases relating to a spin-dependent parity symmetry. In the parity symmetric case, two families of fundamental gap solitons in the second linear energy gap are demonstrated with the opposite sign of the parity, with one family having single-humped densities and the other double-humped ones. In the case of broken parity symmetry, the fundamental modes manifest spin polarization. Both families possess an opposite sign of the spin polarization.
Superstripes and the excitation spectrum of a spin-orbit-coupled Bose-Einstein condensate.
Li, Yun; Martone, Giovanni I; Pitaevskii, Lev P; Stringari, Sandro
2013-06-01
Using Bogoliubov theory we calculate the excitation spectrum of a spinor Bose-Einstein condensed gas with an equal Rashba and Dresselhaus spin-orbit coupling in the stripe phase. The emergence of a double gapless band structure is pointed out as a key signature of Bose-Einstein condensation and of the spontaneous breaking of translational invariance symmetry. In the long wavelength limit the lower and upper branches exhibit, respectively, a clear spin and density nature. For wave vectors close to the first Brillouin zone, the lower branch acquires an important density character responsible for the divergent behavior of the structure factor and of the static response function, reflecting the occurrence of crystalline order. The sound velocities are calculated as functions of the Raman coupling for excitations propagating orthogonal and parallel to the stripes. Our predictions provide new perspectives for the identification of supersolid phenomena in ultracold atomic gases.
Conditions for Bose-Einstein condensation in magnetically trapped atomic cesium
NASA Astrophysics Data System (ADS)
Tiesinga, E.; Moerdijk, A. J.; Verhaar, B. J.; Stoof, H. T. C.
1992-08-01
We study conditions necessary for the observation of Bose-Einstein condensation in a magnetically trapped sample of atomic Cs gas. These conditions are associated with the value of the elastic scattering length, the rate of elastic scattering events, and the lifetime for decay of the density due to both magnetic dipole relaxation in two-body collisions, as well as recombination to Cs2 in three-body collisions. We find that, on the basis of these conditions, the prospects for observing Bose-Einstein condensation are favorable for a gas of ground-state Cs atoms in the highest state of the lowest hyperfine manifold. In all calculated elastic and inelastic two-body rates we find a pronounced resonance structure, which can be understood in terms of the interplay between the singlet-triplet interaction and the hyperfine, Zeeman, and magnetic dipole interactions. The experimental observation of these resonances may help to eliminate present uncertainties about interaction potentials.
An efficient numerical method for computing dynamics of spin F = 2 Bose-Einstein condensates
Wang Hanquan
2011-07-01
In this paper, we extend the efficient time-splitting Fourier pseudospectral method to solve the generalized Gross-Pitaevskii (GP) equations, which model the dynamics of spin F = 2 Bose-Einstein condensates at extremely low temperature. Using the time-splitting technique, we split the generalized GP equations into one linear part and two nonlinear parts: the linear part is solved with the Fourier pseudospectral method; one of nonlinear parts is solved analytically while the other one is reformulated into a matrix formulation and solved by diagonalization. We show that the method keeps well the conservation laws related to generalized GP equations in 1D and 2D. We also show that the method is of second-order in time and spectrally accurate in space through a one-dimensional numerical test. We apply the method to investigate the dynamics of spin F = 2 Bose-Einstein condensates confined in a uniform/nonuniform magnetic field.
Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins.
Khamehchi, M A; Qu, Chunlei; Mossman, M E; Zhang, Chuanwei; Engels, P
2016-02-29
The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s-p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands.
Amplification of matter rogue waves and breathers in quasi-two-dimensional Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Manikandan, K.; Senthilvelan, M.; Kraenkel, R. A.
2016-02-01
We construct rogue wave and breather solutions of a quasi-two-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap. We show that the trapping potential and an arbitrary functional parameter that present in the similarity transformation should satisfy a constraint for the considered equation to be integrable and yield the desired solutions. We consider two different forms of functional parameters and investigate how the density of the rogue wave and breather profiles vary with respect to these functional parameters. We also construct vector localized solutions of a two coupled quasi-two-dimensional Bose-Einstein condensate system. We then investigate how the vector localized density profiles modify in the constant density background with respect to the functional parameters. Our results may help to manipulate matter rogue waves experimentally in the two-dimensional Bose-Einstein condensate systems.
NASA Astrophysics Data System (ADS)
Pattinson, R. W.; Billam, T. P.; Gardiner, S. A.; McCarron, D. J.; Cho, H. W.; Cornish, S. L.; Parker, N. G.; Proukakis, N. P.
2013-01-01
We investigate the mean-field equilibrium solutions for a two-species immiscible Bose-Einstein condensate confined by a harmonic confinement with additional linear perturbations. We observe a range of equilibrium density structures, including ball and shell formations and axially or radially separated states, with a marked sensitivity to the potential perturbations and the relative atom number in each species. Incorporation of linear trap perturbations, albeit weak, are found to be essential to match the range of equilibrium density profiles observed in a recent 87Rb-133Cs Bose-Einstein condensate experiment [McCarron , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.011603 84, 011603(R) (2011)]. Our analysis of this experiment demonstrates that sensitivity to linear trap perturbations is likely to be an important factor in interpreting the results of similar experiments in the future.
Structure formation in immiscible two-species Bose-Einstein condensates in perturbed harmonic traps
NASA Astrophysics Data System (ADS)
Pattinson, Robert; Parker, Nick; Proukakis, Nick; Liu, I.-Kang; Gou, Shih-Chuan; Gardiner, Simon; McCarron, Daniel; Cho, Hung-Wen; Cornish, Simon; Billam, Tom
2013-05-01
We investigate the mean-field equilibrium solutions for a trapped two-species 87Rb-133Cs immiscible Bose-Einstein condensate, and show that the density profiles observed in a recent Bose-Einstein experiment (D. J. McCarron et al. Phys. Rev. A 84, 011603 (2011)), which include ball and shell formations and axially/radially separated states, can be reproduced when accounting for weak linear perturbations. We also demonstrate the importance of the coupled growth of the two condensates by a simple finite temperature model which reveals such structures to be generally metastable in the presence of dissipation, with our findings confirmed by the more accurate Stochastic Projected Gross-Pitaevskii equation.
Bianconi, Ginestra; Rotzschke, Olaf
2010-09-01
The mapping between genotype and phenotype is encoded in the complex web of epistatic interaction between genetic loci. In this rugged fitness landscape, recombination processes, which tend to increase variation in the population, compete with selection processes that tend to reduce genetic variation. Here, we show that the Bose-Einstein distribution describe the multiple stationary states of a diploid population under this multiloci evolutionary dynamics. Moreover, the evolutionary process might undergo an interesting condensation phase transition in the universality class of a Bose-Einstein condensation when a finite fraction of pairs of linked loci is fixed into given allelic states. Below this phase transition the genetic variation within a species is significantly reduced and only maintained by the remaining polymorphic loci.
Bose-Einstein condensation of dark matter solves the core/cusp problem
Harko, T.
2011-05-01
We analyze the observed properties of dwarf galaxies, which are dark matter dominated astrophysical objects, by assuming that dark matter is in the form of a strongly-coupled, dilute Bose-Einstein condensate. The basic astrophysical properties of the condensate (density profile, rotational velocity, and mass profile, respectively), are derived from a variational principle. To test the validity of the model we compare first the tangential velocity equation of the model with a sample of eight rotation curves of dwarf galaxies. We find a good agreement between the theoretically predicted rotation curves (without any baryonic component) and the observational data. The mean value of the logarithmic inner slope of the mass density profile of dwarf galaxies is also obtained, and it is shown that the observed value of this parameter is in agreement with the theoretical results. The predictions of the Bose-Einstein condensate model are also systematically compared with the predictions of the standard Cold Dark Matter model. The non-singular density profiles of the Bose-Einstein condensed dark matter generally show the presence of an extended core, whose presence is due to the strong interaction between dark matter particles.
Entropy density of an adiabatic relativistic Bose-Einstein condensate star
Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza
2015-04-24
Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.
Dipole oscillations of a Bose-Einstein condensate in the presence of defects and disorder.
Albert, M; Paul, T; Pavloff, N; Leboeuf, P
2008-06-27
We consider dipole oscillations of a trapped dilute Bose-Einstein condensate in the presence of a scattering potential consisting either in a localized defect or in an extended disordered potential. In both cases the breaking of superfluidity and the damping of the oscillations are shown to be related to the appearance of a nonlinear dissipative flow. At supersonic velocities the flow becomes asymptotically dissipationless.
Excitations in a Nonequilibrium Bose-Einstein Condensate of Exciton Polaritons
Wouters, Michiel; Carusotto, Iacopo
2007-10-05
We develop a mean-field theory of the dynamics of a nonequilibrium Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity. The spectrum of elementary excitations around the stationary state is analytically studied by means of a generalized Gross-Pitaevskii equation. A diffusive behavior of the Goldstone mode is found in the spatially homogeneous case and new features are predicted for the Josephson effect in a two-well geometry.
Modugno, M.; Tozzo, C.; Dalfovo, F.
2006-12-15
We theoretically investigate the dynamic properties of a Bose-Einstein condensate in a toroidal trap. A periodic modulation of the transverse confinement is shown to produce a density pattern due to parametric amplification of phonon pairs. By imaging the density distribution after free expansion one obtains (i) a precise determination of the Bogoliubov spectrum and (ii) a sensitive detection of quantized circulation in the torus. The parametric amplification is also sensitive to thermal and quantum fluctuations.
Bogoliubov-Cerenkov Radiation in a Bose-Einstein Condensate Flowing against an Obstacle
Carusotto, I.; Hu, S. X.; Collins, L. A.; Smerzi, A.
2006-12-31
We study the density modulation that appears in a Bose-Einstein condensate flowing with supersonic velocity against an obstacle. The experimental density profiles observed at JILA are reproduced by a numerical integration of the Gross-Pitaevskii equation and then interpreted in terms of Cerenkov emission of Bogoliubov excitations by the defect. The phonon and the single-particle regions of the Bogoliubov spectrum are, respectively, responsible for a conical wave front and a fan-shaped series of precursors.
Phase-Diffusion Dynamics in Weakly Coupled Bose-Einstein Condensates
Boukobza, Erez; Vardi, Amichay; Chuchem, Maya; Cohen, Doron
2009-05-08
We study the phase sensitivity of collisional phase diffusion between weakly coupled Bose-Einstein condensates, using a semiclassical picture of the two-mode Bose-Hubbard model. When weak coupling is allowed, zero relative phase locking is attained in the Josephson-Fock transition regime, whereas a {pi} relative phase is only locked in Rabi-Josephson point. Our analytic semiclassical estimates agree well with the numerical results.
Higbie, J; Stamper-Kurn, D M
2002-03-01
We consider a two-component atomic gas illumined by two intersecting laser beams which induce Raman coupling between the components. This spatially periodic coupling modifies the dispersion relation of the gas. Properties of a Bose-Einstein condensate of such a gas are strongly affected by this modification. Using the quasiparticle excitation spectrum derived from a Bogoliubov transformation, the Landau critical velocity is found to be anisotropic and can be widely tuned by varying properties of the dressing laser beams.
Ferrofluidity in a two-component dipolar Bose-Einstein condensate.
Saito, Hiroki; Kawaguchi, Yuki; Ueda, Masahito
2009-06-12
It is shown that the interface in a two-component Bose-Einstein condensate (BEC) with a dipole-dipole interaction spontaneously develops patterns similar to those formed in a ferrofluid. Hexagonal, labyrinthine, solitonlike structures, and hysteretic behavior are numerically demonstrated. Superflow is found to circulate around the hexagonal pattern at rest, offering evidence of supersolidity. The system sustains persistent current with a vortex line pinned by the hexagonal pattern. These phenomena may be realized using a 52Cr BEC.
Connection between rotation and miscibility in a two-component Bose-Einstein condensate
Shimodaira, Takayuki; Saito, Hiroki; Kishimoto, Tetsuo
2010-07-15
A two-component Bose-Einstein condensate rotating in a toroidal trap is investigated. The topological constraint depends on the density distribution of each component along the circumference of the torus, and therefore the quantization condition on the circulation can be controlled by changing the miscibility using the Feshbach resonance. We find that the system exhibits a variety of dynamics depending on the initial angular momentum when the miscibility is changed.
Collision dynamics of skyrmions in a two-component Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Kaneda, Tomoya; Saito, Hiroki
2016-03-01
The dynamics of skyrmions in a two-component Bose-Einstein condensate is numerically investigated in the mean-field theory. When two skyrmions collide with each other, they are first united and then scattered into various states. For head-on collisions, skyrmions with unit winding number are scattered. The collision dynamics with an impact parameter are shown to depend on the relative phase. These dynamic processes are characterized by integer winding numbers.
Rotational response of two-component Bose-Einstein condensates in ring traps
Halkyard, P. L.; Jones, M. P. A.; Gardiner, S. A.
2010-06-15
We consider a two-component Bose-Einstein condensate in a ring trap in a rotating frame and show how to determine the response of such a configuration to being in a rotating frame via accumulation of a Sagnac phase. This may be accomplished through either population oscillations or the motion of spatial-density fringes. We explicitly include the effect of interactions via a mean-field description and study the fidelity of the dynamics relative to an ideal configuration.
Viscondi, T. F.; Furuya, K.; Oliveira, M. C. de
2009-07-15
The generalized purity is employed for investigating the process of coherence loss and delocalization of the Q function in the Bloch sphere of a two-mode Bose-Einstein condensate in a symmetrical double well with cross collision. Quantum phase transition of the model is signaled by the generalized purity as a function of an appropriate parameter of the Hamiltonian and the number of particles (N). A power-law dependence of the critical parameter with N is derived.
Ferrofluidity in a Two-Component Dipolar Bose-Einstein Condensate
Saito, Hiroki; Kawaguchi, Yuki; Ueda, Masahito
2009-06-12
It is shown that the interface in a two-component Bose-Einstein condensate (BEC) with a dipole-dipole interaction spontaneously develops patterns similar to those formed in a ferrofluid. Hexagonal, labyrinthine, solitonlike structures, and hysteretic behavior are numerically demonstrated. Superflow is found to circulate around the hexagonal pattern at rest, offering evidence of supersolidity. The system sustains persistent current with a vortex line pinned by the hexagonal pattern. These phenomena may be realized using a {sup 52}Cr BEC.
Storage of Spin Squeezing in a Two-Component Bose-Einstein Condensate
Jin, Guang-Ri; Kim, Sang Wook
2007-10-26
A simple scheme for storage of spin squeezing in a two-component Bose-Einstein condensate is investigated by considering rapidly turning-off the external field at a time that maximal spin squeezing occurs. We show that strong reduction of spin fluctuation can be maintained in a nearly fixed direction. We explain the underlying physics using the phase model and present analytical expressions of the maximal-squeezing time and the corresponding squeezing parameter.
Storage of spin squeezing in a two-component Bose-Einstein condensate.
Jin, Guang-Ri; Kim, Sang Wook
2007-10-26
A simple scheme for storage of spin squeezing in a two-component Bose-Einstein condensate is investigated by considering rapidly turning-off the external field at a time that maximal spin squeezing occurs. We show that strong reduction of spin fluctuation can be maintained in a nearly fixed direction. We explain the underlying physics using the phase model and present analytical expressions of the maximal-squeezing time and the corresponding squeezing parameter.
Classical and quantum dynamics of a model for atomic-molecular Bose-Einstein condensates
Santos, G.; Tonel, A.; Foerster, A.; Links, J.
2006-02-15
We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.
Nucleation and growth of vortices in a rotating Bose-Einstein condensate.
Vorov, O K; Isacker, P Van; Hussein, M S; Bartschat, K
2005-12-01
An analytic solution of the Gross-Pitaevskii equation for a rotating Bose-Einstein condensate of trapped atoms describes the onset of vorticity when the rotational speed is increased, starting with the entry of the first vortex and followed by the formation of growing symmetric Wigner molecules. It explains the staircase of angular momentum jumps and the behavior of the bosonic occupancies observed in numerical studies. The similarity of this behavior and mesoscopic superconductors is discussed. PMID:16384283
Static properties of Bose-Einstein condensate mixtures in semi-infinite space
NASA Astrophysics Data System (ADS)
Thu, Nguyen Van
2016-08-01
Using double-parabola approximation (DPA) applied to Gross-Pitaevskii theory, the interfacial tension of Bose-Einstein condensate mixtures in semi-infinite system is obtained and shows that it is not vanishing at demix state K = 1, its value exactly coincides to wall tension of second component. A new kind of wetting phase transition (Antonov transition) is also considered within DPA and phase transition is first-order. Antonov line is thoroughly proved, too.
Vortex Polygons and Their Stabilities in Bose-Einstein Condensates and Field Theory
NASA Astrophysics Data System (ADS)
Kobayashi, Michikazu; Nitta, Muneto
2014-04-01
We study vortex polygons and their stabilities in miscible two-component Bose-Einstein condensates, and find that vortex polygons are stable for the total circulation Q≤5, metastable for Q=6, and unstable for Q≥7. As a related model in high-energy physics, we also study the vortex polygon of the baby-Skyrme model with an anti-ferromagnetic potential term, and compare both results.
Controlling chaos in the Bose-Einstein condensate system of a double lattice
Wang Zhixia Ni Zhengguo; Cong Fuzhong; Liu Xueshen; Chen Lei
2011-02-15
We study the chaotic dynamics in the Bose-Einstein condensate (BEC) system of a double lattice. Chaotic space-time evolution is investigated for the particle number density in a BEC. By changing of the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical calculation shows that there is periodic orbit according to the s-wave scattering length only if the maximal Lyapunov exponent of the system is negative.
Analysis and calibration of absorptive images of Bose-Einstein condensate at nonzero temperatures
Szczepkowski, J.; Gartman, R.; Zawada, M.; Witkowski, M.; Tracewski, L.; Gawlik, W.
2009-05-15
We describe the method allowing quantitative interpretation of absorptive images of mixtures of Bose-Einstein condensate and thermal atoms which reduces possible systematic errors associated with evaluation of the contribution of each fraction and eliminates arbitrariness of most of the previous approaches. By using known temperature dependence of the BEC fraction, the analysis allows precise calibration of the fitting results. The developed method is verified in two different measurements and compares well with theoretical calculations and with measurements performed by another group.
Stationary and nonstationary fluid flow of a bose-einstein condensate through a penetrable barrier.
Engels, P; Atherton, C
2007-10-19
We experimentally study the fluid flow induced by a broad, penetrable barrier moving through an elongated dilute gaseous Bose-Einstein condensate. The barrier is created by a laser beam swept through the condensate, and the resulting dipole potential can be either attractive or repulsive. We examine both cases and find regimes of stable and unstable fluid flow: At slow speeds of the barrier, the fluid flow is steady due to the superfluidity of the condensate. At intermediate speeds, we observe an unsteady regime in which the condensate gets filled with dark solitons. At faster speeds, soliton formation completely ceases, and a remarkable absence of excitation in the condensate is seen again.
Bose-Einstein condensation of photons in a 'white-wall' photon box
NASA Astrophysics Data System (ADS)
Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin
2011-01-01
Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.
Anderson Localization of a Bose-Einstein Condensate in a 3D Random Potential
Skipetrov, S. E.; Minguzzi, A.; Tiggelen, B. A. van; Shapiro, B.
2008-04-25
We study the effect of Anderson localization on the expansion of a Bose-Einstein condensate, released from a harmonic trap, in a 3D random potential. We use scaling arguments and the self-consistent theory of localization to show that the long-time behavior of the condensate density is controlled by a single parameter equal to the ratio of the mobility edge and the chemical potential of the condensate. We find that the two critical exponents of the localization transition determine the evolution of the condensate density in time and space.
Eliminating the mean-field shift in two-component bose-einstein condensates
Goldstein; Moore; Pu; Meystre
2000-12-11
We demonstrate that the nonlinear mean-field shift in a multicomponent Bose-Einstein condensate may be eliminated by controlling the two-body interaction coefficients. This modification can be achieved by engineering the environment of the condensate. We consider the case of a two-component condensate in a quasi-one-dimensional atomic waveguide, achieving modification of the atom-atom interactions by varying the transverse wave functions of the components. Eliminating the density-dependent phase shift represents a promising potential application for multicomponent condensates in atom interferometry and precision measurements.
Strong confinement and oscillations in two-component bose-einstein condensates
Park; Eberly
2000-11-13
We present a new model of Bose-Einstein condensate dynamics based on strong confinement near the ground state. The model is based on a combined particle-wave view of the condensate and predicts oscillations in a two-component condensate, based on interference of nonspreading wave packets moving within a pair of tilted nearly square potentials. The oscillations are similar to those recently reported for a magnetically trapped 87Rb condensate, and the model's predictions give good quantitative agreement with the experiments.
Propagation of collective modes in non-overlapping dipolar Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Gallemi, A.; Guilleumas, M.; Mayol, R.; Pi, M.
2014-04-01
We investigate long-range effects of the dipolar interaction in Bose-Einstein condensates by solving the time-dependent 3D Gross-Pitaevskii equation. We study the propagation of excitations between non-overlapping condensates when a collective mode is excited in one of the condensates. We obtain the frequency shifts due to the long-range character of the dipolar coupling for the bilayer and also the trilayer system when the dipolar mode is excited in one condensate. The propagation of the monopolar and quadrupolar modes are also investigated. The coupled-pendulum model is proposed to qualitatively explain the long range effects of the dipolar coupling.
Berman, Oleg L; Kezerashvili, Roman Ya; Kolmakov, German V; Pomirchi, Leonid M
2015-06-01
The Bose-stimulated self-organization of a quasi-two-dimensional nonequilibrium Bose-Einstein condensate in an in-plane potential is proposed. We obtained the solution of the nonlinear, driven-dissipative Gross-Pitaevskii equation for a Bose-Einstein condensate trapped in an external asymmetric parabolic potential within the method of the spectral expansion. We found that, in sharp contrast to previous observations, the condensate can spontaneously acquire a solitonlike shape for spatially homogeneous pumping. This condensate soliton performs oscillatory motion in a parabolic trap and, also, can spontaneously rotate. Stability of the condensate soliton in the spatially asymmetric trap is analyzed. In addition to the nonlinear dynamics of nonequilibrium Bose-Einstein condensates of ultracold atoms, our findings can be applied to the condensates of quantum well excitons and cavity polaritons in semiconductor heterostructure, and to the condensates of photons.
Dynamics and thermalization of a Bose-Einstein condensate in a Sinai-oscillator trap
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Vergini, Eduardo; Shepelyansky, Dima L.
2016-07-01
We study numerically the evolution of Bose-Einstein condensate in the Sinai-oscillator trap described by the Gross-Pitaevskii equation in two dimensions. In the absence of interactions, this trap mimics the properties of Sinai billiards where the classical dynamics is chaotic and the quantum evolution is described by generic properties of quantum chaos and random matrix theory. We show that, above a certain border, the nonlinear interactions between atoms lead to the emergence of dynamical thermalization which generates the statistical Bose-Einstein distribution over eigenmodes of the system without interactions. Below the thermalization border, the evolution remains quasi-integrable. Such a Sinai-oscillator trap, formed by the oscillator potential and a repulsive disk located in the vicinity of the center, had been already realized in first experiments with the Bose-Einstein condensate formation by Ketterle group in 1995 and we argue that it can form a convenient test bed for experimental investigations of dynamical of thermalization. Possible links and implications for Kolmogorov turbulence in absence of noise are also discussed.
Entangled superfluids: Condensate dynamics of the entangled Bose-Einstein condensation
Shi Yu
2010-07-15
We study the condensate dynamics of the so-called entangled Bose-Einstein condensation (EBEC), which is the ground state of a mixture of two species of pseudospin-(1/2) atoms with interspecies spin-exchange scattering in certain parameter regimes. EBEC leads to four interdependent superfluid components, each corresponding to the orbital wave function associated with a spin component of a species. The four superflows have various counter-relations, and altogether lead to a conserved total supercurrent and a conserved total spin supercurrent. In the homogeneous case, we also obtain the elementary excitations due to variations of the single-particle orbital wave functions, by exactly solving the generalized time-dependent Bogoliubov equations. There are three gapless Bogoliubov modes and one Klein-Gordon-like gapped mode. The origin of these excitations are also discussed from the perspective of spontaneous breaking of the symmetries possessed by the system.
Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates
Recati, A.; Pavloff, N.; Carusotto, I.
2009-10-15
We apply the microscopic Bogoliubov theory of dilute Bose-Einstein condensates to analyze quantum and thermal fluctuations in a flowing atomic condensate in the presence of a sonic horizon. For the simplest case of a step-like horizon, closed-form analytical expressions are found for the spectral distribution of the analog Hawking radiation and for the density correlation function. The peculiar long-distance density correlations that appear as a consequence of the Hawking emission features turns out to be reinforced by a finite initial temperature of the condensate. The analytical results are in good quantitative agreement with first principle numerical calculations.
Watching dark solitons decay into vortex rings in a Bose-Einstein condensate.
Anderson, B P; Haljan, P C; Regal, C A; Feder, D L; Collins, L A; Clark, C W; Cornell, E A
2001-04-01
We have created spatial dark solitons in two-component Bose-Einstein condensates in which the soliton exists in one of the condensate components and the soliton nodal plane is filled with the second component. The filled solitons are stable for hundreds of milliseconds. The filling can be selectively removed, making the soliton more susceptible to dynamical instabilities. For a condensate in a spherically symmetric potential, these instabilities cause the dark soliton to decay into stable vortex rings. We have imaged the resulting vortex rings.
High-field instability of a field-induced triplon Bose-Einstein condensate
Rakhimov, Abdulla; Sherman, E. Ya.; Kim, Chul Koo
2010-01-01
We study properties of magnetic field-induced Bose-Einstein condensate of triplons as a function of temperature and the field within the Hartree-Fock-Bogoliubov approach including the anomalous density. We show that the magnetization is continuous across the transition, in agreement with the experiment. In sufficiently strong fields the condensate becomes unstable due to triplon-triplon repulsion. As a result, the system is characterized by two critical magnetic fields: one producing the condensate and the other destroying it. We show that nonparabolic triplon dispersion arising due to the gapped bare spectrum and the crystal structure has a strong influence on the phase diagram.
Dual-species Bose-Einstein condensate of Rb87 and Cs133
NASA Astrophysics Data System (ADS)
McCarron, D. J.; Cho, H. W.; Jenkin, D. L.; Köppinger, M. P.; Cornish, S. L.
2011-07-01
We report the formation of a dual-species Bose-Einstein condensate of Rb87 and Cs133 in the same trapping potential. Our method exploits the efficient sympathetic cooling of Cs133 via elastic collisions with Rb87, initially in a magnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to 2×104 atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the Rb87 during the cooling, we create single-species Cs133 condensates of up to 6×104 atoms.
Zero-temperature damping of Bose-Einstein condensate oscillations by vortex-antivortex pair creation
Fedichev, Petr O.; Fischer, Uwe R.; Recati, Alessio
2003-07-01
We investigate vortex-antivortex pair creation in a supersonically expanding and contracting quasi-two-dimensional Bose-Einstein condensate at zero temperature. For sufficiently large-amplitude condensate oscillations, pair production provides the leading dissipation mechanism. The condensate oscillations decay in a nonexponential manner, and the dissipation rate depends strongly on the oscillation amplitude. These features allow one to distinguish the decay due to pair creation from other possible damping mechanisms. An experimental observation of the predicted oscillation behavior of the superfluid gas provides a direct confirmation of the hydrodynamical analogy of quantum electrodynamics and quantum vortex dynamics in two spatial dimensions.
Mackie, Matt; Collin, Anssi; Javanainen, Juha
2005-01-01
Collective two-color photoassociation of a freely interacting {sup 87}Rb Bose-Einstein condensate is theoretically examined, focusing on stimulated Raman adiabatic passage (STIRAP) from an atomic to a stable molecular condensate. In particular, Drummond et al. [Phys. Rev. A. 65, 063619 (2002)] have predicted that particle-particle interactions can limit the efficiency of collective atom-molecule STIRAP, and that optimizing the laser parameters can partially overcome this limitation. We suggest that the molecular conversion efficiency can be further improved by treating the initial condensate density as an optimization parameter.
Excitation of two spatially separated Bose-Einstein condensates of magnons
Dzyapko, O.; Demidov, V. E.; Buchmeier, M.; Demokritov, S. O.; Stockhoff, T.; Schmitz, G.; Melkov, G. A.
2009-08-01
We have studied experimentally the spatial properties and the dynamics of magnon Bose-Einstein condensates created in ferromagnetic films by a parametric pumping with different spatial configurations. Using the specific character of dynamic fields produced by pumping resonators of different shapes, we were able to realize the regime, in which two spatially separated condensates of magnons are formed. Our experiments show that while the separation between the condensates is determined by the size of the resonator, their spatial width can be changed by varying the power of the pumping signal.
Finite temperature effects in Bose-Einstein condensed dark matter halos
Harko, Tiberiu; Madarassy, Enikö J.M. E-mail: eniko.madarassy@physics.uu.se
2012-01-01
Once the critical temperature of a cosmological boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Zero temperature condensed dark matter can be described as a non-relativistic, Newtonian gravitational condensate, whose density and pressure are related by a barotropic equation of state, with barotropic index equal to one. In the present paper we analyze the effects of the finite dark matter temperature on the properties of the dark matter halos. We formulate the basic equations describing the finite temperature condensate, representing a generalized Gross-Pitaevskii equation that takes into account the presence of the thermal cloud. The static condensate and thermal cloud in thermodynamic equilibrium is analyzed in detail, by using the Hartree-Fock-Bogoliubov and Thomas-Fermi approximations. The condensed dark matter and thermal cloud density and mass profiles at finite temperatures are explicitly obtained. Our results show that when the temperature of the condensate and of the thermal cloud are much smaller than the critical Bose-Einstein transition temperature, the zero temperature density and mass profiles give an excellent description of the dark matter halos. However, finite temperature effects may play an important role in the early stages of the cosmological evolution of the dark matter condensates.
Zhang, J. M.; Cui, S.; Jing, H.; Zhou, D. L.; Liu, W. M.
2009-10-15
We propose to probe the quantum ground state of a spin-1 Bose-Einstein condensate with the transmission spectra of an optical cavity. By choosing a circularly polarized cavity mode with an appropriate frequency, we can realize coupling between the cavity mode and the magnetization of the condensate. The cavity transmission spectra then contain information of the magnetization statistics of the condensate and thus can be used to distinguish the ferromagnetic and antiferromagnetic quantum ground states. This technique may also be useful for continuous observation of the spin dynamics of a spinor Bose-Einstein condensate.
Diffraction of a Bose-Einstein Condensate from a Magnetic Lattice on a Microchip
Guenther, A.; Kraft, S.; Kemmler, M.; Koelle, D.; Kleiner, R.; Zimmermann, C.; Fortagh, J.
2005-10-21
We experimentally study the diffraction of a Bose-Einstein condensate from a magnetic lattice, realized by a set of 372 parallel gold conductors which are microfabricated on a silicon substrate. The conductors generate a periodic potential for the atoms with a lattice constant of 4 {mu}m. After exposing the condensate to the lattice for several milliseconds we observe diffraction up to fifth order by standard time of flight imaging techniques. The experimental data can be quantitatively interpreted with a simple phase imprinting model. The demonstrated diffraction grating offers promising perspectives for the construction of an integrated atom interferometer.
Role of quantum statistics in the photoassociation of Bose-Einstein condensates
Olsen, M. K.; Plimak, L. I.
2003-09-01
We show that the photoassociation of an atomic Bose-Einstein condensate to form condensed molecules is a chemical process which not only does not obey the Arrhenius rules for chemical reactions, but that it can also depend on the quantum statistics of the reactants. Comparing the predictions of a truncated Wigner representation for different initial quantum states, we find that, even when the quantum prediction for an initial coherent state is close to the Gross-Pitaevskii prediction, other quantum states may result in very different dynamics.
Adiabatic geometric phase for a Bose-Einstein condensate coupled to a cavity
Li Shengchang; Fu Libin; Liu Jie
2011-11-15
We investigate the geometric phase in a model of a Bose-Einstein condensate coupled to an optical cavity in which both the condensate and the cavity are described with coherent states. When the argument of the atom-cavity coupling term varies in time slowly from zero to 2{pi}, we calculate the geometric phase accumulated by the ground state and obtain its analytic expression in explicit form. We find that the adiabatic geometric phase jumps from zero to nontrivial {pi} at a critical value that corresponds to the normal-superradiant phase-transition point. The magneticlike flux interpretation of the geometric phase is also discussed.
Stability of a dipolar Bose-Einstein condensate in a one-dimensional lattice
Mueller, S.; Billy, J.; Henn, E. A. L.; Kadau, H.; Griesmaier, A.; Pfau, T.; Jona-Lasinio, M.; Santos, L.
2011-11-15
We show that in contrast with contact interacting gases, an optical lattice changes drastically the stability properties of a dipolar condensate, inducing a crossover from dipolar destabilization to dipolar stabilization for increasing lattice depths. Performing stability measurements on a {sup 52}Cr Bose-Einstein condensate in an interaction-dominated regime, repulsive dipolar interaction balances negative scattering lengths down to -17 Bohr radii. Our findings are in excellent agreement with mean-field calculations, revealing the important destabilizing role played by intersite dipolar interactions in deep lattices.
Creation of a vortex in a Bose-Einstein condensate by superradiant scattering
Tasgin, M. E.; Muestecaplioglu, Oe. E.; You, L.
2011-12-15
The creation of a topological vortex by a superradiant scattering of a Laguerre-Gaussian (LG) beam off an atomic Bose-Einstein condensate (BEC) is theoretically investigated. It is shown that scattered superradiant radiation can be either in a Gaussian mode without angular momentum or in a LG mode with angular momentum. The conditions leading to these two qualitatively distinct regimes of superradiance are determined in terms of the width for the pump laser and the condensate size for the limiting cases where the recoil energy is both much smaller and larger than the atomic interaction energy.
Sound propagation in a Bose-Einstein condensate at finite temperatures
Meppelink, R.; Koller, S. B.; Straten, P. van der
2009-10-15
We study the propagation of a density wave in a magnetically trapped Bose-Einstein condensate at finite temperatures. The thermal cloud is in the hydrodynamic regime and the system is therefore described by the two-fluid model. A phase-contrast imaging technique is used to image the cloud of atoms and allows us to observe small density excitations. The propagation of the density wave in the condensate is used to determine the speed of sound as a function of the temperature. We find the speed of sound to be in good agreement with calculations based on the Landau two-fluid model.
Noncollinear drag force in Bose-Einstein condensates with Weyl spin-orbit coupling
NASA Astrophysics Data System (ADS)
Liao, Renyuan; Fialko, Oleksandr; Brand, Joachim; Zülicke, Ulrich
2016-02-01
We consider the motion of a pointlike impurity through a three-dimensional two-component Bose-Einstein condensate subject to Weyl spin-orbit coupling. Using linear-response theory, we calculate the drag force felt by the impurity and the associated anisotropic critical velocity from the spectrum of elementary excitations. The drag force is shown to be generally not collinear with the velocity of the impurity. This unusual behavior is a consequence of condensation into a finite-momentum state due to the spin-orbit coupling.
Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates.
Li, Lu; Malomed, Boris A; Mihalache, Dumitru; Liu, W M
2006-06-01
By means of the Darboux transformation, we obtain analytical solutions for a soliton set on top of a plane-wave background in coupled Gross-Pitaevskii equations describing a binary Bose-Einstein condensate. We consider basic properties of the solutions with and without the cross interaction [cross phase modulation (XPM)] between the two components of the background. In the absence of the XPM, this solutions maintain properties of one-component condensates, such as the modulation instability (MI); in the presence of the cross interaction, the solutions exhibit different properties, such as restriction of the MI and soliton splitting.
Many-body rate limit on photoassociation of a Bose-Einstein condensate
Mackie, Matt; Phou, Pierre
2010-09-15
We briefly report on zero-temperature photoassociation of a Bose-Einstein condensate, focusing on the many-body rate limit for atom-molecule conversion. An upgraded model that explicitly includes spontaneous radiative decay leads to an unanticipated shift in the position of the photoassociation resonance, which affects whether the rate (constant) maximizes or saturates, as well as the limiting value itself. A simple analytical model agrees with numerical experiments, but only for high density. Finally, an explicit comparison with the two-body unitary limit, set by the size of the condensate, finds that the many-body rate limit is generally more strict.
Interaction of a probe pulse with a 'dressed' Bose-Einstein condensate of rarefied atomic gases
Shamrov, N I
2008-01-31
Semiclassical equations describing the interaction of a probe pulse with a 'dressed' Bose-Einstein condensate of a rarefied atomic gas are proposed. The analytic solution of these equations is obtained for low-intensity pulses. The conditions of the appearance of a diffraction grating from recoil atoms are found. The existence of induced superradiance at the probe-beam frequency is predicted. The pulse propagation velocity in the condensate is determined as a function of its energy. The limits of the applicability of the two-level model of a 'dressed' atom are estimated. (nonlinear optical phenomena)
Quantum Enhancement of Higher-Order Phononlike Excitations of a Bose-Einstein Condensate
Rowen, E. E.; Bar-Gill, N.; Davidson, N.
2008-07-04
In a Bose-Einstein condensate, the excitation of a Bogoliubov phonon with low momentum (e.g., by a two-photon Bragg process) is strongly suppressed due to destructive interference between two indistinguishable excitation pathways. Here we show that scattering of this sound excitation into a double-momentum mode is strongly enhanced due to constructive interference. This enhancement yields an inherent amplification of second-order sound excitations of the condensate, as we confirm experimentally. We further show that due to parity considerations, this effect is extended to higher-order excitations.
Metastable helium Bose-Einstein condensate with a large number of atoms
Tychkov, A. S.; Jeltes, T.; McNamara, J. M.; Tol, P. J. J.; Herschbach, N.; Hogervorst, W.; Vassen, W.
2006-03-15
We have produced a Bose-Einstein condensate of metastable helium ({sup 4}He*) containing over 1.5x10{sup 7} atoms, which is a factor of 25 higher than previously achieved. The improved starting conditions for evaporative cooling are obtained by applying one-dimensional Doppler cooling inside a magnetic trap. The same technique is successfully used to cool the spin-polarized fermionic isotope ({sup 3}He*), for which thermalizing collisions are highly suppressed. Our detection techniques include absorption imaging, time-of-flight measurements on a microchannel plate detector, and ion counting to monitor the formation and decay of the condensate.
Nonlinear transport of Bose-Einstein condensates through waveguides with disorder
Paul, Tobias; Richter, Klaus; Schlagheck, Peter; Leboeuf, Patricio; Pavloff, Nicolas
2005-12-15
We study the coherent flow of a guided Bose-Einstein condensate incident over a disordered region of length L. We introduce a model of disordered potential that originates from magnetic fluctuations inherent to microfabricated guides. This model allows for analytical and numerical studies of realistic transport experiments. The repulsive interaction among the condensate atoms in the beam induces different transport regimes. Below some critical interaction (or for sufficiently small L) a stationary flow is observed. In this regime, the transmission decreases exponentially with increasing L. For strong interaction (or large L), the system displays a transition toward a time-dependent flow with an algebraic decay of the time-averaged transmission.
A Kinetic Approach to Bose-Einstein Condensates: Self-Phase Modulation and Bogoliubov Oscillations
Mendonca, J.T.; Bingham, R.; Shukla, P.K.
2005-11-01
A kinetic approach to Bose-Einstein condensates (BECs) is proposed based on the Wigner-Moyal equation (WME). In the semiclassical limit, the WME reduces to the particle-number conservation equation. Two examples of applications are (i) a self-phase modulation of a BE condensate beam, where we show that part of the beam is decelerated and eventually stops as a result of the gradient of the effective self-potential, and (ii) the derivation of a kinetic dispersion relation for sound waves in BECs, including collisionless Landau damping.
Criterion for Bose-Einstein condensation in a harmonic trap in the case with attractive interactions
Gajda, Mariusz
2006-02-15
Using a model many-body wave function I analyze the standard criterion for Bose-Einstein condensation and its relation to coherence properties of the system. I pay special attention to an attractive condensate under such a condition that a characteristic length scale of the spatial extension of its center of mass differs significantly from length scales of relative coordinates. I show that although no interference fringes are produced in the two-slit Young interference experiment performed on this system, fringes of a high visibility can be observed in a conditional simultaneous detection of two particles.
Vortex Formation by Merging of Multiple Trapped Bose-Einstein Condensates
Scherer, David R.; Weiler, Chad N.; Neely, Tyler W.; Anderson, Brian P.
2007-03-16
We report observations of vortex formation by merging and interfering multiple {sup 87}Rb Bose-Einstein condensates (BECs) in a confining potential. In this experiment, a single harmonic potential well is partitioned into three sections by a barrier, enabling the simultaneous formation of three independent, uncorrelated BECs. The BECs may either automatically merge together during their growth, or for high-energy barriers, the BECs can be merged together by barrier removal after their formation. Either process may instigate vortex formation in the resulting BEC, depending on the initially indeterminate relative phases of the condensates and the merging rate.
Reaching the hydrodynamic regime in a Bose-Einstein condensate by suppression of avalanches
Stam, K. M. R. van der; Meppelink, R.; Vogels, J. M.; Straten, P. van der
2007-03-15
We report the realization of a Bose-Einstein condensate (BEC) in the hydrodynamic regime. The hydrodynamic regime is reached by evaporative cooling at a relatively low density suppressing the effect of avalanches. With the suppression of avalanches a BEC containing more than 10{sup 8} atoms is produced. The collisional opacity can be tuned from the collisionless regime to a collisional opacity of more than 2 by compressing the trap after condensation. In the collisional opaque regime a significant heating of the cloud at time scales shorter than half of the radial trap period is measured, which is a direct proof that the BEC is hydrodynamic.
Disorder-Induced Order in Two-Component Bose-Einstein Condensates
Niederberger, A.; Schulte, T.; Wehr, J.; Lewenstein, M.; Sanchez-Palencia, L.; Sacha, K.
2008-01-25
We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of {pi}/2 between the two BECs and that the effect is robust. We demonstrate it in one, two, and three dimensions at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed.
NASA Astrophysics Data System (ADS)
Pu, Zhengguo; Zhang, Jun; Yi, Su; Wang, Dajun; Zhang, Wenxian
2016-05-01
We theoretically investigate four types of dynamical instability, in particular the periodic and oscillatory type IO, in an antiferromagnetic spin-1 Bose-Einstein condensate in a nonzero magnetic field, by employing the coupled-mode theory and numerical method. This is in sharp contrast to the dynamical stability of the same system in zero field. Remarkably, a pattern transition from a periodic dynamical instability IO to a uniform one IIIO occurs at a critical magnetic field. All four types of dynamical instability and the pattern transition are ready to be detected in 23Na condensates within the availability of the current experimental techniques.
ATOMIC AND MOLECULAR PHYSICS: Bose-Einstein condensation on an atom chip
NASA Astrophysics Data System (ADS)
Yan, Bo; Cheng, Feng; Ke, Min; Li, Xiao-Lin; Tang, Jiu-Yao; Wang, Yu-Zhu
2009-10-01
This paper reports an experiment of creating Bose-Einstein condensate (BEC) on an atom chip. The chip-based Z-wire current with a homogeneous bias magnetic field creates a tight magnetic trap, which allows for a fast production of BEC. After a 4.17-s forced radio frequency evaporative cooling, a condensate with about 3000 atoms appears. The transition temperature is about 300 nK. This compact system is quite robust, allowing for versatile extensions and further studying of BEC.
Superfluid-to-solid crossover in a rotating Bose-Einstein condensate.
Feder, D L; Clark, C W
2001-11-01
The properties of a rotating Bose-Einstein condensate confined in a prolate cylindrically symmetric trap are explored both analytically and numerically. As the rotation frequency increases, an ever greater number of vortices are energetically favored. Though the cloud anisotropy and moment of inertia approach those of a classical fluid at high frequencies, the observed vortex density is consistently lower than the solid-body estimate. Furthermore, the vortices are found to arrange themselves in highly regular triangular arrays, with little distortion even near the condensate surface. These results are shown to be a direct consequence of the inhomogeneous confining potential. PMID:11690400
Impurity Crystal in a Bose-Einstein Condensate
Roberts, David C.; Rica, Sergio
2009-01-16
We investigate the behavior of impurity fields immersed in a larger condensate field in various dimensions. We discuss the localization of a single impurity field within a condensate and note the effects of surface energy. We derive the functional form of the attractive condensate-mediated interaction between two impurities. Generalizing the analysis to N impurity fields, we show that within various parameter regimes a crystal of impurity fields can form spontaneously in the condensate. Finally, the system of condensate and crystallized impurity structure is shown to have nonclassical rotational inertia, which is characteristic of superfluidity; i.e., the system can be seen to exhibit supersolid behavior.
Quench dynamics of a Bose-Einstein condensate under synthetic spin-orbit coupling
NASA Astrophysics Data System (ADS)
Deng, Tian-Shu; Zhang, Wei; Yi, Wei; Guo, Guang-Can
2016-05-01
We study the quench dynamics of a Bose-Einstein condensate under a Raman-assisted synthetic spin-orbit coupling. To model the dynamical process, we adopt a self-consistent Bogoliubov approach, which is equivalent to applying the time-dependent Bogoliubov-de Gennes equations. We investigate the dynamics of the condensate fraction as well as the momentum distribution of the Bose gas following a sudden change of system parameters. Typically, the system evolves into a steady state in the long-time limit, which features an oscillating momentum distribution and a stationary condensate fraction. We investigate how different quench parameters such as the inter- and intraspecies interactions and the spin-orbit-coupling parameters affect the condensate fraction in the steady state. Furthermore, we find that the time average of the oscillatory momentum distribution in the long-time limit can be described by a generalized Gibbs ensemble with two branches of momentum-dependent Gibbs temperatures. Our study is relevant to the experimental investigation of dynamical processes in a spin-orbit-coupled Bose-Einstein condensate.
NASA Astrophysics Data System (ADS)
Wächtler, F.; Santos, L.
2016-10-01
Recent experiments have revealed the formation of stable droplets in dipolar Bose-Einstein condensates. This surprising result has been explained by the stabilization given by quantum fluctuations. We study in detail the properties of a Bose-Einstein condensate in the presence of quantum stabilization. The ground-state phase diagram presents three main regimes: mean-field regime, in which the quantum correction is perturbative; droplet regime, in which quantum stabilization is crucial; and a multistable regime. In the absence of a multistable region, the condensate undergoes a crossover from the mean-field to the droplet solution marked by a characteristic growth of the peak density that may be employed to clearly distinguish quantum stabilization from other stabilization mechanisms. Interestingly, quantum stabilization allows for three-dimensionally self-bound condensates. We characterized these self-bound solutions, and discuss their realization in experiments. We conclude with a discussion of the lowest-lying excitations both for trapped condensates, and for self-bound solutions.
Evolution of a Bose-Einstein condensate in a rapidly expanding circular box
Theodorakis, Stavros; Constantinou, Yiannis
2007-09-15
We examine the evolution of the ground state of a Bose-Einstein condensate in a two-dimensional circular box, the wall of which is initially at rest and then recedes with large and constant speed. The final state of the condensate depends on the rapidity of the expansion of the box. If the number of atoms in the condensate is small compared to the dimensionless speed of the wall, then the condensate becomes a mixture of excitations and follows the expansion of the box, leaving empty though an increasingly larger region between the condensate boundary and the wall. If, on the other hand, the number of atoms is large compared to the dimensionless speed of the wall, then the condensate is always in the ground state and spreads uniformly in all of the expanding box, the condensate boundary always coinciding with the receding wall. Approximate analytic expressions are found for the evolving wave function.
I.I. Rabi Prize Lecture: Bose-Einstein condensates - matter with laser-like properties
NASA Astrophysics Data System (ADS)
Ketterle, Wolfgang
1997-04-01
Several studies of Bose-Einstein condensation in a dilute gas of sodium atoms have been performed. Bose-condensates were produced by evaporative cooling in a tightly-confining magnetic "cloverleaf" trap and observed either by absorption imaging or non-destructive phase contrast imaging. We have observed the formation of a Bose condensate and low-lying collective excitations. An rf output coupler allowed the controlled extraction of multiple pulses of atoms from a trapped Bose condensate. Two condensates were produced by evaporative cooling in a double-well potential. When the condensates were released and overlapped, high contrast interference was observed proving the coherence of the condensates. The controlled extraction of coherent atoms is a rudimentary realization of an atom laser.
Chaotic Josephson effects in two-coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Fang, Jianshu; Hai, Wenhua; Chong, Guishu; Xie, Qiongtao
2005-04-01
We discuss the chaotic Josephson effects in two weakly coupled Bose-Einstein condensates (BECs). The boson Josephson junction (BJJ) dynamics in BECs is governed by the two-mode Gross-Pitaevskii equation. We obtained a perturbed chaotic solution of the BJJ equation by using the direct perturbation technique. Theoretical analysis reveals that the stable oscillating orbits are embedded in the Melnikov chaotic attractors. The corresponding numerical results show that the Poincaré sections in the equivalent phase space (φ,φ˙) sensitively depends on the system parameter and initial conditions. Therefore, we can control the transitions between chaos and order by adjusting these parameters and conditions.
NASA Astrophysics Data System (ADS)
Li, Wei-Dong; Zhang, Yunbo; Liang, J.-Q.
2003-06-01
The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose-Josephson junction (BJJ) were investigated in terms of energy splitting. For EC/EJ≪1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ≫1, the energy splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the coherence phenomena of BJJ in proper condition such as EC/EJ˜1.
Kamchatnov, A. M.; Pitaevskii, L. P.
2008-04-25
The stability of dark solitons generated by supersonic flow of a Bose-Einstein condensate past an obstacle is investigated. It is shown that in the reference frame attached to the obstacle a transition occurs at some critical value of the flow velocity from absolute instability of dark solitons to their convective instability. This leads to the decay of disturbances of solitons at a fixed distance from the obstacle and the formation of effectively stable dark solitons. This phenomenon explains the surprising stability of the flow picture that has been observed in numerical simulations.
Propagation of sound in a Bose-Einstein condensate in an optical lattice
Menotti, C.; Kraemer, M.; Stringari, S.; Smerzi, A.; Pitaevskii, L.
2004-08-01
We study the propagation of sound waves in a Bose-Einstein condensate trapped in a one-dimensional optical lattice. We find that the velocity of the propagation of sound wave packets decreases with increasing optical lattice depth, as predicted by the Bogoliubov theory. The strong interplay between nonlinearities and the periodicity of the external potential generates phenomena that are not present in the uniform case. Shock waves, for instance, can propagate slower than sound waves, due to the negative curvature of the dispersion relation. Moreover, nonlinear corrections to the Bogoliubov theory appear to be important even with very small density perturbations, inducing a saturation of the amplitude of the sound signal.
Dynamic structure factor of a Bose-Einstein condensate in a one-dimensional optical lattice
Menotti, C.; Kraemer, M.; Stringari, S.; Pitaevskii, L.
2003-05-01
We study the effect of a one-dimensional periodic potential on the dynamic structure factor of an interacting Bose-Einstein condensate at zero temperature. We show that, due to phononic correlations, the excitation strength toward the first band develops a typical oscillating behavior as a function of the momentum transfer, and vanishes at even multiples of the Bragg momentum. The effects of interactions on the static structure factor are found to be significantly amplified by the presence of the optical potential. Our predictions can be tested in stimulated photon scattering experiments.
Axion Bose-Einstein Condensation: a model beyond Cold Dark Matter
Yang, Q.
2010-08-30
Cold dark matter axions form a Bose-Einstein condensate if the axions thermalize. Recently, it was found [1] that they do thermalize when the photon temperature reaches T{approx}100 eV(f/10{sup 12} GeV){sup 1/2} and that they continue to do so thereafter. We discuss the differences between axion BEC and CDM in the linear regime and the non-linear regime of evolution of density perturbations. We find that axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multi-poles.
Generating solitons by phase engineering of a bose-einstein condensate
Denschlag; Simsarian; Feder; Clark; Collins; Cubizolles; Deng; Hagley; Helmerson; Reinhardt; Rolston; Schneider; Phillips
2000-01-01
Quantum phase engineering is demonstrated with two techniques that allow the spatial phase distribution of a Bose-Einstein condensate (BEC) to be written and read out. A quantum state was designed and produced by optically imprinting a phase pattern onto a BEC of sodium atoms, and matter-wave interferometry with spatially resolved imaging was used to analyze the resultant phase distribution. An appropriate phase imprint created solitons, the first experimental realization of this nonlinear phenomenon in a BEC. The subsequent evolution of these excitations was investigated both experimentally and theoretically.
Tojo, Satoshi; Taguchi, Yoshihisa; Masuyama, Yuta; Hayashi, Taro; Hirano, Takuya; Saito, Hiroki
2010-09-15
We investigate controlled phase separation of a binary Bose-Einstein condensate in the proximity of a mixed-spin-channel Feshbach resonance in the |F=1,m{sub F}=+1> and |F=2,m{sub F}=-1> states of {sup 87}Rb at a magnetic field of 9.10 G. Phase separation occurs on the lower-magnetic-field side of the Feshbach resonance while the two components overlap on the higher-magnetic-field side. The Feshbach resonance curve of the scattering length is obtained from the shape of the atomic cloud by comparison with the numerical analysis of coupled Gross-Pitaevskii equations.
High-fidelity manipulation of a Bose-Einstein condensate using an optical standing wave
Hughes, K. J.; Deissler, B.; Burke, J. H. T.; Sackett, C. A.
2007-09-15
The use of off-resonant standing light waves to manipulate ultracold atoms is investigated. Previous work has illustrated that Bragg diffraction can provide efficient beam-splitting and reflection operations for atomic wave packets. The performance of these operations is characterized experimentally using Bose-Einstein condensates confined in a weak magnetic trap. Fidelities of 0.99 for beam splitting and 0.98 for reflection are observed, and splitting operations of up to third order are achieved. The dependence of the operations on light intensity and atomic velocity is measured and found to agree well with theoretical estimates.
Vortex formation of a Bose-Einstein condensate in a rotating deep optical lattice
Kato, Akira; Nakano, Yuki; Kasamatsu, Kenichi; Matsui, Tetsuo
2011-11-15
We study the dynamics of vortex nucleation and lattice formation in a Bose-Einstein condensate in a rotating square optical lattice by numerical simulations of the Gross-Pitaevskii equation. Different dynamical regimes of vortex nucleation are found, depending on the depth and period of the optical lattice. We make an extensive comparison with the experiments by R. A. Williams et al.[Phys. Rev. Lett. 104, 050404 (2010)], especially focusing on the issues of the critical rotation frequency for the first vortex nucleation and the vortex number as a function of rotation frequency.
Swift Loss of Coherence of Soliton Trains in Attractive Bose-Einstein Condensates
Streltsov, Alexej I.; Cederbaum, Lorenz S.; Alon, Ofir E.
2011-06-17
Experiments on ultracold attractive Bose-Einstein condensates (BECs) have demonstrated that at low dimensions atomic clouds can form localized objects, propagating for long times without significant changes in their shapes and attributed to bright matter-wave solitons, which are coherent objects. We consider the dynamics of bright soliton trains from the perspective of many-boson physics. The fate of matter-wave soliton trains is actually to quickly lose their coherence and become macroscopically fragmented BECs. The death of the coherent matter-wave soliton trains gives birth to fragmented objects, whose quantum properties and experimental signatures differ substantially from what is currently assumed.
Chaos enhancing tunneling in a coupled Bose-Einstein condensate with a double driving.
Rong, Shiguang; Hai, Wenhua; Xie, Qiongtao; Zhu, Qianquan
2009-09-01
We study the effects of chaotic dynamics on atomic tunneling between two weakly coupled Bose-Einstein condensates driven by a double-frequency periodic field. Under the Melnikov's chaos criterion, we divide the parameter space into three parts of different types, regular region, low-chaoticity region, and high-chaoticity region, and give the accurate boundaries between the different regions. It is found that the atomic tunneling can be enhanced in the presence of chaos. Particularly, in the high-chaoticity regions, the chaos-induced inversion of the population imbalance is observed numerically. PMID:19792009
Vortices and hysteresis in a rotating Bose-Einstein condensate with anharmonic confinement
Jackson, A.D.; Kavoulakis, G.M.
2004-08-01
We examine an effectively repulsive Bose-Einstein condensate of atoms that rotates in a quadratic-plus-quartic trapping potential. We investigate the phase diagram of the system as a function of the angular frequency of rotation and of the coupling constant, demonstrating that there are phase transitions between multiply and singly quantized vortex states. We also show that states of different circulation can be metastable and, as a result, the gas can exhibit hysteresis as the angular frequency of rotation of the trap is varied. The simplicity of the picture that emerges for small coupling strengths suggests that this system may be attractive for studies of phase transitions.
Phase diagram of a rotating Bose-Einstein condensate with anharmonic confinement
Jackson, A.D.; Kavoulakis, G.M.; Lundh, E.
2004-05-01
We examine the phase diagram of an effectively repulsive Bose-Einstein condensate of atoms that rotates in a quadratic-plus-quartic potential. With use of a variational method we identify the three possible phases of the system as a function of the rotational frequency of the trap and of the coupling constant. The derived phase diagram is shown to be universal and partly exact in the limit of weak interactions and small anharmonicity. The variational results are found to be consistent with numerical solutions of the Gross-Pitaevskii equation.
NASA Astrophysics Data System (ADS)
Eto, Yujiro; Takahashi, Masahiro; Kunimi, Masaya; Saito, Hiroki; Hirano, Takuya
2016-07-01
We have observed and characterized the nonequilibrium spatial dynamics of a two-component 87Rb Bose-Einstein condensate (BEC) that is controllable switched back and forth between the miscible and immiscible phases of the phase separation transition by changing the internal states of the 87Rb atoms. The subsequent evolution exhibits large scale oscillations of the spatial structure that involve component mixing and separation. We show that the larger total energy of the miscible system results in a higher oscillation frequency. This investigation introduces a new technique to control the miscibility and the spatial degrees of freedom in atomic BECs.
Relation between ac Josephson effect and double-well Bose-Einstein-condensate oscillations
Radzihovsky, Leo; Gurarie, Victor
2010-06-15
In this article we comment on the relation between the ac Josephson effect and the coherent oscillations of a Bose-Einstein condensate confined to a double-well potential. The goal is to elucidate the extent to which the latter is a realization of the former. We detail the correspondence between the two oscillation frequencies, that emerges in the high occupation limit of the double-well potential. We show that in the latter thermodynamic limit the effective one-particle interwell coupling vanishes with the system size, leading to oscillation frequency that depends only on the interwell imbalance, consistent with the ac Josephson effect frequency.
Exact results on the two-particle Green's function of a Bose-Einstein condensate
Kita, Takafumi
2010-06-01
Starting from the Dyson-Beliaev and generalized Gross-Pitaevskii equations with an extra nonlocal potential, we derive an exact expression of the two-particle Green's function K lowbar for an interacting Bose-Einstein condensate in terms of unambiguously defined self-energies and vertices. The formula can be a convenient basis for approximate calculations of K lowbar . It also tells us that poles of K lowbar are not shared with (i.e., shifted from) those of the single-particle Green's function, contrary to the conclusion of previous studies.
Effect of scattering lengths on the dynamics of a two-component Bose-Einstein condensate
Csire, Gabor; Apagyi, Barnabas
2010-12-15
We examine the effect of the intra- and interspecies scattering lengths on the dynamics of a two-component Bose-Einstein condensate, particularly focusing on the existence and stability of solitonic excitations. For each type of possible soliton pairs, stability ranges are presented in tabulated form. We also compare the numerically established stability of bright-bright, bright-dark, and dark-dark solitons with our analytical prediction and with that of Painleve analysis of the dynamical equation. We demonstrate that tuning the interspecies scattering length away from the predicted value (keeping the intraspecies coupling fixed) breaks the stability of the soliton pairs.
Magnetic Richtmyer-Meshkov instability in a two-component Bose-Einstein condensate
Bezett, A.; Bychkov, V.; Lundh, E.; Kobyakov, D.; Marklund, M.
2010-10-15
The magnetically induced Richtmyer-Meshkov (RM) instability in a two-component Bose-Einstein condensate (BEC) is investigated. We construct and study analytical models describing the development of the instability at both the linear and nonlinear stages. The models indicate interesting features of the instability: surface tension implies departure from the linear growth of modes and separation of droplets, which are qualitatively different from the traditional RM case of classical gases, and the trapping potential affects the later stages of the instability. We perform numerical simulations of the instability in a trapped BEC using the Gross-Pitaevskii equation and compare the simulation results to the model predictions.
Dark solitons in a two-component Bose-Einstein condensate.
Ohberg, P; Santos, L
2001-04-01
The creation and interaction of dark solitons in a two-component Bose-Einstein condensate is investigated. For a miscible case, the interaction of dark solitons in different components is studied. Various possible scenarios are presented, including the formation of a soliton-soliton bound pair. We also analyze the soliton propagation in the presence of domains, and show that a dark soliton can be transferred from one component to the other at the domain wall when it exceeds a critical velocity. For lower velocities multiple reflections within the domain are observed, where the soliton is evaporated and accelerated after each reflection until it finally escapes from the domain.
Photon-assisted tunneling of a driven two-mode Bose-Einstein condensate
Xie Qiongtao; Rong Shiguang; Zhong Honghua; Lu Gengbiao; Hai Wenhua
2010-08-15
We investigate the photon-assisted tunneling of a Bose-Einstein condensate in a periodically driven double-well potential. It is shown that the energy levels become nonequidistant due to the presence of the interatomic interaction, thereby leading to the occurrences of the fractional photon resonances. Depending on whether the resonance frequency shifts with the interatomic interaction, two distinct types of resonances are identified: nonshifting resonances and shifting resonances. In particular, certain nonshifting fractional resonances show an odd-even sensitivity to the atom number.
Oscillatory decay of a two-component bose-einstein condensate.
Kohler, Sigmund; Sols, Fernando
2002-08-01
We study the decay of a two-component Bose-Einstein condensate with negative effective interaction energy. With a decreasing atom number due to losses, the atom-atom interaction becomes less important and the system undergoes a transition from a bistable Josephson regime to the monostable Rabi regime, displaying oscillations in phase and number. We study the equations of motion and derive an analytical expression for the oscillation amplitude. A quantum trajectory simulation reveals that the classical description fails for low loss rates, as expected from analytical considerations. Observation of the proposed effect will provide evidence for negative effective interaction.
Dark-dark solitons and modulational instability in miscible two-component Bose-Einstein condensates
Hoefer, M. A.; Chang, J. J.; Hamner, C.; Engels, P.
2011-10-15
We investigate the dynamics of two miscible superfluids experiencing fast counterflow in a narrow channel. The superfluids are formed by two distinguishable components of a trapped dilute-gas Bose-Einstein condensate (BEC). The onset of counterflow-induced modulational instability throughout the cloud is observed and shown to lead to the proliferation of dark-dark vector solitons. These solitons do not exist in single-component systems, exhibit intriguing beating dynamics, and can experience a transverse instability leading to vortex line structures. Experimental results and multidimensional numerical simulations are presented.
Very Cold Indeed: The Nanokelvin Physics of Bose-Einstein Condensation
Cornell, Eric
1996-01-01
As atoms get colder, they start to behave more like waves and less like particles. Cool a cloud of identical atoms so cold that the wave of each atom starts to overlap with the wave of its neighbor atom, and all of a sudden you wind up with a sort of quantum identity crisis known as Bose-Einstein condensation. How do we get something that cold? And what is the nature of the strange goop that results? These questions were addressed in a colloquium at the National Institute of Standards and Technology in Gaithersburg, Maryland, on February 23, 1996. This paper is an edited transcript of that presentation.
Malet, F.; Reimann, S. M.; Kristensen, T.; Kavoulakis, G. M.
2011-03-15
We study the rotational properties of a dipolar Bose-Einstein condensate confined in a quasi-two-dimensional anisotropic trap for an arbitrary orientation of the dipoles with respect to their plane of motion. Within the mean-field approximation, we find that the lowest-energy state of the system depends strongly on the relative strength between the dipolar and the contact interactions, as well as on the size and the orientation of the dipoles and the size and the orientation of the deformation of the trapping potential.
Trapped fermions with density imbalance in the Bose-Einstein condensate limit.
Pieri, P; Strinati, G C
2006-04-21
We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths. The coupled equations are then solved in the Thomas-Fermi approximation to obtain the density profiles for composite bosons and excess fermions, which are relevant to the recent experiments with trapped fermionic atoms.
Two-axis spin squeezing of two-component Bose-Einstein condensates via continuous driving
NASA Astrophysics Data System (ADS)
Huang, Wen; Zhang, Yan-Lei; Zou, Chang-Ling; Zou, Xu-Bo; Guo, Guang-Can
2015-04-01
In two-component Bose-Einstein condensates, the one-axis twisting Hamiltonian leads to spin squeezing with a limitation that scales with the number of atoms as N-2 /3. We propose a scheme to transform the one-axis twisting Hamiltonian into a two-axis twisting Hamiltonian, resulting in enhanced spin squeezing proportional to N-1 approaching the Heisenberg limit. Instead of pulse sequences, only one continuous driving field is required to realize such a transformation, thus the scheme is promising for experimental realization of a two-axis twisting Hamiltonian. Quantum information processing and quantum metrology may benefit from this method in the future.
Persistent currents in a two-component Bose-Einstein condensate confined in a ring potential
NASA Astrophysics Data System (ADS)
Smyrnakis, J.; Magiropoulos, M.; Efremidis, Nikolaos K.; Kavoulakis, G. M.
2014-11-01
We present variational and numerical solutions for the problem of stability of persistent currents in a two-component Bose-Einstein condensate of distinguishable atoms which rotate in a ring potential. We consider the general class of solutions of constant density in the two components separately, thus providing an alternative approach to the solution of the same problem given recently by Wu and Zaremba (2013 Phys. Rev. A 88 063640). Our approach provides a physically transparent solution for this delicate problem. Finally, we give a unified and simple picture of the lowest energy state of the system for large values of the coupling.
Oscillating Solitons in a Three-Component Bose-Einstein Condensate
Szankowski, Piotr; Trippenbach, Marek; Infeld, Eryk; Rowlands, George
2010-09-17
We investigate the properties of three-component Bose-Einstein condensate systems with spin exchange interactions. We consider different coupling constants from those very special ones leading to exact solutions known in the literature. When two solitons collide, a spin component oscillation of the two emerging entities is observed. This behavior seems to be generic. A mathematical model is derived for the emerging solitons. It describes the new oscillatory phenomenon extremely well. Surprisingly, the model is in fact an exact solution to the initial equations. This comes as a bonus.
Dynamics of bubbles in a two-component Bose-Einstein condensate
Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki
2011-03-15
The dynamics of a phase-separated two-component Bose-Einstein condensate are investigated, in which a bubble of one component moves through the other component. Numerical simulations of the Gross-Pitaevskii equation reveal a variety of dynamics associated with the creation of quantized vortices. In two dimensions, a circular bubble deforms into an ellipse and splits into fragments with vortices, which undergo the Magnus effect. The Benard-von Karman vortex street is also generated. In three dimensions, a spherical bubble deforms into toruses with vortex rings. When two rings are formed, they exhibit leapfrogging dynamics.
Bose-Einstein Condensate Dark Matter Model Tested by Galactic Rotation Curves
NASA Astrophysics Data System (ADS)
Dwornik, Marek; Keresztes, Zoltán Gergely, László Á.
2015-01-01
Rotation curves of spiral galaxies are fundamental tools in the study of dark matter. Here we test the Bose-Einstein condensate (BEC) dark matter model against rotation curve data of High and Low Surface Brightness (HSB and LSB) galaxies, respectively. When the rotational velocities increase over the whole observed range, the fit of the BEC model is similar to the one of the Navarro-Frenk-White (NFW) dark matter model. When however the rotation curves exhibit long flat regions, the NFW profiles provide a slightly better fit.
Creation and counting of defects in a temperature-quenched Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Donadello, S.; Serafini, S.; Bienaimé, T.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.
2016-08-01
We study the spontaneous formation of defects in the order parameter of a trapped ultracold bosonic gas while crossing the critical temperature for Bose-Einstein condensation at different rates. The system has the shape of an elongated ellipsoid, whose transverse width can be varied. For slow enough temperature quenches we find a power-law scaling of the average defect number with the quench rate, as predicted by the Kibble-Zurek mechanism. A breakdown of such a scaling is found for fast quenches, leading to a saturation of the average defect number. We suggest an explanation for this saturation in terms of the mutual interactions among defects.
Detection scheme for acoustic quantum radiation in Bose-Einstein condensates.
Schützhold, Ralf
2006-11-10
Based on doubly detuned Raman transitions between (meta)stable atomic or molecular states and recently developed atom counting techniques, a detection scheme for sound waves in dilute Bose-Einstein condensates is proposed whose accuracy might reach down to the level of a few or even single phonons. This scheme could open up a new range of applications including the experimental observation of quantum radiation phenomena such as the Hawking effect in sonic black-hole analogues or the acoustic analogue of cosmological particle creation. PMID:17155600
Observation of Spontaneous Coherence in Bose-Einstein Condensate of Magnons
Demidov, V. E.; Dzyapko, O.; Demokritov, S. O.; Melkov, G. A.; Slavin, A. N.
2008-02-01
The room-temperature dynamics of a magnon gas driven by short microwave pumping pulses is studied. An overpopulation of the lowest energy level of the system following the pumping is observed. Using the sensitivity of the Brillouin light scattering technique to the coherence degree of the scattering magnons we demonstrate the spontaneous emergence of coherence of the magnons at the lowest level, if their density exceeds a critical value. This finding is clear proof of the quantum nature of the observed phenomenon and direct evidence of Bose-Einstein condensation of magnons at room temperature.
Proposal for the creation and optical detection of spin cat states in Bose-Einstein condensates.
Lau, Hon Wai; Dutton, Zachary; Wang, Tian; Simon, Christoph
2014-08-29
We propose a method to create "spin cat states," i.e., macroscopic superpositions of coherent spin states, in Bose-Einstein condensates using the Kerr nonlinearity due to atomic collisions. Based on a detailed study of atom loss, we conclude that cat sizes of hundreds of atoms should be realistic. The existence of the spin cat states can be demonstrated by optical readout. Our analysis also includes the effects of higher-order nonlinearities, atom number fluctuations, and limited readout efficiency. PMID:25215963
Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering
Ohkubo, S.; Hirabayashi, Y.
2004-10-01
It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.
Solitary waves of Bose-Einstein-condensed atoms confined in finite rings
Smyrnakis, J.; Magiropoulos, M.; Kavoulakis, G. M.; Jackson, A. D.
2010-08-15
Motivated by recent progress in trapping Bose-Einstein-condensed atoms in toroidal potentials, we examine solitary-wave solutions of the nonlinear Schroedinger equation subject to periodic boundary conditions. When the circumference of the ring is much larger than the size of the wave, the density profile is well approximated by that of an infinite ring; however, the density and the velocity of propagation cannot vanish simultaneously. When the size of the ring becomes comparable to the size of the wave, the density variation becomes sinusoidal and the velocity of propagation saturates to a constant value.
Swift loss of coherence of soliton trains in attractive Bose-Einstein condensates.
Streltsov, Alexej I; Alon, Ofir E; Cederbaum, Lorenz S
2011-06-17
Experiments on ultracold attractive Bose-Einstein condensates (BECs) have demonstrated that at low dimensions atomic clouds can form localized objects, propagating for long times without significant changes in their shapes and attributed to bright matter-wave solitons, which are coherent objects. We consider the dynamics of bright soliton trains from the perspective of many-boson physics. The fate of matter-wave soliton trains is actually to quickly lose their coherence and become macroscopically fragmented BECs. The death of the coherent matter-wave soliton trains gives birth to fragmented objects, whose quantum properties and experimental signatures differ substantially from what is currently assumed.
Scott, R G; Judd, T E; Fromhold, T M
2008-03-14
We show that the decay of a soliton into vortices provides a mechanism for measuring the initial phase difference between two merging Bose-Einstein condensates. At very low temperatures, the mechanism is resonant, operating only when the clouds start in antiphase. But at higher temperatures, phase fluctuations trigger vortex production over a wide range of initial relative phase, as observed in recent experiments at MIT. Choosing the merge time to maximize the number of vortices created makes the interferometer highly sensitive to spatially varying phase patterns and hence atomic movement.
Nonlinear vortex-phonon interactions in a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Mendonça, J. T.; Haas, F.; Gammal, A.
2016-07-01
We consider the nonlinear coupling between an exact vortex solution in a Bose-Einstein condensate and a spectrum of elementary excitations in the medium. These excitations, or Bogoliubov-de Gennes modes, are indeed a special kind of phonons. We treat the spectrum of elementary excitations in the medium as a gas of quantum particles, sometimes also called bogolons. An exact kinetic equation for the bogolon gas is derived, and an approximate form of this equation, valid in the quasi-classical limit, is also obtained. We study the energy transfer between the vortex and the bogolon gas, and establish conditions for vortex instability and damping.
Dynamics of bubbles in a two-component Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki
2011-03-01
The dynamics of a phase-separated two-component Bose-Einstein condensate are investigated, in which a bubble of one component moves through the other component. Numerical simulations of the Gross-Pitaevskii equation reveal a variety of dynamics associated with the creation of quantized vortices. In two dimensions, a circular bubble deforms into an ellipse and splits into fragments with vortices, which undergo the Magnus effect. The Bénard-von Kármán vortex street is also generated. In three dimensions, a spherical bubble deforms into toruses with vortex rings. When two rings are formed, they exhibit leapfrogging dynamics.
Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate.
Anquez, M; Robbins, B A; Bharath, H M; Boguslawski, M; Hoang, T M; Chapman, M S
2016-04-15
The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory agreement of the measured scaling exponent with the analytical theory and numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model.
Manipulation of collective quantum states in Bose-Einstein condensates by continuous imaging
NASA Astrophysics Data System (ADS)
Wade, Andrew C. J.; Sherson, Jacob F.; Mølmer, Klaus
2016-02-01
We develop a Gaussian state treatment that allows a transparent quantum description of the continuous, nondestructive imaging of and feedback on a Bose-Einstein condensate. We have previously demonstrated [A. C. J. Wade et al., Phys. Rev. Lett. 115, 060401 (2015), 10.1103/PhysRevLett.115.060401] that the measurement backaction of stroboscopic imaging leads to selective squeezing and entanglement of quantized density oscillations. Here, we investigate how the squeezing and entanglement are affected by the finite spatial resolution and geometry of the probe laser beam and of the detector and how they can be optimized.
Dynamics of a Cold Trapped Ion in a Bose-Einstein Condensate
Schmid, Stefan; Haerter, Arne; Denschlag, Johannes Hecker
2010-09-24
We investigate the interaction of a laser-cooled trapped ion (Ba{sup +} or Rb{sup +}) with an optically confined {sup 87}Rb Bose-Einstein condensate. The system features interesting dynamics of the ion and the atom cloud as determined by their collisions and their motion in their respective traps. Elastic as well as inelastic processes are observed and their respective cross sections are determined. We demonstrate that a single ion can be used to probe the density profile of an ultracold atom cloud.
Relation between ac Josephson effect and double-well Bose-Einstein-condensate oscillations
NASA Astrophysics Data System (ADS)
Radzihovsky, Leo; Gurarie, Victor
2010-06-01
In this article we comment on the relation between the ac Josephson effect and the coherent oscillations of a Bose-Einstein condensate confined to a double-well potential. The goal is to elucidate the extent to which the latter is a realization of the former. We detail the correspondence between the two oscillation frequencies, that emerges in the high occupation limit of the double-well potential. We show that in the latter thermodynamic limit the effective one-particle interwell coupling vanishes with the system size, leading to oscillation frequency that depends only on the interwell imbalance, consistent with the ac Josephson effect frequency.
Collective oscillations in trapped Bose-Einstein-condensed gases in the presence of weak disorder
Falco, G. M.; Pelster, A.; Graham, R.
2007-07-15
The influence of a weak random potential on the collective modes of a trapped interacting Bose-Einstein condensate at zero temperature is calculated in the limit when the correlation length of the disorder is smaller than the healing length of the superfluid. The problem is solved in the Thomas-Fermi limit by generalizing the superfluid hydrodynamic equations to allow for the presence of weak disorder. We find that the disorder-induced frequency shifts of the low-energy excitations can be of the same order of magnitude as the beyond mean-field corrections in the normal interaction recently observed experimentally.
Quantum decoherence of an anharmonic oscillator monitored by a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Alonso, D.; Brouard, S.; Sokolovski, D.
2014-09-01
The dynamics of a quantum anharmonic oscillator whose position is monitored by a Bose-Einstein condensate trapped in a symmetric double well potential is studied. The (nonexponential) decoherence induced on the oscillator by the measuring device is analyzed. A detailed quasiclassical and quantum analysis is presented. In the first case, for an arbitrary initial coherent state, two different decoherence regimes are observed: an initial Gaussian decay followed by a power law decay for longer times. The characteristic time scales of both regimes are reported. Analytical approximated expressions are obtained in the full quantum case where algebraic time decay of decoherence is observed.
Cooperative ring exchange and quantum melting of vortex lattices in atomic Bose-Einstein condensates
Ghosh, Tarun Kanti; Baskaran, G.
2004-02-01
Cooperative ring exchange is suggested as a mechanism of quantum melting of vortex lattices in a rapidly rotating quasi-two-dimensional atomic Bose-Einstein condensate (BEC). Using an approach pioneered by Kivelson et al. [Phys. Rev. Lett. 56, 873 (1986)] for the fractional quantized Hall effect, we calculate the condition for quantum melting instability by considering large-correlated ring exchanges in a two-dimensional Wigner crystal of vortices in a strong 'pseudomagnetic field' generated by the background superfluid Bose particles. BEC may be profitably used to address issues of quantum melting of a pristine Wigner solid devoid of complications of real solids.
Giant vortex phase transition in rapidly rotating trapped Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Correggi, Michele; Pinsker, Florian; Rougerie, Nicolas; Yngvason, Jakob
2013-02-01
A Bose-Einstein condensate of cold atoms is a superfluid and thus responds to rotation of its container by the nucleation of quantized vortices. If the trapping potential is sufficiently strong, there is no theoretical limit to the rotation frequency one can impose to the fluid, and several phase transitions characterized by the number and distribution of vortices occur when it is increased from 0 to ∞. In this note we focus on a regime of very large rotation velocity where vortices disappear from the bulk of the fluid, gathering in a central hole of low matter density induced by the centrifugal force.
Decoherence of a quantum harmonic oscillator monitored by a Bose-Einstein condensate
Brouard, S.; Alonso, D.; Sokolovski, D.
2011-07-15
We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double-well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a ''coherent'' regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power-law) or rapid (Gaussian) decoherence of the mean values themselves.
NASA Astrophysics Data System (ADS)
Ying, Guanwen; Kouzaev, Guennadi
2016-10-01
We present the eigenmodal analysis techniques enhanced towards calculations of optical and non-interacting Bose-Einstein condensate (BEC) modes formed by random potentials and localized by Anderson effect. The results are compared with the published measurements and verified additionally by the convergence criterion. In 2-D BECs captured in circular areas, the randomness shows edge localization of the high-order Tamm-modes. To avoid strong diffusive effect, which is typical for BECs trapped by speckle potentials, a 3-D-lattice potential with increased step magnitudes is proposed, and the BECs in these lattices are simulated and plotted.
Einstein-Podolsky-Rosen Correlations via Dissociation of a Molecular Bose-Einstein Condensate
Kheruntsyan, K.V.; Drummond, P.D.; Olsen, M.K.
2005-10-07
Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.
Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J.; Sacha, K.; Zakrzewski, J.; Lewenstein, M.
2005-10-21
We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.
Interaction of half-quantized vortices in two-component Bose-Einstein condensates
Eto, Minoru; Kasamatsu, Kenichi; Nitta, Muneto; Takeuchi, Hiromitsu; Tsubota, Makoto
2011-06-15
We study the asymptotic interaction between two half-quantized vortices in two-component Bose-Einstein condensates. When two vortices in different components are placed at distance 2R, the leading order of the force between them is found to be (lnR/{xi}-1/2)/R{sup 3}, in contrast to 1/R between vortices placed in the same component. We derive it analytically using the Abrikosov ansatz and the profile functions of the vortices, confirmed numerically with the Gross-Pitaevskii model. We also find that the short-range cutoff of the intervortex potential linearly depends on the healing length.
Theory of microwave superradiance from a Bose-Einstein condensate of magnons
Rezende, Sergio M.
2009-02-01
We show that the nearly uniform mode generated by the confluence of Bose-Einstein condensate (BEC) magnon pairs produced by microwave radiation in a film of yttrium iron garnet (YIG) is a coherent magnon state. This state corresponds to a macroscopic precessing magnetization which emits a superradiant microwave signal as a result of the cooperative action of the spins. The theory explains quantitatively recent experimental observations of microwave emission from a BEC of magnons in a YIG film when the driving power exceeds a critical value.
Measuring the disorder of vortex lattices in a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Rakonjac, A.; Marchant, A. L.; Billam, T. P.; Helm, J. L.; Yu, M. M. H.; Gardiner, S. A.; Cornish, S. L.
2016-01-01
We report observations of the formation and subsequent decay of a vortex lattice in a Bose-Einstein condensate confined in a hybrid optical-magnetic trap. Vortices are induced by rotating the anharmonic magnetic potential that provides confinement in the horizontal plane. We present simple numerical techniques based on image analysis to detect vortices and analyze their distributions. We use these methods to quantify the amount of order present in the vortex distribution as it transitions from a disordered array to the energetically favorable ordered lattice.
Chaos control of a Bose-Einstein condensate in a moving optical lattice
NASA Astrophysics Data System (ADS)
Zhang, Zhiying; Feng, Xiuqin; Yao, Zhihai
2016-07-01
Chaos control of a Bose-Einstein condensate (BEC) loaded into a moving optical lattice with attractive interaction is investigated on the basis of Lyapunov stability theory. Three methods are designed to control chaos in BEC. As a controller, a bias constant, periodic force, or wavelet function feedback is added to the BEC system. Numerical simulations reveal that chaotic behavior can be well controlled to achieve periodicity by regulating control parameters. Different periodic orbits are available for different control parameters only if the maximal Lyapunov exponent of the system is negative. The abundant effect of chaotic control is also demonstrated numerically. Chaos control can be realized effectively by using our proposed control strategies.
Full-time dynamics of modulational instability in spinor Bose-Einstein condensates
Doktorov, Evgeny V.; Rothos, Vassilis M.; Kivshar, Yuri S.
2007-07-15
We describe the full-time dynamics of modulational instability in F=1 spinor Bose-Einstein condensates for the case of the integrable three-component model associated with the matrix nonlinear Schroedinger equation. We obtain an exact homoclinic solution of this model by employing the dressing method which we generalize to the case of the higher-rank projectors. This homoclinic solution describes the development of modulational instability beyond the linear regime, and we show that the modulational instability demonstrates the reversal property when the growth of the modulated amplitude is changed by its exponential decay.
Bose-Einstein condensation of spin-1 field in an Einstein universe
NASA Astrophysics Data System (ADS)
Altaie, M. B.; Malkawi, Ehab
2000-10-01
In this paper we investigate the Bose-Einstein condensation of massive spin-1 particles in an Einstein universe. The system is considered under relativistic conditions taking into consideration the possibility of particle-antiparticle pair production. An exact expression for the charge density is obtained, then certain approximations are employed in order to obtain the solutions in closed form. A discussion of the approximations employed in this and other work is given. The effects of finite-size and spin-curvature coupling are emphasized.
Analysis of dynamical tunneling experiments with a Bose-Einstein condensate
Hensinger, W.K.; Mouchet, A.; Julienne, P. S.; Delande, D.; Heckenberg, N.R.; Rubinsztein-Dunlop, H.
2004-07-01
Dynamical tunneling is a quantum phenomenon where a classically forbidden process occurs that is prohibited not by energy but by another constant of motion. The phenomenon of dynamical tunneling has been recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments using numerical solutions of the three-dimensional Gross-Pitaevskii equation and the corresponding Floquet theory. We explore the parameter dependency of the tunneling oscillations and we move the quantum system towards the classical limit in the experimentally accessible regime.
Bose-Einstein Condensation in a Dilute Gas; the First 70 Years and Some Recent Experiments
NASA Astrophysics Data System (ADS)
Cornell, E. A.; Wieman, C. E.
Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of ``How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?'' We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging.
Cavity Exciton-Polaritons, Bose Einstein Condensation and Spin Dynamics
Malpuech, Guillaume; Solnyshkov, Dmitry; Shelykh, Ivan
2009-10-07
An introduction giving elementary properties of cavity exciton-polariton will be given. The condition of occurrence of the polariton lasing effect and of the polariton Bose Eintein condensation will be discussed. The impact of the structural disorder on the superfluid behavior of polariton condensates will be analysed. The spin properties of polariton condensates will be discussed. I will show how the anisotropy of the polariton-polariton interaction leads to the suppression of zeeman splitting for polariton condensates (spin Meissner effects). I will show how the combined impact of disorder and spin Meissner effect can lead to the formation of a new condense phase. I will show how these phenomena can allow for the realization of a polaritonic Datta Das spin transistor.
Ning Boyuan; Zhuang Jun; Zhang Wenxian; You, J. Q.
2011-07-15
We study the enhancement of spin coherence with periodic, concatenated, or Uhrig dynamical decoupling N-pulse sequences in a spin-1 Bose-Einstein condensate, where the intrinsic dynamical instability in such a ferromagnetically interacting condensate causes spin decoherence and eventually leads to a multiple spatial-domain structure or a spin texture. Our results show that all three sequences successfully enhance the spin coherence by pushing the wave vector of the most unstable mode in the condensate to a larger value. Among the three sequences with the same number of pulses, the concatenated one shows the best performance in preserving the spin coherence. More interestingly, we find that all three sequences exactly follow the same enhancement law, k{sub -}T{sup 1/2}=c, with k{sub -} the wave vector of the most unstable mode, T the sequence period, and c a sequence-dependent constant. Such a law between k{sub -} and T is also derived analytically for an attractive scalar Bose-Einstein condensate subjected to a periodic dynamical decoupling sequence.
Growth dynamics of a Bose-Einstein condensate in a dimple trap without cooling
Garrett, Michael C.; Davis, Matthew J.; Ratnapala, Adrian; Ooijen, Eikbert D. van; Vale, Christopher J.; Weegink, Kristian; Schnelle, Sebastian K.; Vainio, Otto; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina
2011-01-15
We study the formation of a Bose-Einstein condensate in a cigar-shaped three-dimensional harmonic trap, induced by the controlled addition of an attractive ''dimple'' potential along the weak axis. In this manner we are able to induce condensation without cooling due to a localized increase in the phase-space density. We perform a quantitative analysis of the thermodynamic transformation in both the sudden and adiabatic regimes for a range of dimple widths and depths. We find good agreement with equilibrium calculations based on self-consistent semiclassical Hartree-Fock theory describing the condensate and thermal cloud. We observe that there is an optimal dimple depth that results in a maximum in the condensate fraction. We also study the nonequilibrium dynamics of condensate formation in the sudden turn-on regime, finding good agreement for the observed time dependence of the condensate fraction with calculations based on quantum kinetic theory.
Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates in a Random Potential.
Mardonov, Sh; Modugno, M; Sherman, E Ya
2015-10-30
Disorder plays a crucial role in spin dynamics in solids and condensed matter systems. We demonstrate that for a spin-orbit coupled Bose-Einstein condensate in a random potential two mechanisms of spin evolution that can be characterized as "precessional" and "anomalous" are at work simultaneously. The precessional mechanism, typical for solids, is due to the condensate displacement. The unconventional anomalous mechanism is due to the spin-dependent velocity producing the distribution of the condensate spin polarization. The condensate expansion is accompanied by a random displacement and fragmentation, where it becomes sparse, as clearly revealed in the spin dynamics. Thus, different stages of the evolution can be characterized by looking at the condensate spin.
Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates in a Random Potential
NASA Astrophysics Data System (ADS)
Mardonov, Sh.; Modugno, M.; Sherman, E. Ya.
2015-10-01
Disorder plays a crucial role in spin dynamics in solids and condensed matter systems. We demonstrate that for a spin-orbit coupled Bose-Einstein condensate in a random potential two mechanisms of spin evolution that can be characterized as "precessional" and "anomalous" are at work simultaneously. The precessional mechanism, typical for solids, is due to the condensate displacement. The unconventional anomalous mechanism is due to the spin-dependent velocity producing the distribution of the condensate spin polarization. The condensate expansion is accompanied by a random displacement and fragmentation, where it becomes sparse, as clearly revealed in the spin dynamics. Thus, different stages of the evolution can be characterized by looking at the condensate spin.
Superfluidity of a nonequilibrium Bose-Einstein condensate of polaritons
Wouters, Michiel; Savona, Vincenzo
2010-02-01
We study theoretically superfluidity in a driven-dissipative Bose gas out of thermal equilibrium, and discuss the relation with conventional superfluids. We show how the superfluid behavior is characterized by a dramatic increase in the lifetime of a quantized vortex and point out the influence of the spatial geometry of the condensate. We apply our study to a condensate of polaritons in a semiconductor microcavity, whose properties can be directly inferred from optical spectroscopy. We propose three different experimental schemes to measure the vorticity of the polariton condensate.
Generating periodic interference in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Ji, Shen-Tong; Wang, Yuan-Sheng; Luo, Yue-E.; Liu, Xue-Shen
2016-09-01
The interference between two condensates with repulsive interaction is investigated numerically by solving the one-dimensional time-dependent Gross-Pitaevskii equation. The periodic interference pattern forms in two condensates, which are prepared in a double-well potential consisting of two truncated harmonic wells centered at different positions. Dark solitons are observed when two condensates overlap. Due to the existence of atom-atom interactions, atoms are transferred among the ground state and the excited states, which coincides with the condensate energy change. Project supported by the Doctoral Funds of Guizhou Normal College, China (Grant No. 2015BS006) and the National Natural Science Foundation of China (Grant Nos. 11271158 and 11174108).
Vortex excitation in a stirred toroidal Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Yakimenko, A. I.; Isaieva, K. O.; Vilchinskii, S. I.; Ostrovskaya, E. A.
2015-02-01
Motivated by a recent experiment [K. C. Wright et al., Phys. Rev. A 88, 063633 (2013), 10.1103/PhysRevA.88.063633], we investigate the microscopic mechanism for excitation of vortices and formation of a persistent current in an annular BEC stirred by a narrow blue-detuned optical beam. In the framework of a two-dimensional mean-field model, we study the dissipative dynamics of the condensate with parameters that reflect realistic experimental conditions. Vortex-antivortex pairs appear near the center of the stirrer in the bulk of the condensate for slow motion of the stirring beam. When the barrier angular velocity is above some critical value, an outer edge surface mode develops and breaks into the vortices entering the condensate annulus. We determine the conditions for creation of vortex excitations in the stirred toroidal condensate and compare our results with experimental observations.
Scattering processes in Bose-Einstein condensed systems
NASA Astrophysics Data System (ADS)
Wynveen, Aaron Sundby
Unambiguous proof of the existence of Bose condensation in superfluid helium has long eluded researchers ever since condensation was hypothesized to be responsible for superfluidity sixty years ago. Both experimentalists and theorists have been stymied in this effort due to the complexity of this system. Our group has predicted, though, a means by which Bose condensation may be directly probed via a condensate mediated transmission process. Experiments in which helium beams are transmitted through a superfluid to provide information concerning the condensate nature of helium have been undertaken by our group. In the context of these experiments, we have carried out theoretical and computational studies of this process in weakly interacting systems in which calculations may be readily performed. These studies have demonstrated that there exists effective transparency of the condensate to the scattering atoms in these weakly interacting systems similar to that predicted for helium. Dissipation, which may screen the condensate mediated process, has also been shown to be negligible in the weakly interacting systems. Simulations of the helium beams used in the transmission experiments have also been developed. By combining gas dynamics with a hydrodynamic simulation, we have been able to explore a broader range of experimental regimes and thus were able to simulate the anomalous signals observed in the beam experiments. A full characterization of these beams is necessary for correct interpretation of the transmitted signals, and the results of the simulations have led to beneficial modifications to the transmission experiment. And finally, we have presented another means by which condensation may be studied in helium by analyzing the motion of small helium drops through a background helium vapor.
Stirring a ring Bose-Einstein condensate: vortices and overall circulation
NASA Astrophysics Data System (ADS)
Murray, Noel; Edwards, Mark; Clark, Charles W.
2013-03-01
We have studied the process whereby stirring a superfluid Bose-Einstein condensate confined in a ring-shaped potential leads to an overall circulation. We solved the time-dependent Gross-Pitaevskii equation under conditions chosen to match those of an experiment recently conducted at NIST. Briefly, 500,000 Na atoms where confined at the ring-shaped intersection of a red-detuned horizontal light sheet and a vertically propagating Laguerre-Gauss beam. Stirring was carried via a blue-detuned gaussian beam. We found that, at first, the stirring spawned a number of vortex-antivortex pairs and then stopped. These vortices displayed a complicated dynamical behavior which slowly reduced the number of vortices pairwise via annihilation and singly via diffusion into surface modes of the condensate. At the end of this dynamics, the set of vortices was replaced by an overall circulation of atoms around the ring. We present examples of this behavior, give a simple model of vortex motion and vortex-vortex interaction, and show how the production and annihilation of vortices gets turned into a overall circulation of the ring Bose-Einstein condensate. Support in part by NSF grant #1068761.
Stirring a ring Bose-Einstein condensate: vortices and overall circulation
NASA Astrophysics Data System (ADS)
Murray, Noel; Edwards, Mark; Clark, Charles
2013-05-01
We have studied the process whereby stirring a superfluid Bose-Einstein condensate confined in a ring-shaped potential leads to an overall circulation. We solved the time-dependent Gross-Pitaevskii equation under conditions chosen to match those of an experiment recently conducted at NIST. Briefly, 500,000 Na atoms where confined at the ring-shaped intersection of a red-detuned horizontal light sheet and a vertically propagating Laguerre-Gauss beam. Stirring was carried via a blue-detuned gaussian beam. We found that, at first, the stirring spawned a number of vortex-antivortex pairs and then stopped. These vortices displayed a complicated dynamical behavior which slowly reduced the number of vortices pairwise via annihilation and singly via diffusion into surface modes of the condensate. At the end of this dynamics, the set of vortices was replaced by an overall circulation of atoms around the ring. We present examples of this behavior, give a simple model of vortex motion and vortex-vortex interaction, and show how the production and annihilation of vortices gets turned into a overall circulation of the ring Bose-Einstein condensate. Support in part by NSF grant #1068761.
Bose-Einstein condensation in dark power-law laser traps
NASA Astrophysics Data System (ADS)
Jaouadi, A.; Gaaloul, N.; Viaris de Lesegno, B.; Telmini, M.; Pruvost, L.; Charron, E.
2010-08-01
We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order ℓ allows for the exploration of a multitude of power-law trapping situations in one, two, and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasihomogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a “finger” or of a “hockey puck” in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of the same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams.
Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet
Zapf, Vivien
2012-06-01
I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular the compound NiCl2-4SC(NH2)2. Here a magnetic field-induced quantum phase transition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuning parameter for BEC transition is the magnetic field rather than the temperature. Some interesting phenomena arise, for example the fact that the mass of the bosons that condense can be strongly renormalized by quantum fluctuations. I will discuss the utility of this mapping for both understanding the nature of the quantum magnetism and testing the thermodynamic limit of Bose-Einstein Condensation. Furthermore we can dope the system in a clean and controlled way to create the long sought-after Bose Glass transition, which is the bosonic analogy of Anderson localization. I will present experiments and simulations showing evidence for a new scaling exponent, which finally makes contact between theory and experiments. Thus we take a small step towards the difficult problem of understanding the effect of disorder on bosonic wave functions.
Observation of Vortex Nucleation in a Rotating Two-Dimensional Lattice of Bose-Einstein Condensates
Williams, R. A.; Al-Assam, S.; Foot, C. J.
2010-02-05
We report the observation of vortex nucleation in a rotating optical lattice. A {sup 87}Rb Bose-Einstein condensate was loaded into a static two-dimensional lattice and the rotation frequency of the lattice was then increased from zero. We studied how vortex nucleation depended on optical lattice depth and rotation frequency. For deep lattices above the chemical potential of the condensate we observed a linear dependence of the number of vortices created with the rotation frequency, even below the thermodynamic critical frequency required for vortex nucleation. At these lattice depths the system formed an array of Josephson-coupled condensates. The effective magnetic field produced by rotation introduced characteristic relative phases between neighboring condensates, such that vortices were observed upon ramping down the lattice depth and recombining the condensates.
Vortices in a toroidal Bose-Einstein condensate with a rotating weak link
NASA Astrophysics Data System (ADS)
Yakimenko, A. I.; Bidasyuk, Y. M.; Weyrauch, M.; Kuriatnikov, Y. I.; Vilchinskii, S. I.
2015-03-01
Motivated by a recent experiment [K. C. Wright et al., Phys. Rev. Lett. 110, 025302 (2013), 10.1103/PhysRevLett.110.025302], we investigate deterministic discontinuous jumps between quantized circulation states in a toroidally trapped Bose-Einstein condensate. These phase slips are induced by vortex excitations created by a rotating weak link. We analyze the influence of a localized condensate density depletion and atomic superflows, governed by the rotating barrier, on the energetic and dynamical stability of the vortices in the ring-shaped condensate. We simulate in a three-dimensional dissipative mean-field model the dynamics of the condensate using parameters similar to the experimental conditions. Moreover, we consider the dynamics of the stirred condensate far beyond the experimentally explored region and reveal surprising manifestations of complex vortex dynamics.
Squeezing in the weakly interacting uniform Bose-Einstein condensate
Haque, Masudul; Ruckenstein, Andrei E.
2006-10-15
We investigate the presence of squeezing in the weakly repulsive uniform Bose gas, in both the condensate mode and in the nonzero opposite-momenta mode pairs, using two different variational formulations. We explore the U(1) symmetry breaking and Goldstone's theorem in the context of a squeezed coherent variational wave function and present the associated Ward identity. We show that squeezing of the condensate mode is absent at the mean field Hartree-Fock-Bogoliubov level and emerges as a result of fluctuations about mean field as a finite volume effect, which vanishes in the thermodynamic limit. On the other hand, the squeezing of the excitations about the condensate survives the thermodynamic limit and is interpreted in terms of density-phase variables using a number-conserving formulation of the interacting Bose gas.
Calorimetry of a Bose-Einstein-condensed photon gas.
Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan
2016-01-01
Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978
Spinor Bose-Einstein condensates of rotating polar molecules
NASA Astrophysics Data System (ADS)
Deng, Y.; Yi, S.
2015-09-01
We propose a scheme to realize a pseudospin-1 /2 model of the 1Σ (v =0 ) bialkali polar molecules with the spin states corresponding to two sublevels of the first excited rotational level. We show that the effective dipole-dipole interaction between two spin-1 /2 molecules couples the rotational and orbital angular momenta and is highly tunable via a microwave field. We also investigate the ground-state properties of a spin-1 /2 molecular condensate. A variety of nontrivial quantum phases, including the doubly quantized vortex states, are discovered. Our scheme can also be used to create spin-1 model of polar molecules. Thus we show that the ultracold gases of bialkali polar molecules provide a unique platform for studying the spinor condensates of rotating molecules.
Stability of nonstationary states of spin-1 Bose-Einstein condensates
Maekelae, H.; Lundh, E.; Johansson, M.; Zelan, M.
2011-10-15
The stability of nonstationary states of homogeneous spin-1 Bose-Einstein condensates is studied by performing Bogoliubov analysis in a frame of reference where the state is stationary. In particular, the effect of an external magnetic field is examined. It is found that a nonzero magnetic field introduces instability in a {sup 23}Na condensate. The wavelengths of this instability can be controlled by tuning the strength of the magnetic field. In a {sup 87}Rb condensate this instability is present already at zero magnetic field. Furthermore, an analytical bound for the size of a stable condensate is found, and a condition for the validity of the single-mode approximation is presented. Realization of the system in a toroidal trap is discussed, and the full time development is simulated.
Rotation of a Bose-Einstein condensate held under a toroidal trap
Aftalion, Amandine; Mason, Peter
2010-02-15
The aim of this paper is to perform a numerical and analytical study of a rotating Bose-Einstein condensate placed in a harmonic plus Gaussian trap, following the experiments of Bretin et al. [Phys. Rev. Lett. 92, 5 (2004)]. The rotational frequency {Omega} has to stay below the trapping frequency {omega} of the harmonic potential and we find that the condensate has an annular shape containing a triangular vortex lattice. As {Omega} approaches {omega}, the width of the condensate and the circulation inside the central hole get large. We are able to provide analytical estimates of the size of the condensate and the circulation both in the lowest Landau level limit and in the Thomas-Fermi limit, providing an analysis that is consistent with experiment.
Wild, B. G.; Hutchinson, D. A. W.
2011-06-15
We present a method utilizing the continuity equation for the condensate density to make predictions of the precessional frequency of single off-axis vortices and of vortex arrays in Bose-Einstein condensates at finite temperature. We also present an orthogonalized Hartree-Fock-Bogoliubov (HFB) formalism. We solve the continuity equation for the condensate density self-consistently with the orthogonalized HFB equations and find stationary solutions in the frame rotating at this frequency. As an example of the utility of this formalism we obtain time-independent solutions for quasi-two-dimensional rotating systems in the corotating frame. We compare these results with time-dependent predictions where we simulate stirring of the condensate.
Suppression of relative flow by multiple domains in two-component Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Eto, Yujiro; Kunimi, Masaya; Tokita, Hidekatsu; Saito, Hiroki; Hirano, Takuya
2015-07-01
We investigate flow properties of immiscible Bose-Einstein condensates composed of two different Zeeman spin states of 87Rb. Two spatially overlapping condensates in the optical trap are prepared by application of a resonant radio-frequency pulse, and then the magnetic field gradient is applied in order to produce the atomic flow. We find that the spontaneous multiple-domain formation arising from the immiscible nature drastically changes the fluidity. The homogeneously overlapping condensates readily separate under the magnetic field gradient, and they form a stable configuration composed of the two layers. In contrast, the relative flow between two condensates is largely suppressed in the case where the magnetic field gradient is applied after spontaneous domain formation.
Long-lived periodic revivals of coherence in an interacting Bose-Einstein condensate
Egorov, M.; Ivannikov, V.; Opanchuk, B.; Drummond, P.; Hall, B. V.; Sidorov, A. I.; Anderson, R. P.
2011-08-15
We observe the coherence of an interacting two-component Bose-Einstein condensate (BEC) surviving for seconds in a trapped Ramsey interferometer. Mean-field-driven collective oscillations of two components lead to periodic dephasing and rephasing of condensate wave functions with a slow decay of the interference fringe visibility. We apply spin echo synchronous with the self-rephasing of the condensate to reduce the influence of state-dependent atom losses, significantly enhancing the visibility up to 0.75 at the evolution time of 1.5 s. Mean-field theory consistently predicts higher visibility than experimentally observed values. We quantify the effects of classical and quantum noise and infer a coherence time of 2.8 s for a trapped condensate of 5.5x10{sup 4} interacting atoms.
Collapse dynamics of a {sup 176}Yb-{sup 174}Yb Bose-Einstein condensate
Chaudhary, G. K.; Ramakumar, R.
2010-06-15
In this paper, we present a theoretical study of a two-component Bose-Einstein condensate composed of ytterbium (Yb) isotopes in a three-dimensional anisotropic harmonic potential. The condensate consists of a mixture of {sup 176}Yb atoms which have a negative s-wave scattering length and {sup 174}Yb atoms having a positive s-wave scattering length. We study the ground-state as well as dynamic properties of this two-component condensate. Due to the attractive interactions between {sup 176}Yb atoms, the condensate of {sup 176}Yb undergoes a collapse when the particle number exceeds a critical value. The critical number and the collapse dynamics are modified due to the presence of {sup 174}Yb atoms. We use coupled two-component Gross-Pitaevskii equations to study the collapse dynamics. The theoretical results obtained are in reasonable agreement with the experimental results of Fukuhara et al. [Phys. Rev. A 79, 021601(R) (2009)].
Emergent patterns in a spin-orbit-coupled spin-2 Bose-Einstein condensate
Xu, Z. F.; Lue, R.; You, L.
2011-05-15
The ground-state phases of a spin-orbit (SO)-coupled atomic spin-2 Bose-Einstein condensate are studied. Interesting density patterns forme spontaneously are widespread due to the competition between SO coupling and spin-dependent interactions as in an SO-coupled spin-1 condensate. Unlike the case of spin-1 condensates, which are characterized by either a ferromagnetic or a polar phase in the absence of SO, spin-2 condensates can take a cyclic phase, where we find that the patterns formed due to SO are square or triangular in their spin-component densities for axial symmetric SO interaction. Both patterns are found to evolve continuously into striped forms with increased asymmetry of the SO coupling.
Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates.
Zhang, Yongping; Mao, Li; Zhang, Chuanwei
2012-01-20
Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the starting point for the study of many-body dynamics in spin-orbit coupled Bose-Einstein condensates. We show that different laser setups for realizing the same SOC may lead to different mean-field dynamics. Various ground state phases (stripe, phase separation, etc.) of the condensate are found in different parameter regions. A new oscillation period induced by the SOC, similar to the Zitterbewegung oscillation, is found in the center-of-mass motion of the condensate.
Bose-Einstein condensation of magnons pumped by the bulk spin Seebeck effect
NASA Astrophysics Data System (ADS)
Tserkovnyak, Yaroslav; Bender, Scott A.; Duine, Rembert A.; Flebus, Benedetta
2016-03-01
We propose inducing Bose-Einstein condensation of magnons in a magnetic insulator by a heat flow oriented toward its boundary. At a critical heat flux, the oversaturated thermal gas of magnons accumulated at the boundary precipitates the condensate, which then grows gradually as the thermal bias is dialed up further. The thermal magnons thus pumped by the magnonic bulk (spin) Seebeck effect must generally overcome both the local Gilbert damping associated with the coherent magnetic dynamics as well as the radiative spin-wave losses toward the magnetic bulk, in order to achieve the threshold of condensation. We quantitatively estimate the requisite bias in the case of the ferrimagnetic yttrium iron garnet, discuss different physical regimes of condensation, and contrast it with the competing (so-called Doppler-shift) bulk instability.
Phase-Imprinting of Bose-Einstein Condensates with Rydberg Impurities.
Mukherjee, Rick; Ates, Cenap; Li, Weibin; Wüster, Sebastian
2015-07-24
We show how the phase profile of Bose-Einstein condensates can be engineered through its interaction with localized Rydberg excitations. The interaction is made controllable and long range by off-resonantly coupling the condensate to another Rydberg state with laser light. Our technique allows the mapping of entanglement generated in systems of few strongly interacting Rydberg atoms onto much larger atom clouds in hybrid setups. As an example we discuss the creation of a spatial mesoscopic superposition state from a bright soliton. Additionally, the phase imprinted onto the condensate using the Rydberg excitations is a diagnostic tool for the latter. For example, a condensate time-of-flight image would permit reconstructing the pattern of an embedded Rydberg crystal.
Vortex structures of rotating spin-orbit-coupled Bose-Einstein condensates
Zhou Xiangfa; Zhou Jing; Wu Congjun
2011-12-15
We consider the quasi-two-dimensional two-component Bose-Einstein condensates with Rashba spin-orbit (SO) coupling in a rotating trap. The rotation angular velocity couples to the mechanical angular momentum, which contains a noncanonical part arising from SO coupling. The effects of an external Zeeman term favoring spin polarization along the radial direction is also considered, which has the same form as the noncanonical part of the mechanical angular momentum. The rotating condensate exhibits a variety of rich structures by varying the strengths of the trapping potential and interaction. With a strong trapping potential, the condensate exhibits a half-quantum vortex-lattice configuration. Such a configuration is driven to the normal one by introducing the external radial Zeeman field. In the case of a weak trap potential, the condensate exhibits a multidomain pattern of plane-wave states under the external radial Zeeman field.
Impurities as a quantum thermometer for a Bose-Einstein condensate
Sabín, Carlos; White, Angela; Hackermuller, Lucia; Fuentes, Ivette
2014-01-01
We introduce a primary thermometer which measures the temperature of a Bose-Einstein Condensate in the sub-nK regime. We show, using quantum Fisher information, that the precision of our technique improves the state-of-the-art in thermometry in the sub-nK regime. The temperature of the condensate is mapped onto the quantum phase of an atomic dot that interacts with the system for short times. We show that the highest precision is achieved when the phase is dynamical rather than geometric and when it is detected through Ramsey interferometry. Standard techniques to determine the temperature of a condensate involve an indirect estimation through mean particle velocities made after releasing the condensate. In contrast to these destructive measurements, our method involves a negligible disturbance of the system. PMID:25241663
Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate.
Huang, Yixiao; Hu, Zheng-Da
2015-01-26
Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing.
Tunnelling of spin-orbit coupled Bose-Einstein condensates in driven double-well potential
NASA Astrophysics Data System (ADS)
Niu, Zhen-Xia; Zhang, Ai-Xia; Xue, Ju-Kui
2016-08-01
The tunnelling dynamics of spin-orbit (SO) coupled Bose-Einstein condensates in a periodically driven double-well potential are investigated both theoretically and numerically. We find that, when the SO coupling is absent, the atomic interactions suppress the tunnelling (as in usual Bose-Einstein condensed system), and the Zeeman field does not influence the usual tunnelling. When the SO coupling is present, the coupling of the atomic interactions and the Zeeman-field intensity can either enhance or suppress the tunnelling. The system undergoes rich transformations from the coherent tunnelling (CT) to the coherent destruction of tunnelling (CDT) when the SO coupling or the atomic interactions or the Zeeman-field intensity changes. In high-frequency region, the triangular structure and the circle structure are revealed in quasi-energy bands of the system, the width of the triangular structure or the circle structure and the localization width are relevant. And the SO coupling modifies traditional degenerate modes of quasi-energy bands. The results provide a possible way to control the usual tunnelling and the spin-flipping tunnelling in double-well potential.
Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate
Huang, Yixiao; Hu, Zheng-Da
2015-01-01
Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing. PMID:25620051
Theory for Bose-Einstein condensation of light in nanofabricated semiconductor microcavities
NASA Astrophysics Data System (ADS)
de Leeuw, A.-W.; van der Wurff, E. C. I.; Duine, R. A.; van Oosten, D.; Stoof, H. T. C.
2016-07-01
We construct a theory for Bose-Einstein condensation of light in nanofabricated semiconductor microcavities. We model the semiconductor by one conduction and one valence band which consist of electrons and holes that interact via a Coulomb interaction. Moreover, we incorporate screening effects by using a contact interaction with the scattering length for a Yukawa potential and describe in this manner the crossover from exciton gas to electron-hole plasma as we increase the excitation level of the semiconductor. We then show that the dynamics of the light in the microcavities is damped due to the coupling to the semiconductor. Furthermore, we demonstrate that on the electron-hole plasma side of the crossover, which is relevant for the Bose-Einstein condensation of light, this damping can be described by a single dimensionless damping parameter that depends on the external pumping. Hereafter, we propose to probe the superfluidity of light in these nanofabricated semiconductor microcavities by making use of the differences in the response in the normal or superfluid phase to a sudden rotation of the trap. In particular, we determine frequencies and damping of the scissors modes that are excited in this manner. Moreover, we show that a distinct signature of the dynamical Casimir effect can be observed in the density-density correlations of the excited light fluid.
Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate.
Huang, Yixiao; Hu, Zheng-Da
2015-01-01
Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing. PMID:25620051
NASA Astrophysics Data System (ADS)
Posso Trujillo, Katerine; Rasel, Ernst M.; Gaaloul, Naceur; Quantus Team
Preparation of Bose Einstein condensates in realistc trapping potentials for precision atom interferometry Theoretical studies of the ground state and the dynamical properties of Bose Einstein condensates (BECs) are typically realized by considering the ensemble as being initiaally trapped by a harmonic potential. Dramatic discrepancies were found by comparing numerical results of the long-time expansion of BECs after being released from the harmonic trap, and measurements of the free evolution and delta-kick cooling (DKC) of a 87Rb BEC on large timescales of up to 2 s in micro-gravity (micro-g) environment such as those performed in the QUANTUS project from our group. The modification in the dynamics of a 87Rb BEC with the application of DKC by using experimentally implemented trapping geometries and the effect of gravity have been studied. Three different configurations have been considered: atom chip-based potential, dipole trap and the time-averaged orbiting potential. Such discrepancies may be crucial in high precision atom interferometry experiments in micro-g and zero-g platforms in which the implementation of DKC is mandatory to achieve the long-expansion times required
Bose-Einstein Condensates with Spin-Orbit Interaction
Ho Tinlun; Zhang Shizhong
2011-10-07
Motivated by recent experiments carried out by Spielman's group at NIST, we study a general scheme for generating families of gauge fields, spanning the scalar, spin-orbit, and non-Abelian regimes. The NIST experiments, which impart momentum to bosons while changing their spin state, can in principle realize all these. In the spin-orbit regime, we show that a Bose gas is a spinor condensate made up of two non-orthogonal dressed spin states carrying different momenta. As a result, its density shows a stripe structure with a contrast proportional to the overlap of the dressed states, which can be made very pronounced by adjusting the experimental parameters.
Spin-orbit-coupled dipolar Bose-Einstein condensates.
Deng, Y; Cheng, J; Jing, H; Sun, C-P; Yi, S
2012-03-23
We propose an experimental scheme to create spin-orbit coupling in spin-3 Cr atoms using Raman processes. By employing the linear Zeeman effect and optical Stark shift, two spin states within the ground electronic manifold are selected, which results in a pseudospin-1/2 model. We further study the ground state structures of a spin-orbit-coupled Cr condensate. We show that, in addition to the stripe structures induced by the spin-orbit coupling, the magnetic dipole-dipole interaction gives rise to the vortex phase, in which a spontaneous spin vortex is formed.
BCS condensate as a special case of the Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Batle, J.; Casas, M.; Fortes, M.; Solís, M. A.; de Llano, M.; Salazar, A.; Valladares, A. A.; Rojo, O.
2001-03-01
Rather general separable interfermionic interactions with sufficient attraction to bind fermions into (bosonic) Cooper pairs (CPs) give [1], in 2D or 3D, a center-of-mass-momentum(CMM)-dependent CP binding energy that is quadratic for any coupling strictly only in the limit of zero Fermi energy, i.e., when the Fermi sea disappears and one is in vacuum. Otherwise, this "dispersion relation" is linear to good approximation---and perfectly so in weak to moderate coupling. Moreover, the CPs break up beyond a certain CMM which vanishes in the zero coupling limit. As a result, the condensate of BCS theory (which generally neglects nonzero CMM CPs) appears to be a special case of the Bose-Einstein condensate of a boson-fermion binary mixture. Chemical and thermal equilibrium in the mixture gives rise [2] to a boson number which is strongly coupling- and temperature-dependent, and generally leads to transition temperatures substantially greater than those predicted by BCS theory. [1] S.K. Adhikari et al., Physica C (in press) and Phys. Rev. B 62 (2000) 8671; M. Casas et al., Physica C 295 (1998) 93; M. Casas et al., Phys. Letters A 245 (1998) 55. [2] M. Casas et al., http://xxx.lanl.gov/abs/cond-mat/0003499.
QUANTUS: Applications of Bose-Einstein condensates in microgravity
NASA Astrophysics Data System (ADS)
Müntinga, Hauke; van Zoest, T.; Ahlers, H.; Seidel, S. T.; Herr, W.; Rudolph, J.; Gaaloul, N.; Singh, Y.; Schulze, T. A.; Rode, C.; Schkolnik, V.; Ertmer, W.; Rasel, E.; Müntinga, H.; Künemann, T.; Resch, A.; Herrmann, S.; Lümmerzahl, C.; Dittus, H.; Vogel, A.; Wenzlawski, A.; Sengstock, K.; Meyer, N.; Bongs, K.; Krutzik, M.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Peters, A.; Eckart, M.; Kajari, E.; Arnold, S.; Nandi, G.; Walser, R.; Schleich, W. P.; Steinmetz, T.; Hünsch, T. W.; Reichel, J.
We report on the current status of the QUANTUS free fall BEC experiment at the ZARM drop tower in Bremen. After the first realization of a BEC in microgravity in 2007, we were able to observe conden-sates after an unprecedented time of free evolution. The extremely shallow traps possible in microgravity and resulting ultralow temperatures of a few nK allow for further studies ranging from coherence properties of condensates to inertial sensors based on matter waves. In our talk we will focus on the implementation of a matter wave interferometer into our appa-ratus, which aims to extend measurements to unprecedented interrogation times and sensitivi-ties. This leads the way to high precision measurements of gravitational forces and eventually a quantum test of Einstein's weak equivalence principle. Phenomena like decoherence, quantum reflection and Anderson localization can also be examined with our apparatus. These goals are worked on in close cooperation with QUEST and the projects PRIMUS and LASUS. The QUANTUS project is a collaboration of U Hamburg, U Ulm, HU Berlin, MPQ Munich, ZARM at U Bremen and LU Hannover. It is supported by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant numbers 50WM0835 -50WM0839.
Resonant Hawking radiation in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Sols, Fernando; Zapata, Ivar; Albert, Mathias; Parentani, Renaud
2012-02-01
We study double-barrier interfaces separating regions of asymptotically subsonic and supersonic flow of Bose-condensed atoms [1]. These setups contain at least one black hole sonic horizon from which the analogue of Hawking radiation should be generated and emitted against the flow in the subsonic region. Multiple coherent scattering by the double-barrier structure strongly modulates the transmission probability of phonons, rendering it very sensitive to their frequency. As a result, resonant tunneling occurs with high probability within a few narrow frequency intervals. This gives rise to highly non-thermal spectra with sharp peaks. We find that these peaks are mostly associated with decaying resonances and only occasionally with dynamical instabilities. Even at achievable non-zero temperatures, the radiation peaks can be dominated by spontaneous emission, i.e. enhanced zero-point fluctuations, and not, as is often the case in analogue models, by stimulated emission.[4pt] [1] I. Zapata, M. Albert, R. Parentani, F. Sols, New J. Phys. 13, 063048 (2011).
Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap
Fetter, Alexander L.; Jackson, B.; Stringari, S.
2005-01-01
A two-dimensional rapidly rotating Bose-Einstein condensate in an anharmonic trap with quadratic and quartic radial confinement is studied analytically with the Thomas-Fermi approximation and numerically with the full time-independent Gross-Pitaevskii equation. The quartic trap potential allows the rotation speed {omega} to exceed the radial harmonic frequency {omega}{sub perpendicular}. In the regime {omega} > or approx. {omega}{sub perpendicular}, the condensate contains a dense vortex array (approximated as solid-body rotation for the analytical studies). At a critical angular velocity {omega}{sub h}, a central hole appears in the condensate. Numerical studies confirm the predicted value of {omega}{sub h}, even for interaction parameters that are not in the Thomas-Fermi limit. The behavior is also investigated at larger angular velocities, where the system is expected to undergo a transition to a giant vortex (with pure irrotational flow)
Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate.
Seo, Sang Won; Kwon, Woo Jin; Kang, Seji; Shin, Y
2016-05-01
We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid. PMID:27203331
Fock-state dynamics in Raman photoassociation of Bose-Einstein condensates
Olsen, M.K.; Bradley, A.S.; Cavalcanti, S.B.
2004-09-01
By stochastic modeling of the process of Raman photoassociation of Bose-Einstein condensates, we show that, the farther the initial quantum state is from a coherent state, the farther the one-dimensional predictions are from those of the commonly used zero-dimensional approach. We compare the dynamics of condensates, initially in different quantum states, finding that, even when the quantum prediction for an initial coherent state is relatively close to the Gross-Pitaevskii prediction, an initial Fock state gives qualitatively different predictions. We also show that this difference is not present in a single-mode type of model, but that the quantum statistics assume a more important role as the dimensionality of the model is increased. This contrasting behavior in different dimensions, well known with critical phenomena in statistical mechanics, makes itself plainly visible here in a mesoscopic system and is a strong demonstration of the need to consider physically realistic models of interacting condensates.
Vortex structures of rotating Bose-Einstein condensates in an anisotropic harmonic potential
Matveenko, S. I.
2010-09-15
We found an analytical solution for the vortex structure in a rapidly rotating trapped Bose-Einstein condensate in the lowest Landau level approximation. This solution is exact in the limit of a large number of vortices and is obtained for the case of a condensate in a anisotropic harmonic potential. The solution describes as limiting cases both a triangle vortex lattice in the symmetric potential trap and a quasi-one-dimensional structure of vortex rows in an asymmetric case, when the rotation frequency is very close to the lower trapping potential frequency. The shape of the density profile is found to be close to the Thomas-Fermi inverted paraboloid form, except in the vicinity of edges of a condensate cloud.
Analogue cosmological particle creation: Quantum correlations in expanding Bose-Einstein condensates
Prain, Angus; Liberati, Stefano; Fagnocchi, Serena
2010-11-15
We investigate the structure of quantum correlations in an expanding Bose-Einstein condensate (BEC) through the analogue gravity framework. We consider both a 3+1 isotropically expanding BEC as well as the experimentally relevant case of an elongated, effectively 1+1 dimensional, expanding condensate. In this case we include the effects of inhomogeneities in the condensate, a feature rarely included in the analogue gravity literature. In both cases we link the BEC expansion to a simple model for an expanding spacetime and then study the correlation structure numerically and analytically (in suitable approximations). We also discuss the expected strength of such correlation patterns and experimentally feasible BEC systems in which these effects might be detected in the near future.
Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein condensates
Rooney, S. J.; Blakie, P. B.; Bradley, A. S.; Anderson, B. P.
2011-08-15
We study the Kelvin mode excitations on a vortex line in a three-dimensional trapped Bose-Einstein condensate at finite temperature. Our stochastic Gross-Pitaevskii simulations show that the activation of these modes can be suppressed by tightening the confinement along the direction of the vortex line, leading to a strong suppression in the vortex decay rate as the system enters a regime of two-dimensional vortex dynamics. As the system approaches the condensation transition temperature, we find that the vortex decay rate is strongly sensitive to dimensionality and temperature, observing a large enhancement for quasi-two-dimensional traps. Three-dimensional simulations of the recent vortex dipole decay experiment of Neely et al.[Phys. Rev. Lett. 104, 160401 (2010)] confirm two-dimensional vortex dynamics and predict a dipole lifetime consistent with experimental observations and suppression of Kelvon-induced vortex decay in highly oblate condensates.
Classical dynamics of the optomechanical modes of a Bose-Einstein condensate in a ring cavity
Chen, W.; Goldbaum, D. S.; Bhattacharya, M.; Meystre, P.
2010-05-15
We consider a cavity optomechanical system consisting of a Bose-Einstein condensate (BEC) interacting with two counterpropagating traveling-wave modes in an optical ring cavity. In contrast to the more familiar case where the condensate is driven by the standing-wave field of a high-Q Fabry-Perot cavity we find that both symmetric and antisymmetric collective density side modes of the BEC are mechanically excited by the light field. In the semiclassical, mean-field limit where the light field and the zero-momentum mode of the condensate are treated classically the system is found to exhibit a rich multistable behavior, including the appearance of isolated branches of solutions (isolas). We also present examples of the dynamics of the system as input parameters such as the frequency of the driving lasers are varied.
Full counting statistics of the interference contrast from independent Bose-Einstein condensates
Rath, Steffen Patrick; Zwerger, Wilhelm
2010-11-15
We show that the visibility in interference experiments with Bose-Einstein condensates is directly related to the condensate fraction. The probability distribution of the contrast over many runs of an interference experiment thus gives the full counting statistics of the condensed atom number. For two-dimensional Bose gases, we discuss the universal behavior of the probability distribution in the superfluid regime and provide analytical expressions for the distributions for both homogeneous and harmonically trapped samples. They are non-Gaussian and unimodal with a variance that is directly related to the superfluid density. In general, the visibility is a self-averaging observable only in the presence of long-range phase coherence. Close to the transition temperature, the visibility distribution reflects the universal order-parameter distribution in the vicinity of the critical point.
Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case
Bettoni, Dario; Colombo, Mattia; Liberati, Stefano E-mail: mattia.colombo@studenti.unitn.it
2014-02-01
Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales.
Nonequilibrium dynamics of vortex arrest in a finite-temperature Bose-Einstein condensate
Wright, T. M.; Bradley, A. S.; Ballagh, R. J.
2010-01-15
We perform finite-temperature dynamical simulations of the arrest of a rotating Bose-Einstein condensate by a fixed trap anisotropy, using a Hamiltonian classical-field method. We consider a quasi-two-dimensional condensate containing a single vortex in equilibrium with a rotating thermal cloud. Introducing an elliptical deformation of the trapping potential leads to the loss of angular momentum from the system. We identify the condensate and the complementary thermal component of the nonequilibrium field and compare the evolution of their angular momenta and angular velocities. By varying the trap anisotropy we alter the relative efficiencies of the vortex-cloud and cloud-trap coupling. For strong trap anisotropies the angular momentum of the thermal cloud may be entirely depleted before the vortex begins to decay. For weak trap anisotropies, the thermal cloud exhibits a long-lived steady state in which it rotates at an intermediate angular velocity.
Multistability in an optomechanical system with a two-component Bose-Einstein condensate
Dong Ying; Ye Jinwu; Pu Han
2011-03-15
We investigate a system consisting of a two-component Bose-Einstein condensate interacting dispersively with a Fabry-Perot optical cavity where the two components of the condensate are resonantly coupled to each other by another classical field. The key feature of this system is that the atomic motional degrees of freedom and the internal pseudospin degrees of freedom are coupled to the cavity field simultaneously, hence an effective spin-orbital coupling within the condensate is induced by the cavity. The interplay among the atomic center-of-mass motion, the atomic collective spin, and the cavity field leads to a strong nonlinearity, resulting in multistable behavior in both matter wave and light wave at the few-photon level.
Analysis of a Bose-Einstein Condensate Double-Well Atom Interferometer
Faust, Douglas K.; Reinhardt, William P.
2010-12-10
Motivated by an open theoretical question in Bose-Einstein condensate atom interferometry, we introduce a novel computational method to describe the condensate order parameter in the presence of a central barrier. We are able to follow the full dynamics of the system during the raising of a barrier, from a single macroscopically occupied ground state to a state where imaging shows a split density and, finally, to the observation of a phase-controlled interference pattern. We are able to discriminate between a mean-field and a two-mode state via the Penrose-Onsager criterion. By simulating the first such experiment, where in spite of the observed splitting of the condensate density there is never more than a single macroscopically occupied state, we provide a definitive interpretation of these systems as a novel many-body form of Young's double-slit experiment.
Dual-species Bose-Einstein condensate of {sup 87}Rb and {sup 133}Cs
McCarron, D. J.; Cho, H. W.; Jenkin, D. L.; Koeppinger, M. P.; Cornish, S. L.
2011-07-15
We report the formation of a dual-species Bose-Einstein condensate of {sup 87}Rb and {sup 133}Cs in the same trapping potential. Our method exploits the efficient sympathetic cooling of {sup 133}Cs via elastic collisions with {sup 87}Rb, initially in a magnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to 2x10{sup 4} atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the {sup 87}Rb during the cooling, we create single-species {sup 133}Cs condensates of up to 6x10{sup 4} atoms.
Spin-orbit angular momentum coupling in a spin-1 Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Chen, Li; Pu, Han; Zhang, Yunbo
2016-01-01
We propose a simple model with spin and orbit angular momentum coupling in a spin-1 Bose-Einstein condensate, where three internal atomic states are Raman coupled by a pair of copropagating Laguerre-Gaussian beams. The resulting Raman transition imposes a transfer of orbital angular momentum between photons and the condensate in a spin-dependent way. Focusing on a regime where the single-particle ground state is nearly threefold degenerate, we show that the weak interatomic interaction in the condensate produces a rich phase diagram, and that a many-body Rabi oscillation between two quantum phases can be induced by a sudden quench of the quadratic Zeeman shift. We carried out our calculations using both a variational method and a full numerical method, and found excellent agreement.
Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Seo, Sang Won; Kwon, Woo Jin; Kang, Seji; Shin, Y.
2016-05-01
We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid.
Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate.
Seo, Sang Won; Kwon, Woo Jin; Kang, Seji; Shin, Y
2016-05-01
We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid.
Mean-field predictions for a dipolar Bose-Einstein condensate with 164Dy
NASA Astrophysics Data System (ADS)
Zajec, Damir; Wunner, Günter
2015-11-01
Dipolar Bose-Einstein condensates are systems well suited for the investigation of effects caused by the nonlocal and anisotropic dipole-dipole interaction. In this paper we are interested in properties which are directly connected to the realization of a condensate with 164Dy , such as stability and phase diagrams. Additionally, we study the expansion of dipolar condensates and find signatures of the dipole-dipole interaction in terms of structured states and a deviation of the well-known inversion of the aspect ratio of the cloud during a time of flight. Our analysis is based on the extended Gross-Pitaevskii equation, which we solve numerically exactly on a grid by means of an imaginary- and real-time evolution.
Photonic Band Gap via Quantum Coherence in Vortex Lattices of Bose-Einstein Condensates
Muestecaplioglu, Oe.E.; Oktel, M.Oe.
2005-06-10
We investigate the optical response of an atomic Bose-Einstein condensate with a vortex lattice. We find that it is possible for the vortex lattice to act as a photonic crystal and create photonic band gaps, by enhancing the refractive index of the condensate via a quantum coherent scheme. If high enough index contrast between the vortex core and the atomic sample is achieved, a photonic band gap arises depending on the healing length and the lattice spacing. A wide range of experimentally accessible parameters are examined and band gaps in the visible region of the electromagnetic spectrum are found. We also show how directional band gaps can be used to directly measure the rotation frequency of the condensate.
Countersuperflow instability in miscible two-component Bose-Einstein condensates
Ishino, Shungo; Tsubota, Makoto; Takeuchi, Hiromitsu
2011-06-15
We study theoretically the instability of countersuperflow, i.e., two counterpropagating miscible superflows, in uniform two-component Bose-Einstein condensates. Countersuperflow instability causes mutual friction between the superfluids, causing a momentum exchange between the two condensates, when the relative velocity of the counterflow exceeds a critical value. The momentum exchange leads to nucleation of vortex rings from characteristic density patterns due to the nonlinear development of the instability. Expansion of the vortex rings drastically accelerates the momentum exchange, leading to a highly nonlinear regime caused by intervortex interaction and vortex reconnection between the rings. For a sufficiently large interaction between the two components, rapid expansion of the vortex rings causes isotropic turbulence and the global relative motion of the two condensates relaxes. The maximum vortex line density in the turbulence is proportional to the square of the relative velocity.
Analysis of a Bose-Einstein condensate double-well atom interferometer.
Faust, Douglas K; Reinhardt, William P
2010-12-10
Motivated by an open theoretical question in Bose-Einstein condensate atom interferometry, we introduce a novel computational method to describe the condensate order parameter in the presence of a central barrier. We are able to follow the full dynamics of the system during the raising of a barrier, from a single macroscopically occupied ground state to a state where imaging shows a split density and, finally, to the observation of a phase-controlled interference pattern. We are able to discriminate between a mean-field and a two-mode state via the Penrose-Onsager criterion. By simulating the first such experiment, where in spite of the observed splitting of the condensate density there is never more than a single macroscopically occupied state, we provide a definitive interpretation of these systems as a novel many-body form of Young's double-slit experiment.
Critical velocity for vortex shedding in a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Kwon, Woo Jin; Moon, Geol; Seo, Sang Won; Shin, Y.
2015-05-01
We present measurements of the critical velocity for vortex shedding in a highly oblate Bose-Einstein condensate with a moving repulsive Gaussian laser beam. As a function of the barrier height V0, the critical velocity vc shows a dip structure having a minimum at V0≈μ , where μ is the chemical potential of the condensate. At fixed V0≈7 μ , we observe that the ratio of vc to the speed of sound cs monotonically increases for decreasing σ /ξ , where σ is the beam width and ξ is the condensate healing length. We explain our results with the density reduction effect of the soft boundary of the Gaussian obstacle, based on the local Landau criterion for superfluidity. The measured value of vc/cs with our stiffest obstacle is about 0.4, which is in good agreement with theoretical predictions for a two-dimensional superflow past a circular cylinder.
Observation of Dipole-Induced Spin Texture in an Rb87 Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Eto, Yujiro; Saito, Hiroki; Hirano, Takuya
2014-05-01
We report the formation of spin texture resulting from the magnetic dipole-dipole interaction in a spin-2 Rb87 Bose-Einstein condensate. The spinor condensate is prepared in the transversely polarized spin state and the time evolution is observed under a magnetic field of 90 mG with a gradient of 3 mG /cm using Stern-Gerlach imaging. The experimental results are compared with numerical simulations of the Gross-Pitaevskii equation, which reveals that the observed spatial modulation of the longitudinal magnetization is due to the spin precession in an effective magnetic field produced by the dipole-dipole interaction. These results show that the dipole-dipole interaction has considerable effects even on spinor condensates of alkali metal atoms.
Maucher, F.; Skupin, S.; Shen, M.; Krolikowski, W.
2010-06-15
We study formation of rotating three-dimensional high-order solitons (azimuthons) in Bose Einstein condensate with attractive nonlocal nonlinear interaction. In particular, we demonstrate formation of toroidal rotating solitons and investigate their stability. We show that variational methods allow a very good approximation of such solutions and predict accurately the soliton rotation frequency. We also find that these rotating localized structures are very robust and persist even if the initial condensate conditions are rather far from the exact soliton solutions. Furthermore, the presence of repulsive contact interaction does not prevent the existence of those solutions, but allows one to control their rotation. We conjecture that self-trapped azimuthons are generic for condensates with attractive nonlocal interaction.
{sup 85}Rb tunable-interaction Bose-Einstein condensate machine
Altin, P. A.; Robins, N. P.; Doering, D.; Debs, J. E.; Poldy, R.; Figl, C.; Close, J. D.
2010-06-15
We describe our experimental setup for creating stable Bose-Einstein condensates (BECs) of {sup 85}Rb with tunable interparticle interactions. We use sympathetic cooling with {sup 87}Rb in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume, crossed optical dipole trap, using the 155 G Feshbach resonance to manipulate the elastic and inelastic scattering properties of the {sup 85}Rb atoms. Typical {sup 85}Rb condensates contain 4x10{sup 4} atoms with a scattering length of a=+200a{sub 0}. Many aspects of the design presented here could be adapted to other dual-species BEC machines, including those involving degenerate Fermi-Bose mixtures. Our minimalist apparatus is well suited to experiments on dual-species and spinor Rb condensates, and has several simplifications over the {sup 85}Rb BEC machine at JILA, which we discuss at the end of this article.
Bose-Einstein condensation of spin wave quanta at room temperature.
Dzyapko, O; Demidov, V E; Melkov, G A; Demokritov, S O
2011-09-28
Spin waves are delocalized excitations of magnetic media that mainly determine their magnetic dynamics and thermodynamics at temperatures far below the critical one. The quantum-mechanical counterparts of spin waves are magnons, which can be considered as a gas of weakly interacting bosonic quasi-particles. Here, we discuss the room-temperature kinetics and thermodynamics of the magnon gas in yttrium iron garnet films driven by parametric microwave pumping. We show that for high enough pumping powers, the thermalization of the driven gas results in a quasi-equilibrium state described by Bose-Einstein statistics with a non-zero chemical potential. Further increases of the pumping power cause a Bose-Einstein condensation documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the Brillouin light scattering spectroscopy to the degree of coherence of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, occurring if their density exceeds a critical value.
Decoherence effects in Bose-Einstein condensate interferometry I. General theory
Dalton, B.J.
2011-03-15
Research Highlights: > Theory of dephasing, decoherence effects for Bose-Einstein condensate interferometry. > Applies to single component, two mode condensate in double potential well. > Phase space theory using Wigner, positive P representations for condensate, non-condensate fields. > Stochastic condensate, non-condensate field equations and properties of noise fields derived. > Based on mean field theory with condensate modes given by generalised Gross-Pitaevskii equations. - Abstract: The present paper outlines a basic theoretical treatment of decoherence and dephasing effects in interferometry based on single component Bose-Einstein condensates in double potential wells, where two condensate modes may be involved. Results for both two mode condensates and the simpler single mode condensate case are presented. The approach involves a hybrid phase space distribution functional method where the condensate modes are described via a truncated Wigner representation, whilst the basically unoccupied non-condensate modes are described via a positive P representation. The Hamiltonian for the system is described in terms of quantum field operators for the condensate and non-condensate modes. The functional Fokker-Planck equation for the double phase space distribution functional is derived. Equivalent Ito stochastic equations for the condensate and non-condensate fields that replace the field operators are obtained, and stochastic averages of products of these fields give the quantum correlation functions that can be used to interpret interferometry experiments. The stochastic field equations are the sum of a deterministic term obtained from the drift vector in the functional Fokker-Planck equation, and a noise field whose stochastic properties are determined from the diffusion matrix in the functional Fokker-Planck equation. The stochastic properties of the noise field terms are similar to those for Gaussian-Markov processes in that the stochastic averages of odd
Long-Range Correlations of Density in a Bose-Einstein Condensate Expanding in a Random Potential
Cherroret, N.; Skipetrov, S. E.
2008-11-07
We study correlations of atomic density in a weakly interacting Bose-Einstein condensate, expanding diffusively in a random potential. We show that these correlations are long range and that they are strongly enhanced at long times. The density at distant points exhibits negative correlations.
Fujimoto, Kazuya; Tsubota, Makoto
2010-10-15
The hydrodynamics of quantized vortices and solitons in an atomic Bose-Einstein condensate excited by an oscillating potential are studied by numerically solving the two-dimensional Gross-Pitaevskii equation. The oscillating potential keeps nucleating vortex dipoles, whose impulses alternately change their direction synchronously with the oscillation of the potential. This leads to synergy dynamics of vortices and solitons in quantum fluids.
Interferometry with non-classical motional states of a Bose-Einstein condensate.
van Frank, S; Negretti, A; Berrada, T; Bücker, R; Montangero, S; Schaff, J-F; Schumm, T; Calarco, T; Schmiedmayer, J
2014-05-30
The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.
Measuring the rates of spontaneous vortex formation in highly oblate Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Neely, Tyler; Samson, Edward; Bradley, Ashton; Davis, Matthew; Anderson, Brian
2009-05-01
By studying the dynamics of the Bose-Einstein condensation transition in highly oblate (˜11:1 aspect ratio) traps, we have measured the dependence of spontaneous vortex formation on BEC growth rate, extending our previous experimental and numerical observations of spontaneous vortex formation in weakly oblate (˜2:1 aspect ratio) traps [1]. Our condensation procedure in these highly oblate traps allows us to create BECs over a large range of growth times, from approximately 200 ms to over 2 s. By characterizing vortex formation vs. BEC growth rate, and comparing experimental and numerical results, the Kibble-Zurek mechanism for topological defect formation may be quantitatively studied in our system. [1] C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis, and B.P. Anderson., Nature 455, 948 (2008).
Dark soliton decay due to trap anharmonicity in atomic Bose-Einstein condensates
Parker, N. G.; Proukakis, N. P.; Adams, C. S.
2010-03-15
A number of recent experiments with nearly pure atomic Bose-Einstein condensates have confirmed the predicted dark soliton oscillations when under harmonic trapping. However, a dark soliton propagating in an inhomogeneous condensate has also been predicted to be unstable to the emission of sound waves. Although harmonic trapping supports an equilibrium between the coexisting soliton and sound, we show that the ensuing dynamics are sensitive to trap anharmonicities. Such anharmonicities can break the soliton-sound equilibrium and lead to the net decay of the soliton on a considerably shorter time scale than other dissipation mechanisms. Thus, we propose that small realistic modifications to existing experimental setups could enable the experimental observation of this decay channel.
Spin-dependent inelastic collisions in spin-2 Bose-Einstein condensates
Tojo, Satoshi; Hayashi, Taro; Tanabe, Tatsuyoshi; Hirano, Takuya; Kawaguchi, Yuki; Saito, Hiroki; Ueda, Masahito
2009-10-15
We studied spin-dependent two-body inelastic collisions in F=2 {sup 87}Rb Bose-Einstein condensates both experimentally and theoretically. The {sup 87}Rb condensates were confined in an optical trap and selectively prepared in various spin states in the F=2 manifold at a magnetic field of 3.0 G. The measured atom loss rates depend on the spin states of colliding atoms. We measured two fundamental loss coefficients for two-body inelastic collisions with total spins of 0 and 2. The loss coefficients determine the loss rates of all the spin pairs. The experimental results for mixtures of all spin combinations are in good agreement with numerical solutions of the Gross-Pitaevskii equations that include the effect of a magnetic field gradient.
Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging
NASA Astrophysics Data System (ADS)
Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.; Hope, J. J.
2010-10-01
The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.
Unusual vortex matter in rotating Bose-Einstein condensates with SU(2) broken symmetry
NASA Astrophysics Data System (ADS)
Galteland, Peder; Babaev, Egor; Sudbo, Asle
2015-03-01
We consider a Ginzburg-Landau model of a rotating two-component Bose-Einstein condensate with SU(2) broken symmetry through the use of numerical Monte Carlo techniques. We include the full spectrum of thermal amplitude- and phase-fluctuations. The model exhibits an unusual state of global phase coherence with no accompanying vortex line lattice. This state has no counterpart in single-component condensates. The conditions for such a state are experimentally realizable in, e.g., homonuclear mixes of atomic gases in separate hyperfine states, tuned to the SU(2) point with Feshbach resonance techniques. This work was supported by the Norwegian Research Council and the Norwegian Consortium for High-Performance Computing.
Bose-Einstein condensation in a two-component Bose gas with harmonic oscillator interaction
NASA Astrophysics Data System (ADS)
Abulseoud, A. A.; Abbas, A. H.; Galal, A. A.; El-Sherbini, Th M.
2016-07-01
In this article a system containing two species of identical bosons interacting via a harmonic oscillator potential is considered. It is assumed that the number of bosons of each species is the same and that bosons belonging to the same species repel each other while those belonging to different species attract. The Hamiltonian is diagonalized and the energy spectrum of the system is written down. The behaviour of the system in the thermodynamic limit is studied within the framework of the grand canonical ensemble, and thermodynamic parameters, such as the internal energy, entropy and specific heat capacity are calculated. It is shown that the system exhibits a single species Bose-Einstein condensation when the coupling strengths are equal and a dual species condensation when they are different.
Confinement and precession of vortex pairs in coherently coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Tylutki, Marek; Pitaevskii, Lev P.; Recati, Alessio; Stringari, Sandro
2016-04-01
The dynamic behavior of vortex pairs in two-component coherently (Rabi) coupled Bose-Einstein condensates is investigated in the presence of harmonic trapping. We discuss the role of the surface tension associated with the domain wall connecting two vortices in condensates of atoms occupying different spin states and its effect on the precession of the vortex pair. The results, based on the numerical solution of the Gross-Pitaevskii equations, are compared with the predictions of an analytical macroscopic model and are discussed as a function of the size of the pair, the Rabi coupling, and the intercomponent interaction. We show that the increase of the Rabi coupling results in the disintegration of the domain wall into smaller pieces, connecting vortices of newly created vortex pairs. The resulting scenario is the analog of quark confinement and string breaking in quantum chromodynamics.
Multiple dark-bright solitons in atomic Bose-Einstein condensates
Yan, D.; Kevrekidis, P. G.; Chang, J. J.; Hamner, C.; Engels, P.; Achilleos, V.; Frantzeskakis, D. J.; Carretero-Gonzalez, R.; Schmelcher, P.
2011-11-15
Motivated by recent experimental results, we present a systematic theoretical analysis of dark-bright-soliton interactions and multiple-dark-bright-soliton complexes in atomic two-component Bose-Einstein condensates. We study analytically the interactions between two dark-bright solitons in a homogeneous condensate and then extend our considerations to the presence of the trap. We illustrate the existence of robust stationary dark-bright-soliton ''molecules,'' composed of two or more solitons, which are formed due to the competition of the interaction forces between the dark- and bright-soliton components and the trap force. Our analysis is based on an effective equation of motion, derived for the distance between two dark-bright solitons. This equation provides equilibrium positions and characteristic oscillation frequencies of the solitons, which are found to be in good agreement with the eigenfrequencies of the anomalous modes of the system.
Dynamics of two-component Bose-Einstein condensates coupled with the environment
Hao Yajiang; Gu Qiang
2011-04-15
We investigate the dynamics of an open Bose-Einstein condensate system consisting of two hyperfine states of the same atomic species which are coupled by a tunable Raman laser. It has already been suggested that the detuning between the laser frequency and transition frequency affect significantly the dynamics of the pure condensate. Here we show that the detuning effect is suppressed by noise and dissipation caused by the environment. The increase of coherence and purity are also displayed for specific parameters. As a verification of the lowest order approximation we derive the hierarchy of motion equations in the second-order approximation. It turns out that the former one can describe the dynamical evolution qualitatively for weak noise and dissipation and quantitatively for strong noise and dissipation.
Bose-Einstein condensation and heat capacity of two-dimensional spin-polarized atomic hydrogen
Al-Sugheir, M. K.; Ghassib, H. B.; Awawdeh, M.
2011-07-15
The static fluctuation approximation (SFA) is used to study the condensate fraction and the specific heat capacity of finite two-dimensional spin-polarized atomic hydrogen. It is found that Bose-Einstein condensation occurs in this system. The transition temperature at different densities decreases as the number of particles of the system increases. At low density, a sharp peak in the specific heat capacity is observed at the transition temperature. On the other hand, as the density of the system increases, the transition temperature becomes no longer well-defined, and a hump is observed in the specific heat capacity around the transition temperature. A qualitative comparison of our results to published results for finite Bose systems shows good agreement.
Transmission of excitations in a spin-1 Bose-Einstein condensate through a barrier
Watabe, Shohei; Kato, Yusuke
2011-05-15
We investigate tunneling of excitations across a potential barrier separating two spin-1 Bose-Einstein condensates. Using mean-field theory at absolute zero temperature, we determine the transmission coefficients of excitations in the saturated magnetization state and unsaturated magnetization states. All excitations, except the quadrupolar spin mode in the saturated magnetization state, show the anomalous tunneling phenomenon characterized as perfect tunneling in the low-momentum limit through a potential barrier. The quadrupolar spin mode in the saturated magnetization state, whose spectrum is massive, shows total reflection. We discuss properties common between excitations showing the anomalous tunneling phenomenon. Excitations showing perfect tunneling have a gapless spectrum in the absence of the magnetic field, and their wave functions in the low-energy limit are the same as the condensate wave function.
Tunable spin-orbit coupling and quantum phase transition in a trapped Bose-Einstein condensate.
Zhang, Yongping; Chen, Gang; Zhang, Chuanwei
2013-01-01
Spin-orbit coupling (SOC), the intrinsic interaction between a particle spin and its motion, is responsible for various important phenomena, ranging from atomic fine structure to topological condensed matter physics. The recent experimental breakthrough on the realization of SOC for ultra-cold atoms provides a completely new platform for exploring spin-orbit coupled superfluid physics. However, the SOC strength in the experiment is not tunable. In this report, we propose a scheme for tuning the SOC strength through a fast and coherent modulation of the laser intensities. We show that the many-body interaction between atoms, together with the tunable SOC, can drive a quantum phase transition (QPT) from spin-balanced to spin-polarized ground states in a harmonic trapped Bose-Einstein condensate (BEC), which resembles the long-sought Dicke QPT. We characterize the QPT using the periods of collective oscillations of the BEC, which show pronounced peaks and damping around the quantum critical point.
Dynamical spin-density waves in a spin-orbit-coupled Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Li, Yan; Qu, Chunlei; Zhang, Yongsheng; Zhang, Chuanwei
2015-07-01
Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO-coupled Bose-Einstein condensate (BEC) have been extensively studied in both theory and experiment. Here we numerically investigate the generation and propagation of a dynamical spin-density wave (SDW) in a SO-coupled BEC using a fast moving Gaussian-shaped barrier. We find that the SDW wavelength is sensitive to the barrier's velocity while varies slightly with the barrier's peak potential or width. We qualitatively explain the generation of SDW by considering a rectangular barrier in a one-dimensional system. Our results may motivate future experimental and theoretical investigations of rich dynamics in the SO-coupled BEC induced by a moving barrier.
Weakly interacting spinor Bose-Einstein condensates with three-dimensional spin-orbit coupling
NASA Astrophysics Data System (ADS)
Shu-Wei, Song; Rui, Sun; Hong, Zhao; Xuan, Wang; Bao-Zhong, Han
2016-04-01
Starting from the Hamiltonian of the second quantization form, the weakly interacting Bose-Einstein condensate with spin-orbit coupling of Weyl type is investigated. It is found that the SU(2) nonsymmetric term, i.e., the spin-dependent interaction, can lift the degeneracy of the ground states with respect to the z component of the total angular momentum J z , casting the ground condensate state into a configuration of zero J z . This ground state density profile can also be affirmed by minimizing the full Gross-Pitaevskii energy functional. The spin texture of the zero J z state indicates that it is a knot structure, whose fundamental group is π 3(M) ≅ π 3(S 2) = Z. Project supported by the National Natural Science Foundation of China (Grant No. 11447178).
Bose-Einstein condensation and spin mixtures of optically trapped metastable helium
Partridge, G. B.; Jaskula, J.-C.; Bonneau, M.; Boiron, D.; Westbrook, C. I.
2010-05-15
We report the realization of a Bose-Einstein condensate of metastable helium-4 atoms ({sup 4}He*) in an all-optical potential. Up to 10{sup 5} spin-polarized {sup 4}He* atoms are condensed in an optical dipole trap formed from a single, focused, vertically propagating far-off-resonance laser beam. The vertical trap geometry is chosen to best match the resolution characteristics of a delay-line anode microchannel plate detector capable of registering single He* atoms. We also confirm the instability of certain spin-state combinations of {sup 4}He* to two-body inelastic processes, which necessarily affects the scope of future experiments using optically trapped spin mixtures. In order to better quantify this constraint, we measure spin-state-resolved two-body inelastic loss rate coefficients in the optical trap.
Production of large 41K Bose-Einstein condensates using D1 gray molasses
NASA Astrophysics Data System (ADS)
Chen, Hao-Ze; Yao, Xing-Can; Wu, Yu-Ping; Liu, Xiang-Pei; Wang, Xiao-Qiong; Wang, Yu-Xuan; Chen, Yu-Ao; Pan, Jian-Wei
2016-09-01
We use D1 gray molasses to achieve Bose-Einstein condensation of a large number of 41K atoms in an optical dipole trap. By combining a specific configuration of a compressed magneto-optical trap with D1 gray molasses, we obtain a cold sample of 2.4 ×109 atoms with a temperature as low as 42 μ K . After magnetically transferring the atoms into the final glass cell, we perform a two-stage evaporative cooling. A condensate with up to 1.2 ×106 atoms in the lowest Zeeman state |F =1 , mF=1 > is achieved in the optical dipole trap. Furthermore, we observe two narrow Feshbach resonances in the lowest hyperfine channel, which are in good agreement with theoretical predictions.
Vortices in a rotating Bose-Einstein condensate under extreme elongation
Sanchez-Lotero, P.; Palacios, J.J.
2005-10-15
We investigate a nonaxisymmetric rotating Bose-Einstein condensate (BEC) in the limit of rotation frequency for which the BEC transforms into a quasi-one-dimensional system. We compute the vortex lattice wave function by minimizing the Gross-Pitaevskii energy functional in the lowest Landau level approximation for different confinement potentials. The condensate typically presents a changing number of vortex rows as a function of the interaction strength or rotation-confinement ratio. More specifically, the vortex lattices can be classified into two classes according to their symmetry with respect to the longitudinal axis. These two classes correspond to different local minima of the energy functional and evolve independently as a function of the various parameters.
On the third critical speed for rotating Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Correggi, M.; Dimonte, D.
2016-07-01
We study a two-dimensional rotating Bose-Einstein condensate confined by an anharmonic trap in the framework of the Gross-Pitaevskii theory. We consider a rapid rotation regime close to the transition to a giant vortex state. It was proven in Correggi et al. [J. Math. Phys. 53, 095203 (2012)] that such a transition occurs when the angular velocity is of order ɛ-4, with ɛ-2 denoting the coefficient of the nonlinear term in the Gross-Pitaevskii functional and ɛ ≪ 1 (Thomas-Fermi regime). In this paper, we identify a finite value Ωc such that if Ω = Ω0/ɛ4 with Ω0 > Ωc, the condensate is in the giant vortex phase. Under the same condition, we prove a refined energy asymptotics and an estimate of the winding number of any Gross-Pitaevskii minimizer.
NASA Astrophysics Data System (ADS)
Zhao, Qiang
2016-02-01
Motivated by recent experiments carried out by Spielman's group at NIST, we study the vortex formation in a rotating Bose-Einstein condensate in synthetic magnetic field confined in a harmonic potential combined with an optical lattice. We obtain numerical solutions of the two-dimensional Gross-Pitaevskii equation and compare the vortex formation by synthetic magnetic field method with those by rotating frame method. We conclude that a large angular momentum indeed can be created in the presence of the optical lattice. However, it is still more difficult to rotate the condensate by the synthetic magnetic field than by the rotating frame even if the optical lattice is added, and the chemical potential and energy remain almost unchanged by increasing rotational frequency.
Flat-phase loading of a Bose-Einstein condensate into an optical lattice
Sklarz, Shlomo E.; Friedler, Inbal; Tannor, David J.; Band, Yehuda B.; Williams, Carl J.
2002-11-01
It has been proposed that the adiabatic loading of a Bose-Einstein condensate (BEC) into an optical lattice via the Mott-insulator transition can be used to initialize a quantum computer [D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998)]. The loading of a BEC into the lattice without causing band excitation is readily achievable; however, unless one switches on an optical lattice very slowly, the optical lattice causes a phase to accumulate across the condensate. We show analytically and numerically that a cancellation of this effect is possible by adjusting the harmonic trap force constant of the magnetic trap appropriately, thereby facilitating quick loading of an optical lattice for quantum computing purposes. A simple analytical theory is developed for a nonstationary BEC in a harmonic trap.
Collisions of Solitons and Vortex Rings in Cylindrical Bose-Einstein Condensates
Komineas, Stavros; Brand, Joachim
2005-09-09
Interactions of solitary waves in a cylindrically confined Bose-Einstein condensate are investigated by simulating their head-on collisions. Slow vortex rings and fast solitons are found to collide elastically contrary to the situation in the three-dimensional homogeneous Bose gas. Strongly inelastic collisions are absent for low density condensates but occur at higher densities for intermediate velocities. The scattering behavior is rationalized by use of dispersion diagrams. During inelastic collisions, spherical shell-like structures of low density are formed and they eventually decay into depletion droplets with solitary-wave features. The relation to similar shells observed in a recent experiment by Ginsberg et al. [Phys. Rev. Lett. 94, 040403 (2005)] is discussed.
Doppler spectroscopy of an ytterbium Bose-Einstein condensate on the clock transition
NASA Astrophysics Data System (ADS)
Dareau, A.; Scholl, M.; Beaufils, Q.; Döring, D.; Beugnon, J.; Gerbier, F.
2015-02-01
We describe Doppler spectroscopy of Bose-Einstein condensates of ytterbium atoms using a narrow optical transition. We address the optical clock transition around 578 nm between the 1S0 and the 3P0 states with a laser system locked on a high-finesse cavity. We show how the absolute frequency of the cavity modes can be determined within a few tens of kilohertz using high-resolution spectroscopy on molecular iodine. We show that optical spectra reflect the velocity distribution of expanding condensates in free fall or after release inside an optical waveguide. We demonstrate subkilohertz spectral linewidths, with long-term drifts of the resonance frequency well below 1 kHz/h. These results open the way to high-resolution spectroscopy of many-body systems.
Impurity driven diffusion and destruction of solitons in quasi-1D Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Aycock, Lauren; Hurst, Hilary; Lu, Hsin-I.; Genkina, Dina; Spielman, Ian
2016-05-01
Current experimental research on solitons focuses on their collisions with each other and how dimensionality influences their stability and decay. Here, we investigate the effect of evenly distributed impurity atoms on soliton dynamics. We launch lone, long-lived solitons in highly elongated 87 Rb Bose-Einstein condensates (BECs) by phase imprinting and observe oscillations stable over many seconds. We compare these long-lived solitons to those launched in BECs containing a few percent of impurity-the same atomic species in a different Zeeman sublevel-controllably introduced just before evaporation to degeneracy. These impurities - evenly distributed throughout the condensate - dramatically decrease the soliton lifetime and enhance Brownian-like diffusion in the soliton's trajectory.
Spontaneously axisymmetry-breaking phase in a binary mixture of spinor Bose-Einstein condensates
Xu, Z. F.; Lue, R.; You, L.; Mei, J. W.
2010-11-15
We study the ground-state phases for a mixture of two atomic spin-1 Bose-Einstein condensates in the presence of a weak magnetic (B) field. The ground state is found to contain a broken-axisymmetry (BA) phase due to competitions among intraspecies and interspecies spin-exchange interactions and the linear Zeeman shifts. This is in contrast to the case of a single-species spin-1 condensate, where the axisymmetry breaking results from competitions among the linear and quadratic Zeeman shifts and the intraspecies ferromagnetic interaction. All other remaining ground-state phases for the mixture are found to preserve axisymmetry. We further elaborate on the ground-state phase diagram and calculate the Bogoliubov excitation spectra of the phases. For the BA phase, there exist three Goldstone modes that attempt to restore the broken U(1) and SO(2) symmetries.
Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.
de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M
2013-08-01
We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74. PMID:24032807
Kottke, M.; Schulte, T.; Hellweg, D.; Drenkelforth, S.; Ertmer, W.; Arlt, J. J.; Cacciapuoti, L.
2005-11-15
We measure the frequency of the low m=0 quadrupolar excitation mode of weakly interacting Bose-Einstein condensates in the transition region from the three-dimensional (3D) to the 1D mean-field regime. Various effects shifting the frequency of the mode are discussed. In particular we take the dynamic coupling of the condensate with the thermal component at finite temperature into account using a time-dependent Hartree-Fock-Bogoliubov treatment developed by Giorgini [Phys. Rev. A, 61, 063615 (2000)]. We show that the frequency rises in the transition from 3D to 1D, in good agreement with the theoretical prediction of Menotti and Stringari [Phys. Rev. A 66, 043610 (2002)].
Dynamic effects of a Feshbach resonance on Bragg scattering from a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Sahlberg, Catarina E.; Ballagh, R. J.; Gardiner, C. W.
2013-04-01
We present a theoretical model for Bragg scattering from a Bose-Einstein condensate (BEC) in the vicinity of a magnetic Feshbach resonance, using a two-c-field formalism, one c field for the atom and the other for a molecule formed of two atoms. We use this model to numerically simulate an experiment [Papp , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.135301 101, 135301 (2008)] investigating the effects of strong interactions on the Bragg spectrum from a 85Rb BEC. Results from these simulations and from our previous calculations using an atom-molecule Bogoliubov approach are in very good quantitative agreement with the experimental results, confirming the importance of the resonance bound state in the dynamics of the condensate for fast experiments like Bragg scattering.
Interferometry with non-classical motional states of a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
van Frank, S.; Negretti, A.; Berrada, T.; Bücker, R.; Montangero, S.; Schaff, J.-F.; Schumm, T.; Calarco, T.; Schmiedmayer, J.
2014-05-01
The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.
Localization-delocalization transition in spin-orbit-coupled Bose-Einstein condensate
Li, Chunyan; Ye, Fangwei; Kartashov, Yaroslav V.; Konotop, Vladimir V.; Chen, Xianfeng
2016-01-01
We address the impact of the spin-orbit (SO) coupling on the localization-delocalization-transition (LDT) in a spin-orbit coupled Bose-Einstein condensate in a bichromatic potential. We find that SO coupling significantly alters the threshold depth of the one of sublattices above which the lowest eigenstates transform from delocalizated into localized. For some moderate coupling strengths the threshold is strongly reduced, which is explained by the SO coupling-induced band flattening in one of the sub-lattices. We explain why simultaneous Rabi and SO coupling are necessary ingredients for LDT threshold cancellation and show that strong SO coupling drives the system into the state where its evolution becomes similar to the evolution of a one-component system. We also find that defocusing nonlinearity can lead to localization of the states which are delocalized in the linear limit. PMID:27531120
Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates.
Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming
2014-02-27
Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction.
Motion of a heavy impurity through a Bose-Einstein condensate
Astrakharchik, G.E.; Pitaevskii, L.P.
2004-07-01
We study the motion of a pointlike impurity in a Bose-Einstein condensate at T=0. By solving the Guinier-Preston (GP) equation in a perturbative manner we calculate the induced mass of the impurity and the drag force on the impurity in three-, two-, and one-dimensional (1D) cases. The relationship between the induced mass and the normal mass of fluid is found, and coincides with the result of the Bogoliubov theory. The drag force appears for the supersonic motion of the impurity. In 1D the drag force is investigated also on the basis of the exact Lieb-Liniger theory, using the dynamic form factor, which has been evaluated by the Haldane method of the calculation of correlation functions. In this theory the force appears for an arbitrarily small velocity of the impurity. The possibility of measuring the form factor in existing experiments is noted.
Watanabe, Gentaro
2007-09-15
Experiments on the axial breathing mode in a rapidly rotating Bose-Einstein condensate are examined. Assuming a cold cloud without thermal component, we show that errors due to defocus of an imaging camera in addition to an inclination of the rotational axis can lead to a significant underestimate of the rotation rate in the fast rotation limit; within these uncertainties, our theoretical prediction agrees with the experimental data. We also show that, in the fast rotation regime, the Thomas-Fermi theory, which is inapplicable there, underestimates the rotation rate. Underestimation of the rotation rate due to these effects would also partly explain a discrepancy between theory and experiment for the Tkachenko mode frequency in the fast rotation regime.
Modugno, M.; Tozzo, C.; Dalfovo, F.
2004-10-01
The occurrence of energetic and dynamical instabilities in a Bose-Einstein condensate moving in a one-dimensional (1D) optical lattice is analyzed by means of the Gross-Pitaevskii theory. Results of full 3D calculations are compared with those of an effective 1D model, the nonpolynomial Schroedinger equation, pointing out the role played by transverse degrees of freedom. The instability thresholds are shown to be scarcely affected by transverse excitations, so that they can be accurately predicted by effective 1D models. Conversely, transverse excitations turn out to be important in characterizing the stability diagram and the occurrence of a complex radial dynamics above the threshold for dynamical instability. This analysis provides a realistic framework to discuss the dissipative dynamics observed in recent experiments.
Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate
Boev, M. V.; Kovalev, V. M.
2015-06-15
We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the critical temperature.
Bose-Einstein condensation on a manifold with non-negative Ricci curvature
Akant, Levent Ertuğrul, Emine Tapramaz, Ferzan Turgut, O. Teoman
2015-01-15
The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite size effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.
Remote entanglement between a single atom and a Bose-Einstein condensate.
Lettner, M; Mücke, M; Riedl, S; Vo, C; Hahn, C; Baur, S; Bochmann, J; Ritter, S; Dürr, S; Rempe, G
2011-05-27
Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μs exceeds the photon duration by 2 orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information.
Remote Entanglement between a Single Atom and a Bose-Einstein Condensate
Lettner, M.; Muecke, M.; Riedl, S.; Vo, C.; Hahn, C.; Baur, S.; Bochmann, J.; Ritter, S.; Duerr, S.; Rempe, G.
2011-05-27
Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 {mu}s exceeds the photon duration by 2 orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information.
Domain wall model in the galactic Bose-Einstein condensate halo
Souza, J.C.C. de; Pires, M.O.C. E-mail: marcelo.pires@ufabc.edu.br
2013-05-01
We assume that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [1], can present topological defects, namely domain walls, arising as the dark soliton solution for the Gross-Pitaevskii equation in a self-graviting potential. We investigate the influence that such substructures would have in the gravitational interactions within a galaxy. We find that, for the simple domain wall model proposed, the effects are too small to be identified, either by means of a local measurement of the gradient of the gravitational field or by analysing galaxy rotation curves. In the first case, the gradient of the gravitational field in the vicinity of the domain wall would be 10{sup −31} (m/s{sup 2})/m. In the second case, the ratio of the tangential velocity correction of a star due to the presence of the domain wall to the velocity in the spherical symmetric case would be 10{sup −8}.
Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann
2016-06-01
A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system. PMID:27314725
Localization-delocalization transition in spin-orbit-coupled Bose-Einstein condensate.
Li, Chunyan; Ye, Fangwei; Kartashov, Yaroslav V; Konotop, Vladimir V; Chen, Xianfeng
2016-01-01
We address the impact of the spin-orbit (SO) coupling on the localization-delocalization-transition (LDT) in a spin-orbit coupled Bose-Einstein condensate in a bichromatic potential. We find that SO coupling significantly alters the threshold depth of the one of sublattices above which the lowest eigenstates transform from delocalizated into localized. For some moderate coupling strengths the threshold is strongly reduced, which is explained by the SO coupling-induced band flattening in one of the sub-lattices. We explain why simultaneous Rabi and SO coupling are necessary ingredients for LDT threshold cancellation and show that strong SO coupling drives the system into the state where its evolution becomes similar to the evolution of a one-component system. We also find that defocusing nonlinearity can lead to localization of the states which are delocalized in the linear limit. PMID:27531120
Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate.
Bons, P C; de Haas, R; de Jong, D; Groot, A; van der Straten, P
2016-04-29
We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime. PMID:27176521
Entanglement generation between spinor Bose-Einstein condensates using Rydberg excitations
NASA Astrophysics Data System (ADS)
Idlas, Sandrine; Domenzain, Luis; Spreeuw, Robert; Byrnes, Tim
2016-02-01
We propose an experimental scheme of generating entangled states between two spinor Bose-Einstein condensates (BECs) using Rydberg excitations. Due to the strong interaction between Rydberg atoms, the Rydberg excitation creates an interaction between two closely located BECs. The method is suitable particularly for atom chip and permanent magnetic trap systems, which can create many BECs with an arbitrary two-dimensional geometry. We show two schemes of entangled state generation, based on stimulated Raman adiabatic passage (STIRAP) methods. The first method produces a symmetric state with total Sx spin zero between ground and excited states of the atoms using a single STIRAP pair, while the second produces a NOON state between hyperfine ground states using two STIRAP pairs. We show that despite the additional complexity of the BECs, it is possible to identify the initial and final adiabatic states exactly. We verify our theoretical predictions using numerical simulations on small boson number systems.
Bose-Einstein condensation of triplons in Ba3Cr2O8
Jaime, Marcelo; Kohama, Y; Aczel, A; Ninios, K; Chan, H; Balicas, L; Dabkowska, H; Like, G
2009-01-01
By performing heat capacity, magnetocaloric effect, torque magnetometry and force magnetometry measurements up to 33 T, we have mapped out the T-H phase diagram of the S = 1/2 spin dimer compound Ba{sub 3}Cr{sub 2}O{sub 8}. We found evidence for field-induced magnetic order between H{sub cl} = 12.52(2) T and H{sub c2} = 23.65(5) T, with the maximum transition temperature T{sub c} {approx} 2.7 K at H {approx} 18 T. The lower transition can likely be described by Bose-Einstein condensation of triplons theory, and this is consistent with the absence of any magnetization plateaus in our magnetic torque and force measurements. In contrast, the nature of the upper phase transition appears to be quite different as our measurements suggest that this transition is actually first order.
Winding-number dependence of Bose-Einstein condensates in a ring-shaped lattice
Jezek, D. M.; Cataldo, H. M.
2011-01-15
We study the winding-number dependence of the stationary states of a Bose-Einstein condensate in a ring-shaped lattice. The system is obtained by confining atoms in a toroidal trap with equally spaced radial barriers. We calculate the energy and angular momentum as functions of the winding number and the barrier height for two quite distinct particle numbers. In both cases we observe two clearly differentiated regimes. For low barriers, metastable vortex states are obtained up to a maximum winding number that depends on the particle number and barrier height. In this regime, the angular momentum and energy show, respectively, almost linear and quadratic dependences on the winding number. For large barrier heights, on the other hand, stationary states are obtained up to a maximum winding number that depends only on the number of lattice sites, whereas energy and angular momentum are shown to be sinusoidal functions of the winding number.
NASA Astrophysics Data System (ADS)
Das, Priyam; Khan, Ayan; Panigrahi, Prasanta K.
2016-05-01
We study the dispersion mechanism (Lieb-mode excitation) of both single and two-component Bose-Einstein condensates, subject to an external trap in a mean-field approach, where the second quantized Lieb-mode is realized as grey soliton. Through the coupling between the centre of mass motion (Kohn mode) and the soliton's momenta arising from the kinematic chirp, induced by time modulated trap, we realize the exotic negative mass regime of the solitonic excitation. We show that the expulsive parabolic trap significantly modifies the energy-momentum dispersion in the low momenta regime, where these modes can be clearly identified, opening up the possibility to observe the Lieb-mode excitation. In case of two-component, we demonstrate the controlled formation of a bound state, in presence of an expulsive harmonic trap, through the shape compatibility of grey and bright solitons. Possible application of such a bound state to information storage and retrieval is pointed out.
Functional Wigner representation of quantum dynamics of Bose-Einstein condensate
Opanchuk, B.; Drummond, P. D.
2013-04-15
We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.
Feshbach-resonant Raman photoassociation in a Bose-Einstein condensate
Mackie, Matt; Phou, Pierre; Shinn, Mannix; Boyce, Heather; Katz, Lev
2011-10-15
We model the formation of stable heteronuclear molecules via pulsed Raman photoassociation of a two-component Bose-Einstein condensate near a strong Feshbach resonance, for both counterintuitive and intuitive pulse sequencing. Compared to lasers alone, weak Raman photoassociation is enhanced by as much as a factor of ten (five) for a counterintuitive (intuitive) pulse sequence, whereas strong Raman photoassociation is barely enhanced at all--regardless of pulse sequence. Stronger intra-atom, molecule, or atom-molecule collisions lead to an expected decrease in conversion efficiency, but stronger ambient inter-atom collisions lead to an unexpected increase in the efficiency of stable molecule production. Numerical results agree reasonably with an analytical approximation.
Engineering bright solitons to enhance the stability of two-component Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Radha, R.; Vinayagam, P. S.; Sudharsan, J. B.; Liu, Wu-Ming; Malomed, Boris A.
2015-12-01
We consider a system of coupled Gross-Pitaevskii (GP) equations describing a binary quasi-one-dimensional Bose-Einstein condensate (BEC) with intrinsic time-dependent attractive interactions, placed in a time-dependent expulsive parabolic potential, in a special case when the system is integrable (a deformed Manakov's system). Since the nonlinearity in the integrable system which represents binary attractive interactions exponentially decays with time, solitons are also subject to decay. Nevertheless, it is shown that the robustness of bright solitons can be enhanced in this system, making their respective lifetime longer, by matching the time dependence of the interaction strength (adjusted with the help of the Feshbach-resonance management) to the time modulation of the strength of the parabolic potential. The analytical results, and their stability, are corroborated by numerical simulations. In particular, we demonstrate that the addition of random noise does not impact the stability of the solitons.
Nonlinear waves in two-component Bose-Einstein condensates: Manakov system and Kowalevski equations
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.; Sokolov, V. V.
2015-04-01
Traveling waves in two-component Bose-Einstein condensates whose dynamics is described by the Manakov limit of the Gross-Pitaevskii equations are considered in a general situation with relative motion of the components when their chemical potentials are not equal to each other. It is shown that in this case the solution is reduced to the form known in the "Kowalevski top" theory of motion. Typical situations are illustrated by the particular cases when the general solution can be represented in terms of elliptic functions and their limits. Depending on the parameters of the wave, both density waves (with in-phase motions of the components) and polarization waves (with counterphase motions) are considered.
Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates
Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming
2014-01-01
Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303
Matter-wave interactions in two-component Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Li, Sheng-Chang; Dou, Fu-Quan
2015-08-01
We investigate two vector-soliton-like matter waves collisions in two-component Bose-Einstein condensates with attractive interactions and Gaussian barrier. We present a detailed numerical analysis of the roles of atomic interactions, barrier, relative velocity, and relative phase in collisional dynamics. We show that the interspecies interactions are crucial to make the wave packet propagate as a “breather”. We find that the collision-induced trajectory shifts of waves are mainly determined by the intraspecies interactions and proportional to them in the weak nonlinearity regime. Moreover, we explore the meeting time of colliding waves and find it depends on the competition between barrier potential and atomic interactions. Particularly, we study the collisions of two waves with a slight velocity asymmetry (or with different relative phases) and the waves merging and split are demonstrated. The underlying inelastic mechanism closely related to energy exchange is briefly discussed as well.
Properties of Two-Component Bose-Einstein Condensates with Monopolar Interaction
NASA Astrophysics Data System (ADS)
Li, Jinbin; Qiao, Yaxin
2014-11-01
We study two-component Bose-Einstein condensates (BECs) with electromagnetically induced attractive monopolar interaction, by means of the Dirac-Frenkel-McLachlan variational principle. The effectiveness of external trap potential, inter-component -wave scattering, monopolar interaction, and particle numbers on the density of BECs is investigated. It is shown that the trap potential dramatically affects density profiles compared to the other three ingredients. Atoms with smaller intra-component -wave scattering length will be squeezed out when monopolar interaction or particle numbers are small, whereas the atoms in the other component are pushed out instead when either parameter is large enough. This is in contrast to modulation of inter-component -wave scattering length, which can not exchange the relative location of different components.
Interface dynamics of a two-component Bose-Einstein condensate driven by an external force
Kobyakov, D.; Bychkov, V.; Lundh, E.; Bezett, A.; Marklund, M.; Akkerman, V.
2011-04-15
The dynamics of an interface in a two-component Bose-Einstein condensate driven by a spatially uniform time-dependent force is studied. Starting from the Gross-Pitaevskii Lagrangian, the dispersion relation for linear waves and instabilities at the interface is derived by means of a variational approach. A number of diverse dynamical effects for different types of driving force is demonstrated, which includes the Rayleigh-Taylor instability for a constant force, the Richtmyer-Meshkov instability for a pulse force, dynamic stabilization of the Rayleigh-Taylor instability and onset of the parametric instability for an oscillating force. Gaussian Markovian and non-Markovian stochastic forces are also considered. It is found that the Markovian stochastic force does not produce any average effect on the dynamics of the interface, while the non-Markovian force leads to exponential perturbation growth.
Modulational instability in binary spin-orbit-coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Bhat, Ishfaq Ahmad; Mithun, T.; Malomed, B. A.; Porsezian, K.
2015-12-01
We study modulation instability (MI) of flat states in two-component spin-orbit-coupled (SOC) Bose-Einstein condensates (BECs) in the framework of coupled Gross-Pitaevskii equations for two components of the pseudospinor wave function. The analysis is performed for equal densities of the components. Effects of the interaction parameters, Rabi coupling, and SOC on the MI are investigated. In particular, the results demonstrate that the SOC strongly alters the commonly known MI (immiscibility) condition, g122>g1g2 , for the binary superfluid with coefficients g1 ,2 and g12 of the intra- and interspecies repulsive interactions. In fact, the binary BEC is always subject to the MI under the action of the SOC, which implies that the ground state of the system is plausibly represented by a striped phase.
Zhou Lu; Zhang Keye; Zhang Weiping; Pu Han; Zhao Xingdong
2011-10-15
We study an ultracold atom-cavity coupling system, which had been implemented in an experiment to display weak light nonlinearity [S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, Phys. Rev. Lett. 99, 213601 (2007)]. The model is described by a noninteracting Bose-Einstein condensate contained in a Fabry-Perot optical resonator, in which two incommensurate standing-wave modes are excited and thus form a quasiperiodic optical lattice potential for the atoms. Special emphasis is paid to the variation of the atomic wave function induced by the cavity light field. We show that bistability between the atomic localized and extended states can be generated under appropriate conditions.
Phase Separation and Pattern Formation in a Binary Bose-Einstein Condensate
Sabbatini, Jacopo; Davis, Matthew J.; Zurek, Wojciech H.
2011-12-02
The miscibility-immiscibility phase transition in binary Bose-Einstein condensates (BECs) can be controlled by a coupling between the two components. Here we propose a new scheme that uses coupling-induced pattern formation to test the Kibble-Zurek mechanism (KZM) of topological-defect formation in a quantum phase transition. For a binary BEC in a ring trap we find that the number of domains forming the pattern scales as a function of the coupling quench rate with an exponent as predicted by the KZM. For a binary BEC in an elongated harmonic trap we find a different scaling law due to the transition being spatially inhomogeneous. We perform a ''quantum simulation'' of the harmonically trapped system in a ring trap to verify the scaling exponent.
Vortices of a rotating two-component dipolar Bose-Einstein condensate in an optical lattice
NASA Astrophysics Data System (ADS)
Wang, Lin-Xue; Dong, Biao; Chen, Guang-Ping; Han, Wei; Zhang, Shou-Gang; Shi, Yu-Ren; Zhang, Xiao-Fei
2016-01-01
We consider a two-component Bose-Einstein condensate, which consists of both dipolar and scalar bosonic atoms, in a confinement that is composed of a harmonic oscillator and an underlying optical lattice set rotation. When the dipoles are polarized along the symmetry axis of the harmonic potential, the ground-state density distributions of such a system are investigated as a function of the relative strength between the dipolar and contact interactions, and of the rotation frequency. Our results show that the number of vortices and its related vortex structures of such a system depend strongly on such system parameters. The special two-component system considered here opens up alternate ways for exploring the rich physics of dipolar quantum gases.
Bai, Xiao-Dong; Zhang, Mei; Xiong, Jun; Yang, Guo-Jian; Deng, Fu-Guo
2015-01-01
We investigate the formation of discrete breathers (DBs) and the dynamics of the mixture of two-species Bose-Einstein condensates (BECs) in open boundary optical lattices using the discrete nonlinear Schrödinger equations. The results show that the coupling of intra- and interspecies interaction can lead to the existence of pure single-species DBs and symbiotic DBs (i.e., two-species DBs). Furthermore, we find that there is a selective distillation phenomenon in the dynamics of the mixture of two-species BECs. One can selectively distil one species from the mixture of two-species BECs and can even control dominant species fraction by adjusting the intra- and interspecies interaction in optical lattices. Our selective distillation mechanism may find potential application in quantum information storage and quantum information processing based on multi-species atoms. PMID:26597592
Modification of roton instability due to the presence of a second dipolar Bose-Einstein condensate
Asad-uz-Zaman, M.; Blume, D.
2011-03-15
We study the behavior of two coupled purely dipolar Bose-Einstein condensates (BECs), each located in a cylindrically symmetric pancake-shaped external confining potential, as the separation b between the traps along the tight confining direction is varied. The solutions of the coupled Gross-Pitaevskii and Bogoliubov-de Gennes equations, which account for the full dynamics, show that the system behavior is modified by the presence of the second dipolar BEC. For sufficiently small b, the presence of the second dipolar BEC destabilizes the system dramatically. In this regime, the coupled system collapses through a mode that is notably different from the radial roton mode that induces the collapse of the uncoupled system. Finally, we comment on the shortcomings of an approach that employs a separable wavefunction, which is assumed to be a good approximation for highly pancake-shaped dipolar BECs in the literature.
Dennis, Graham R.; Johnsson, Mattias T.
2010-09-15
We present a theoretical analysis of a coupled, two-state Bose-Einstein condensate with nonequal scattering lengths and show that dynamical instabilities can be excited. We demonstrate that these instabilities are exponentially amplified, resulting in highly directional, oppositely propagating, coherent matter beams at specific momenta. To accomplish this we prove that the mean field of our system is periodic and extend the standard Bogoliubov approach to consider a time-dependent, but cyclic, background. This allows us to use Floquet's theorem to gain analytic insight into such systems, rather than employing the usual Bogoliubov-de Gennes approach, which is usually limited to numerical solutions. We apply our theory to the metastable helium atom laser experiment by Dall et al. [Phys. Rev. A 79, 011601(R) (2009)] and show that it explains the anomalous beam profiles they observed. Finally, we demonstrate that the paired particle beams will be Einstein-Podolsky-Rosen entangled on formation.
Visibility and stability of superstripes in a spin-orbit-coupled Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Martone, G. I.
2015-04-01
We consider a spin-1/2 Bose-Einstein condensate with equal Rashba and Dresselhaus spin-orbit coupling. After reviewing some relevant features of the quantum phases of the system, we present a short study on how their properties are changed by the presence of non-zero magnetic detunings and spin-asymmetric interactions. At small values of the Raman coupling and of the magnetic field the so-called stripe phase occurs, which displays both superfluidity and periodic density modulations, in analogy with supersolids. We finally review a recent proposal (Phys. Rev. A 90, 041604) to improve the visibility of the fringes, based on the space separation of the two spin components into a 2D bi-layer configuration and on the application of a π/2 Bragg pulse, and we show that this new configuration also yields a sizable increase of the stability of the stripe phase against magnetic fluctuations.
Spin-orbital-angular-momentum coupling in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Sun, Kuei; Qu, Chunlei; Zhang, Chuanwei
2015-06-01
Spin-orbit coupling (SOC) plays a crucial role in many branches of physics. In this context, the recent experimental realization of the coupling between spin and linear momentum of ultracold atoms opens a completely new avenue for exploring new spin-related superfluid physics. Here we propose that another important and fundamental SOC, the coupling between spin and orbital angular momentum (SOAM), can be implemented for ultracold atoms using higher-order Laguerre-Gaussian laser beams to induce Raman coupling between two hyperfine spin states of atoms. We study the ground-state phase diagrams of SOAM-coupled Bose-Einstein condensates on a ring trap and explore their applications in gravitational force detection. Our results may provide the basis for further investigation of intriguing superfluid physics induced by SOAM coupling, such as collective excitations.
Dicke-type phase transition in a spin-orbit-coupled Bose-Einstein condensate.
Hamner, Chris; Qu, Chunlei; Zhang, Yongping; Chang, JiaJia; Gong, Ming; Zhang, Chuanwei; Engels, Peter
2014-06-04
Spin-orbit-coupled Bose-Einstein condensates (BECs) provide a powerful tool to investigate interesting gauge field-related phenomena. Here we study the ground state properties of such a system and show that it can be mapped to the well-known Dicke model in quantum optics, which describes the interactions between an ensemble of atoms and an optical field. A central prediction of the Dicke model is a quantum phase transition between a superradiant phase and a normal phase. We detect this transition in a spin-orbit-coupled BEC by measuring various physical quantities across the phase transition. These quantities include the spin polarization, the relative occupation of the nearly degenerate single-particle states, the quantity analogous to the photon field occupation and the period of a collective oscillation (quadrupole mode). The applicability of the Dicke model to spin-orbit-coupled BECs may lead to interesting applications in quantum optics and quantum information science.
Localization-delocalization transition in spin-orbit-coupled Bose-Einstein condensate.
Li, Chunyan; Ye, Fangwei; Kartashov, Yaroslav V; Konotop, Vladimir V; Chen, Xianfeng
2016-08-17
We address the impact of the spin-orbit (SO) coupling on the localization-delocalization-transition (LDT) in a spin-orbit coupled Bose-Einstein condensate in a bichromatic potential. We find that SO coupling significantly alters the threshold depth of the one of sublattices above which the lowest eigenstates transform from delocalizated into localized. For some moderate coupling strengths the threshold is strongly reduced, which is explained by the SO coupling-induced band flattening in one of the sub-lattices. We explain why simultaneous Rabi and SO coupling are necessary ingredients for LDT threshold cancellation and show that strong SO coupling drives the system into the state where its evolution becomes similar to the evolution of a one-component system. We also find that defocusing nonlinearity can lead to localization of the states which are delocalized in the linear limit.
Bright solitons in a two-dimensional spin-orbit-coupled dipolar Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Xu, Yong; Zhang, Yongping; Zhang, Chuanwei
2015-07-01
We study a two-dimensional spin-orbit-coupled dipolar Bose-Einstein condensate with repulsive contact interactions by both the variational method and the imaginary-time evolution of the Gross-Pitaevskii equation. The dipoles are completely polarized along one direction in the two-dimensional plane to provide an effective attractive dipole-dipole interaction. We find two types of solitons as the ground states arising from such attractive dipole-dipole interactions: a plane-wave soliton with a spatially varying phase and a stripe soliton with a spatially oscillating density for each component. Both types of solitons possess smaller size and higher anisotropy than the soliton without spin-orbit coupling. Finally, we discuss the properties of moving solitons, which are nontrivial because of the violation of Galilean invariance.
Quantum phases of Bose-Einstein condensates with synthetic spin-orbital-angular-momentum coupling
NASA Astrophysics Data System (ADS)
Qu, Chunlei; Sun, Kuei; Zhang, Chuanwei
2015-05-01
The experimental realization of emergent spin-orbit coupling through laser-induced Raman transitions in ultracold atoms paves the way for exploring novel superfluid physics and simulating exotic many-body phenomena. A recent proposal with the use of Laguerre-Gaussian lasers enables another fundamental type of coupling between spin and orbital angular momentum (SOAM) in ultracold atoms. We hereby study quantum phases of a realistic Bose-Einstein condensate (BEC) with this synthetic SOAM coupling in a disk-shaped geometry, respecting radial inhomogeneity of the Raman coupling. We find that the experimental system naturally resides in a strongly interacting regime in which the phase diagram significantly deviates from the single-particle picture. The interplay between SOAM coupling and interaction leads to rich structures in spin-resolved position and momentum distributions, including a stripe phase and various types of immiscible states. Our results would provide a guide for an experimental investigation of SOAM-coupled BECs.
Gap solitons in a spin-orbit-coupled Bose-Einstein condensate.
Kartashov, Yaroslav V; Konotop, Vladimir V; Abdullaev, Fatkhulla Kh
2013-08-01
We report a diversity of stable gap solitons in a spin-orbit-coupled Bose-Einstein condensate subject to a spatially periodic Zeeman field. It is shown that the solitons can be classified by the main physical symmetries they obey, i.e., symmetries with respect to parity (P), time (T), and internal degree of freedom, i.e., spin (C), inversions. The conventional gap and gap-stripe solitons are obtained in lattices with different parameters. It is shown that solitons of the same type but obeying different symmetries can exist in the same lattice at different spatial locations. PT and CPT symmetric solitons have antiferromagnetic structure and are characterized, respectively, by nonzero and zero total magnetizations.
Vector solitons in a spin-orbit-coupled spin-2 Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Gautam, Sandeep; Adhikari, S. K.
2015-06-01
Five-component minimum-energy bound states and mobile vector solitons of a spin-orbit-coupled quasi-one-dimensional hyperfine-spin-2 Bose-Einstein condensate are studied using the numerical solution and variational approximation of a mean-field model. Two distinct types of solutions with single-peak and multipeak density distribution of the components are identified in different domains of interaction parameters. From an analysis of Galilean invariance and time-reversal symmetry of the Hamiltonian, we establish that vector solitons with multipeak density distribution preserve time-reversal symmetry, but they cannot propagate while maintaining the shape of individual components. However, those with single-peak density distribution violate time-reversal symmetry of the Hamiltonian, but they can propagate with a constant velocity and maintain the shape of individual components.
Excitation spectra of a Bose-Einstein condensate with an angular spin-orbit coupling
NASA Astrophysics Data System (ADS)
Vasić, Ivana; Balaž, Antun
2016-09-01
A theoretical model of a Bose-Einstein condensate with angular spin-orbit coupling has recently been proposed and it has been established that a half-skyrmion represents the ground state in a certain regime of spin-orbit coupling and interaction. Here we investigate low-lying excitations of this phase by using the Bogoliubov method and numerical simulations of the time-dependent Gross-Pitaevskii equation. We find that a sudden shift of the trap bottom results in a complex two-dimensional motion of the system's center of mass that is markedly different from the response of a competing phase, and comprises two dominant frequencies. Moreover, the breathing mode frequency of the half-skyrmion is set by both the spin-orbit coupling and the interaction strength, while in the competing state it takes a universal value. Effects of interactions are especially pronounced at the transition between the two phases.
Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction
NASA Astrophysics Data System (ADS)
Lü, Hao; Zhu, Shao-Bing; Qian, Jun; Wang, Yu-Zhu
2015-09-01
Interaction between Rydberg atoms can be used to control the properties of interatomic interaction in ultracold gases by weakly dressing the atoms with a Rydberg state. Here we investigate the effect of the Rydberg-dressing interaction on the ground-state properties of a Bose-Einstein condensate imposed by Raman-induced spin-orbit coupling. We find that, in the case of SU(2)-invariant s-wave interactions, the gas is only in the plane-wave phase and the zero-momentum phase is absent. In particular, we also predict an unexpected magnetic stripe phase composed of two plane-wave components with unequal weight when s-wave interactions are non-symmetric, which originates from the Rydberg-dressing interaction. Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 11104292).