Science.gov

Sample records for boson-fermion degeneracy symmetry

  1. Orbifold symmetry reductions of massive boson-fermion degeneracy

    NASA Astrophysics Data System (ADS)

    Florakis, Ioannis; Kounnas, Costas

    2009-10-01

    We investigate the existence of string vacua with Massive Spectrum Degeneracy Symmetry ( MSDS) in Heterotic and Type II orbifold constructions. We present a classification of all possible Z2N-orbifolds with MSDS symmetry that can be constructed in the formalism of the 2d free fermionic construction. We explicitly construct several two-dimensional models whose Reduced Massive Spectrum Degeneracy Symmetry ( RMSDS) is due to a set of Z-orbifold projections induced naturally in the framework of the free fermionic construction. In all proposed models the massive boson and fermion degrees of freedom exhibit Massive Spectrum Degeneracy Symmetry while the number of massless bosons n(b) and massless fermions n(f) are different; n(b)≠n(f). This property distinguishes the MSDSZ-twisted theories from ordinary supersymmetric ones. Some comments are stated concerning the large marginal JJ¯-deformations of the proposed models connecting them to higher-dimensional gauged-supergravity theories with non-trivial geometrical fluxes.

  2. Marginal deformations of vacua with massive boson-fermion degeneracy symmetry

    NASA Astrophysics Data System (ADS)

    Florakis, Ioannis; Kounnas, Costas; Toumbas, Nicolaos

    2010-07-01

    Two-dimensional string vacua with Massive Spectrum boson-fermion Degeneracy Symmetry, [, are explicitly constructed in Type II and Heterotic superstring theories. The study of their moduli space indicates the existence of large marginal deformations that connect continuously the initial [ vacua to higher-dimensional conventional superstring vacua, where spacetime supersymmetry is spontaneously broken by geometrical fluxes. We find that the maximally symmetric, [, Type II vacuum, is in correspondence with the maximal, N=8, d=4 "gauged supergravity", where the supergravity gauging is induced by the fluxes. This correspondence is extended to less symmetric cases where the initial MSDS symmetry is reduced by orbifolds: [:MSDS]d=2 ↔ [. We also exhibit and analyse thermal interpretations of some Euclidean versions of the models and identify classes of MSDS vacua that remain tachyon-free under arbitrary marginal deformations about the extended symmetry point. The connection between the two-dimensional MSDS vacua and the resulting four-dimensional effective supergravities arises naturally within the context of an adiabatic cosmological evolution, where the very early Universe is conjectured to be described by an MSDS vacuum, while at late cosmological times it is described by an effective N=1 supergravity theory with spontaneously broken supersymmetry.

  3. Critical-Point Symmetries in Boson-Fermion Systems: The Case of Shape Transitions in Odd Nuclei in a Multiorbit Model

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Vitturi, A.

    2007-02-02

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to {gamma}-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation.

  4. Critical-point symmetries in boson-fermion systems: the case of shape transitions in odd nuclei in a multiorbit model.

    PubMed

    Alonso, C E; Arias, J M; Vitturi, A

    2007-02-01

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to gamma-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation.

  5. Complete Boson-Fermion Model of Superconductivity

    NASA Astrophysics Data System (ADS)

    de Llano, Manuel

    2003-03-01

    The unification of the 1957 BCS theory with that of Bose-Einstein condensation (BEC) that gives roughly good first-principles transition temperature Tc predictions in either 2D or 3D for all of the ``Uemura plot'' ``exotic'' or conventional superconductors without abandoning the much-maligned phonon interaction mechanism has recently been achieved [1]-[3]. The same dynamical mechanism also allows for room-temperature superconductivity. The only condition is that one depart moderately from the perfect electron (e)-/hole (h)-Cooper-pair (CP) symmetry to which BCS (and indeed also the somewhat more general BCS-Bose crossover) theory are restricted by construction. It now becomes feasible to explain, among other things, why largely all superconductors empirically have substantially higher T_c's if their normal-state charge carriers are holes rather than electrons. A complete (in the sense that 2h-CPs are not ignored) boson-fermion model (CBFM) has been developed that reduces in the appropriate special cases to: a) ordinary BCS theory for weak boson-fermion coupling; b) the BCS-Bose ``crossover'' theory dating back to 1967; and, for no 2h-CPs to: c) the 1989 boson-fermion (BF) BEC model by T.D. Lee et al. of superconductors which without 2h-CPs is unrelated to BCS theory; d) an ideal BF binary-gas model [4] predicting nonzero BEC T_c's even in 2D; and finally to e) ordinary BEC (1925). The CBFM is a BF statistical model similar to those developed in the mid-50's by Schafroth, Blatt & Butler but which now includes 2h-CPs on an equal footing with 2e-CPs, and which unlike these models also contains the empirically well-established fermionic energy gap. [1] V.V. Tolmachev, Phys. Lett. A 266, 400 (2000). [2] M. Fortes, M.A. Solis, M. de Llano & V.V. Tolmachev, Physica C 364, 95 (2001). [3] M. de Llano & V.V. Tolmachev, Physica A 317, 546 (2003). [4] M. Casas, N.J. Davidson, M. de Llano, T.A. Mamedov, A. Puente, R.M. Quick, A. Rigo & M.A. Solis, Physica A 295, 146 (2001

  6. On the symmetry and degeneracy of H3(+).

    PubMed

    Crabtree, Kyle N; McCall, Benjamin J

    2013-10-01

    The fundamental molecular ion H3(+) has impacted astronomy, chemistry, and physics, particularly since the discovery of its rovibrational spectrum. Consisting of three identical fermions, its properties are profoundly influenced by the requirements of exchange symmetry, most notably the nonexistence of its ground rotational state. Spectroscopy of H3(+) is often used to infer the relative abundances of its two nuclear spin modifications, ortho- and para-H3(+), which are important in areas as diverse as electron dissociative recombination and deuterium fractionation in cold interstellar clouds. In this paper, we explore in detail the impact of exchange symmetry on the states of H3(+), with a particular focus on the state degeneracies necessary for converting spectral transition intensities to relative abundances. We address points of confusion in the literature surrounding these issues and discuss the implications for proton-transfer reactions of H3(+) at low temperatures.

  7. Plethystic vertex operators and boson-fermion correspondences

    NASA Astrophysics Data System (ADS)

    Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.

    2016-10-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  8. Symmetry, Degeneracy, and Statistical Weights of H_3^+

    NASA Astrophysics Data System (ADS)

    Crabtree, Kyle N.; McCall, Benjamin J.

    2013-06-01

    High resolution spectroscopy of H_3^+ is used to probe a variety of physical phenomena, from temperatures, densities, and ionization rates of interstellar clouds to the fundamental chemical physics of chemical reactions involving identical particles. Throughout the literature surrounding these applications, various assumptions, often implicit and sometimes contradictory, are made concerning the degeneracies and statistical weights of the ortho and para nuclear spin modifications of H_3^+, and it is often difficult to account for their origins and applicability. In this talk, the symmetry properties of the nuclear spin and rovibrational wavefunctions of H_3^+ are discussed in detail, as well as the selection rules that determine their combinations. The findings from this close examination are presented in the context of the applications of H_3^+ spectroscopy, with the aim of explicitly identifying the degeneracies of individual rovibrational states. Finally, it is suggested that the nuclear spin wavefunctions of para-H_3^+ directly reveal branching fractions for the nuclear spin modifications of H_2 formed in proton transfer reactions of the form p-H_3^+ + X to H_2 + HX^+.

  9. SU(8) family unification with boson-fermion balance

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2014-08-01

    We formulate an SU(8) family unification model motivated by requiring that the theory should incorporate the graviton, gravitinos, and the fermions and gauge fields of the standard model, with boson-fermion balance. Gauge field SU(8) anomalies cancel between the gravitinos and spin ½ fermions. The 56 of scalars breaks SU(8) to SU(3)family × SU(5) × U(1)/Z5, with the fermion representation content needed for "flipped" SU(5) with three families, and with residual scalars in the 10 and /line{10} representations that break flipped SU(5) to the standard model. Dynamical symmetry breaking can account for the generation of 5 representation scalars needed to break the electroweak group. Yukawa couplings of the 56 scalars to the fermions are forbidden by chiral and gauge symmetries, so in the first stage of SU(8) breaking fermions remain massless. In the limit of vanishing gauge coupling, there are N = 1 and N = 8 supersymmetries relating the scalars to the fermions, which restrict the form of scalar self-couplings and should improve the convergence of perturbation theory, if not making the theory finite and "calculable." In an Appendix we give an analysis of symmetry breaking by a Higgs component, such as the (1, 1)(-15) of the SU(8) 56 under SU(8) ⊃ SU(3) × SU(5) × U(1), which has nonzero U(1) generator.

  10. SU(8) Family Unification with Boson Fermion Balance

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2015-03-01

    We formulate an SU(8) family unification model motivated by requiring that the theory should incorporate the graviton, gravitinos, and the fermions and gauge fields of the standard model, with boson.fermion balance. Gauge field SU(8) anomalies cancel between the gravitinos and spin 1/2 fermions. The 56 of scalars breaks SU(8) to SU(3)family×SU(5)×U(1)/Z5, with the fermion representation content needed for "flipped" SU(5) with three families, and with residual scalars in the 10 and overline {10} representations that break flipped SU(5) to the standard model. Dynamical symmetry breaking can account for the generation of 5 representation scalars needed to break the electroweak group. Yukawa couplings of the 56 scalars to the fermions are forbidden by chiral and gauge symmetries, so in the first stage of SU(8) breaking fermions remain massless. In the limit of vanishing gauge coupling, there are N = 1 and N = 8 supersymmetries relating the scalars to the fermions, which restrict the form of scalar self-couplings and should improve the convergence of perturbation theory, if not making the theory finite and "calculable." In an Appendix we give an analysis of symmetry breaking by a Higgs component, such as the (1, 1)(-15) of the SU(8) 56 under SU(8) ⊃ SU(3) × SU(5) × U(1), which has nonzero U(1) generator.

  11. Symmetry and Degeneracy in Quantum Mechanics. Self-Duality in Finite Spin Systems

    ERIC Educational Resources Information Center

    Osacar, C.; Pacheco, A. F.

    2009-01-01

    The symmetry of self-duality (Savit 1980 "Rev. Mod. Phys. 52" 453) of some models of statistical mechanics and quantum field theory is discussed for finite spin blocks of the Ising chain in a transverse magnetic field. The existence of this symmetry in a specific type of these blocks, and not in others, is manifest by the degeneracy of their…

  12. Expansion of a quantum degenerate boson-fermion mixture

    SciTech Connect

    Hu, Hui; Liu, Xia-Ji; Modugno, Michele

    2003-06-01

    We study the expansion of an ultracold boson-fermion mixture released from an elongated magnetic trap, by using a scaling approach. We discuss in detail the role of the boson-fermion interaction on the evolution of the radial-to-axial aspect ratio of the condensate, and show that the latter depends crucially on the relative dynamics of the condensate and degenerate Fermi gas in the radial direction, which is characterized by the ratio between the trapping frequencies for fermions and bosons. The numerical solution of the scaling equations provides a reasonable agreement with the recent experiment [G. Roati et al., Phys. Rev. Lett. 89, 150403 (2002)].

  13. Feshbach resonance described by boson-fermion coupling

    SciTech Connect

    Domanski, T.

    2003-07-01

    We consider a possibility to describe the Feshbach resonance in terms of the boson-fermion (BF) model. Using such a model, we show that after a gradual disentangling of the boson from fermion subsystem, the resonant-type scattering between fermions is indeed generated. We decouple the subsystems via (a) the single step and (b) the continuous canonical transformation. With the second one, we investigate the feedback effects effectively leading to the finite amplitude of the scattering strength. We study them in detail in the normal T>T{sub c} and superconducting T{<=}T{sub c} states.

  14. Study of {beta}-Decay in the Proton-Neutron Interacting Boson-Fermion Model

    SciTech Connect

    Zuffi, L.; Brant, S.; Yoshida, N.

    2006-04-26

    We study {beta}-decay in odd-A nuclei together with the energy levels and other properties in the proton-neutron interacting-boson-fermion model. We also report on the preliminary results in the odd-odd nuclei in the proton-neutron interacting boson-fermion-fermion model.

  15. Conformal symmetry algebra of the quark potential and degeneracies in the hadron spectra

    NASA Astrophysics Data System (ADS)

    Kirchbach, M.

    2012-10-01

    The essence of the potential algebra concept [Y. Alhassid, F. Gürsey, F. Yachello. Phys. Rev. Lett. 50 (1983)] is that quantum mechanical free motions of scalar particles on curved surfaces of given isometry algebras can be mapped on 1D Schrödinger equations with particular potentials. As long as the Laplace-Beltrami operator on a curved surface is proportional to one of the Casimir invariants of the isometry algebra, free motion on the surface is described by means of the eigenvalue problem of that very Casimir operator. In effect, the excitation modes considered are classified according to the irreducible representations of the algebra of interest and are characterized by typical degeneracies. In consequence, also the spectra of the equivalent Schrödinger operators are classified according to the same irreducible representations and carry the same typical degeneracies. A subtle point concerns the representation of the algebra elements which may or may not be unitarily equivalent to the standard one generating classical groups like SO(n), SO(p,q), etc. To be specific, any similarity transformations of an algebra that underlies, say, an orthogonal group, always conserve the commutators among the elements, but a non-unitarily transformed algebra must not generate same group. One can then consider the parameters of the non-unitary similarity transformation as group symmetry breaking scales and seek to identify them with physical observables. We here use the potential algebra concept as a guidance in the search for an interaction describing conformal degeneracies. For this purpose we subject the so(4) ⊂ so(2,4) isometry algebra of the S3 ball to a particular non-unitary similarity transformation and obtain a deformed isometry copy to S3 such that free motion on the copy is equivalent to a cotangent perturbed motion on S3, and to the 1D Schrödinger operator with the trigonometric Rosen-Morse potential as well. The latter presents itself especially well suited for

  16. Quantum Phases in a Resonantly Interacting Boson-Fermion Mixture

    SciTech Connect

    Dickerscheid, D.B.M.; Oosten, D. van; Tillema, E.J.; Stoof, H.T.C.

    2005-06-17

    We consider a resonantly interacting boson-fermion mixture of {sup 40}K and {sup 87}Rb atoms in an optical lattice. We show that by using a red-detuned optical lattice the mixture can be accurately described by a generalized Hubbard model for {sup 40}K and {sup 87}Rb atoms, and {sup 40}K-{sup 87}Rb molecules. The microscopic parameters of this model are fully determined by the details of the optical lattice and the interspecies Feshbach resonance in the absence of the lattice. We predict a quantum phase transition to occur in this system already at low atomic filling fraction, and present the phase diagram as a function of the temperature and the applied magnetic field.

  17. The boson fermion resonance model in one dimension

    NASA Astrophysics Data System (ADS)

    Citro, R.; Orignac, E.

    2006-05-01

    We discuss the phase transitions of fermions in one dimension with a narrow Feshbach resonance described by the boson-fermion resonance model. By means of the bosonization technique, we derive a low-energy Hamiltonian of the system and show that a strongly correlated state exists, where the order parameters of the Bose condensation and superfluidity decay with the same critical exponent. We also show that density fluctuations near the Fermi wavevector are strongly suppressed as a consequence of a spin gap and a gap against the formation of phase slips. We find a Luther-Emery point where the phase slips and the spin excitations can be described in terms of pseudofermions, providing closed form expressions of the density-density correlations and the spectral functions. The relevance of our results for experiments with ultracold atomic gases subject to one-dimensional confinement is also discussed.

  18. Collapse in boson-fermion mixtures with all-repulsive interactions

    SciTech Connect

    Prytula, Vladyslav I.; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2007-10-15

    We describe the collapse of the bosonic component in a boson-fermion mixture due to the pressure exerted on it by a large fermionic component, leading to collapse in a system with all-repulsive interactions. We describe the phenomena of early collapse and superslow collapse of the mixture.

  19. Kinetics of the phase separation transition in cold-atom boson-fermion mixtures.

    PubMed

    Solenov, Dmitry; Mozyrsky, Dmitry

    2008-04-18

    We study the kinetics of the first order phase separation transition in boson-fermion cold-atom mixtures. At sufficiently low temperatures such a transition is driven by quantum fluctuations responsible for the formation of critical nuclei of a stable phase. Based on a microscopic description of interacting boson-fermion mixtures we derive an effective action for the critical droplet and obtain an asymptotic expression for the nucleation rate in the vicinity of the phase transition and near the spinodal instability of the mixed phase. We also discuss effects of dissipation which play a dominant role close to the transition point, and identify the regimes where quantum nucleation can be experimentally observed in cold-atom systems.

  20. Path integral and boson-fermion expansion in many-fermion systems: Lipkin model

    SciTech Connect

    Kaneko, K. )

    1989-11-01

    In a previous paper, a quantum-mechanical formulation involving both mean fields and independent-particle fields in many-fermion systems was proposed using the path-integral technique. Then the semiclassical calculation of the energy spectra was performed, and the quantization rule was derived by applying a stationary phase approximation on the path integral. In this paper, a boson-fermion expansion is derived from our formulation using Dirac quantization. As an illustration, the Lipkin model is utilized.

  1. Internal parity symmetry and degeneracy of Bethe Ansatz strings in the isotropic heptagonal magnetic ring

    NASA Astrophysics Data System (ADS)

    Milewski, J.; Lulek, B.; Lulek, T.; Łabuz, M.; Stagraczyński, R.

    2014-02-01

    The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.

  2. Interdimensional degeneracy and symmetry breaking in D -dimensional H sup + sub 2

    SciTech Connect

    Frantz, D.D.; Herschbach, D.R. )

    1990-06-01

    An interdimensional degeneracy linking the orbital angular momentum projection {vert bar}{ital m}{vert bar} and spatial dimension {ital D} gives {ital D}-dimensional eigenstates for H{sup +}{sub 2} by simple correspondence with suitably scaled {ital D}=3 excited states. The wave equation for fixed nuclei is separable in {ital D}-dimensional spheroidal coordinates, giving generalized two-center differential equations with parametric dependence on the internuclear distance {ital R}. By incorporating{vert bar}{ital m}{vert bar} into {ital D}, the resulting eigenstates can be classified by the two dimension-independent radial'' quantum numbers denoted in united atom notation by {ital k} and {ital l}{minus}{vert bar}{ital m}{vert bar}, corresponding, respectively, to the number of ellipsoidal and hyperboloidal nodal surfaces in the wave function. The two eigenparameters, the energy {ital E}{sub {ital D}}({ital R}), and a separation constant {ital A}{sub {ital D}}({ital R}) related to the total orbital angular momentum and the Runge--Lenz vector, have been determined numerically for the ground state and several low lying excited states for selected dimensions from {ital D}=2 to {ital D}=100.

  3. Luttinger liquid of polarons in one-dimensional boson-fermion mixtures.

    PubMed

    Mathey, L; Wang, D-W; Hofstetter, W; Lukin, M D; Demler, Eugene

    2004-09-17

    We use the bosonization approach to investigate quantum phases of boson-fermion mixtures (BFM) of atoms confined to one dimension by an anisotropic optical lattice. For a BFM with a single species of fermions we find a charge-density wave phase, a fermion pairing phase, and a phase separation regime. We also obtain the rich phase diagram of a BFM with two species of fermions. We demonstrate that these phase diagrams can be understood in terms of polarons, i.e., atoms "dressed" by screening clouds of the other atom species. Techniques to detect the resulting quantum phases are discussed.

  4. Comparisons of interacting-boson-fermion approximation and triaxial calculations for odd-mass N =80 nuclei

    SciTech Connect

    Aryaeinejad, R.; Chou, W.; McHarris, W.C. )

    1989-09-01

    The interacting-boson-fermion-approximation and triaxial models were used to calculate excitation energies and mixing ratios for the {ital N}=80 nuclei, {sup 139}Pr, {sup 141}Pm, and {sup 143}Eu. For low-lying negative- and positive-parity states both models yield roughly the same numbers, in good agreement with experimental results. For high-lying states we find that the interacting-boson-fermion-approximation model describes the level structure considerably better than the triaxial model. On the other hand, the triaxial model gives more satisfactory results in predicting the mixing ratios.

  5. Phase transitions in the interacting boson fermion model: The {gamma}-unstable case

    SciTech Connect

    Alonso, C.E.; Arias, J.M.; Fortunato, L.; Vitturi, A.

    2005-12-15

    The phase transition around the critical point in the evolution from spherical to deformed {gamma}-unstable shapes is investigated in odd nuclei within the interacting boson fermion model. We consider the particular case of an odd j=3/2 particle coupled to an even-even boson core that undergoes a transition from spherical U(5) to {gamma}-unstable O(6) situation. The particular choice of the j=3/2 orbital preserves in the odd case the condition of {gamma}-instability of the system. As a consequence, energy spectrum and electromagnetic transitions, in correspondence of the critical point, display behaviors qualitatively similar to those of the even core. The results are also in qualitative agreement with the recently proposed E(5/4) model, although few differences are present, due to the different nature of the two schemes.

  6. Relativistic BCS-BEC crossover in a boson-fermion model

    SciTech Connect

    Deng Jian; Wang Qun; Schmitt, Andreas

    2007-08-01

    We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) pairing to a Bose-Einstein condensate (BEC) in a relativistic superfluid within a boson-fermion model. The model includes, besides the fermions, separate bosonic degrees of freedom, accounting for the bosonic nature of the Cooper pairs. The crossover is realized by tuning the difference between the boson mass and boson chemical potential as a free parameter. The model yields populations of condensed and uncondensed bosons as well as gapped and ungapped fermions throughout the crossover region for arbitrary temperatures. Moreover, we observe the appearance of antiparticles for sufficiently large values of the crossover parameter. As an application, we study pairing of fermions with imbalanced populations. The model can potentially be applied to color superconductivity in dense quark matter at strong couplings.

  7. Mixing-demixing transition and collapse of a vortex state in a quasi-two-dimensional boson-fermion mixture

    SciTech Connect

    Adhikari, Sadhan K.; Salasnich, Luca

    2007-05-15

    We investigate the mixing-demixing transition and the collapse in a quasi-two-dimensional degenerate boson-fermion mixture (DBFM) with a bosonic vortex. We solve numerically a quantum-hydrodynamic model based on a new density functional which accurately takes into account the dimensional crossover. It is demonstrated that with the increase of interspecies repulsion, a mixed state of DBFM could turn into a demixed state. The system collapses for interspecies attraction above a critical value which depends on the vortex quantum number. For interspecies attraction just below this critical limit there is almost complete mixing of boson and fermion components. Such mixed and demixed states of a DBFM could be experimentally realized by varying an external magnetic field near a boson-fermion Feshbach resonance, which will result in a continuous variation of interspecies interaction.

  8. Stability and collapse of fermions in a binary dipolar boson-fermion 164Dy-161Dy mixture

    NASA Astrophysics Data System (ADS)

    Adhikari, S. K.

    2013-10-01

    We suggest a time-dependent mean-field hydrodynamic model for a binary dipolar boson-fermion mixture to study the stability and collapse of fermions in the 164Dy-161Dy mixture. The condition of stability of the dipolar mixture is illustrated in terms of phase diagrams. A collapse is induced in a disk-shaped stable binary mixture by jumping the interspecies contact interaction from repulsive to attractive by the Feshbach resonance technique. The subsequent dynamics is studied by solving the time-dependent mean-field model including three-body loss due to molecule formation in boson-fermion and boson-boson channels. Collapse and fragmentation in the fermions after subsequent explosions are illustrated. The anisotropic dipolar interaction leads to anisotropic fermionic density distribution during collapse. This study is carried out in three-dimensional space using realistic values of dipolar and contact interactions.

  9. Phase transitions in the boson-fermion resonance model in one dimension

    NASA Astrophysics Data System (ADS)

    Orignac, E.; Citro, R.

    2006-06-01

    We study one-dimensional fermions with photoassociation or with a narrow Fano-Feshbach resonance described by the boson-fermion resonance model. Using the bosonization technique, we derive a low-energy Hamiltonian of the system. We show that at low energy, the order parameters for the Bose condensation and fermion superfluidity become identical, while a spin gap and a gap against the formation of phase slips are formed. As a result of these gaps, charge density wave correlations decay exponentially in contrast with the phases where only bosons or only fermions are present. We find a Luther-Emery point where the phase slips and the spin excitations can be described in terms of pseudofermions. This allows us to provide closed form expressions of the density-density correlations and the spectral functions. The spectral functions of the fermions are gapped, whereas the spectral functions of the bosons remain gapless. The application of a magnetic field results in a loss of coherence between the bosons and the fermion and the disappearance of the gap. Changing the detuning has no effect on the gap until either the fermion or the boson density is reduced to zero. Finally, we discuss the formation of a Mott insulating state in a periodic potential. The relevance of our results for experiments with ultracold atomic gases subject to one-dimensional confinement is also discussed.

  10. Specific heat of underdoped cuprate superconductors from a phenomenological layered Boson-Fermion model

    NASA Astrophysics Data System (ADS)

    Salas, P.; Fortes, M.; Solís, M. A.; Sevilla, F. J.

    2016-05-01

    We adapt the Boson-Fermion superconductivity model to include layered systems such as underdoped cuprate superconductors. These systems are represented by an infinite layered structure containing a mixture of paired and unpaired fermions. The former, which stand for the superconducting carriers, are considered as noninteracting zero spin composite-bosons with a linear energy-momentum dispersion relation in the CuO2 planes where superconduction is predominant, coexisting with the unpaired fermions in a pattern of stacked slabs. The inter-slab, penetrable, infinite planes are generated by a Dirac comb potential, while paired and unpaired electrons (or holes) are free to move parallel to the planes. Composite-bosons condense at a critical temperature at which they exhibit a jump in their specific heat. These two values are assumed to be equal to the superconducting critical temperature Tc and the specific heat jump reported for YBa2Cu3O6.80 to fix our model parameters namely, the plane impenetrability and the fraction of superconducting charge carriers. We then calculate the isochoric and isobaric electronic specific heats for temperatures lower than Tc of both, the composite-bosons and the unpaired fermions, which matches the latest experimental curves. From the latter, we extract the linear coefficient (γn) at Tc, as well as the quadratic (αT2) term for low temperatures. We also calculate the lattice specific heat from the ARPES phonon spectrum, and add it to the electronic part, reproducing the experimental total specific heat at and below Tc within a 5% error range, from which the cubic (ßT3) term for low temperatures is obtained. In addition, we show that this model reproduces the cuprates mass anisotropies.

  11. {beta} decay of odd-A As to Ge isotopes in the interacting boson-fermion model

    SciTech Connect

    Brant, S.; Yoshida, N.; Zuffi, L.

    2004-11-01

    The structure of odd-mass isotopes of As and Ge is described in the framework of the proton-neutron interacting boson-fermion model. The energy levels and the electromagnetic properties of {sup 69,71,73}As and {sup 69,71,73}Ge are calculated and compared with the experiment. The {beta}-decay rates from the As isotopes to the Ge isotopes are calculated. The calculated decays tend to be stronger than the observed ones. This may indicate a mixture of components outside the model space in the wave functions of actual nuclei. The effect of the higher-order terms in the decay operators seems small.

  12. Stable Degeneracies for Ising Models

    NASA Astrophysics Data System (ADS)

    Knauf, Andreas

    2016-10-01

    We introduce and consider the notion of stable degeneracies of translation invariant energy functions, taken at spin configurations of a finite Ising model. By this term we mean the lack of injectivity that cannot be lifted by changing the interaction. We show that besides the symmetry-induced degeneracies, related to spin flip, translation and reflection, there exist additional stable degeneracies, due to more subtle symmetries. One such symmetry is the one of the Singer group of a finite projective plane. Others are described by combinatorial relations akin to trace identities. Our results resemble traits of the length spectrum for closed geodesics on a Riemannian surface of constant negative curvature. There, stable degeneracy is defined w.r.t. Teichmüller space as parameter space.

  13. Boson-fermion mixtures in two-color optical dipole traps.

    SciTech Connect

    Onofrio, R.; Presilla, Carlo

    2002-01-01

    We propose the use of a combined optical dipole trap to achieve Fermi degeneracy by sympathetic cooling with a different bosonic species. Two far-detuned pairs of laser beams focused on the atomic clouds are used to confine the two atomic species with different trapping strengths. We show that a deep Fermi degeneracy regime can be potentially achieved earlier than Bose-Einstein condensation, as discussed in the favorable situation of a {sup 6}L i-{sup 23}Na mixture. This opens up the possibility of experimentally investigating a mixture of superfluid Fermi and normal Bose gases.

  14. Odd-even {sup 147-153}Pm isotopes within the neutron-proton interacting boson-fermion model

    SciTech Connect

    Barea, J.; Alonso, C. E.; Arias, J. M.

    2011-02-15

    Low-lying energy states of the {sup 147-153}Pm isotopic chain are studied within the framework of the neutron-proton interacting boson-fermion model (IBFM-2). The spectra of these isotopes show a transition from a particle coupled to a vibrational core to a particle coupled to a deformed one. The calculation reproduces this behavior. In addition, reduced transition probabilities B(E2) and B(M1) and quadrupole and magnetic moments, as well as spectroscopic factors corresponding to stripping and pickup transfer reactions, are calculated. Obtained results compare well with the available experimental data, which reinforces the reliability of the wave functions obtained within the IBFM-2 model.

  15. Simultaneous magneto-optical trapping of a boson-fermion mixture of metastable helium atoms.

    PubMed

    Stas, R J W; McNamara, J M; Hogervorst, W; Vassen, W

    2004-07-30

    We simultaneously confine fermionic metastable 3He atoms and bosonic metastable 4He atoms in a magneto-optical trap. The trapped clouds, containing up to 1.5 x 10(8) atoms of each isotope, are characterized by measuring ions and metastable helium atoms escaping from the trap. Optical pumping of 3He atoms to a nontrapped hyperfine state is investigated and it is shown that large atom numbers can be confined without additional repumping lasers. Unique possibilities for quantum degeneracy experiments with mixtures of spin-polarized metastable 3He and 4He atoms are indicated.

  16. On-chip generation of Einstein-Podolsky-Rosen states with arbitrary symmetry

    SciTech Connect

    Gräfe, Markus; Heilmann, René; Nolte, Stefan; Szameit, Alexander

    2015-05-04

    We experimentally demonstrate a method for integrated-optical generation of two-photon Einstein-Podolsky-Rosen states featuring arbitrary symmetries. In our setting, we employ detuned directional couplers to impose a freely tailorable phase between the two modes of the state. Our results allow to mimic the quantum random walk statistics of bosons, fermions, and anyons, particles with fractional exchange statistics.

  17. {beta} decay of the even-even {sup 124}Ba nucleus: A test for the interacting boson-fermion-fermion model

    SciTech Connect

    Brant, S.; Yoshida, N.; Zuffi, L.

    2006-08-15

    The interacting boson-fermion-fermion model approach to {beta} decay is applied to the decay from the even-even {sup 124}Ba to the odd-odd {sup 124}Cs nucleus. The theoretical results for energy levels, electromagnetic properties and {beta} decay rates are compared with experimental data for {sup 124}Cs. The calculated {beta}-decay rates demonstrate that the interacting boson approximation can be applied in the description of {beta} decays from even-even to odd-odd nuclei.

  18. On second quantization on noncommutative spaces with twisted symmetries

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano

    2010-04-01

    By the application of the general twist-induced sstarf-deformation procedure we translate second quantization of a system of bosons/fermions on a symmetric spacetime into a noncommutative language. The procedure deforms, in a coordinated way, the spacetime algebra and its symmetries, the wave-mechanical description of a system of n bosons/fermions, the algebra of creation and annihilation operators and also the commutation relations of the latter with functions of spacetime; our key requirement is the mode-decomposition independence of the quantum field. In a minimalistic view, the use of noncommutative coordinates can be seen just as a way to better express non-local interactions of a special kind. In a non-conservative one, we obtain a closed, covariant framework for quantum field theory (QFT) on the corresponding noncommutative spacetime consistent with quantum mechanical axioms and Bose-Fermi statistics. One distinguishing feature is that the field commutation relations remain of the type 'field (anti)commutator=a distribution'. We illustrate the results by choosing as examples interacting non-relativistic and free relativistic QFT on Moyal space(time)s.

  19. Degeneracy in carbon nanotubes under transverse magnetic δ-fields.

    PubMed

    Kuru, Ş; Negro, J; Tristao, S

    2015-07-22

    The aim of this article was to study the degeneracy of the energy spectrum in a nanotube under a transverse magnetic field. The massless Dirac-Weyl equation has been used to describe the low energy states of this system. The particular case of a singular magnetic field approximated by Dirac delta distributions is considered. It is shown that, under general symmetry conditions, there is a double degeneracy corresponding to periodic solutions with null axial momentum k(z)=0. Also, there may be a kind of sporadic degeneracy for non-vanishing values of k(z), which are explicitly computed in the present example. The proof of these properties is obtained by means of the supersymmetric structure of the Dirac-Weyl Hamiltonian. PMID:26102328

  20. Accidental degeneracies in string compactification

    NASA Astrophysics Data System (ADS)

    Bais, F. A.; Taormina, A.

    1986-11-01

    The equivalence of the torus and group manifold compactification of strings is established. Accidental degeneracies are shown to occur for a large class of compactifications. This way many examples are obtained in which modular invariance does not uniquely fix the representation content of the spectrum.

  1. Changing anyonic ground degeneracy with engineered gauge fields

    NASA Astrophysics Data System (ADS)

    Cobanera, Emilio; Ulrich, Jascha; Hassler, Fabian

    2016-09-01

    For systems of lattice anyons such as Majoranas and parafermions, the unconventional quantum statistics determines a set of global symmetries (e.g., fermion parity for Majoranas) admitting no relevant perturbations. Any operator that breaks these symmetries explicitly would violate locality if added to the Hamiltonian. As a consequence, the associated quasidegeneracy of topologically nontrivial phases is protected, at least partially, by locality via the symmetries singled out by quantum statistics. We show that it is possible to bypass this type of protection by way of specifically engineered gauge fields, in order to modify the topological structure of the edge of the system without destroying the topological order completely. To illustrate our ideas in a concrete setting, we focus on the Z6 parafermion chain. Starting in the topological phase of the chain (sixfold ground degeneracy), we show that a gauge field with restricted dynamics acts as a relevant perturbation, driving a transition to a phase with threefold degeneracy and Z3 parafermion edge modes. The transition from the Z3 to the topologically trivial phase occurs on a critical line in the three-state Potts universality class. We also investigate numerically the emergence of Majorana edge modes when the Z6 chain is coupled to a differently restricted gauge field.

  2. On uniqueness and non-degeneracy of anisotropic polarons

    NASA Astrophysics Data System (ADS)

    Ricaud, Julien

    2016-05-01

    We study the anisotropic Choquard-Pekar equation which describes a polaron in an anisotropic medium. We prove the uniqueness and non-degeneracy of minimizers in a weakly anisotropic medium. In addition, for a wide range of anisotropic media, we derive the symmetry properties of minimizers and prove that the kernel of the associated linearized operator is reduced, apart from three functions coming from the translation invariance, to the kernel on the subspace of functions that are even in each of the three principal directions of the medium.

  3. Parameter degeneracy in neutrino oscillation — Solution network and structural overview

    NASA Astrophysics Data System (ADS)

    Minakata, Hisakazu; Uchinami, Shoichi

    2010-04-01

    It is known that there is a phenomenon called “parameter degeneracy” in neutrino oscillation measurement of lepton mixing parameters; A set of the oscillation probabilities, e.g., P( ν μ → ν e ) and its CP-conjugate Pleft( {{{bar ν }_μ } to {{bar ν }_e}} right) at a particular neutrino energy does not determine uniquely the values of θ 13 and δ. With use of the approximate form of the oscillation probability á la Cervera et al., a complete analysis of the eightfold parameter degeneracy is presented. We propose a unified view of the various types of the degeneracy as invariance of the oscillation probabilities under discrete mappings of the mixing parameters. Explicit form of the mapping is obtained either by symmetry argument, or by deriving exact analytic expressions of all the degeneracy solutions for a given true solution. Due to the one-to-one mapping structure the degeneracy solutions are shown to form a network. We extend our analysis into the parameter degeneracy in T- and CPT-conjugate measurement as well as to the setup with the golden and the silver channels, P( ν e → ν μ ) and P( ν e → ν τ ). Some characteristic features of the degeneracy solutions in CP-conjugate measurement, in particular their energy dependences, are illuminated by utilizing the explicit analytic solutions.

  4. Inhomogeneous neutrino degeneracy and big bang nucleosynthesis

    SciTech Connect

    Whitmire, Scott E.; Scherrer, Robert J.

    2000-04-15

    We examine big bang nucleosynthesis (BBN) in the case of inhomogeneous neutrino degeneracy, in the limit where the fluctuations are sufficiently small on large length scales that the present-day element abundances are homogeneous. We consider two representative cases: degeneracy of the electron neutrino alone and equal chemical potentials for all three neutrinos. We use a linear programming method to constrain an arbitrary distribution of the chemical potentials. For the current set of (highly restrictive) limits on the primordial element abundances, homogeneous neutrino degeneracy barely changes the allowed range of the baryon-to-photon ratio {eta}. Inhomogeneous degeneracy allows for little change in the lower bound on {eta}, but the upper bound in this case can be as large as {eta}=1.1x10{sup -8} (only {nu}{sub e} degeneracy) or {eta}=1.0x10{sup -9} (equal degeneracies for all three neutrinos). For the case of inhomogeneous neutrino degeneracy, we show that there is no BBN upper bound on the neutrino energy density, which is bounded in this case only by limits from structure formation and the cosmic microwave background. (c) 2000 The American Physical Society.

  5. Mixed symmetry states and {beta} decays of odd-A Xe to I isotopes

    SciTech Connect

    Al-Khudair, Falih H.

    2009-07-15

    The energy spectra of the parent and daughter nuclei in the {beta} decays ({sup 121-127}Xe,{beta}{sup +121-127}I) are considered in the interacting boson fermion model (IBFM-2) with the g{sub 7/2},d{sub 5/2},d{sub 3/2},s{sub 1/2}, and h{sub 11/2} single-particle orbitals. Electromagnetic transition probabilities and branching ratios in odd {sup 121-127}I isotopes are investigated. Special attention is given to the occurrence of mixed symmetry states, and the F-spin structures of the wave functions are analyzed. The log{sub 10}ft values of the allowed {beta} decay transitions are calculated. It is found that the IBFM-2 results agree with the experimental data quite well.

  6. Nodal surfaces and interdimensional degeneracies

    SciTech Connect

    Loos, Pierre-François; Bressanini, Dario

    2015-06-07

    The aim of this paper is to shed light on the topology and properties of the nodes (i.e., the zeros of the wave function) in electronic systems. Using the “electrons on a sphere” model, we study the nodes of two-, three-, and four-electron systems in various ferromagnetic configurations (sp, p{sup 2}, sd, pd, p{sup 3}, sp{sup 2}, and sp{sup 3}). In some particular cases (sp, p{sup 2}, sd, pd, and p{sup 3}), we rigorously prove that the non-interacting wave function has the same nodes as the exact (yet unknown) wave function. The number of atomic and molecular systems for which the exact nodes are known analytically is very limited and we show here that this peculiar feature can be attributed to interdimensional degeneracies. Although we have not been able to prove it rigorously, we conjecture that the nodes of the non-interacting wave function for the sp{sup 3} configuration are exact.

  7. Angular-overlap calculation of the Jahn-Teller stabilization energie for f-orbital degeneracies

    SciTech Connect

    Warren, K.D.

    1980-03-01

    The angular-overlap model is applied to the calculation of the linear Jahn-Teller coupling constants for f-orbital degeneracies. The MX/sub 6/, O/sub h/, chromophore is treated as representative of the highest symmetry commonly occurring in the lanthanide and actinide series, and it is shown that, even when spin-orbit effects are taken into account, 5f orbital degeneracies may lead to significant Jahn-Teller stabilization energies. The operation of this effect for F/sup 1/ GAMMA/sub 8/ states is considered. 2 tables.

  8. The effective degeneracy of protein normal modes.

    PubMed

    Na, Hyuntae; Song, Guang

    2016-01-01

    Normal modes are frequently computed and used to portray protein dynamics and interpret protein conformational changes. In this work, we investigate the nature of normal modes and find that the normal modes of proteins, especially those at the low frequency range (0-600 cm(-1)), are highly susceptible to degeneracy. Two or more modes are degenerate if they have the same frequency and consequently any orthogonal transformation of them also is a valid representation of the mode subspace. Thus, degenerate modes can no longer characterize unique directions of motions as regular modes do. Though the normal modes of proteins are usually of different frequencies, the difference in frequency between neighboring modes is so small that, under even slight structural uncertainty that unavoidably exists in structure determination, it can easily vanish and as a result, a mode becomes effectively degenerate with its neighboring modes. This can be easily observed in that some modes seem to disappear and their matching modes cannot be found when the structure used to compute the modes is modified only slightly. We term this degeneracy the effective degeneracy of normal modes. This work is built upon our recent discovery that the vibrational spectrum of globular proteins is universal. The high density of modes observed in the vibrational frequency spectra of proteins renders their normal modes highly susceptible to degeneracy, under even the smallest structural uncertainty. Indeed, we find the degree of degeneracy of modes is proportional to the density of modes in the vibrational spectrum. This means that for modes at the same frequency, degeneracy is more severe for larger proteins. Degeneracy exists also in the modes of coarse-grained models, but to a much lesser extent than those of all-atom models. In closing, we discuss the implications of the effective degeneracy of normal modes: how it may significantly affect the ways in which normal modes are used in various normal modes

  9. Quantum adiabatic evolution with energy degeneracy levels

    NASA Astrophysics Data System (ADS)

    Zhang, Qi

    2016-01-01

    A classical-kind phase-space formalism is developed to address the tiny intrinsic dynamical deviation from what is predicted by Wilczek-Zee theorem during quantum adiabatic evolution on degeneracy levels. In this formalism, the Hilbert space and the aggregate of degenerate eigenstates become the classical-kind phase space and a high-dimensional subspace in the phase space, respectively. Compared with the previous analogous study by a different method, the current result is qualitatively different in that the first-order deviation derived here is always perpendicular to the degeneracy subspace. A tripod-scheme Hamiltonian with two degenerate dark states is employed to illustrate the adiabatic deviation with degeneracy levels.

  10. Accidental degeneracies in nonlinear quantum deformed systems

    NASA Astrophysics Data System (ADS)

    Aleixo, A. N. F.; Balantekin, A. B.

    2011-09-01

    We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.

  11. Robust topological degeneracy of classical theories

    NASA Astrophysics Data System (ADS)

    Vaezi, Mohammad-Sadegh; Ortiz, Gerardo; Nussinov, Zohar

    2016-05-01

    We challenge the hypothesis that the ground states of a physical system whose degeneracy depends on topology must necessarily realize topological quantum order and display nonlocal entanglement. To this end, we introduce and study a classical rendition of the Toric Code model embedded on Riemann surfaces of different genus numbers. We find that the minimal ground state degeneracy (and those of all levels) depends on the topology of the embedding surface alone. As the ground states of this classical system may be distinguished by local measurements, a characteristic of Landau orders, this example illustrates that topological degeneracy is not a sufficient condition for topological quantum order. This conclusion is generic and, as shown, it applies to many other models. We also demonstrate that certain lattice realizations of these models, and other theories, display a ground state entropy (and those of all levels) that is "holographic", i.e., extensive in the system boundary. We find that clock and U (1 ) gauge theories display topological (in addition to gauge) degeneracies.

  12. Degeneracy Breaking for K2 Microlens Parallaxes

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Yee, Jennifer; Carey, Sean

    2015-10-01

    By adding Spitzer observations to microlensing targets being observed from Kepler and Earth, we will create the first interplanetary network of microlensing observatories. This 3-observatory configuration has the unique potential to break the famous 4-fold degeneracy for space-based microlensing parallaxes. This is crucial both for the interpretation of some individual events and to rigorously validate the statistical methods that are used when (as is usually the case) this special 3-observatory configuration is not possible. The Kepler K2 C9 microlensing campaign will monitor about 4 square degrees of the Bulge from 6 Apr to 29 Jun, with the aim of measuring microlens parallaxes. Spitzer can observe this K2 field from 18 Jun to 26 Jul. The 11-day overlap between the two campaigns will allow us to break the 4-fold degeneracy of about 50 microlensing events. Some of these events will be well-covered over the peak from K2, with Spitzer observations of the falling wing providing the necessary information to break the degeneracy in the K2-Earth parallax. Others will be the reverse, with K2 observations of the rising event breaking the degeneracy in Spitzer-Earth parallaxes (i.e., for events peaking during the Spitzer campaign). Breaking this degeneracy leads to a definitive measurement of the magnitude of the microlens parallax vector, which will enable measurements of the masses and distances of the lens systems, including events with planets that contribute to the ~12 needed to make a first measurement of the Galactic distribution of planets, binaries, and many single-lens events, some of which could be black holes, brown dwarfs, or other interesting objects. The distance distribution of the ensemble of lenses can serve as a probe of Galactic structure. All lightcurves will be reduced using our customized software and then made public (for unrestricted use), within two months of the completion of observations (as we did for our 2015 observations).

  13. Relativistic symmetries in nuclear single-particle spectra

    NASA Astrophysics Data System (ADS)

    Guo, Jian-You; Liang, Hao Zhao; Meng, Jie; Zhou, Shan-Gui

    Symmetry is a fundamental concept in quantum physics. The quasi-degeneracy between single-particle orbitals (n, l, j = l + 1/2) and (n -1, l + 2, j = l + 3/2) indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry. Since the pseudospin symmetry was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry for anti-nucleons, and many new concepts have been introduced. In this Chapter, we will illustrate the schematic picture of spin and pseudospin symmetries, derive the basic formalism, highlight the recent progress from several different aspects, and discuss selected open issues in this topic.

  14. Electronic orders in multiorbital Hubbard models with lifted orbital degeneracy

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Werner, Philipp

    2016-04-01

    We study the symmetry-broken phases in two- and three-orbital Hubbard models with lifted orbital degeneracy using dynamical mean-field theory. On the technical level, we explain how symmetry relations can be exploited to measure the four-point correlation functions needed for the calculation of the lattice susceptibilities. In the half-filled two-orbital model with crystal-field splitting, we find an instability of the metallic phase to spin-orbital order with neither spin nor orbital moment. This ordered phase is shown to be related to the recently discovered fluctuating-moment induced spin-triplet superconducting state in the orbitally degenerate model with shifted chemical potential. In the three-orbital case, we consider the effect of a crystal-field splitting on the spin-triplet superconducting state in the model with positive Hund coupling, and the spin-singlet superconducting state in the case of negative Hund coupling. It is demonstrated that for certain crystal-field splittings the higher energy orbitals instead of the lower ones are relevant for superconductivity, and that Tc can be slightly enhanced by the crystal-field effect. We comment on the implications of our results for the superconductivity in strontium ruthenates, and for the recently reported light-enhanced superconducting state in alkali-metal-doped fullerides.

  15. Hidden nonsymmorphic symmetry in optical lattices with one-dimensional spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Liu, Xiong-Jun; Xie, X. C.

    2016-05-01

    We uncover the nonsymmorphic symmetry and investigate its effects on the noncollinear band structures of a quasi-two-dimensional optical lattice with synthetic one-dimensional spin-orbit coupling and a tunable Zeeman field. The perpendicular Zeeman field breaks time-reversal symmetry and lifts the Kramers degeneracy which is protected by time-reversal and generalized inversion symmetries. Interestingly, we find that the degeneracy of Bloch bands on the border of the Brillouin zone is immune to the Zeeman field. This degeneracy, reminiscent of that in nonsymmorphic crystals, is protected by the hidden glide-plane symmetry that comprises a physical reflection involving both spatial and spin degrees of freedom followed by a nonprimitive lattice translation. Furthermore, we show that the band degeneracy can be lifted by the glide-plane-symmetry-breaking lattice potential. Finally, we propose to detect these effects by measuring a dynamical structure factor with optical Bragg spectroscopy.

  16. On dark degeneracy and interacting models

    SciTech Connect

    Carneiro, S.; Borges, H.A. E-mail: humberto@ufba.br

    2014-06-01

    Cosmological background observations cannot fix the dark energy equation of state, which is related to a degeneracy in the definition of the dark sector components. Here we show that this degeneracy can be broken at perturbation level by imposing two observational properties on dark matter. First, dark matter is defined as the clustering component we observe in large scale structures. This definition is meaningful only if dark energy is unperturbed, which is achieved if we additionally assume, as a second condition, that dark matter is cold, i.e. non-relativistic. As a consequence, dark energy models with equation-of-state parameter −1 ≤ ω < 0 are reduced to two observationally distinguishable classes with ω = −1, equally competitive when tested against observations. The first comprises the ΛCDM model with constant dark energy density. The second consists of interacting models with an energy flux from dark energy to dark matter.

  17. Degeneracy as a substrate for respiratory regulation.

    PubMed

    Mellen, Nicholas M

    2010-06-30

    Recent studies in vivo and in vitro suggest that both respiratory rhythmogenesis and its central chemosensory modulation arise from multiple, mechanistically and/or anatomically distinct networks whose outputs are similar. These observations are consistent with degeneracy, defined as the ability of structurally distinct elements to generate similar function. This review argues that degeneracy is an essential feature of respiratory networks, ensuring the survival of the individual organism over the course of development, and accounting for the transformation of respiratory biomechanics over evolutionary time. At faster timescales, respiration must adapt continuously and rapidly to changes in metabolic demand and ambient conditions to maintain blood-gas homeostasis. Control theory, which formalizes homeostasis, states axiomatically that rapid responsiveness can only be achieved with high gain, but high gain comes at the cost of instability. Homeostatic systems displaying highly optimized tolerance (HOT) mitigate the instability accompanying high gain by incorporating regulatory mechanisms that provide protection against expected perturbations, yet these systems remain fragile to catastrophic failure in response to rare events. Because the multiple mechanisms that are conjectured to mediate respiratory rhythmogenesis and chemosensation have distinct ranges of activity and responses to modulatory input, they provide a richer substrate for respiratory regulation than those of any single mechanism. Respiration, though robust, remains fragile to rare perturbations, matching a key feature of HOT. These observations support the conclusion that degeneracy provides the substrate for respiratory regulation, and that the resulting regulatory system conforms to HOT. PMID:20412870

  18. Dark degeneracy and interacting cosmic components

    SciTech Connect

    Aviles, Alejandro; Cervantes-Cota, Jorge L.

    2011-10-15

    We study some properties of the dark degeneracy, which is the fact that what we measure in gravitational experiments is the energy-momentum tensor of the total dark sector, and any split into components (as in dark matter and dark energy) is arbitrary. In fact, just one dark fluid is necessary to obtain exactly the same cosmological and astrophysical phenomenology as the {Lambda}CDM model. We work explicitly the first-order perturbation theory and show that beyond the linear order the dark degeneracy is preserved under some general assumptions. Then we construct the dark fluid from a collection of interacting fluids. Finally, we try to break the degeneracy with a general class of couplings to baryonic matter. Nonetheless, we show that these interactions can also be understood in the context of the {Lambda}CDM model as between dark matter and baryons. For this last investigation we choose two independent parametrizations for the interactions, one inspired by electromagnetism and the other by chameleon theories. Then, we constrain them with a joint analysis of CMB and supernovae observational data.

  19. Hidden in plain view: degeneracy in complex systems.

    PubMed

    Mason, P H; Domínguez D, J F; Winter, B; Grignolio, A

    2015-02-01

    Degeneracy is a word with two meanings. The popular usage of the word denotes deviance and decay. In scientific discourse, degeneracy refers to the idea that different pathways can lead to the same output. In the biological sciences, the concept of degeneracy has been ignored for a few key reasons. Firstly, the word "degenerate" in popular culture has negative, emotionally powerful associations that do not inspire scientists to consider its technical meaning. Secondly, the tendency of searching for single causes of natural and social phenomena means that scientists can overlook the multi-stranded relationships between cause and effect. Thirdly, degeneracy and redundancy are often confused with each other. Degeneracy refers to dissimilar structures that are functionally similar while redundancy refers to identical structures. Degeneracy can give rise to novelty in ways that redundancy cannot. From genetic codes to immunology, vaccinology and brain development, degeneracy is a crucial part of how complex systems maintain their functional integrity. This review article discusses how the scientific concept of degeneracy was imported into genetics from physics and was later introduced to immunology and neuroscience. Using examples of degeneracy in immunology, neuroscience and linguistics, we demonstrate that degeneracy is a useful way of understanding how complex systems function. Reviewing the history and theoretical scope of degeneracy allows its usefulness to be better appreciated, its coherency to be further developed, and its application to be more quickly realized. PMID:25543071

  20. Approximate degeneracy of heavy-light mesons with the same L

    NASA Astrophysics Data System (ADS)

    Matsuki, Takayuki; Lü, Qi-Fang; Dong, Yubing; Morii, Toshiyuki

    2016-07-01

    Careful observation of the experimental spectra of heavy-light mesons tells us that heavy-light mesons with the same angular momentum L are almost degenerate. The estimate is given how much this degeneracy is broken in our relativistic potential model, and it is analytically shown that expectation values of a commutator between the lowest order Hamiltonian and L→2 are of the order of 1 /mQ with a heavy quark mass mQ. It turns out that nonrelativistic approximation of heavy quark system has a rotational symmetry and hence degeneracy among states with the same L. This feature can be tested by measuring higher orbitally and radially excited heavy-light meson spectra for D /Ds / B /Bs in LHCb and forthcoming BelleII.

  1. Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Chiappini, F.; Wiedmann, S.; Novoselov, K.; Mishchenko, A.; Geim, A. K.; Maan, J. C.; Zeitler, U.

    2015-11-01

    We report on transport and capacitance measurements of graphene devices in magnetic fields up to 30 T. In both techniques, we observe the full splitting of Landau levels and we employ tilted field experiments to address the origin of the observed broken symmetry states. In the lowest energy level, the spin degeneracy is removed at filling factors ν =±1 and we observe an enhanced energy gap. In the higher levels, the valley degeneracy is removed at odd filling factors while spin polarized states are formed at even ν . Although the observation of odd filling factors in the higher levels points towards the spontaneous origin of the splitting, we find that the main contribution to the gap at ν =-4 ,-8 , and -12 is due to the Zeeman energy.

  2. Hidden Degeneracies in Piecewise Smooth Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Jeffrey, Mike R.

    When a flow suffers a discontinuity in its vector field at some switching surface, the flow can cross through or slide along the surface. Sliding along the switching surface can be understood as the flow along an invariant manifold inside a switching layer. It turns out that the usual method for finding sliding modes — the Filippov convex combination or Utkin equivalent control — results in a degeneracy in the switching layer whenever the flow is tangent to the switching surface from both sides. We derive the general result and analyze the simplest case here, where the flow curves parabolically on either side of the switching surface (the so-called fold-fold or two-fold singularities). The result is a set of zeros of the fast switching flow inside the layer, which is structurally unstable to perturbation by terms nonlinear in the switching parameter, terms such as (signx)2 [where the superscript does mean “squared”]. We provide structurally stable forms, and show that in this form the layer system is equivalent to a generic singularity of a two timescale system. Finally we show that the same degeneracy arises when a discontinuity is smoothed using standard regularization methods.

  3. New coupling limits, dynamical symmetries and microscopic operators of IBM/TQM

    NASA Astrophysics Data System (ADS)

    Paar, V.

    1985-01-01

    A new particle-core basis having approximate supersymmetric (SUSY) features associated with SU(3) dynamical symmetry is introduced. The SUSY and CO-SUSY limits of IBFM/PTQM appear for the characteristic intermediate coupling strengths Γ/δ=±(Γ/δ)SUSY. The CO-SUSY limit is a truncated analog of the Stephens rotation-aligned scheme. A paradox was found in the relation of the SUSY and truncated strong coupling (TSC) limits to the strong coupling limit of the Bohr-Mottelson model. Microscopic dyson and Holstein-Primakoff realizations of RPA collective quadrupole phonon operators are explicitly constructed. Employing this mapping procedure in conjunction with the leading RPA diagrams, various operators of IBM/TQM, IBFM/PTQM have been derived in the particle-hole channel: E2 operator, one-particle transfer operator, two-particle transfer operator etc. In addition to the standard terms, this derivation gives in the same diagrammatic order the additional terms also. A new model was introduced for the odd-odd nuclei in the framework of IBM/TQM. For the SU(3) core the truncated analog of Gallagher-Moszkowski bands appears as the approximate SUSY pattern, of the same intrinsic structure as in the odd-even system. The idea of boson-fermion dynamical symmetry and supersymmetry is extended to odd-odd nuclei and hypernuclei.

  4. Parity-time-symmetry breaking in two-dimensional photonic crystals: Square lattice

    NASA Astrophysics Data System (ADS)

    Mock, Adam

    2016-06-01

    We consider theoretically materials whose electromagnetic properties possess parity-time (PT ) symmetry and are periodic in two dimensions. When designed for optical frequencies such structures are commonly known as two-dimensional (2D) photonic crystals. With the addition of PT symmetry the optical modes of 2D photonic crystals exhibit thresholdless spontaneous PT -symmetry breaking near the Brillouin zone boundary, which is analogous to what has previously been studied in PT -symmetric structures with one-dimensional periodicity. Consistent with previous work, we find that spontaneous PT -symmetry breaking occurs at band crossings in the photonic dispersion diagram. Due to the extra spatial degree of freedom in 2D periodic systems, their band structures contain more band crossings and higher-order degeneracies than their one-dimensional counterparts. This work provides a comprehensive theoretical analysis of spontaneous PT -symmetry breaking at these points in the band structure. We find that, as in the case of one-dimensional structures, photonic band gaps exist at k =0 . We also find that at points of degeneracy with order higher than 2, bands merge pairwise to form broken-PT -symmetry supermodes. If the degeneracy order is even, this means multiple pairs of bands can form distinct (nondegenerate) broken-symmetry supermodes. If the order of degeneracy is odd, at least one of the bands will have protected PT symmetry. At other points of degeneracy, we find that the PT symmetry of the modes may be protected and we provide a spatial mode symmetry argument to explain this behavior. Finally, we identify a point at which two broken-PT -symmetry supermodes become degenerate, creating a point of fourfold degeneracy in the broken-PT -symmetry regime.

  5. Reaching Fermi degeneracy via universal dipolar scattering.

    PubMed

    Aikawa, K; Frisch, A; Mark, M; Baier, S; Grimm, R; Ferlaino, F

    2014-01-10

    We report on the creation of a degenerate dipolar Fermi gas of erbium atoms. We force evaporative cooling in a fully spin-polarized sample down to temperatures as low as 0.2 times the Fermi temperature. The strong magnetic dipole-dipole interaction enables elastic collisions between identical fermions even in the zero-energy limit. The measured elastic scattering cross section agrees well with the predictions from the dipolar scattering theory, which follow a universal scaling law depending only on the dipole moment and on the atomic mass. Our approach to quantum degeneracy proceeds with very high cooling efficiency and provides large atomic densities, and it may be extended to various dipolar systems. PMID:24483874

  6. Neutrino degeneracy and cosmological nucleosynthesis, revisited

    NASA Technical Reports Server (NTRS)

    Olive, K. A.; Schramm, David N.; Thomas, D.; Walker, T. P.

    1991-01-01

    A reexamination of the effects of non-zero degeneracies on Big Bang Nucleosynthesis is made. As previously noted, non-trivial alterations of the standard model conclusions can be induced only if excess lepton numbers L sub i, comparable to photon number densities eta sub tau, are assumed (where eta sub tau is approx. 3 times 10(exp 9) eta sub b). Furthermore, the required lepton number densities (L sub i eta sub tau) must be different for upsilon sub e than for upsilon sub mu and epsilon sub tau. It is shown that this loophole in the standard model of nucleosynthesis is robust and will not vanish as abundance and reaction rate determinations improve. However, it is also argued that theoretically (L sub e) approx. (L sub mu) approx. (L sub tau) approx. eta sub b is much less than eta sub tau which would preclude this loophole in standard unified models.

  7. Degeneracy and discreteness in cosmological model fitting

    NASA Astrophysics Data System (ADS)

    Teng, Huan-Yu; Huang, Yuan; Zhang, Tong-Jie

    2016-03-01

    We explore the problems of degeneracy and discreteness in the standard cosmological model (ΛCDM). We use the Observational Hubble Data (OHD) and the type Ia supernovae (SNe Ia) data to study this issue. In order to describe the discreteness in fitting of data, we define a factor G to test the influence from each single data point and analyze the goodness of G. Our results indicate that a higher absolute value of G shows a better capability of distinguishing models, which means the parameters are restricted into smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor G is an effective way of model differentiation when using different models to fit the observational data.

  8. Defects and degeneracies in supersymmetry protected phases

    NASA Astrophysics Data System (ADS)

    Fokkema, Thessa; Schoutens, Kareljan

    2015-08-01

    We analyse a class of 1D lattice models, known as \\text{M}k models, which are characterised by an order-k clustering of spin-less fermions and by N}=2 lattice supersymmetry. Our main result is the identification of a class of (bulk or edge) defects, that are in one-to-one correspondence with so-called spin fields in a corresponding {Z}k parafermion CFT. In the gapped regime, injecting such defects leads to ground-state degeneracies that are protected by the supersymmetry. The defects, which are closely analogous to quasi-holes over the fermonic Read-Rezayi quantum Hall states, display characteristic fusion rules, which are of Ising type for k = 2 and of Fibonacci type for k = 3.

  9. Generalized mass ordering degeneracy in neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Schwetz, Thomas

    2016-09-01

    We consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  10. Statistical description of the black hole degeneracy spectrum

    SciTech Connect

    Barbero G, J. Fernando; Villasenor, Eduardo J. S.

    2011-05-15

    We use mathematical methods based on generating functions to study the statistical properties of the black hole degeneracy spectrum in loop quantum gravity. In particular we will study the persistence of the observed effective quantization of the entropy as a function of the horizon area. We will show that this quantization disappears as the area increases despite the existence of black hole configurations with a large degeneracy. The methods that we describe here can be adapted to the study of the statistical properties of the black hole degeneracy spectrum for all the existing proposals to define black hole entropy in loop quantum gravity.

  11. The degeneracy problem in non-canonical inflation

    SciTech Connect

    Easson, Damien A.; Powell, Brian A. E-mail: brian.powell007@gmail.com

    2013-03-01

    While attempting to connect inflationary theories to observational physics, a potential difficulty is the degeneracy problem: a single set of observables maps to a range of different inflaton potentials. Two important classes of models affected by the degeneracy problem are canonical and non-canonical models, the latter marked by the presence of a non-standard kinetic term that generates observables beyond the scalar and tensor two-point functions on CMB scales. The degeneracy problem is manifest when these distinguishing observables go undetected. We quantify the size of the resulting degeneracy in this case by studying the most well-motivated non-canonical theory having Dirac-Born-Infeld Lagrangian. Beyond the scalar and tensor two-point functions on CMB scales, we then consider the possible detection of equilateral non-Gaussianity at Planck-precision and a measurement of primordial gravitational waves from prospective space-based laser interferometers. The former detection breaks the degeneracy with canonical inflation but results in poor reconstruction prospects, while the latter measurement enables a determination of n{sub T} which, while not breaking the degeneracy, can be shown to greatly improve the non-canonical reconstruction.

  12. Symmetry breaking around a wormhole

    NASA Astrophysics Data System (ADS)

    Choudhury, A. L.

    1996-11-01

    We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.

  13. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  14. Massive Degeneracy and Goldstone Bosons: A Challenge for the Light Cone

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2010-10-27

    Wherein it is argued that the light front formalism has problems dealing with Goldstone symmetries. It is further argued that the notion that in hadron condensates can explain Goldstone phenomena is false. This talk can be summarized as follows: (1) Exact symmetries can be realized in Wigner or Goldstone mode. (2) When a symmetry is realized in Wigner mode the states of the theory form degenerate irreducible representations of the symmetry group and the lowest energy state is unique. (3) When a symmetry is realized in Goldstone mode the lowest energy state of the theory is infinitely degenerate, the states of the theory do not form irreducible representations of the symmetry group and there are massless particles coupled by the conserved currents to any one of the possible ground states. (4) In finite volume the signal of a Goldstone realization of a symmetry is that the number of nearly degenerate states grows rapidly with increasing volume and the gap between these states shrinks exponentially with the volume. (5) The existence of a condensate such as the magnetization, for a ferromagnet, or the staggered magnetization for an anti-ferromagnet, signals a Goldstone symmetry. This is because this condensate transforms non-trivially under the symmetry transformations and so its existence implies the ground state isn't unique. (6) PCAC means that the pion, kaon and eta are would be Goldstone bosons of the theory where the quark masses are set to zero. This interpretation is overwhelmingly supported by experimental data. This means that these particles are really the wiggling of the order parameter or condensate. (7) Finally, in order for the Goldstone particle to exist there has to be something to wiggle every place where the particle can exist. This means that the condensate that is the order parameter for this Goldstone symmetry cannot be confined to the interior of hadrons. Thus, to reiterate, the challenge for the Light Front is to show how the formalism gives

  15. Spectral degeneracy breaking of the plasmon resonance of single metal nanoparticles by nanoscale near-field photopolymerization.

    PubMed

    El Ahrach, H Ibn; Bachelot, R; Vial, A; Lérondel, G; Plain, J; Royer, P; Soppera, O

    2007-03-01

    We report on controlled nanoscale photopolymerization triggered by enhanced near fields of silver nanoparticles excited close to their dipolar plasmon resonance. By anisotropic polymerization, symmetry of the refractive index of the surrounding medium was broken: C infinity v symmetry turned to C2v symmetry. This allowed for spectral degeneracy breaking in particles plasmon resonance whose apparent peak became continuously tunable with the incident polarization. From the spectral peak, we deduced the refractive-index ellipsoid fabricated around the particles. In addition to this control of optical properties of metal nanoparticles, this method opens new routes for nanoscale photochemistry and provides a new way of quantification of the magnitude of near fields of localized surface plasmons.

  16. Large degeneracy of excited hadrons and quark models

    SciTech Connect

    Bicudo, P.

    2007-11-01

    The pattern of a large approximate degeneracy of the excited hadron spectra (larger than the chiral restoration degeneracy) is present in the recent experimental report of Bugg. Here we try to model this degeneracy with state of the art quark models. We review how the Coulomb Gauge chiral invariant and confining Bethe-Salpeter equation simplifies in the case of very excited quark-antiquark mesons, including angular or radial excitations, to a Salpeter equation with an ultrarelativistic kinetic energy with the spin-independent part of the potential. The resulting meson spectrum is solved, and the excited chiral restoration is recovered, for all mesons with J>0. Applying the ultrarelativistic simplification to a linear equal-time potential, linear Regge trajectories are obtained, for both angular and radial excitations. The spectrum is also compared with the semiclassical Bohr-Sommerfeld quantization relation. However, the excited angular and radial spectra do not coincide exactly. We then search, with the classical Bertrand theorem, for central potentials producing always classical closed orbits with the ultrarelativistic kinetic energy. We find that no such potential exists, and this implies that no exact larger degeneracy can be obtained in our equal-time framework, with a single principal quantum number comparable to the nonrelativistic Coulomb or harmonic oscillator potentials. Nevertheless we find it plausible that the large experimental approximate degeneracy will be modeled in the future by quark models beyond the present state of the art.

  17. Degeneracy of Majorana bound states and fractional Josephson effect in a dirty SNS junction

    NASA Astrophysics Data System (ADS)

    Ikegaya, S.; Asano, Y.

    2016-09-01

    We theoretically study the stability of more than one Majorana fermion appearing in a p-wave superconductor/dirty normal metal/p-wave superconductor junction in two-dimensions by using the chiral symmetry of a Hamiltonian. At the phase difference across the junction φ being π, we will show that all of the Majorana bound states in the normal metal belong to the same chirality. Due to this pure chiral feature, the Majorana bound states retain their high degree of degeneracy at zero energy even in the presence of a random potential. As a consequence, the resonant transmission of a Cooper pair via the degenerate Majorana bound states carries the Josephson current at \\varphi =π -{{0}+} , which explains the fractional current-phase relationship discussed in a number of previous papers.

  18. Symmetry matters.

    PubMed

    Moubayidin, Laila; Østergaard, Lars

    2015-09-01

    985 I. 985 II. 986 III. 987 IV. 988 V. 989 989 References 989 SUMMARY: The development of multicellular organisms depends on correct establishment of symmetry both at the whole-body scale and within individual tissues and organs. Setting up planes of symmetry must rely on communication between cells that are located at a distance from each other within the organism, presumably via mobile morphogenic signals. Although symmetry in nature has fascinated scientists for centuries, it is only now that molecular data to unravel mechanisms of symmetry establishment are beginning to emerge. As an example we describe the genetic and hormonal interactions leading to an unusual bilateral-to-radial symmetry transition of an organ in order to promote reproduction.

  19. Robust Topological and Holographic Degeneracies of Classical Systems

    NASA Astrophysics Data System (ADS)

    Vaezi, Seyyed Mohammad Sadegh; Nussinov, Zohar; Ortiz, Gerardo

    We challenge the hypothesis that the ground states of a physical system whose degeneracy depends on topology must necessarily realize topological quantum order and display non-local entanglement. To this end, we introduce and study a classical rendition of the Toric Code model embedded on Riemann surfaces of different genus numbers. We find that the minimal ground state degeneracy (and those of all levels) depends on the topology of the embedding surface alone. As the ground states of this classical system may be distinguished by local measurements, a characteristic of Landau orders, this example illustrates that topological degeneracy is not a sufficient condition for topological quantum order. This conclusion is generic and, as shown, it applies to many other models. We also demonstrate that in certain lattice realizations of these models, and other theories, one can find a ground state entropy that is ''holographic'', i.e., extensive in the system's boundary.

  20. Analysis of potential functional regions using local degeneracy: mutational hotspots in human factor IX are localized in high-degeneracy regions.

    PubMed

    Xu, J; Chen, R; Xiao, Z X

    1994-11-15

    To study the relationship between the potential functional regions with the primary amino acid sequence, we introduced a new factor termed local degeneracy to analyze the degree of the degeneracy in a given segment of the protein. Using the defined local degeneracy, we have analyzed the human coagulation Factor IX (Christmas factor) which is an essential component of the clotting cascade. The mutational hotspots in Factor IX are primarily distributed in the high-degeneracy regions, suggesting a direct correlation of the functional regions with high degree of the degeneracy. This method may be useful to predict and to evaluate potential functional domains of a protein.

  1. Error correction and degeneracy in surface codes suffering loss

    SciTech Connect

    Stace, Thomas M.; Barrett, Sean D.

    2010-02-15

    Many proposals for quantum information processing are subject to detectable loss errors. In this paper, we give a detailed account of recent results in which we showed that topological quantum memories can simultaneously tolerate both loss errors and computational errors, with a graceful tradeoff between the threshold for each. We further discuss a number of subtleties that arise when implementing error correction on topological memories. We particularly focus on the role played by degeneracy in the matching algorithms and present a systematic study of its effects on thresholds. We also discuss some of the implications of degeneracy for estimating phase transition temperatures in the random bond Ising model.

  2. Reaching fermi degeneracy in two-species optical dipole traps.

    PubMed

    Onofrio, Roberto; Presilla, Carlo

    2002-09-01

    We propose the use of a combined optical dipole trap to achieve Fermi degeneracy by sympathetic cooling with a different bosonic species. Two far-detuned pairs of laser beams focused on the atomic clouds are used to confine the two atomic species with different trapping strengths. We show that a deep Fermi degeneracy regime can be potentially achieved earlier than Bose-Einstein condensation, as discussed in the favorable situation of a 6Li-23Na mixture. This opens up the possibility of experimentally investigating a mixture of superfluid Fermi and normal Bose gases.

  3. Resolving the mass-anisotropy degeneracy of the spherically symmetric Jeans equation - II. Optimum smoothing and model validation

    NASA Astrophysics Data System (ADS)

    Diakogiannis, Foivos I.; Lewis, Geraint F.; Ibata, Rodrigo A.

    2014-09-01

    The spherical Jeans equation is widely used to estimate the mass content of stellar systems with apparent spherical symmetry. However, this method suffers from a degeneracy between the assumed mass density and the kinematic anisotropy profile, β(r). In a previous work, we laid the theoretical foundations for an algorithm that combines smoothing B splines with equations from dynamics to remove this degeneracy. Specifically, our method reconstructs a unique kinematic profile of σ _{rr}^2 and σ _{tt}^2 for an assumed free functional form of the potential and mass density (Φ, ρ) and given a set of observed line-of-sight velocity dispersion measurements, σ _los^2. In Paper I, we demonstrated the efficiency of our algorithm with a very simple example and we commented on the need for optimum smoothing of the B-spline representation; this is in order to avoid unphysical variational behaviour when we have large uncertainty in our data. In the current contribution, we present a process of finding the optimum smoothing for a given data set by using information of the behaviour from known ideal theoretical models. Markov Chain Monte Carlo methods are used to explore the degeneracy in the dynamical modelling process. We validate our model through applications to synthetic data for systems with constant or variable mass-to-light ratio Υ. In all cases, we recover excellent fits of theoretical functions to observables and unique solutions. Our algorithm is a robust method for the removal of the mass-anisotropy degeneracy of the spherically symmetric Jeans equation for an assumed functional form of the mass density.

  4. The simplicity of perfect atoms: Degeneracies in supersymmetric hydrogen

    DOE PAGES

    Rube, Tomas; Wacker, Jay G.

    2011-06-07

    In this study, supersymmetric QED hydrogen-like bound states are remarkably similar to nonsupersymmetric hydrogen, including an accidental degeneracy of the fine structure and is broken by the Lamb shift. This article classifies the states, calculates the leading order spectrum, and illustrates the results in several limits. The relation to other nonrelativistic bound states is explored.

  5. Degeneracy of energy levels of pseudo-Gaussian oscillators

    SciTech Connect

    Iacob, Theodor-Felix; Iacob, Felix; Lute, Marina

    2015-12-07

    We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found.

  6. The simplicity of perfect atoms: Degeneracies in supersymmetric hydrogen

    SciTech Connect

    Rube, Tomas; Wacker, Jay G.

    2011-06-15

    Supersymmetric QED hydrogen-like bound states are remarkably similar to nonsupersymmetric hydrogen, including an accidental degeneracy of the fine structure and is broken by the Lamb shift. This article classifies the states, calculates the leading order spectrum, and illustrates the results in several limits. The relation to other nonrelativistic bound states is explored.

  7. Degeneracy-aware interpolation of 3D diffusion tensor fields

    NASA Astrophysics Data System (ADS)

    Bi, Chongke; Takahashi, Shigeo; Fujishiro, Issei

    2012-01-01

    Visual analysis of 3D diffusion tensor fields has become an important topic especially in medical imaging for understanding microscopic structures and physical properties of biological tissues. However, it is still difficult to continuously track the underlying features from discrete tensor samples, due to the absence of appropriate interpolation schemes in the sense that we are able to handle possible degeneracy while fully respecting the smooth transition of tensor anisotropic features. This is because the degeneracy may cause rotational inconsistency of tensor anisotropy. This paper presents such an approach to interpolating 3D diffusion tensor fields. The primary idea behind our approach is to resolve the possible degeneracy through optimizing the rotational transformation between a pair of neighboring tensors by analyzing their associated eigenstructure, while the degeneracy can be identified by applying a minimum spanning tree-based clustering algorithm to the original tensor samples. Comparisons with existing interpolation schemes will be provided to demonstrate the advantages of our scheme, together with several results of tracking white matter fiber bundles in a human brain.

  8. Quantification of degeneracy in Hodgkin-Huxley neurons on Newman-Watts small world network.

    PubMed

    Man, Menghua; Zhang, Ya; Ma, Guilei; Friston, Karl; Liu, Shanghe

    2016-08-01

    Degeneracy is a fundamental source of biological robustness, complexity and evolvability in many biological systems. However, degeneracy is often confused with redundancy. Furthermore, the quantification of degeneracy has not been addressed for realistic neuronal networks. The objective of this paper is to characterize degeneracy in neuronal network models via quantitative mathematic measures. Firstly, we establish Hodgkin-Huxley neuronal networks with Newman-Watts small world network architectures. Secondly, in order to calculate the degeneracy, redundancy and complexity in the ensuing networks, we use information entropy to quantify the information a neuronal response carries about the stimulus - and mutual information to measure the contribution of each subset of the neuronal network. Finally, we analyze the interdependency of degeneracy, redundancy and complexity - and how these three measures depend upon network architectures. Our results suggest that degeneracy can be applied to any neuronal network as a formal measure, and degeneracy is distinct from redundancy. Qualitatively degeneracy and complexity are more highly correlated over different network architectures, in comparison to redundancy. Quantitatively, the relationship between both degeneracy and redundancy depends on network coupling strength: both degeneracy and redundancy increase with complexity for small coupling strengths; however, as coupling strength increases, redundancy decreases with complexity (in contrast to degeneracy, which is relatively invariant). These results suggest that the degeneracy is a general topologic characteristic of neuronal networks, which could be applied quantitatively in neuroscience and connectomics.

  9. Quantification of degeneracy in Hodgkin-Huxley neurons on Newman-Watts small world network.

    PubMed

    Man, Menghua; Zhang, Ya; Ma, Guilei; Friston, Karl; Liu, Shanghe

    2016-08-01

    Degeneracy is a fundamental source of biological robustness, complexity and evolvability in many biological systems. However, degeneracy is often confused with redundancy. Furthermore, the quantification of degeneracy has not been addressed for realistic neuronal networks. The objective of this paper is to characterize degeneracy in neuronal network models via quantitative mathematic measures. Firstly, we establish Hodgkin-Huxley neuronal networks with Newman-Watts small world network architectures. Secondly, in order to calculate the degeneracy, redundancy and complexity in the ensuing networks, we use information entropy to quantify the information a neuronal response carries about the stimulus - and mutual information to measure the contribution of each subset of the neuronal network. Finally, we analyze the interdependency of degeneracy, redundancy and complexity - and how these three measures depend upon network architectures. Our results suggest that degeneracy can be applied to any neuronal network as a formal measure, and degeneracy is distinct from redundancy. Qualitatively degeneracy and complexity are more highly correlated over different network architectures, in comparison to redundancy. Quantitatively, the relationship between both degeneracy and redundancy depends on network coupling strength: both degeneracy and redundancy increase with complexity for small coupling strengths; however, as coupling strength increases, redundancy decreases with complexity (in contrast to degeneracy, which is relatively invariant). These results suggest that the degeneracy is a general topologic characteristic of neuronal networks, which could be applied quantitatively in neuroscience and connectomics. PMID:27155043

  10. Breaking the Symmetry in Molecular Nanorings

    PubMed Central

    2016-01-01

    Because of their unique electronic properties, cyclic molecular structures ranging from benzene to natural light-harvesting complexes have received much attention. Rigid π-conjugated templated porphyrin nanorings serve as excellent model systems here because they possess well-defined structures that can readily be controlled and because they support highly delocalized excitations. In this study, we have deliberately modified a series of six-porphyrin nanorings to examine the impact of lowering the rotational symmetry on their photophysical properties. We reveal that as symmetry distortions increase in severity along the series of structures, spectral changes and an enhancement of radiative emission strength occur, which derive from a transfer of oscillator strength into the lowest (k = 0) state. We find that concomitantly, the degeneracy of the dipole-allowed first excited (k = ±1) state is lifted, leading to an ultrafast polarization switching effect in the emission from strongly symmetry-broken nanorings. PMID:26735906

  11. A torus bifurcation theorem with symmetry

    NASA Technical Reports Server (NTRS)

    Vangils, S. A.; Golubitsky, M.

    1989-01-01

    Hopf bifurcation in the presence of symmetry, in situations where the normal form equations decouple into phase/amplitude equations is described. A theorem showing that in general such degeneracies are expected to lead to secondary torus bifurcations is proved. By applying this theorem to the case of degenerate Hopf bifurcation with triangular symmetry it is proved that in codimension two there exist regions of parameter space where two branches of asymptotically stable two-tori coexist but where no stable periodic solutions are present. Although a theory was not derived for degenerate Hopf bifurcations in the presence of symmetry, examples are presented that would have to be accounted for by any such general theory.

  12. Epigenomics and the concept of degeneracy in biological systems.

    PubMed

    Maleszka, Ryszard; Mason, Paul H; Barron, Andrew B

    2014-05-01

    Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy-referring to the multiple pathways that a system recruits to achieve functional plasticity-is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability.

  13. Experimental Proposal to Detect Topological Ground State Degeneracy

    NASA Astrophysics Data System (ADS)

    Barkeshli, Maissam; Oreg, Yuval; Qi, Xiao-Liang

    2014-03-01

    One of the most profound features of topologically ordered states of matter, such as the fractional quantum Hall (FQH) states, is that they possess topology-dependent ground state degeneracies that are robust to all local perturbations. Here we present the first proposal to directly detect these topological degeneracies in an experimentally accessible setup. The detection scheme uses nonlinear electrical conductance measurements in a double layer FQH system, with appropriately patterned top and bottom gates. We propose two experimental platforms; in the first, the detection of topo- logically degenerate states coincides with the detection of ZN parafermion zero modes. We map the relevant physics to a single-channel ZN quantum impurity model, providing a novel generalization of the Kondo model. Our proposal can also be adapted to detect the ZN parafermion zero modes recently discovered in FQH line junctions proximitized with superconductivity.

  14. Neural and genetic degeneracy underlies Caenorhabditis elegans feeding behavior

    PubMed Central

    Trojanowski, Nicholas F.; Padovan-Merhar, Olivia; Fang-Yen, Christopher

    2014-01-01

    Degenerate networks, in which structurally distinct elements can perform the same function or yield the same output, are ubiquitous in biology. Degeneracy contributes to the robustness and adaptability of networks in varied environmental and evolutionary contexts. However, how degenerate neural networks regulate behavior in vivo is poorly understood, especially at the genetic level. Here, we identify degenerate neural and genetic mechanisms that underlie excitation of the pharynx (feeding organ) in the nematode Caenorhabditis elegans using cell-specific optogenetic excitation and inhibition. We show that the pharyngeal neurons MC, M2, M4, and I1 form multiple direct and indirect excitatory pathways in a robust network for control of pharyngeal pumping. I1 excites pumping via MC and M2 in a state-dependent manner. We identify nicotinic and muscarinic receptors through which the pharyngeal network regulates feeding rate. These results identify two different mechanisms by which degeneracy is manifest in a neural circuit in vivo. PMID:24872529

  15. Inherited Symmetry

    ERIC Educational Resources Information Center

    Attanucci, Frank J.; Losse, John

    2008-01-01

    In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…

  16. Berry phase, topology, and degeneracies in quantum nanomagnets.

    PubMed

    Bruno, Patrick

    2006-03-24

    A topological theory of the diabolical points (degeneracies) of quantum magnets is presented. Diabolical points are characterized by their diabolicity index, for which topological sum rules are derived. The paradox of the missing diabolical points for Fe8 molecular magnets is clarified. A new method is also developed to provide a simple interpretation, in terms of destructive interferences due to the Berry phase, of the complete set of diabolical points found in biaxial systems such as Fe8. PMID:16605864

  17. Berry phase, topology, and degeneracies in quantum nanomagnets.

    PubMed

    Bruno, Patrick

    2006-03-24

    A topological theory of the diabolical points (degeneracies) of quantum magnets is presented. Diabolical points are characterized by their diabolicity index, for which topological sum rules are derived. The paradox of the missing diabolical points for Fe8 molecular magnets is clarified. A new method is also developed to provide a simple interpretation, in terms of destructive interferences due to the Berry phase, of the complete set of diabolical points found in biaxial systems such as Fe8.

  18. Emergence of a new S U (4 ) symmetry in the baryon spectrum

    NASA Astrophysics Data System (ADS)

    Denissenya, M.; Glozman, L. Ya.; Pak, M.

    2015-10-01

    Recently, a large degeneracy of J =1 mesons—that is, larger than the S U (2 )L×S U (2 )R×U (1 )A symmetry of the QCD Lagrangian—has been discovered upon truncation of the near-zero modes from the valence quark propagators. It has been found that this degeneracy represents the S U (4 ) group that includes the chiral rotations as well as the mixing of left- and right-handed quarks. This symmetry group turns out to be a symmetry of confinement in QCD. Consequently, one expects that the same symmetry should persist upon the near-zero mode removal in other hadron sectors as well. It has been shown that indeed the J =2 mesons follow the same symmetry pattern upon the low-lying mode elimination. Here we demonstrate the S U (4 ) symmetry of baryons once the near-zero modes are removed from the quark propagators. We also show a degeneracy of states belonging to different irreducible representations of S U (4 ). This implies a larger symmetry that includes S U (4 ) as a subgroup.

  19. A backtracking algorithm that deals with particle filter degeneracy

    NASA Astrophysics Data System (ADS)

    Baarsma, Rein; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    Particle filters are an excellent way to deal with stochastic models incorporating Bayesian data assimilation. While they are computationally demanding, the particle filter has no problem with nonlinearity and it accepts non-Gaussian observational data. In the geoscientific field it is this computational demand that creates a problem, since dynamic grid-based models are often already quite computationally demanding. As such it is of the utmost importance to keep the amount of samples in the filter as small as possible. Small sample populations often lead to filter degeneracy however, especially in models with high stochastic forcing. Filter degeneracy renders the sample population useless, as the population is no longer statistically informative. We have created an algorithm in an existing data assimilation framework that reacts to and deals with filter degeneracy based on Spiller et al. [2008]. During the Bayesian updating step of the standard particle filter, the algorithm tests the sample population for filter degeneracy. If filter degeneracy has occurred, the algorithm resets to the last time the filter did work correctly and recalculates the failed timespan of the filter with an increased sample population. The sample population is then reduced to its original size and the particle filter continues as normal. This algorithm was created in the PCRaster Python framework, an open source tool that enables spatio-temporal forward modelling in Python [Karssenberg et al., 2010] . The framework already contains several data assimilation algorithms, including a standard particle filter and a Kalman filter. The backtracking particle filter algorithm has been added to the framework, which will make it easy to implement in other research. The performance of the backtracking particle filter is tested against a standard particle filter using two models. The first is a simple nonlinear point model, and the second is a more complex geophysical model. The main testing

  20. Broken Symmetry

    ScienceCinema

    None

    2016-07-12

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of

  1. Broken Symmetry

    SciTech Connect

    2011-02-24

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of

  2. Ultra-broad bandwidth parametric amplification at degeneracy.

    PubMed

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification.

  3. Non-Hermitian Hamiltonians with unitary and antiunitary symmetries

    SciTech Connect

    Fernández, Francisco M. Garcia, Javier

    2014-03-15

    We analyse several non-Hermitian Hamiltonians with antiunitary symmetry from the point of view of their point-group symmetry. It enables us to predict the degeneracy of the energy levels and to reduce the dimension of the matrices necessary for the diagonalization of the Hamiltonian in a given basis set. We can also classify the solutions according to the irreducible representations of the point group and thus analyse their properties separately. One of the main results of this paper is that some PT-symmetric Hamiltonians with point-group symmetry C{sub 2v} exhibit complex eigenvalues for all values of a potential parameter. In such cases the PT phase transition takes place at the trivial Hermitian limit which suggests that the phenomenon is not robust. Point-group symmetry enables us to explain such anomalous behaviour and to choose a suitable antiunitary operator for the PT symmetry. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •PT-symmetric multidimensional oscillators appear to show PT phase transitions. •This transition was conjectured to be a high-energy phenomenon. •We show that point group symmetry is useful for predicting broken PT symmetry in multidimensional oscillators. •PT-symmetric oscillators with C{sub 2v} symmetry exhibit phase transitions at the trivial Hermitian limit.

  4. Symmetries in Physics: Guidelines for Theories and for Experiments

    NASA Astrophysics Data System (ADS)

    Dudek, Jerzy; Góźdź, Andrzej

    2011-01-01

    The works of Maria Sklodowska-Curie and Pierre Curie, of their few predecessors and of their many followers addressed over the years the studies of the atomic nuclei - the smallest objects in the Universe which are unique in that they are governed simultaneously by the strong, electromagnetic and weak interactions. In this article we focus on the concept and nature of symmetries, their omni-presence in physics and their impact on the behaviour of the physical systems. Beginning with a short historical overview covering quickly the birth of certain concepts in the ancient times and their evolution until the most modern ones we cover, on an introductory level, the question of space-time symmetries, the connection between the intrinsic degrees of freedom and the spatial behaviour of quantum particles as well as the question of symmetry-induced conservation-laws. We discuss shortly examples of continuous and discrete symmetry groups, the constraints imposed on the energy spectra (degeneracy of levels) by the symmetries of the underlying Hamiltonians, to end with the question of transitions and symmetry imposed selection rules. The article terminates with a short discussion of the symmetry breaking phenomena, spontaneous symmetry breaking and phase-transition induced symmetry-changes.

  5. The effect of degeneracy parameter on Weibel instability in dense plasma

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2013-12-01

    In this paper, the role of degeneracy parameter, in both directions parallel and perpendicular with propagation direction of the laser beam in plasma, on the growth rate of Weibel instability, is studied. Calculations show that with the temperature anisotropy, β = T∥/T⊥ = 0.2 and a 0.75 times reduction of the degeneracy parameter, the increased rate of the the Weibel instability growth rate is 72%. The degeneracy required for minimal growth rate in interaction laser plasma with a density of 1.2 × 1032m-3, is larger than 3. The reduction of temperature and the degeneracy parameter of plasma in parallel direction will also increase growth rate about 30% more than incrossing degeneracy parameter in transverse direction. With the minimum pressure costs of cold compression, subsequent degeneracy parameters, and the minimum value of electron quiver energy, we can expect growth rate of Weibel instability order 0.01.

  6. Mode-splitting and quasi-degeneracies in circular plate vibration problems: The example of free vibrations of the stator of a traveling wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwin; Krousgrill, Charles M.

    2012-12-01

    In systems with rotational symmetry, bending modes occur in doubly-degenerate pairs with two independent vibration modes for each repeated natural frequency. In circular plates, the standing waves of two such degenerate bending modes can be superposed with a 1/4 period separation in time to yield a traveling wave response. This is the principle of a traveling wave ultrasonic motor (TWUM), in which a traveling bending wave in a stator drives the rotor through a friction contact. The stator contains teeth to increase the speed at the contact region, and these affect the rotational symmetry of the plate. When systems with rotational symmetry are modified either in their geometry, or by spatially varying their properties or boundary conditions, some mode-pairs split into singlet modes having distinct frequencies. In addition, coupling between some pairs of distinct unperturbed modes also causes quasi-degeneracies in the perturbed modes, which leads their frequency curves to approach and veer away in some regions of the parameter space. This paper discusses the effects of tooth geometry on the behavior of plate modes under free vibration. It investigates mode splitting and quasi-degeneracies and derives analytic expressions to predict these phenomena, using variational methods and a degenerate perturbation scheme for the solution to the plate's discrete eigenvalue problem; these expressions are confirmed by solving the discrete eigenvalue problem of the plate with teeth.

  7. Diluted orbital degeneracy and large orthorhombic distortions in ferrimagnetic spinel CuxMn3 -xO4

    NASA Astrophysics Data System (ADS)

    Lee, Kee Hwan; Chang, Hun; Hwang, In Yong; Chung, Jae-Ho; Kang, Hyun Wook; Kim, Su Jae; Lee, Seongsu

    2015-02-01

    We report large orthorhombic distortions in the ferrimagnetic tetragonal (c >a ) spinel CuxMn3 -xO4 stabilized by a few percent of Cu doping. The orthorhombic strains of the ferrimagnetic phases increased linearly to the doping and reached up to ɛ ≈8.2 ×10-3 for x =0.19 , which is three times larger than the saturated value under external magnetic fields. For high doping (x ≳0.17 ), the distortions first appeared in the paramagnetic phases and underwent further enhancement simultaneously with the onset of the noncollinear ferrimagnetic ordering. We present the rich magnetostructural phase diagram of CuxMn3 -xO4 , and argue that the diluted t2 orbital degeneracy of Cu2 + under tetrahedral crystal field breaks the global symmetry and triggers the orthorhombic instability inherent in Mn3O4 .

  8. Continuous symmetry measures for complex symmetry group.

    PubMed

    Dryzun, Chaim

    2014-04-01

    Symmetry is a fundamental property of nature, used extensively in physics, chemistry, and biology. The Continuous symmetry measures (CSM) is a method for estimating the deviation of a given system from having a certain perfect symmetry, which enables us to formulate quantitative relation between symmetry and other physical properties. Analytical procedures for calculating the CSM of all simple cyclic point groups are available for several years. Here, we present a methodology for calculating the CSM of any complex point group, including the dihedral, tetrahedral, octahedral, and icosahedral symmetry groups. We present the method and analyze its performances and errors. We also introduce an analytical method for calculating the CSM of the linear symmetry groups. As an example, we apply these methods for examining the symmetry of water, the symmetry maps of AB4 complexes, and the symmetry of several Lennard-Jones clusters.

  9. Symmetry analysis of translational symmetry broken density waves: Application to hexagonal lattices in two dimensions

    NASA Astrophysics Data System (ADS)

    Venderbos, J. W. F.

    2016-03-01

    In this work we introduce a symmetry classification for electronic density waves which break translational symmetry due to commensurate wave-vector modulations. The symmetry classification builds on the concept of extended point groups: symmetry groups which contain, in addition to the lattice point group, translations that do not map the enlarged unit cell of the density wave to itself, and become "nonsymmorphic"-like elements. Multidimensional representations of the extended point group are associated with degenerate wave vectors. Electronic properties such as (nodal) band degeneracies and topological character can be straightforwardly addressed, and often follow directly. To further flesh out the idea of symmetry, the classification is constructed so as to manifestly distinguish time-reversal invariant charge (i.e., site and bond) order, and time-reversal breaking flux order. For the purpose of this work, we particularize to spin-rotation invariant density waves. As a first example of the application of the classification we consider the density waves of a simple single- and two-orbital square lattice model. The main objective, however, is to apply the classification to two-dimensional (2D) hexagonal lattices, specifically the triangular and the honeycomb lattices. The multicomponent density waves corresponding to the commensurate M -point ordering vectors are worked out in detail. To show that our results generally apply to 2 D hexagonal lattices, we develop a general low-energy SU(3 ) theory of (spinless) saddle-point electrons.

  10. Degeneracy measures for the algebraic classification of numerical spacetimes

    NASA Astrophysics Data System (ADS)

    Owen, Robert

    2010-06-01

    We study the issue of algebraic classification of the Weyl curvature tensor, with a particular focus on numerical relativity simulations. The spacetimes of interest in this context, binary black hole mergers, and the ringdowns that follow them, present subtleties in that they are generically, strictly speaking, type I, but in many regions approximately, in some sense, type D. To provide meaning to any claims of “approximate” Petrov class, one must define a measure of degeneracy on the space of null rays at a point. We will investigate such a measure, used recently to argue that certain binary black hole merger simulations ring down to the Kerr geometry, after hanging up for some time in Petrov type II. In particular, we argue that this hangup in Petrov type II is an artefact of the particular measure being used, and that a geometrically better-motivated measure shows a black hole merger produced by our group settling directly to Petrov type D.

  11. Epigenomics and the concept of degeneracy in biological systems

    PubMed Central

    Mason, Paul H.; Barron, Andrew B.

    2014-01-01

    Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy—referring to the multiple pathways that a system recruits to achieve functional plasticity—is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability. PMID:24335757

  12. Avoiding Degeneracy in Multidimensional Unfolding by Penalizing on the Coefficient of Variation

    ERIC Educational Resources Information Center

    Busing, Frank M. T. A.; Groenen, Patrick J. K.; Heiser, Willem J.

    2005-01-01

    Multidimensional unfolding methods suffer from the degeneracy problem in almost all circumstances. Most degeneracies are easily recognized: the solutions are perfect but trivial, characterized by approximately equal distances between points from different sets. A definition of an absolutely degenerate solution is proposed, which makes clear that…

  13. Pseudospin symmetry in nuclear structure and its supersymmetric representation

    NASA Astrophysics Data System (ADS)

    Liang, H. Z.

    2016-08-01

    The quasi-degeneracy between the single-particle states (n,l,j=l+1/2) and (n-1,l+2,j=l+3/2) indicates a special and hidden symmetry in atomic nuclei—the so-called pseudospin symmetry (PSS)—which is an important concept in both spherical and deformed nuclei. A number of phenomena in nuclear structure have been successfully interpreted directly or implicitly by this symmetry, including nuclear superdeformed configurations, identical bands, quantized alignment, pseudospin partner bands, and so on. Since the PSS was recognized as a relativistic symmetry in 1990s, there have been comprehensive efforts to understand its properties in various systems and potentials. In this review, we mainly focus on the latest progress on the supersymmetric (SUSY) representation of PSS, and one of the key targets is to understand its symmetry-breaking mechanism in realistic nuclei in a quantitative and perturbative way. The SUSY quantum mechanics and its applications to the SU(2) and U(3) symmetries of the Dirac Hamiltonian are discussed in detail. It is shown that the origin of PSS and its symmetry-breaking mechanism, which are deeply hidden in the origin Hamiltonian, can be traced by its SUSY partner Hamiltonian. Essential open questions, such as the SUSY representation of PSS in the deformed system, are pointed out.

  14. Broken symmetry quantum Hall states in dual-gated ABA trilayer graphene.

    PubMed

    Lee, Yongjin; Velasco, Jairo; Tran, David; Zhang, Fan; Bao, W; Jing, Lei; Myhro, Kevin; Smirnov, Dmitry; Lau, Chun Ning

    2013-04-10

    ABA-stacked trilayer graphene is a unique 2D electron system with mirror reflection symmetry and unconventional quantum Hall effect. We present low-temperature transport measurements on dual-gated suspended trilayer graphene in the quantum Hall (QH) regime. We observe QH plateaus at filling factors ν = -8, -2, 2, 6, and 10, which is in agreement with the full-parameter tight binding calculations. In high magnetic fields, odd-integer plateaus are also resolved, indicating almost complete lifting of the 12-fold degeneracy of the lowest Landau level (LL). Under an out-of-plane electric field E(perpendicular), we observe degeneracy breaking and transitions between QH plateaus. Interestingly, depending on its direction, E(perpendicular) selectively breaks the LL degeneracies in the electron-doped or hole-doped regimes. Our results underscore the rich interaction-induced phenomena in trilayer graphene.

  15. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  16. Dynamic symmetries and quantum nonadiabatic transitions

    DOE PAGES

    Li, Fuxiang; Sinitsyn, Nikolai A.

    2016-05-30

    Kramers degeneracy theorem is one of the basic results in quantum mechanics. According to it, the time-reversal symmetry makes each energy level of a half-integer spin system at least doubly degenerate, meaning the absence of transitions or scatterings between degenerate states if the Hamiltonian does not depend on time explicitly. Here we generalize this result to the case of explicitly time-dependent spin Hamiltonians. We prove that for a spin system with the total spin being a half integer, if its Hamiltonian and the evolution time interval are symmetric under a specifically defined time reversal operation, the scattering amplitude between anmore » arbitrary initial state and its time reversed counterpart is exactly zero. Lastly, we also discuss applications of this result to the multistate Landau–Zener (LZ) theory.« less

  17. Gapped domain walls, gapped boundaries, and topological degeneracy.

    PubMed

    Lan, Tian; Wang, Juven C; Wen, Xiao-Gang

    2015-02-20

    Gapped domain walls, as topological line defects between (2+1)D topologically ordered states, are examined. We provide simple criteria to determine the existence of gapped domain walls, which apply to both Abelian and non-Abelian topological orders. Our criteria also determine which (2+1)D topological orders must have gapless edge modes, namely, which (1+1)D global gravitational anomalies ensure gaplessness. Furthermore, we introduce a new mathematical object, the tunneling matrix W, whose entries are the fusion-space dimensions W(ia), to label different types of gapped domain walls. By studying many examples, we find evidence that the tunneling matrices are powerful quantities to classify different types of gapped domain walls. Since a gapped boundary is a gapped domain wall between a bulk topological order and the vacuum, regarded as the trivial topological order, our theory of gapped domain walls inclusively contains the theory of gapped boundaries. In addition, we derive a topological ground state degeneracy formula, applied to arbitrary orientable spatial 2-manifolds with gapped domain walls, including closed 2-manifolds and open 2-manifolds with gapped boundaries.

  18. Degeneracy, degree, and heavy tails in quantum annealing

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Hoskinson, Emile; Lanting, Trevor; Andriyash, Evgeny; Amin, Mohammad H.

    2016-05-01

    Both simulated quantum annealing and physical quantum annealing have shown the emergence of "heavy tails" in their performance as optimizers: The total time needed to solve a set of random input instances is dominated by a small number of very hard instances. Classical simulated annealing, in contrast, does not show such heavy tails. Here we explore the origin of these heavy tails, which appear for inputs with high local degeneracy—large isoenergetic clusters of states in Hamming space. This category includes the low-precision Chimera-structured problems studied in recent benchmarking work comparing the D-Wave Two quantum annealing processor with simulated annealing. On similar inputs designed to suppress local degeneracy, performance of a quantum annealing processor on hard instances improves by orders of magnitude at the 512-qubit scale, while classical performance remains relatively unchanged. Simulations indicate that perturbative crossings are the primary factor contributing to these heavy tails, while sensitivity to Hamiltonian misspecification error plays a less significant role in this particular setting.

  19. Degeneracy-driven self-structuring dynamics in selective repertoires.

    PubMed

    Atamas, Sergei P; Bell, Jonathan

    2009-08-01

    Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or "sloppy," systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka-Volterra and Verhulst types. In the degenerate systems of Lotka-Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka-Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple "mirroring" of the environment by the "fittest" elements of population.

  20. Free electron degeneracy effects on collisional excitation, ionization, de-excitation and three-body recombination

    NASA Astrophysics Data System (ADS)

    Tallents, G. J.

    2016-09-01

    Collisional-radiative models enable average ionization and ionization populations, plus the rates of absorption and emission of radiation to be calculated for plasmas not in thermal equilbrium. At high densities and low temperatures, electrons may have a high occupancy of the free electron quantum states and evaluations of rate coefficients need to take into account the free electron degeneracy. We demonstrate that electron degeneracy can reduce collisional rate coefficients by orders-of-magnitude from values calculated neglecting degeneracy. We show that assumptions regarding the collisional differential cross-section can alter collisional ionization and recombination rate coefficients by a further factor two under conditions relevant to inertial fusion.

  1. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    PubMed

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc.

  2. Linear electronic transport in dense plasmas. II. Finite degeneracy contributions

    NASA Astrophysics Data System (ADS)

    Léger, D.; Deutsch, C.

    1991-06-01

    The formalism described in the first paper in this series is hereafter specialized to a thorough investigation of finite degeneracy contributions to thermoelectronic and mechanical transport coefficients, conveniently expressed as reduced quantities. Temperature corrections are systematically discussed through the analytical properties of the jellium dielectric function. The Thomas-Fermi one appears as a paradigm of regular behavior at q=2k_F while the Lindhard and its T-dependent extension head a singular class characterized by diverging derivatives. Specific methods are developed for these important cases. Results are presented in terms of analytic expansions in the degeneracy parameter α, and exact expressions for the above-mentioned corrections are derived up to order α2. Finally we display a number of numerical results pertaining to fully ionized proton-helium binary mixtures of Astrophysical interest. The connection of the present formalism and its numerical outputs with other previous treatments is also carefully examined. Le formalisme exposé et détaillé dans le premier article de cette série est ici appliqué à la détermination des contributions de dégénérescence partielle aux coefficients de transport thermoélectroniques et mécanique (viscosité), coefficients préalablement exprimés sous forme d'expressions réduites. Les corrections de température finie sont systématiquement analysées en relation avec les propriétés analytiques de la fonction diélectrique du jellium. Alors que celle de Thomas-Fermi fournit l'exemple type de fonction parfaitement régulière en q=2k_F, celle de Lindhard et sa généralisation à T finie sont au contraire caractérisées par des dérivées divergentes en ce point. Des méthodes spécifiques sont développées pour traiter correctement ces cas importants. Nos résultats sont présentés sous forme de développements analytiques en puissance du paramètre de dégénérescence α, et des expressions

  3. Symmetries in Physics

    NASA Astrophysics Data System (ADS)

    Brading, Katherine; Castellani, Elena

    2003-12-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  4. Symmetries in Physics

    NASA Astrophysics Data System (ADS)

    Brading, Katherine; Castellani, Elena

    2010-01-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  5. Symmetry considerations for the targeted assembly of entropically stabilized colloidal crystals via Voronoi particles.

    PubMed

    Schultz, Benjamin A; Damasceno, Pablo F; Engel, Michael; Glotzer, Sharon C

    2015-03-24

    The relationship between colloidal building blocks and their assemblies is an active field of research. As a strategy for targeting novel crystal structures, we examine the use of Voronoi particles, which are hard, space-filling particles in the shape of Voronoi cells of a target structure. Although Voronoi particles stabilize their target structure in the limit of high pressure by construction, the thermodynamic assembly of the same structure at moderate pressure, close to the onset of crystallization, is not guaranteed. Indeed, we find that a more symmetric crystal is often preferred due to additional entropic contributions arising from configurational or occupational degeneracy. We characterize the assembly behavior of the Voronoi particles in terms of the symmetries of the building blocks as well as the symmetries of crystal structures and demonstrate how controlling the degeneracies through a modification of particle shape and field-directed assembly can significantly improve the assembly propensity.

  6. Symmetry considerations for the targeted assembly of entropically stabilized colloidal crystals via Voronoi particles.

    PubMed

    Schultz, Benjamin A; Damasceno, Pablo F; Engel, Michael; Glotzer, Sharon C

    2015-03-24

    The relationship between colloidal building blocks and their assemblies is an active field of research. As a strategy for targeting novel crystal structures, we examine the use of Voronoi particles, which are hard, space-filling particles in the shape of Voronoi cells of a target structure. Although Voronoi particles stabilize their target structure in the limit of high pressure by construction, the thermodynamic assembly of the same structure at moderate pressure, close to the onset of crystallization, is not guaranteed. Indeed, we find that a more symmetric crystal is often preferred due to additional entropic contributions arising from configurational or occupational degeneracy. We characterize the assembly behavior of the Voronoi particles in terms of the symmetries of the building blocks as well as the symmetries of crystal structures and demonstrate how controlling the degeneracies through a modification of particle shape and field-directed assembly can significantly improve the assembly propensity. PMID:25692863

  7. Probing maximal zero textures with broken cyclic symmetry in inverse seesaw

    NASA Astrophysics Data System (ADS)

    Samanta, Rome; Ghosal, Ambar

    2016-10-01

    Within the framework of inverse seesaw mechanism we investigate neutrino mass matrices invariant under cyclic symmetry (Z3) with maximal zero texture (6 zero textures). We explore two different approaches to obtain the cyclic symmetry invariant form of the constituent matrices. In the first one we consider explicit cyclic symmetry in the neutrino sector of the Lagrangian which dictates the emerged effective neutrino mass matrix (mν) to be symmetry invariant and hence leads to a degeneracy in masses. We then consider explicit breaking of the symmetry through a dimensionless parameter ɛ‧ to remove the degeneracy. It is seen that the method doesn't support the current neutrino oscillation global fit data even after considering the correction from cyclic symmetry invariant charged lepton mass matrix (ml) unless the breaking parameter is too large. In the second method, we assume the same forms of the neutrino mass matrices, however, symmetry is broken in the charged lepton sector. All the structures of the mass matrices are now dictated by an effective residual symmetry of some larger symmetry group in the Lagrangian. For illustration, we exemplify a toy model based on softly broken A4 symmetry group which leads to one of the combinations of ml, mD, MRS and μ to generate effective mν. All the emerged mass matrices predict a constraint range of the CP violating phases and atmospheric mixing angle along with an inverted hierarchical structure of the neutrino masses. Further, significant predictions on ββ 0 ν decay parameter |m11 | and the sum of the three light neutrino masses (Σimi) are also obtained.

  8. The effect of degeneracy parameter on Weibel instability in dense plasma

    SciTech Connect

    Mahdavi, M.; Khodadadi Azadboni, F.

    2013-12-15

    In this paper, the role of degeneracy parameter, in both directions parallel and perpendicular with propagation direction of the laser beam in plasma, on the growth rate of Weibel instability, is studied. Calculations show that with the temperature anisotropy, β = T{sub ∥}/T{sub ⊥} = 0.2 and a 0.75 times reduction of the degeneracy parameter, the increased rate of the the Weibel instability growth rate is 72%. The degeneracy required for minimal growth rate in interaction laser plasma with a density of 1.2 × 10{sup 32}m{sup −3}, is larger than 3. The reduction of temperature and the degeneracy parameter of plasma in parallel direction will also increase growth rate about 30% more than incrossing degeneracy parameter in transverse direction. With the minimum pressure costs of cold compression, subsequent degeneracy parameters, and the minimum value of electron quiver energy, we can expect growth rate of Weibel instability order 0.01.

  9. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  10. Geometric intrinsic symmetries

    SciTech Connect

    Gozdz, A. Szulerecka, A.; Pedrak, A.

    2013-08-15

    The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.

  11. Neutrinos and flavor symmetries

    SciTech Connect

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  12. Neutrinos and flavor symmetries

    NASA Astrophysics Data System (ADS)

    Tanimoto, Morimitsu

    2015-07-01

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  13. Hypersensitive Transport in Photonic Crystals with Accidental Spatial Degeneracies.

    PubMed

    Makri, Eleana; Smith, Kyle; Chabanov, Andrey; Vitebskiy, Ilya; Kottos, Tsampikos

    2016-01-01

    A localized mode in a photonic layered structure can develop nodal points (nodal planes), where the oscillating electric field is negligible. Placing a thin metallic layer at such a nodal point results in the phenomenon of induced transmission. Here we demonstrate that if the nodal point is not a point of symmetry, then even a tiny alteration of the permittivity in the vicinity of the metallic layer drastically suppresses the localized mode along with the resonant transmission. This renders the layered structure highly reflective within a broad frequency range. Applications of this hypersensitive transport for optical and microwave limiting and switching are discussed. PMID:26903232

  14. Hypersensitive Transport in Photonic Crystals with Accidental Spatial Degeneracies

    PubMed Central

    Makri, Eleana; Smith, Kyle; Chabanov, Andrey; Vitebskiy, Ilya; Kottos, Tsampikos

    2016-01-01

    A localized mode in a photonic layered structure can develop nodal points (nodal planes), where the oscillating electric field is negligible. Placing a thin metallic layer at such a nodal point results in the phenomenon of induced transmission. Here we demonstrate that if the nodal point is not a point of symmetry, then even a tiny alteration of the permittivity in the vicinity of the metallic layer drastically suppresses the localized mode along with the resonant transmission. This renders the layered structure highly reflective within a broad frequency range. Applications of this hypersensitive transport for optical and microwave limiting and switching are discussed. PMID:26903232

  15. Polynomial Graphs and Symmetry

    ERIC Educational Resources Information Center

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  16. Effect of tensor interaction in the Dirac-attractive radial problem under pseudospin symmetry limit

    SciTech Connect

    Hamzavi, M.; Eshghi, M.; Ikhdair, S. M.

    2012-08-15

    We approximately investigated pseudospin symmetric solutions of the Dirac equation for attractive radial potential, including a Coulomb-like tensor interaction under pseudospin symmetry limit for any spin-orbit quantum number {kappa}. By using the parametric generalization of the Nikiforov-Uvarov method, the energy eigenvalues equation and the corresponding wave functions have been obtained in closed forms. Some numerical results are also given. We presented tensor interaction removes degeneracy between two states in pseudospin doublets.

  17. Theory of a fermionic superfluid with SU(2) x SU(6) symmetry

    SciTech Connect

    Yip, S.-K.

    2011-06-15

    We study theoretically interspecies Cooper pairing in a fermionic system with SU(2) x SU(6) symmetry. We show that, with suitable unitary transformations, the order parameter for the ground state can be reduced to only two nonvanishing complex components. The ground state has a large degeneracy. We find that while some Goldstone modes have linear dispersion, others are quadratic at low frequencies. We compare our results with the case of SU(N).

  18. Chiral symmetry and chiral-symmetry breaking

    SciTech Connect

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  19. A new method to break the mass-sheet degeneracy using aperture moments

    NASA Astrophysics Data System (ADS)

    Rexroth, Markus; Natarajan, Priyamvada; Kneib, Jean-Paul

    2016-08-01

    Mass determinations from gravitational lensing shear and the higher order estimator flexion are both subject to the mass-sheet degeneracy. Mass sheet degeneracy refers to a transformation that leaves the reduced shear and flexion invariant. In general, this transformation can be approximated by the addition of a constant surface mass density sheet. We propose a new technique to break the mass-sheet degeneracy. The method uses mass moments of the shear or flexion fields in combination with convergence information derived from number counts which exploit the magnification bias. The difference between the measured mass moments provides an estimator for the magnitude of the additive constant that is the mass sheet. For demonstrating this, we derive relations that hold true in general for nth order moments and show how they can be employed effectively to break the degeneracy. We investigate the detectability of this degeneracy parameter from our method and find that the degeneracy parameter can be feasibly determined from stacked galaxy-galaxy lensing data and cluster lensing data. Furthermore, we compare the signal-to-noise ratios of convergence information from number counts with shear and flexion for singular isothermal sphere and Navarro-Frenk-White models. We find that the combination of shear and flexion performs best on galaxy and cluster scales and the convergence information can therefore be used to break the mass-sheet degeneracy without quality loss in the mass reconstruction. In summary, there is power in the combination of shear, flexion, convergence and their higher order moments. With the anticipated wealth of lensing data from upcoming and future satellite missions - EUCLID and WFIRST - this technique will be feasible.

  20. Orbital engineering in symmetry-breaking polar heterostructures.

    PubMed

    Disa, Ankit S; Kumah, Divine P; Malashevich, Andrei; Chen, Hanghui; Arena, Dario A; Specht, Eliot D; Ismail-Beigi, Sohrab; Walker, F J; Ahn, Charles H

    2015-01-16

    We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO_{3}-LaNiO_{3}-LaAlO_{3} system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ∼50% change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO_{3} and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.

  1. All Majorana Models with Translation Symmetry are Supersymmetric

    NASA Astrophysics Data System (ADS)

    Hsieh, Timothy H.; Halász, Gábor B.; Grover, Tarun

    2016-10-01

    We establish results similar to Kramers and Lieb-Schultz-Mattis theorems but involving only translation symmetry and for Majorana modes. In particular, we show that all states are at least doubly degenerate in any one- and two-dimensional array of Majorana modes with translation symmetry, periodic boundary conditions, and an odd number of modes per unit cell. Moreover, we show that all such systems have an underlying N =2 supersymmetry and explicitly construct the generator of the supersymmetry. Furthermore, we establish that there cannot be a unique gapped ground state in such one-dimensional systems with antiperiodic boundary conditions. These general results are fundamentally a consequence of the fact that translations for Majorana modes are represented projectively, which in turn stems from the anomalous nature of a single Majorana mode. An experimental signature of the degeneracy arising from supersymmetry is a zero-bias peak in tunneling conductance.

  2. Island of Rare Earth Nuclei with Tetrahedral and Octahedral Symmetries: Possible Experimental Evidence

    SciTech Connect

    Dudek, J.; Dubray, N.; Pangon, V.; Dobaczewski, J.; Olbratowski, P.; Schunck, N.

    2006-08-18

    Calculations using realistic mean-field methods suggest the existence of nuclear shapes with tetrahedral T{sub d} and/or octahedral O{sub h} symmetries sometimes at only a few hundreds of keV above the ground states in some rare earth nuclei around {sup 156}Gd and {sup 160}Yb. The underlying single-particle spectra manifest exotic fourfold rather than Kramers's twofold degeneracies. The associated shell gaps are very strong, leading to a new form of shape coexistence in many rare earth nuclei. We present possible experimental evidence of the new symmetries based on the published experimental results--although an unambiguous confirmation will require dedicated experiments.

  3. Lifting mean field degeneracies in anisotropic spin systems

    NASA Astrophysics Data System (ADS)

    Sizyuk, Yuriy; Perkins, Natalia; Wolfle, Peter

    We propose a method for calculating the fluctuation contribution to the free energy of anisotropic spin systems with generic bilinear superexchange magnetic Hamiltonian based on the Hubbard-Stratonovich transformation. We show that this contribution splits the set of mean field degenerate states with rotational symmetry, and chooses states with the order parameter directed along lattice symmetric directions as the true ground states. We consider the simple example of Heisenberg-compass model on cubic lattice to show that depending on the relative strength of the compass and Heisenberg interactions the spontaneous magnetization is pinned to either one of the cubic directions or one of the cubic body diagonals with a intermediate phase in between where the minima and maxima of the free energy interchange. DMR-1005932, DMR-1511768, and NSF PHY11-25915.

  4. Non-parametric strong lens inversion of Cl 0024+1654: illustrating the monopole degeneracy

    NASA Astrophysics Data System (ADS)

    Liesenborgs, J.; de Rijcke, S.; Dejonghe, H.; Bekaert, P.

    2008-09-01

    The cluster lens Cl 0024+1654 is undoubtedly one of the most beautiful examples of strong gravitational lensing, providing five large images of a single source with well-resolved substructure. Using the information contained in the positions and the shapes of the images, combined with the null space information, a non-parametric technique is used to infer the strong lensing mass map of the central region of this cluster. This yields a strong lensing mass of 1.60 × 1014Msolar within a 0.5arcmin radius around the cluster centre. This mass distribution is then used as a case study of the monopole degeneracy, which may be one of the most important degeneracies in gravitational lensing studies and which is extremely hard to break. We illustrate the monopole degeneracy by adding circularly symmetric density distributions with zero total mass to the original mass map of Cl 0024+1654. These redistribute mass in certain areas of the mass map without affecting the observed images in any way. We show that the monopole degeneracy and the mass-sheet degeneracy together lie at the heart of the discrepancies between different gravitational lens reconstructions that can be found in the literature for a given object, and that many images/sources, with an overall high image density in the lens plane, are required to construct an accurate, high-resolution mass map based on strong lensing data.

  5. Evidence for a new S U (4 ) symmetry with J =2 mesons

    NASA Astrophysics Data System (ADS)

    Denissenya, M.; Glozman, L. Ya.; Pak, M.

    2015-06-01

    Recently, a new symmetry of mesons has been found upon truncation of the quasizero modes of the overlap Dirac operator in lattice simulations. Namely, the ρ , ρ', ω , ω', a1, b1, h1, and possibly f1 J =1 mesons get degenerate after removal of the quasizero modes. This emergent symmetry has been established to be S U (4 )⊃S U (2 )L×S U (2 )R×U (1 )A . It is higher than the symmetry of the QCD Lagrangian and provides not only a mixing of quarks of given chirality in the isospin space, but also the mixing of left-handed and right-handed components. Here we study, with the overlap Dirac operator, the isovector J =2 mesons upon the quasizero mode reduction and observe a similar degeneracy. This result further supports the S U (4 ) symmetry in mesons of given spin J ≥1 .

  6. Baryogenesis from symmetry principle

    NASA Astrophysics Data System (ADS)

    Fong, Chee Sheng

    2016-01-01

    In this work, a formalism based on symmetry which allows one to express asymmetries of all the particles in terms of conserved charges is developed. The manifestation of symmetry allows one to easily determine the viability of a baryogenesis scenario and also to identify the different roles played by the symmetry. This formalism is then applied to the standard model and its supersymmetric extension, which constitute two important foundations for constructing models of baryogenesis.

  7. Degeneracy in NLP and the development of results motivated by its presence

    SciTech Connect

    Fiacco, A.; Liu, J.

    1994-12-31

    We study notions of nondegeneracy and several levels of increasing degeneracy from the perspective of the local behavior of a local solution of a nonlinear program when problem parameters are slightly perturbed. This overview may be viewed as a structured survey of sensitivity and stability results: the focus is on progressive levels of degeneracy. We note connections of nondegeneracy with the convergence of algorithms and observe the striking parallel between the effects of nondegeneracy and degeneracy on optimality conditions, stability analysis and algorithmic convergence behavior. Although our orientation here is primarily interpretive and noncritical, we conclude that more effort is needed to unify optimality, stability and convergence theory and more results are needed in all three areas for radically degenerate problems.

  8. Split of chiral degeneracy in mechanical and structural properties of oligopeptide-polysaccharide biomaterials.

    PubMed

    Taraban, Marc B; Hyland, Laura L; Yu, Y Bruce

    2013-09-01

    Enantiomeric biomaterials which are mirror images of each other are characterized by chiral degeneracy--identical structural characteristics and bulk material properties. The addition of another chiral component, D-polysaccharide, has been shown to split such degeneracy and result in two distinct biomaterials. Dynamic oscillatory rheometry and small-angle X-ray scattering demonstrate that the natural biochirality combination of L-peptides and D-polysaccharides assembles faster, has higher elastic moduli (G'), and is structurally more beneficial as opposed to the alternative D-peptide and D-polysaccharide combination. Chemical modifications of the OH-groups in α-D-glucose units in D-polysaccharides weaken such splitting of chiral degeneracy. These findings form a basis to design novel biomaterials and provide additional insight on why proteins and polysaccharides have oppoiste chirality in the biological world. PMID:23879188

  9. Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path toward Breaking Strong Microlens Degeneracies

    NASA Astrophysics Data System (ADS)

    Bozza, V.; Shvartzvald, Y.; Udalski, A.; Calchi Novati, S.; Bond, I. A.; Han, C.; Hundertmark, M.; Poleski, R.; Pawlak, M.; Szymański, M. K.; Skowron, J.; Mróz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Soszyński, I.; Ulaczyk, K.; OGLE Group; and; Beichman, C.; Bryden, G.; Carey, S.; Fausnaugh, M.; Gaudi, B. S.; Gould, A.; Henderson, C. B.; Pogge, R. W.; Wibking, B.; Yee, J. C.; Zhu, W.; Spitzer Team; Abe, F.; Asakura, Y.; Barry, R. K.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Inayama, K.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Nishioka, T.; Ohnishi, K.; Oyokawa, H.; Rattenbury, N.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Wakiyama, Y.; Yonehara, A.; MOA Group; Choi, J.-Y.; Park, H.; Jung, Y. K.; Shin, I.-G.; Albrow, M. D.; Park, B.-G.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; KMTNet Group; Dominik, M.; Jørgensen, U. G.; Andersen, M. I.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; D'Ago, G.; Evans, D. F.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Kains, N.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Rasmussen, R. T.; Scarpetta, G.; Skottfelt, J.; Snodgrass, C.; Southworth, J.; Surdej, J.; Unda-Sanzana, E.; von Essen, C.; Wang, Y.-B.; Wertz, O.; MiNDSTEp; Maoz, D.; Friedmann, M.; Kaspi, S.; Wise Group

    2016-03-01

    Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.

  10. Symmetry in Mathematics Learning.

    ERIC Educational Resources Information Center

    Dreyfus, Tommy; Eisenberg, Theodore

    1989-01-01

    Discusses the creed in symmetry and the omnipresence of symmetrical relationships in mathematics and nature, discusses mathematicians' attraction toward looking for symmetrical relationships as an unstated problem-solving heuristic, and shows how symmetry can be used as a didactical tool. (Author/MKR)

  11. Symmetry and Interculturality

    ERIC Educational Resources Information Center

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  12. Symmetries in Lagrangian Dynamics

    ERIC Educational Resources Information Center

    Ferrario, Carlo; Passerini, Arianna

    2007-01-01

    In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…

  13. Symmetry Effects in Computation

    NASA Astrophysics Data System (ADS)

    Yao, Andrew Chi-Chih

    2008-12-01

    The concept of symmetry has played a key role in the development of modern physics. For example, using symmetry, C.N. Yang and other physicists have greatly advanced our understanding of the fundamental laws of physics. Meanwhile, computer scientists have been pondering why some computational problems seem intractable, while others are easy. Just as in physics, the laws of computation sometimes can only be inferred indirectly by considerations of general principles such as symmetry. The symmetry properties of a function can indeed have a profound effect on how fast the function can be computed. In this talk, we present several elegant and surprising discoveries along this line, made by computer scientists using symmetry as their primary tool. Note from Publisher: This article contains the abstract only.

  14. Tensor network decompositions in the presence of a global symmetry

    SciTech Connect

    Singh, Sukhwinder; Pfeifer, Robert N. C.; Vidal, Guifre

    2010-11-15

    Tensor network decompositions offer an efficient description of certain many-body states of a lattice system and are the basis of a wealth of numerical simulation algorithms. We discuss how to incorporate a global symmetry, given by a compact, completely reducible group G, in tensor network decompositions and algorithms. This is achieved by considering tensors that are invariant under the action of the group G. Each symmetric tensor decomposes into two types of tensors: degeneracy tensors, containing all the degrees of freedom, and structural tensors, which only depend on the symmetry group. In numerical calculations, the use of symmetric tensors ensures the preservation of the symmetry, allows selection of a specific symmetry sector, and significantly reduces computational costs. On the other hand, the resulting tensor network can be interpreted as a superposition of exponentially many spin networks. Spin networks are used extensively in loop quantum gravity, where they represent states of quantum geometry. Our work highlights their importance in the context of tensor network algorithms as well, thus setting the stage for cross-fertilization between these two areas of research.

  15. Degeneracy between Lensing and Occultation in the Analysis of Self-lensing Phenomena

    NASA Astrophysics Data System (ADS)

    Han, Cheongho

    2016-03-01

    More than 40 years after the first discussion, the detection of a self-lensing phenomenon within a binary system where the brightness of a background star is magnified by its foreground companion was recently reported. It is expected that the number of self-lensing binary detections will be increased by a wealth of data from current and future survey experiments. In this paper, we introduce a degeneracy in the interpretation of self-lensing light curves. The degeneracy is intrinsic to self-lensing binaries for which both magnification by lensing and de-magnification by occultation occur simultaneously and are caused by the difficulty in separating the contribution of the lensing-induced magnification from the observed light curve. We demonstrate the severity of this degeneracy by presenting examples of self-lensing light curves that suffer from it. We also present the relation between the lensing parameters of the degenerate solutions. This degeneracy is an important obstacle in accurately determining self-lensing parameters and thus characterizing binaries.

  16. Interdimensional degeneracies in van der Waals clusters and quantum Monte Carlo computation of rovibrational states.

    PubMed

    Nightingale, M P; Moodley, Mervlyn

    2005-07-01

    Quantum Monte Carlo estimates of the spectrum of rotationally invariant states of noble gas clusters suggest interdimensional degeneracy in N-1 and N+1 spatial dimensions. We derive this property by mapping the Schrodinger eigenvalue problem onto an eigenvalue equation in which D appears as a continuous variable. We discuss implications for quantum Monte Carlo and dimensional scaling methods.

  17. Tunable Splitting of the Ground-State Degeneracy in Quasi-One-Dimensional Parafermion Systems.

    PubMed

    Chen, Chun; Burnell, F J

    2016-03-11

    Systems with topologically protected ground-state degeneracies are currently of great interest due to their potential applications in quantum computing. In practice, this degeneracy is never exact, and the magnitude of the ground-state degeneracy splitting imposes constraints on the time scales over which information is topologically protected. In this Letter, we use an instanton approach to evaluate the splitting of topological ground-state degeneracy in quasi-1D systems with parafermion zero modes, in the specific case where parafermions are realized by inducing a superconducting gap in pairs of fractional quantum Hall edges. We show that, like 1D topological superconducting wires, this splitting has an oscillatory dependence on the chemical potential, which arises from an intrinsic Berry phase that produces interference between distinct instanton tunneling events. These Berry phases can be mapped to chiral phases in a (dual) quantum clock model using a Fradkin-Kadanoff transformation. Comparing our low-energy spectrum to that of phenomenological parafermion models allows us to evaluate the real and imaginary parts of the hopping integral between adjacent parafermionic zero modes as functions of the chemical potential. PMID:27015499

  18. Tunable Splitting of the Ground-State Degeneracy in 1D Parafermionic Wires

    NASA Astrophysics Data System (ADS)

    Chen, Chun; Burnell, Fiona

    Systems with topologically protected ground-state degeneracies are currently of great interest due to their potential applications in quantum computing. In practise this degeneracy is never exact, and the magnitude of the ground-state degeneracy splitting imposes constraints on the timescales over which information is topologically protected. In this Letter we use an instanton approach to evaluate the splitting of topological ground-state degeneracy in quasi-1D systems with parafermion zero modes, in the specific case where parafermions are realized by inducing a superconducting gap in pairs of fractional quantum Hall (FQH) edges. We show that, like 1D topological superconducting wires, this splitting has an oscillatory dependence on the chemical potential, which arises from an intrinsic Berry phase that produces interference between distinct instanton tunneling events. These Berry phases can be mapped to chiral phases in a (dual) quantum clock model using a Fradkin-Kadanoff transformation. Comparing our low-energy spectrum to that of phenomenological parafermion models allows us to evaluate the real and imaginary parts of the hopping integral between adjacent parafermionic zero modes as functions of the chemical potential.

  19. Tunable Splitting of the Ground-State Degeneracy in Quasi-One-Dimensional Parafermion Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chun; Burnell, F. J.

    2016-03-01

    Systems with topologically protected ground-state degeneracies are currently of great interest due to their potential applications in quantum computing. In practice, this degeneracy is never exact, and the magnitude of the ground-state degeneracy splitting imposes constraints on the time scales over which information is topologically protected. In this Letter, we use an instanton approach to evaluate the splitting of topological ground-state degeneracy in quasi-1D systems with parafermion zero modes, in the specific case where parafermions are realized by inducing a superconducting gap in pairs of fractional quantum Hall edges. We show that, like 1D topological superconducting wires, this splitting has an oscillatory dependence on the chemical potential, which arises from an intrinsic Berry phase that produces interference between distinct instanton tunneling events. These Berry phases can be mapped to chiral phases in a (dual) quantum clock model using a Fradkin-Kadanoff transformation. Comparing our low-energy spectrum to that of phenomenological parafermion models allows us to evaluate the real and imaginary parts of the hopping integral between adjacent parafermionic zero modes as functions of the chemical potential.

  20. Sequential flavor symmetry breaking

    SciTech Connect

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-08-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  1. A universal symmetry detection algorithm.

    PubMed

    Maurer, Peter M

    2015-01-01

    Research on symmetry detection focuses on identifying and detecting new types of symmetry. The paper presents an algorithm that is capable of detecting any type of permutation-based symmetry, including many types for which there are no existing algorithms. General symmetry detection is library-based, but symmetries that can be parameterized, (i.e. total, partial, rotational, and dihedral symmetry), can be detected without using libraries. In many cases it is faster than existing techniques. Furthermore, it is simpler than most existing techniques, and can easily be incorporated into existing software. The algorithm can also be used with virtually any type of matrix-based symmetry, including conjugate symmetry.

  2. Animal Gaits and Symmetry

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  3. The Symmetries of QCD

    ScienceCinema

    Sekhar Chivukula

    2016-07-12

    The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level.  Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter. 

  4. Another Broken Symmetry

    ERIC Educational Resources Information Center

    Groetsch, C. W.

    2005-01-01

    Resistance destroys symmetry. In this note, a graphical exploration serves as a guide to a rigorous elementary proof of a specific asymmetry in the trajectory of a point projectile in a medium offering linear resistance.

  5. Symmetries in Physics

    NASA Astrophysics Data System (ADS)

    Castaños, Octavio

    2010-09-01

    The purpose of this course is to study the evolution of the symmetry concept and establish its influence in the knowledge of the fundamental laws of nature. Physicist have been using the symmetry concept in two ways: to solve problems and to search for new understanding of the world around us. In quantum physics symmetry plays a key role in gaining an understanding of the physical laws governing the behavior of matter and field systems. It provides, generally, a shortcut based on geometry for discovering the secrets of the Universe. Because it is believed that the laws of physics are invariant under discrete and continuous transformation operations of the space and time, there are continuous symmetries, for example, energy and momentum together with discrete ones corresponding to charge, parity and time reversal operations.

  6. Dynamical spacetime symmetry

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin C.; Wheeler, James T.

    2016-04-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  7. Dynamical symmetries for fermions

    SciTech Connect

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.

  8. Geometry of reduced density matrices for symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Chen, Ji-Yao; Ji, Zhengfeng; Liu, Zheng-Xin; Shen, Yi; Zeng, Bei

    2016-01-01

    In this paper, we study the geometry of reduced density matrices for states with symmetry-protected topological (SPT) order. We observe ruled surface structures on the boundary of the convex set of low-dimensional projections of the reduced density matrices. In order to signal the SPT order using ruled surfaces, it is important that we add a symmetry-breaking term to the boundary of the system—no ruled surface emerges in systems without a boundary or when we add a symmetry-breaking term representing a thermodynamic quantity. Although the ruled surfaces only appear in the thermodynamic limit where the ground-state degeneracy is exact, we analyze the precision of our numerical algorithm and show that a finite-system calculation suffices to reveal the ruled surface structures.

  9. Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem

    NASA Astrophysics Data System (ADS)

    Dyukarev, Yu M.

    2016-04-01

    The ranks of the limit Weyl intervals are known to serve as the geometric measure of degeneracy of the solution set to a Stieltjes matrix moment problem. This paper puts forward the first operator measure of degeneracy for the solution set to a Stieltjes matrix moment problem in terms of the deficiency vectors of a pair of associated positive symmetric operators. A relationship between the geometric and operator measures of degeneracy for a Stieltjes matrix moment problem is established, from which some corollaries about the Stieltjes matrix moment problem are obtained.Bibliography 19 titles.

  10. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    SciTech Connect

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicolás

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  11. Effect of valley degeneracy on spin susceptibility of a two-dimensional quantum electron liquid

    SciTech Connect

    Kumar, Krishan Singh, Gurvinder; Moudgil, R. K.

    2014-04-24

    We investigate theoretically the effect of valley degeneracy on the spin susceptibility of a two-dimensional quantum electron liquid by determining the spin-polarization dependence of the ground-state energy within the selfconsistent mean-field approximation of Singwi et al. Specifically, we have studied a two valley system as realized in the Si (100) inversion layer. In qualitative agreement with the recent quantum Monte Carlo study by Marchi et al., we find that the valley degeneracy results in suppression of spin susceptibility over the single valley case. However, the quality of agreement diminishes with increasing value of the coupling parameter r{sub s}. This indicates the limitation of mean-field theory to deal with the exchange-correlation effects in the strong coupling region. But, our results show considerable improvement over the random-phase approximation which ignores these correlations completely.

  12. Exceptional point and degeneracy of the neutral Higgs boson system H-A

    SciTech Connect

    Felix-Beltran, O.; Gomez-Bock, M.; Hernandez, E.; Mondragon, A.; Mondragon, M.

    2009-04-20

    We analyze the masses and mixings of the isolated neutral and heavy Higgs fields H and A of the Minimal Supersymmetric Standard Model (MSSM) with CP violation, which have opposite CP parities and nearly degenerate masses. At the degeneracy point, the hypersurfaces that represent the physical masses as functions of the system parameters have a rank one algebraic branch point, and the real and imaginary parts have branch cuts, both starting at the same exceptional point but extending in opposite directions in parameter space. Associated with this singularity, the propagator for the mixed neutral Higgs system H-A has a double pole in the non-physical sheet of the squared energy complex plane s. The continuity of the transition amplitude matrix at the exact degeneracy of the masses is examined.

  13. Lectures on Yangian symmetry

    NASA Astrophysics Data System (ADS)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang–Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang–Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross–Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang–Mills theory in four dimensions.

  14. Lectures on Yangian symmetry

    NASA Astrophysics Data System (ADS)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.

  15. Red queen dynamics and the evolution of translational redundancy and degeneracy

    NASA Astrophysics Data System (ADS)

    Krakauer, David C.; Jansen, Vincent A. A.; Nowak, Martin

    We explore adaptive theories for the diversity of protein translation based on the genetic code viewed as a primitive immune system. Immunity is acquired through a genetic mechanism of non-recognition of parasite genomes. Modifying the set of codons bound by tRNA anticodon molecules or changing the specificity of binding, reduces the replication rate of translational parasites such as viruses. Changing the binding specifity can be thought of in terms of varying degrees of redundancy an d degeneracy. Redundancy in the genetic code is commonly attributed to using a four base triplet mechanism to encode the 20 amino acids. This has been referred to as synonym redundancy. There are however at least a further two forms of redundancy associated with the code and one source of degeneracy. A first form of redundancy arises from decoding all 61 possible sense codons using fewer than 61 anticodons. Such a strategy involves reduced binding specificity. A second source of redundancy is present in the multiplicity of copies of each unique tRNA (tRNA copy redundancy). Degeneracy arises when different anticodons become associated with a single amino acid to increase specificity. Variation in these strategies across taxa ensures that the translational machinery is diverse whereas the code remains approximately constant. We construct a red queen theory for translational diversity: a theory in which host translational strategies - as defined by the degree of redundancy or degeneracy of anticodons - are const antly shifting through time to evade parasitism but where neither parasite nor host gains a systematic advantage.

  16. Halogenated benzene radical cations and ground state degeneracy splitting by asymmetric substitution

    USGS Publications Warehouse

    Bondybey, V.E.; Vaughn, C.R.; Miller, T.A.; English, J.H.; Shiley, R.H.

    1981-01-01

    The absorption and laser induced fluorescence of several halogenated benzene radical cations were studied in solid Ne matrices. The spectra of 1,2,4-trifluorobenzene, l,3-dichloro-5-fluorobenzene, and l-chloro-3,5- difluorobenzene radical cations are observed and analyzed. Studies of fluorescence polarization and a photoselection technique were used to examine the splitting of the degeneracy of the benzene cation ground state by asymmetric subsitution. ?? 1981 American Institute of Physics.

  17. Degeneracy between primordial tensor modes and cosmic strings in future CMB data from the Planck satellite

    SciTech Connect

    Urrestilla, Jon; Mukherjee, Pia; Liddle, Andrew R.; Hindmarsh, Mark; Kunz, Martin; Bevis, Neil

    2008-06-15

    While observations indicate that the predominant source of cosmic inhomogeneities are adiabatic perturbations, there are a variety of candidates to provide auxiliary trace effects, including inflation-generated primordial tensors and cosmic defects which both produce B-mode cosmic microwave background polarization. We investigate whether future experiments may suffer confusion as to the true origin of such effects, focusing on the ability of Planck to distinguish tensors from cosmic strings, and show that there is no significant degeneracy.

  18. Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.

    PubMed

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment. PMID:11223922

  19. Symmetry in context: salience of mirror symmetry in natural patterns.

    PubMed

    Cohen, Elias H; Zaidi, Qasim

    2013-05-31

    Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits.

  20. Symmetry in context: Salience of mirror symmetry in natural patterns

    PubMed Central

    Cohen, Elias H.; Zaidi, Qasim

    2013-01-01

    Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits. PMID:23729773

  1. Electroweak symmetry breaking

    SciTech Connect

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  2. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  3. Weakly broken galileon symmetry

    SciTech Connect

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  4. Weakly broken galileon symmetry

    SciTech Connect

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo E-mail: luca.santoni@sns.it E-mail: filippo.vernizzi@cea.fr

    2015-09-01

    Effective theories of a scalar φ invariant under the internal galileon symmetry φ→φ+b{sub μ} x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon's quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  5. BOOK REVIEW: Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Ryder, L. H.

    2005-11-01

    One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would

  6. Co-symmetry breakdown in problems of thermal convection in porous medium

    NASA Astrophysics Data System (ADS)

    Bratsun, Dmitry A.; Lyubimov, Dmitry V.; Roux, Bernard

    We investigate two-dimensional thermal convection of saturating incompressible fluid in a horizontal cylinder filled with porous medium. The temperature distribution on the boundaries is time-independent and corresponds to the heating from below. At supercritical parameter values the problem has infinite number of stationary solutions for arbitrary shape of the region. This degeneracy is connected with the so-called co-symmetry property: the existence of the vector field which is orthogonal to the considered one. Non-coincidence of zeroes of these two fields leads generally speaking, to the degeneracy of the solutions. To destroy the degeneracy we add weak fluid seeping of the fluid through the boundaries either in vertical or in the horizontal direction. The breakdown of the family of the stationary solutions at high supercritical values of the Rayleigh number is studied in detail with the help of the corresponding normal form. Several limit cycles with the twisted leading manifolds appear as a result of the family destruction. To investigate the dynamical behavior the finite-dimensional models of the convection which maintain the breakdown of co-symmetry, are constructed on the base of the Galerkin approximation. The same scenario of the transition to chaos which seems to be connected with the co-symmetry breakdown, is recovered for both kinds of seeping. The quasi-periodic solution branches from the limit cycle. The further increase of the Peclet number leads to mode-locking, which is followed by the appearance of the homoclinic surface formed by the unstable manifold of the saddle periodic orbit; destruction of the latter surface leaves in the phase space the object with torus-like shape and non-integer fractal dimension.

  7. Beyond-mean-field boson-fermion model for odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Nikšić, T.; Vretenar, D.

    2016-05-01

    A novel method for calculating spectroscopic properties of medium-mass and heavy atomic nuclei with an odd number of nucleons is introduced, based on the framework of nuclear energy density functional theory and the particle-core coupling scheme. The deformation energy surface of the even-even core, as well as the spherical single-particle energies and occupation probabilities of the odd particle(s), are obtained in a self-consistent mean-field calculation determined by the choice of the energy density functional and pairing interaction. This method uniquely determines the parameters of the Hamiltonian of the boson core, and only the strength of the particle-core coupling is specifically adjusted to selected data for a particular nucleus. The approach is illustrated in a systematic study of low-energy excitation spectra and transition rates of axially deformed odd-mass Eu isotopes.

  8. Symmetry matters: photodissociation dynamics of symmetrically versus asymmetrically substituted phenols.

    PubMed

    Karsili, Tolga N V; Wenge, Andreas M; Marchetti, Barbara; Ashfold, Michael N R

    2014-01-14

    We report a combined experimental (H (Rydberg) atom photofragment translational spectroscopy) and theoretical (ab initio electronic structure and vibronic coupling calculations) study of the effects of symmetry on the photodissociation dynamics of phenols. Ultraviolet photoexcitation to the bound S1((1)ππ*) state of many phenols leads to some O-H bond fission by tunneling through the barrier under the conical intersection (CI) between the S1 and dissociative S2((1)πσ*) potential energy surfaces in the R(O-H) stretch coordinate. Careful analysis of the total kinetic energy release spectra of the resulting products shows that the radicals formed following S1 ← S0 excitation of phenol and symmetrically substituted phenols like 4-fluorophenol all carry an odd number of quanta in vibrational mode ν(16a), whereas those deriving from asymmetrically substituted systems like 3-fluorophenol or 4-methoxyphenol do not. This contrasting behavior can be traced back to symmetry. Symmetrically substituted phenols exist in two equivalent rotamers, which interconvert by tunneling through the barrier to OH torsional motion. Their states are thus best considered in the non-rigid G4 molecular symmetry group, wherein radiationless transfer from the S1 to S2 state requires a coupling mode of a2 symmetry. Of the three a2 symmetry parent modes, the out-of-plane ring puckering mode ν(16a) shows much the largest interstate coupling constant in the vicinity of the S1/S2 CI. The nuclear motions associated with ν(16a) are orthogonal to the dissociation coordinate, and are thus retained in the radical products. Introducing asymmetry (even a non-linear substituent in the 4-position) lifts the degeneracy of the rotamers, and lowers the molecular symmetry to Cs. Many more parent motions satisfy the reduced (a'') symmetry requirement to enable S1/S2 coupling, the most effective of which is OH torsion. This motion 'disappears' on O-H bond fission; symmetry thus imposes no restriction to

  9. Symmetry constraint for foreground extraction.

    PubMed

    Fu, Huazhu; Cao, Xiaochun; Tu, Zhuowen; Lin, Dongdai

    2014-05-01

    Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.

  10. Emergent spinless Weyl semimetals between the topological crystalline insulator and normal insulator phases with glide symmetry

    NASA Astrophysics Data System (ADS)

    Kim, Heejae; Murakami, Shuichi

    2016-05-01

    We construct a theory describing phase transitions between the spinless topological crystalline insulator phase with glide symmetry and a normal insulator phase. We show that a spinless Weyl semimetal phase should intervene between these two phases. Here, because all the bands are free from degeneracy in general, a gap closing between a single conduction band and a single valence band at phase transition generally gives rise to a pair creation of Weyl nodes; hence the Weyl semimetal phase naturally appears. We show the relationship between the change of the Z2 topological number when the system goes through the Weyl semimetal phase, and the trajectory of the Weyl nodes.

  11. Horror Vacui Symmetry.

    ERIC Educational Resources Information Center

    Crumpecker, Cheryl

    2003-01-01

    Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)

  12. Introduction to chiral symmetry

    SciTech Connect

    Koch, V.

    1996-01-08

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.

  13. Exploring Metric Symmetry

    SciTech Connect

    Zwart, P.H.; Grosse-Kunstleve, R.W.; Adams, P.D.

    2006-07-31

    Relatively minor perturbations to a crystal structure can in some cases result in apparently large changes in symmetry. Changes in space group or even lattice can be induced by heavy metal or halide soaking (Dauter et al, 2001), flash freezing (Skrzypczak-Jankun et al, 1996), and Se-Met substitution (Poulsen et al, 2001). Relations between various space groups and lattices can provide insight in the underlying structural causes for the symmetry or lattice transformations. Furthermore, these relations can be useful in understanding twinning and how to efficiently solve two different but related crystal structures. Although (pseudo) symmetric properties of a certain combination of unit cell parameters and a space group are immediately obvious (such as a pseudo four-fold axis if a is approximately equal to b in an orthorhombic space group), other relations (e.g. Lehtio, et al, 2005) that are less obvious might be crucial to the understanding and detection of certain idiosyncrasies of experimental data. We have developed a set of tools that allows straightforward exploration of possible metric symmetry relations given unit cell parameters and a space group. The new iotbx.explore{_}metric{_}symmetry command produces an overview of the various relations between several possible point groups for a given lattice. Methods for finding relations between a pair of unit cells are also available. The tools described in this newsletter are part of the CCTBX libraries, which are included in the latest (versions July 2006 and up) PHENIX and CCI Apps distributions.

  14. Reflections on Symmetry and Proof

    ERIC Educational Resources Information Center

    Merrotsy, Peter

    2008-01-01

    The concept of symmetry is fundamental to mathematics. Arguments and proofs based on symmetry are often aesthetically pleasing because they are subtle and succinct and non-standard. This article uses notions of symmetry to approach the solutions to a broad range of mathematical problems. It responds to Krutetskii's criteria for mathematical…

  15. Dynamical Symmetries in Classical Mechanics

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  16. Analytical solutions to the mass-anisotropy degeneracy with higher order Jeans analysis: a general method

    NASA Astrophysics Data System (ADS)

    Richardson, Thomas; Fairbairn, Malcolm

    2013-07-01

    The Jeans analysis is often used to infer the total density of a system by relating the velocity moments of an observable tracer population to the underlying gravitational potential. This technique has recently been applied in the search for dark matter (DM) in objects such as dwarf spheroidal galaxies where the presence of DM is inferred via stellar velocities. A precise account of the density is needed to constrain the expected gamma-ray flux from DM self-annihilation and to distinguish between cold and warm DM models. Unfortunately, the traditional method of fitting the second-order Jeans equation to the tracer dispersion suffers from an unbreakable degeneracy of solutions due to the unknown velocity anisotropy of the projected system. To tackle this degeneracy, one can appeal to higher moments of the Jeans equation. By introducing an analogue to the Binney anisotropy parameter at fourth order, β' we create a framework that encompasses all solutions to the fourth-order Jeans equations rather than the restricted range imposed by the separable augmented density. The condition β' = f(β) ensures that the degeneracy is lifted and we interpret the separable augmented density system as the order-independent case β' = β. For a generic choice of β', we present the line-of-sight projection of the fourth moment and how it could be incorporated into a joint likelihood analysis of the dispersion and kurtosis. The framework is then extended to all orders such that constraints may be placed to ensure a physically positive distribution function. Having presented the mathematical framework, we then use it to make preliminary analyses of simulated dwarf spheroidal data leading to interesting results which strongly motivate further study.

  17. Hexagonal projected symmetries.

    PubMed

    Oliveira, Juliane F; Castro, Sofia B S D; Labouriau, Isabel S

    2015-09-01

    In the study of pattern formation in symmetric physical systems, a three-dimensional structure in thin domains is often modelled as a two-dimensional one. This paper is concerned with functions in {\\bb R}^{3} that are invariant under the action of a crystallographic group and the symmetries of their projections into a function defined on a plane. A list is obtained of the crystallographic groups for which the projected functions have a hexagonal lattice of periods. The proof is constructive and the result may be used in the study of observed patterns in thin domains, whose symmetries are not expected in two-dimensional models, like the black-eye pattern. PMID:26317198

  18. Cluster-Void Degeneracy Breaking: Dark Energy, Planck, and the Largest Cluster and Void

    NASA Astrophysics Data System (ADS)

    Sahlén, Martin; Zubeldía, Íñigo; Silk, Joseph

    2016-03-01

    Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density {{{Ω }}}{{m}} and power-spectrum normalization {σ }8. For the first time for voids, we constrain {{{Ω }}}{{m}}=0.21+/- 0.10 and {σ }8=0.95+/- 0.21 for a flat Λ CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies are also complementary in scale, density, and nonlinearity, and are of particular interest for testing modified-gravity models.

  19. Binary-Symmetry Detection

    NASA Technical Reports Server (NTRS)

    Lopez, Hiram

    1987-01-01

    Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.

  20. Chiral symmetry and pentaquarks

    SciTech Connect

    Dmitri Diakonov

    2004-07-01

    Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.

  1. PT symmetry in optics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Demetrios

    2015-03-01

    Interest in complex Hamiltonians has been rekindled after the realization that a wide class of non-Hermitian Hamiltonians can have entirely real spectra as long as they simultaneously respect parity and time reversal operators. In non-relativistic quantum mechanics, governed by the Schrödinger equation, a necessary but not sufficient condition for PT symmetry to hold is that the complex potential should involve real and imaginary parts which are even and odd functions of position respectively. As recently indicated, optics provides a fertile ground to observe and utilize notions of PT symmetry. In optics, the refractive index and gain/loss profiles play the role of the real and imaginary parts of the aforementioned complex potentials. As it has been demonstrated in several studies, PT-symmetric optical structures can exhibit peculiar properties that are otherwise unattainable in traditional Hermitian (conservative) optical settings. Among them, is the possibility for breaking this symmetry through an abrupt phase transition, band merging effects and unidirectional invisibility. Here we review recent developments in the field of -symmetric optics.

  2. Symmetries in laminated composite plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1976-01-01

    The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.

  3. Symmetry in DIET phase transitions

    NASA Astrophysics Data System (ADS)

    Zhang, J. P.; Marks, L. D.

    1989-11-01

    Analysis of the route of the phase transitions in transition metal oxides driven by DIET of oxygen from the surfaces observed by high resolution electron microscopy indicates that there is a symmetry selection rule. The phase transitions are to a structure with a higher point group symmetry where the new phase with a lower oxygen content is either one with a supergroup symmetry with respect to the original phase, or is an amorphous intermediary. The final phase has the highest symmetry and is also a metallic conductor. If a possible lower oxygen content phase does not have the correct supergroup symmetry, it is not formed. It is also found that the point group is conserved during the phase transition if the oxide belongs to the highest groups O h or D 6h. This symmetry selection rule can therefore be used to predict the route of the phase transition. The symmetry rule operates when the phase transition is diffusional.

  4. Magneto-photoluminescence in lanthanide-bearing endohedral metallofullerenes with various cage symmetries

    NASA Astrophysics Data System (ADS)

    Merritt, Travis; Dorn, Harry; Khodaparast, Giti A.; McGill, Steve

    2012-02-01

    Taken as a family, endohedral metallofullerenes (EMF) nanomaterials provide opportunities for exquisite functional tunability at the nanoscale, enabling a wide range of synthetic nanoparticles with diverse sizes, symmetries, electronic, optical and, especially, magnetic properties. In particular, metallofullerenes incarcerating lanthanide ions will permit endohedral luminescence due to the 4f optically-active electrons being uninvolved in the stabilizing charge transfer between the endohedral guest and cage. In addition, if those lanthanide ions possess optical transitions beyond the absorption onset of the cage, a well-defined optical spectrum may be observed for the metallofullerene system. In this talk, several magneto-optical and time-resolved studies at high magnetic fields on lanthanide-based EMFs with different cage symmetries will be presented, where the residual magnetic degeneracies in the lanthanide ion energy levels are lifted and observed in the optical spectrum with magnetic field strengths in excess of 10 T.

  5. Hidden pseudospin and spin symmetries and their origins in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Liang, Haozhao; Meng, Jie; Zhou, Shan-Gui

    2015-03-01

    Symmetry plays a fundamental role in physics. The quasi-degeneracy between single-particle orbitals (n , l , j = l + 1 / 2) and (n - 1 , l + 2 , j = l + 3 / 2) indicates a hidden symmetry in atomic nuclei, the so-called pseudospin symmetry (PSS). Since the introduction of the concept of PSS in atomic nuclei, there have been comprehensive efforts to understand its origin. Both splittings of spin doublets and pseudospin doublets play critical roles in the evolution of magic numbers in exotic nuclei discovered by modern spectroscopic studies with radioactive ion beam facilities. Since the PSS was recognized as a relativistic symmetry in 1990s, many special features, including the spin symmetry (SS) for anti-nucleon, and many new concepts have been introduced. In the present Review, we focus on the recent progress on the PSS and SS in various systems and potentials, including extensions of the PSS study from stable to exotic nuclei, from non-confining to confining potentials, from local to non-local potentials, from central to tensor potentials, from bound to resonant states, from nucleon to anti-nucleon spectra, from nucleon to hyperon spectra, and from spherical to deformed nuclei. Open issues in this field are also discussed in detail, including the perturbative nature, the supersymmetric representation with similarity renormalization group, and the puzzle of intruder states.

  6. Symmetry-protected topological order in magnetization plateau states of quantum spin chains

    NASA Astrophysics Data System (ADS)

    Takayoshi, Shintaro; Totsuka, Keisuke; Tanaka, Akihiro

    2015-04-01

    A symmetry-protected topologically ordered phase is a short-range entangled state, for which some imposed symmetry prohibits the adiabatic deformation into a trivial state which lacks entanglement. In this paper we argue that magnetization plateau states of one-dimensional antiferromagnets which satisfy the conditions S -m ∈ odd integer, where S is the spin quantum number and m the magnetization per site, can be identified as symmetry-protected topological states if an inversion symmetry about the link center is present. This assertion is reached by mapping the antiferromagnet into a nonlinear sigma model type effective field theory containing a novel Berry phase term (a total derivative term) with a coefficient proportional to the quantity S -m , and then analyzing the topological structure of the ground state wave functional which is inherited from the latter term. A boson-vortex duality transformation is employed to examine the topological stability of the ground state in the absence/presence of a perturbation violating link-center inversion symmetry. Our prediction based on field theories is verified by means of a numerical study of the entanglement spectra of actual spin chains, which we find to exhibit twofold degeneracies when the aforementioned condition is met. We complete this study with a rigorous analysis using matrix product states.

  7. Degeneracy: a link between evolvability, robustness and complexity in biological systems.

    PubMed

    Whitacre, James M

    2010-01-01

    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology.This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability. PMID:20167097

  8. Breaking the EOS-gravity degeneracy with masses and pulsating frequencies of neutron stars

    NASA Astrophysics Data System (ADS)

    Lin, Weikang; Li, Bao-An; Chen, Lie-Wen; Wen, De-Hua; Xu, Jun

    2014-07-01

    A thorough understanding of many astrophysical phenomena associated with compact objects requires reliable knowledge about both the equation of state (EOS) of super-dense nuclear matter and the theory of strong-field gravity simultaneously because of the EOS-gravity degeneracy. Currently, variations of the neutron star (NS) mass-radius correlation from using alternative gravity theories are much larger than those from changing the NS matter EOS within known constraints. At least two independent observables are required to break the EOS-gravity degeneracy. Using model EOSs for hybrid stars and a Yukawa-type non-Newtonian gravity, we investigate both the mass-radius correlation and pulsating frequencies of NSs. While the maximum mass of NSs increases, the frequencies of the f, p1, p2, and wI pulsating modes are found to decrease with the increasing strength of the Yukawa-type non-Newtonian gravity, providing a useful reference for future determination simultaneously of both the strong-field gravity and the supranuclear EOS by combining data of x-ray and gravitational wave emissions of NSs.

  9. Calculations of many-particle--many-hole deformed state energies: Near degeneracies, deformation condensates

    SciTech Connect

    Zheng, D.C.; Berdichevsky, D.; Zamick, L.

    1988-07-01

    In deformed Hartree-Fock calculations with Skyrme interactions we observe a near degeneracy of the mean energies of many-particle--many-hole deformed intrinsic states. For example, in /sup 40/Ca the np-nh states with n = 2, 3, 4, 5, 6, 7, and 8 are nearly degenerate. The deformation parameter ..beta.. increases steadily from n = 2 to 8. The intrinsic state energy of the 8p-8h state is lower than that of the 4p-4h state for the interactions used here: SK III, SK IV, and SK VI. The calculations are also performed with the Skyrme III interaction for the even-even calcium and titanium isotopes. For /sup 44/Ti there is a near degeneracy of 6p-2h and 8p-4h. For the N>Z isotopes above, the two protons excitation lies lowest. Whereas the intrinsic state energies are much higher than the observed energies of the lowest-lying deformed states, the results when projection of J = 0/sup +/ states is carried out and pairing effects are taken into account, are encouraging.

  10. Calculations of many-particle-many-hole deformed state energies: Near degeneracies, deformation condensates

    NASA Astrophysics Data System (ADS)

    Zheng, D. C.; Berdichevsky, D.; Zamick, L.

    1988-07-01

    In deformed Hartree-Fock calculations with Skyrme interactions we observe a near degeneracy of the mean energies of many-particle-many-hole deformed intrinsic states. For example, in 40Ca the np-nh states with n=2, 3, 4, 5, 6, 7, and 8 are nearly degenerate. The deformation parameter β increases steadily from n=2 to 8. The intrinsic state energy of the 8p-8h state is lower than that of the 4p-4h state for the interactions used here-SK III, SK IV, and SK VI. The calculations are also performed with the Skyrme III interaction for the even-even calcium and titanium isotopes. For 44Ti there is a near degeneracy of 6p-2h and 8p-4h. For the N>Z isotopes above, the two protons excitation lies lowest. Whereas the intrinsic state energies are much higher than the observed energies of the lowest-lying deformed states, the results when projection of J=0+ states is carried out and pairing effects are taken into account, are encouraging.

  11. Nonlinear ion-acoustic solitons in a magnetized quantum plasma with arbitrary degeneracy of electrons

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2016-09-01

    Nonlinear ion-acoustic waves are analyzed in a nonrelativistic magnetized quantum plasma with arbitrary degeneracy of electrons. Quantum statistics is taken into account by means of the equation of state for ideal fermions at arbitrary temperature. Quantum diffraction is described by a modified Bohm potential consistent with finite-temperature quantum kinetic theory in the long-wavelength limit. The dispersion relation of the obliquely propagating electrostatic waves in magnetized quantum plasma with arbitrary degeneracy of electrons is obtained. Using the reductive perturbation method, the corresponding Zakharov-Kuznetsov equation is derived, describing obliquely propagating two-dimensional ion-acoustic solitons in a magnetized quantum plasma with degenerate electrons having an arbitrary electron temperature. It is found that in the dilute plasma case only electrostatic potential hump structures are possible, while in dense quantum plasma, in principle, both hump and dip soliton structures are obtainable, depending on the electron plasma density and its temperature. The results are validated by comparison with the quantum hydrodynamic model including electron inertia and magnetization effects. Suitable physical parameters for observations are identified.

  12. Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy*

    NASA Astrophysics Data System (ADS)

    Kechedzhi, Kostyantyn; Smelyanskiy, Vadim N.

    2016-04-01

    Real-life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an open-system quantum annealing algorithm optimized for such a realistic analog quantum device which takes advantage of noise-induced thermalization and relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of this algorithm considering a p -spin model that allows for a mean-field quasiclassical solution and, at the same time, demonstrates the first-order phase transition and exponential degeneracy of states, typical characteristics of spin glasses. We demonstrate that finite-temperature effects introduced by the noise are particularly important for the dynamics in the presence of the exponential degeneracy of metastable states. We determine the optimal regime of the open-system quantum annealing algorithm for this model and find that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum tunneling is instrumental for the quantum speedup in this model, which is possible because of the unusual nonmonotonous temperature dependence of the quantum-tunneling action in this model, where the most efficient transition rate corresponds to zero temperature. This model calculation is the first analytically tractable example where open-system quantum annealing algorithm outperforms simulated annealing, which can, in principle, be realized using an analog quantum computer.

  13. Degeneracies of particle and nuclear physics uncertainties in neutrinoless β β decay

    NASA Astrophysics Data System (ADS)

    Lisi, E.; Rotunno, A. M.; Šimkovic, F.

    2015-11-01

    Theoretical estimates for the half-life of neutrinoless double beta decay (0 ν β β ) in candidate nuclei are affected by both particle and nuclear physics uncertainties, which may complicate the interpretation of decay signals or limits. We study such uncertainties and their degeneracies in the following context: three 0 ν β β nuclei of great interest for large-scale experiments (Ge 76 , Te 130 , Xe 136 ), two representative particle physics mechanisms (light and heavy Majorana neutrino exchange), and a large set of nuclear matrix elements (NME), computed within the quasiparticle random phase approximation (QRPA). It turns out that the main theoretical uncertainties, associated with the effective axial coupling gA and with the nucleon-nucleon potential, can be parametrized in terms of NME rescaling factors, up to small residuals. From this parametrization, the following QRPA features emerge: (1) the NME dependence on gA is milder than quadratic, (2) in each of the two mechanisms, the relevant lepton number violating parameter is largely degenerate with the NME rescaling factors, and (3) the light and heavy neutrino exchange mechanisms are basically degenerate in the above three nuclei. We comment on the challenging theoretical and experimental improvements required to reduce such particle and nuclear physics uncertainties and their degeneracies.

  14. Influence of damping on proton energy loss in plasmas of all degeneracies

    SciTech Connect

    Barriga-Carrasco, Manuel D.

    2007-07-15

    The purpose of the present paper is to describe the effects of electron-electron collisions on the stopping power of plasmas of any degeneracy. Plasma targets are considered fully ionized so electronic stopping is only due to the free electrons. We focus our analysis on plasmas which electronic density is around solid values n{sub e}{approx_equal}10{sup 23} cm{sup -3} and which temperature is around T{approx_equal}10 eV; these plasmas are in the limit of weakly coupled plasmas. This type of plasma has not been studied extensively though it is very important for inertial confinement fusion. The electronic stopping is obtained from an exact quantum mechanical evaluation, which takes into account the degeneracy of the target plasma, and later it is compared with common classical and degenerate approximations. Differences are around 30% in some cases which can produce bigger mistakes in further energy deposition and projectile range studies. Then we consider electron-electron collisions in the exact quantum mechanical electronic stopping calculation. Now the maximum stopping occurs at velocities smaller than for the calculations without considering collisions for all kinds of plasmas analyzed. The energy loss enhances for velocities smaller than the velocity at maximum while decreases for higher velocities. Latter effects are magnified with increasing collision frequency. Differences with the same results for the case of not taking into account collisions are around 20% in the analyzed cases.

  15. Proton stopping using a full conserving dielectric function in plasmas at any degeneracy

    SciTech Connect

    Barriga-Carrasco, Manuel D.

    2010-10-15

    In this work, we present a dielectric function including the three conservation laws (density, momentum and energy) when we take into account electron-electron collisions in a plasma at any degeneracy. This full conserving dielectric function (FCDF) reproduces the random phase approximation (RPA) and Mermin ones, which confirms this outcome. The FCDF is applied to the determination of the proton stopping power. Differences among diverse dielectric functions in the proton stopping calculation are minimal if the plasma electron collision frequency is not high enough. These discrepancies can rise up to 2% between RPA values and the FCDF ones, and to 8% between the Mermin ones and FCDF ones. The similarity between RPA and FCDF results is not surprising, as all conservation laws are also considered in RPA dielectric function. Even for plasmas with low collision frequencies, those discrepancies follow the same behavior as for plasmas with higher frequencies. Then, discrepancies do not depend on the plasma degeneracy but essentially do on the value of the plasma collision frequency.

  16. Spontaneous Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Strocchi, Franco

    One of the most powerful ideas of modern theoretical physics is the mechanism of spontaneous symmetry breaking. It is at the basis of most of the recent achievements in the description of phase transitions in Statistical Mechanics as well as of collective phenomena in solid state physics. It has also made possible the unification of weak, electromagnetic and strong interactions in elementary particle physics. Philosophically, the idea is very deep and subtle (this is probably why its exploitation is a rather recent achievement) and the popular accounts do not fully do justice to it.

  17. Little Conformal Symmetry

    NASA Astrophysics Data System (ADS)

    Houtz, Rachel; Colwell, Kitran; Terning, John

    2016-09-01

    We explore a new class of natural models which ensure the one-loop divergences in the Higgs mass are cancelled. The top-partners that cancel the top loop are new gauge bosons, and the symmetry relation that ensures the cancellation arises at an infrared fixed point. Such a cancellation mechanism can, a la Little Higgs models, push the scale of new physics that completely solves the hierarchy problem up to 5-10 TeV. When embedded in a supersymmetric model, the stop and gaugino masses provide the cutoffs for the loops, and the mechanism ensures a cancellation between the stop and gaugino mass dependence of the Higgs mass parameter.

  18. Surface defects and symmetries

    NASA Astrophysics Data System (ADS)

    Fuchs, Jürgen; Schweigert, Christoph

    2015-04-01

    In quantum field theory, defects of various codimensions are natural ingredients and carry a lot of interesting information. In this contribution we concentrate on topological quantum field theories in three dimensions, with a particular focus on Dijkgraaf-Witten theories with abelian gauge group. Surface defects in Dijkgraaf-Witten theories have applications in solid state physics, topological quantum computing and conformal field theory. We explain that symmetries in these topological field theories are naturally defined in terms of invertible topological surface defects and are thus Brauer-Picard groups.

  19. Residual degeneracy from non-degenerate Landau levels of ultracold atoms in light-induced gauge potentials

    NASA Astrophysics Data System (ADS)

    Farias, B.; Melo, J. Lemos de; Furtado, C.

    2016-10-01

    We study non-degenerate Landau levels of ultracold trapped atoms in two dimensions, subject to an U (1) × U(1) Abelian gauge field and a lateral confining potential along a specific direction. The Landau-level degeneracy is removed due to the presence of the lateral confining potential that makes the single-particle energy spectrum explicitly dependent on the transverse momentum. The effect of the finite size of the atomic cloud on the energy spectrum is to split each Landau level into a set of sub-levels, once the transverse momentum becomes quantized. We show that under appropriate conditions some energy sub-levels overlap leading to a residual degeneracy of the system. Through numerical calculations, we map the residual degeneracy as a function of the effective magnetic field strength. Finally, we briefly discuss future studies on the transport properties of this atomic system that can be considered an optically induced atomic waveguide.

  20. Galactic oscillator symmetry

    NASA Technical Reports Server (NTRS)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  1. Squash operator and symmetry

    NASA Astrophysics Data System (ADS)

    Tsurumaru, Toyohiro

    2010-01-01

    This article begins with a simple proof of the existence of squash operators compatible with the Bennett-Brassard 1984 (BB84) protocol that suits single-mode as well as multimode threshold detectors. The proof shows that, when a given detector is symmetric under cyclic group C4, and a certain observable associated with it has rank two as a matrix, then there always exists a corresponding squash operator. Next, we go on to investigate whether the above restriction of “rank two” can be eliminated; i.e., is cyclic symmetry alone sufficient to guarantee the existence of a squash operator? The motivation behind this question is that, if this were true, it would imply that one could realize a device-independent and unconditionally secure quantum key distribution protocol. However, the answer turns out to be negative, and moreover, one can instead prove a no-go theorem that any symmetry is, by itself, insufficient to guarantee the existence of a squash operator.

  2. Squash operator and symmetry

    SciTech Connect

    Tsurumaru, Toyohiro

    2010-01-15

    This article begins with a simple proof of the existence of squash operators compatible with the Bennett-Brassard 1984 (BB84) protocol that suits single-mode as well as multimode threshold detectors. The proof shows that, when a given detector is symmetric under cyclic group C{sub 4}, and a certain observable associated with it has rank two as a matrix, then there always exists a corresponding squash operator. Next, we go on to investigate whether the above restriction of 'rank two' can be eliminated; i.e., is cyclic symmetry alone sufficient to guarantee the existence of a squash operator? The motivation behind this question is that, if this were true, it would imply that one could realize a device-independent and unconditionally secure quantum key distribution protocol. However, the answer turns out to be negative, and moreover, one can instead prove a no-go theorem that any symmetry is, by itself, insufficient to guarantee the existence of a squash operator.

  3. Halting the 'sad degenerationist parade': medical concerns about heredity and racial degeneracy in New Zealand psychiatry, 1853-99.

    PubMed

    Dawson, Maree

    2012-01-01

    Historians have focused on early twentieth-century positive eugenics in New Zealand In this article, I argue that the response came from a tradition of concern about heredity and white racial degeneracy, which extended beyond the British Empire. This article focuses on concerns about heredity at the Auckland Mental Hospital between 1850 and 1899, and contextualises these concerns in New Zealand mental hospital statistics from the late-nineteenth century. This article also considers Australasian, British, North and South American medical and immigration legislation history, and contrasts this with the legislation and medical discourses which formed part of a fear of heredity, racial degeneracy, immigration and mental illness in New Zealand.

  4. Dynamical Symmetries in atomic nuclei

    SciTech Connect

    Jolie, J.

    2010-04-26

    We review the use of dynamical symmetries and supersymmetries in nuclear physics using the interacting boson approximation. Special emphasis will be put on the experimental techniques used and the influence of symmetry on experimental observables. We illustrate this by a detailed study on mixed symmetry states in {sup 94}Mo. We present also experiments performed to test predictions of dynamical supersymmetries in the Pt-Au region.

  5. In search of symmetry lost.

    PubMed

    Wilczek, Frank

    2005-01-20

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  6. Parity symmetry in QED3

    SciTech Connect

    Lo, Pok Man; Swanson, Eric S.

    2011-03-15

    Schwinger-Dyson equations are used to study spontaneous chiral and parity symmetry breaking of three-dimensional quantum electrodynamics with two-component fermions. This theory admits a topological photon mass that explicitly breaks parity symmetry and generates a fermion mass. We show for the first time that it is possible to spontaneously break both parity and chiral symmetry. We also find that chiral symmetry is restored at a critical number of fermion flavors in our truncation scheme. Finally, the Coleman-Hill theorem is used to demonstrate that the results are reasonably accurate.

  7. Leptogenesis and residual CP symmetry

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-03-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  8. Unified Symmetry of Hamilton Systems

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Jun; Qin, Mao-Chang; Mei, Feng-Xiang

    2005-11-01

    The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results. The project supported by National Natural Science Foundation of China under Grant No. 10272021 and the Doctoral Program Foundation of Institution of Higher Education of China under Grant No. 20040007022

  9. Givental Graphs and Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Dunin-Barkowski, Petr; Shadrin, Sergey; Spitz, Loek

    2013-05-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

  10. Topological charges of three-dimensional Dirac semimetals with rotation symmetry

    NASA Astrophysics Data System (ADS)

    Yang, Bohm-Jung; Morimoto, Takahiro; Furusaki, Akira

    2015-10-01

    In general, the stability of a band crossing point indicates the presence of a quantized topological number associated with it. In particular, the recent discovery of three-dimensional Dirac semimetals in Na3Bi and Cd3As2 demonstrates that a Dirac point with fourfold degeneracy can be stable as long as certain crystalline symmetries are supplemented in addition to the time-reversal and inversion symmetries. However, the topological charges associated with Na3Bi and Cd3As2 are not clarified yet. In this work, we identify the topological charge of three-dimensional Dirac points. It is found that although the simultaneous presence of the time-reversal and inversion symmetries forces the net chiral charge to vanish, a Dirac point can carry another quantized topological charge when an additional rotation symmetry is considered. Two different classes of Dirac semimetals are identified depending on the nature of the rotation symmetries. First, the conventional symmorphic rotational symmetry which commutes with the inversion gives rise to the class I Dirac semimetals having a pair of Dirac points on the rotation axes. Since the topological charges of each pair of Dirac points have the opposite sign, a pair creation or a pair annihilation is required to change the number of Dirac points in the momentum space. On the other hand, the class II Dirac semimetals possess a single isolated Dirac point at a time-reversal invariant momentum, which is protected by a screw rotation. The nonsymmorphic nature of screw rotations allows the anticommutation relation between the rotation and inversion symmetries, which enables to circumvent the doubling of the number of Dirac points and create a single Dirac point at the Brillouin zone boundary.

  11. Giant and tunable valley degeneracy splitting in MoTe2

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Qi, Jingshan; Niu, Qian; Feng, Ji

    Valleys in monolayer transition-metal dichalcogenides seamlessly connect two basic carriers of quantum information, namely, the electron spin and photon helicity. Lifting the valley degeneracy is an attractive route to achieve further optoelectronic manipulations. However, the magnetic field only creates a very small valley splitting. We propose a strategy to create giant valley splitting by the proximity-induced Zeeman effect. Our first principles calculations of monolayer MoTe2 on a EuO substrate show that valley splitting over 300 meV can be generated. Interband transition energies become valley dependent, leading to selective spin-photon coupling by optical frequency tuning. The valley splitting is also continuously tunable by rotating the substrate magnetization. The giant and tunable valley splitting adds a different dimension to the exploration of unique optoelectronic devices based on magneto-optical coupling and magnetoelectric coupling.

  12. Giant and tunable valley degeneracy splitting in MoTe2

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Li, Xiao; Niu, Qian; Feng, Ji

    2015-09-01

    Valleys in monolayer transition-metal dichalcogenides seamlessly connect two basic carriers of quantum information, namely, the electron spin and photon helicity. Lifting the valley degeneracy is an attractive route to achieve further optoelectronic manipulations. However, the magnetic field only creates a very small valley splitting. We propose a strategy to create giant valley splitting by the proximity-induced Zeeman effect. Our first principles calculations of monolayer MoTe2 on a EuO substrate show that valley splitting over 300 meV can be generated. Interband transition energies become valley dependent, leading to selective spin-photon coupling by optical frequency tuning. The valley splitting is also continuously tunable by rotating the substrate magnetization. The giant and tunable valley splitting adds a different dimension to the exploration of unique optoelectronic devices based on magneto-optical coupling and magnetoelectric coupling.

  13. Very broad gain bandwidth parametric amplification in nonlinear crystals at critical wavelength degeneracy.

    PubMed

    Dabu, R

    2010-05-24

    Gain spectra were calculated at critical wavelength degeneracy (CWD) in a collinear phase-matching geometry optical parametric amplification (OPA) process. The frequency bandwidth available through CWD-OPA is broader compared to the gain bandwidth obtained by the non-collinear OPA geometry. A solution for very broad bandwidth chirped pulse amplification based on partially deuterated DKDP (P-DKDP) crystals, pumped by pulsed green lasers, is proposed. 1.38x10(14) Hz frequency bandwidth and peak intensity gain G approximately 62 were calculated in a 5-mm long 58% deuterated DKDP crystal, pumped by 527-nm wavelength at 64-GW/cm2 intensity. Parametric amplification at CWD in few-mm thin P-DKDP crystals, pumped by picosecond pulses of nearly 100-GW/cm2 intensity, possesses a true potential for generating high energy laser pulses compressible to one-cycle duration.

  14. Partially ferromagnetic electromagnet for trapping and cooling neutral atoms to quantum degeneracy

    SciTech Connect

    Fauquembergue, M.; Riou, J-F.; Guerin, W.; Rangwala, S.; Moron, F.; Villing, A.; Le Coq, Y.; Bouyer, P.; Aspect, A.; Lecrivain, M.

    2005-10-15

    We have developed a compact partially ferromagnetic electromagnet to produce an Ioffe-Pritchard trap for neutral atoms. Our structure permits strong magnetic confinement with low power consumption. Compared to the previous iron-core electromagnet [B. Desruelle, V. Boyer, P. Bouyer, G. Birkl, M. Lecrivain, F. Alves, C. Westbrook, and A. Aspect, Eur. Phys. J. D 1, 255 (1998)], it allows for easy compensation of remnant fields and very high stability, along with cost-effective realization and compactness. We describe and characterize our apparatus and demonstrate trapping and cooling of {sup 87}Rb atoms to quantum degeneracy. Pure Bose-Einstein condensates containing 10{sup 6} atoms are routinely realized on a half-minute cycle. In addition we test the stability of the magnetic trap by producing atom lasers.

  15. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard

    NASA Astrophysics Data System (ADS)

    Gao, T.; Estrecho, E.; Bliokh, K. Y.; Liew, T. C. H.; Fraser, M. D.; Brodbeck, S.; Kamp, M.; Schneider, C.; Höfling, S.; Yamamoto, Y.; Nori, F.; Kivshar, Y. S.; Truscott, A. G.; Dall, R. G.; Ostrovskaya, E. A.

    2015-10-01

    Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard--a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices.

  16. Dark matter distribution in the Coma cluster from galaxy kinematics: breaking the mass-anisotropy degeneracy

    NASA Astrophysics Data System (ADS)

    Łokas, Ewa L.; Mamon, Gary A.

    2003-08-01

    We study velocity moments of elliptical galaxies in the Coma cluster using Jeans equations. The dark matter distribution in the cluster is modelled by a generalized formula based upon the results of cosmological N-body simulations. Its inner slope (cuspy or flat), concentration and mass within the virial radius are kept as free parameters, as well as the velocity anisotropy, assumed independent of position. We show that the study of line-of-sight velocity dispersion alone does not allow us to constrain the parameters. By a joint analysis of the observed profiles of velocity dispersion and kurtosis, we are able to break the degeneracy between the mass distribution and velocity anisotropy. We determine the dark matter distribution at radial distances larger than 3 per cent of the virial radius and we find that the galaxy orbits are close to isotropic. Due to limited resolution, different inner slopes are found to be consistent with the data and we observe a strong degeneracy between the inner slope α and concentration c; the best-fitting profiles have the two parameters related with c= 19-9.6α. Our best-fitting Navarro-Frenk-White profile has concentration c= 9, which is 50 per cent higher than standard values found in cosmological simulations for objects of similar mass. The total mass within the virial radius of 2.9h-170 Mpc is 1.4 × 1015h-170 Msolar (with 30 per cent accuracy), 85 per cent of which is dark. At this distance from the cluster centre, the mass-to-light ratio in the blue band is 351h70 solar units. The total mass within the virial radius leads to estimates of the density parameter of the Universe, assuming that clusters trace the mass-to-light ratio and baryonic fraction of the Universe, with Ω0= 0.29 +/- 0.1.

  17. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard.

    PubMed

    Gao, T; Estrecho, E; Bliokh, K Y; Liew, T C H; Fraser, M D; Brodbeck, S; Kamp, M; Schneider, C; Höfling, S; Yamamoto, Y; Nori, F; Kivshar, Y S; Truscott, A G; Dall, R G; Ostrovskaya, E A

    2015-10-22

    Exciton-polaritons are hybrid light-matter quasiparticles formed by strongly interacting photons and excitons (electron-hole pairs) in semiconductor microcavities. They have emerged as a robust solid-state platform for next-generation optoelectronic applications as well as for fundamental studies of quantum many-body physics. Importantly, exciton-polaritons are a profoundly open (that is, non-Hermitian) quantum system, which requires constant pumping of energy and continuously decays, releasing coherent radiation. Thus, the exciton-polaritons always exist in a balanced potential landscape of gain and loss. However, the inherent non-Hermitian nature of this potential has so far been largely ignored in exciton-polariton physics. Here we demonstrate that non-Hermiticity dramatically modifies the structure of modes and spectral degeneracies in exciton-polariton systems, and, therefore, will affect their quantum transport, localization and dynamical properties. Using a spatially structured optical pump, we create a chaotic exciton-polariton billiard--a two-dimensional area enclosed by a curved potential barrier. Eigenmodes of this billiard exhibit multiple non-Hermitian spectral degeneracies, known as exceptional points. Such points can cause remarkable wave phenomena, such as unidirectional transport, anomalous lasing/absorption and chiral modes. By varying parameters of the billiard, we observe crossing and anti-crossing of energy levels and reveal the non-trivial topological modal structure exclusive to non-Hermitian systems. We also observe mode switching and a topological Berry phase for a parameter loop encircling the exceptional point. Our findings pave the way to studies of non-Hermitian quantum dynamics of exciton-polaritons, which may uncover novel operating principles for polariton-based devices. PMID:26458102

  18. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: Hybrid functional study of bilayer phosphorene.

    PubMed

    Sun, Yi-Yang; Zhang, Shengbai

    2016-07-14

    Bulk black phosphorus has two optical phonon modes labeled as Ag (2) and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag (2) modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy. PMID:27421389

  19. Attenuation of Bragg backscattering of electromagnetic waves from density fluctuations near the region of polarization degeneracy in magnetoactive plasma

    NASA Astrophysics Data System (ADS)

    Gospodchikov, E. D.; Khusainov, T. A.; Shalashov, A. G.

    2016-08-01

    Specific features of Bragg backscattering under conditions of strong polarization degeneracy near the cutoff surface in an anisotropic medium are studied analytically and numerically. It is shown that the linear interaction of normal waves can substantially affect wave scattering by suppressing the amplification of Bragg backscattering near the cutoff region in the case of weak coupling between normal waves.

  20. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: Hybrid functional study of bilayer phosphorene

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Yang; Zhang, Shengbai

    2016-07-01

    Bulk black phosphorus has two optical phonon modes labeled as Ag2 and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag2 modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy.

  1. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: Hybrid functional study of bilayer phosphorene.

    PubMed

    Sun, Yi-Yang; Zhang, Shengbai

    2016-07-14

    Bulk black phosphorus has two optical phonon modes labeled as Ag (2) and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag (2) modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy.

  2. Symmetry in the Car Park

    ERIC Educational Resources Information Center

    Hancock, Karen

    2007-01-01

    In this article, the author presents a lesson on rotational symmetry which she developed for her students. The aim of the lesson was "to identify objects with rotational symmetry in the staff car park" and the success criteria were "pictures or sketches of at least six objects with different orders of rotation". After finding examples of…

  3. Symmetry in Sign Language Poetry

    ERIC Educational Resources Information Center

    Sutton-Spence, Rachel; Kaneko, Michiko

    2007-01-01

    This paper considers the range of ways that sign languages use geometric symmetry temporally and spatially to create poetic effect. Poets use this symmetry in sign language art to highlight duality and thematic contrast, and to create symbolic representations of beauty, order and harmony. (Contains 8 tables, 14 figures and 6 notes.)

  4. Crystallographic and Spectroscopic Symmetry Notations.

    ERIC Educational Resources Information Center

    Sharma, B. D.

    1982-01-01

    Compares Schoenflies and Hermann-Mauguin notations of symmetry. Although the former (used by spectroscopists) and latter (used by crystallographers) both describe the same symmetry, there are distinct differences in the manner of description which may lead to confusion in correlating the two notations. (Author/JN)

  5. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  6. Asymptotic symmetries from finite boxes

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2016-01-01

    It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a 'box.' This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the anti-de Sitter and Poincaré asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2 + 1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS3 and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.

  7. Symmetry inheritance of scalar fields

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2015-07-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.

  8. SU(2) symmetry in a realistic spin-fermion model for cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Kloss, T.; Montiel, X.; Pépin, C.

    2015-05-01

    We consider the pseudogap (PG) state of high-Tc superconductors in the form of a composite order parameter fluctuating between 2 pF -charge ordering and superconducting (SC) pairing. In the limit of linear dispersion and at the hot spots, both order parameters are related by a SU(2) symmetry, and the eight-hot-spot model of Efetov et al. [Nat. Phys. 9, 442 (2013), 10.1038/nphys2641] is recovered. In the general case, however, curvature terms of the dispersion will break this symmetry, and the degeneracy between both states is lifted. Taking the full momentum dependence of the order parameter into account, we measure the strength of this SU(2) symmetry breaking over the full Brillouin zone. For realistic dispersion relations including curvature we find generically that the SU(2) symmetry breaking is small and robust to the fermiology and that the symmetric situation is restored in the large paramagnon mass and coupling limit. Comparing the level splitting for different materials, we propose a scenario that could account for the competition between the PG and SC states in the phase diagram of high-Tc superconductors.

  9. Real-space observation of spectral degeneracy breaking in a waveguide-coupled disk microresonator.

    PubMed

    Blaize, Sylvain; Gesuele, Felice; Stefanon, Ilan; Bruyant, Aurélien; Lérondel, Gilles; Royer, Pascal; Martin, Bruno; Morand, Alain; Benech, Pierre; Fedeli, Jean-Marc

    2010-10-01

    We report on the real-space observation of resonant frequency splitting in a high-Q waveguide-coupled silicon-on-insulator microdisk resonator. Phase sensitive near-field analysis reveals the stationary nature of the two resonant states, and spectral investigations clearly show their orthogonality. These measurements emphasize the role of the coupling waveguide in this splitting phenomenon. The symmetry of the two stationary whispering gallery modes is clearly observed and is found to follow the axial symmetry of the waveguide-coupled microdisk as it has been reported by earlier theoretical predictions.

  10. Functional Symmetry of Endomembranes

    PubMed Central

    2007-01-01

    In higher eukaryotic cells pleiomorphic compartments composed of vacuoles, tubules and vesicles move from the endoplasmic reticulum (ER) and the plasma membrane to the cell center, operating in early biosynthetic trafficking and endocytosis, respectively. Besides transporting cargo to the Golgi apparatus and lysosomes, a major task of these compartments is to promote extensive membrane recycling. The endocytic membrane system is traditionally divided into early (sorting) endosomes, late endosomes and the endocytic recycling compartment (ERC). Recent studies on the intermediate compartment (IC) between the ER and the Golgi apparatus suggest that it also consists of peripheral (“early”) and centralized (“late”) structures, as well as a third component, designated here as the biosynthetic recycling compartment (BRC). We propose that the ERC and the BRC exist as long-lived “mirror compartments” at the cell center that also share the ability to expand and become mobilized during cell activation. These considerations emphasize the functional symmetry of endomembrane compartments, which provides a basis for the membrane rearrangements taking place during cell division, polarization, and differentiation. PMID:17267686

  11. Spectral theorem and partial symmetries

    SciTech Connect

    Gozdz, A.; Gozdz, M.

    2012-10-15

    A novel method of the decompositon of a quantum system's Hamiltonian is presented. In this approach the criterion of the decomposition is determined by the symmetries possessed by the sub-Hamiltonians. This procedure is rather generic and independent of the actual global symmetry, or the lack of it, of the full Hamilton operator. A detailed investigation of the time evolution of the various sub-Hamiltonians, therefore the change in time of the symmetry of the physical object, is presented for the case of a vibrator-plus-rotor model. Analytical results are illustrated by direct numerical calculations.

  12. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  13. Symmetries in the Schwarzschild Problem

    NASA Astrophysics Data System (ADS)

    Mioc, V.

    The two-body problem associated to a force field described by a potential of the form U = A/r + B/r3 (r is a distance between particles, A and B are real parameters) is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form isomorphic commutative groups endowed with an idempotent structure. Expressed in Levi-Civita's coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting an idempotent structure.

  14. Symmetries from the solution manifold

    NASA Astrophysics Data System (ADS)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  15. Trace formula for broken symmetry

    SciTech Connect

    Creagh, S.C.

    1996-05-01

    We derive a trace formula for systems that exhibit an approximate continuous symmetry. It interpolates between the sum over continuous families of periodic orbits that holds in the case of exact continuous symmetry, and the discrete sum over isolated orbits that holds when the symmetry is completely broken. It is based on a simple perturbation expansion of the classical dynamics, centered around the case of exact symmetry, and gives an approximation to the usual Gutzwiller formula when the perturbation is large. We illustrate the computation with some 2-dimensional examples: the deformation of the circular billiard into an ellipse, and anisotropic and anharmonic perturbations of a harmonic oscillator. Copyright {copyright} 1996 Academic Press, Inc.

  16. Biases and degeneracies in the retrieval of exoplanetary atmospheres through transit spectroscopy

    NASA Astrophysics Data System (ADS)

    Rocchetto, Marco; Waldmann, Ingo Peter

    2015-12-01

    Over the past decades transit spectroscopy has become one of the pioneering methods to study exoplanetary atmospheres. With the increasing number of observations, and the advent of new ground and spaced based instruments, it is now crucial to find the most optimal and objective methodologies to interpret these data, and understand the information content they convey.Nowadays, spectral retrievals are the industry standard used to characterise exoplanetary atmospheres. Thanks to the use of fast line-by-line forward models and Bayesian frameworks, an accurate mapping of the parameter space can be easily obtained. However, the forward models used in these retrieval often contain many simplifying assumptions. In this conference, we will present a new study on the biases that these simplifications cause on the retrieved model parameters. We will show under which conditions these become significant, and how they can be overcome.Using the most sophisticated photochemical models in the literature, we compute, for a few typical planets, synthetic exoplanetary spectra. The same spectra are then retrieved using TauREx, a new line-by-line radiative transfer atmospheric retrieval framework for exoplanet spectroscopy (Waldmann et al. 2015). In a study that is first of its kind, we investigate how the most common assumptions used in the forward models affect the retrieved model parameters, and how these biases can lead to inaccurate conclusions. Understanding the biases and degeneracies in our retrievals, and in which observing conditions they arise, is proving crucial, especially considering the advent of new instruments, such as the JWST.

  17. CCDM model with spatial curvature and the breaking of ''dark degeneracy''

    SciTech Connect

    Jesus, J.F.; Andrade-Oliveira, F. E-mail: felipe.oliveira@port.ac.uk

    2016-01-01

    Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, leads to a negative creation pressure, which can be used to explain the accelerated expansion of the Universe. Recently, it has been shown that the dynamics of expansion of such models can not be distinguished from the concordance ΛCDM model, even at higher orders in the evolution of density perturbations, leading at the so called ''dark degeneracy''. However, depending on the form of the CDM creation rate, the inclusion of spatial curvature leads to a different behavior of CCDM when compared to ΛCDM, even at background level. With a simple form for the creation rate, namely, Γ∝1/H , we show that this model can be distinguished from ΛCDM, provided the Universe has some amount of spatial curvature. Observationally, however, the current limits on spatial flatness from CMB indicate that neither of the models are significantly favored against the other by current data, at least in the background level.

  18. 0-π quantum transition in a carbon nanotube Josephson junction: Universal phase dependence and orbital degeneracy

    NASA Astrophysics Data System (ADS)

    Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.

    2016-05-01

    In a π -Josephson junction, the supercurrent's sign is reversed due to the dephasing of superconducting pairs upon their traversal of the nonsuperconducting part. 0-π quantum transitions are extremely sensitive to electronic and magnetic correlations, providing powerful exploration tools of competing orders. In a quantum dot connected to superconducting reservoirs, the transition is governed by gate voltage. As shown recently, it can also be controlled by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. We investigated here the current-phase relation in a clean carbon nanotube quantum dot, close to orbital degeneracy, in a regime of strong competition between local electronic correlations and superconducting proximity effect. We show that the nature of the transition depends crucially on the occupation and the width of the orbital levels, which determine their respective contribution to transport. When the transport of Cooper pairs takes place through only one of these levels, we find that the phase diagram of the phase-dependent 0-π transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0-π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.

  19. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  20. Cognitive Aging and Time Perception: Roles of Bayesian Optimization and Degeneracy

    PubMed Central

    Turgeon, Martine; Lustig, Cindy; Meck, Warren H.

    2016-01-01

    This review outlines the basic psychological and neurobiological processes associated with age-related distortions in timing and time perception in the hundredths of milliseconds-to-minutes range. The difficulty in separating indirect effects of impairments in attention and memory from direct effects on timing mechanisms is addressed. The main premise is that normal aging is commonly associated with increased noise and temporal uncertainty as a result of impairments in attention and memory as well as the possible reduction in the accuracy and precision of a central timing mechanism supported by dopamine-glutamate interactions in cortico-striatal circuits. Pertinent to these findings, potential interventions that may reduce the likelihood of observing age-related declines in timing are discussed. Bayesian optimization models are able to account for the adaptive changes observed in time perception by assuming that older adults are more likely to base their temporal judgments on statistical inferences derived from multiple trials than on a single trial’s clock reading, which is more susceptible to distortion. We propose that the timing functions assigned to the age-sensitive fronto-striatal network can be subserved by other neural networks typically associated with finely-tuned perceptuo-motor adjustments, through degeneracy principles (different structures serving a common function). PMID:27242513

  1. RESOLVING THE sin(I) DEGENERACY IN LOW-MASS MULTI-PLANET SYSTEMS

    SciTech Connect

    Batygin, Konstantin; Laughlin, Gregory

    2011-04-01

    Long-term orbital evolution of multi-planet systems under tidal dissipation often converges to a stationary state, known as the tidal fixed point. The fixed point is characterized by a lack of oscillations in the eccentricities and apsidal alignment among the orbits. Quantitatively, the nature of the fixed point is dictated by mutual interactions among the planets as well as non-Keplerian effects. We show that if a roughly coplanar system hosts a hot, sub-Saturn mass planet, and is tidally relaxed, separation of planet-planet interactions and non-Keplerian effects in the equations of motion leads to a direct determination of the true masses of the planets. Consequently, a 'snap-shot' observational determination of the orbital state resolves the sin(I) degeneracy and opens up a direct avenue toward identification of the true lowest-mass exoplanets detected. We present an approximate, as well as a general, mathematical framework for computation of the line-of-sight inclination of secular systems, and apply our models illustratively to the 61 Vir system. We conclude by discussing the observability of planetary systems to which our method is applicable and we set our analysis into a broader context by presenting a current summary of the various possibilities for determining the physical properties of planets from observations of their orbital states.

  2. Flat band degeneracy and near-zero refractive index materials in acoustic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Shiqiao; Mei, Jun

    2016-01-01

    A Dirac-like cone is formed by utilizing the flat bands associated with localized modes in an acoustic crystal (AC) composed of a square array of core-shell-structure cylinders in a water host. Although the triply-degeneracy seems to arise from two almost-overlapping flat bands touching another curved band, the enlarged view of the band structure around the degenerate point reveals that there are actually two linear bands intersecting each other at the Brillouin zone center, with another flat band passing through the same crossing point. The linearity of dispersion relations is achieved by tuning the geometrical parameters of the cylindrical scatterers. A perturbation method is used to not only accurately predict the linear slopes of the dispersions, but also confirm the linearity of the bands from first principles. An effective medium theory based on coherent potential approximation is developed, and it shows that a slab made of the AC carries a near-zero refractive index around the Dirac-like point. Full-wave simulations are performed to unambiguously demonstrate the wave manipulating properties of the AC structures such as perfect transmission, unidirectional transmission and wave front shaping.

  3. Degeneracy between θ23 octant and neutrino non-standard interactions at DUNE

    NASA Astrophysics Data System (ADS)

    Agarwalla, Sanjib Kumar; Chatterjee, Sabya Sachi; Palazzo, Antonio

    2016-11-01

    We expound in detail the degeneracy between the octant of θ23 and flavor-changing neutral-current non-standard interactions (NSI's) in neutrino propagation, considering the Deep Underground Neutrino Experiment (DUNE) as a case study. In the presence of such NSI parameters involving the e - μ (εeμ) and e - τ (εeτ) flavors, the νμ →νe and νbarμ →νbare appearance probabilities in long-baseline experiments acquire an additional interference term, which depends on one new dynamical CP-phase ϕeμ/eτ. This term sums up with the well-known interference term related to the standard CP-phase δ creating a source of confusion in the determination of the octant of θ23. We show that for values of the NSI coupling (taken one at-a-time) as small as few % (relative to the Fermi coupling constant GF), and for unfavorable combinations of the two CP-phases δ and ϕeμ/eτ, the discovery potential of the octant of θ23 gets completely lost.

  4. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  5. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials.

    PubMed

    Huang, Xueqin; Lai, Yun; Hang, Zhi Hong; Zheng, Huihuo; Chan, C T

    2011-05-29

    A zero-refractive-index metamaterial is one in which waves do not experience any spatial phase change, and such a peculiar material has many interesting wave-manipulating properties. These materials can in principle be realized using man-made composites comprising metallic resonators or chiral inclusions, but metallic components have losses that compromise functionality at high frequencies. It would be highly desirable if we could achieve a zero refractive index using dielectrics alone. Here, we show that by employing accidental degeneracy, dielectric photonic crystals can be designed and fabricated that exhibit Dirac cone dispersion at the centre of the Brillouin zone at a finite frequency. In addition to many interesting properties intrinsic to a Dirac cone dispersion, we can use effective medium theory to relate the photonic crystal to a material with effectively zero permittivity and permeability. We then numerically and experimentally demonstrate in the microwave regime that such dielectric photonic crystals with reasonable dielectric constants manipulate waves as if they had near-zero refractive indices at and near the Dirac point frequency.

  6. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning.

    PubMed

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.

  7. Broken Symmetries and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.

  8. Dynamical symmetries in nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.

  9. Anomalies and Discrete Chiral Symmetries

    SciTech Connect

    Creutz, M.

    2009-09-07

    The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.

  10. Widening the Scope of a Partial Dynamical Symmetry

    NASA Astrophysics Data System (ADS)

    Pereira, Wesley; Garcia, Ricardo; Zamick, Larry

    2015-10-01

    In a single j shell calculation in which only T = 1(even J) two-particle matrix elements were non-zero there was a partial dynamical symmetry e.g. for 2 protons and 2 neutrons in the f7/2 shell there is a degeneracy of states with angular momenta I = 3,7,9,10. These have non -zero components only for (Jp, Jn) = (4,6) or (6,4). These I's cannot occur for 4 identical partices (44 Ca).We then consider a ``123'' interaction which for J = 0 to 7 is (0,0,1,0,2,0,3,0). Then I = 6 and I = 8 also come into play. Fot these (Jp+Jn) is a good quantum number. One gets an equally spaced multidegerate levels (``vibrational spectra'') with separation of 1.5 MeV. Each of these levels has fixed (Jp+Jn. For(Jp+Jn) equal to 6 we have I = 3 an I = 6 as; for 8 we get 6,7 ,8; for 10,we get 3,7,9,10 and for 12 we get 10,12. In the g9/2 shell with a ``1234'' (Jp+Jn) ranges from 8 to 16 and in h11/2 with ``12345'' from 10 and 20. W.P. Garden State Stokes Alliance for Minorities Participation internship GSISAMP 2. R.G. REU fron NSF PHY-1263280.

  11. Ultracold Fermi gases with emergent SU(N) symmetry.

    PubMed

    Cazalilla, Miguel A; Rey, Ana Maria

    2014-12-01

    We review recent experimental and theoretical progress on ultracold alkaline-earth Fermi gases with emergent SU(N) symmetry. Emphasis is placed on describing the ground-breaking experimental achievements of recent years. The latter include (1) the cooling to below quantum degeneracy of various isotopes of ytterbium and strontium, (2) the demonstration of optical Feshbach resonances and the optical Stern-Gerlach effect, (3) the realization of a Mott insulator of (173)Yb atoms, (4) the creation of various kinds of Fermi-Bose mixtures and (5) the observation of many-body physics in optical lattice clocks. On the theory side, we survey the zoo of phases that have been predicted for both gases in a trap and loaded into an optical lattice, focusing on two and three dimensional systems. We also discuss some of the challenges that lie ahead for the realization of such phases such as reaching the temperature scale required to observe magnetic and more exotic quantum orders. The challenge of dealing with collisional relaxation of excited electronic levels is also discussed. PMID:25429615

  12. Ultracold Fermi gases with emergent SU(N) symmetry

    NASA Astrophysics Data System (ADS)

    Cazalilla, Miguel A.; Rey, Ana Maria

    2014-12-01

    We review recent experimental and theoretical progress on ultracold alkaline-earth Fermi gases with emergent SU(N) symmetry. Emphasis is placed on describing the ground-breaking experimental achievements of recent years. The latter include (1) the cooling to below quantum degeneracy of various isotopes of ytterbium and strontium, (2) the demonstration of optical Feshbach resonances and the optical Stern-Gerlach effect, (3) the realization of a Mott insulator of 173Yb atoms, (4) the creation of various kinds of Fermi-Bose mixtures and (5) the observation of many-body physics in optical lattice clocks. On the theory side, we survey the zoo of phases that have been predicted for both gases in a trap and loaded into an optical lattice, focusing on two and three dimensional systems. We also discuss some of the challenges that lie ahead for the realization of such phases such as reaching the temperature scale required to observe magnetic and more exotic quantum orders. The challenge of dealing with collisional relaxation of excited electronic levels is also discussed.

  13. Polarization properties and disorder effects in H{sub 3} photonic crystal cavities incorporating site-controlled, high-symmetry quantum dot arrays

    SciTech Connect

    Surrente, Alessandro; Felici, Marco; Gallo, Pascal; Dwir, Benjamin; Rudra, Alok; Kapon, Eli; Biasiol, Giorgio

    2015-07-20

    We report on the effects of optical disorder on breaking the symmetry of the cavity modes of H{sub 3} photonic crystal cavities incorporating site-controlled pyramidal quantum dots (QDs) as the internal light source. The high in-plane symmetry of the polarization states of the pyramidal QDs simplifies the analysis of the polarization states of the H{sub 3} cavities. It is shown that the optical disorder induced by fabrication imperfections lifts the degeneracy of the two quadrupole cavity modes and tilts the elongation axes of the cavity mode patterns with respect to the ideal, hexagonal symmetry case. These results are useful for designing QD-cavity structures for polarization-entangled photon sources and few-QD lasers.

  14. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  15. Generalization of iterative perturbation theory and coherent potential approximation (ITP+CPA) to double exchange model with orbital degeneracy

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Xin; Wen, Sheng-Hui; Li, Ming

    2008-06-01

    A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherent-potential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. The Hubbard interaction and the off-diagonal components for the hopping matrix tmnij(m ≠ n) are considered in our calculation of spectrum and optical conductivity. The numerical results show that the effects of the non-diagonal hopping matrix elements are important.

  16. Lattice-induced double-valley degeneracy lifting in graphene by a magnetic field.

    PubMed

    Luk'yanchuk, Igor A; Bratkovsky, Alexander M

    2008-05-01

    We show that the recently discovered double-valley splitting of the Landau levels in the quantum Hall effect in graphene can be explained as the perturbative orbital interaction of intravalley and intervalley microscopic orbital currents with a magnetic field. This effect is facilitated by the translationally noninvariant terms that correspond to graphene's crystallographic honeycomb symmetry but do not exist in the relativistic theory of massless Dirac fermions in quantum electrodynamics. We discuss recent data in view of these findings.

  17. Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system

    PubMed Central

    2010-01-01

    Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information. PMID:20701759

  18. Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system.

    PubMed

    Tieri, Paolo; Grignolio, Andrea; Zaikin, Alexey; Mishto, Michele; Remondini, Daniel; Castellani, Gastone C; Franceschi, Claudio

    2010-01-01

    Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information.

  19. Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system.

    PubMed

    Tieri, Paolo; Grignolio, Andrea; Zaikin, Alexey; Mishto, Michele; Remondini, Daniel; Castellani, Gastone C; Franceschi, Claudio

    2010-01-01

    Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information. PMID:20701759

  20. Non-singular string cosmology in a 2d hybrid model

    NASA Astrophysics Data System (ADS)

    Florakis, I.; Kounnas, C.; Partouche, H.; Toumbas, N.

    2011-03-01

    The existence of non-singular string cosmologies is established in a class of two-dimensional supersymmetric Hybrid models at finite temperature. The left-moving sector of the Hybrid models gives rise to 16 real (N=4) spacetime supercharges as in the usual superstring models. The right-moving sector is non-supersymmetric at the massless level, but is characterized by MSDS symmetry, which ensures boson/fermion degeneracy of the right-moving massive levels. Finite temperature configurations, which are free of Hagedorn instabilities, are constructed in the presence of non-trivial “gravito-magnetic” fluxes. These fluxes inject non-trivial winding charge into the thermal vacuum and restore the thermal T-duality symmetry associated with the Euclidean time circle. Thanks to the unbroken right-moving MSDS symmetry, the one-loop string partition function is exactly calculable beyond any α‧-approximation. At the self-dual point new massless thermal states appear, sourcing localized spacelike branes, which can be used to connect a contracting thermal Universe to an expanding one. The resulting bouncing cosmology is free of any curvature singularities and the string coupling remains perturbative throughout the cosmological evolution.

  1. Novel symmetries in Christ-Lee model

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Shukla, A.

    2016-07-01

    We demonstrate that the gauge-fixed Lagrangian of the Christ-Lee model respects four fermionic symmetries, namely; (anti-)BRST symmetries, (anti-)co-BRST symmetries within the framework of BRST formalism. The appropriate anticommutators amongst the fermionic symmetries lead to a unique bosonic symmetry. It turns out that the algebra obeyed by the symmetry transformations (and their corresponding conserved charges) is reminiscent of the algebra satisfied by the de Rham cohomological operators of differential geometry. We also provide the physical realizations of the cohomological operators in terms of the symmetry properties. Thus, the present model provides a simple model for the Hodge theory.

  2. Parity-time symmetry broken by point-group symmetry

    SciTech Connect

    Fernández, Francisco M. Garcia, Javier

    2014-04-15

    We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrödinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrödinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.

  3. Particle-hole symmetry, many-body localization, and topological edge modes

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.

    We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the non-interacting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders. Supported by the Gordon and Betty Moore Foundation's EPiQS Initiative (Grant GBMF4307 (ACP), the Quantum Materials Program at LBNL (RV), NSF Grant DMR-1455366 and UCOP Research Catalyst Award No. CA-15-327861 (SAP).

  4. Particle-hole symmetry, many-body localization, and topological edge modes

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.

    2016-04-01

    We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: Even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the noninteracting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders.

  5. Determining the average path length of amplified spontaneous emission in a four-level laser near the 1/3 mode-degeneracy cavity configurations

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Hsu; Lu, Ming-Lun; Tai, Po-Tse

    2015-08-01

    We determine the average path length ls of amplified spontaneous emission (ASE) by comparing the numerical slope of a straight line with the experimental slope in the graph of the square of relaxation oscillation frequency versus normalized pump ratio. The simple method is applied in an end-pumped Nd:YVO4 laser with the 1/3 mode-degeneracy cavity having the transverse mode spacing equal to 1/3 of the longitudinal mode spacing. We find that ls is larger at the degeneracy than that far from the degeneracy. This result indicates the existence of stronger ASE at the degeneracy, which is confirmed below the threshold. This is because many spontaneous emission photons can undergo amplification not only before escaping from the gain medium but also after leaving the gain medium, owing to cavity reflection. Our method can be applied in the situations where the Auger upconversion effect is absent, weak, or well-known.

  6. Convergence behavior of multireference perturbation theory: Forced degeneracy and optimization partitioning applied to the beryllium atom

    NASA Astrophysics Data System (ADS)

    Finley, James P.; Chaudhuri, Rajat K.; Freed, Karl F.

    1996-07-01

    High-order multireference perturbation theory is applied to the 1S states of the beryllium atom using a reference (model) space composed of the \\|1s22s2> and the \\|1s22p2> configuration-state functions (CSF's), a system that is known to yield divergent expansions using Mo/ller-Plesset and Epstein-Nesbet partitioning methods. Computations of the eigenvalues are made through 40th order using forced degeneracy (FD) partitioning and the recently introduced optimization (OPT) partitioning. The former forces the 2s and 2p orbitals to be degenerate in zeroth order, while the latter chooses optimal zeroth-order energies of the (few) most important states. Our methodology employs simple models for understanding and suggesting remedies for unsuitable choices of reference spaces and partitioning methods. By examining a two-state model composed of only the \\|1s22p2> and \\|1s22s3s> states of the beryllium atom, it is demonstrated that the full computation with 1323 CSF's can converge only if the zeroth-order energy of the \\|1s22s3s> Rydberg state from the orthogonal space lies below the zeroth-order energy of the \\|1s22p2> CSF from the reference space. Thus convergence in this case requires a zeroth-order spectral overlap between the orthogonal and reference spaces. The FD partitioning is not capable of generating this type of spectral overlap and thus yields a divergent expansion. However, the expansion is actually asymptotically convergent, with divergent behavior not displayed until the 11th order because the \\|1s22s3s> Rydberg state is only weakly coupled with the \\|1s22p2> CSF and because these states are energetically well separated in zeroth order. The OPT partitioning chooses the correct zeroth-order energy ordering and thus yields a convergent expansion that is also very accurate in low orders compared to the exact solution within the basis.

  7. Four-port photonic structures with mirror-time reversal symmetries

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Thomas, Roney; Ellis, F. M.; Kottos, Tsampikos

    2016-07-01

    We investigate the transport characteristics of a four-port gyrotropic photonic structure with mirror-time reversal symmetry. The structure consists of two coupled cavities with balanced amplification and attenuation. The cavities are placed on top of a gyrotropic substrate and are coupled to two bus waveguides. Using detail simulations in the microwave domain we demonstrate a strong non-reciprocal intra-guide port transport and an enhanced inter-guide port transmittance. The non-reciprocal features are dramatically amplified in the gain-loss parameter domain where an exceptional point degeneracy, for the associated isolated set-up, occurs. These results are explained theoretically in terms of an equivalent lumped circuit.

  8. Broken SU(4) symmetry and the fractional quantum Hall effect in graphene.

    PubMed

    Sodemann, I; MacDonald, A H

    2014-03-28

    We describe a variational theory for incompressible ground states and charge gaps in the N=0 Landau level of graphene that accounts for the fourfold Landau level degeneracy and the short-range interactions that break SU(4) spin-valley invariance. Our approach explains the experimental finding that gaps at odd numerators are weak for 1<|ν|<2 and strong for 0<|ν|<1. We find that in the SU(4) invariant case the incompressible ground state at |ν|=1/3 is a three-component incompressible state, not the Laughlin state, and discuss the competition between these two states in the presence of SU(4) spin-valley symmetry-breaking terms.

  9. Broken SU(4) symmetry and the fractional quantum Hall effect in graphene.

    PubMed

    Sodemann, I; MacDonald, A H

    2014-03-28

    We describe a variational theory for incompressible ground states and charge gaps in the N=0 Landau level of graphene that accounts for the fourfold Landau level degeneracy and the short-range interactions that break SU(4) spin-valley invariance. Our approach explains the experimental finding that gaps at odd numerators are weak for 1<|ν|<2 and strong for 0<|ν|<1. We find that in the SU(4) invariant case the incompressible ground state at |ν|=1/3 is a three-component incompressible state, not the Laughlin state, and discuss the competition between these two states in the presence of SU(4) spin-valley symmetry-breaking terms. PMID:24724669

  10. Band Structures of Periodic Carbon Nanotube Junctions and Their Symmetries Analyzed by the Effective Mass Approximation

    NASA Astrophysics Data System (ADS)

    Tamura, Ryo; Tsukada, Masaru

    1999-03-01

    The band structures of the periodic nanotube junctions are investigated by the effective mass theory and the tight binding model. The periodic junctions are constructed by introducing pairs of a pentagonal defect and a heptagonal defect periodically in the carbon nanotube. We treat the periodic junctions composed by two kinds of metallic nanotubes with almost same radii, the ratio of which is between 0.7 and 1. The discussed energy region is near the undoped Fermi level. The energy bands are expressed with closed analytical forms by the effective mass theory. They are similar to the dispersion relation of Kronig-Penny model and coincide well with the numerical results by the tight binding model. The width of the gap and the band are in inverse proportion to the length of the unit cell. The degeneracy and repulsion between the two bands are determined only from symmetries.

  11. Symmetry Guide to Ferroaxial Transitions.

    PubMed

    Hlinka, J; Privratska, J; Ondrejkovic, P; Janovec, V

    2016-04-29

    The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO_{2}, LuFe_{2}O_{4}, and URu_{2}Si_{2}.

  12. Symmetry Guide to Ferroaxial Transitions

    NASA Astrophysics Data System (ADS)

    Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.

    2016-04-01

    The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .

  13. On the symmetries of integrability

    SciTech Connect

    Bellon, M.; Maillard, J.M.; Viallet, C. )

    1992-06-01

    In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiate the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.

  14. Heisenberg symmetry and hypermultiplet manifolds

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Derendinger, Jean-Pierre; Marios Petropoulos, P.; Siampos, Konstantinos

    2016-04-01

    We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N = 2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U (1) × U (1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry - as opposed to Heisenberg ⋉ U (1). We finally discuss the realization of the latter by gauging appropriate Sp (2 , 4) generators in N = 2 conformal supergravity.

  15. Symmetry analysis of cellular automata

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2013-01-01

    By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.

  16. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  17. Unparticles and electroweak symmetry breaking

    SciTech Connect

    Lee, Jong-Phil

    2008-11-23

    We investigate a scalar potential inspired by the unparticle sector for the electroweak symmetry breaking. The scalar potential contains the interaction between the standard model fields and unparticle sector. It is described by the non-integral power of fields that originates from the nontrivial scaling dimension of the unparticle operator. It is found that the electroweak symmetry is broken at tree level when the interaction is turned on. The scale invariance of unparticle sector is also broken simultaneously, resulting in a physical Higgs and a new lighter scalar particle.

  18. Chiral symmetry on the lattice

    SciTech Connect

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  19. The Broken Symmetry of Time

    SciTech Connect

    Kastner, Ruth E.

    2011-11-29

    This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.

  20. Symmetries of coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.

    1993-01-01

    It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).

  1. Spin symmetry in the antinucleon spectrum.

    PubMed

    Zhou, Shan-Gui; Meng, Jie; Ring, P

    2003-12-31

    We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon spectra. We find a very well developed spin symmetry in single antineutron and single antiproton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed than the pseudospin symmetry in normal nuclear single particle spectra. PMID:14754045

  2. Charge symmetry at the partonic level

    SciTech Connect

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  3. Spin symmetry in the antinucleon spectrum.

    PubMed

    Zhou, Shan-Gui; Meng, Jie; Ring, P

    2003-12-31

    We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon spectra. We find a very well developed spin symmetry in single antineutron and single antiproton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed than the pseudospin symmetry in normal nuclear single particle spectra.

  4. Revising the solution of the neutrino oscillation parameter degeneracies at neutrino factories

    SciTech Connect

    Gago, A. M.; Jones Perez, J.

    2007-02-01

    In the context of neutrino factories, we review the solution of the degeneracies in the neutrino oscillation parameters. In particular, we have set limits to sin{sup 2}2{theta}{sub 13} in order to accomplish the unambiguous determination of {theta}{sub 23} and {delta}. We have performed two different analysis. In the first, at a baseline of 3000 km, we simulate a measurement of the channels {nu}{sub e}{yields}{nu}{sub {mu}}, {nu}{sub e}{yields}{nu}{sub {tau}}, and {nu}{sub {mu}}{yields}{nu}{sub {mu}}, combined with their respective conjugate ones, with a muon energy of 50 GeV and a running time of five years. In the second, we merge the simulated data obtained at L=3000 km with the measurement of {nu}{sub e}{yields}{nu}{sub {mu}} channel at 7250 km, the so-called 'magic baseline.' In both cases, we have studied the impact of varying the {nu}{sub {tau}} detector efficiency-mass product ({epsilon}{sub {nu}{tau}xM{tau}}), at 3000 km, keeping unchanged the {nu}{sub {mu}} detector mass and its efficiency. At L=3000 km, we found the existence of degenerate zones, that correspond to values of {theta}{sub 13}, which are equal or almost equal to the true ones. These zones are extremely difficult to discard, even when we increase the number of events. However, in the second scenario, this difficulty is overcome, demonstrating the relevance of the 'magic baseline'. From this scenario, the best limits of sin{sup 2}2{theta}{sub 13}, reached at 3{sigma}, for sin{sup 2}2{theta}{sub 23}=0.95, 0.975, and 0.99 are: 0.008, 0.015, and 0.045, respectively, obtained at {delta}=0, and considering ({epsilon}{sub {nu}{tau}xM{tau}}){approx_equal}125, which is 5 times the initial efficiency-mass combination.

  5. Baryon and chiral symmetry breaking

    SciTech Connect

    Gorsky, A.; Krikun, A.

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  6. The Symmetry of Natural Laws.

    ERIC Educational Resources Information Center

    Brown, Laurie M.

    This document is a monograph intended for advanced undergraduate students, or beginning graduate students, who have some knowledge of modern physics as well as classical physics, including the elementary quantum mechanical treatment of the hydrogen atom and angular momentum. The first chapter introduces symmetry and relates it to the mathematical…

  7. Turning Students into Symmetry Detectives

    ERIC Educational Resources Information Center

    Wilders, Richard; VanOyen, Lawrence

    2011-01-01

    Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…

  8. Superdeformations and fermion dynamical symmetries

    SciTech Connect

    Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )

    1990-01-01

    In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.

  9. Circular codes, symmetries and transformations.

    PubMed

    Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz

    2015-06-01

    Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes. PMID:25008961

  10. Strong coupling electroweak symmetry breaking

    SciTech Connect

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  11. Concomitant Ordering and Symmetry Lowering

    ERIC Educational Resources Information Center

    Boo, William O. J.; Mattern, Daniell L.

    2008-01-01

    Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…

  12. Paper Models Illustrating Virus Symmetry.

    ERIC Educational Resources Information Center

    McCarthy, D. A.

    1990-01-01

    Instructions are given for constructing two models, one to illustrate the general principles of symmetry in T=1, T=3, and T=4 viruses, and the other to illustrate the disposition of protein subunits in the T=3 plant viruses and the picornaviruses. (Author/CW)

  13. Platonic Symmetry and Geometric Thinking

    ERIC Educational Resources Information Center

    Zsombor-Murray, Paul

    2007-01-01

    Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…

  14. Monster symmetry and extremal CFTs

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide

    2012-11-01

    We test some recent conjectures about extremal selfdual CFTs, which are the candidate holographic duals of pure gravity in AdS 3. We prove that no c = 48 extremal selfdual CFT or SCFT may possess Monster symmetry. Furthermore, we disprove a recent argument against the existence of extremal selfdual CFTs of large central charge.

  15. Field theory representation of mixed gauge-gravity symmetry-protected topological invariants, group cohomology and beyond

    NASA Astrophysics Data System (ADS)

    Wang, Juven; Gu, Zheng-Cheng; Wen, Xiao-Gang

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs, recently observed by Kapustin. We find new examples of mixed gauge-gravity actions for U(1) SPTs in 3+1D and 4+1D via the Stiefel-Whitney class and the gravitational Chern-Simons term. [Work based on Phys. Rev. Lett. 114, 031601 (2015) arXiv:1405.7689

  16. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family

    PubMed Central

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.

    2015-01-01

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s+− wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s+− wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry. PMID:25721375

  17. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family

    SciTech Connect

    Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.

    2015-02-27

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel, which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.

  18. Theory of nodal s±-wave pairing symmetry in the Pu-based 115 superconductor family

    DOE PAGES

    Das, Tanmoy; Zhu, Jian -Xin; Graf, Matthias J.

    2015-02-27

    The spin-fluctuation mechanism of superconductivity usually results in the presence of gapless or nodal quasiparticle states in the excitation spectrum. Nodal quasiparticle states are well established in copper-oxide, and heavy-fermion superconductors, but not in iron-based superconductors. Here, we study the pairing symmetry and mechanism of a new class of plutonium-based high-Tc superconductors and predict the presence of a nodal s⁺⁻ wave pairing symmetry in this family. Starting from a density-functional theory (DFT) based electronic structure calculation we predict several three-dimensional (3D) Fermi surfaces in this 115 superconductor family. We identify the dominant Fermi surface “hot-spots” in the inter-band scattering channel,more » which are aligned along the wavevector Q = (π, π, π), where degeneracy could induce sign-reversal of the pairing symmetry. Our calculation demonstrates that the s⁺⁻ wave pairing strength is stronger than the previously thought d-wave pairing; and more importantly, this pairing state allows for the existence of nodal quasiparticles. Finally, we predict the shape of the momentum- and energy-dependent magnetic resonance spectrum for the identification of this pairing symmetry.« less

  19. Shape phase transitions in odd-A nuclei

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.

    2008-11-11

    We investigate shape phase transitions in odd nuclei within the Interacting Boson Fermion Model. Special attention is given to the case of the transition from the vibrational behaviour to the stable axial deformation. The odd particle is assumed to be moving in the three single particle orbitals j = 1/2,3/2,5/2 with a boson-fermion Hamiltonian that leads to the occurrence of the SU{sup BF}(3) boson-fermion symmetry when the boson part approaches the SU(3) condition. Both energy spectra and electromagnetic transitions show characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The role of the additional particle in characterizing the properties of the critical points in finite quantal systems is investigated by resorting to the formalism based on the intrinsic frame.

  20. U{sup BF}(5) to SU{sup BF}(3) shape phase transition in odd nuclei for j=1/2, 3/2, and 5/2 orbits: The role of the odd particle at the critical point

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.

    2009-01-15

    We investigate the phase transition in odd nuclei within the Interacting Boson Fermion Model in correspondence with the transition from spherical to stable axially deformed shape. The odd particle is assumed to be moving in the single-particle orbitals with angular momenta j=1/2,3/2,5/2 with a boson-fermion Hamiltonian that leads to the occurrence of the SU{sup BF}(3) boson-fermion symmetry when the boson part approaches the SU(3) condition. Both energy spectra and electromagnetic transitions show characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The role of the additional particle in characterizing the properties of the critical points in finite quantal systems is investigated by resorting to the formalism based on the intrinsic frame.

  1. Experimental demonstration of broadband femtosecond optical parametric amplification based on YCOB crystal at near critical wavelength degeneracy

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyang; Leng, Yuxin; Li, Yanyan; Li, Wenkai; Lu, Xiaoming; Xu, Yi; Li, Ruxin

    2016-07-01

    Broadband optical parametric amplification (OPA) in the near-infrared region (1.3-1.8 μm) is demonstrated in YCOB crystal pumped by 1 kHz Ti:sapphire based femtosecond laser at near critical wavelength degeneracy phase matching condition at first time. The gain bandwidth is closed to BIBO or BBO crystal OPA gain bandwidth. The energy obtained with 3.5 mm-thick YCOB reached 20 μJ with RMS 1.9%. After second harmonic generation, 17.6 fs pulse is obtained, and the pulse compressibility is demonstrated.

  2. The relationship between noise correlation and the Green's function in the presence of degeneracy and the absence of equipartition

    USGS Publications Warehouse

    Tsai, V.C.

    2010-01-01

    Recent derivations have shown that when noise in a physical system has its energy equipartitioned into the modes of the system, there is a convenient relationship between the cross correlation of time-series recorded at two points and the Green's function of the system. Here, we show that even when energy is not fully equipartitioned and modes are allowed to be degenerate, a similar (though less general) property holds for equations with wave equation structure. This property can be used to understand why certain seismic noise correlation measurements are successful despite known degeneracy and lack of equipartition on the Earth. No claim to original US government works Journal compilation ?? 2010 RAS.

  3. PT Symmetry, Conformal Symmetry, and the Metrication of Electromagnetism

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2016-05-01

    We present some interesting connections between PT symmetry and conformal symmetry. We use them to develop a metricated theory of electromagnetism in which the electromagnetic field is present in the geometric connection. However, unlike Weyl who first advanced this possibility, we do not take the connection to be real but to instead be PT symmetric, with it being iA_{μ } rather than A_{μ } itself that then appears in the connection. With this modification the standard minimal coupling of electromagnetism to fermions is obtained. Through the use of torsion we obtain a metricated theory of electromagnetism that treats its electric and magnetic sectors symmetrically, with a conformal invariant theory of gravity being found to emerge. An extension to the non-Abelian case is provided.

  4. Universal Formulation For Symmetries In Computed Flows

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    1995-01-01

    Universal formulation for high-order symmetries in boundary conditions on flows devised. Eliminates need for special procedures to incorporate symmetries and corresponding boundary conditions into computer codes solving Navier-Stokes and Euler equations of flow.

  5. Yet another symmetry breaking to be discovered

    NASA Astrophysics Data System (ADS)

    Yoshimura, M.

    2016-07-01

    The discovery of spontaneous symmetry breaking in particle physics was the greatest contribution in Nambu's achievements. There is another class of symmetries that exist in low-energy nature, yet is doomed to be broken at high energy, due to a lack of protection of the gauge symmetry. I shall review our approach to searching for this class of symmetry breaking, the lepton number violation linked to the generation of the matter-antimatter asymmetry in our universe.

  6. Partial Dynamical Symmetry in Nuclear Systems

    SciTech Connect

    Escher, J E

    2003-06-02

    Partial dynamical symmetry (PDS) extends and complements the concepts of exact and dynamical symmetry. It allows one to remove undesired constraints from an algebraic theory, while preserving some of the useful aspects of a dynamical symmetry, and to study the effects of symmetry breaking in a controlled manner. An example of a PDS in an interacting fermion system is presented. The associated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole interaction and provide new insights into this important interaction.

  7. Symmetry Engineering of Graphene Plasmonic Crystals.

    PubMed

    Yeung, Kitty Y M; Chee, Jingyee; Song, Yi; Kong, Jing; Ham, Donhee

    2015-08-12

    The dispersion relation of plasmons in graphene with a periodic lattice of apertures takes a band structure. Light incident on this plasmonic crystal excites only particular plasmonic modes in select bands. The selection rule is not only frequency/wavevector matching but also symmetry matching, where the symmetry of plasmonic modes originates from the point group symmetry of the lattice. We demonstrate versatile manipulation of light-plasmon coupling behaviors by engineering the symmetry of the graphene plasmonic crystal.

  8. Noether symmetries and duality transformations in cosmology

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Capozziello, Salvatore

    2016-09-01

    We discuss the relation between Noether (point) symmetries and discrete symmetries for a class of minisuperspace cosmological models. We show that when a Noether symmetry exists for the gravitational Lagrangian, then there exists a coordinate system in which a reversal symmetry exists. Moreover, as far as concerns, the scale-factor duality symmetry of the dilaton field, we show that it is related to the existence of a Noether symmetry for the field equations, and the reversal symmetry in the normal coordinates of the symmetry vector becomes scale-factor duality symmetry in the original coordinates. In particular, the same point symmetry as also the same reversal symmetry exists for the Brans-Dicke scalar field with linear potential while now the discrete symmetry in the original coordinates of the system depends on the Brans-Dicke parameter and it is a scale-factor duality when ωBD = 1. Furthermore, in the context of the O’Hanlon theory for f(R)-gravity, it is possible to show how a duality transformation in the minisuperspace can be used to relate different gravitational models.

  9. Superalgebra and fermion-boson symmetry

    PubMed Central

    Miyazawa, Hironari

    2010-01-01

    Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617

  10. New charge for BMS symmetries

    NASA Astrophysics Data System (ADS)

    Kesavan, Aruna; Ashtekar, Abhay

    2016-03-01

    Conservation laws of asymptotic symmetries are essential to quantify the amount of energy-momentum and angular momentum carried away by gravitational radiation from isolated systems. The asymptotic symmetry group of asymptotically flat spacetimes at null infinity is the Bondi-Metzner-Sachs (BMS) group. While the flux associated to an arbitrary BMS vector field was provided by Ashtekar and Streubel (1981) using symplectic methods, the tensorial expression of a corresponding two-dimensional charge integral linear in an arbitrary BMS vector field has not been available in the literature. We fill this gap by providing such a charge. I will discuss its properties and relation to Geroch's supermomentum and the charge of Dray and Streubel (1984).

  11. Facial symmetry in robust anthropometrics.

    PubMed

    Kalina, Jan

    2012-05-01

    Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.

  12. Symmetry of cardiac function assessment.

    PubMed

    Bai, Xu-Fang; Ma, Amy X

    2016-09-01

    Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function.

  13. Symmetry of cardiac function assessment.

    PubMed

    Bai, Xu-Fang; Ma, Amy X

    2016-09-01

    Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768

  14. Tensionless strings from worldsheet symmetries

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Chakrabortty, Shankhadeep; Parekh, Pulastya

    2016-01-01

    We revisit the construction of the tensionless limit of closed bosonic string theory in the covariant formulation in the light of Galilean conformal symmetry that rises as the residual gauge symmetry on the tensionless worldsheet. We relate the analysis of the fundamentally tensionless theory to the tensionless limit that is viewed as a contraction of worldsheet coordinates. Analysis of the quantum regime uncovers interesting physics. The degrees of freedom that appear in the tensionless string are fundamentally different from the usual string states. Through a Bogoliubov transformation on the worldsheet, we link the tensionless vacuum to the usual tensile vacuum. As an application, we show that our analysis can be used to understand physics of strings at very high temperatures and propose that these new degrees of freedom are naturally connected with the long-string picture of the Hagedorn phase of free string theory. We also show that tensionless closed strings behave like open strings.

  15. Lepton mixing and discrete symmetries

    NASA Astrophysics Data System (ADS)

    Hernandez, D.; Smirnov, A. Yu.

    2012-09-01

    The pattern of lepton mixing can emerge from breaking a flavor symmetry in different ways in the neutrino and charged lepton Yukawa sectors. In this framework, we derive the model-independent conditions imposed on the mixing matrix by the structure of discrete groups of the von Dyck type which include A4, S4, and A5. We show that, in general, these conditions lead to at least two equations for the mixing parameters (angles and CP phase δ). These constraints, which correspond to unbroken residual symmetries, are consistent with nonzero 13 mixing and deviations from maximal 2-3 mixing. For the simplest case, which leads to an S4 model and reproduces the allowed values of the mixing angles, we predict δ=(90°-120°).

  16. Symmetry of cardiac function assessment

    PubMed Central

    Bai, Xu-Fang; Ma, Amy X

    2016-01-01

    Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768

  17. Chiral symmetry and nucleon structure

    SciTech Connect

    Holstein, B.R. . Dept. of Physics and Astromony Washington Univ., Seattle, WA . Inst. for Nuclear Theory)

    1992-01-01

    Recently it has been realized that significant tests of the validity of QCD are available in low energy experiments (E < 500 MeV) by exploiting the property of (broken) chiral symmetry. This technique has been highly developed in The Goldstone boson sector by the work of Gasser and Leutwyler. Application to the nucleon system is much more difficult and is now being carefully developed.

  18. Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain

    PubMed Central

    Ratté, Stéphanie; Zhu, Yi; Lee, Kwan Yeop; Prescott, Steven A

    2014-01-01

    Neuropathic pain remains notoriously difficult to treat despite numerous drug targets. Here, we offer a novel explanation for this intractability. Computer simulations predicted that qualitative changes in primary afferent excitability linked to neuropathic pain arise through a switch in spike initiation dynamics when molecular pathologies reach a tipping point (criticality), and that this tipping point can be reached via several different molecular pathologies (degeneracy). We experimentally tested these predictions by pharmacologically blocking native conductances and/or electrophysiologically inserting virtual conductances. Multiple different manipulations successfully reproduced or reversed neuropathic changes in primary afferents from naïve or nerve-injured rats, respectively, thus confirming the predicted criticality and its degenerate basis. Degeneracy means that several different molecular pathologies are individually sufficient to cause hyperexcitability, and because several such pathologies co-occur after nerve injury, that no single pathology is uniquely necessary. Consequently, single-target-drugs can be circumvented by maladaptive plasticity in any one of several ion channels. DOI: http://dx.doi.org/10.7554/eLife.02370.001 PMID:24692450

  19. Charge 2 e /3 Superconductivity and Topological Degeneracies without Localized Zero Modes in Bilayer Fractional Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Barkeshli, Maissam

    2016-08-01

    It has been recently shown that non-Abelian defects with localized parafermion zero modes can arise in conventional Abelian fractional quantum Hall (FQH) states. Here we propose an alternate route to creating, manipulating, and measuring topologically protected degeneracies in bilayer FQH states coupled to superconductors, without the creation of localized parafermion zero modes. We focus mainly on electron-hole bilayers, with a ±1 /3 Laughlin FQH state in each layer, with boundaries that are proximity coupled to a superconductor. We show that the superconductor induces charge 2 e /3 quasiparticle-pair condensation at each boundary of the FQH state, and that this leads to (i) topologically protected degeneracies that can be measured through charge sensing experiments and (ii) a fractional charge 2 e /3 ac Josephson effect. We demonstrate that an analog of non-Abelian braiding is possible, despite the absence of a localized zero mode. We discuss several practical advantages of this proposal over previous work, and also several generalizations.

  20. Lifting the degeneracy between geometric and dynamic distortions using the sound horizon from the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Hawken, Adam J.; Abdalla, Fillipe B.; Hütsi, Gert; Lahav, Ofer

    2012-07-01

    The degeneracy between geometric (Alcock-Paczynski) and dynamic (redshift-space) distortions in the pattern of the galaxy distribution has been a long-standing problem in the study of the large-scale structure of the Universe. We examine the possibility of lifting this degeneracy and constraining cosmological parameters by using the baryon acoustic oscillation (BAO) scale as a feature of known physical size, the sound horizon rs≈ 150 Mpc. We calibrate this scale with the equivalent feature in the cosmic microwave background (CMB). First, we construct a toy model of a power spectrum which includes the BAO as well as geometric and dynamic distortions. By adding a prior on to the sound horizon of ˜1 per cent we show, using a Fisher matrix analysis, that error ellipses for line-of-sight and tangential distortion parameters shrink by a factor of 2 for a 20 (h-1 Gpc)3'DESpec/BigBOSS'-like galaxy survey including shot noise. This improvement is even more marked in smaller surveys. We also carry out a Monte Carlo nested sampling analysis on our parameter space. We find that Monte Carlo and Fisher methods can agree reasonably well for surveys with large volume but differ greatly for small volume surveys.

  1. Charge 2e/3 Superconductivity and Topological Degeneracies without Localized Zero Modes in Bilayer Fractional Quantum Hall States.

    PubMed

    Barkeshli, Maissam

    2016-08-26

    It has been recently shown that non-Abelian defects with localized parafermion zero modes can arise in conventional Abelian fractional quantum Hall (FQH) states. Here we propose an alternate route to creating, manipulating, and measuring topologically protected degeneracies in bilayer FQH states coupled to superconductors, without the creation of localized parafermion zero modes. We focus mainly on electron-hole bilayers, with a ±1/3 Laughlin FQH state in each layer, with boundaries that are proximity coupled to a superconductor. We show that the superconductor induces charge 2e/3 quasiparticle-pair condensation at each boundary of the FQH state, and that this leads to (i) topologically protected degeneracies that can be measured through charge sensing experiments and (ii) a fractional charge 2e/3 ac Josephson effect. We demonstrate that an analog of non-Abelian braiding is possible, despite the absence of a localized zero mode. We discuss several practical advantages of this proposal over previous work, and also several generalizations.

  2. Charge 2e/3 Superconductivity and Topological Degeneracies without Localized Zero Modes in Bilayer Fractional Quantum Hall States.

    PubMed

    Barkeshli, Maissam

    2016-08-26

    It has been recently shown that non-Abelian defects with localized parafermion zero modes can arise in conventional Abelian fractional quantum Hall (FQH) states. Here we propose an alternate route to creating, manipulating, and measuring topologically protected degeneracies in bilayer FQH states coupled to superconductors, without the creation of localized parafermion zero modes. We focus mainly on electron-hole bilayers, with a ±1/3 Laughlin FQH state in each layer, with boundaries that are proximity coupled to a superconductor. We show that the superconductor induces charge 2e/3 quasiparticle-pair condensation at each boundary of the FQH state, and that this leads to (i) topologically protected degeneracies that can be measured through charge sensing experiments and (ii) a fractional charge 2e/3 ac Josephson effect. We demonstrate that an analog of non-Abelian braiding is possible, despite the absence of a localized zero mode. We discuss several practical advantages of this proposal over previous work, and also several generalizations. PMID:27610873

  3. Target electron collision effects on energy loss straggling of protons in an electron gas at any degeneracy

    SciTech Connect

    Barriga-Carrasco, Manuel D.

    2008-03-15

    The purpose of the present paper is to describe the effects of target electron collisions on proton energy loss straggling in plasmas at any degeneracy. Targets are considered fully ionized so electronic energy loss is only due to the free electrons. The analysis is focused on targets with electronic density around solid values n{sub e}{approx_equal}10{sup 23} cm{sup -3} and with temperature around T{approx_equal}10 eV; these targets are in the limit of weakly coupled electron gases. These types of plasma targets have not been studied extensively, though they are very important for inertial confinement fusion. The energy loss straggling is obtained from an exact quantum-mechanical evaluation, which takes into account the degeneracy of the target plasma, and later it is compared with common classical and degenerate approximations. Then electron collisions in the exact quantum-mechanical straggling calculation are considered. Now the energy loss straggling is enhanced for energies smaller than the energy before the maximum, then decreases around this maximum, and finally tends to the same values with respect to noncollisional calculation. Differences with the same results but not taking into account these collisions are as far as 17% in the cases analyzed. As an example, proton range distributions have been calculated to show the importance of an accurate energy straggling calculation.

  4. Dark matter and global symmetries

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  5. Enhanced Facial Symmetry Assessment in Orthodontists.

    PubMed

    Jackson, Tate H; Clark, Kait; Mitroff, Stephen R

    2013-01-01

    Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff-orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness.

  6. Relativity symmetries and Lie algebra contractions

    NASA Astrophysics Data System (ADS)

    Cho, Dai-Ning; Kong, Otto C. W.

    2014-12-01

    We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m , n) symmetry as an isometry on an m + n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m , n) preserving a symmetry of the same type at dimension m + n - 1, e.g. a G(m , n - 1) , together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example of symmetries obtained from the contraction of SO(2 , 4) , which is the particular case for our interest on the physics side as the proposed relativity symmetry for "quantum spacetime". The contractions from G(1 , 3) may be relevant to real physics.

  7. Enhanced Facial Symmetry Assessment in Orthodontists

    PubMed Central

    Jackson, Tate H.; Clark, Kait; Mitroff, Stephen R.

    2013-01-01

    Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff—orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness. PMID:24319342

  8. Spectra and symmetry in nuclear pairing

    SciTech Connect

    Balantekin, A. B.; Jesus, J. H. de; Pehlivan, Y.

    2007-06-15

    We apply the algebraic Bethe ansatz technique to the nuclear pairing problem with orbit dependent coupling constants and degenerate single particle energy levels. We find the exact energies and eigenstates. We show that for a given shell, there are degeneracies between the states corresponding to less than and more than half full shell. We also provide a technique to solve the equations of Bethe ansatz.

  9. Space-based Microlens Parallax Observation as a Way to Resolve the Severe Degeneracy between Microlens-parallax and Lens-orbital Effects

    NASA Astrophysics Data System (ADS)

    Han, C.; Udalski, A.; Lee, C.-U.; Gould, A.; Bozza, V.; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Kim, S.-L.; Cha, S.-M.; Jung, Y. K.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Ryu, Y.-H.; Shin, I.-G.; Yee, J. C.; The KMTNet Collaboration

    2016-08-01

    In this paper, we demonstrate the severity of the degeneracy between the microlens-parallax and lens-orbital effects by presenting the analysis of the gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious deviation from the model based on the linear observer motion and the static binary, it is found that the residual can be almost equally well explained by either the parallactic motion of the Earth or the rotation of the binary-lens axis, resulting in the severe degeneracy between the two effects. We show that the degeneracy can be readily resolved with the additional data provided by space-based microlens parallax observations. By enabling us to distinguish between the two higher-order effects, space-based microlens parallax observations will not only make it possible to accurately determine the physical lens parameters but also to further constrain the orbital parameters of binary lenses.

  10. Dc SQUID based on a three-band superconductor with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Yerin, Y. S.; Omelyanchouk, A. N.; Il'ichev, E.

    2015-09-01

    The behavior of a dc superconducting quantum interference device (SQUID), based on dirty-point contacts between a single-band and three-band superconductor with broken time-reversal symmetry, is investigated. Using previously obtained results for Josephson effects in such systems, new features in characteristics of a dc SQUID are revealed. It is shown that in the case of a BTRS (broken time-reversal symmetry) three-band superconductor for the applied external magnetic flux, which is divisible by the half-integer flux, strong degeneracy of ground states of a dc SQUID has taken place. This can lead to the appearance of possible multi-hysteresis loops on a dependence of a total flux in the dc SQUID from the externally applied flux. The number of these loops depends on the position of ground states of a three-band superconductor. Also it is found that dependencies of a critical current on applied magnetic flux can have complicated multi-periodic forms, which differ from strictly periodic characteristics for conventional dc SQUIDs and Fraunhofer patterns for Josephson contacts in the external magnetic field.

  11. SU(4) symmetry breaking revealed by magneto-optical spectroscopy in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Tan, Liang Z.; Orlita, Milan; Potemski, Marek; Sprinkle, Mike; Berger, Claire; de Heer, Walter; Louie, Steven; Martinez, Gerard

    2015-03-01

    Electron-electron and electron-phonon interactions break the spin and valley degeneracies of the lowest Landau level (LL) in graphene. Multiple theoretical models have been proposed for the broken symmetry ground state. Previous tilted magnetic field transport experiments have obtained partial information on the ground state by probing the spin degree of freedom. In this work, we show that, via the valley-dependent electron-phonon interaction, symmetry breaking of the valley degree of freedom can be detected in infra-red transmission signatures close to magneto-phonon resonances. We have performed infra-red magneto-transmission experiments on multi-layer epitaxial graphene samples in magnetic fields up to 35 T. Following the main optical transition involving the lowest LL, we observe a new absorption transition increasing in intensity with magnetic fields greater than 26 T. Our theoretical calculations quantitatively explain these features, and unambiguously identify the charge density wave as the ground state in our samples. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the NSF through XSEDE resources at NICS.

  12. Broken S flavor symmetry of leptons and quarks: Mass spectra and flavor mixing patterns

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Yang, Deshan; Zhou, Shun

    2010-06-01

    We apply the discrete S3 flavor symmetry to both lepton and quark sectors of the Standard Model extended by introducing one Higgs triplet and realizing the type-II seesaw mechanism for finite neutrino masses. The resultant mass matrices of charged leptons (Ml), neutrinos (Mν), up-type quarks (Mu) and down-type quarks (Md) have a universal form consisting of two terms: one is proportional to the identity matrix I and the other is proportional to the democracy matrix D. We argue that the textures of Ml, Mu and Md are dominated by the D term, while that of Mν is dominated by the I term. This hypothesis implies a near mass degeneracy of three neutrinos and can naturally explain why the mass matrices of charged fermions are strongly hierarchical, why the quark mixing matrix is close to I and why the lepton mixing matrix contains two large angles. We discuss a rather simple perturbation ansatz to break the S3 symmetry and obtain more realistic mass spectra of leptons and quarks as well as their flavor mixing patterns. We stress that the I term, which used to be ignored from Ml, Mu and Md, is actually important because it can significantly modify the smallest lepton flavor mixing angle θ13 or three quark flavor mixing angles.

  13. Entanglement Spectra of Gapped One-dimensional Field Theories and Symmetry-Protected Topological Phases

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Shiozaki, Ken; Ludwig, Andreas; Ryu, Shinsei

    We discuss the entanglement spectrum(ES) of (1+1)d gapped Lorentz invariant field theories in the vicinity of a conformal field theory (CFT). In particular, for a gapped theory obtained by perturbing a CFT in infinite space by relevant perturbations, we show that the low-lying ES for the half-line is equal to the physical spectrum of the gapless CFT defined on a finite interval of length L = log (ξ / a) , which is the spectrum of a boundary CFT. Here ξ is the correlation length, a a microscopic lattice scale, and our result applies in the ''scaling limit'' where ξ >> a . A similar property has been known to hold for Baxter's Corner Transfer Matrices of a class of very special, namely integrable lattice models, for the entire ES and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying ES. As a consequence, while on a finite interval of length 2 R the physical spectrum of the gapped theory is known to undergo a dramatic reorganization as 2 R crosses ξ, the bipartite ES remains unchanged up to an overall scale. We apply these to (1+1)d symmetry-protected topological phases and symmetry-protected degeneracy of ES.

  14. Quantum Mechanics on a Mobius Strip: Energy Levels, Symmetries, and Level Splitting in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Zehao; Ram-Mohan, Ramdas

    2012-02-01

    We investigate the energy levels of an electron on a M"obius strip. Schr"odinger's equation on this curved surface is shown to have terms that do not have invariance under parity transformation in parameter space for the strip. The double degeneracy of energy levels that exists for flat cylindrical rings is shown to be removed for the pairs of energies in the M"obius strip due to parity symmetry breaking. The orbital angular momentum is found to have approximately not only integer but also half-integer values of . The splitting of the energy levels in an external magnetic field is displayed. The effects of multiple twists are investigated to further clarify that the parity symmetry breaking is the effect of the curved geometry, while the appearance of half-integer angular momentum states is a topological effect. The implications for twisted rings composed of graphene will be discussed, and carrier transport through the M"obius strip will be considered. This work was supported by AFLR/DARPA under grant FA8650-10-1-7046.

  15. Partial Mass-Degeneracy and Spontaneous CP Violation in the Lepton Sector

    NASA Astrophysics Data System (ADS)

    Ishida, Hiroyuki

    We have investigated a flavour model which inspired by small squared-mass difference measured in solar neutrino oscillation experiments and observability in neutrinoless double beta decay experiments. In our model, the 1st. and 2nd. generations of fermions have a common mass at the leading order. Such limit may be a good starting point from the points of view of understanding the mixing patterns and mass spectra. In this limit, the mass matrices are respected an O(2) symmetry on flavor space of the first two generations. For simplicity, we propose a model for lepton sector based on the DN group which is a discrete subgroup of O(2). We show that our model can reproduce the experimental data without hierarchical couplings except for 5-10% tuning partially for the large neutrino mixing. Further, we show a novel relation between the tiny electron mass and the relatively large θPMNS13 via CP violation by the complex vacuum expectation values of the extra scalar fields.

  16. Symmetry breaking in neural nets.

    PubMed

    Pessa, E

    1988-01-01

    In this paper two well-known homogeneous models of neural nets undergoing symmetry-breaking transitions are studied in order to see if, after the transition, there is the appearance of Goldstone modes. These have been found only in an approximate way; there are indications, however, that they can play a prominent role when the tissue is subjected to external inputs, constraining it to be slaved to the characteristics of those. This circumstance should be essential in explaining how a structured net can store complex inputs and give subsequently ordered outputs.

  17. Hidden symmetries in jammed systems

    NASA Astrophysics Data System (ADS)

    Morse, Peter K.; Corwin, Eric I.

    2016-07-01

    There are deep, but hidden, geometric structures within jammed systems, associated with hidden symmetries. These can be revealed by repeated transformations under which these structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation of space defined by the packing. In this paper we examine two iterative processes: maximum inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations of the MIS inversion process we find invariant systems in which every particle is equal to the maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal behavior in geometric order parameters which is length-scale invariant.

  18. History of electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kibble, T. W. B.

    2015-07-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  19. Macroscopic Degeneracy of Zero-Mode Rotating Surface States in 3D Dirac and Weyl Semimetals under Radiation.

    PubMed

    González, José; Molina, Rafael A

    2016-04-15

    We investigate the development of novel surface states when 3D Dirac or Weyl semimetals are placed under circularly polarized electromagnetic radiation. We find that the hybridization between inverted Floquet bands opens, in general, a gap, which closes at so-called exceptional points found for complex values of the momentum. This corresponds to the appearance of midgap surface states in the form of evanescent waves decaying from the surface exposed to the radiation. We observe a phenomenon reminiscent of Landau quantization by which the midgap surface states get a large degeneracy proportional to the radiation flux traversing the surface of the semimetal. We show that all of these surface states carry angular current, leading to an angular modulation of their charge that rotates with the same frequency of the radiation, which should manifest in the observation of a macroscopic chiral current in the irradiated surface. PMID:27127980

  20. Electronic Degeneracy and Intrinsic Magnetic Properties of EpitaxialNb: SrTiO3 Thin Films Controlled by Defects.

    PubMed

    Sarantopoulos, A; Ferreiro-Vila, E; Pardo, V; Magén, C; Aguirre, M H; Rivadulla, F

    2015-10-16

    We report thermoelectric power experiments in e-doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e-doped STO thin films, is similar to that observed in LaAlO3/STO interfaces and magnetic STO quantum wells.

  1. MicroRNA degeneracy and pluripotentiality within a Lavallière-tie architecture confers robustness to gene expression networks.

    PubMed

    Bhajun, Ricky; Guyon, Laurent; Gidrol, Xavier

    2016-08-01

    Modularity, feedback control, functional redundancy and bowtie architecture have been proposed as key factors that confer robustness to complex biological systems. MicroRNAs (miRNAs) are highly conserved but functionally dispensable. These antinomic properties suggest that miRNAs fine-tune gene expression rather than act as genetic switches. We synthesize published and unpublished data and hypothesize that miRNA pluripotentiality acts to buffer gene expression, while miRNA degeneracy tunes the expression of targets, thus providing robustness to gene expression networks. Furthermore, we propose a Lavallière-tie architecture by integrating signal transduction, miRNAs and protein expression data to model complex gene expression networks. PMID:27038488

  2. Electronic Degeneracy and Intrinsic Magnetic Properties of EpitaxialNb: SrTiO3 Thin Films Controlled by Defects.

    PubMed

    Sarantopoulos, A; Ferreiro-Vila, E; Pardo, V; Magén, C; Aguirre, M H; Rivadulla, F

    2015-10-16

    We report thermoelectric power experiments in e-doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e-doped STO thin films, is similar to that observed in LaAlO3/STO interfaces and magnetic STO quantum wells. PMID:26550891

  3. Spectral degeneracy in supersymmetric gluodynamics and one-flavor QCD related to N=1/2 supersymmetry

    SciTech Connect

    Gorsky, A.; Shifman, M.

    2005-01-15

    In supersymmetric gluodynamics (N=1 super-Yang-Mills theory), we show that the spectral functions induced by the nonchiral operator Tr(G{sub {alpha}}{sub {beta}}{lambda}{sup 2}) are fully degenerate in the J{sup PC}=1{sup {+-}}{sup -} channels. The above operator is related to N=1/2 generalization of SUSY. Using the planar equivalence, this translates into the statement of degeneracy between the mesons produced from the vacuum by the operators ({psi}E{yields}{psi}+i{psi}B{yields}{gamma}{sup 5}{psi}) and ({psi}B{yields}{psi}-i{psi}E{yields}{gamma}{sup 5}{psi}) in one-flavor QCD, up to 1/N corrections. Here {psi} is the quark field, and E{yields},B{yields} are chromoelectric/chromomagnetic fields, respectively.

  4. Symmetry and Symmetry Breaking in Planetary Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cao, H.; Russell, C. T.; Aurnou, J. M.; Soderlund, K. M.; Dougherty, M. K.

    2014-12-01

    Six out of eight solar system planets currently possess global-scale intrinsic magnetic fields. Different symmetry and symmetry breaking with respect to the spin-axis and the equatorial plane of the host planet can be found for different planetary magnetic fields. With respect to the spin-axis, the magnetic fields of Mercury, Earth, Jupiter, and Saturn are dominated by the axisymmetric part while the magnetic fields of Uranus and Neptune show no such alignment. Moreover, non-axisymmetric components have not been determined unambiguously for the magnetic fields of Mercury and Saturn. With respect to the equatorial plane, the magnetic fields of Earth, Jupiter, and Saturn show small but non-negligible asymmetry while the magnetic field of Mercury shows a significant asymmetry. The magnetic fields of Uranus and Neptune likely possess similar strength in the two hemispheres divided by the equatorial plane, but this needs to be confirmed with future measurements. Here we present our interpretation of the magnetic fields of Mercury and Saturn, both of which are often referred to as anomalous dipolar dynamos. For Mercury, we will show that volumetrically distributed buoyancy sources in its liquid iron core can naturally lead to equatorial symmetry breaking in the dynamo generated magnetic field as observed by MESSENGER. We will also show that the size of the solid inner core inside Mercury is likely smaller than 1000 km and could be detected indirectly with high-spatial-resolution magnetic field measurements near Mercury's north pole. In addition, we will show that degree-2 longitudinal variations observed in the magnetic equator positions of Mercury could have an internal origin. For Saturn's magnetic field, although its extreme axisymmetry could in principle be explained by a stably-stratified electrically-conducting layer on top of the dynamo region, more features such as equator-to-pole field contrasts cannot be explained by this same mechanism simultaneously. Towards

  5. Contact symmetries and Hamiltonian thermodynamics

    SciTech Connect

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-10-15

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  6. Local discrete symmetries from superstring derived models

    NASA Astrophysics Data System (ADS)

    Faraggi, Alon E.

    1997-02-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model I illustrate how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.

  7. Symmetry properties in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.

    1992-01-01

    This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.

  8. Symmetry energy of dilute warm nuclear matter.

    PubMed

    Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H

    2010-05-21

    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

  9. Quantum Deformations of Einstein's Relativistic Symmetries

    SciTech Connect

    Lukierski, Jerzy

    2006-11-03

    We shall outline two ways of introducing the modification of Einstein's relativistic symmetries of special relativity theory -- the Poincare symmetries. The most complete way of introducing the modifications is via the noncocommutative Hopf-algebraic structure describing quantum symmetries. Two types of quantum relativistic symmetries are described, one with constant commutator of quantum Minkowski space coordinates ({theta}{mu}{nu}-deformation) and second with Lie-algebraic structure of quantum space-time, introducing so-called {kappa}-deformation. The third fundamental constant of Nature - fundamental mass {kappa} or length {lambda} - appears naturally in proposed quantum relativistic symmetry scheme. The deformed Minkowski space is described as the representation space (Hopf-module) of deformed Poincare algebra. Some possible perspectives of quantum-deformed relativistic symmetries will be outlined.

  10. The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231

    NASA Astrophysics Data System (ADS)

    Birrer, Simon; Amara, Adam; Refregier, Alexandre

    2016-08-01

    We present extended modelling of the strong lens system RXJ1131-1231 with archival data in two HST bands in combination with existing line-of-sight contribution and velocity dispersion estimates. Our focus is on source size and its influence on time-delay cosmography. We therefore examine the impact of mass-sheet degeneracy and especially the degeneracy pointed out by Schneider & Sluse (2013) [1] using the source reconstruction scale. We also extend on previous work by further exploring the effects of priors on the kinematics of the lens and the external convergence in the environment of the lensing system. Our results coming from RXJ1131-1231 are given in a simple analytic form so that they can be easily combined with constraints coming from other cosmological probes. We find that the choice of priors on lens model parameters and source size are subdominant for the statistical errors for H0 measurements of this systems. The choice of prior for the source is sub-dominant at present (2% uncertainty on H0) but may be relevant for future studies. More importantly, we find that the priors on the kinematic anisotropy of the lens galaxy have a significant impact on our cosmological inference. When incorporating all the above modeling uncertainties, we find H0 = 86.6+6.8-6.9 km s-1 Mpc-1, when using kinematic priors similar to other studies. When we use a different kinematic prior motivated by Barnabè et al. (2012) [2] but covering the same anisotropic range, we find H0 = 74.5+8.0-7.8 km s-1 Mpc-1. This means that the choice of kinematic modeling and priors have a significant impact on cosmographic inferences. The way forward is either to get better velocity dispersion measures which would down weight the impact of the priors or to construct physically motivated priors for the velocity dispersion model.

  11. A direct measurement of the mean occupation function of quasars: Breaking degeneracies between halo occupation distribution models

    SciTech Connect

    Chatterjee, Suchetana; Nguyen, My L.; Myers, Adam D.; Zheng, Zheng

    2013-12-20

    Recent work on quasar clustering suggests a degeneracy in the halo occupation distribution constrained from two-point correlation functions. To break this degeneracy, we make the first empirical measurement of the mean occupation function (MOF) of quasars at z ∼ 0.2 by matching quasar positions with groups and clusters identified in the MaxBCG sample. We fit two models to the MOF, a power law and a four-parameter model. The number distribution of quasars in host halos is close to Poisson, and the slopes of the MOF obtained from our best-fit models (for the power-law case) favor an MOF that monotonically increases with halo mass. The best-fit slopes are 0.53 ± 0.04 and 1.03 ± 1.12 for the power-law model and the four-parameter model, respectively. We measure the radial distribution of quasars within dark matter halos and find it to be adequately described by a power law with a slope –2.3 ± 0.4. We measure the conditional luminosity function (CLF) of quasars and show that there is no evidence that quasar luminosity depends on host halo mass, similar to the inferences drawn from clustering measurements. We also measure the conditional black hole mass function (CMF) of our quasars. Although the results are consistent with no dependence on halo mass, we observe a slight indication of downsizing of the black hole mass function. The lack of halo mass dependence in the CLF and CMF shows that quasars residing in galaxy clusters have characteristic luminosity and black hole mass scales.

  12. The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231

    NASA Astrophysics Data System (ADS)

    Birrer, Simon; Amara, Adam; Refregier, Alexandre

    2016-08-01

    We present extended modelling of the strong lens system RXJ1131-1231 with archival data in two HST bands in combination with existing line-of-sight contribution and velocity dispersion estimates. Our focus is on source size and its influence on time-delay cosmography. We therefore examine the impact of mass-sheet degeneracy and especially the degeneracy pointed out by Schneider & Sluse (2013) [1] using the source reconstruction scale. We also extend on previous work by further exploring the effects of priors on the kinematics of the lens and the external convergence in the environment of the lensing system. Our results coming from RXJ1131-1231 are given in a simple analytic form so that they can be easily combined with constraints coming from other cosmological probes. We find that the choice of priors on lens model parameters and source size are subdominant for the statistical errors for H0 measurements of this systems. The choice of prior for the source is sub-dominant at present (2% uncertainty on H0) but may be relevant for future studies. More importantly, we find that the priors on the kinematic anisotropy of the lens galaxy have a significant impact on our cosmological inference. When incorporating all the above modeling uncertainties, we find H0 = 86.6+6.8‑6.9 km s‑1 Mpc‑1, when using kinematic priors similar to other studies. When we use a different kinematic prior motivated by Barnabè et al. (2012) [2] but covering the same anisotropic range, we find H0 = 74.5+8.0‑7.8 km s‑1 Mpc‑1. This means that the choice of kinematic modeling and priors have a significant impact on cosmographic inferences. The way forward is either to get better velocity dispersion measures which would down weight the impact of the priors or to construct physically motivated priors for the velocity dispersion model.

  13. Symmetry-protected single-photon subradiance

    NASA Astrophysics Data System (ADS)

    Cai, Han; Wang, Da-Wei; Svidzinsky, Anatoly A.; Zhu, Shi-Yao; Scully, Marlan O.

    2016-05-01

    We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shifts cannot be neglected. We find that antisymmetric states are subradiant states for distributions with reflection symmetry. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.

  14. Symmetry relations of magnetic twin laws.

    PubMed

    Schlessman, J; Litvin, D B

    2001-11-01

    Symmetry relationships between two simultaneously observed domain states (domain pair) are used to determine physical properties that can distinguish between the observed domains. Here the tabulation of these symmetry relationships is extended from non-magnetic cases to magnetic cases, in terms of magnetic point groups, i.e. all possible magnetic symmetry groups and magnetic twinning groups of domain pairs are determined and tabulated. PMID:11679705

  15. The near-symmetry of proteins.

    PubMed

    Bonjack-Shterengartz, Maayan; Avnir, David

    2015-04-01

    The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook.

  16. Issues in standard model symmetry breaking

    SciTech Connect

    Golden, M.

    1988-04-01

    This work discusses the symmetry breaking sector of the SU(2) x U(1) electroweak model. The first two chapters discuss Higgs masses in two simple Higgs models. The author proves low-enery theorems for the symmetry breaking sector: The threshold behavior of gauge-boson scattering is completely determined, whenever the symmetry breaking sector meets certain simple conditions. The author uses these theorems to derive event rates for the superconducting super collider (SSC). The author shows that the SSC may be able to determine whether the interactions of the symmetry breaking sector are strong or weak. 54 refs.

  17. Noether gauge symmetry approach in quintom cosmology

    NASA Astrophysics Data System (ADS)

    Aslam, Adnan; Jamil, Mubasher; Momeni, Davood; Myrzakulov, Ratbay; Rashid, Muneer Ahmad; Raza, Muhammad

    2013-12-01

    In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether gauge symmetries (NGS). Motivated by this mathematical tool, in this paper, we study the generalized Noether symmetry of quintom model of dark energy, which is a two component fluid model with quintessence and phantom scalar fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potential functions are proposed from the symmetry point of view, but in the quintom models they are used as phenomenological models without clear mathematical justification. From integrability point of view, we found two forms of the scale factor: one is power law and second is de-Sitter. Some cosmological implications of the solutions have been investigated.

  18. Functional ferroic heterostructures with tunable integral symmetry.

    PubMed

    Becher, C; Trassin, M; Lilienblum, M; Nelson, C T; Suresha, S J; Yi, D; Yu, P; Ramesh, R; Fiebig, M; Meier, D

    2014-07-02

    The relation between symmetry and functionality was pinpointed by Pierre Curie who stated that it is the symmetry breaking that creates physical properties. This fundamental principle is nowadays used for engineering heterostructures whose integral symmetry leads to exotic phenomena such as one-way transparency. For switching devices, however, such symmetry-related functionalities cannot be used because the symmetry in conventional heterostructures is immutable once the material has been synthesized. Here we demonstrate a concept for post-growth symmetry control in PbZr0.2Ti0.8O3 and BiFeO3-based heterostructures. A conducting oxide is sandwiched between two ferroelectric layers, and inversion symmetry is reversibly switched on or off by layer-selective electric-field poling. The generalization of our approach to other materials and symmetries is discussed. We thus establish ferroic trilayer structures as device components with reversibly tunable symmetry and demonstrate their use as light emitters that can be activated and deactivated by applying moderate electric voltages.

  19. Search for primordial symmetry breakings in CMB

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke

    2016-06-01

    There are possibilities to violate symmetries (e.g. parity and rotational invariance) in the primordial cosmological fluctuations. Such symmetry breakings can imprint very rich signatures in late-time phenomena, which may be possible to observe. Especially, Cosmic Microwave Background (CMB) will change its face drastically, corresponding to the symmetry-breaking types, since the harmonic-space representation is very sensitive to the statistical, spin and angular dependences of cosmological perturbations. Here, we discuss (1) general responses of CMB to the symmetry breakings, (2) some theoretical models creating interesting CMB signatures, and (3) aspects of the estimation from observational data.

  20. Asymptotic symmetries of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Strominger, Andrew

    2014-07-01

    Asymptotic symmetries at future null infinity ( +) of Minkowski space for electrodynamics with massless charged fields, as well as nonabelian gauge theories with gauge group G, are considered at the semiclassical level. The possibility of charge/color flux through + suggests the symmetry group is infinite-dimensional. It is conjectured that the symmetries include a G Kac-Moody symmetry whose generators are "large" gauge transformations which approach locally holomorphic functions on the conformal two-sphere at + and are invariant under null translations. The Kac-Moody currents are constructed from the gauge field at the future boundary of +. The current Ward identities include Weinberg's soft photon theorem and its colored extension.

  1. Fake conformal symmetry in unimodular gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-08-01

    We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences in Einstein's general relativity, conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.

  2. A K3 sigma model with : symmetry

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias R.; Taormina, Anne; Volpato, Roberto; Wendland, Katrin

    2014-02-01

    The K3 sigma model based on the -orbifold of the D 4-torus theory is studied. It is shown that it has an equivalent description in terms of twelve free Majorana fermions, or as a rational conformal field theory based on the affine algebra . By combining these different viewpoints we show that the = (4 , 4) preserving symmetries of this theory are described by the discrete symmetry group : . This model therefore accounts for one of the largest maximal symmetry groups of K3 sigma models. The symmetry group involves also generators that, from the orbifold point of view, map untwisted and twisted sector states into one another.

  3. PREFACE: Symmetries in Science XV

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter; Ramek, Michael

    2012-08-01

    Logo Bregenz, the peaceful monastery of Mehrerau and the Opera on the Floating Stage again provided the setting for the international symposium 'Symmetries in Science'. The series which has been running for more than 30 years brings together leading theoreticians whose area of research is, in one way or another, related to symmetry. Since 1992 the meeting took place biannually in Brengez until 2003. In 2009, with the endorsement of the founder, Professor Bruno Gruber, we succeeded in re-establishing the series without external funding. The resounding success of that meeting encouraged us to continue in 2011 and, following on the enthusiasm and positive feedback of the participants, we expect to continue in 2013. Yet again, our meeting in 2011 was very international in flavour and brought together some 30 participants representing 12 nationalities, half of them from countries outside the European Union (from New Zealand to Mexico, Russia to Israel). The broad spectrum, a mixture of experienced experts and highly-motivated newcomers, the intensive exchange of ideas in a harmonious and relaxed atmosphere and the resulting joint projects are probably the secrets of why this meeting is considered to be so special to its participants. At the resumption in 2009 some leading experts and younger scientists from economically weak countries were unable to attend due to the lack of financial resources. This time, with the very worthy and unbureaucratic support of the 'Vereinigung von Freunden und Förderern der J W Goethe-Universität Frankfurt am Main' (in short: 'Friends and Supporters of the Frankfurt University'), it was possible for all candidates to participate. In particular some young, inspired scientists had the chance of presenting their work to a very competent, but also friendly, audience. We wish to thank the 'Freunde und Förderer' for supporting Symmetries in Science XV. Almost all participants contributed to the publication of this Conference Proceedings. There

  4. Wormhole dynamics in spherical symmetry

    SciTech Connect

    Hayward, Sean A.

    2009-06-15

    A dynamical theory of traversable wormholes is detailed in spherical symmetry. Generically a wormhole consists of a tunnel of trapped surfaces between two mouths, defined as temporal outer trapping horizons with opposite senses, in mutual causal contact. In static cases, the mouths coincide as the throat of a Morris-Thorne wormhole, with surface gravity providing an invariant measure of the radial curvature or ''flaring-out''. The null energy condition must be violated at a wormhole mouth. Zeroth, first, and second laws are derived for the mouths, as for black holes. Dynamic processes involving wormholes are reviewed, including enlargement or reduction, and interconversion with black holes. A new area of wormhole thermodynamics is suggested.

  5. PREFACE: Symmetries in Science XVI

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster

  6. Rare Isotopes and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex; Engel, Jonathan; Haxton, Wick; Ramsey-Musolf, Michael; Romalis, Michael; Savard, Guy

    2009-01-01

    Experiments searching for new interactions in nuclear beta decay / Klaus P. Jungmann -- The beta-neutrino correlation in sodium-21 and other nuclei / P. A. Vetter ... [et al.] -- Nuclear structure and fundamental symmetries/ B. Alex Brown -- Schiff moments and nuclear structure / J. Engel -- Superallowed nuclear beta decay: recent results and their impact on V[symbol] / J. C. Hardy and I. S. Towner -- New calculation of the isospin-symmetry breaking correlation to superallowed Fermi beta decay / I. S. Towner and J. C. Hardy -- Precise measurement of the [symbol]H to [symbol]He mass difference / D. E. Pinegar ... [et al.] -- Limits on scalar currents from the 0+ to 0+ decay of [symbol]Ar and isospin breaking in [symbol]Cl and [symbol]Cl / A. Garcia -- Nuclear constraints on the weak nucleon-nucleon interaction / W. C. Haxton -- Atomic PNC theory: current status and future prospects / M. S. Safronova -- Parity-violating nucleon-nucleon interactions: what can we learn from nuclear anapole moments? / B. Desplanques -- Proposed experiment for the measurement of the anapole moment in francium / A. Perez Galvan ... [et al.] -- The Radon-EDM experiment / Tim Chupp for the Radon-EDM collaboration -- The lead radius Eexperiment (PREX) and parity violating measurements of neutron densities / C. J. Horowitz -- Nuclear structure aspects of Schiff moment and search for collective enhancements / Naftali Auerbach and Vladimir Zelevinsky -- The interpretation of atomic electric dipole moments: Schiff theorem and its corrections / C. -P. Liu -- T-violation and the search for a permanent electric dipole moment of the mercury atom / M. D. Swallows ... [et al.] -- The new concept for FRIB and its potential for fundamental interactions studies / Guy Savard -- Collinear laser spectroscopy and polarized exotic nuclei at NSCL / K. Minamisono -- Environmental dependence of masses and coupling constants / M. Pospelov.

  7. Neutrino properties and fundamental symmetries

    SciTech Connect

    Bowles, T.J.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using {sup 3}He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs.

  8. Flavor symmetries and fermion masses

    SciTech Connect

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V{sub ub}/V{sub cb} = {radical}m{sub u}/m{sub c} and V{sub td}/V{sub ts} = {radical}m{sub d}/m{sub s}, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay {beta} {yields} s{gamma} constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tan{Beta}, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.

  9. Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Jia, Man; Lou, Sen-Yue

    2012-12-01

    Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group invariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.

  10. Symmetry is less than meets the eye.

    PubMed

    Apthorp, Deborah; Bell, Jason

    2015-03-30

    Symmetry is a ubiquitous feature in the visual environment and can be detected by a variety of species, ranging from insects through to humans [1,2]. Here we show it can also bias estimates of basic scene properties. Mirror (reflective) symmetry can be detected in as little as 50 ms, in both natural and artificial visual scenes, and even when embedded within cluttered backgrounds [1]. In terms of its biological relevance, symmetry is a key determinant in mate selection; the degree of symmetry in a face is positively associated with perceived healthiness and attractiveness ratings [3]. In short, symmetry processing mechanisms are an important part of the neural machinery of vision. We reveal that the importance of symmetry extends beyond the processing of shape and objects. Mirror symmetry biases our perception of scene content, with symmetrical patterns appearing to have fewer components than their asymmetric counterparts. This demonstrates an interaction between two fundamental dimensions of visual analysis: symmetry [1] and number [4]. We propose that this numerical underestimation results from a processing bias away from the redundant information within mirror symmetrical displays, extending existing theories regarding redundancy in visual analysis [5,6]. PMID:25829006

  11. Symmetry in critical random Boolean network dynamics.

    PubMed

    Hossein, Shabnam; Reichl, Matthew D; Bassler, Kevin E

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  12. Symmetry is less than meets the eye.

    PubMed

    Apthorp, Deborah; Bell, Jason

    2015-03-30

    Symmetry is a ubiquitous feature in the visual environment and can be detected by a variety of species, ranging from insects through to humans [1,2]. Here we show it can also bias estimates of basic scene properties. Mirror (reflective) symmetry can be detected in as little as 50 ms, in both natural and artificial visual scenes, and even when embedded within cluttered backgrounds [1]. In terms of its biological relevance, symmetry is a key determinant in mate selection; the degree of symmetry in a face is positively associated with perceived healthiness and attractiveness ratings [3]. In short, symmetry processing mechanisms are an important part of the neural machinery of vision. We reveal that the importance of symmetry extends beyond the processing of shape and objects. Mirror symmetry biases our perception of scene content, with symmetrical patterns appearing to have fewer components than their asymmetric counterparts. This demonstrates an interaction between two fundamental dimensions of visual analysis: symmetry [1] and number [4]. We propose that this numerical underestimation results from a processing bias away from the redundant information within mirror symmetrical displays, extending existing theories regarding redundancy in visual analysis [5,6].

  13. Order in the Universe: The Symmetry Principle.

    ERIC Educational Resources Information Center

    Foundation for Integrative Education, Inc., New York, NY.

    The first two papers in this booklet provide a review of the pervasiveness of symmetry in nature and art, discussing how symmetry can be traced through every domain open to our understanding, from all aspects of nature to the special provinces of man; the checks and balances of government, the concept of equal justice, and the aesthetic ordering…

  14. Broken chiral symmetry on a null plane

    SciTech Connect

    Beane, Silas R.

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.

  15. Hidden flavor symmetries of SO(10) GUT

    NASA Astrophysics Data System (ADS)

    Bajc, Borut; Smirnov, Alexei Yu.

    2016-08-01

    The Yukawa interactions of the SO(10) GUT with fermions in 16-plets (as well as with singlets) have certain intrinsic ("built-in") symmetries which do not depend on the model parameters. Thus, the symmetric Yukawa interactions of the 10 and 126 dimensional Higgses have intrinsic discrete Z2 ×Z2 symmetries, while the antisymmetric Yukawa interactions of the 120 dimensional Higgs have a continuous SU(2) symmetry. The couplings of SO(10) singlet fermions with fermionic 16-plets have U(1) 3 symmetry. We consider a possibility that some elements of these intrinsic symmetries are the residual symmetries, which originate from the (spontaneous) breaking of a larger symmetry group Gf. Such an embedding leads to the determination of certain elements of the relative mixing matrix U between the matrices of Yukawa couplings Y10, Y126, Y120, and consequently, to restrictions of masses and mixings of quarks and leptons. We explore the consequences of such embedding using the symmetry group conditions. We show how unitarity emerges from group properties and obtain the conditions it imposes on the parameters of embedding. We find that in some cases the predicted values of elements of U are compatible with the existing data fits. In the supersymmetric version of SO(10) such results are renormalization group invariant.

  16. Teaching symmetry in the introductory physics curriculum

    SciTech Connect

    Hill, C. T.; Lederman, L. M.

    2000-01-01

    Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.

  17. Cubic Icosahedra? A Problem in Assigning Symmetry

    ERIC Educational Resources Information Center

    Lloyd, D. R.

    2010-01-01

    There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…

  18. Complementarity and Symmetry in Family Therapy Communication.

    ERIC Educational Resources Information Center

    Heatherington, Laurie; Friedlander, Myrna L.

    1990-01-01

    Examined relational control communication patterns in systemic family therapy sessions. Results from 29 families showed significantly more complementarity than symmetry. Neither complementarity nor symmetry was predictive of family members' perceptions of the therapeutic alliance as measured by Couple and Family Therapy Alliance Scales. (Author/NB)

  19. Symmetry in critical random Boolean network dynamics

    NASA Astrophysics Data System (ADS)

    Hossein, Shabnam; Reichl, Matthew D.; Bassler, Kevin E.

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  20. S4 flavored CP symmetry for neutrinos

    NASA Astrophysics Data System (ADS)

    Mohapatra, R. N.; Nishi, C. C.

    2012-10-01

    A generalized CP symmetry for leptons is presented where CP transformations are part of an S4 symmetry that connects different families. We study its implications for lepton mixings in a gauge model realization of the idea using a type II seesaw for neutrino masses. The model predicts maximal atmospheric mixing, nonzero θ13 and maximal Dirac phase δD=±(π)/(2).

  1. Teaching Point-Group Symmetry with Three-Dimensional Models

    ERIC Educational Resources Information Center

    Flint, Edward B.

    2011-01-01

    Three tools for teaching symmetry in the context of an upper-level undergraduate or introductory graduate course on the chemical applications of group theory are presented. The first is a collection of objects that have the symmetries of all the low-symmetry and high-symmetry point groups and the point groups with rotational symmetries from 2-fold…

  2. Tests of gravitational symmetries with radio pulsars

    NASA Astrophysics Data System (ADS)

    Shao, LiJing; Wex, Norbert

    2016-09-01

    Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.

  3. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    NASA Astrophysics Data System (ADS)

    Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.

    2005-11-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  4. Symmetries, weak symmetries, and related solutions of the Grad-Shafranov equation

    SciTech Connect

    Cicogna, G.; Pegoraro, F.; Ceccherini, F.

    2010-10-15

    We discuss a new family of solutions of the Grad-Shafranov (GS) equation that describes D-shaped toroidal plasma equilibria with sharp gradients at the plasma edge. These solutions have been derived by exploiting the continuous Lie symmetry properties of the GS equation and in particular a special type of 'weak' symmetries. In addition, we review the continuous Lie symmetry properties of the GS equation and present a short but exhaustive survey of the possible choices for the arbitrary flux functions that yield GS equations admitting some continuous Lie symmetry. Particular solutions related to these symmetries are also discussed.

  5. Anomalous Symmetry Fractionalization and Surface Topological Order

    NASA Astrophysics Data System (ADS)

    Chen, Xie; Burnell, F. J.; Vishwanath, Ashvin; Fidkowski, Lukasz

    2015-10-01

    In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET) phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain "anomalous" SETs can only occur on the surface of a 3D symmetry-protected topological (SPT) phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H4(G ,U (1 )) , which also precisely labels the set of 3D SPT phases, with symmetry group G . An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U (1 )2 ] topological order with a reduced symmetry Z2×Z2⊂SO (3 ) , which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  6. PREFACE: Symmetries in Science XIV

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter; Ramek, Michael

    2010-04-01

    Symmetries Logo This volume of the proceedings "Symmetries in Science XIV" is dedicated to the memory of our colleagues and dear friends Marcos Moshinsky and Yuriĭ Smirnov who regularly participated in these Symposia and were a great inspiration to many. We shall miss them. Dieter Schuch and Michael Ramek The international symposium "Symmetries in Science XIV" held at Collegium Mehrerau in Bregenz, Austria from July 19-24, 2009, attended by 32 scientists from 11 countries, was an experiment, performed by theoreticians. Aim of this experiment was to find out if the desire to revive or even continue this conference series was stronger than the very restricted pecuniary boundary conditions. It obviously was! After its establishment by Bruno Gruber in 1979, the biennial series settled in the very stimulating atmosphere of the monastery Mehrerau, which provided the ideal environment for a limited number of invited participants to exchange ideas, without parallel sessions, and pursue deeper discussions (at the latest in the evening at "Gasthof Lamm"). When the conference series terminated in 2003, former participants were quite disappointed. Meeting again at several (larger) conferences in subsequent years, there were repeated expressions of "the lack of a Bregenz-type meeting in our field nowadays" and the question of a possible "revitalization", even without external funding. After some hesitation, but also driven by our own desire to reinstate the series, we consulted Bruno who not only approved wholeheartedly but also offered his full support. It all finally led to the symposium in July 2009. The atmosphere was really like in the "good old days" and the interesting and thought-provoking presentations culminated in the publication of these Proceedings. We are grateful to Carl Bender for establishing contact with IOP making it possible for us to publish these Proceedings in the Journal of Physics Conference Series. A majority of the participants contributed to these

  7. Natural quasicrystal with decagonal symmetry

    PubMed Central

    Bindi, Luca; Yao, Nan; Lin, Chaney; Hollister, Lincoln S.; Andronicos, Christopher L.; Distler, Vadim V.; Eddy, Michael P.; Kostin, Alexander; Kryachko, Valery; MacPherson, Glenn J.; Steinhardt, William M.; Yudovskaya, Marina; Steinhardt, Paul J.

    2015-01-01

    We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula. PMID:25765857

  8. Bilateral symmetry across Aphrodite Terra

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, J. W.; Campbell, D. B.

    1987-01-01

    There are three main highland areas on Venus: Beta Regio, Ishtar Terra and Aphrodite Terra. The latter is least known and the least mapped, yet existing analyses of Aphrodite Terra based on available Pioneer-Venus orbiter data suggest that it may be the site of extensive rifting. Some of the highest resolution (30 km) PV data (SAR) included most of the western half of Aphrodite Terra. Recent analysis of the SAR data together with Arecibo range-doppler topographic profiling (10 X 100 km horizontal and 10 m vertical resolution) across parts of Aphrodite, further characterized the nature of possible tectonic processes in the equatorial highlands. The existence of distinct topographic and radar morphologic linear discontinuities across the nearly east-west strike of Aphrodite Terra is indicated. Another prominent set of linear features is distinctly parallel to and orthogonal to the ground tracks of the PV spacecraft and are not included because of the possibility that they are artifacts. Study of the northwest trending cross-strike discontinuities (CSD's) and the nature of topographic and morphologic features along their strike suggest the presence of bilateral topographic and morphologic symmetry about the long axis of Aphrodite Terra.

  9. Natural quasicrystal with decagonal symmetry.

    PubMed

    Bindi, Luca; Yao, Nan; Lin, Chaney; Hollister, Lincoln S; Andronicos, Christopher L; Distler, Vadim V; Eddy, Michael P; Kostin, Alexander; Kryachko, Valery; MacPherson, Glenn J; Steinhardt, William M; Yudovskaya, Marina; Steinhardt, Paul J

    2015-01-01

    We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula. PMID:25765857

  10. PREFACE: Symmetries in Science XVI

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster

  11. Structural symmetry in evolutionary games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436

  12. Symmetry and range limits in importance indices.

    PubMed

    Seifan, Tal; Seifan, Merav

    2015-10-01

    Recently, Mingo has analyzed the properties of I imp, an importance index, and demonstrated that its range is not symmetrical. While agreeing with this comment, we believe that more light needs to be shed on the issue of symmetry in relation to such indices. Importance indices are calculated using three values: performance of the organism in the absence and in the presence of neighbors and maximum performance of the organism in ideal conditions. Because of this structure, importance indices can hardly ever achieve symmetry along the whole range of potential performances. We discuss the limitation of the symmetry range for different symmetry types and for both additive and multiplicative indices. We conclude that importance indices, as other interactions indices, are practical tools for interpreting ecological outcomes, especially while comparing between studies. Nevertheless, the current structure of importance indices prevents symmetry along their whole range. While the lack of "perfect" symmetry may call for the development of more sophisticated importance metrics, the current indices are still helpful for the understanding of biological systems and should not be discarded before better alternatives are well established. To prevent potential confusion, we suggest that ecologists present the relevant index symmetry range in addition to their results, thus minimizing the probability of misinterpretation. PMID:26668718

  13. Symmetry and range limits in importance indices.

    PubMed

    Seifan, Tal; Seifan, Merav

    2015-10-01

    Recently, Mingo has analyzed the properties of I imp, an importance index, and demonstrated that its range is not symmetrical. While agreeing with this comment, we believe that more light needs to be shed on the issue of symmetry in relation to such indices. Importance indices are calculated using three values: performance of the organism in the absence and in the presence of neighbors and maximum performance of the organism in ideal conditions. Because of this structure, importance indices can hardly ever achieve symmetry along the whole range of potential performances. We discuss the limitation of the symmetry range for different symmetry types and for both additive and multiplicative indices. We conclude that importance indices, as other interactions indices, are practical tools for interpreting ecological outcomes, especially while comparing between studies. Nevertheless, the current structure of importance indices prevents symmetry along their whole range. While the lack of "perfect" symmetry may call for the development of more sophisticated importance metrics, the current indices are still helpful for the understanding of biological systems and should not be discarded before better alternatives are well established. To prevent potential confusion, we suggest that ecologists present the relevant index symmetry range in addition to their results, thus minimizing the probability of misinterpretation.

  14. Symmetries in fluctuations far from equilibrium.

    PubMed

    Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L

    2011-05-10

    Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.

  15. Symmetries in fluctuations far from equilibrium

    PubMed Central

    Hurtado, Pablo I.; Pérez-Espigares, Carlos; del Pozo, Jesús J.; Garrido, Pedro L.

    2011-01-01

    Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti–Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green–Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865

  16. Relativity symmetries and Lie algebra contractions

    SciTech Connect

    Cho, Dai-Ning; Kong, Otto C.W.

    2014-12-15

    We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m,n) symmetry as an isometry on an m+n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m,n) preserving a symmetry of the same type at dimension m+n−1, e.g. a G(m,n−1), together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example of symmetries obtained from the contraction of SO(2,4), which is the particular case for our interest on the physics side as the proposed relativity symmetry for “quantum spacetime”. The contractions from G(1,3) may be relevant to real physics.

  17. Dynamical flavor origin of ZN symmetries

    NASA Astrophysics Data System (ADS)

    Sierra, D. Aristizabal; Dhen, Mikaël; Fong, Chee Sheng; Vicente, Avelino

    2015-05-01

    Discrete Abelian symmetries (ZN ) are a common "artifact" of beyond the standard model physics models. They provide different avenues for constructing consistent scenarios for lepton and quark mixing patterns, radiative neutrino mass generation as well as dark matter stabilization. We argue that these symmetries can arise from the spontaneous breaking of the Abelian U (1 ) factors contained in the global flavor symmetry transformations of the gauge-invariant kinetic Lagrangian. This will be the case provided the ultraviolet completion responsible for the Yukawa structure involves scalar fields carrying nontrivial U (1 ) charges. Guided by minimality criteria, we demonstrate the viability of this approach with two examples: first, we derive the "scotogenic" model Lagrangian, and second, we construct a setup where the spontaneous symmetry-breaking pattern leads to a Z3 symmetry which enables dark matter stability as well as neutrino mass generation at the two-loop order. This generic approach can be used to derive many other models, with residual ZN or ZN1×⋯×ZNk symmetries, establishing an intriguing link between flavor symmetries, neutrino masses and dark matter.

  18. Codon usage bias in prokaryotic pyrimidine-ending codons is associated with the degeneracy of the encoded amino acids

    PubMed Central

    Wald, Naama; Alroy, Maya; Botzman, Maya; Margalit, Hanah

    2012-01-01

    Synonymous codons are unevenly distributed among genes, a phenomenon termed codon usage bias. Understanding the patterns of codon bias and the forces shaping them is a major step towards elucidating the adaptive advantage codon choice can confer at the level of individual genes and organisms. Here, we perform a large-scale analysis to assess codon usage bias pattern of pyrimidine-ending codons in highly expressed genes in prokaryotes. We find a bias pattern linked to the degeneracy of the encoded amino acid. Specifically, we show that codon-pairs that encode two- and three-fold degenerate amino acids are biased towards the C-ending codon while codons encoding four-fold degenerate amino acids are biased towards the U-ending codon. This codon usage pattern is widespread in prokaryotes, and its strength is correlated with translational selection both within and between organisms. We show that this bias is associated with an improved correspondence with the tRNA pool, avoidance of mis-incorporation errors during translation and moderate stability of codon–anticodon interaction, all consistent with more efficient translation. PMID:22581775

  19. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect

    Levy, Mel E-mail: mlevy@tulane.edu; Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W. E-mail: mlevy@tulane.edu

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  20. Origin of parameter degeneracy and molecular shape relationships in geometric-flow calculations of solvation free energies

    SciTech Connect

    Daily, Michael D.; Chun, Jaehun; Heredia-Langner, Alejandro; Wei, Guowei; Baker, Nathan A.

    2013-11-28

    Implicit solvent models are important tools for calculating solvation free energies for chemical and biophysical studies since they require fewer computational resources but can achieve accuracy comparable to that of explicit-solvent models. In past papers, geometric flow-based solvation models have been established for solvation analysis of small and large compounds. In the present work, the use of realistic experiment-based parameter choices for the geometric flow models is studied. We find that the experimental parameters of solvent internal pressure p = 172 MPa and surface tension γ = 72 mN/m produce solvation free energies within 1 RT of the global minimum root-mean-squared deviation from experimental data over the expanded set. Our results demonstrate that experimental values can be used for geometric flow solvent model parameters, thus eliminating the need for additional parameterization. We also examine the correlations between optimal values of p and γ which are strongly anti-correlated. Geometric analysis of the small molecule test set shows that these results are inter-connected with an approximately linear relationship between area and volume in the range of molecular sizes spanned by the data set. In spite of this considerable degeneracy between the surface tension and pressure terms in the model, both terms are important for the broader applicability of the model.

  1. AS ABOVE, SO BELOW: EXPLOITING MASS SCALING IN BLACK HOLE ACCRETION TO BREAK DEGENERACIES IN SPECTRAL INTERPRETATION

    SciTech Connect

    Markoff, Sera; Silva, Catia V.; Nowak, Michael A.; Gallo, Elena; Plotkin, Richard M.; Hynes, Robert; Wilms, Jörn; Maitra, Dipankar; Drappeau, Samia E-mail: C.V.DeJesusSilva@uva.nl E-mail: egallo@umich.edu E-mail: joern.wilms@sternwarte.uni-erlangen.de E-mail: samia.drappeau@irap.omp.eu

    2015-10-20

    Over the past decade, evidence has mounted that several aspects of black hole (BH) accretion physics proceed in a mass-invariant way. One of the best examples of this scaling is the empirical “fundamental plane of BH accretion” relation linking mass, radio, and X-ray luminosity over eight orders of magnitude in BH mass. The currently favored theoretical interpretation of this relation is that the physics governing power output in weakly accreting BHs depends more on relative accretion rate than on mass. In order to test this theory, we explore whether a mass-invariant approach can simultaneously explain the broadband spectral energy distributions from two BHs at opposite ends of the mass scale but that are at similar Eddington accretion fractions. We find that the same model, with the same value of several fitted physical parameters expressed in mass-scaling units to enforce self-similarity, can provide a good description of two data sets from V404 Cyg and M81*, a stellar and supermassive BH, respectively. Furthermore, only one of several potential emission scenarios for the X-ray band is successful, suggesting it is the dominant process driving the fundamental plane relation at this accretion rate. This approach thus holds promise for breaking current degeneracies in the interpretation of BH high-energy spectra and for constructing better prescriptions of BH accretion for use in various local and cosmological feedback applications.

  2. Origin of parameter degeneracy and molecular shape relationships in geometric-flow calculations of solvation free energies

    NASA Astrophysics Data System (ADS)

    Daily, Michael D.; Chun, Jaehun; Heredia-Langner, Alejandro; Wei, Guowei; Baker, Nathan A.

    2013-11-01

    Implicit solvent models are important tools for calculating solvation free energies for chemical and biophysical studies since they require fewer computational resources but can achieve accuracy comparable to that of explicit-solvent models. In past papers, geometric flow-based solvation models have been established for solvation analysis of small and large compounds. In the present work, the use of realistic experiment-based parameter choices for the geometric flow models is studied. We find that the experimental parameters of solvent internal pressure p = 172 MPa and surface tension γ = 72 mN/m produce solvation free energies within 1 RT of the global minimum root-mean-squared deviation from experimental data over the expanded set. Our results demonstrate that experimental values can be used for geometric flow solvent model parameters, thus eliminating the need for additional parameterization. We also examine the correlations between optimal values of p and γ which are strongly anti-correlated. Geometric analysis of the small molecule test set shows that these results are inter-connected with an approximately linear relationship between area and volume in the range of molecular sizes spanned by the data set. In spite of this considerable degeneracy between the surface tension and pressure terms in the model, both terms are important for the broader applicability of the model.

  3. Exploring Symmetry to Assist Alzheimer's Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.

  4. Dark Matter from Binary Tetrahedral Flavor Symmetry

    NASA Astrophysics Data System (ADS)

    Eby, David; Frampton, Paul

    2012-03-01

    Binary Tetrahedral Flavor Symmetry, originally developed as a quark family symmetry and later adapted to leptons, has proved both resilient and versatile over the past decade. In 2008 a minimal T' model was developed to accommodate quark and lepton masses and mixings using a family symmetry of (T'xZ2). We examine an expansion of this earlier model using an additional Z2 group that facilitates predictions of WIMP dark matter, the Cabibbo angle, and deviations from Tribimaximal Mixing, while giving hints at the nature of leptogenesis.

  5. Discrete symmetries and de Sitter spacetime

    SciTech Connect

    Cotăescu, Ion I. Pascu, Gabriel

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  6. Electromagnetic radiation under explicit symmetry breaking.

    PubMed

    Sinha, Dhiraj; Amaratunga, Gehan A J

    2015-04-10

    We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna.

  7. Lie symmetry theorem of fractional nonholonomic systems

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Chen, Ben-Yong; Fu, Jing-Li

    2014-11-01

    The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is established, and the fractional Lagrange equations are obtained by virtue of the d'Alembert—Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal transformations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.

  8. \\cal{PT} -symmetry in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang

    2016-07-01

    We propose a scheme to realize parity-time ( {PT} )-symmetry in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. We show that Rydberg-dressed 87Rb atoms in a four-level inverted Y-type configuration is highly efficient to generate the refractive index for a probe field, with a symmetric (antisymmetric) profile spatially in the corresponding real (imaginary) part. Comparing with earlier investigations, the present scheme provides a versatile platform to control the system from {PT} -symmetry to non-PT -symmetry via different external parameters, i.e., coupling field detuning, probe field intensity and control field intensity.

  9. Electromagnetic radiation under explicit symmetry breaking.

    PubMed

    Sinha, Dhiraj; Amaratunga, Gehan A J

    2015-04-10

    We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna. PMID:25910163

  10. Electromagnetic Radiation under Explicit Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Sinha, Dhiraj; Amaratunga, Gehan A. J.

    2015-04-01

    We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna.

  11. The zonal satellite problem. III. Symmetries

    NASA Astrophysics Data System (ADS)

    Mioc, V.

    The two-body problem associated with a force field described by a potential of the form U=sum_{k=1}nak/rk (r = distance between particles, ak = real parameters) is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form diffeomorphic commutative groups endowed with a Boolean structure. Expressed in Levi-Civita's coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting a Boolean structure.

  12. Symmetries in the Anisotropic Kepler Problem

    NASA Astrophysics Data System (ADS)

    Mioc, Vasile

    The two-body problem associated to an anisotropic Newtonian-type potential function is being considered. We point out the complex symmetries that feature this problem. Such symmetries, expressed in standard polar coordinates, are recovered for McGee-type coordinates of both collision-blow-up kind and infinity-blow-up kind. They form isomorphic commutative groups endowed with an idempotent structure. Expressed in Levi-Civita's coordinates, the problem exhibits a larger group of symmetries, also commutative and endowed with an idempotent structure.

  13. Finite-layer thickness stabilizes the Pfaffian state for the 5/2 fractional quantum Hall effect: wave function overlap and topological degeneracy.

    PubMed

    Peterson, Michael R; Jolicoeur, Th; Das Sarma, S

    2008-07-01

    We find the finite width, i.e., the layer thickness, of experimental quasi-two-dimensional systems produces a physical environment sufficient to stabilize the Moore-Read Pfaffian state thought to describe the fractional quantum Hall effect at filling factor nu=5/2. This conclusion is based on exact calculations performed in the spherical and torus geometries, studying wave function overlap and ground state degeneracy.

  14. New look at the degeneracies in the neutrino oscillation parameters, and their resolution by T2K, NO ν A and ICAL

    NASA Astrophysics Data System (ADS)

    Ghosh, Monojit; Ghoshal, Pomita; Goswami, Srubabati; Nath, Newton; Raut, Sushant K.

    2016-01-01

    The three major unknown neutrino oscillation parameters at the present juncture are the mass hierarchy, the octant of the mixing angle θ23 and the C P phase δC P . It is well known that the presence of hierarchy-δC P and octant degeneracies affects the unambiguous determination of these parameters. In this paper, we show that a comprehensive way to study the remaining parameter degeneracies is in the form of a generalized hierarchy-θ23-δC P degeneracy. This is best depicted as contours in the test (θ23-δC P ) plane for different representative true values of parameters. We show that the wrong-hierarchy and/or wrong-octant solutions can be further classified into eight different solutions depending on whether they occur with the wrong or right value of δC P. These eight solutions are different from the original eightfold degenerate solutions and can exist, in principle, even if θ13 is known. These multiple solutions, apart from affecting the determination of the true hierarchy and octant, also affect the accurate estimation of δC P. We identify which of these eight different degenerate solutions can occur in the test (θ23-δC P) parameter space, taking the long-baseline experiment NO ν A running in the neutrino mode as an example. The inclusion of the NO ν A antineutrino run removes the wrong-octant solutions appearing with both right and wrong hierarchy. Adding T2K data to this resolves the wrong hierarchy-right octant solutions to a large extent. The remaining wrong-hierarchy solutions can be removed by combining NO ν A +T 2 K with atmospheric neutrino data. We demonstrate this using ICAL@INO as the prototype atmospheric neutrino detector. We find that the degeneracies can be resolved at the 2 σ level by the combined data set, for the true parameter space considered in the study.

  15. Personal recollections on chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kobayashi, Makoto

    2016-07-01

    The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.

  16. Shift symmetry and inflation in supergravity

    SciTech Connect

    Brax, Philippe; Martin, Jerome

    2005-07-15

    We consider models of inflation in supergravity with a shift symmetry. We focus on models with one modulus and one inflaton field. The presence of this symmetry guarantees the existence of a flat direction for the inflaton field. Mildly breaking the shift symmetry using a superpotential which depends not only on the modulus, but also on the inflaton field allows one to lift the inflaton flat direction. Along the inflaton direction, the {eta} problem is alleviated. Combining the KKLT mechanism for modulus stabilization and a shift symmetry breaking superpotential of the chaotic inflation type, we find models reminiscent of 'mutated hybrid inflation' where the inflationary trajectory is curved in the modulus-inflaton plane. We analyze the phenomenology of these models and stress their differences with both chaotic and hybrid inflation.

  17. Symmetry and the Cosmic Microwave Background

    NASA Technical Reports Server (NTRS)

    Wollock, Edward J.

    2012-01-01

    A brief historical introduction to the development of observational astronomy and cosmology will be presented. The close relationship between the properties of light, symmetry, and our understanding the contents of our universe will be explored.

  18. Dynamical symmetries in contemporary nuclear structure applications

    NASA Astrophysics Data System (ADS)

    Georgieva, A. I.; Ivanov, M. I.; Drenska, S. L.; Sviratcheva, K. D.; Draayer, J. P.

    2010-12-01

    In terms of group theory—the language of symmetries, the concept of spontaneous symmetry breaking is represented in terms of chains of group-subgroup structures that define the dynamical symmetry of the system under consideration. This framework enables exact analytic solutions of the associated eigenvalue problems. We review two types of applications of dynamical symmetries in contemporary theoretical nuclear structure physics: first for a classification of the many-body systems under consideration, with respect to an important characteristic of their behavior; and second for the creation of exactly solvable algebraic models that describe specific aspects of this behavior. This is illustrated with the boson and fermion realizations of symplectic structures. In the first case with an application of the sp(4, R) classification scheme of even-even nuclei within the major nuclear shells and next with of the sp(4) microscopic model for the description of isovector pairing correlations.

  19. Modelling Symmetry Classes 233 and 432.

    ERIC Educational Resources Information Center

    Dutch, Steven I.

    1986-01-01

    Offers instructions and geometrical data for constructing solids of the enantiomorphous symmetry classes 233 and 432. Provides background information for each class and highlights symmetrical relationships and construction patterns. (ML)

  20. Matrix Models, Emergent Spacetime and Symmetry Breaking

    SciTech Connect

    Grosse, Harald; Steinacker, Harold; Lizzi, Fedele

    2009-12-15

    We discuss how a matrix model recently shown to describe emergent gravity may contain extra degrees of freedom which reproduce some characteristics of the standard model, in particular the breaking of symmetries and the correct quantum numbers of fermions.

  1. Spatial Symmetries of the Local Densities

    SciTech Connect

    Rohozinski, S.; Dobaczewski, J.; Nazarewicz, Witold

    2010-01-01

    Spatial symmetries of the densities appearing in the nuclear Density Functional Theory are discussed. General forms of the local densities are derived by using methods of construction of isotropic tensor fields. The spherical and axial cases are considered.

  2. Breaking of Gauge Symmetry: A Geometrical View.

    ERIC Educational Resources Information Center

    Moriyasu, K.

    1980-01-01

    Presents a simple introduction to the fundamental physical ideas involved in the breaking of local gauge symmetry. The purpose of this article is to show how these ideas can be understood independently of any particular application. (Author/HM)

  3. Soliton surfaces in the generalized symmetry approach

    NASA Astrophysics Data System (ADS)

    Grundland, A. M.

    2016-09-01

    We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas-Gel'fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas-Gel'fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the C P N-1 sigma-model equation.

  4. Symmetry breaking of quasihelical stellarator equilibria

    SciTech Connect

    Weening, R.H. )

    1993-04-01

    A mean-field Ohm's law is used to determine the effects of the bootstrap current on quasihelically symmetric stellarator equilibria. The Ohm's law leads to the conclusion that the effects of the bootstrap current break the quasihelical stellarator symmetry at second order in an inverse aspect ratio expansion of the magnetic field strength. The level of symmetry breaking suggests that good approximations to quasihelical stellarator fusion reactors may not be attainable.

  5. Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach

    SciTech Connect

    Cicogna, G.; Pegoraro, F.

    2015-02-15

    We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.

  6. Noether's second theorem for BRST symmetries

    SciTech Connect

    Bashkirov, D.; Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.

    2005-05-01

    We present Noether's second theorem for graded Lagrangian systems of even and odd variables on an arbitrary body manifold X in a general case of BRST symmetries depending on derivatives of dynamic variables and ghosts of any finite order. As a preliminary step, Noether's second theorem for Lagrangian systems on fiber bundles Y{yields}X possessing gauge symmetries depending on derivatives of dynamic variables and parameters of arbitrary order is proved.

  7. Density dependence of nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Behera, B.; Routray, T. R.; Tripathy, S. K.

    2016-10-01

    High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.

  8. Squeezing lepton pairs out of broken symmetries

    NASA Astrophysics Data System (ADS)

    Dutt-Mazumder, A. K.; Gale, C.; Majumder, A.; Teodorescu, O.

    2002-04-01

    We discuss two possible signatures of symmetry breaking that can appear in dilepton spectra, as measured in relativistic heavy ion collisions. The first involves scalar-vector meson mixing and is related to the breaking of Lorentz symmetry by a hot medium. The second is related to the breaking of Furry's theorem by a charged quark-gluon plasma. Those signals will be accessible to upcoming measurements to be performed at the GSI, RHIC, and the LHC. .

  9. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals.

    PubMed

    Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua

    2016-08-01

    A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics. PMID:27505772

  10. Generating Symmetry in the Asymmetric ATP-binding Cassette (ABC) Transporter Pdr5 from Saccharomyces cerevisiae*

    PubMed Central

    Gupta, Rakeshkumar P.; Kueppers, Petra; Hanekop, Nils; Schmitt, Lutz

    2014-01-01

    Pdr5 is a plasma membrane-bound ABC transporter from Saccharomyces cerevisiae and is involved in the phenomenon of resistance against xenobiotics, which are clinically relevant in bacteria, fungi, and humans. Many fungal ABC transporters such as Pdr5 display an inherent asymmetry in their nucleotide-binding sites (NBS) unlike most of their human counterparts. This degeneracy of the NBSs is very intriguing and needs explanation in terms of structural and functional relevance. In this study, we mutated nonconsensus amino acid residues in the NBSs to its consensus counterpart and studied its effect on the function of the protein and effect on yeast cells. The completely “regenerated” Pdr5 protein was severely impaired in its function of ATP hydrolysis and of rhodamine 6G transport. Moreover, we observe alternative compensatory mechanisms to counteract drug toxicity in some of the mutants. In essence, we describe here the first attempts to restore complete symmetry in an asymmetric ABC transporter and to study its effects, which might be relevant to the entire class of asymmetric ABC transporters. PMID:24733388

  11. Symmetry calculation for molecules and transition states.

    PubMed

    Vandewiele, Nick M; Van de Vijver, Ruben; Van Geem, Kevin M; Reyniers, Marie-Françoise; Marin, Guy B

    2015-01-30

    The symmetry of molecules and transition states of elementary reactions is an essential property with important implications for computational chemistry. The automated identification of symmetry by computers is a very useful tool for many applications, but often relies on the availability of three-dimensional coordinates of the atoms in the molecule and hence becomes less useful when these coordinates are a priori unavailable. This article presents a new algorithm that identifies symmetry of molecules and transition states based on an augmented graph representation of the corresponding structures, in which both topology and the presence of stereocenters are accounted for. The automorphism group order of the graph associated with the molecule or transition state is used as a starting point. A novel concept of label-stereoisomers, that is, stereoisomers that arise after labeling homomorph substituents in the original molecule so that they become distinguishable, is introduced and used to obtain the symmetry number. The algorithm is characterized by its generic nature and avoids the use of heuristic rules that would limit the applicability. The calculated symmetry numbers are in agreement with expected values for a large and diverse set of structures, ranging from asymmetric, small molecules such as fluorochlorobromomethane to highly symmetric structures found in drug discovery assays. The new algorithm opens up new possibilities for the fast screening of the degree of symmetry of large sets of molecules.

  12. Fluency Expresses Implicit Knowledge of Tonal Symmetry.

    PubMed

    Ling, Xiaoli; Li, Fengying; Qiao, Fuqiang; Guo, Xiuyan; Dienes, Zoltan

    2016-01-01

    The purposes of the present study were twofold. First, we sought to establish whether tonal symmetry produces processing fluency. Second, we sought to explore whether symmetry and chunk strength express themselves differently in fluency, as an indication of different mechanisms being involved for sub- and supra-finite state processing. Across two experiments, participants were asked to listen to and memorize artificial poetry showing a mirror symmetry (an inversion, i.e., a type of cross serial dependency); after this training phase, people completed a four-choice RT task in which they were presented with new artificial poetry. Participants were required to identify the stimulus displayed. We found that symmetry sped up responding to the second half of strings, indicating a fluency effect. Furthermore, there was a dissociation between fluency effects arising from symmetry vs. chunk strength, with stronger fluency effects for symmetry rather than chunks in the second half of strings. Taken together, we conjecture a divide between finite state and supra-finite state mechanisms in learning grammatical sequences.

  13. A new paradigm for animal symmetry.

    PubMed

    Holló, Gábor

    2015-12-01

    My aim in this article is to soften certain rigid concepts concerning the radial and bilateral symmetry of the animal body plan, and to offer a more flexible framework of thinking for them, based on recent understandings of how morphogenesis is regulated by the mosaically acting gene regulatory networks. Based on general principles of the genetic regulation of morphogenesis, it can be seen that the difference between the symmetry of the whole body and that of minor anatomical structures is only a question of a diverse timing during development. I propose that the animal genome, as such, is capable of expressing both radial and bilateral symmetries, and deploys them according to the functional requirements which must be satisfied by both the anatomical structure and body as a whole. Although it may seem paradoxical, this flexible view of symmetry, together with the idea that symmetry is strongly determined by function, bolsters the concept that the presence of the two main symmetries in the animal world is not due to chance: they are necessary biological patterns emerging in evolution.

  14. SUGRA new inflation with Heisenberg symmetry

    SciTech Connect

    Antusch, Stefan; Cefalà, Francesco E-mail: stefan.antusch@unibas.ch

    2013-10-01

    We propose a realisation of ''new inflation'' in supergravity (SUGRA), where the flatness of the inflaton potential is protected by a Heisenberg symmetry. Inflation can be associated with a particle physics phase transition, with the inflaton being a (D-flat) direction of Higgs fields which break some symmetry at high energies, e.g. of GUT Higgs fields or of Higgs fields for flavour symmetry breaking. This is possible since compared to a shift symmetry, which is usually used to protect a flat inflaton potential, the Heisenberg symmetry is compatible with a (gauge) non-singlet inflaton field. In contrast to conventional new inflation models in SUGRA, where the predictions depend on unknown parameters of the Kaehler potential, the model with Heisenberg symmetry makes discrete predictions for the primordial perturbation parameters which depend only on the order n at which the inflaton appears in the effective superpotential. The predictions for the spectral index n{sub s} can be close to the best-fit value of the latest Planck 2013 results.

  15. Symmetries and elasticity of nematic gels

    NASA Astrophysics Data System (ADS)

    Lubensky, T. C.; Mukhopadhyay, Ranjan; Radzihovsky, Leo; Xing, Xiangjun

    2002-07-01

    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these materials.

  16. Symmetries and elasticity of nematic gels.

    PubMed

    Lubensky, T C; Mukhopadhyay, Ranjan; Radzihovsky, Leo; Xing, Xiangjun

    2002-07-01

    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these materials. PMID:12241370

  17. Fluency Expresses Implicit Knowledge of Tonal Symmetry

    PubMed Central

    Ling, Xiaoli; Li, Fengying; Qiao, Fuqiang; Guo, Xiuyan; Dienes, Zoltan

    2016-01-01

    The purposes of the present study were twofold. First, we sought to establish whether tonal symmetry produces processing fluency. Second, we sought to explore whether symmetry and chunk strength express themselves differently in fluency, as an indication of different mechanisms being involved for sub- and supra-finite state processing. Across two experiments, participants were asked to listen to and memorize artificial poetry showing a mirror symmetry (an inversion, i.e., a type of cross serial dependency); after this training phase, people completed a four-choice RT task in which they were presented with new artificial poetry. Participants were required to identify the stimulus displayed. We found that symmetry sped up responding to the second half of strings, indicating a fluency effect. Furthermore, there was a dissociation between fluency effects arising from symmetry vs. chunk strength, with stronger fluency effects for symmetry rather than chunks in the second half of strings. Taken together, we conjecture a divide between finite state and supra-finite state mechanisms in learning grammatical sequences. PMID:26869960

  18. Exploring symmetry in near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L.; Le Pape, S.; Divol, L.; Meezan, N.; MacKinnon, A.; Ho, D. D.; Jones, O.; Khan, S.; Ma, T.; Milovich, J.; Pak, A.; Ross, J. S.; Thomas, C.; Turnbull, D.; Amendt, P.; Wilks, S.; Zylstra, A.; Rinderknecht, H.; Sio, H.; Petrasso, R.

    2015-11-01

    Recent experiments with near-vacuum hohlraums, which utilize a minimal but non-zero helium fill, have demonstrated performance improvements relative to conventional gas-filled (0.96 - 1.6 mg/cc helium) hohlraums: minimal backscatter, reduced capsule drive degradation, and minimal suprathermal electron generation. Because this is a low laser-plasma interaction platform, implosion symmetry is controlled via pulse-shaping adjustments to laser power balance. Extending this platform to high-yield designs with high-density carbon capsules requires achieving adequate symmetry control throughout the pulse. In simulations, laser propagation is degraded suddenly by hohlraum wall expansion interacting with ablated capsule material. Nominal radiation-hydrodynamics simulations have not yet proven predictive on symmetry of the final hotspot, and experiments show more prolate symmetry than preshot calculations. Recent efforts have focused on understanding the discrepancy between simulated and measured symmetry and on alternate designs for symmetry control through varying cone fraction, trade-offs between laser power and energy, and modifications to case-to-capsule ratio. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  19. Neutrino mass, mixing and discrete symmetries

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexei Y.

    2013-07-01

    Status of the discrete symmetry approach to explanation of the lepton masses and mixing is summarized in view of recent experimental results, in particular, establishing relatively large 1-3 mixing. The lepton mixing can originate from breaking of discrete flavor symmetry Gf to different residual symmetries Gl and Gv in the charged lepton and neutrino sectors. In this framework the symmetry group condition has been derived which allows to get relations between the lepton mixing elements immediately without explicit model building. The condition has been applied to different residual neutrino symmetries Gv. For generic (mass independent) Gv = Z2 the condition leads to two relations between the mixing parameters and fixes one column of the mixing matrix. In the case of Gv = Z2 × Z2 the condition fixes the mixing matrix completely. The non-generic (mass spectrum dependent) Gv lead to relations which include mixing angles, neutrino masses and Majorana phases. The symmetries Gl, Gv, Gf are identified which lead to the experimentally observed values of the mixing angles and allow to predict the CP phase.

  20. Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale

    NASA Astrophysics Data System (ADS)

    Bi, Huan-Yu; Wu, Xing-Gang; Ma, Yang; Ma, Hong-Hao; Brodsky, Stanley J.; Mojaza, Matin

    2015-09-01

    The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the Rδ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfy all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio Re+e- and the Higgs partial width Γ (H → b b bar). Both methods lead to the same resummed ('conformal') series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {βi }-terms in the pQCD expansion are taken into account. We also show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.

  1. On breaking the age-metallicity degeneracy in early-type galaxies: outflows versus star formation efficiency

    NASA Astrophysics Data System (ADS)

    Ferreras, Ignacio; Silk, Joseph

    2000-08-01

    A simple model of chemical enrichment in cluster early-type galaxies is presented where the main parameters driving the formation of the stellar component are reduced to four: the infall time-scale (τf), the formation epoch (zF), the star formation efficiency (Ceff) and the fraction of gas ejected in outflows (Bout). We find that only variations in Bout or Ceff can account for the colour-magnitude relation, so that the most luminous galaxies had low values of ejected gas and high efficiencies. Less massive galaxies can be related either to a lower star formation efficiency (Ceff sequence) or to an increased outflow rate (Bout sequence). The combination of chemical enrichment tracks with population synthesis models is used to explore the correlation between mass-to-light ratios and masses. A significant slope mismatch is found between stellar and total ML ratios, which cannot be explained by an age spread and implies a non-linear correlation between total and stellar mass: MTOT ∝ M1.2ST. The sequences driven by star formation efficiency (Ceff) and outflows (Bout) are shown to predict different trends at high redshift. The variation with redshift of the slope of the fundamental plane will increase significantly in the efficiency sequence - driven by age - and will slightly decrease in the outflow sequence - driven by metallicity. The evolution of the zero-point is similar in both cases and within the observational errors of current observations. Measurement of the dependence of the tilt of the fundamental plane on redshift will break the degeneracy between outflows and star formation efficiency, which will enable us to determine whether the colour-magnitude relation is controlled by age or metallicity.

  2. Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale

    SciTech Connect

    Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; Ma, Hong -Hao; Brodsky, Stanley J.; Mojaza, Matin

    2015-06-26

    The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the Rδ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfy all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio Re+e and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {βi}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.

  3. Generalized Gross-Pitaevskii equation adapted to the U (5 ) ⊃ SO (5 ) ⊃ SO (3 ) symmetry for spin-2 condensates

    NASA Astrophysics Data System (ADS)

    He, Y. Z.; Liu, Y. M.; Bao, C. G.

    2015-03-01

    A generalized Gross-Pitaevskii equation adapted to the U(5 )⊃SO(5 )⊃SO(3 ) symmetry has been derived and solved for the spin-2 condensates. The spin-textile and the degeneracy of the ground state (g.s.) together with the factors affecting the stability of the g.s., such as the gap and the level density in the neighborhood of the g.s., have been studied. Based on a rigorous treatment of the spin-degrees of freedom, the spin-textiles can be understood in an N -body language. In addition to the ferro, polar, and cyclic phases, the g.s. might in a mixture of them when |M | is not equal to 0 and 2 N (M is the total magnetization). The great difference in the stability and degeneracy of the g.s. caused by varying φ (which marks the features of the interaction) and M is notable. Since the root-mean-square radius Rrms is an observable, efforts have been made to derive a set of formulas to relate Rrms and N ,ω (frequency of the trap), and φ . These formulas provide a way to check the theories with experimental data.

  4. Perception of Mirror Symmetry in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Falter, Christine M.; Bailey, Anthony J.

    2012-01-01

    Gestalt grouping in autism spectrum disorders (ASD) is selectively impaired for certain organization principles but for not others. Symmetry is a fundamental Gestalt principle characterizing many biological shapes. Sensitivity to symmetry was tested using the Picture Symmetry Test, which requires finding symmetry lines on pictures. Individuals…

  5. Residual symmetries of the gravitational field

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Velázquez-Rodríguez, Gerardo

    2016-02-01

    We develop a geometric criterion that unambiguously characterizes the residual symmetries of a gravitational Ansatz. It also provides a systematic and effective computational procedure for finding all the residual symmetries of any gravitational Ansatz. We apply the criterion to several examples starting with the Collinson Ansatz for circular stationary axisymmetric spacetimes. We reproduce the residual symmetries already known for this Ansatz including their conformal symmetry, for which we identify the corresponding infinite generators spanning the two related copies of the Witt algebra. We also consider the noncircular generalization of this Ansatz and show how the noncircular contributions on the one hand break the conformal invariance and on the other hand enhance the standard translation symmetries of the circular Killing vectors to supertranslations depending on the direction along which the circularity is lost. As another application of the method, the well-known relation defining conjugate gravitational potentials introduced by Chandrasekhar, which makes possible the derivation of the Kerr black hole from a trivial solution of the Ernst equations, is deduced as a special point of the general residual symmetry of the Papapetrou Ansatz. In this derivation we emphasize how the election of Weyl coordinates, which determines the Papapetrou Ansatz, breaks also the conformal freedom of the stationary axisymmetric spacetimes. Additionally, we study AdS waves for any dimension generalizing the residual symmetries already known for lower dimensions and exhibiting a very complex infinite-dimensional Lie algebra containing three families: two of them span the semidirect sum of the Witt algebra and scalar supertranslations and the third generates vector supertranslations. Independently of this complexity we manage to comprehend the true meaning of the infinite connected group as the precise diffeomorphisms subgroup allowing to locally deform the AdS background into Ad

  6. Discovering Symmetry in Everyday Environments: A Creative Approach to Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Fuchigami, Kei; Schrandt, Matthew; Miessler, Gary L.

    2016-01-01

    A hands-on symmetry project is proposed as an innovative way of teaching point groups to undergraduate chemistry students. Traditionally, courses teaching symmetry require students to identify the point group of a given object. This project asks the reverse: students are instructed to identify an object that matches each point group. Doing so…

  7. Convergence, Degeneracy, and Control

    ERIC Educational Resources Information Center

    Green, David W.; Crinion, Jenny; Price, Cathy J.

    2006-01-01

    Understanding the neural representation and control of language in normal bilingual speakers provides insights into the factors that constrain the acquisition of another language, insights into the nature of language expertise, and an understanding of the brain as an adaptive system. We illustrate both functional and structural brain changes…

  8. Convergence, degeneracy and control

    PubMed Central

    Green, David W.; Crinion, J.; Price, Cathy J.

    2007-01-01

    Understanding the neural representation and control of language in normal bilingual speakers provides insights into the factors that constrain the acquisition of another language, insights into the nature of language expertise and an understanding of the brain as an adaptive system. We illustrate both functional and structural brain changes associated with acquiring other languages and discuss the value of neuroimaging data in identifying individual differences and different phenotypes. Understanding normal variety is vital too if we are to understand the consequences of brain-damage in bilingual and polyglot speakers. PMID:18273402

  9. Convergence, degeneracy and control.

    PubMed

    Green, David W; Crinion, J; Price, Cathy J

    2006-07-01

    Understanding the neural representation and control of language in normal bilingual speakers provides insights into the factors that constrain the acquisition of another language, insights into the nature of language expertise and an understanding of the brain as an adaptive system. We illustrate both functional and structural brain changes associated with acquiring other languages and discuss the value of neuroimaging data in identifying individual differences and different phenotypes. Understanding normal variety is vital too if we are to understand the consequences of brain-damage in bilingual and polyglot speakers. PMID:18273402

  10. Symmetry in social exchange and health

    NASA Astrophysics Data System (ADS)

    Siegrist, Johannes

    2005-10-01

    Symmetry is a relevant concept in sociological theories of exchange. It is rooted in the evolutionary old norm of social reciprocity and is particularly important in social contracts. Symmetry breaking through violation of the norm of reciprocity generates strain in micro-social systems and, above all, in victims of non-symmetric exchange. In this contribution, adverse healthconsequences of symmetry breaking in contractual social exchange are analysed, with a main focus on the employment contract. Scientific evidence is derived from prospective epidemiological studies testing the model of effort-reward imbalance at work. Overall, a twofold elevated risk of incident disease is observed in employed men and women who are exposed to non-symmetric exchange. Health risks include coronary heart disease, depression and alcohol dependence, among others. Preliminary results suggest similar effects on health produced by symmetry breaking in other types of social relationships (e.g. partnership, parental roles). These findings underline the importance of symmetry in contractual social exchange for health and well-being.

  11. Graph fibrations and symmetries of network dynamics

    NASA Astrophysics Data System (ADS)

    Nijholt, Eddie; Rink, Bob; Sanders, Jan

    2016-11-01

    Dynamical systems with a network structure can display remarkable phenomena such as synchronisation and anomalous synchrony breaking. A methodology for classifying patterns of synchrony in networks was developed by Golubitsky and Stewart. They showed that the robustly synchronous dynamics of a network is determined by its quotient networks. This result was recently reformulated by DeVille and Lerman, who pointed out that the reduction from a network to a quotient is an example of a graph fibration. The current paper exploits this observation and demonstrates the importance of self-fibrations of network graphs. Self-fibrations give rise to symmetries in the dynamics of a network. We show that every network admits a lift with a semigroup or semigroupoid of self-fibrations. The resulting symmetries impact the global dynamics of the network and can therefore be used to explain and predict generic scenarios for synchrony breaking. Also, when the network has a trivial symmetry groupoid, then every robust synchrony in the lift is determined by symmetry. We finish this paper with a discussion of networks with interior symmetries and nonhomogeneous networks.

  12. Symmetries in proteins: A knot theory approach

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Jie; Dill, Ken A.

    1996-04-01

    Whereas the symmetries of small molecules are described by the methods of group theory, there is no corresponding way to describe the complex symmetries in proteins. We develop a quantitative method to define and classify symmetries in compact polymers, based on the mathematical theory of graphs and knots. We represent different chain folds by their ``polymer graphs,'' equivalent to contact maps. We transform those graphs into mathematical knots to give a parsing of different possible chain folds into conformational taxonomies. We use Alexander-Conway knot polynomials to characterize the knots. We find that different protein structures with the same tertiary fold, e.g., a βαβ motif with different lengths of α helix and β sheet, can be described in terms of the different powers of the propagation matrices of the knot polynomial. This identifies a fundamental type of topological length invariance in proteins, ``elongatable'' symmetries. For example, ``helix,'' ``sheet,'' ``helix-turn-helix,'' and other secondary, supersecondary, and tertiary structures define structures of any chain length. Possibly the nine superfolds identified by Thornton et al. have elongatable symmetries.

  13. Reflections on the concept of symmetry

    NASA Astrophysics Data System (ADS)

    Lorenz, Kuno

    2005-10-01

    The concept of symmetry is omnipresent, although originally, in Greek antiquity, distinctly different from the modern logical notion. In logic a binary relation R is called symmetric if xRy implies yRx. In Greek, "being symmetric" in general usage is synonymous with "being harmonious", and in technical usage, as in Euclid's Elements, it is synonymous with "commensurable". Due to the second meaning, which is close to the etymology of συ´μμɛτρoς, "with measure" has likewise to be read as "being [in] rational [ratios]" and displays the origin of the concept of rationality of establishing a proportion. Heraclitus can be read as a master of such connections. Exercising rationality is a case of simultaneously finding and inventing symmetries. On that basis a proposal is made of how to relate the modern logical notion of symmetry, a second-order concept, on the one hand with modern first-order usages of the term symmetric in geometry and other fields, and on the other hand with the notion of balance that derives from the ancient usage of symmetric. It is argued that symmetries as states of balance exist only in theory, in practice they function as norms vis-à-vis broken symmetries.

  14. Weyl-gauge symmetry of graphene

    SciTech Connect

    Iorio, Alfredo

    2011-05-15

    Research Highlights: > Graphene action's Weyl symmetry identifies shapes for which the DOS is invariant. > Electrons on graphene might experience a general-relativistic-like spacetime. > Rich mathematical structures, such as the Liouville's equation, naturally arise. - Abstract: The conformal invariance of the low energy limit theory governing the electronic properties of graphene is explored. In particular, it is noted that the massless Dirac theory in point enjoys local Weyl symmetry, a very large symmetry. Exploiting this symmetry in the two spatial dimensions and in the associated three dimensional spacetime, we find the geometric constraints that correspond to specific shapes of the graphene sheet for which the electronic density of states is the same as that for planar graphene, provided the measurements are made in accordance to the inner reference frame of the electronic system. These results rely on the (surprising) general relativistic-like behavior of the graphene system arising from the combination of its well known special relativistic-like behavior with the less explored Weyl symmetry. Mathematical structures, such as the Virasoro algebra and the Liouville equation, naturally arise in this three-dimensional context and can be related to specific profiles of the graphene sheet. Speculations on possible applications of three-dimensional gravity are also proposed.

  15. The symmetries of the Carroll superparticle

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric; Gomis, Joaquim; Parra, Lorena

    2016-05-01

    Motivated by recent applications of Carroll symmetries we investigate, using the method of nonlinear realizations, the geometry of flat and curved (AdS) Carroll space and the symmetries of a particle moving in such a space both in the bosonic as well as in the supersymmetric case. In the bosonic case we find that the Carroll particle possesses an infinite-dimensional symmetry which only in the flat case includes dilatations. The duality between the Bargmann and Carroll algebra, relevant for the flat case, does not extend to the curved case. In the supersymmetric case we study the dynamics of the { N }=1 AdS Carroll superparticle. Only in the flat limit we find that the action is invariant under an infinite-dimensional symmetry that includes a supersymmetric extension of the Lifshitz Carroll algebra with dynamical exponent z = 0. We also discuss in the flat case the extension to { N }=2 supersymmetry and show that the flat { N }=2 superparticle is equivalent to the (non-moving) { N }=1 superparticle and that therefore it is not BPS unlike its Galilei counterpart. This is due to the fact that in this case kappa-symmetry eliminates the linearized supersymmetry. In an appendix we discuss the { N }=2 curved case in three-dimensions only and show that there are two { N }=2 theories that are physically different.

  16. Geometrical symmetries of nuclear systems: {{ D }}_{3h} and {{ T }}_{d} symmetries in light nuclei

    NASA Astrophysics Data System (ADS)

    Bijker, Roelof

    2016-07-01

    The role of discrete (or point-group) symmetries in α-cluster nuclei is discussed in the framework of the algebraic cluster model which describes the relative motion of the α-particles. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the corresponding rotational bands. The method is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in a simple way as a consequence of the underlying discrete symmetry that characterizes the geometrical configuration of the α-particles, i.e. an equilateral triangle with {{ D }}3h symmetry for 12C, and a tetrahedron with {{ T }}d symmetry for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of α-particles.

  17. Direct calculation of the linear thermal expansion coefficients of MoS2 via symmetry-preserving deformations

    NASA Astrophysics Data System (ADS)

    Gan, Chee Kwan; Liu, Yu Yang Fredrik

    2016-10-01

    Using density-functional perturbation theory and the Grüneisen formalism, we directly calculate the linear thermal expansion coefficients (TECs) of a hexagonal bulk system MoS2 in the crystallographic a and c directions. The TEC calculation depends critically on the evaluation of a temperature-dependent quantity Ii(T ) , which is the integral of the product of heat capacity and Γi(ν ) , of frequency ν and strain type i , where Γi(ν ) is the phonon density of states weighted by the Grüneisen parameters. We show that to determine the linear TECs we may use minimally two uniaxial strains in the z direction and either the x or y direction. However, a uniaxial strain in either the x or y direction drastically reduces the symmetry of the crystal from a hexagonal one to a base-centered orthorhombic one. We propose to use an efficient and accurate symmetry-preserving biaxial strain in the x y plane to derive the same result for Γ (ν ) . We highlight that the Grüneisen parameter associated with a biaxial strain may not be the same as the average of Grüneisen parameters associated with two separate uniaxial strains in the x and y directions due to possible preservation of degeneracies of the phonon modes under a biaxial deformation. Large anisotropy of TECs is observed where the linear TEC in the c direction is about 1.8 times larger than that in the a or b direction at high temperatures. Our theoretical TEC results are compared with experiment. The symmetry-preserving approach adopted here may be applied to a broad class of two lattice-parameter systems such as hexagonal, trigonal, and tetragonal systems, which allows many complicated systems to be treated on a first-principles level.

  18. Facial aesthetics: babies prefer attractiveness to symmetry.

    PubMed

    Samuels, C A; Butterworth, G; Roberts, T; Graupner, L; Hole, G

    1994-01-01

    The visual preferences of human infants for faces that varied in their attractiveness and in their symmetry about the midline were explored. The aim was to establish whether infants' visual preference for attractive faces may be mediated by the vertical symmetry of the face. Chimeric faces, made from photographs of attractive and unattractive female faces, were produced by computer graphics. Babies looked longer at normal and at chimeric attractive faces than at normal and at chimeric unattractive faces. There were no developmental differences between the younger and older infants: all preferred to look at the attractive faces. Infants as young as 4 months showed similarity with adults in the 'aesthetic perception' of attractiveness and this preference was not based on the vertical symmetry of the face. PMID:7845772

  19. Facial aesthetics: babies prefer attractiveness to symmetry.

    PubMed

    Samuels, Curtis A; Butterworth, George; Roberts, Tony; Graupner, Lida; Hole, Graham

    2013-01-01

    The visual preferences of human infants for faces that varied in their attractiveness and in their symmetry about the midline were explored. The aim was to establish whether infants' visual preference for attractive faces may be mediated by the vertical symmetry of the face. Chimeric faces, made from photographs of attractive and unattractive female faces, were produced by computer graphics. Babies looked longer at normal and at chimeric attractive faces than at normal and at chimeric unattractive faces. There were no developmental differences between the younger and older infants: all preferred to look at the attractive faces. Infants as young as 4 months showed similarity with adults in the 'aesthetic perception' of attractiveness and this preference was not based on the vertical symmetry of the face. PMID:24601036

  20. Approximate flavor symmetries in the lepton sector

    SciTech Connect

    Rasin, A. ); Silva, J.P. )

    1994-01-01

    Approximate flavor symmetries in the quark sector have been used as a handle on physics beyond the standard model. Because of the great interest in neutrino masses and mixings and the wealth of existing and proposed neutrino experiments it is important to extend this analysis to the leptonic sector. We show that in the seesaw mechanism the neutrino masses and mixing angles do not depend on the details of the right-handed neutrino flavor symmetry breaking, and are related by a simple formula. We propose several [ital Ansa]$[ital uml]---[ital tze] which relate different flavor symmetry-breaking parameters and find that the MSW solution to the solar neutrino problem is always easily fit. Further, the [nu][sub [mu]-][nu][sub [tau

  1. Workshop on electroweak symmetry breaking: proceedings

    SciTech Connect

    Hinchliffe, I.

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  2. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  3. Facial aesthetics: babies prefer attractiveness to symmetry.

    PubMed

    Samuels, Curtis A; Butterworth, George; Roberts, Tony; Graupner, Lida; Hole, Graham

    2013-01-01

    The visual preferences of human infants for faces that varied in their attractiveness and in their symmetry about the midline were explored. The aim was to establish whether infants' visual preference for attractive faces may be mediated by the vertical symmetry of the face. Chimeric faces, made from photographs of attractive and unattractive female faces, were produced by computer graphics. Babies looked longer at normal and at chimeric attractive faces than at normal and at chimeric unattractive faces. There were no developmental differences between the younger and older infants: all preferred to look at the attractive faces. Infants as young as 4 months showed similarity with adults in the 'aesthetic perception' of attractiveness and this preference was not based on the vertical symmetry of the face.

  4. Facial symmetry assessment based on geometric features

    NASA Astrophysics Data System (ADS)

    Xu, Guoping; Cao, Hanqiang

    2015-12-01

    Face image symmetry is an important factor affecting the accuracy of automatic face recognition. Selecting high symmetrical face image could improve the performance of the recognition. In this paper, we proposed a novel facial symmetry evaluation scheme based on geometric features, including centroid, singular value, in-plane rotation angle of face and the structural similarity index (SSIM). First, we calculate the value of the four features according to the corresponding formula. Then, we use fuzzy logic algorithm to integrate the value of the four features into a single number which represents the facial symmetry. The proposed method is efficient and can adapt to different recognition methods. Experimental results demonstrate its effectiveness in improving the robustness of face detection and recognition.

  5. Symmetry transforms for ideal magnetohydrodynamics equilibria.

    PubMed

    Bogoyavlenskij, Oleg I

    2002-11-01

    A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)

  6. Topological phases with generalized global symmetries

    NASA Astrophysics Data System (ADS)

    Yoshida, Beni

    2016-04-01

    We present simple lattice realizations of symmetry-protected topological phases with q -form global symmetries where charged excitations have q spatial dimensions. Specifically, we construct d space-dimensional models supported on a (d +1 ) -colorable graph by using a family of unitary phase gates, known as multiqubit control-Z gates in quantum information community. In our construction, charged excitations of different dimensionality may coexist and form a short-range entangled state which is protected by symmetry operators of different dimensionality. Nontriviality of proposed models, in a sense of quantum circuit complexity, is confirmed by studying protected boundary modes, gauged models, and corresponding gapped domain walls. We also comment on applications of our construction to quantum error-correcting codes, and discuss corresponding fault-tolerant logical gates.

  7. Discrete Abelian gauge symmetries and axions

    NASA Astrophysics Data System (ADS)

    Honecker, Gabriele; Staessens, Wieland

    2015-07-01

    We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.

  8. Elasticity and Broken Symmetry in Nematic Elastomers

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ranjan; Lubensky, T. C.; Xing, Xiangjun; Radzihovsky, Leo

    2002-03-01

    In nematic elastomers, the coupling between the internal liquid crystalline degrees of freedom and elastic strains lead to novel thermodynamic and mechanical behavior. Their remarkable properties make them candidates for a number of applications including artificial muscles and actuators. Other than their technological importance, their behavior highlights a major theme of physics: the interplay between broken symmetries and long-wavelength elasticity and hydrodynamics. In this talk my primary focus will be to show how the elastic "softness" and the pronounced nonlinear stress-strain relations in these materials arise as a consequence of broken rotational symmetry. We will reproduce these properties using simple models in a way that highlights this interplay between broken rotational symmetry and elasticity.

  9. Preserving Symmetry in Preconditioned Krylov Subspace Methods

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Chow, E.; Saad, Y.; Yeung, M. C.

    1996-01-01

    We consider the problem of solving a linear system Ax = b when A is nearly symmetric and when the system is preconditioned by a symmetric positive definite matrix M. In the symmetric case, one can recover symmetry by using M-inner products in the conjugate gradient (CG) algorithm. This idea can also be used in the nonsymmetric case, and near symmetry can be preserved similarly. Like CG, the new algorithms are mathematically equivalent to split preconditioning, but do not require M to be factored. Better robustness in a specific sense can also be observed. When combined with truncated versions of iterative methods, tests show that this is more effective than the common practice of forfeiting near-symmetry altogether.

  10. Collective neutrino oscillations and spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Duan, Huaiyu

    2015-08-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.

  11. SU(3) breaking and hidden local symmetry

    SciTech Connect

    Benayoun, M.; OConnell, H.B.

    1998-10-01

    We study the various existing implementations of SU(3) breaking in the hidden local symmetry model for the low energy hadronic sector following a mechanism originally proposed by Bando, Kugo and Yamawaki (BKY). We pay particular attention to Hermiticity and current conservation. Following this, we present a new method for including symmetry breaking effects which preserves the BKY mass relation among vector mesons. Symmetry breaking (SB) necessarily requires a transformation of the pseudoscalar fields, which, following BKY, we refer to as field renormalization. We examine the consequences of propagating this through all Lagrangian terms including the anomalous ones. We thus explore the consequences of these various SB schemes for both charged and neutral pseudoscalar decay constants as measured in weak and anomalous decays respectively. {copyright} {ital 1998} {ital The American Physical Society}

  12. Geometric symmetries in superfluid vortex dynamics

    SciTech Connect

    Kozik, Evgeny; Svistunov, Boris

    2010-10-01

    Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric character of the complex-valued field, w(z)=x(z)+iy(z), describing the instant shape of the line. Along with a natural set of Noether's constants of motion, which - apart from their rather specific expressions in terms of w(z) - are nothing but components of the total linear and angular momenta of the fluid, the geometric symmetry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves. It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar considerations apply to other systems with purely geometric degrees of freedom.

  13. Symmetry transforms for ideal magnetohydrodynamics equilibria.

    PubMed

    Bogoyavlenskij, Oleg I

    2002-11-01

    A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)

  14. Viable axion from gauged flavor symmetries

    SciTech Connect

    Berenstein, David; Perkins, Erik

    2010-11-15

    We consider a string-inspired nonsupersymmetric extension of the standard model with gauged anomalous U(1) flavor symmetries. Consistency requires the Green-Schwarz (GS) mechanism to cancel mixed anomalies. The additional required scalars provide Stueckelberg masses for the Z{sup '} particles associated to the gauged flavor symmetry, so they decouple at low energies. Our models also include a complex scalar field {phi} to generate Froggatt-Nielsen mass terms for light particles, giving a partial solution to the fermion mass problem. A residual approximate (anomalous) global symmetry survives at low energies. The associated pseudo-Goldstone mode is the phase of the {phi} scalar field, and it becomes the dominant contribution to the physical axion. An effective field theory analysis that includes neutrino masses gives a prediction for the axion decay constant. We find a simple model where the axion decay constant is in the center of the allowed window.

  15. Hidden conformal symmetry and quasinormal modes

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang

    2010-12-01

    We provide an algebraic way to calculate the quasinormal modes of a black hole, which possesses a hidden conformal symmetry. We construct an infinite tower of quasinormal modes from the highest-weight mode, in a simple and elegant way. For the scalar, the hidden conformal symmetry manifests itself in the fact that the scalar Laplacian could be rewritten in terms of the SL(2,R) quadratic Casimir. For the vector and the tensor, the hidden conformal symmetry acts on them through Lie derivatives. We show that for three-dimensional black holes, with an appropriate combination of the components, the radial equations of the vector and the tensor could be written in terms of the Lie-induced quadratic Casimir. This makes the algebraic construction of the quasinormal modes feasible. Our results are in good agreement with the previous study.

  16. New Algorithms For Automated Symmetry Recognition

    NASA Astrophysics Data System (ADS)

    Paul, Jody; Kilgore, Tammy Elaine; Klinger, Allen

    1988-02-01

    In this paper we present new methods for computer-based symmetry identification that combine elements of group theory and pattern recognition. Detection of symmetry has diverse applications including: the reduction of image data to a manageable subset with minimal information loss, the interpretation of sensor data,1 such as the x-ray diffraction patterns which sparked the recent discovery of a new "quasicrystal" phase of solid matter,2 and music analysis and composition.3,4,5 Our algorithms are expressed as parallel operations on the data using the matrix representation and manipulation features of the APL programming language. We demonstrate the operation of programs that characterize symmetric and nearly-symmetric patterns by determining the degree of invariance with respect to candidate symmetry transformations. The results are completely general; they may be applied to pattern data of arbitrary dimension and from any source.

  17. Black Hole Thermodynamics and Lorentz Symmetry

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Wall, Aron C.

    2010-08-01

    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.

  18. Non-standard symmetries and quantum anomalies

    SciTech Connect

    Visinescu, Anca; Visinescu, Mihai

    2008-08-31

    Quantum anomalies are investigated on curved spacetimes. The intimate relation between Killing-Yano tensors and non-standard symmetries is pointed out. The gravitational anomalies are absent if the hidden symmetry is associated to a Killing-Yano tensor. The axial anomaly in a background gravitational field is directly related with the index of the Dirac operator. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures. The general results are applied to the 4-dimensional Euclidean Taub-NUT space.

  19. Symmetry breaking in individual plasmonic nanoparticles

    PubMed Central

    Wang, Hui; Wu, Yanpeng; Lassiter, Britt; Nehl, Colleen L.; Hafner, Jason H.; Nordlander, Peter; Halas, Naomi J.

    2006-01-01

    The plasmon resonances of a concentric metallic nanoshell arise from the hybridization of primitive plasmon modes of the same angular momentum on its inner and outer surfaces. For a nanoshell with an offset core, the reduction in symmetry relaxes these selection rules, allowing for an admixture of dipolar components in all plasmon modes of the particle. This metallodielectric nanostructure with reduced symmetry exhibits a core offset-dependent multipeaked spectrum, seen in single-particle spectroscopic measurements, and exhibits significantly larger local-field enhancements on its external surface than the equivalent concentric spherical nanostructure. PMID:16829573

  20. Broken symmetry in ideal magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1993-01-01

    A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible, three-dimensional fluid, and magneto-fluid turbulence has been completed. The results confirm that ideal magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the total energy.