Sample records for bottom left image

  1. LANDSAT 4 band 6 data evaluation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A series of images of a portion of a TM frame of Lake Ontario are presented. The top left frame is the TM Band 6 image, the top right image is a conventional contrast stretched image. The bottom left image is a Band 5 to Band 3 ratio image. This image is used to generate a primitive land cover classificaton. Each land cover (Water, Urban, Forest, Agriculture) is assigned a Band 6 emissivity value. The ratio image is then combined with the Band 6 image and atmospheric propagation data to generate the bottom right image. This image represents a display of data whose digital count can be directly related to estimated surface temperature. The resolution appears higher because the process cell is the size of the TM shortwave pixels.

  2. Before the Deep Impact Collision

    NASA Image and Video Library

    2011-02-18

    This series of images shows the area where NASA Deep Impact probe collided with the surface of comet Tempel 1 in 2005. The view zooms in as the images progress from top left to right, and then bottom left to right.

  3. Supernova Cosmology Project

    Science.gov Websites

    Supernova The Supernova Cosmology Project The image above and the movie clips ( QuickTime, or MPEG), show Centaurus A galaxy. The image on the left shows how a supernova appears as it brightens and fades brightness is, from the image at left. The bottom right graph shows how the spectrum of the supernova changes

  4. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-10-01

    ISS041-E-057060 (1 Oct. 2014) --- One of the Expedition 41 crew members aboard the International Space Station, flying at an altitude of 220 nautical miles, photographed this night panorama of parts of Europe on Oct. 1, 2014. Kiev, Ukraine is seen near the right edge of the photo in the vertical center. Lights of Constanta, Romania can be seen just below the Russian Progress 56 cargo vehicle docked to the orbital outpost at the top of the frame. The Black Sea is to the left of the Soyuz TMA-13M docked to the station on the left side of the scene. The Sea of Azov is at the right of the bottom portion the Soyuz. Mariupol is near bottom center; and Donetsk, although it appears as a (bottom-most) tiny smudge on the right side of the image, has a population of just under five million. Krasnodar, Russia is in the bottom left corner. Part of Greece is in the top of the image near the solar panel of the Progress, with Thessaloniki and Sofia among the many bright lights. Part of Turkey is in upper left of the land mass visible. Pre-dawn light coming through the atmosphere gives the station hardware a bluish color.

  5. Martian Surface as Seen by Phoenix

    NASA Image and Video Library

    2008-07-28

    This anaglyph was acquired by NASA Phoenix Lander; in the bottom left is a trench dug by Phoenix Robotic Arm. In the bottom right is one of Phoenix two solar panels. You will need 3-D glasses to view this image.

  6. Compressive Optical Imaging Systems - Theory, Devices and Implementation

    DTIC Science & Technology

    2009-04-01

    Radon projections of the object distribution. However, more complex coding strategies have long been applied in imaging [5] and spectroscopy [6, 7...the bottom right is yellow-green, and the bottom left is yellow- orange . Note the the broad spectral ranges have made the spectral patterns very...Mr - Measured spectra Jf **v\\* f \\gt yellow orange +f •) *\\ - measured spectra*^* 1 S__ ,*3r if ^Sfc

  7. Multiple Aspects of the Southern California Wildfires as Seen by NASA's AVIRIS

    NASA Image and Video Library

    2017-12-15

    NASA's Airborne Visible Infrared Imaging Spectrometer instrument (AVIRIS), flying aboard a NASA Armstrong Flight Research Center high-altitude ER-2 aircraft, observed wildfires burning in Southern California on Dec. 5-7, 2017. AVIRIS is an imaging spectrometer that observes light in visible and infrared wavelengths, measuring the full spectrum of radiated energy. Unlike regular cameras with three colors, AVIRIS has 224 spectral channels, measuring contiguously from the visible through the shortwave infrared. Data from these flights, compared against measurements acquired earlier in the year, show many ways this one instrument can improve both our understanding of fire risk and the response to fires in progress. The top row in this image compilation shows pre-fire data acquired from June 2017. At top left is a visible-wavelength image similar to what our own eyes would see. The top middle image is a map of surface composition based on analyzing the full electromagnetic spectrum, revealing green vegetated areas and non-photosynthetic vegetation that is potential fuel as well as non-vegetated surfaces that may slow an advancing fire. The image at top right is a remote measurement of the water in tree canopies, a proxy for how much moisture is in the vegetation. The bottom row in the compilation shows data acquired from the Thomas fire in progress in December 2017. At bottom left is a visible wavelength image. The bottom middle image is an infrared image, with red at 2,250 nanometers showing fire energy, green at 1,650 nanometers showing the surface through the smoke, and blue at 1,000 nanometers showing the smoke itself. The image at bottom right is a fire temperature map using spectroscopic analysis to measure fire thermal emission recorded in the AVIRIS spectra. https://photojournal.jpl.nasa.gov/catalog/PIA22194

  8. 36. INTERIOR VIEW LOOKING WEST FROM UNDERNEATH THE ORE BINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. INTERIOR VIEW LOOKING WEST FROM UNDERNEATH THE ORE BINS LOOKING AT THE BACK SIDE OF THE HENDY CHALLENGE CONTINUOUS ORE FEEDERS, #1 IS ON THE LEFT, #2 IS CENTER, AND #3 IS ON THE RIGHT. THESE ARE USED TO KEEP A CONTINUOUS FLOW OF ORE INTO THE STAMP MILLS. NOTE THE SPARE FEEDER DISKS ON THE FLOOR BOTTOM CENTER AND SPARE STAMP HEADS AND SHOES ON THE FLOOR BOTTOM LEFT OF THE IMAGE. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  9. Space Radar Image of Central African Gorilla Habitat

    NASA Image and Video Library

    1999-01-27

    This is a false-color radar image of Central Africa, showing the Virunga Volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. This C-band L-band image was acquired on April 12, 1994, on orbit 58 of space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). The area is centered at about 1.75 degrees south latitude and 29.5 degrees east longitude. The image covers an area 58 kilometers by 178 kilometers (48 miles by 178 miles). The false-color composite is created by displaying the L-band HH return in red, the L-band HV return in green and the C-band HH return in blue. The dark area in the bottom of the image is Lake Kivu, which forms the border between Zaire (to the left) and Rwanda (to the right). The airport at Goma, Zaire is shown as a dark line just above the lake in the bottom left corner of the image. Volcanic flows from the 1977 eruption of Mt. Nyiragongo are shown just north of the airport. Mt. Nyiragongo is not visible in this image because it is located just to the left of the image swath. Very fluid lava flows from the 1977 eruption killed 70 people. http://photojournal.jpl.nasa.gov/catalog/PIA01724

  10. Surface Diversity

    NASA Image and Video Library

    2016-03-17

    This enhanced color view of Pluto's surface diversity was created by merging Ralph/Multispectral Visible Imaging Camera (MVIC) color imagery (650 meters per pixel) with Long Range Reconnaissance Imager panchromatic imagery (230 meters per pixel). At lower right, ancient, heavily cratered terrain is coated with dark, reddish tholins. At upper right, volatile ices filling the informally named Sputnik Planum have modified the surface, creating a chaos-like array of blocky mountains. Volatile ice also occupies a few nearby deep craters, and in some areas the volatile ice is pocked with arrays of small sublimation pits. At left, and across the bottom of the scene, gray-white CH4 ice deposits modify tectonic ridges, the rims of craters, and north-facing slopes. The scene in this image is 260 miles (420 kilometers) wide and 140 miles (225 kilometers) from top to bottom; north is to the upper left. http://photojournal.jpl.nasa.gov/catalog/PIA20534

  11. EPA's Report on the Environment (ROE) 2014 Draft

    EPA Science Inventory

    In the news

    EPA's Blog - It all starts with ScienceEPA's ...

  12. Moon - North Pole Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the Moon's north pole is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter as the spacecraft flew by on December 7, 1992. The left part of the Moon is visible from Earth; this region includes the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left); Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region.

  13. Space Radar Image of West Texas - SAR Scan

    NASA Image and Video Library

    1999-04-15

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by "scanning" the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. http://photojournal.jpl.nasa.gov/catalog/PIA01787

  14. 3. Aerial view southeast, State Route 92 bottom left, Adams ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Aerial view southeast, State Route 92 bottom left, Adams Dam Road center, Brandywine Creek State Park and J. Chandler Farm in center left, duck pond bottom right and reservoir bottom left. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  15. Panoramic Views of the Landing site from Sagan Memorial Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Each of these panoramic views is a controlled mosaic of approximately 300 IMP images covering 360 degrees of azimuth and elevations from approximately 4 degrees above the horizon to 45 degrees below it. Simultaneous adjustment of orientations of all images has been performed to minimize discontinuities between images. Mosaics have been highpass-filtered and contrast-enhanced to improve discrimination of details without distorting relative colors overall.

    TOP IMAGE: Enhanced true-color image created from the 'Gallery Pan' sequence, acquired on sols 8-10 so that local solar time increases nearly continuously from about 10:00 at the right edge to about 12:00 at the left. Mosaics of images obtained by the right camera through 670 nm, 530 nm, and 440 nm filters were used as red, green and blue channels. Grid ticks indicate azimuth clockwise from north in 30 degree increments and elevation in 15 degree increments.

    BOTTOM IMAGE: Anaglyphic stereoimage created from the 'monster pan' sequence, acquired in four sections between about 8:30 and 15:00 local solar time on sol 3. Mosaics of images obtained through the 670 nm filter (left camera) and 530 and 440 nm filters (right camera) were used where available. At the top and bottom, left- and right-camera 670 nm images were used. Part of the northern horizon was not imaged because of the tilt of the lander. This image may be viewed stereoscopically through glasses with a red filter for the left eye and a cyan filter for the right eye.

    NOTE: original caption as published in Science Magazine

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  16. Moon - North Polar Mosaic, Color

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During its flight, the Galileo spacecraft returned images of the Moon. The Galileo spacecraft surveyed the Moon on December 7, 1992, on its way to explore the Jupiter system in 1995-1997. The left part of this north pole view is visible from Earth. This color picture is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter. The left part of this picture shows the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left), Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  17. Compressive Optical Imaging Systems -- Theory, Devices and Implementation

    DTIC Science & Technology

    2009-04-15

    strategies have a long history. The most obvious example is tomography, which relies on Radon projections of the object distribution. However, more...experiment. The top fruit is green, the bottom right is yellow-green, and the bottom left is yellow- orange . Note the the broad spectral ranges have...Measured spectra Greenish yellow Measured spectra yellow orange measured spectra Figure 19: DD-CASSI experimental results from real-world objects

  18. Auqakuh Stripe

    NASA Image and Video Library

    2006-06-01

    This MOC image shows windblown ripples on the floor of Auqakuh Vallis. The light-toned area, running diagonally across the scene from the lower left to the upper right, may be dust that has accumulated in the bottom of the valley and on top of the ripples

  19. Ganges Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows a high resolution view of portions of the lobes of several landslide deposits in Ganges Chasma. Dark material near the bottom (south) end of the image is windblown sand.

    Location near: 8.2oS, 44.3oW Image width: 3.0 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  20. Earth Observations taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-05-28

    ISS011-E-07471 (28 May 2005) --- Sept-Îles, Gulf of St Lawrence, Quebec, Canada is featured in this image photographed by an Expedition 11 crewmember on the International Space Station (ISS). Seven Island Bay (left side of the image) is one of the largest (8–10 kilometers across) and best protected bays on Quebec’s north shore of the Gulf of St. Lawrence. Because this is both a deep water port and ice-free year round, Sept-Îles is one of Quebec’s busiest ports. Locally produced materials (iron ore, alumina) comprise the bulk of port traffic, but Sept-Îles also acts as a trans-shipment point for goods moving to Europe, the Far East and South America. The small city of Sept-Îles (~30,000 people) appears in the center of the view; Pointe Noir is opposite the city in the lower left corner. The industrial park lies top left and the angled runways of the airport appear east of the city. Five (of the bay’s seven) islands appear at the bottom of the view. Wind and swells produce patterns on the water. Ships can be seen in the bay and a ship wake appears between the two left islands at the bottom of the view.

  1. Mountains, Craters and Plains

    NASA Image and Video Library

    2016-03-17

    New Horizons views of the informally named Sputnik Planum on Pluto (top) and the informally named Vulcan Planum on Charon (bottom). Both scale bars measure 20 miles (32 kilometers) long; illumination is from the left in both instances. The Sputnik Planum view is centered at 11°N, 180°E, and covers the bright, icy, geologically cellular plains. Here, the cells are defined by a network of interconnected troughs that crisscross these nitrogen-ice plains. At right, in the upper image, the cellular plains yield to pitted plains of southern Sputnik Planum. This observation was obtained by the Ralph/Multispectral Visible Imaging Camera (MVIC) at a resolution of 1,050 feet (320 meters) per pixel. The Vulcan Planum view in the bottom panel is centered at 4°S, 4°E, and includes the "moated mountain" Clarke Mons just above the center of the image. As well as featuring impact craters and sinuous troughs, the water ice-rich plains display a range of surface textures, from smooth and grooved at left, to pitted and hummocky at right. This observation was obtained by the Long Range Reconnaissance Imager (LORRI) at a resolution of 525 feet (160 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20535

  2. Texas after Tropical Storm Allison (bands 2,1,3 in R,G,B)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This MODIS image of Texas (left), Oklahoma (top left), Louisiana (bottom right) and Arkansas (upper right) makes use of band combinations (groups of wavelengths) that make water stand out against land. In this image, the dark blue/black squiggles indicate water. The bright green area along the Texas coast is Galveston Bay, southeast of Houston. Houston was devastated in the past week from the rains from Tropical Storm Allison. The brightness of the Bay may be due to sediment runoff from all the floodwaters. Credit: Jacques Descloitres, MODIS Land Rapid Response Team

  3. Earth Observation

    NASA Image and Video Library

    2013-08-28

    ISS036-E-037747 (28 Aug. 2013) --- One of the Expedition 36 crew members aboard the International Space Station on Aug. 28 photographed this vertical image that shows much of Galveston County and a small portion of southeast Harris County, Texas. Gulf of Mexico waters take up the top half of the picture. Galveston Island runs from just left of center through center right of the image, and the Bolivar Peninsula, highly impacted by Hurricane Ike five years ago, is the land mass at left center. Galveston Bay takes up much of the lower left quadrant of the pictured area. The NASA Johnson Space Center, the normal work place for NASA astronauts Chris Cassidy and Karen Nyberg, currently onboard the orbital complex, is in the bottom portion of the frame.

  4. Earth Observation

    NASA Image and Video Library

    2013-08-28

    ISS036-E-037751 (28 Aug. 2013) --- One of the Expedition 36 crew members aboard the International Space Station on Aug. 28 photographed this vertical image that shows much of Galveston County and a small portion of southeast Harris County, Texas. Gulf of Mexico waters take up the top one third of the picture. Galveston Island runs from just left of top center through top right of the image, and the Bolivar Peninsula, highly impacted by Hurricane Ike five years ago, is the land mass at top left. Galveston Bay is on the left side of the lower part of the frame. The NASA Johnson Space Center, the normal work place for NASA astronauts Chris Cassidy and Karen Nyberg, currently onboard the orbital complex, is in the bottom portion of the frame.

  5. HUBBLE'S TOP TEN GRAVITATIONAL LENSES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368+6212 is a blue arc in the Hubble Deep Field (HDF). [Bottom Right] - HST 18078+4600 is a blue arc caused by the gravitational potential of a small group of 4 galaxies. Credit: Kavan Ratnatunga (Carnegie Mellon Univ.) and NASA

  6. Walz, Bloomfield, Walheim and Ross pose in Zvezda during STS-110's visit to the ISS

    NASA Image and Video Library

    2002-04-09

    STS110-E-5127 (10 April 2002) --- Astronauts Carl E. Walz (top left), Expedition Four flight engineer, Michael J. Bloomfield, STS-110 mission commander, and Rex J. Walheim (bottom left) and Jerry L. Ross, both STS-110 mission specialists, gather for an informal photo in the Zvezda Service Module on the International Space Station (ISS). The image was taken with a digital still camera.

  7. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-08-13

    ISS015-E-22269 (13 Aug. 2007) --- The crew aboard the International Space Station provided this image of the wide-spread forest fires in the Payette National Forest, Central Idaho within the Salmon River Mountains. North is toward the left of the image. The Salmon River is the feature in the bottom central part of the frame. Lake Cascade is seen at the lower right.

  8. Edge-on View of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    1996-01-01

    TOP - This is a NASA Hubble Space Telescope snapshot of Saturn with its rings barely visible. Normally, astronomers see Saturn with its rings tilted. Earth was almost in the plane of Saturn's rings, thus the rings appear edge-on.

    In this view, Saturn's largest moon, Titan, is casting a shadow on Saturn. Titan's atmosphere is a dark brown haze. The other moons appear white because of their bright, icy surfaces. Four moons - from left to right, Mimas, Tethys, Janus, and Enceladus - are clustered around the edge of Saturn's rings on the right. Two other moons appear in front of the ring plane. Prometheus is on the right edge; Pandora, on the left. The rings also are casting a shadow on Saturn because the Sun was above the ring plane.

    BOTTOM - This photograph shows Saturn with its rings slightly tilted. The moon called Dione, on the lower right, is casting a long, thin shadow across the whole ring system due to the setting Sun on the ring plane. The moon on the upper left of Saturn is Tethys.

    Astronomers also are studying the unusual appearance of Saturn's rings. The bottom image displays a faint, narrow ring, the F-ring just outside the main ring, which normally is invisible from Earth. Close to the edge of Saturn's disk, the front section of rings seem brighter and more yellow than the back due to the additional lumination by yellowish Saturn.

    The color images were assembled from separate exposures taken August 6 (top) and November 17 (bottom), 1995 with the Wide Field Planetary Camera-2.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  9. Four Galileo Views of Amalthea

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These four images of Jupiter's moon, Amalthea, were taken by Galileo's solid state imaging system at various times between February and June 1997. North is approximately up in all cases. Amalthea, whose longest dimension is approximately 247 kilometers (154 miles) across, is tidally locked so that the same side of the satellite always points towards Jupiter, similar to how the nearside of our own Moon always points toward Earth. In such a tidally locked state, one side of Amalthea always points in the direction in which Amalthea moves as it orbits about Jupiter. This is called the 'leading side' of the moon and is shown in the top two images. The opposite side of Amalthea, the 'trailing side,' is shown in the bottom pair of images. The Sun illuminates the surface from the left in the top left image and from the right in the bottom left image. Such lighting geometries, similar to taking a picture from a high altitude at sunrise or sunset, are excellent for viewing the topography of the satellite's surface such as impact craters and hills. In the two images on the right, however, the Sun is almost directly behind the spacecraft. This latter geometry, similar to taking a picture from a high altitude at noon, washes out topographic features and emphasizes Amalthea's albedo (light/dark) patterns. It emphasizes the presence of surface materials that are intrinsically brighter or darker than their surroundings. The bright albedo spot that dominates the top right image is located inside a large south polar crater named Gaea.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  10. View of Callisto at Increasing Resolutions

    NASA Technical Reports Server (NTRS)

    1998-01-01

    These four views of Jupiter's second largest moon, Callisto, highlight how increasing resolutions enable interpretation of the surface. In the global view (top left) the surface is seen to have many small bright spots, while the regional view (top right) reveals the spots to be the larger craters. The local view (bottom right) not only brings out smaller craters and detailed structure of larger craters, but also shows a smooth dark layer of material that appears to cover much of the surface. The close-up frame (bottom left) presents a surprising smoothness in this highest resolution (30 meters per picture element) view of Callisto's surface.

    North is to the top of these frames which were taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft between November 1996 and November 1997. Even higher resolution images (better than 20 meters per picture element) of Callisto will be taken on June 30, 1999 during the 21st orbit of the spacecraft around Jupiter.

    The top left frame is scaled to 10 kilometers (km) per picture element (pixel) and covers an area about 4400 by 2500 km. The moon Callisto, which has a diameter of 4806 km, appears to be peppered with many bright spots. Images at this resolution of other cratered moons in the Solar System indicate that the bright spots could be impact craters. The ring structure of Valhalla, the largest impact structure on Callisto, is visible in the center of the frame. This color view combines images obtained in November 1997 taken through the green, violet, and 1 micrometer filters of the SSI system.

    The top right frame is ten times higher resolution (about 1 km per pixel) and covers an area approximately 440 by 250 km. Craters, which are clearly recognizable, appear to be the dominant landform on Callisto. The crater rims appear bright, while the adjacent area and the crater interiors are dark. This resolution is comparable to the best data available from the 1979 flyby's of NASA's two Voyager spacecraft; it reflects the understanding of Callisto prior to new data from Galileo. This Galileo image was taken in November 1996.

    The resolution of the bottom right image is again ten times better (100 meters per pixel) and covering an area of about 44 by 25 km. This resolution reveals that some crater rims are not complete rings, but are composed of bright isolated segments. Steep slopes near crater rims reveal dark material that appears to have slid down to reveal bright material. The thickness of the dark layer could be tens of meters. The image was taken in June 1997.

    The bottom left image at about 29 meters per pixel is the highest resolution available for Callisto. It covers an area about 4.4 by 2.5 km and is somewhat oblique. Craters are visible but no longer dominate the surface. The image was taken in November 1996.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. Space Radar Image of Houston, Texas

    NASA Image and Video Library

    1999-04-15

    This image of Houston, Texas, shows the amount of detail that is possible to obtain using spaceborne radar imaging. Images such as this -- obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavor last fall -- can become an effective tool for urban planners who map and monitor land use patterns in urban, agricultural and wetland areas. Central Houston appears pink and white in the upper portion of the image, outlined and crisscrossed by freeways. The image was obtained on October 10, 1994, during the space shuttle's 167th orbit. The area shown is 100 kilometers by 60 kilometers (62 miles by 38 miles) and is centered at 29.38 degrees north latitude, 95.1 degrees west longitude. North is toward the upper left. The pink areas designate urban development while the green-and blue-patterned areas are agricultural fields. Black areas are bodies of water, including Galveston Bay along the right edge and the Gulf of Mexico at the bottom of the image. Interstate 45 runs from top to bottom through the image. The narrow island at the bottom of the image is Galveston Island, with the city of Galveston at its northeast (right) end. The dark cross in the upper center of the image is Hobby Airport. Ellington Air Force Base is visible below Hobby on the other side of Interstate 45. Clear Lake is the dark body of water in the middle right of the image. The green square just north of Clear Lake is Johnson Space Center, home of Mission Control and the astronaut training facilities. The black rectangle with a white center that appears to the left of the city center is the Houston Astrodome. The colors in this image were obtained using the follow radar channels: red represents the L-band (horizontally transmitted, vertically received); green represents the C-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted and received). http://photojournal.jpl.nasa.gov/catalog/PIA01783

  12. 22. Engine room, as seen from starboard side, forward corner. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Engine room, as seen from starboard side, forward corner. In left foreground is centrifugal water pump driven by a two-cylinder steam reciprocating engine to supply water to trim tanks. Center of view shows hot well for main engine, and at right is bottom of cylinder, condenser, and valve chest of main (walking beam) engine. X-braces in left side of image are stiffening trusses for the hull. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  13. Early SAFARI Data

    NASA Technical Reports Server (NTRS)

    2002-01-01

    larger Pietersburg Image larger Blyde River Canyon Image This pair of false-color images shows the first data returned from the MODIS Airborne Simulator (MAS) during the SAFARI 2000 field campaign. The MAS is used to help calibrate the data received from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra spacecraft. It is carried aboard the ER-2, a high-altitude research aircraft, where it images the Earth's surface in 50 spectral bands. SAFARI marks the first time that the MAS and MODIS have aquired data simultaneously. On the left is Pietersburg South Africa, the current home of the SAFARI field campaign. At upper left is the airport the ER-2 took off from. The red circles in the bottom half of the image are fields watered by central pivot irrigation. The right image is in the area of the Blyde River Canyon. The river cuts across the escarpment that separates South Africa's highlands (Highveld) and lowlands (Lowveld). Images courtesy SAFARI 2000 Recommend this Image to a Friend Back to: Newsroom Also see

  14. Red-Hot Saturn

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These side-by-side false-color images show Saturn's heat emission. The data were taken on Feb. 4, 2004, from the W. M. Keck I Observatory, Mauna Kea, Hawaii. Both images were taken with infrared radiation. The image on the left was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The image on the right was taken at a wavelength of 8 microns and is sensitive to temperatures in Saturn's stratosphere. The prominent hot spot at the bottom of each image is at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected.

    The troposphere temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole. Near 70 degrees latitude, the stratospheric temperature increases even more abruptly from 146 to 150 Kelvin (-197 to -189 degrees Fahrenheit) and then again to 151 Kelvin (-188 degrees Fahrenheit) right at the pole.

    While the rings are too faint to be detected at 8 microns (right), they show up at 17.65 microns. The ring particles are orbiting Saturn to the left on the bottom and to the right on the top. The lower left ring is colder than the lower right ring, because the particles are just moving out of Saturn's shadow where they have cooled off. As they orbit Saturn, they warm up to a maximum just before passing behind Saturn again in shadow.

  15. 6. Aerial view northwest, State Route 100 bottom left and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Aerial view northwest, State Route 100 bottom left and center, Winterthur Train Station center left, Winterthur Farms dairy barns upper center , duck pond and reservoir center, State Route 92 center right, and Brandywine Creek State Park bottom right. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  16. Opportunity Trenches Martian Soil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Opportunity dragged one of its wheels back and forth across the sandy soil at Meridiani Planum to create a hole (bottom left corner) approximately 50 centimeters (19.7 inches) long by 20 centimeters (7.9 inches) wide by 9 centimeters (3.5 inches) deep. The rover's instrument deployment device, or arm, will begin studying the fresh soil at the bottom of this trench later today for clues to its mineral composition and history. Scientists chose this particular site for digging because previous data taken by the rover's miniature thermal emission spectrometer indicated that it contains crystalline hematite, a mineral that sometimes forms in the presence of water. The brightness of the newly-exposed soil is thought to be either intrinsic to the soil itself, or a reflection of the Sun. Opportunity's lander is in the center of the image, and to the left is the rock outcrop lining the inner edge of the small crater that encircles the rover and lander. This mosaic image is made up of data from the rover's navigation and hazard-avoidance cameras.

  17. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly visible in the radar image; many of them can also be seen as bright lines i the optical image. The runways of John F. Kennedy International Airport appear as a dark rectangle in Jamaica Bay on the left side of the image. Developed areas appear generally as bright green and orange, while agricultural, protected and undeveloped areas appear darker blue or purple. This contrast can be seen on the barrier islands along the south coast of Long Island, which are heavily developed in the Rockaway and Long Beach areas south and east of Jamaica Bay, but further to the east, the islands are protected and undeveloped.

  18. Space Radar Image of Long Island Optical/Radar

    NASA Image and Video Library

    1999-05-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly visible in the radar image; many of them can also be seen as bright lines i the optical image. The runways of John F. Kennedy International Airport appear as a dark rectangle in Jamaica Bay on the left side of the image. Developed areas appear generally as bright green and orange, while agricultural, protected and undeveloped areas appear darker blue or purple. This contrast can be seen on the barrier islands along the south coast of Long Island, which are heavily developed in the Rockaway and Long Beach areas south and east of Jamaica Bay, but further to the east, the islands are protected and undeveloped. http://photojournal.jpl.nasa.gov/catalog/PIA01785

  19. Face processing pattern under top-down perception: a functional MRI study

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming

    2009-02-01

    Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.

  20. 4. Aerial view southwest, Adams Dam Road bottom left, State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Aerial view southwest, Adams Dam Road bottom left, State Route 100 center, back gates to Winterthur and Wilmington Country Club upper center, duck pond and reservoir bottom right and center, and State Route 92 center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  1. Landslide in Coprates

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows part of a large landslide complex off the north wall of Coprates Chasma in the Valles Marineris trough complex. The wall of Coprates Chasma occupies much of the upper and middle portions of the image; the landslide lobes are on the trough floor in the bottom half of the image. Large boulders the size of houses can be seen on these landslide surfaces. This image is located near 13.9 S, 56.7 W. The picture covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  2. Earth Observation

    NASA Image and Video Library

    2014-05-29

    ISS040-E-005979 (29 May 2014) --- One of the Expedition 40 crew members aboard the International Space Station used a 200mm lens to photograph this image from 222 nautical miles above Earth showing Harris County and Galveston County, Texas plus several other surrounding counties, including a long stretch along the Gulf of Mexico (bottom left). The entirety of Galveston Bay is visible at bottom center. Just below center lies the 1625-acre site of NASA's Johnson Space Center, one of the training venues for all space station crew members and the nearby long-time area of residence for NASA astronauts.

  3. A Modular Approach to Video Designation of Manipulation Targets for Manipulators

    DTIC Science & Technology

    2014-05-12

    side view of a ray going through a point cloud of a water bottle sitting on the ground. The bottom left image shows the same point cloud after it has...System (ROS), Point Cloud Library (PCL), and OpenRAVE were used to a great extent to help promote reusability of the code developed during this

  4. Zooming in on Pluto Pattern of Pits

    NASA Image and Video Library

    2015-12-10

    On July 14, 2015, the telescopic camera on NASA's New Horizons spacecraft took the highest resolution images ever obtained of the intricate pattern of "pits" across a section of Pluto's prominent heart-shaped region, informally named Tombaugh Regio. Mission scientists believe these mysterious indentations may form through a combination of ice fracturing and evaporation. The scarcity of overlying impact craters in this area also leads scientists to conclude that these pits -- typically hundreds of yards across and tens of yards deep -- formed relatively recently. Their alignment provides clues about the ice flow and the exchange of nitrogen and other volatile materials between the surface and the atmosphere. The image is part of a sequence taken by New Horizons' Long Range Reconnaissance Imager (LORRI) as the spacecraft passed within 9,550 miles (15,400 kilometers) of Pluto's surface, just 13 minutes before the time of closest approach. The small box on the global view shows the section of the region imaged in the southeast corner of the giant ice sheet informally named Sputnik Planum. The magnified view is 50-by-50 miles (80-by-80 kilometers) across. The large ring-like structure near the bottom right of the magnified view -- and the smaller one near the bottom left -- may be remnant craters. The upper-left quadrant of the image shows the border between the relatively smooth Sputnik Planum ice sheet and the pitted area, with a series of hills forming slightly inside this unusual "shoreline." http://photojournal.jpl.nasa.gov/catalog/PIA20212

  5. Martian Mystery: Do Some Materials Flow Uphill?

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Some of the geological features of Mars defy conventional, or simple, explanations. A recent example is on the wall of a 72 kilometer-wide (45 mile-wide) impact crater in Promethei Terra. The crater (above left) is located at 39oS, 247oW. Its inner walls appear in low-resolution images to be deeply gullied.

    A high resolution Mars Orbiter Camera (MOC) image shows that each gully on the crater's inner wall contains a tongue of material that appears to have flowed (to best see this, click on the icon above right and examine the full image). Ridges and grooves that converge toward the center of each gully and show a pronounced curvature are oriented in a manner that seems to suggest that material has flowed from the top toward the bottom of the picture. This pattern is not unlike pouring pancake batter into a pan... the viscous fluid will form a steep, lobate margin and spread outward across the pan. The ridges and grooves seen in the image are also more reminiscent of the movement of material out and away from a place of confinement, as opposed to the types of features seen when they flow into a more confined area. Mud and lava-flows, and even some glaciers, for the most part behave in this manner. From these observations, and based solely on the appearance, one might conclude that the features formed by moving from the top of the image towards the bottom.

    But this is not the case! The material cannot have flowed from the top towards the bottom of the area seen in the high resolution image (above, right), because the crater floor (which is the lowest area in the image) is at the top of the picture. The location and correct orientation of the high resolution image is shown by a white box in the context frame on the left. Since gravity pulls the material in the gullies downhill not uphill the pattern of ridges and grooves found on these gully-filling materials is puzzling. An explanation may lie in the nature of the material (e.g., how viscous was the pancake batter-like material?) and how rapidly it moved, but for now this remains an unexplained martian phenomenon.

    The context image (above, left) was taken by the MOC red wide angle camera at the same time that the MOC narrow angle camera obtained the high resolution view (above, right). Context images such as this provide a simple way to determine the location of each new high resolution view of the planet. Both images are illuminated from the upper left. The high resolution image covers an area 3 km (1.9 mi) across.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  6. 2. Aerial view northeast, State Route 92 bottom left and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Aerial view northeast, State Route 92 bottom left and State Route 100 center, Brandywine Creek State Park center right, duck pond and reservoir center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  7. Photographer : JPL Range : 76 million km. ( 47 million miles) P-22892C This, Voyager 1 image shows

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Photographer : JPL Range : 76 million km. ( 47 million miles) P-22892C This, Voyager 1 image shows Saturn and five of its satellites. Saturn's largest moon, Titan, is clearly seen in the upper right corner. The smaller satellites, Dione & Tethys, are shown in the upper left corner, top and bottom respectively. Two of the innermost satellites, Mimas & Enceladus, appear to the lower right of the planet, with Mimas closest to Satun. The bright object to the left of the rings is not a moon, but an artifact of processing. Voyager 1 will make its closest approach November 12th, 1980, ata distance of 124,200 km. (77,176 mi.). this photo is just one of 17,000 images taken of Saturn, its rings, and its satellites by Voyager 1.

  8. ARC-1995-A91-2003

    NASA Image and Video Library

    1995-01-20

    Range : 1.4 to 2 million miles This series of pictures shows four views of the planet Venus obtained by Galileo's Solid State Imaging System.The pictures in the top row were taken about 4 & 5 days after closest approach; those in the bottom row were taken about 6 days out, 2 hours apart. In these violet-light images, north is at the top and the evening terminator to the left. The cloud features high in the planet's atmosphere rotate from right to left, from the limb through the noon meridian toward the terminator, travelling all the way around the planet once every four days. The motion can be seen by comoparing the last two pictures, taken two hours apart. The other views show entirely different faces of Venus. These photos are part of the 'Venus global circulation' sequence planned by the imaging team.

  9. False-color composite of Oetztal, Austria

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image is a false-color composite of Oetztal, Austria located in the Central Alps centered at 46.8 degrees north latitude, 10.70 degrees east longitude, at the border between Switzerland (top), Italy (left) and Austria (right and bottom). The area shown is 50 kilometers (30 miles) south of Inssbruck, Austria. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour on its 14th orbit. Approximately one quarter of this image is covered by glaciers, the largest of which, Gepatschferner, is visible as a triangular yellow patch in the center of the scene. The blue areas are lakes (Gepatsch dam at center right; Lake Muta at top right) and glacier ice. The yellow areas are slopes facing the radar and areas of dry snow. Purple corresponds to slopes facing away from the radar. Yellow in the valley bottom corresponds to tree covered areas. The Jet Propulsion Laboratory alternative photo number is P-43890.

  10. ARC-1980-AC80-7001

    NASA Image and Video Library

    1980-09-17

    Range : 76 million km. ( 47 million miles) P-22892C This, Voyager 1 image shows Saturn and five of its satellites. Saturn's largest moon, Titan, is clearly seen in the upper right corner. The smaller satellites, Dione & Tethys, are shown in the upper left corner, top and bottom respectively. Two of the innermost satellites, Mimas & Enceladus, appear to the lower right of the planet, with Mimas closest to Satun. The bright object to the left of the rings is not a moon, but an artifact of processing. Voyager 1 will make its closest approach November 12th, 1980, ata distance of 124,200 km. (77,176 mi.). this photo is just one of 17,000 images taken of Saturn, its rings, and its satellites by Voyager 1.

  11. Earth observations taken by the Expedition One crew

    NASA Image and Video Library

    2000-12-28

    ISS001-E-5981 (28 December 2000) --- A near-vertical digital still image from the International Space Station (ISS) features Tel Aviv-Yafo, Israel. A small section of the Mediterranean Sea coastline is at bottom left. One of the Expedition One crew members used an extender on a 400mm lens to provide detail in the image. Onboard the outpost for the first habitation tour were astronaut William M. (Bill) Shepherd, commander; along with cosmonauts Yuri P. Gidzenko, Soyuz commander; and Sergei K. Krikalev, flight engineer.

  12. Dust Storm over the Red Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the summer months in the Northern Hemisphere, dust storms originating in the deserts around the Arabian Peninsula have a significant impact on the amount of solar radiation that reaches the surface. Winds sweep desert sands into the air and transport them eastward toward India and Asia with the seasonal monsoon. These airborne particles absorb and deflect incoming radiation and can produce a cooling effect as far away as North America. According to calculations performed by the NASA Goddard Institute for Space Studies (GISS), the terrain surrounding the southern portions of the Red Sea is one of the areas most dramatically cooled by the presence of summertime dust storms. That region is shown experiencing a dust storm in this true-color image from the Moderate Resolution Imaging Spectroradiometer (MODIS) acquired on July 11, 2002. The GISS model simulations indicate that between June and August, the temperatures would be as much as 2 degrees Celsius warmer than they are if it weren't for the dust in the air-a cooling equivalent to the passage of a rain cloud overhead. The image shows the African countries of Sudan (top left), Ethiopia (bottom left), with Eritrea nestled between them along the western coast of the Red Sea. Toward the right side of the image are Saudi Arabia (top) and Yemen (bottom) on the Arabian Peninsula. Overlooking the Red Sea, a long escarpment runs along the western edge of the Arabian Peninsula, and in this image appears to be blocking the full eastward expansion of the dust storm. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  13. Implementation and Validation of Bioplausible Visual Servoing Control

    DTIC Science & Technology

    2013-03-01

    achieve pose stabilization in the context of one -dimensional (1-D) attitude stabilization. These results have been benchmarked against an ideal...scenes representing low (bottom) and high (top) contrast environments used in testing the TurtleBot on the two algorithms...The graph on the left corresponds to the high-contrast simulation environment, and the image on the right corresponds to the low-contrast

  14. Clusters, Deformation, and Dilation: Diagnostics for Material Accumulation Regions

    DTIC Science & Technology

    2012-09-07

    Image courtesy Tamay € Ozg €okmen.) (bottom left) Accumulating oil from the Deepwater Horizon oil spill in the Gulf of Mexico. (Photo by Daniel Beltra...Geophys. Res. Lett., 40, 6171–6175, doi:10.1002/2013GL058624. Poje, A. C., A. C. Haza, T. M. € Ozg €okmen, M. G. Magaldi, and Z. D. Garraffo (2010

  15. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Stier, P.

    2010-06-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa, derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNe dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnre dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4°×4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNe dlnτa and dlnre dlnτa . For regions on the scale of 60°×60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80%.

  16. Up or down? Reading direction influences vertical counting direction in the horizontal plane - a cross-cultural comparison.

    PubMed

    Göbel, Silke M

    2015-01-01

    Most adults and children in cultures where reading text progresses from left to right also count objects from the left to the right side of space. The reverse is found in cultures with a right-to-left reading direction. The current set of experiments investigated whether vertical counting in the horizontal plane is also influenced by reading direction. Participants were either from a left-to-right reading culture (UK) or from a mixed (left-to-right and top-to-bottom) reading culture (Hong Kong). In Experiment 1, native English-speaking children and adults and native Cantonese-speaking children and adults performed three object counting tasks. Objects were presented flat on a table in a horizontal, vertical, and square display. Independent of culture, the horizontal array was mostly counted from left to right. While the majority of English-speaking children counted the vertical display from bottom to top, the majority of the Cantonese-speaking children as well as both Cantonese- and English-speaking adults counted the vertical display from top to bottom. This pattern was replicated in the counting pattern for squares: all groups except the English-speaking children started counting with the top left coin. In Experiment 2, Cantonese-speaking adults counted a square array of objects after they read a text presented to them either in left-to-right or in top-to-bottom reading direction. Most Cantonese-speaking adults started counting the array by moving horizontally from left to right. However, significantly more Cantonese-speaking adults started counting with a top-to-bottom movement after reading the text presented in a top-to-bottom reading direction than in a left-to-right reading direction. Our results show clearly that vertical counting in the horizontal plane is influenced by longstanding as well as more recent experience of reading direction.

  17. Sinai peninsula taken by the STS-112 crew

    NASA Image and Video Library

    2002-10-08

    STS112-702-002 (7-18 October 2002) --- Egypt's triangular Sinai Peninsula lies in the center of this view, photographed from the Space Shuttle Atlantis, with the dark greens of the Nile delta lower right. In this southwesterly view, the Red Sea, with its characteristic parallel coastlines, stretches toward the top. At the bottom of the image, the Suez Canal appears as an irregular line joining the Red Sea to the Mediterranean Sea (lower left). The Dead Sea in central Israel, with its light blue salt ponds at the south end, appears on the left margin.

  18. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  19. Features of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This montage features activity in the turbulent region of Jupiter's Great Red Spot (GRS). Four sets of images of the GRS were taken through various filters of the Galileo imaging system over an 11.5 hour period on 26 June, 1996 Universal Time. The sequence was designed to reveal cloud motions. The top and bottom frames on the left are of the same area, northeast of the GRS, viewed through the methane (732 nm) filter but about 70 minutes apart. The top left and top middle frames are of the same area and at the same time, but the top middle frame is taken at a wavelength (886 nm) where methane absorbs more strongly. (Only high clouds can reflect sunlight in this wavelength.) Brightness differences are caused by the different depths of features in the two images. The bottom middle frame shows reflected light at a wavelength (757 nm) where there are essentially no absorbers in the Jovian atmosphere. The white spot is to the northwest of the GRS; its appearance at different wavelengths suggests that the brightest elements are 30 km higher than the surrounding clouds. The top and bottom frames on the right, taken nine hours apart and in the violet (415 nm) filter, show the time evolution of an atmospheric wave northeast of the GRS. Visible crests in the top right frame are much less apparent 9 hours later in the bottom right frame. The misalignment of the north-south wave crests with the observed northwestward local wind may indicate a shift in wind direction (wind shear) with height. The areas within the dark lines are 'truth windows' or sections of the images which were transmitted to Earth using less data compression. Each of the six squares covers 4.8 degrees of latitude and longitude (about 6000 square kilometers). North is at the top of each frame.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  20. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report December 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renae Soelberg

    2014-12-01

    • PNNL has completed sectioning of the U.C. Berkeley hydride fuel rodlet 1 (highest burn-up) and is currently polishing samples in preparation for optical metallography. • A disk was successfully sectioned from rodlet 1 at the location of the internal thermocouple tip as desired. The transition from annular pellet to solid pellet is verified by the eutectic-filled inner cavity located on the back face of this disk (top left) and the solid front face (bottom left). Preliminary low-resolution images indicate interesting sample characteristics in the eutectic surrounding the rodlet at the location of the outer thermocouple tip (right). This samplemore » has been potted and is currently being polished for high-resolution optical microscopy and subsequent SEM analysis. (See images.)« less

  1. Moon Patrol

    NASA Image and Video Library

    2007-12-24

    This colorful view, taken from edge-on with the ringplane, contains four of Saturn's attendant moons. Tethys (1,071 kilometers, 665 miles across) is seen against the black sky to the left of the gas giant's limb. Brilliant Enceladus (505 kilometers, 314 miles across) sits against the planet near right. Irregular Hyperion (280 kilometers, 174 miles across) is at the bottom of the image, near left. Much smaller Epimetheus (116 kilometers, 72 miles across) is a speck below the rings directly between Tethys and Enceladus. Epimetheus casts an equally tiny shadow onto the blue northern hemisphere, just above the thin shadow of the F ring. Images taken using red, green and blue spectral filters were combined to create this natural color view. The images were acquired with the Cassini spacecraft wide-angle camera on July 24, 2007 at a distance of approximately 2 million kilometers (1.2 million miles) from Saturn. Image scale is 116 kilometers (72 miles) per pixel on Saturn. http://photojournal.jpl.nasa.gov/catalog/PIA08394

  2. Spirit's Neighborhood in 'Columbia Hills,' in Stereo

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Two Earth years ago, NASA's Mars Exploration Rover Spirit touched down in Gusev Crater. The rover marked its first Mars-year (687 Earth days) anniversary in November 2005. On Nov. 2, 2005, shortly before Spirit's Martian anniversary, the Mars Orbiter Camera on NASA's Mars Global Surveyor acquired an image covering approximately 3 kilometers by 3 kilometers (1.9 miles by 1.9 miles) centered on the rover's location in the 'Columbia Hills.'

    The tinted portion of this image gives a stereo, three-dimensional view when observed through 3-D glasses with a red left eye and blue right eye. The tallest peak is 'Husband Hill,' which was climbed by Spirit during much of 2005. The region south (toward the bottom) of these images shows the area where the rover is currently headed. The large dark patch and other similar dark patches in these images are accumulations of windblown sand and granules. North is up; illumination is from the left. The location is near 14.8 degrees south latitude, 184.6 degrees west longitude.

  3. Black Hole Jerked Around Twice

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Scientists have found evidence that a giant black hole has been jerked around twice, causing its spin axis to point in a different direction from before. This discovery, made with new data from NASA's Chandra X-ray Observatory, might explain several mysterious-looking objects found throughout the Universe. The axis of the spinning black hole is thought to have moved, but not the black hole itself, so this result differs from recently published work on recoiling black holes. "We think this is the best evidence ever seen for a black hole having been jerked around like this," said Edmund Hodges-Kluck of the University of Maryland. "We're not exactly sure what caused this behavior, but it was probably triggered by a collision between two galaxies." A team of astronomers used Chandra for a long observation of a galaxy known as 4C+00.58, which is located about 780 million light years from Earth. Like most galaxies, 4C+00.58 contains a supermassive black hole at its center, but this one is actively pulling in copious quantities of gas. Gas swirling toward the black hole forms a disk around the black hole. Twisted magnetic fields in the disk generate strong electromagnetic forces that propel some of the gas away from the disk at high speed, producing radio jets. A radio image of this galaxy shows a bright pair of jets pointing from left to right and a fainter, more distant line of radio emission running in a different direction. More specifically, 4C+00.58 belongs to a class of "X-shaped" galaxies, so called because of the outline of their radio emission. The new Chandra data have allowed astronomers to determine what may be happening in this system, and perhaps in others like it. The X-ray image reveals four different cavities around the black hole. These cavities come in pairs: one in the top-right and bottom-left, and another in the top-left and bottom-right. When combined with the orientation of the radio jets, the complicated geometry revealed in the Chandra image may tell the story of what happened to this supermassive black hole and the galaxy it inhabits. "We think that this black hole has quite a history," said Christopher Reynolds of the University of Maryland in College Park. "Not once, but twice, something has caused this black hole to change its spin axis." According to the scenario presented by Hodges-Kluck and his colleagues, the spin axis of the black hole ran along a diagonal line from top-right to bottom-left. After a collision with a smaller galaxy, a jet powered by the black hole ignited, blowing away gas to form cavities in the hot gas to the top-right and bottom-left. Since the gas falling onto the black hole was not aligned with the spin of the black hole, the spin axis of the black hole rapidly changed direction, and the jets then pointed in a roughly top-left to bottom-right direction, creating cavities in the hot gas and radio emission in this direction. Then, either a merging of the two central black holes from the colliding galaxies, or more gas falling onto the black hole caused the spin axis to jerk around to its present direction in roughly a left to right direction. These types of changes in the angle of the spin of a supermassive black hole have previously been suggested to explain X-shaped radio galaxies, but no convincing case has been made in any individual case. "If we're right, our work shows that jets and cavities are like cosmic fossils that help trace the merger history of an active supermassive black hole and the galaxy it lives in," said Hodges-Kluck. "If even a fraction of X-shaped radio galaxies are produced by such "spin-flips", then their frequency may be important for estimating the detection rates with gravitational radiation missions." These results appeared in a recent issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  4. Wave and Current Observations in a Tidal Inlet Using GPS Drifter Buoys

    DTIC Science & Technology

    2013-03-01

    right panel). ............17  Figure 10.  DWR-G external sensor configuration (left panel). GT-31 GPS receiver is visible on the bottom left. Two GoPro ...receiver is visible on the bottom left. Two GoPro cameras are attached to the top of the buoy. DWR-G internal sensor configuration (right panel

  5. International Space Station from Space Shuttle Endeavour

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The crew of the Space Shuttle Endeavour took this spectacular image of the International Space Station during the STS118 mission, August 8-21, 2007. The image was acquired by an astronaut through one of the crew cabin windows, looking back over the length of the Shuttle. This oblique (looking at an angle from vertical, rather than straight down towards the Earth) image was acquired almost one hour after late inspection activities had begun. The sensor head of the Orbiter Boom Sensor System is visible at image top left. The entire Space Station is visible at image bottom center, set against the backdrop of the Ionian Sea approximately 330 kilometers below it. Other visible features of the southeastern Mediterranean region include the toe and heel of Italy's 'boot' at image lower left, and the western coastlines of Albania and Greece, which extend across image center. Farther towards the horizon, the Aegean and Black Seas are also visible. Featured astronaut photograph STS118-E-9469 was acquired by the STS-118 crew on August 19, 2007, with a Kodak 760C digital camera using a 28 mm lens, and is provided by the ISS Crew Earth Observations experiment and Image Science and Analysis Laboratory at Johnson Space Center.

  6. B-15 iceberg family in the Ross Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color Moderate Resolution Imaging Spectroradiometer (MODIS) image from September 17, 2000, shows the B15 family of icebergs that calved off the Ross Ice Shelf in March of 2000, at the end of the Antarctic summer melt season. The enormous bergs were locked up in winter sea ice before they could drift very far that first season, but at the onset of the winter thaw, soon after this image was acquired, the bergs began to drift. The large, southernmost berg is B-15, and it eventually drifted over toward Ross Island, seen at the bottom left of the image. The amazing shadow being cast on the ground south of Ross Island is from Mt. Erebus.

  7. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2010-01-12

    ISS022-E-024557 (12 Jan. 2010) --- Male Atoll and Maldive Islands in the Indian Ocean are featured in this image photographed by an Expedition 22 crew member on the International Space Station. This detailed photograph features one of the numerous atolls in the Maldive Island chain. The Maldives are an island nation, comprised of twenty-six atolls that stretch in a north-to-south chain for almost 900 kilometers southwest of the Indian subcontinent. The silvery, almost pink sheen on the normally blue water of the equatorial Indian Ocean is the result of sunglint. Sunglint occurs when sunlight is reflected off of a water surface directly back towards the observer ? in this case a crew member on the space station. Full sunglint in images typically results in bright silver to white coloration of the water surface. Sunglint images can have different hues depending on the roughness of the water surface and atmospheric conditions. They also can reveal numerous details of water circulation which are otherwise invisible. This image was taken during the Indian Ocean Northeast monsoon season - predominant winds in this area create sinuous surface water patterns on the leeward side, and between, the islets (left). A south-flowing current flows in the deeper water through the Maldives most of the year (right), with fan-shaped surface currents formed by local tides pulsing in and out of the shallow water near the islands (top and bottom). The largest island seen here (center) is 6 kilometers long, and is one of the outer ring of larger islands that make up the 70 kilometers-long, oval-shaped Male Atoll. Shores facing deeper water have well-defined beaches. Numerous small, elliptical coral reef islets are protected within the ring of shallow water to the northeast (left). These islets are mostly awash at high tide, with dry ground appearing in tiny patches only. A small boat was navigating between the islets at the time the image was taken as indicated by its v-shaped wake at bottom left. Images like these illustrate why the Republic of Maldives is one of the most outspoken countries in stressing the dangers of rising sea levels.

  8. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-04-28

    ISS015-E-05483 (28 April 2007) --- Brooklyn, New York waterfront is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. This view illustrates the dense urban fabric of Brooklyn, New York City's largest borough (population of 2.6 million), characterized by the regular pattern of highly reflective building rooftops (white). Two main arteries from Manhattan into Brooklyn, the famous Brooklyn Bridge and neighboring Manhattan Bridge, cross the East River along the left (north) side of the image. The dense built-up fabric contrasts with the East River and Upper New York Bay (bottom center) waterfront areas, recognizable by docks and large industrial loading facilities that extend across the bottom center from left to right. Much of the shipping traffic has moved to the New Jersey side of New York Bay--this has spurred dismantling and redevelopment of the historic dockyards and waterfront warehouses into residential properties. However, efforts to conserve historic buildings are also ongoing. The original name for Brooklyn, Breukelen, means "broken land" in Dutch--perhaps in recognition of the highly mixed deposits (boulders, sand, silt, and clay) left behind by the Wisconsin glacier between 20,000--90,000 years ago, according to scientists. These deposits form much of Long Island, of which Brooklyn occupies the western tip. This image features one of Brooklyn's largest green spaces, the Green-Wood Cemetery. Today, the cemetery functions as both a natural park and a place of internment. The green tree canopy of the Cemetery contrasts sharply with the surrounding urban land cover, is an Audubon Sanctuary, and provides the final resting place for many 19th and 20th century New York celebrities. Also visible in the image is Governor's Island, which served as a strategic military installation for the US Army (1783--1966) and a major US Coast Guard installation (1966--1996). Today the historic fortifications on the island and their surroundings comprise the Governors Island National Monument.

  9. NASA Images Show Decreased Clarity in Lake Tahoe Water

    NASA Image and Video Library

    2002-08-06

    Images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer aboard NASA's Terra satellite, launched in 1999, illustrate the state of gradually decreasing water clarity at Lake Tahoe, one of the clearest lakes in the world. The images are available at: http://asterweb.jpl.nasa.gov/default.htm. In the image on the left, acquired in November 2000, vegetation can be seen in red. The image on the right, acquired at the same time by a different spectral band of the instrument, is color-coded to show the bottom of the lake around the shoreline. Where the data are black, the bottom cannot be seen. Scientists monitoring the lake's water clarity from boat measurements obtained since 1965 have discovered that the lake along the California-Nevada border has lost more than one foot of visibility each year, according to the Lake Tahoe Watershed Assessment, a review of scientific information about the lake undertaken at the request of President Clinton and published in February 2000. The most likely causes are increases in algal growth, sediment washed in from surrounding areas and urban growth and development. http://photojournal.jpl.nasa.gov/catalog/PIA03854

  10. Looking into 'London'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic image from the microscopic imager on the Mars Exploration Rover Opportunity shows the rock abrasion tool target, 'London.' The image was taken by the Mars Exploration Rover Opportunity on its 149th sol on Mars (June 24, 2004). Scientists 'read' the geology of the image from bottom to top, with the youngest material pictured at the bottom of the image and the oldest material in the layers pictured at the top. Millimeter-scale layers run horizontally across the exposed surface, with two sliced sphere-like objects, or 'blueberries' on the upper left and upper right sides of the impression. This material is similar to the evaporative material found in 'Eagle Crater.' However, the intense review of these layers in Endurance Crater is, in essence, deepening the water story authored by ancient Mars.

    In Eagle Crater, the effects of water were traced down a matter of centimeters. Endurance Crater's depth has allowed the tracing of water's telltale marks up to meters. Another process that significantly affects martian terrain is muddying the water story a bit. Although it is clear that the layers in Endurance were affected by water, it is also evident that Aeolian, or wind, processes have contributed to the makeup of the crater.

  11. Photocopy of photograph (original print in collection of Gerald A. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print in collection of Gerald A. Doyle, Phoenix) Photographer unknown, June 7, 1943 AERIAL VIEW OF THE YUMA CROSSING LOOKING WEST. THE 1924 SPRR BRIDGE AND THE OCEAN-TO-OCEAN HIGHWAY BRIDGE ARE AT THE BOTTOM OF THE IMAGE. THE SITE OF SPRR BRIDGES AT MADISON AVENUE IS MARKED BY THE REMNANTS OF TWO MID-STREAM BRIDGE PIERS. THE CIRCULAR FOUNDATION OF THE SWINGING SPAN OF THE STEEL BRIDGE IS ON THE SHORELINE AT THE LEFT OF THE SOUTH (LEFT) PIER. THE RIVER IS IN FLOOD STAGE. - Yuma Crossing, Riverfront Area, between Prison Hill & Fourth Avenue, Yuma, Yuma County, AZ

  12. Cassini's Final Titan Radar Swath

    NASA Image and Video Library

    2017-08-11

    During its final targeted flyby of Titan on April 22, 2017, Cassini's radar mapper got the mission's last close look at the moon's surface. On this 127th targeted pass by Titan (unintuitively named "T-126"), the radar was used to take two images of the surface, shown at left and right. Both images are about 200 miles (300 kilometers) in width, from top to bottom. Objects appear bright when they are tilted toward the spacecraft or have rough surfaces; smooth areas appear dark. At left are the same bright, hilly terrains and darker plains that Cassini imaged during its first radar pass of Titan, in 2004. Scientists do not see obvious evidence of changes in this terrain over the 13 years since the original observation. At right, the radar looked once more for Titan's mysterious "magic island" (PIA20021) in a portion of one of the large hydrocarbon seas, Ligeia Mare. No "island" feature was observed during this pass. Scientists continue to work on what the transient feature might have been, with waves and bubbles being two possibilities. In between the two parts of its imaging observation, the radar instrument switched to altimetry mode, in order to make a first-ever (and last-ever) measurement of the depths of some of the lakes that dot the north polar region. For the measurements, the spacecraft pointed its antenna straight down at the surface and the radar measured the time delay between echoes from the lakes' surface and bottom. A graph is available at https://photojournal.jpl.nasa.gov/catalog/PIA21626

  13. Smoke from Colorado Wildfires

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hayman fire, situated about 65 kilometers southwest of Denver, Colorado, is the largest fire ever recorded in that state. The amount and distribution of smoke from the Hayman fire and from the Ponil Complex fires south of the New Mexico-Colorado border are portrayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). The images were captured on June 9, 2002, on the second day of the Hayman fire, when only about 13 percent of the total 137,000 acres eventually consumed had been scorched.

    The image at top-left was acquired by MISR's most oblique (70-degree) forward-viewing camera, and the view at bottom-left was captured by MISR's 26-degree forward-viewing camera. Both left-hand panels are 'false color' views, utilizing near-infrared, red, and blue spectral bands displayed as red, green and blue respectively. With this spectral combination, highly vegetated areas appear red. At top right is a map of aerosol optical depth. This map utilizes the capability of the oblique view angles to measure the abundance of particles in the atmosphere. Haze distributed across the eastern part of the state is indicated by a large number of green pixels, and areas where no retrieval occurred are shown in dark grey. The more oblique perspective utilized within the top panels enhances the appearance of smoke and reveals the haze. In the lower left-hand panel the view is closer to nadir (downward-looking). Here the smoke plumes appear more compact and the haze across eastern Colorado is not detected. The lower right-hand panel is a stereoscopically derived height field that echoes the compact shape of the smoke plumes in the near-nadir image. Results indicate that the smoke plumes reached altitudes of a few kilometers above the surface terrain, or about the same height as the small clouds that appear orange along the bottom edge to the left of center.

    Data used in these visualizations were generated as part of operational processing at the Atmospheric Sciences Data Center at NASA Langley Research Center. The images were acquired during Terra orbit 13170 and cover an area of about 400 kilometers x 565 kilometers. They utilize data from blocks 58 to 61 within World Reference System-2 path 32.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  14. Space Radar Image of San Francisco, California

    NASA Image and Video Library

    1999-04-15

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA01791

  15. Space Radar Image of Great Wall of China

    NASA Image and Video Library

    1999-04-15

    These radar images show two segments of the Great Wall of China in a desert region of north-central China, about 700 kilometers (434 miles) west of Beijing. The wall appears as a thin orange band, running from the top to the bottom of the left image, and from the middle upper-left to the lower-right of the right image. These segments of the Great Wall were constructed in the 15th century, during the Ming Dynasty. The wall is between 5 and 8 meters high (16 to 26 feet) in these areas. The entire wall is about 3,000 kilometers (1,864 miles) long and about 150 kilometers (93 miles) of the wall appear in these two images. The wall is easily detected from space by radar because its steep, smooth sides provide a prominent surface for reflection of the radar beam. Near the center of the left image, two dry lake beds have been developed for salt extraction. Rectangular patterns in both images indicate agricultural development, primarily wheat fields. The images were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 10, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The left image is centered at 37.7 degrees North latitude and 107.5 degrees East longitude. The right image is centered at 37.5 degrees North latitude and 108.1 degrees East longitude. North is toward the upper right. Each area shown measures 25 kilometers by 75 kilometers (15.5 miles by 45.5 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01794

  16. Greece and Turkey

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Summer is in full swing in this stunning true-color image of the southeastern European countries and Turkey captured by MODIS on June 29, 2002. Clockwise from left, the mountains of Greece, Albania, Macedonia, Yugoslavia, Bulgaria, and Turkey are swathed in brilliant greens and shades of golden brown; meanwhile (counterclockwise from left) the Ionian, Mediterranean, Aegean, and Black Seas are beautifully blue and green.Running diagonally across the image from the bottom middle to the top right is a gray streak that is caused by the angle of reflection of the sun on the water (called sun glint). The darker areas within this gray swath denote calmer water, and make visible currents that would not otherwise be noticeable.Surprisingly few fires were burning hot enough to be detectable by MODIS when this image was acquired during the height of the summer dry season. A single fire is visible burning in mainland Greece, six are visible in northwestern Turkey, and one burns on the western coast (marked with red outlines). Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  17. Boot of Italy taken during Expedition Six

    NASA Image and Video Library

    2003-02-25

    ISS006-E-33736 (25 February 2003) --- The boot of Italy crosses the image in this southwest-looking view taken by an Expedition Six crewmember onboard the International Space Station (ISS). The spine of Italy is highlighted with snow and the largely cloud-covered Mediterranean Sea is at the top. The Adriatic Sea transverses most of the bottom of the image and Sicily appears top left beyond the toe of the boot. The heel lies out of the left side of the image. Corsica and Sardinia appear right of center partly under cloud. The floor of the Po River valley, lower right, is obscured by haze. Experience gained from similar haze events, in which atmospheric pressure, humidity and visibility and atmospheric chemistry were known, suggests that the haze as industrial smog. Industrial haze from the urban region of the central and upper Po valley accumulates to visible concentrations under conditions of high atmospheric pressure and the surrounding mountains prevent easy dispersal. This view illustrates the markedly different color and texture of cloud versus industrial aerosol haze.

  18. Earth observations taken during the STS-71 mission

    NASA Image and Video Library

    1995-07-06

    STS071-708-040 (27 June-7 July 1995) --- This view shows Cape Cod in some detail in the center right of the view. Provincetown lies on the inside of the hook of Cape Cod. Other larger cities are unusually easy to see on this frame. The Boston metropolitan area is the large gray area at the top (north), with a smaller gray patch immediately south indicating Brockton, Massachusetts. Other smaller patches in southern Massachusetts (bottom left) indicate Fall River (far left) and New Bedford in the coast on the north side of Buzzard's Bay. The outskirts of Providence, Rhode Island appear half way up the left edge of the frame. The islands at the bottom of the frame are Martha's Vineyard (bottom left) and Nantucket Island (partial view). Shoals (near-surface sand bars) appear as light-blue swirls on the shallow sea bottom between Cape Cod and these islands. The distance from Boston to Nantucket is almost 100 miles.

  19. Shark as viewed by Sojourner Rover

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This close-up image of Shark, in the Bookshelf at the back of the Rock Garden, was taken by Sojourner Rover on Sol 75. Also in the image are Half Dome (right) and Desert Princess (lower right). At the bottom left, a thin 'crusty' soil layer has been disturbed by the rover wheels.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  20. The distributed neural system for top-down letter processing: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie

    2011-03-01

    This fMRI study used Psychophysiological interaction (PPI) to investigate top-down letter processing with an illusory letter detection task. After an initial training that became increasingly difficult, participant was instructed to detect a letter from pure noise images where there was actually no letter. Such experimental paradigm allowed for isolating top-down components of letter processing and minimizing the influence of bottom-up perceptual input. A distributed cortical network of top-down letter processing was identified by analyzing the functional connectivity patterns of letter-preferential area (LA) within the left fusiform gyrus. Such network extends from the visual cortex to high level cognitive cortexes, including the left middle frontal gyrus, left medial frontal gyrus, left superior parietal gyrus, bilateral precuneus, and left inferior occipital gyrus. These findings suggest that top-down letter processing contains not only regions for processing of letter phonology and appearance, but also those involved in internal information generation and maintenance, and attention and memory processing.

  1. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Stier, P.

    2010-12-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNedlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnredlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNedlnτa and dlnredlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.

  2. Space Radar Image of West Texas - SAR scan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This radar image of the Midland/Odessa region of West Texas, demonstrates an experimental technique, called ScanSAR, that allows scientists to rapidly image large areas of the Earth's surface. The large image covers an area 245 kilometers by 225 kilometers (152 miles by 139 miles). It was obtained by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavour on October 5, 1994. The smaller inset image is a standard SIR-C image showing a portion of the same area, 100 kilometers by 57 kilometers (62 miles by 35 miles) and was taken during the first flight of SIR-C on April 14, 1994. The bright spots on the right side of the image are the cities of Odessa (left) and Midland (right), Texas. The Pecos River runs from the top center to the bottom center of the image. Along the left side of the image are, from top to bottom, parts of the Guadalupe, Davis and Santiago Mountains. North is toward the upper right. Unlike conventional radar imaging, in which a radar continuously illuminates a single ground swath as the space shuttle passes over the terrain, a Scansar radar illuminates several adjacent ground swaths almost simultaneously, by 'scanning' the radar beam across a large area in a rapid sequence. The adjacent swaths, typically about 50 km (31 miles) wide, are then merged during ground processing to produce a single large scene. Illumination for this L-band scene is from the top of the image. The beams were scanned from the top of the scene to the bottom, as the shuttle flew from left to right. This scene was acquired in about 30 seconds. A normal SIR-C image is acquired in about 13 seconds. The ScanSAR mode will likely be used on future radar sensors to construct regional and possibly global radar images and topographic maps. The ScanSAR processor is being designed for 1996 implementation at NASA's Alaska SAR Facility, located at the University of Alaska Fairbanks, and will produce digital images from the forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  3. Titan Despeckled Montage

    NASA Image and Video Library

    2015-02-12

    This montage of Cassini Synthetic Aperture Radar (SAR) images of the surface of Titan shows four examples of how a newly developed technique for handling noise results in clearer, easier to interpret views. The top row of images was produced in the manner used since the mission arrived in the Saturn system a decade ago; the row at bottom was produced using the new technique. The three leftmost image pairs show bays and spits of land in Ligea Mare, one of Titan's large hydrocarbon seas. The rightmost pair shows a valley network along Jingpo Lacus, one of Titan's larger northern lakes. North is toward the left in these images. Each thumbnail represents an area 70 miles (112 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA19053

  4. AERIAL OVERVIEW, LOOKING WEST, WITH BEE HIVE COKE OVENS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING WEST, WITH BEE HIVE COKE OVENS IN FORESTED OVERGROWTH (BOTTOM LEFT), COKE TAILINGS PILE (BOTTOM RIGHT THROUGH CENTER TOP LEFT), FORMER BIRMINGHAM SOUTHERN RAILWAY SHOPS BUILDING (TOP RIGHT). CONVICT CEMETERY IS JUST WEST OF THE TAILINGS PILE (TOP LEFT IN THIS PHOTOGRAPH). - Pratt Coal & Coke Company, Pratt Mines, Convict Cemetery, Bounded by First Street, Avenue G, Third Place & Birmingham Southern Railroad, Birmingham, Jefferson County, AL

  5. Space Radar Image of Central African Gorilla Habitat

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a false-color radar image of Central Africa, showing the Virunga Volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. This C-band L-band image was acquired on April 12, 1994, on orbit 58 of space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). The area is centered at about 1.75 degrees south latitude and 29.5 degrees east longitude. The image covers an area 58 kilometers by 178 kilometers (48 miles by 178 miles). The false-color composite is created by displaying the L-band HH return in red, the L-band HV return in green and the C-band HH return in blue. The dark area in the bottom of the image is Lake Kivu, which forms the border between Zaire (to the left) and Rwanda (to the right). The airport at Goma, Zaire is shown as a dark line just above the lake in the bottom left corner of the image. Volcanic flows from the 1977 eruption of Mt. Nyiragongo are shown just north of the airport. Mt. Nyiragongo is not visible in this image because it is located just to the left of the image swath. Very fluid lava flows from the 1977 eruption killed 70 people. Mt. Nyiragongo is currently erupting (August 1994) and will be a target of observation during the second flight of SIR-C/X-SAR. The large volcano in the center of the image is Mt. Karisimbi (4,500 meters or 14,800 feet). This radar image highlights subtle differences in the vegetation and volcanic flows of the region. The faint lines shown in the purple regions are believed to be the result of agriculture terracing by the people who live in the region. The vegetation types are an important factor in the habitat of the endangered mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce vegetation maps of the area to aid in their study of the remaining 650 gorillas in the region. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  6. Earth Observations taken by the Expedition 16 Crew

    NASA Image and Video Library

    2008-02-26

    ISS016-E-030337 (26 Feb. 2008) --- Fucine Lake, central Italy is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. The light tan oval in this image is the floor of a lake in central Italy that has been drained by a tunnel dug through the surrounding hills. Numerous rectangular fields can be seen on this former lake bottom--now one of the most fertile regions of Italy. The existence of a former lake explains the name of the area. The town of Avezzano (bottom left), near the drainage outlet of the basin, lies 80 kilometers east of Rome. The "circumference road" can be detected tracking around the edge of the lake; it roughly follows the boundary between green, vegetated fields around the basin and tan fallow fields within. This recent photograph shows a dusting of snow along mountain ridges to the south (image upper and lower right). The basin of Fucine Lake has no natural outlet. Consequently the level of the original lake fluctuated widely with any higher-than-average rainfall.

  7. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-05-02

    ISS013-E-13549 (2 May 2006) --- Washington, DC is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. When the image was exposed, the orbital outpost was located over the western border of Maryland and West Virginia. The resolution and extent of the true-color, handheld image is similar to the 15-meter/pixel data obtained by sensors onboard the unmanned Landsat-7 and Terra satellites. This resolution is sufficient to capture the sunglint off the Capitol Building's dome. Other major landmarks that are visible include the Washington Monument, the Pentagon (bottom left, southwest of the Potomac River), and the Lincoln Memorial, along the northwest bank of the Potomac.

  8. Frosty Wind Streaks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-532, 2 November 2003

    As seasonal polar frosts sublime away each spring, winds may re-distribute some of the frost or move sediment exposed from beneath the frost. This action creates ephemeral wind streaks that can be used by scientists seeking to study the local circulation of the martian [missing text] surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of wind streaks created in subliming carbon dioxide frost. These dark streaks appear to conform to the shape of the slopes on which they occur, suggesting that slope winds play a dominant role in creating and orienting these streaks. This picture is located near 73.8oS, 305.7oW. The image is illuminated by sunlight from the upper left and covers an area 3 km (1.9 mi) wide. Winds responsible for the streaks generally blew from the bottom/right (south/southeast) toward the top/upper left (north/northwest).

  9. Spitzer Finds Clarity in the Inner Milky Way

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 800,000 frames from NASA's Spitzer Space Telescope were stitched together to create this infrared portrait of dust and stars radiating in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking at a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). From Earth, the top two panels are visible to the northern hemisphere, and the bottom two images to the southern hemisphere. Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The swaths of green represent organic molecules, called polycyclic aromatic hydrocarbons, which are illuminated by light from nearby star formation, while the thermal emission, or heat, from warm dust is rendered in red. Star-forming regions appear as swirls of red and yellow, where the warm dust overlaps with the glowing organic molecules. The blue specks sprinkled throughout the photograph are Milky Way stars. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This is a three-color composite that shows infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

    The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire team (GLIMPSE) used the telescope's infrared array camera to see light from newborn stars, old stars and polycyclic aromatic hydrocarbons. A second group, the Multiband Imaging Photometer for Spitzer Galactic Plane Survey team (MIPSGAL), imaged dust in the inner galaxy with Spitzer's multiband imaging photometer.

  10. Top-down and bottom-up modulation of brain structures involved in auditory discrimination.

    PubMed

    Diekhof, Esther K; Biedermann, Franziska; Ruebsamen, Rudolf; Gruber, Oliver

    2009-11-10

    Auditory deviancy detection comprises both automatic and voluntary processing. Here, we investigated the neural correlates of different components of the sensory discrimination process using functional magnetic resonance imaging. Subliminal auditory processing of deviant events that were not detected led to activation in left superior temporal gyrus. On the other hand, both correct detection of deviancy and false alarms activated a frontoparietal network of attentional processing and response selection, i.e. this network was activated regardless of the physical presence of deviant events. Finally, activation in the putamen, anterior cingulate and middle temporal cortex depended on factual stimulus representations and occurred only during correct deviancy detection. These results indicate that sensory discrimination may rely on dynamic bottom-up and top-down interactions.

  11. Neptune - Changes in Great Dark Spot

    NASA Technical Reports Server (NTRS)

    1989-01-01

    These images show changes in the clouds around Neptune's Great Dark Spot (GDS) over a four and one-half-day period. From top to bottom the images show successive rotations of the planet an interval of about 18 hours. The GDS is at a mean latitude of 20 degrees south, and covers about 30 degrees of longitude. The violet filter of the Voyager narrow angle camera was used to produce these images at distances ranging from 17 million kilometers (10.5 million miles) at the top, to 10 million kilometers (6.2 million miles) at bottom. The images have been mapped on to a rectangular latitude longitude grid to remove the effects of changing viewing geometry and the changing distance to Neptune. The sequence shows a large change in the western end (left side) of the GDS, where a dark extension apparent in the earlier images converges into an extended string of small dark spots over the next five rotations. This 'string of beads' extends from the GDS at a surprisingly large angle relative to horizontal lines of constant latitude. The large bright cloud at the southern (bottom) border of the GDS is a more or less permanent companion of the GDS. The apparent motion of smaller clouds at the periphery of the GDS suggests a counterclockwise rotation of the GDS reminiscent of flow around the Great Red Spot in Jupiter's atmosphere. This activity of the GDS is surprising because the total energy flux from the sun and from Neptune's interior is only 5 percent as large as the total energy flux on Jupiter.

  12. Unmasking the Secrets of Mercury

    NASA Image and Video Library

    2015-04-16

    The MASCS instrument onboard NASA MESSENGER spacecraft was designed to study both the exosphere and surface of Mercury. To learn more about the minerals and surface processes on Mercury, the Visual and Infrared Spectrometer (VIRS) portion of MASCS has been diligently collecting single tracks of spectral surface measurements since MESSENGER entered orbit. The track coverage is now extensive enough that the spectral properties of both broad terrains and small, distinct features such as pyroclastic vents and fresh craters can be studied. To accentuate the geological context of the spectral measurements, the MASCS data have been overlain on the MDIS monochrome mosaic. Click on the image to explore the colorful diversity of surface materials in more detail! Instrument: Mercury Atmosphere and Surface Composition Spectrometer (MASCS) Map Projection: Orthographic VIRS Color Composite Wavelengths: 575 nm as red, 415 nm/750 nm as green, 310 nm/390 nm as blue Center Latitude (All Globes): 0° Center Longitude (Top Left Globe): 270° E Center Longitude (Top Right Globe): 0° E Center Longitude (Bottom Left Globe): 90° E Center Longitude (Bottom Right Globe): 180° E http://photojournal.jpl.nasa.gov/catalog/PIA19419

  13. Hurricane Season 2005: Katrina

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Seventeen days after Hurricane Katrina flooded New Orleans, much of the city is still under water. In this pair of images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer on NASA's Terra satellite, the affected areas can clearly be seen. The top image mosaic was acquired in April and September 2000, and the bottom image was acquired September 13, 2005. The flooded parts of the city appear dark blue, such as the golf course in the northeast corner, where there is standing water. Areas that have dried out appear light blue gray, such as the city park in the left middle. On the left side of the image, the failed 17th street canal marks a sharp boundary between flooded city to the east, and dry land to the west.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 10.4 by 7.1 kilometers Location: 30 degrees North latitude, 90.1 degrees West longitude Orientation: North at top Image Data: ASTER bands 1, 2, and 3 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: September 13, 2005

  14. Orbiting Rainbows Simulation

    NASA Image and Video Library

    2015-04-22

    This simulated image shows how a cloud of glitter in geostationary orbit would be illuminated and controlled by two laser beams. As the cloud orbits Earth, grains scatter the sun's light at different angles like many tiny prisms, similar to how rainbows are produced from light being dispersed by water droplets. That is why the project concept is called "Orbiting Rainbows." The cloud functions like a reflective surface, allowing the exoplanet (displayed in the bottom right) to be imaged. The orbit path is shown in the top right. On the bottom left, Earth's image is seen behind the cloud. To image an exoplanet, the cloud would need to have a diameter of nearly 98 feet (30 meters). This simulation confines the cloud to a 3.3 x 3.3 x 3.3 foot volume (1 x 1 x 1 meter volume) to simplify the computations. The elements of the orbiting telescope are not to scale. Orbiting Rainbows is currently in Phase II development through the NASA Innovative Advanced Concepts (NIAC) Program. It was one of five technology proposals chosen for continued study in 2014. In the current phase, Orbiting Rainbows researchers are conducting small-scale ground experiments to demonstrate how granular materials can be manipulated using lasers and simulations of how the imaging system would behave in orbit. http://photojournal.jpl.nasa.gov/catalog/PIA19318

  15. New Details on Pluto

    NASA Image and Video Library

    2015-07-10

    This image of Pluto was taken by New Horizons' Long Range Reconnaissance Imager (LORRI) at 4:18 UT on July 9, 2015, from a range of 3.9 million miles (6.3 million kilometers). It reveals new details on the surface of Pluto, including complex patterns in the transition between the very dark equatorial band (nicknamed "the whale"), which occupies the lower part of the image, and the brighter northern terrain. The bright arc at the bottom of the disk shows that there is more bright terrain beyond the southern margin of the "whale." The side of Pluto that will be studied in great detail during the close encounter on July 14 is now rotating off the visible disk on the right hand side, and will not be seen again until shortly before closest approach. Three consecutive images were combined and sharpened, using a process called deconvolution, to create this view. Deconvolution enhances real detail but can also generate spurious features, including the bright edge seen on the upper and left margins of the disk (though the bright margin on the bottom of the disk is real). The wireframe globe shows the orientation of Pluto in the image: thicker lines indicate the equator and the prime meridian (the direction facing Charon). Central longitude on Pluto is 86°. http://photojournal.jpl.nasa.gov/catalog/PIA19705

  16. Evidence for Recent Liquid Water on Mars: Basic Features of Martian Gullies

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Water is the chief agent of weathering and erosion on Earth. Mars is a much drier, colder planet on which liquid water cannot exist very long at the surface because it will immediately begin to boil, evaporate, and freeze--all at the same time. However, new pictures from the Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) have provided an astonishing observation which suggests that liquid water may have played a role in shaping some recent gully-like features found on the slopes of various craters, troughs, and other depressions on the red planet.

    These pictures introduce the basic features of a martian gully. The figure on the left is an example from Mars, the figure on the right is a gully on Earth. In the Earth picture, rain water flowing under and seeping along the base of a recently-deposited volcanic ash layer has created the gully. For Mars, water is not actually seen but is inferred from the landforms and their similarity to examples on Earth.

    The landforms both on Earth and Mars are divided into three parts: the alcove, the channel, and the apron. Water seeps from between layers of rock on the wall of a cliff, crater, or other type of depression. The alcove forms above the site of seepage as water comes out of the ground and undermines the material from which it is seeping. The erosion of material at the site of seepage causes rock and debris on the slope above this area to collapse and slide downhill, creating the alcove.

    The channel forms from water and debris running down the slope from the seepage area. The point where the top of the channel meets the bottom of the alcove is, in many cases, the site where seepage is occurring. Channels are probably flushed-clean of debris from time to time by large flash floods of water released from behind an ice barrier that might form at the site of seepage during more quiescent times.

    The aprons are the down-slope deposits of ice and debris that were moved down the slope and through the channel. Whether any water--likely in the form of ice--persists in these deposits is unknown. The fact that the aprons do not go very far out onto the floors of craters and troughs (e.g., the foreground of the figure on the left) indicates that there is a limit as to how much water actually makes it to the bottom of the slope in liquid form. Most of the water by the time it reaches the bottom of the slope has probably either evaporated or frozen.

    The MOC image on the left was acquired July 3, 1999, and is located on the south-facing wall of an impact crater near 54.8oS, 342.5oW. The MOC image is illuminated from the upper left; north is toward the upper right. The MOC image covers an area 1.3 km (0.8 mi) wide by 2 km (1.2 mi) long. The pictures from the flank of the Mount St. Helens volcano in Washington (right; large image and inset) were taken by MGSMOC Principal Investigator, Michael C. Malin, in the 1980s after the eruptions of May 1980. They are illuminated from the left; note footprints on left side of the picture for scale, also note the colored bar, which is 30 cm (11.8 in) long.

  17. Frontoparietal Activation During Visual Conjunction Search: Effects of Bottom-up Guidance and Adult Age

    PubMed Central

    Madden, David J.; Parks, Emily L.; Tallman, Catherine W.; Boylan, Maria A.; Hoagey, David A.; Cocjin, Sally B.; Johnson, Micah A.; Chou, Ying-hui; Potter, Guy G.; Chen, Nan-kuei; Packard, Lauren E.; Siciliano, Rachel E.; Monge, Zachary A.; Diaz, Michele T.

    2016-01-01

    We conducted functional magnetic resonance imaging (fMRI) with a visual search paradigm to test the hypothesis that aging is associated with increased frontoparietal involvement in both target detection and bottom-up attentional guidance (featural salience). Participants were 68 healthy adults, distributed continuously across 19-78 years of age. Frontoparietal regions of interest (ROIs) were defined from resting-state scans obtained prior to task-related fMRI. The search target was defined by a conjunction of color and orientation. Each display contained one item that was larger than the others (i.e., a size singleton) but was not informative regarding target identity. Analyses of search reaction time (RT) indicated that bottom-up attentional guidance from the size singleton (when coincident with the target) was relatively constant as a function of age. Frontoparietal fMRI activation related to target detection was constant as a function of age, as was the reduction in activation associated with salient targets. However, for individuals 35 years of age and older, engagement of the left frontal eye field (FEF) in bottom-up guidance was more prominent than for younger individuals. Further, the age-related differences in left FEF activation were a consequence of decreasing resting-state functional connectivity in visual sensory regions. These findings indicate that age-related compensatory effects may be expressed in the relation between activation and behavior, rather than in the magnitude of activation, and that relevant changes in the activation-RT relation may begin at a relatively early point in adulthood. PMID:28052456

  18. Jupiter's Southern Hemisphere in the Near-Infrared (Time Set 2)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaic of Jupiter's southern hemisphere between -25 and -80 degrees (south) latitude. In time sequence two, taken nine hours after sequence one, the limb is visible near the bottom right part of the mosaic. The curved border near the bottom left indicates the location of Jupiter's day/night terminator.

    Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the brightness and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including two large vortices, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two vortices in the center of the mosaic is about 3500 kilometers. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The cloud features visible at 756 nanometers (near-infrared light) are at an atmospheric pressure level of about 1 bar.

    North is at the top. The images are projected onto a sphere, with features being foreshortened towards the south and east. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. AeroVironment's Jim Daley, Rik Meininger, Derek Lisoski and Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus.

    NASA Image and Video Library

    2004-09-17

    AeroVironment's test director Jim Daley, backup pilot Rik Meininger, stability and controls engineer Derek Lisoski and pilot Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus solar aircraft from the control station.

  20. Plumbing Coastal Depths in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Radar data from NASA's Cassini spacecraft reveal the depth of liquid methane/ethane seas on Saturn's moon Titan. Cassini's Titan flyby on August 21, 2014, included a segment designed to collect altimetry (or height) data, using the spacecraft's radar instrument, along a 120-mile (200-kilometer) shore-to-shore track on Kraken Mare, Titan's largest hydrocarbon sea. For a 25-mile (40-kilometer) stretch of this data, along the sea's eastern shoreline, Cassini's radar beam bounced off the sea bottom and back to the spacecraft, revealing the sea's depth in that area. Observations in this region, near the mouth of a large, flooded river valley, showed depths ranging from 66 to 115 feet (20 to 35 meters). Plots of three radar echoes are shown at left, indicating depths of 89 feet (27 meters), 108 feet (33 meters) and 98 feet (30 meters), respectively. The altimetry echoes show the characteristic double-peaked returns of a bottom-reflection. The tallest peak represents the sea surface; the shorter of the pair represents the sea bottom. The distance between the two peaks is a measure of the liquid's depth. The Synthetic Aperture Radar (SAR) image at right shows successive altimetry observations as black circles. The three blue circles indicate the locations of the three altimetry echoes shown in the plots at left. http://photojournal.jpl.nasa.gov/catalog/PIA19046

  1. Venus Cloud Patterns (colorized and filtered)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This picture of Venus was taken by the Galileo spacecrafts Solid State Imaging System on February 14, 1990, at a range of almost 1.7 million miles from the planet. A highpass spatial filter has been applied in order to emphasize the smaller scale cloud features, and the rendition has been colorized to a bluish hue in order to emphasize the subtle contrasts in the cloud markings and to indicate that it was taken through a violet filter. The sulfuric acid clouds indicate considerable convective activity, in the equatorial regions of the planet to the left and downwind of the subsolar point (afternoon on Venus). They are analogous to 'fair weather clouds' on Earth. The filamentary dark features visible in the colorized image are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth. These images of the Venus clouds were taken by Galileo's Solid State Imaging System February 13, 1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. The two right images show Venus in violet light, the top one at a time six hours later than the bottom one. They show the state of the clouds near the top of Venus's cloud deck. A right to left motion of the cloud features is evident and is consistent with westward winds of about 230 mph. The two left images show Venus in near infrared light, at the same times as the two right images. Sunlight penetrates through the clouds more deeply at the near infrared wavelengths, allowing a view near the bottom of the cloud deck. The westward motion of the clouds is slower (about 150 mph) at the lower altitude. The clouds are composed of sulfuric acid droplets and occupy a range of altitudes from 30 to 45 miles. The images have been spatially filtered to bring out small scale details and de-emphasize global shading. The filtering has introduced artifacts (wiggly lines running north/south) that are faintly visible in the infrared image. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth.

  2. CloudSat First Image of a Warm Front Storm Over the Norwegian Sea

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    CloudSat's first image, of a warm front storm over the Norwegian Sea, was obtained on May 20, 2006. In this horizontal cross-section of clouds, warm air is seen rising over colder air as the satellite travels from right to left. The red colors are indicative of highly reflective particles such as water droplets (or rain) or larger ice crystals (or snow), while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.

  3. Earth Observation

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018725 (24 June 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station photographed this image featuring most of the peninsular portion of the state of Florida. Lake Okeechobee stands out in the south central part of the state. The heavily-populated area of Miami can be traced along the Atlantic Coast near the bottom of the scene. Cape Canaveral and the Kennedy Space Center are in lower right portion of the image on the Atlantic Coast. The Florida Keys are at the south (left) portion of the scene and the Gulf Coast, including the Tampa-St. Petersburg area, is near frame center.

  4. Earth observation taken by the Expedition 29 crew

    NASA Image and Video Library

    2011-11-16

    ISS029-E-042846 (16 Nov. 2011) --- Parts of the U.S. and Mexico are seen in this image photographed by one of the Expedition 29 crew members from the International Space Station as it flew above the Pacific Ocean on Nov. 16, 2011. The Salton Sea is in the center of the frame, with the Gulf of Cortez, Mexico's Baja California and the Colorado River in the upper right quadrant. The Los Angeles Basin and Santa Catalina and San Clemente islands are at the bottom center edge of the image. Lake Mead and the Las Vegas area of Nevada even made it into the frame in the upper left quadrant.

  5. Closeup view of the bottom area of Space Shuttle Main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the bottom area of Space Shuttle Main Engine (SSME) 2052 engine assembly mounted in a SSME Engine Handler in the Horizontal Processing area of the SSME Processing Facility at Kennedy Space Center. The most prominent features in this view are the Low-Pressure Oxidizer Discharge Duct toward the bottom of the assembly, the SSME Engine Controller and the Main Fuel Valve Hydraulic Actuator are in the approximate center of the assembly in this view, the Low-Pressure Fuel Turbopump (LPFTP), the LPFTP Discharge Duct are to the left on the assembly in this view and the High-Pressure Fuel Turbopump is located toward the top of the engine assembly in this view. The ring of tabs in the right side of the image, at the approximate location of the Nozzle and the Coolant Outlet Manifold interface is the Heat Shield Support Ring. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Application of ALD Images and Caliper Data for the breakout analysis from the wells which were drilled in the Caspian Sea of the Azerbaijan Republic

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    Wellbore instability while drilling, trip in or trip out can be cause of nonproductive time (NPT). Mainly this is the drilling surprises often encountered while drilling, trip in or trip out which were not predicted in advance, monitored, interpreted or recognized properly, which can give rise to wellbore instability problems. These surprises include also formation tops, overpressure zones occurring at different depths than predicted and the presence of unexpected faults or other fractured/fissile/compartmentalization zones. In general while drilling the wells, downhole PWD data cannot be very useful for understanding wellbore stability. Much of what we can use is indirect measurements such as torque and drag observations, rpm, vibrations, cavings, annular pressure measurements and etc. In order to understand what is going on in the subsurface and therefore mitigate the wellbore instability problems, we need more information from LWD (logging while drilling) tools. In order to monitor and get direct observations of the state of the borehole we need to determine where, how and in which direction the wellbore is failing and enlargement is taking place. LWD calipers and wellbore Azimuthal Lithodensity Images can provide such information for breakout analysis while drilling, trip in and trip out activity. The modes of wellbore instability can be generated in different ways and through different mechanisms. Therefore these zones of breakout can be potentially identified by the ALD imaging and LWD caliper tools. Instability can be governed by a combination of factors such as: the strength of the rock, the subsurface stress field, maximum and minimum horizontal stresses, pre-existing planes of weakness, the angle of the wellbore which intersects with these planes of weakness and chemical reaction of the rock (minerals) with the drilling fluid. Compressional failure (breakout) of an isotropic rock can occur when the compressive stresses around the borehole exceed the compressive strength of the rock. This can create the enlargement of the borehole with two failure zones opposite to each other with circumference at 180 degrees (for instance top side vs bottom side of the borehole or right side vs left side of the borehole). The image tracks for Rhob (density), Pe (photoelectric absorption) and Caliper can show the data such as edges of the track from the top, right, bottom and left sides of the hole (the center of the track is the bottom side of the borehole). Generally the color gradation (different spectrums) can be used in order to show the orientation change in the measurement around the wellbore. The azimuthal density, Pe, and Caliper data can be pointed and visualized as a log curves which can represent the average of all available data (an average of the top, right, bottom and left sides (or quadrants) or as 8 (RT) or 16 (RM) individual bins and as an ALD Image log. In addition, the Caliper data can give us information about the diameter and geometry of the borehole while drilling, trip in and trip out activities (for more detailed breakout analysis and interpretations). This paper (abstract) will present the results of a breakout analysis conducted from the wells which were drilled in the Caspian Sea of the Azerbaijan Republic in order to evaluate the available ALD images, caliper information and eventually incorporation of all available data into the wellbore stability monitoring service (breakout analysis).

  7. Arabian Peninsula and northeast Africa as seen from Gemini 11 spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Arabian Peninsula (on left) and northeast Africa (on right) as seen from the Gemini 11 spacecraft at an altitude of 340 nautical miles during its 27th revolution of the earth, looking southeast. Saudia Arabia, South Arabia, Yemen and Aden Protectorate are at left. At bottom right is Ethiopia. French Somaliland is in center on right shore. Somali is at upper right. Body of water at bottom is Red Sea. Gulf of Aden is in center; and at top left is Indian Ocean.

  8. Earth Observations taken by the STS-112 crew

    NASA Image and Video Library

    2002-10-12

    STS112-708-002 (7-18 October 2002) --- This image, photographed from the Earth-orbiting Space Shuttle Atlantis, covers parts of Utah, Colorado, Wyoming and Idaho. The Front Range of the Rockies is the dark range crossing the bottom of the view, with Denver and neighboring cities (grays) situated in the gentle embayment of the mountains (bottom center of the view). Great Salt Lake in Utah appears as two colors of blue top left, with the snow-covered Uinta Mountains just below, in this northwesterly view. Most of the view encompasses the brown plains of western Wyoming (center) and the cluster of mountains around Yellowstone (top center, top right, with snow). Beyond the brown Snake River Plain, black rocks of the Sawtooth Mountains and neighboring ranges of central Idaho appear top center.

  9. iss031e146343

    NASA Image and Video Library

    2012-06-27

    ISS031-E-146343 (27 June 2012) --- An Expedition 31 crew member aboard the International Space Station, flying approximately 240 miles above Earth, recorded a series of images of the current wild fires in the west and southwestern United States. For this particular image, taken from the station?s Cupola, he used a 16mm lens, which gives this view a ?fisheye? affect. The fires give rise to thick smoke plumes on the southernmost extremity of the Wyoming Range, which occupies the bottom left portion of the image. Three helicopters and more than 100 personnel are fighting the fire, which is being managed by the Bridger?Teton National Forest. Part of a docked Russian Soyuz spacecraft and the Multi-Purpose Logistics Module (MPLM) are at lower right.

  10. NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star still deep within the dusty cocoon from which it formed is shown in this image of IRAS 04016+2610. The star is visible as a bright reddish spot at the base of a bowl-shaped nebula about 100 billion miles across at the widest point. The nebula arises from dusty material falling onto a forming circumstellar disk, seen as a partial dark band to the left of the star. The necklace of bright spots above the star is an image artifact. [Bottom center]: I04248 - In this image of IRAS 04248+2612, the infrared eyes of NICMOS peer through a dusty cloud to reveal a double-star system in formation. A nebula extends at least 65 billion miles in opposite directions from the twin stars, and is illuminated by them. This nebula was formed from material ejected by the young star system. The apparent 'pinching' of this nebula close to the binary suggests that a ring or disk of dust and gas surrounds the two stars. [Bottom right]: I04302 - This image shows IRAS 04302+2247, a star hidden from direct view and seen only by the nebula it illuminates. Dividing the nebula in two is a dense, edge-on disk of dust and gas which appears as the thick, dark band crossing the center of the image. The disk has a diameter of 80 billion miles (15 times the diameter of Neptune's orbit), and has a mass comparable to the Solar Nebula, which gave birth to our planetary system. Dark clouds and bright wisps above and below the disk suggest that it is still building up from infalling dust and gas.

  11. Spectrometer Observations Near Mawrth Vallis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This targeted image from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows a region of heavily altered rock in Mars' ancient cratered highlands. The featured region is just south of Mawrth Vallis, a channel cut by floodwaters deep into the highlands.

    CRISM acquired the image at 1216 UTC (8:16 a.m. EDT) on Oct. 2, 2006, near 25.4 degrees north latitude, 340.7 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image, the spatial resolution is as good as 35 meters (115 feet) per pixel. The image was taken in 544 colors covering 0.36-3.92 micrometers.

    This image includes four renderings of the data, all map-projected. At top left is an approximately true-color representation. At top right is false color showing brightness of the surface at selected infrared wavelengths. In the two bottom views, brightness of the surface at different infrared wavelengths has been compared to laboratory measurements of minerals, and regions that match different minerals have been colored. The bottom left image shows areas high in iron-rich clay, and the bottom right image shows areas high in aluminum-rich clay.

    Clay minerals are important to understanding the history of water on Mars because their formation requires that rocks were exposed to liquid water for a long time. Environments where they form include soils, cold springs, and hot springs. There are many clay minerals, and which ones form depends on the composition of the rock, and the temperature, acidity, and salt content of the water. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and found several regions rich in clay minerals. The Mawrth Vallis region, in particular, was found to contain iron-rich clay. CRISM is observing these regions at several tens of times higher spatial resolution, to correlate the minerals with different rock formations and to search for new minerals not resolved by OMEGA.

    CRISM has found that the iron-rich clays (lower left image) correspond with a layer of rock that is dark red in the true color view (upper left) and bright gray in the infrared (upper right). In addition, it has found previously undetected exposures of aluminum-rich clay, in a rock unit that is buff-colored in the true color view, and bluish in the infrared. Both types of rocks formed early in Mars' history, about 3.8 billion years ago. The difference in clay mineralogy reveals differences in the environment either over time or over a distance of kilometers. CRISM will be taking many more images of the Mawrth Vallis region to piece together the geologic history of this fascinating area that was once a wet oasis on Mars.

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

    CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate.

    NASA's Jet Propulsion Laboratory, a division of the Califonia Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft.

  12. April Showers Bring May Flowers to the Southern United States

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Vigorous vegetation growth in the Southern United States after heavy rains fell during April and early May, 2004, is quantified in these images and data products from the Multi-angle Imaging SpectroRadiometer (MISR). The images were acquired on April 1 (top set) and May 3 (bottom set), and extend through Kansas and Missouri, Oklahoma and Arkansas, and eastern Texas, with the Texas-Louisiana border at the bottom right-hand corner.

    The left-hand images are natural-color views from MISR's nadir camera. In the month between the April and May images, the overall greenness is enhanced, and the Boston and Ouachita Mountains are transformed from brownish hues to vivid green. The city of Dallas, Texas, appears as the pale gray area at lower left and the Red River (which corresponds with the Texas-Oklahoma border) is apparent as the yellowish feature flowing toward the lower left-hand edge. Scattered clouds appear in the upper right-hand corners of both images. Quantitative values for the vegetation changes are provided by the center and right-hand images. The middle panels show Leaf Area Index (LAI), or the area of leaves per unit area of ground below them, as measured from above. The right-hand panels show FPAR, which is the fraction of the photosynthetically active region (PAR) of visible light (400 - 700 nm) absorbed by green vegetation. LAI and FPAR are two important quantities for monitoring the photosynthetic activity and carbon uptake efficiency of live vegetation. MISR's LAI and FPAR products make use of aerosol retrievals to correct for atmospheric scattering and absorption effects, and use plant canopy structural models to determine the partitioning of solar radiation. Both of these aspects are facilitated by the multiangular nature of the MISR measurements.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 22810 and 23276. The panels cover an area of about 380 kilometers x 704 kilometers, and utilize data from blocks 61 to 65 within World Reference System-2 path 26.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. View of Central Texas as seen from Apollo 9

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Central Texas area as photographed from the Apollo 9 spacecraft during its earth-orbital mission. Interstate 35 runs from Austin (right center edge of pictures) to Waco (near bottom left corner). Also, visible are the cities of Georgetown, Taylor, Temple and Killeen. The Colorado River runs through Austin. The Brazos River flows through Waco. Lake Travis is upstream from Austin. Lake Whitney is at bottom left corner of picture. The Belton Reservoir is near bottom center. The lake formed by the dam on the Lampasas River near Belton is also clearly visible.

  14. Earth observations taken during STS-98 mission

    NASA Image and Video Library

    2001-02-07

    STS098-714A-020 (7-20 February 2001) ---One of the STS-98 astronauts aboard the Earth-orbiting Space Shuttle Atlantis used a 70mm handheld camera to record this image of Southern California. Snow blanketing the higher elevations in the Los Padres National Forest (center of the image) and that covering the Angeles National Forest (right middle) help to accentuate and separate three major landform regions in southern California. The northern Los Angeles Basin that includes the San Fernando Valley and the Santa Monica Mountains is visible in the lower right quadrant of the image. The western end of the Mojave Desert (upper right) shows the two distinctive mountain boundaries along the southwest and northwest edge of the desert. The San Andreas Fault and the Garlock Fault converge (snow covered in this scene) at the western end of the desert. The intensively irrigated and cultivated southern end of the San Joaquin Valley that includes Bakersfield is visible (upper left) north of the snow-covered, northeast-southwest trending Tehachapi Mountains. The island off of the California coast (bottom left) is Santa Cruz Island.

  15. ESO 306-17

    NASA Image and Video Library

    2017-12-08

    View a video clip zoom in on galaxy ESO 306-17 here: www.flickr.com/photos/gsfc/4409589832/ This image from the Advanced Camera for Surveys aboard the NASA/ESA Hubble Space Telescope highlights the large and bright elliptical galaxy called ESO 306-17 in the southern sky. In this image, it appears that ESO 306-17 is surrounded by other galaxies but the bright galaxies at bottom left are thought to be in the foreground, not at the same distance in the sky. In reality, ESO 306-17 lies fairly abandoned in an enormous sea of dark matter and hot gas. Researchers are also using this image to search for nearby ultra-compact dwarf galaxies. Ultra-compact dwarfs are mini versions of dwarf galaxies that have been left with only their core due to interaction with larger, more powerful galaxies. Most ultra-compact dwarfs discovered to date are located near giant elliptical galaxies in large clusters of galaxies, so it will be interesting to see if researchers find similar objects in fossil groups. Credit: NASA, ESA and Michael West (ESO)

  16. Space Radar Image of Belgrade, Serbia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image of Belgrade, Serbia, illustrates the variety of land use patterns that can be observed with a multiple wavelength radar system. Belgrade, the capital of Serbia and former capital of Yugoslavia, is the bright area in the center of the image. The Danube River flows from the top to the bottom of the image, and the Sava River flows into the Danube from the left. Agricultural fields appear in shades of dark blue, purple and brown in outlying areas. Vegetated areas along the rivers appear in light blue-green, while dense forests in hillier areas in the lower left appear in a darker shade of green. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 2, 1994. The image is centered at 44.5 degrees north latitude and 20.5 degrees east longitude. North is toward the upper right. The image shows an area 36 kilometers by 32 kilometers 22 miles by 20 miles). The colors are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; green is L-band, horizontally transmitted, vertically received; blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  17. Space Radar Image of Kiluchevskoi, Volcano, Russia

    NASA Image and Video Library

    1999-05-01

    This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA01765

  18. Understanding the Global Distribution of Monsoon Depressions

    DTIC Science & Technology

    2013-09-30

    1.0 PVU interval) is shown for reference. Top left panel shows the Eulerian rate of change of PV, top right shows the diabatic PV tendency, bottom...left shows the horizontal advective tendency, and bottom right shows the sum of the diabatic and total advective tendencies. The vertical advective tendency is not plotted, but is of similar amplitude to the diabatic tendency.

  19. Space Radar Image of Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  20. Space Radar Image of Salt Lake City, Utah

    NASA Image and Video Library

    1999-04-15

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program. http://photojournal.jpl.nasa.gov/catalog/PIA01798

  1. Credit BG. View looking northeast down from the tower onto ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking northeast down from the tower onto the two horizontal test stations at Test Stand "D." Station Dy is at the far left (Dy vacuum cell out of view), with in-line exhaust gas cooling sections and steam-driven "air ejector" (or evacuator) discharging engine exhausts to the east. The Dd cell is visible at the lower left, and the Dd exhaust train has the same functions as at Dy. The spherical tank is an electrically heated "accumulator" which supplies steam to the ejectors at Dv, Dd, and Dy stations. Other large piping delivered cooling water to the horizontal train cooling sections. The horizontal duct at the "Y" branch in the Dd train connects the Dd ejector to the Dv and Cv vacuum duct system (a blank can be bolted into this duct to isolate the Dd system). The shed roof for the Dpond test station appears at bottom center of this image. The open steel frame to the lower left of the image supports a hoist and crane for installing or removing test engines from the Dd test cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  2. Dust Mantle Near Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-356, 10 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick mantle of dust covering lava flows north of Pavonis Mons so well that the flows are no longer visible. Flows are known to occur here because of the proximity to the volcano, and such flows normally have a very rugged surface. Fine dust, however, has settled out of the atmosphere over time and obscured the flows from view. The cliff at the top of the image faces north (up), the cliff in the middle of the image faces south (down), and the rugged slope at the bottom of the image faces north (up). The dark streak at the center-left was probably caused by an avalanche of dust sometime in the past few decades. The image is located near 4.1oN, 111.3oW. Sunlight illuminates the scene from the right/lower right.

  3. --No Title--

    Science.gov Websites

    ;color:#666;margin-top:20px;margin-bottom:0px;margin-left:31px}.category-content h2#topic-title{margin -left:31px;margin-top:0px}ul.tabs{margin-bottom:0}ul.tabs li{background-color:#5D9732;width:108px;height -width:thin;color:white;font-size:14px}ul.tabs #result-tab{background-color:#005c8e;text-align:center;padding

  4. View of Central Texas as seen from Apollo 9

    NASA Image and Video Library

    1969-03-09

    AS09-22-3341 (3-13 March 1969) --- Central Texas area as photographed from the Apollo 9 spacecraft during its Earth-orbital mission. Interstate 35 runs from Austin (right center edge of picture) to Waco (near bottom left corner). Also visible are the cities of Georgetown, Taylor, Temple and Killeen. The Colorado River runs through Austin. The Brazos River flows through Waco. Lake Travis is upstream from Austin. Lake Whitney is at bottom left corner of picture. The Belton Reservoir is near bottom center. The lake formed by the dam on the Lampasas River near Belton is also clearly visible.

  5. ASTER Washington, D.C.

    NASA Image and Video Library

    2000-10-06

    The White House, the Jefferson Memorial, and the Washington Monument with its shadow are all visible in this image of Washington, D.C. With its 15-meter spatial resolution, ASTER can see individual buildings. Taken on June 1, 2000, this image covers an area 14 kilometers (8.5 miles) wide and 13.7 kilometers (8.2 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of visible and near infrared bands displays vegetation in red and water in dark grays. The Potomac River flows from the middle left to the bottom center. The large red area west of the river is Arlington National Cemetery. http://photojournal.jpl.nasa.gov/catalog/PIA02655

  6. Asteroid Ida Rotation Sequence

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.

  7. Sulfuric Acid on Europa

    NASA Image and Video Library

    1999-09-30

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer. Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. http://photojournal.jpl.nasa.gov/catalog/PIA02500

  8. EARTH-SKY - GEMINI-TITAN (GT)-9A - AREAS OF PERU, CHILE AND BOLIVIA

    NASA Image and Video Library

    1966-06-05

    S66-38313 (5 June 1966) --- Areas of Peru (upper right), Chile (top center) and Bolivia as seen from the Gemini-9 spacecraft during its 35th revolution of Earth. The large body of water at lower right is Lake Titicaca. The smaller lake at left edge is Lake Poopo. Salar de Uyuni is the large light-colored area at upper left. At the bottom of the picture is the snow-capped Cordillera Real range of the Andes Mountains. The Pacific coastline of Peru and Chile is at upper right. The range running parallel with the coastline is the Cordillera Occidental. The image was taken with a modified 70mm Hasselblad camera, using Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA

  9. 3D Imaging and Automated Ice Bottom Tracking of Canadian Arctic Archipelago Ice Sounding Data

    NASA Astrophysics Data System (ADS)

    Paden, J. D.; Xu, M.; Sprick, J.; Athinarapu, S.; Crandall, D.; Burgess, D. O.; Sharp, M. J.; Fox, G. C.; Leuschen, C.; Stumpf, T. M.

    2016-12-01

    The basal topography of the Canadian Arctic Archipelago ice caps is unknown for a number of the glaciers which drain the ice caps. The basal topography is needed for calculating present sea level contribution using the surface mass balance and discharge method and to understand future sea level contributions using ice flow model studies. During the NASA Operation IceBridge 2014 arctic campaign, the Multichannel Coherent Radar Depth Sounder (MCoRDS) used a three transmit beam setting (left beam, nadir beam, right beam) to illuminate a wide swath across the ice glacier in a single pass during three flights over the archipelago. In post processing we have used a combination of 3D imaging methods to produce images for each of the three beams which are then merged to produce a single digitally formed wide swath beam. Because of the high volume of data produced by 3D imaging, manual tracking of the ice bottom is impractical on a large scale. To solve this problem, we propose an automated technique for extracting ice bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first estimate layer boundaries to generate a seed surface, and then incorporate additional sources of evidence, such as ice masks, surface digital elevation models, and feedback from human users, to refine the surface in a discrete energy minimization formulation. We investigate the performance of the imaging and tracking algorithms using flight crossovers since crossing lines should produce consistent maps of the terrain beneath the ice surface and compare manually tracked "ground truth" to the automated tracking algorithms. We found the swath width at the nominal flight altitude of 1000 m to be approximately 3 km. Since many of the glaciers in the archipelago are narrower than this, the radar imaging, in these instances, was able to measure the full glacier cavity in a single pass.

  10. A Local Probe for Universal Non-equilibrium Dynamics

    DTIC Science & Technology

    2015-06-01

    left in the ground 1T. E. Drake, Y . Sagi, R. Paudel, J. T. Stewart, J. P . Gaebler, and D. S. Jin, “ Direct observation of the fermi surface in an...bottom) allow to switch the laser fast and fine-tune the frequency. “λ/2” refers to half-wave plates, “λ/4” refers to quarter-wave plates, and all cubes...the beat note signal on a fast photodiode. state (|F = 9/2,mF = −7/2〉), any place where excitation light exists. Imaging atoms occurs on a cycling

  11. NuSTAR Seeks Hidden Black Holes

    NASA Image and Video Library

    2015-07-06

    Top: An illustration of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, in orbit. The unique school bus-long mast allows NuSTAR to focus high energy X-rays. Lower-left: A color image from NASA's Hubble Space Telescope of one of the nine galaxies targeted by NuSTAR in search of hidden black holes. Bottom-right: An artist's illustration of a supermassive black hole, actively feasting on its surroundings. The central black hole is hidden from direct view by a thick layer of encircling gas and dust. http://photojournal.jpl.nasa.gov/catalog/PIA19348

  12. 4. TROJAN MILL, DETAIL OF CRUDE ORE BINS FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TROJAN MILL, DETAIL OF CRUDE ORE BINS FROM NORTH, c. 1912. SHOWS TIMBER FRAMING UNDER CONSTRUCTION FOR EAST AND WEST CRUDE ORE BINS AT PREVIOUS LOCATION OF CRUSHER HOUSE, AND SNOW SHED PRESENT OVER SOUTH CRUDE ORE BIN WITH PHASE CHANGE IN SNOW SHED CONSTRUCTION INDICATED AT EAST END OF EAST CRUDE ORE BIN. THIS PHOTOGRAPH IS THE FIRST IMAGE OF THE MACHINE SHOP, UPPER LEFT CORNER. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  13. Earth Observations taken by Expedition 30 crewmember

    NASA Image and Video Library

    2012-02-02

    ISS030-E-064161 (2 Feb. 2012) --- Parts of a number of European nations appear in this nighttime image photographed from the International Space Station. The scene, captured by one of the Expedition 30 crew members, shows the British Isles (left, partially obstructed by one of the space station's solar array panels) with London just right of bottom center; the English Channel, which is dark; Paris (lower right corner); and the Netherlands (right side). The greenish airglow is fairly uniform and minor until it transitions to daybreak on the right.

  14. Complex Burial and Exhumation of South Polar Cap Pitted Terrain

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is illuminated by sunlight from the upper left. The two prominent bright stripes at the left/center of the image are covered with bright frost and thus create the illusion that they are sunlit from the lower left.

    The large pits, troughs, and 'swiss cheese' of the south polar residual cap appear to have been formed in the upper 4 or 5 layers of the polar material. Each layer is approximately 2 meters (6.6 feet) thick. Some Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images of this terrain show examples in which older pitted and eroded layers have been previously buried and are now being exhumed. The example shown here includes two narrow, diagonal slopes that trend from upper left toward lower right at the left/center portion of the frame. Along the bottoms of these slopes are revealed a layer that underlies them in which there are many more pits and troughs than in the upper layer. It is likely in this case that the lower layer formed its pits and troughs before it was covered by the upper layer. This observation suggests that the troughs, pits, and 'swiss cheese' features of the south polar cap are very old and form over long time scales.

    The picture is located near 84.6oS, 45.1oW, and covers an area 3 km by 5 km (1.9 x 3.1 mi) at a resolution of about 3.8 meters (12 ft) per pixel. The image was taken during southern spring on August 29, 1999.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  15. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  16. Smoke and Clouds over Russia

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Several mountain ranges and a portion of the Amur River are visible in this set of MISR images of Russia's far east Khabarovsk region. The images were acquired on May 13, 2001 during Terra orbit 7452. The view from MISR's 70-degree forward-looking camera is at the top left; the 26-degree forward-looking view is at the top right. The larger image at the bottom is a stereo 'anaglyph' created using the cameras at two intermediate angles. To view the stereo image in 3-D you need red/blue glasses with the red filter placed over your left eye. All of the images are oriented with north to the left to facilitate stereo viewing. Each image covers an area about 345 kilometers x 278 kilometers.

    The Amur River, in the upper right, and Lake Bolon, at the top center, are most prominent in the 26-degree view due to sunglint (mirror-like reflection of the Sun's rays by the water). The Amur River valley is a primary breeding ground for storks and cranes and a stopover for large numbers of migratory birds. About 20% of the Amur wetlands are protected by official conservation measures, but human development has converted large portions to agricultural uses. Other notable features in these images are several mountain chains, including the Badzhal'skiy to the left of center and the Bureiskiy in the lower left.

    Smoke plumes from several forest fires can be seen. They are especially apparent in the 70-degree view where the smoke's visibility is accentuated, in part, by the long slant path through the atmosphere. The largest plumes are in the lower left and upper right, with some smaller plumes above and to the right of the image centers. In the upper images the hazy region in the vicinity of these smaller plumes has the appearance of low-altitude smoke, but depth perception provided by the stereo anaglyph shows that it is actually a distinct layer of high-altitude cirrus clouds. Whether the cirrus is related to the fires is uncertain. It is possible, however, for the fires have to have heated the lower atmosphere enough to create bubbles of hot air. As such bubbles rise, they can force stable, nearly saturated air above to move even higher, triggering the formation of ice clouds. Visualization of other three-dimensional characteristics of the scene, such as the intermediate-altitude layer of cumulus clouds along the left side, is made possible by the stereo imagery.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. Voyager 2 Movie of Saturn's Moon: Phoebe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Voyager 2 took this photo sequence of Saturn's outer satellite, Phoebe, on Sept. 4, 1981, from 2.2 million kilometers (1.36 million miles) away. The top image is the normal version and the bottom is an enhanced version to increase resolution. This sequence lasts 23.4 hours and contains 35 images. The early images were taken about 43 minutes apart, while the later ones are about 29 minutes apart. There are two significant gaps in the sequence: images 7 and 8 are separated by 2.3 hours and images 19 and 20 are separated by 2.8 hours.

    Because the sunlight is coming from the left, mountains and ridges can best be seen as they reflect the sunlight near the terminator (right side of Phoebe). Other intrinsically bright spots can be seen rotating across the whole disk. In this time-lapse sequence, Phoebe appears to be a lumpy spheroid with possible large mountains sometimes showing on the limb (left side of Phoebe). The photos show that Phoebe is about 220 kilometers (132 miles) in diameter. Its rotation period (length of day) was determined from this set of images to be 9.4 hours (see Thomas, P., et al, 'Phoebe: Voyager 2 Observations', Journal of Geophysical Research, vol. 88, p. 8736, 1 November 1983).

    These images were processed by the Multimission Image Processing Laboratory of the Jet Propulsion Laboratory. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory.

  18. Space Radar Image of Houston, Texas

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of Houston, Texas, shows the amount of detail that is possible to obtain using spaceborne radar imaging. Images such as this -- obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) flying aboard the space shuttle Endeavor last fall -- can become an effective tool for urban planners who map and monitor land use patterns in urban, agricultural and wetland areas. Central Houston appears pink and white in the upper portion of the image, outlined and crisscrossed by freeways. The image was obtained on October 10, 1994, during the space shuttle's 167th orbit. The area shown is 100 kilometers by 60 kilometers (62 miles by 38 miles) and is centered at 29.38 degrees north latitude, 95.1 degrees west longitude. North is toward the upper left. The pink areas designate urban development while the green-and blue-patterned areas are agricultural fields. Black areas are bodies of water, including Galveston Bay along the right edge and the Gulf of Mexico at the bottom of the image. Interstate 45 runs from top to bottom through the image. The narrow island at the bottom of the image is Galveston Island, with the city of Galveston at its northeast (right) end. The dark cross in the upper center of the image is Hobby Airport. Ellington Air Force Base is visible below Hobby on the other side of Interstate 45. Clear Lake is the dark body of water in the middle right of the image. The green square just north of Clear Lake is Johnson Space Center, home of Mission Control and the astronaut training facilities. The black rectangle with a white center that appears to the left of the city center is the Houston Astrodome. The colors in this image were obtained using the follow radar channels: red represents the L-band (horizontally transmitted, vertically received); green represents the C-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted and received). Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar(SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  19. Southeast Asia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Home to beautiful jungles, booming industry, and age-old temples, Southeast Asia has become a confluence of ancient and modern life. This true-color image of mainland Southeast Asia was acquired on November 30, 2001, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The body of water in the upper righthand corner of the image is the Gulf of Tonkin. East and southeast of the gulf are the dark green jungles of Vietnam, Laos, and Cambodia. The light brown Mekong River winds its way through the center of the Cambodian jungle and into southern Vietnam. The dark blue patch to the left of the river at the bottom of the image is the Tonle Sap. Literally translated to mean 'Great Lake,' the Tonle Sap is the largest freshwater lake in Southeast Asia. During the rainy season from May to October, the lake will more than double in size growing from its wintertime extent of 3,000 square kilometers to over 7,500 square kilometers. North of the lake, approximately in the center of the image, is a saucer-shaped patch of reddish brown land known as the Khorat Plateau. Situated 90 to 200 meters above sea level in eastern Thailand, the dry plateau is mostly covered with farmland and savanna-type grasses and shrubs. Moving south again, the large body of light blue water at the bottom central portion of the image is the Gulf of Thailand. By switching to the full resolution image (250 meters per pixel) and following the Gulf of Thailand to its northernmost extent, one can see a pinkish beige patch of terrain covered by a faint latticework of fine lines. These are likely to be the network of roads that crisscross Bangkok and its surrounding suburbs and fertile farmland. The narrow strip of land to the east of the Gulf of Thailand is the Malay Peninsula. The body of water to the left of the peninsula is the Gulf of Martaban, which borders Myanmar (Burma). At the far upper lefthand corner of the image, the water has turned light brown from sediment dumped into the sea by the Salween River, which travels the length of eastern Myanmar. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  20. Radar with Color-wrapped Height Fringes, Syracuse and vicinity, New York State

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image shows the northern part of central New York State, a landscape sculpted by the ice sheets of the last ice age. Lake Ontario runs across the top of the image. The city of Syracuse is the radar-bright area next to the dark Onandaga Lake, below and to the right of the image center. The larger dark area on the right side is Oneida Lake. Several of the Finger Lakes are visible as long narrow dark patches on the left side of the image: Cayuga (north end only), Owasco, Skaneateles, and Otisco (left to right). The city of Auburn is at the north (top) end of Owasco Lake. Between 25,000 and 18,000 years ago, central New York was covered by a vast ice sheet 1,000-1,300 meters (3,300-4,300 feet) thick, similar to the one now covering Greenland. The land shows many marks left by the glaciers. Numerous small, elongated hills rise out of the plains south of Lake Ontario at the top and center of the image. These are drumlins, molded out of sand and clay at the bottom of the ice sheet. The shape of the drumlins indicates the direction that the ice sheet was moving and varies across the image, providing clues for scientists who study past climatic changes. The hills at the lower left of the image have been carved by the glaciers into 'U'-shaped valleys with steep sides and flat bottoms. In several places 'dry' valleys cross ridges without a modern river. These were probably carved at a time when the last stages of the glacier blocked rivers from flowing down the big valleys and forced the rivers to cut across the ridges. The wispy features along the shore of Lake Ontario are ice that was floating on the lake when SRTM acquired this image in February.

    This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Each cycle of colors (from red through green back to red) represents an equal amount of elevation difference similar to contour lines on a standard topographic map. Each color contour represents 100 meters of elevation change.

    This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 80 by 110 kilometers (50 by 70 miles) Location: 43.0 deg. North lat., 76.3 deg. West lon. Orientation: North toward the upper right Date Acquired: February 13, 2000

  1. Left inferior-parietal lobe activity in perspective tasks: identity statements

    PubMed Central

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C.; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., “the tour guide is also the driver” activate the left IPL in contrast to a control statements, “the tour guide has an apprentice.” This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL. PMID:26175677

  2. Earth observations taken from shuttle orbiter Discovery on STS-70 mission

    NASA Image and Video Library

    1995-07-21

    STS070-717-011 (13-22 JULY 1995) --- Volcanic landscapes with a thin dusting of snow appear in this near-vertical view of the dry, high spine of the Andes Mountains at around 28 degrees south latitude. Strong westerly winds (from left) have blown the snow off the highest volcanic peaks (center and bottom): many of these peaks rise higher than 20,000 feet. A small, dry lake appears top right, the white color derived from salts. The border between Argentina and Chile winds from volcano to volcano and passes just left of the small blue lake (left center). Black lava flows can be detected bottom right. The larger area of brown-pink rocks (bottom rock) is also an area of volcanic rocks, of a type known as ash flow tuffs which are violently extruded, often in volumes measured in cubic kilometers.

  3. Detection and recognition of uneaten fish food pellets in aquaculture using image processing

    NASA Astrophysics Data System (ADS)

    Liu, Huanyu; Xu, Lihong; Li, Dawei

    2015-03-01

    The waste of fish food has always been a serious problem in aquaculture. On one hand, the leftover fish food spawns a big waste in the aquaculture industry because fish food accounts for a large proportion of the investment. On the other hand, the left over fish food may pollute the water and make fishes sick. In general, the reason for fish food waste is that there is no feedback about the consumption of delivered fish food after feeding. So it is extremely difficult for fish farmers to determine the amount of feedstuff that should be delivered each time and the feeding intervals. In this paper, we propose an effective method using image processing techniques to solve this problem. During feeding events, we use an underwater camera with supplementary LED lights to obtain images of uneaten fish food pellets on the tank bottom. An algorithm is then developed to figure out the number of left pellets using adaptive Otsu thresholding and a linear-time component labeling algorithm. This proposed algorithm proves to be effective in handling the non-uniform lighting and very accurate number of pellets are counted in experiments.

  4. Hurricane Isabel

    NASA Image and Video Library

    2003-09-18

    This false-color image shows Hurricane Isabel viewed by the AIRS and AMSU-A instruments at 1:30 EDT in the morning of Thursday September 18, 2003. Isabel will be ashore within 12 hours, bringing widespread flooding and destructive winds. In figure 1 on the left, data retrieved by the AIRS infrared sensor shows the hurricane's eye as the small ring of pale blue near the upper left corner of the image. The dark blue band around the eye shows the cold tops of hundreds of powerful thunderstorms. These storms are embedded in the 120 mile per hour winds swirling counterclockwise around Isabel's eye. Cape Hatteras is the finger of land north-northwest of the eye. Isabel's winds will soon push ashore a 4- to 8-foot high mound of 'storm surge' and accompanying high surf, leading to flooding of Cape Hatteras and other islands of North Carolina's Outer Banks. Also seen in the image are several organized bands of cold, (blue) thunderstorm tops being pulled into the storm center. Other thunderstorm are forming north of the islands of Jamaica, Cuba, Hispaniola and Puerto Rico near the bottom of the picture. http://photojournal.jpl.nasa.gov/catalog/PIA00428

  5. Medical diagnosis imaging systems: image and signal processing applications aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka

    2010-04-01

    First, we describe an automated procedure for segmenting an MR image of a human brain based on fuzzy logic for diagnosing Alzheimer's disease. The intensity thresholds for segmenting the whole brain of a subject are automatically determined by finding the peaks of the intensity histogram. After these thresholds are evaluated in a region growing, the whole brain can be identified. Next, we describe a procedure for decomposing the obtained whole brain into the left and right cerebral hemispheres, the cerebellum and the brain stem. Our method then identified the whole brain, the left cerebral hemisphere, the right cerebral hemisphere, the cerebellum and the brain stem. Secondly, we describe a transskull sonography system that can visualize the shape of the skull and brain surface from any point to examine skull fracture and some brain diseases. We employ fuzzy signal processing to determine the skull and brain surface. The phantom model, the animal model with soft tissue, the animal model with brain tissue, and a human subjects' forehead is applied in our system. The all shapes of the skin surface, skull surface, skull bottom, and brain tissue surface are successfully determined.

  6. Overview of the Impact Region

    NASA Image and Video Library

    2015-04-29

    On April 30th, this region of Mercury's surface will have a new crater! Traveling at 3.91 kilometers per second (over 8,700 miles per hour), the MESSENGER spacecraft will collide with Mercury's surface, creating a crater estimated to be 16 meters (52 feet) in diameter. The large, 400-kilometer-diameter (250-mile-diameter), impact basin Shakespeare occupies the bottom left quarter of this image. Shakespeare is filled with smooth plains material, likely due to extensive lava flooding the basin in the past. As of 24 hours before the impact, the current best estimates predict that the spacecraft will strike a ridge slightly to the northeast of Shakespeare. View this image to see more details of the predicted impact site and time. Instrument: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Latitude Range: 49°-59° N Longitude Range: 204°-217° E Topography: Exaggerated by a factor of 5.5. Colors: Coded by topography. The tallest regions are colored red and are roughly 3 kilometers (1.9 miles) higher than low-lying areas such as the floors of impact craters, colored blue. Scale: The large crater on the left side of the image is Janacek, with a diameter of 48 kilometers (30 miles) http://photojournal.jpl.nasa.gov/catalog/PIA19444

  7. Dark and Bright Ridges on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This high-resolution image of Jupiter's moon Europa, taken by NASA's Galileo spacecraft camera, shows dark, relatively smooth region at the lower right hand corner of the image which may be a place where warm ice has welled up from below. The region is approximately 30 square kilometers in area. An isolated bright hill stands within it. The image also shows two prominent ridges which have different characteristics; youngest ridge runs from left to top right and is about 5 kilometers in width (about 3.1 miles). The ridge has two bright, raised rims and a central valley. The rims of the ridge are rough in texture. The inner and outer walls show bright and dark debris streaming downslope, some of it forming broad fans. This ridge overlies and therefore must be younger than a second ridge running from top to bottom on the left side of the image. This dark 2 km wide ridge is relatively flat, and has smaller-scale ridges and troughs along its length.

    North is to the top of the picture, and the sun illuminates the surface from the upper left. This image, centered at approximately 14 degrees south latitude and 194 degrees west longitude, covers an area approximately 15 kilometers by 20 kilometers (9 miles by 12 miles). The resolution is 26 meters (85 feet) per picture element. This image was taken on December 16, 1997 at a range of 1300 kilometers (800 miles) by Galileo's solid state imaging system.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  8. Puget Sound, Seattle, WA, USA, Vancouver, British Columbia, Canada

    NASA Image and Video Library

    1992-09-20

    STS047-151-488 (12 - 20 Sept 1992) --- In this large format camera image, the forested Cascade Range appears along the left side; the Pacific Ocean, on the right. The frame was photographed as the Space Shuttle Endeavour flew north to south over Vancouver and Seattle. Many peaks in the Cascades reach altitudes greater than 9,000 feet and remain snowcapped even in mid-summer. The Strait of Juan de Fuca separates the Olympic Peninsula (top right) from Vancouver Island (bottom right). Snowcapped Mt. Olympus (7,965 feet) is one of the wettest places in the continental United States, with rainfall in excess of 120 inches per year. The port cities of Seattle and Tacoma occupy the heavily indented coastline of Puget Sound (top center). They appear as light-colored areas on the left side of the Sound. The angular street pattern of Tacoma is visible at the top of the picture. The international boundary between Canada and the United States of America runs across the middle of the view. The city of Victoria (center) is the light patch on the tip of Vancouver Island. Canada's Fraser River Delta provides flat topography on which the cities of Vancouver, Burnaby, and New Westminster were built. These cities appear as the light-colored area just left of center. The Fraser River can be seen snaking its way out of the mountains at the apex of the delta. Numerous ski resorts dot the slopes of the mountains (bottom left) that rise immediately to the north of Vancouver. In the same area the blue water of Harrison and other, smaller lakes fills some of the valleys that were excavated by glaciers in the "recent" geological past, according to NASA scientists studying the photography. A Linhof camera was used to expose the frame.

  9. Jovian Jet Stream

    NASA Image and Video Library

    2018-05-31

    See a jet stream speeding through Jupiter's atmosphere in this new view taken by NASA's Juno spacecraft. The jet stream, called Jet N2, was captured along the dynamic northern temperate belts of the gas giant planet. It is the white stream visible from top left to bottom right in the image. The color-enhanced image was taken at 10:34 p.m. PST on May 23 (1:34 a.m. EST on May 24), as Juno performed its 13th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 3,516 miles (5,659 kilometers) from the tops of the clouds of the planet at a northern latitude of 32.9 degrees. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft's JunoCam imager. The view is a composite of several separate JunoCam images that were re-projected, blended, and healed. https://photojournal.jpl.nasa.gov/catalog/PIA22422

  10. Earth Observations taken by the Expedition 11 crew

    NASA Image and Video Library

    2005-05-22

    ISS011-E-06712 (22 May 2005) --- Uralsk, Kazakhstan is featured in this image photographed by an Expedition 11 crew member on the international space station. The rough boundary between Europe and Asia is defined by the Ural River and the Ural Mountains to its north. The Ural River flows to the great inland Caspian Sea, and gives its name to the major city of Uralsk (population approximately 250,000) on its banks. Lying just inside the Kazakh border with Russia, Uralsk is an agricultural and industrial center, and important trade stop since the early 1600s. Barge traffic has passed up and down the Ural River between the Caspian Sea and the Ural Mountains for centuries. Today it is one of the major entry points for rail traffic from Europe to Siberia, servicing the many new oil fields in the Caspian basin and the industrial cities of the southern Urals. Numerous details are visible in the photo, including the city margin, city blocks and even the causeway and individual buildings. Part of the smaller sister city of Zashaghan can be seen on the opposite bank (bottom). The green vegetated parts of the floodplains and black inundated parts (lower left, bottom image) stand out clearly. The brown Ural River waters contrast with the darker color of its tributary, the Chogan River (lower image).

  11. 19. VIEW OF CRUDE ORE BINS FROM EAST. EAST CRUDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF CRUDE ORE BINS FROM EAST. EAST CRUDE ORE BIN IN FOREGROUND WITH DISCHARGE TO GRIZZLY AT BOTTOM OF VIEW. CONCRETE RETAINING WALL TO LEFT (SOUTH) AND BOTTOM (EAST EDGE OF EAST BIN). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  12. U.S. Instruments Aboard Rosetta

    NASA Image and Video Library

    2014-01-24

    Three of NASA contributions to the ESA Rosetta mission are pictured here: an ultraviolet spectrometer called Alice top, the Ion and Electron Sensor IES bottom left, and the Microwave Instrument for Rosetta Orbiter MIRO bottom right.

  13. Three Fresh Exposures, Stretched Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image from NASA's Mars Exploration Rover Opportunity has been processed using a technique known as a decorrelation stretch to exaggerate the colors. The area in the image includes three holes created inside 'Endurance Crater' by Opportunity's rock abrasion tool between sols 143 and 148 (June 18 and June 23, 2004). Because color variations are so subtle in the pictured area, stretched images are useful for discriminating color differences that can alert scientists to compositional and textural variations. For example, without the exaggeration, no color difference would be discernable among the tailings left behind after the grinding of these holes, but in this stretched image, the tailings around 'London' (top) appear more red than those of the other holes ('Virginia,' middle, and 'Cobble Hill,' bottom). Scientists believe that is because the rock abrasion tool sliced through two 'blueberries,' or spherules (visible on the upper left and upper right sides of the circle). When the blades break up these spherules, composed of mostly gray hematite, the result is a bright red powder. In this image, you can see the rock layers that made the team want to grind holes in each identified layer. The top layer is yellowish red, the middle is yellowish green and the lower layer is green. Another advantage to viewing this stretched image is the clear detail of the distribution of the rock abrasion tool tailings (heading down-slope) and the differences in rock texture. This image was created using the 753-, 535- and 432-nanometer filters.

  14. Space radar image of New York City

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This radar image of the New York city metropolitan area. The island of Manhattan appears in the center of the image. The green-colored rectangle on Manhattan is Central Park. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on October 10, 1994. North is toward the upper right. The area shown is 75.0 kilometers by 48.8 kilometers (46.5 miles by 30.2 miles). The image is centered at 40.7 degrees north latitude and 73.8 degrees west longitude. In general, light blue areas correspond to dense urban development, green areas to moderately vegetated zones and black areas to bodies of water. The Hudson River is the black strip that runs from the left edge to the upper right corner of the image. It separates New Jersey, in the upper left of the image, from New York. The Atlantic Ocean is at the bottom of the image where two barrier islands along the southern shore of Long Island are also visible. John F. Kennedy International Airport is visible above these islands. Long Island Sound, separating Long Island from Connecticut, is the dark area right of the center of the image. Many bridges are visible in the image, including the Verrazano Narrows, George Washington and Brooklyn bridges. The radar illumination is from the left of the image; this causes some urban zones to appear red because the streets are at a perpendicular angle to the radar pulse. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). Radar images like this one could be used as a tool for city planners and resource managers to map and monitor land use patterns. The radar imaging systems can clearly detect the variety of landscapes in the area, as well as the density of urban development.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1997-01-01

    This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.

  16. Hubble Images Reveal Jupiter's Auroras

    NASA Technical Reports Server (NTRS)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.

    The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.

    The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.

    The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.

    The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  17. Topography within Europa's Mannann'an crater

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This three dimensional effect is created by superimposing images of Jupiter's icy moon, Europa, which were taken from slightly different perspectives. When viewed through red (left eye) and blue (right eye) filters, this product, a stereo anaglyph, shows variations in height of surface features.

    This view shows the rim and interior of the impact crater Mannann'an, on Jupiter's moon Europa. The stereo image reveals the rim of the crater which appears as a tall ridge near the left edge of the image, as well as and numerous small hills on the bottom of the crater. One of the most striking features is the large pit surrounded by circular cracks on the right side of the image, with dark radiating fractures in its center.

    The right (blue) image is a high resolution image (20 meters per picture element) taken through a clear filter. The left (red) image is composed of lower resolution (80 meters per picture element) color images taken through violet, green, and near-infrared filters and averaged to approximate an unfiltered view.

    North is to the top of the picture and the sun illuminates the scene from the east (right). The image, centered at 3 degrees north latitude and 120 degrees west longitude, covers an area approximately 18 by 4 kilometers (11 by 2.5 miles). The finest details that can be discerned in this picture are about 40 meters (44 yards) across. The images were taken on March 29th, 1998 at 13 hours, 17 minutes, 29 seconds Universal Time at a range of 1934 kilometers by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  18. 62. VIEW OF MILL SOLUTION TANKS FLOOR FROM WEST. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW OF MILL SOLUTION TANKS FLOOR FROM WEST. THE BOTTOM OF MILL SOLUTION TANK No. 1 IS IN THE LOWER RIGHT QUADRANT UNDER A PILE OF SOLUTION SEDIMENT. JOISTS OF TANK No. 2 ARE ABOVE AND SLIGHTLY LEFT OF No. 1. THE BOTTOM OF THE MILL SOLUTION SURGE TANK WITH ATTACHED DISCHARGE PIPE IS VISIBLE ON LOWER RIGHT HAND EDGE OF VIEW; TANKS ORIGINALLY SAT ON DIAGONAL BEAM CUTTING ACROSS UPPER LEFT CORNER OF VIEW. DISCHARGE LAUNDER FROM THE UNOXIDIZED ORE CIRCUIT PIERCES THE FOUNDATION WALL ABOVE TANK No. 1 (FOR DETAIL SEE SD-2-61). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  19. --No Title--

    Science.gov Websites

    :#ccc;text-align:center;padding:5px}.upper_button{text-align:right;padding-bottom:5px}.side_button[type ;width:175px;text-align:left;font-weight:bold;overflow:hidden}.left_head_title_alt{float:left;width:175px ;text-align:left;font-weight:bold;line-height:16px;margin-top:3px;padding-top:0}.left_head_add

  20. Proctor Crater Dunes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image, located near 30E and 47.5S, displays sand dunes within Proctor Crater. These dunes are composed of basaltic sand that has collected in the bottom of the crater. The topographic depression of the crater forms a sand trap that prevents the sand from escaping. Dune fields are common in the bottoms of craters on Mars and appear as dark splotches that lean up against the downwind walls of the craters. Dunes are useful for studying both the geology and meteorology of Mars. The sand forms by erosion of larger rocks, but it is unclear when and where this erosion took place on Mars or how such large volumes of sand could be formed. The dunes also indicate the local wind directions by their morphology. In this case, there are few clear slipfaces that would indicate the downwind direction. The crests of the dunes also typically run north-south in the image. This dune form indicates that there are probably two prevailing wind directions that run east and west (left to right and right to left).

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Comparative analysis of Medicare spending for medical imaging: sustained dramatic slowdown compared with other services.

    PubMed

    Lee, David W; Duszak, Richard; Hughes, Danny R

    2013-12-01

    The purpose of this study was to assess trends in Medicare spending growth for medical imaging relative to other services and the Deficit Reduction Act (DRA). We calculated per-beneficiary Part B Medicare medical imaging expenditures for three-digit Berenson-Eggers Type of Service (BETOS) categories using Physician Supplier Procedure Summary Master Files for 32 million beneficiaries from 2000 to 2011. We adjusted BETOS categories to address changes in coding and payment policy and excluded categories with 2011 aggregate spending less than $500 million. We computed and ranked compound annual growth rates over three periods: pre-DRA (2000-2005), DRA transition period (2005-2007), and post-DRA (2007-2011). Forty-four modified BETOS categories fulfilled the inclusion criteria. Between 2000 and 2006, Medicare outlays for nonimaging services grew by 6.8% versus 12.0% for imaging services. In the ensuing 5 years, annual growth in spending for nonimaging continued at 3.6% versus a decline of 3.5% for imaging. Spending growth for all services during the pre-DRA, DRA, and post-DRA periods were 7.8%, 3.8%, and 2.9 compared with 15.0%, -3.4%, and -2.2% for advanced imaging services. Advanced imaging was among the fastest growing categories of Medicare services in the early 2000s but was in the bottom 2% of spending categories in 2011. Between 2007 and 2011, the fastest growing service categories were evaluation and management services with other specialists (29.1%), nursing home visits (11.2%), anesthesia (9.1%), and other ambulatory procedures (9.0%). Slowing volume growth and massive Medicare payment cuts have left medical imaging near the bottom of all service categories contributing to growth in Medicare spending.

  2. Lillehammer, Norway 1994

    NASA Image and Video Library

    2017-12-08

    In this mostly cloud-free true-color scene, much of Scandinavia can be seen to be still covered by snow. From left to right across the top of this image are the countries of Norway, Sweden, Finland, and northwestern Russia. The Baltic Sea is located in the bottom center of this scene, with the Gulf of Bothnia to the north (in the center of this scene) and the Gulf of Finland to the northeast. This image was acquired on March 15, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Image courtesy Jacques Descloitres, rapidfire.sci.gsfc.nasa.gov/ MODIS Land Rapid Response Team at NASA GSFC Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. 51F earth observations

    NASA Image and Video Library

    2009-06-25

    51F-37-097 (29 July-6 Aug 1985) --- The snow capped peaks of the Oregon Cascades are clearly seen. From bottom to top we see Mount Hood, Mount Jefferson, and the Three Sisters volcanos. The Columbia River is at the bottom. The Deschutes River system and canyon, the scene of railroad wars nearly a century ago, is at the left side. The Cascades make a very distinct rain shadow between the moist forests to the right and the semiario lands to the east (left) of these great mountains.

  4. Nonparametric Regression Subject to a Given Number of Local Extreme Value

    DTIC Science & Technology

    2001-07-01

    compilation report: ADP013708 thru ADP013761 UNCLASSIFIED Nonparametric regression subject to a given number of local extreme value Ali Majidi and Laurie...locations of the local extremes for the smoothing algorithm. 280 A. Majidi and L. Davies 3 The smoothing problem We make the smoothing problem precise...is the solution of QP3. k--oo 282 A. Majidi and L. Davies FiG. 2. The captions top-left, top-right, bottom-left, bottom-right show the result of the

  5. Earth observations taken during the STS-77 mission

    NASA Image and Video Library

    1996-05-24

    STS077-737-096 (19-29 May 1996) --- The Palmer River emerging from the left corner of the photograph separates the Gardener Range to the right from the James Ranges on the left. To the bottom and off the photograph is the MacDonnell Ranges. The circular feature at bottom right is a highly eroded impact crater located on Missionary Plain. Gosses Bluff is a complex crater about 22 kilometers in diameter and is estimated to be about 142 million years old.

  6. Space Radar Image of Giza Egypt - with enlargement

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the area west of the Nile River near Cairo, Egypt. The Nile River is the dark band along the right side of the image and it flows approximately due North from the bottom to the right. The boundary between dense urbanization and the desert can be clearly seen between the bright and dark areas in the center of the image. This boundary represents the approximate extent of yearly Nile flooding which played an important part in determining where people lived in ancient Egypt. This land usage pattern persists to this day. The pyramids at Giza appear as three bright triangles aligned with the image top just at the boundary of the urbanized area. They are also shown enlarged in the inset box in the top left of the image. The Great Pyramid of Khufu (Cheops in Greek) is the northern most of the three Giza pyramids. The side-looking radar illuminates the scene from the top, the two sides of the pyramids facing the radar reflect most of the energy back to the antenna and appear radar bright; the two sides away from the radar reflect less energy back and appear dark Two additional pyramids can be seen left of center in the lower portion of the image. The modern development in the desert on the left side of the image is the Sixth of October City, an area of factories and residences started by Anwar Sadat to relieve urban crowding. The image was taken on April 19, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered on latitude 29.72 degrees North latitude and 30.83 degrees East longitude. The area shown is approximately 20 kilometers by 30 kilometers. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is C-band horizontally transmitted, vertically received.

  7. Earth Observation

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018729 (24 June 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station photographed this image featuring the peninsular portion of the state of Florida. Lake Okeechobee stands out in the south central part of the state. The heavily-populated area of Miami can be traced along the Atlantic Coast near the bottom of the scene. Cape Canaveral and the Kennedy Space Center are just below center frame on the Atlantic Coast. The Florida Keys are at the south (left) portion of the scene and the Gulf Coast, including the Tampa-St. Petersburg area, is near frame center.

  8. Sochi, Russia 2014

    NASA Image and Video Library

    2017-12-08

    Sochi, Russia Winter Olympic Sites (Coastal Cluster) The Black Sea resort of Sochi, Russia, is the warmest city ever to host the Winter Olympic Games, which open on Feb. 7, 2014, and run through Feb. 23. This north-looking image, acquired on Jan. 4, 2014, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, shows the Sochi Olympic Park Coastal Cluster -- the circular area on the shoreline in the bottom center of the image -- which was built for Olympic indoor sports. Even curling has its own arena alongside multiple arenas for hockey and skating. The Olympic alpine events will take place at the Mountain Cluster, located in a snow-capped valley at the top right of the image. Sochi itself, a city of about 400,000, is not visible in the picture. It's farther west (left) along the coast, past the airport at bottom left. In the image, red indicates vegetation, white is snow, buildings are gray and the ocean is dark blue. The area imaged is about 15 miles (24 kilometers) from west to east (left to right) at the coastline and 25 miles (41 kilometers) from front to back. Height is exaggerated 1.5 times. The image was created from the ASTER visible and near-infrared bands, draped over ASTER-derived digital elevation data. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Space Radar Image of Washington D.C.

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The city of Washington, D.C., is shown is this space radar image. Images like these are useful tools for urban planners and managers, who use them to map and monitor land use patterns. Downtown Washington is the bright area between the Potomac (upper center to lower left) and Anacostia (middle right) rivers. The dark cross shape that is formed by the National Mall, Tidal Basin, the White House and Ellipse is seen in the center of the image. Arlington National Cemetery is the dark blue area on the Virginia (left) side of the Potomac River near the center of the image. The Pentagon is visible in bright white and red, south of the cemetery. Due to the alignment of the radar and the streets, the avenues that form the boundary between Washington and Maryland appear as bright red lines in the top, right and bottom parts of the image, parallel to the image borders. This image is centered at 38.85 degrees north latitude, 77.05 degrees west longitude. North is toward the upper right. The area shown is approximately 29 km by 26 km (18 miles by 16 miles). Colors are assigned to different frequencies and polarizations of the radar as follows: Red is the L-band horizontally transmitted, horizontally received; green is the L-band horizontally transmitted, vertically received; blue is the C-band horizontally transmitted, vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on April 18, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  10. GEMINI-TITAN (GT)-11 - EARTH SKY - OVERLAY - ARABIAN PENINSULA & NORTHEAST AFRICA - POINTS OF INTEREST - OUTER SPACE

    NASA Image and Video Library

    1966-09-14

    S66-54536 (14 Sept. 1966) --- Arabian Peninsula (on left) and northeast Africa (on right) as seen from the orbiting Gemini-11 spacecraft at an altitude of 340 nautical miles during its 27th revolution of Earth, looking southeast. Saudi Arabia, South Arabia, Yemen, and Aden Protectorate are at left. At bottom right is Ethiopia. French Somaliland is in center on right shore. Somali is at upper right. Body of water at bottom is Red Sea. Gulf of Aden is in center; and at top left is Indian Ocean. Taken with a modified 70mm Hasselblad camera, using Eastman Kodak, Ektachrome, MS (S.O. 368) color film. Photo credit: NASA

  11. Microgravity

    NASA Image and Video Library

    1998-01-01

    Engineering mockup shows the general arrangement of the plarned Biotechnology Facility inside an EXPRESS rack aboard the International Space Station. This layout includes a gas supply module (bottom left), control computer and laptop interface (bottom right), two rotating wall vessels (top right), and support systems.

  12. Earth Observations taken by Expedition 32 crewmember

    NASA Image and Video Library

    2012-09-03

    ISS032-E-024687 (3 Sept. 2012) --- Idaho fires are featured in this image photographed by an Expedition 32 crew member on the International Space Station. Taken with a short lens (45 mm), this west-looking photograph has a field of view covering much of the forested region of central Idaho. The dark areas are all wooded mountains—the Salmon River Mountains (left), Bitterroot Mountains (lower right) and Clearwater Mountains (right). All three areas experienced wildfires in September 2012—this image illustrates the situation early in the month. Smaller fire ‘complexes” appear as tendrils of smoke near the sources (e.g. Halstead complex at left), and as major white smoke plumes from the Mustang fire complex in the densest forests (darkest green, center) of the Clearwater Mountains. This was the largest plume noted in the region with thick smoke blowing eastward over the Beaverhead Mountains at bottom. The linear shape of the smoke plumes gives a sense of the generally eastward smoke transport on this day in early September. The smoke distribution shows another kind of transport: at night, when winds are weak, cooling of the atmosphere near the ground causes drainage of cooled (denser) air down into the major valleys. Here the smoke can be seen flowing west down into the narrow Salmon and Lochsa River valleys (at a local time of 12:18:50 p.m.) – in the opposite direction to the higher winds and the thick smoke masses. The bright yellow-tan areas at top left and top right contrasting with the mountains are grasslands of the Snake River in southern Idaho around Boise, and the Palouse region in western Idaho–SE Washington state. This latter area is known to ecologists as the Palouse Grasslands Ecoregion. Light green areas visible in the center of many of the valleys are agricultural crops including barley, alfalfa, and wheat. The image also shows several firsts of which Idaho can boast. The Snake River between Boise and the Palouse region has cut Hells Canyon (top), the deepest gorge in the U.S. at almost 2,436 meters (8,000 feet). The largest single wilderness area in the contiguous U.S., the Frank Church-River of No Return Wilderness occupies the wooded zones of the Salmon River Mountains and the Clearwater Mountains, i.e. most of the area shown in the middle of the image. Idaho’s highest peak is Borah Peak (lower left) at 3,860 meters above sea level (12,662 feet ASL). The Continental Divide cuts through the bottom of the image—rivers on the eastern slopes of the Beaverhead Mountains drain to the Atlantic Ocean, whereas rivers in the rest of the area drain to the Pacific Ocean.

  13. ARC-1989-A89-7005

    NASA Image and Video Library

    1989-08-17

    August 17 to 19, 1989 Range : 11.5 million km (7.1 million mi.) to 7.9 million km (4.9 million mi.) Four black and white images of Neptune's largest satellite, Triton, show it's rotation between the first (upper left) image and the last (lower right). Resolution improves from about 200 km (124 miles) to 150 km (93 miles) per line pair. Triton's south pole lies in the dark area near the bottom of the disk. Dark spots, roughly 1,000 km (620 miles) across, occur near the equator, and show Triton rotation between images. The rotation appears to be synchronous with Triton's 5.88-day orbital period (i.e., Triton rotates on its axis in the same time it revolves around Neptune.) The spots' constant rotation rate and their visibility near the edge of the disk suggest the spots are surface features. Whatever atmosphere is present on Triton appears transparent enough that Voyager 2's cameras can see through it.

  14. Space Radar Image of Colombian Volcano

    NASA Image and Video Library

    1999-01-27

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by NASA Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar SIR-C/X-SAR. The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations of Colombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. http://photojournal.jpl.nasa.gov/catalog/PIA01722

  15. Speech processing asymmetry revealed by dichotic listening and functional brain imaging.

    PubMed

    Hugdahl, Kenneth; Westerhausen, René

    2016-12-01

    In this article, we review research in our laboratory from the last 25 to 30 years on the neuronal basis for laterality of speech perception focusing on the upper, posterior parts of the temporal lobes, and its functional and structural connections to other brain regions. We review both behavioral and brain imaging data, with a focus on dichotic listening experiments, and using a variety of imaging modalities. The data have come in most parts from healthy individuals and from studies on normally functioning brain, although we also review a few selected clinical examples. We first review and discuss the structural model for the explanation of the right-ear advantage (REA) and left hemisphere asymmetry for auditory language processing. A common theme across many studies have been our interest in the interaction between bottom-up, stimulus-driven, and top-down, instruction-driven, aspects of hemispheric asymmetry, and how perceptual factors interact with cognitive factors to shape asymmetry of auditory language information processing. In summary, our research have shown laterality for the initial processing of consonant-vowel syllables, first observed as a behavioral REA when subjects are required to report which syllable of a dichotic syllable-pair they perceive. In subsequent work we have corroborated the REA with brain imaging, and have shown that the REA is modulated through both bottom-up manipulations of stimulus properties, like sound intensity, and top-down manipulations of cognitive properties, like attention focus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Craters Near Nilokeras Scopulus

    NASA Image and Video Library

    2015-03-04

    This image from NASA Mars Reconnaissance Orbiter of craters near Nilokeras Scopulus shows two pits partially filled with lumpy material, probably trapped dust that blew in from the atmosphere. This image shows two pits partially filled with lumpy material, probably trapped dust that blew in from the atmosphere. The pits themselves resemble impact craters, but they are part of a chain of similar features aligned with nearby faults, so they could be collapse features instead. Note also the tracks left by rolling boulders at the bottom of the craters. Nilokeras Scopulus is the name for the cliff, about 756 kilometers long, in the northern hemisphere of Mars where these craters are located. It was named based on an albedo (brightness) feature mapped by astronomer E. M. Antoniadi in 1930. http://photojournal.jpl.nasa.gov/catalog/PIA19304

  17. Moon - False Color Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This false-color photograph is a composite of 15 images of the Moon taken through three color filters by Galileo's solid-state imaging system during the spacecraft's passage through the Earth-Moon system on December 8, 1992. When this view was obtained, the spacecraft was 425,000 kilometers (262,000 miles) from the Moon and 69,000 kilometers (43,000 miles) from Earth. The false-color processing used to create this lunar image is helpful for interpreting the surface soil composition. Areas appearing red generally correspond to the lunar highlands, while blue to orange shades indicate the ancient volcanic lava flow of a mare, or lunar sea. Bluer mare areas contain more titanium than do the orange regions. Mare Tranquillitatis, seen as a deep blue patch on the right, is richer in titanium than Mare Serenitatis, a slightly smaller circular area immediately adjacent to the upper left of Mare Tranquillitatis. Blue and orange areas covering much of the left side of the Moon in this view represent many separate lava flows in Oceanus Procellarum. The small purple areas found near the center are pyroclastic deposits formed by explosive volcanic eruptions. The fresh crater Tycho, with a diameter of 85 kilometers (53 miles), is prominent at the bottom of the photograph, where part of the Moon's disk is missing.

  18. Earthshots: Satellite images of environmental change – Selkirk Island, Chile

    USGS Publications Warehouse

    ,

    2013-01-01

    How did these Karman vortices develop? On that day, the wind was carrying northward a layer of stratocumulus clouds (flat-bottomed puffballs). The mile-high island caused this cloud layer to slow about the island, while remaining fast farther out on either side. So on each “wing,” left and right, the air started rotating toward the inside—clockwise on the left, counter-clockwise on the right. The rotational momentum made each side swirl in on itself. The whorl-cores were clear because the swirling pulled dry, clear air (from above or below) into the wet layer, a bit like the funnel formed when you stir up a pitcher of orange juice. These clear, spinning pockets trailed off down the “street” from the island like soap bubbles from a toy wand—drifting downwind, weakening, filling with clouds, and breaking up.

  19. Opportunity View During Exploration in 'Duck Bay,' Sols 1506-1510 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11787 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11787

    NASA Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings on the 1,506th through 1,510th Martian days, or sols, of Opportunity's mission on Mars (April 19-23, 2008). North is at the top.

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    The site is within an alcove called 'Duck Bay' in the western portion of Victoria Crater. Victoria Crater is about 800 meters (half a mile) wide. Opportunity had descended into the crater at the top of Duck Bay 7 months earlier. By the time the rover acquired this view, it had examined rock layers inside the rim.

    Opportunity was headed for a closer look at the base of a promontory called 'Cape Verde,' the cliff at about the 2-o'clock position of this image, before leaving Victoria. The face of Cape Verde is about 6 meters (20 feet) tall. Just clockwise from Cape Verde is the main bowl of Victoria Crater, with sand dunes at the bottom. A promontory called 'Cabo Frio,' at the southern side of Duck Bay, stands near the 6-o'clock position of the image.

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  20. 1. Wells and Lake Sts. crossing. Tower 18 upper left. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Wells and Lake Sts. crossing. Tower 18 upper left. Wells Street Station Randolf bottom center. - Union Elevated Railroad, Union Loop, Wells, Van Buren, Lake Streets & Wabash Avenue, Chicago, Cook County, IL

  1. Overview of Mesopotamia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Running through the deserts of Iraq (image center) are the Tigris (right) and Euphrates (left) Rivers. The land between the confluence of the two rivers is the culturally, historically, and ecologically significant Mesopotamian Fertile Crescent, situated just southeast of center in this true-color image from NASA's Moderate-resolution Imaging Spectroradiometer (MODIS), acquired on August 29, 2001. Recent reports estimate that within the past two decades, over 85 percent of the wetlands making up the Fertile Crescent have disappeared due to demand for irrigation in the region. In the 250-m (full resolution) image, several remarkable features can be seen. Desert sands and sediments are pouring into the Persian Gulf, bottom right, bringing nutrients that have supported a phytoplankton bloom that colors the waters of the Gulf bright blue and green. In the upper right, beyond the mountainous terrain of northern Iran, the Caspian Sea is banked in by clouds. In the lower left of the image, the reddish-orange sands of Saudi Arabia's An Nafud desert stretch eastward and become the Ad Dahna', a narrow band of sand mountains also called the River of Sand. Several manmade features are also apparent. At Iraq's southeastern border with Kuwait, burning oil smoke is visible. Crisscrossing the deserts of southern Iraq and Saudi Arabia are white lines that reveal the location of oil pipelines. The unusual polygonal shapes that appear to the east of the Ad Dahna' are areas that are protected from grazing. MODIS is one of five sensors flying aboard NASA's Terra satellite.

  2. Interrelationships between the heart and central nervous system: localization of neuro-transmitters and imaging of their associated nuclei, including the raphe nuclei & the locus coeruleus, as well as the imaging of the heart and its representation areas in slices of the human central nervous system using the "Bi-Digital O-Ring Test" imaging method.

    PubMed

    Omura, Y

    1987-01-01

    Using microscopic slides of specific tissues from the human body or pure substances including neuro-transmitters such as serotonin, dopamine, norepinephrine, etc., as reference control substances in the Bi-Digital O-Ring Test Molecular Identification Method, the author was able to localize and image normal and abnormal internal organs, and to localize and trace the distribution of neurotransmitters in the different parts of the central nervous system. Using microscopic slides of different parts of the heart, we were able to image the outline of the heart as well as the SA node, AV node, tricuspid valve, mitral valve, aortic valve, pulmonary valve, coronary arteries, and aorta and its branches, including the vertebral arteries, without using any bulky or expensive imaging instruments. Using serotonin as a reference control substance on the different parts of the central nervous system, it was possible to demonstrate the 6 well-known raphe nuclei and the locus coeruleus (which contains serotonin & norepinephrine), as well as the distribution of serotonin in the cerebrum and the cerebellum, all of which closely resembled previously published well-known neuroanatomical structures and distributions of neurotransmitters. As an extension of this work, possible representations of different internal organs on the central nervous system were examined using microscopic slides of different internal organs as reference control substances. The results indicated that the entire heart is represented primarily in the medulla oblongata, and that the SA node and the upper half of the left atrium are represented in the caudal end of the pons; the right side of the heart (i.e. R-atrium, AV node, tricuspid valve, R-ventricle) is represented on the right side of the medulla oblongata, and the left side of the heart (i.e. lower half of the L-atrium, mitral valve, L-ventricle) is represented on the left side of the medulla oblongata, and the upper half of the left atrium is represented in the caudal end of the left side of the pons. The bottoms of the ventricles are located near the spinal cord. Furthermore, the right and the left sides of the heart are represented in specific areas of each side of the right and left hemispheres of the cerebral cortex, and there are connecting pathways between the representation areas of identical parts of the heart, through the corpus callosum and other neuro-pathways.

  3. Biotechnology Facility (BTF) for ISS

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Engineering mockup shows the general arrangement of the plarned Biotechnology Facility inside an EXPRESS rack aboard the International Space Station. This layout includes a gas supply module (bottom left), control computer and laptop interface (bottom right), two rotating wall vessels (top right), and support systems.

  4. Earth Observations taken by the Expedition Seven crew

    NASA Image and Video Library

    2003-10-26

    ISS007-E-18088 (26 October 2003) --- The fires in the San Bernardino Mountains, fueled by Santa Ana winds, burned out of control on the morning of Oct. 26, 2003, when this image and several others were taken from the International Space Station. This frame and image numbers 18086 and 18087 were taken at approximately 19:54 GMT, October 26, 2003 with a digital still camera equipped with a 400mm lens. Lake Arrowhead and Silverwood Lake are left and right, respectively, at bottom frame. Content was provided by JSC’s Earth Observation Lab. The International Space Station Program {link to http://spaceflight.nasa.gov} supports the laboratory to help astronauts take pictures of Earth that will be of the greatest value to scientists and the public, and to make those images freely available on the Internet. Additional images taken by astronauts and cosmonauts can be viewed at the NASA/JSC Gateway to Astronaut Photography of Earth [link to http://eol.jsc.nasa.gov/] .

  5. The Colorado River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Moderate-resolution Imaging Spectroradiometer (MODIS) true-color image shows the passage of the Colorado River through several southwestern states. The river begins, in this image, in Utah at the far upper right, where Lake Powell is visible as dark pixels surrounded by the salmon-colored rocks of the Colorado Plateau. The Colorado flows southwest through Glen Canyon, to the Glen Canyon Dam, on the Utah-Arizona border. From there it flows south into Arizona, and then turns sharply west where the Grand Canyon of the Colorado cuts through the mountains. The Colorado flows west to the Arizona-Nevada (upper left) border, where it is dammed again, this time by the Hoover Dam. The dark-colored pixels surrounding the bend in the river are Lake Mead. The river flows south along the border of first Nevada and Arizona and then California and Arizona. The Colorado River, which begins in Rocky Mountain National Park in Colorado, empties into the Gulf of California, seen at the bottom center of this image.

  6. Three frequency false-color image of Oberpfaffenhofen supersite in Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-frequency, false color image of the Oberpfaffenhofen supersite, an area just south-west of Munich in southern Germany. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Shuttle Endeavour, April 11, 1994. The image is centered at 48.09 degrees north, 11.29 degrees east. The dark area on the left is Lake Ammersee. The two smaller lakes are the Woerthsee and the Pilsensee. On the bottom is the tip of the Starnbergersee. The city of Munich is located just beyond the right of the image. The forested areas have a reddish tint (L-Band). THe green areas seen near both the Ammersee and the Pilsensee lakes indicate marshy areas. The agricultural fields in the upper right hand corner appear mostly in blue and green (X-band and C-band). The white areas are mostly urban areas, while the smooth surfaces of the lakes appear very dark. The Jet Propulsion Laboratory alternative photo number is P-43930.

  7. Mars Polar Lander Site Surface Details

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This picture is an enlargement of a portion of a MOC image taken in late July 1999, showing the onset of defrosting of the seasonal carbon dioxide frost cap (small, occasionally fan-shaped dark spots seen throughout this image). Two craters are seen in this image, a very rare occurrence on the south polar layered deposits. Shown for comparison at the same scale is a picture of Jack Murphy (now Qualcomm) Stadium in San Diego, California. Clearly visible in the inset is the baseball diamond and pitcher's mound; less clear but certainly visible are a number of automobiles (small light dots) in the parking lot west (to the left) of the stadium. The elevation of the sun in the Mars image is about 10o; the sunlight is coming from the bottom (north) in this image. The shadow of the rims of the craters can be used to determine their depths. The smaller crater in the bottom right corner is about 60 m (197 feet) across and 7 m (23 feet) deep; the large crater just below the inset is 175 m (574 feet) across and 17 m (56 feet) deep. Similar calculations for other features in the images indicate that much of the surface is smooth and flat. Relief is typically much less than 1-2 meters (3-7 feet) in height over areas of 10-15 meters across (33-49 feet).

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  8. Volunteers Help Decide Where to Point Mars Camera

    NASA Image and Video Library

    2015-07-22

    This series of images from NASA's Mars Reconnaissance Orbiter successively zooms into "spider" features -- or channels carved in the surface in radial patterns -- in the south polar region of Mars. In a new citizen-science project, volunteers will identify features like these using wide-scale images from the orbiter. Their input will then help mission planners decide where to point the orbiter's high-resolution camera for more detailed views of interesting terrain. Volunteers will start with images from the orbiter's Context Camera (CTX), which provides wide views of the Red Planet. The first two images in this series are from CTX; the top right image zooms into a portion of the image at left. The top right image highlights the geological spider features, which are carved into the terrain in the Martian spring when dry ice turns to gas. By identifying unusual features like these, volunteers will help the mission team choose targets for the orbiter's High Resolution Imaging Science Experiment (HiRISE) camera, which can reveal more detail than any other camera ever put into orbit around Mars. The final image is this series (bottom right) shows a HiRISE close-up of one of the spider features. http://photojournal.jpl.nasa.gov/catalog/PIA19823

  9. 3. CONNECTING TUNNEL AT BOTTOM CENTER TO CENTER, CONTROL BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONNECTING TUNNEL AT BOTTOM CENTER TO CENTER, CONTROL BUILDING B AT CENTER, WATER TANK TO UPPER LEFT, VIEW TOWARDS WEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. 5. View of middle DR 2 antenna with DR 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of middle DR 2 antenna with DR 1 antenna in background. Photograph shows on left side at bottom foundation berm and along right side bottom stanchion concrete foundations at bottom structural steel assembly. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. Broken heart as work-related accident: Occupational stress as a cause of takotsubo cardiomyopathy in 55-year-old female teacher - Role of automated function imaging in diagnostic workflow.

    PubMed

    Mielczarek, Agnieszka; Kasprzak, Jarosław Damian; Marcinkiewicz, Andrzej; Kurpesa, Małgorzata; Uznańska-Loch, Barbara; Wierzbowska-Drabik, Karina

    2015-01-01

    Takotsubo cardiomiopathy (TTC) (known also as "ampulla cardiomyopathy," "apical ballooning" or "broken heart syndrome") is connected with a temporary systolic left ventricular dysfunction without the culprit coronary lesion. Takotsubo cardiomyopathy was first described in 1990 in Japan after octopus trapping pot with a round bottom and narrow neck similar in shape to left ventriculogram in TTC patients. The occurrence of TTC is usually precipitated by a stressful event with a clinical presentation mimicking myocardial infarction: chest pain, ST-T segment elevation or T-wave inversion, a rise in cardiac troponin, and contractility abnormalities in echocardiography. A left ventricular dysfunction is transient and improves within a few weeks. Takotsubo cardiomyopathy typically occurs in postmenopausal women and the postulated mechanism is catecholamine overstimulation. Moreover, the distribution of contractility impairments usually does not correspond with typical region supplied by a single coronary artery. Therefore, the assessment of regional pattern of systolic dysfunction with speckle-tracking echocardiography and automated function imaging (AFI) technique may be important in diagnosis of TTC and may improve our insight into its patophysiology. We described a 55-year-old female teacher with TTC diagnosed after acute psychological stress in workplace. The provoking factor related with occupational stress and pattern of contraction abnormalities documented with AFI technique including basal segments of left ventricle make this case atypical. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Earth Observation taken by the STS-125 Crew

    NASA Image and Video Library

    2009-05-12

    S125-E-005173 (12 May 2009) --- Among the first group of still images downlinked by the STS-125 crewmembers onboard the Space Shuttle Atlantis was this high oblique scene looking toward the Sinai Peninsula and the Mediterranean Sea. The Red Sea is just out of frame at bottom right. Saudi Arabia is in the right foreground and Egypt?s Nile River and its delta can be seen (lower left) toward the horizon. Jordan and a small portion of Israel can be seen near the top of the frame. The Gulf of Suez and the Gulf of Aqaba extend from the Red Sea toward the Mediterranean.

  13. Three Views of Pluto

    NASA Image and Video Library

    2015-07-06

    New Horizons' Long Range Reconnaissance Imager (LORRI) obtained these three images of Pluto between July 1-3 ,2015, as the spacecraft closed in on its July 14 encounter with the dwarf planet and its moons. The left image shows, on the right side of the disk, a large bright area on the hemisphere opposite Charon; this is the side of Pluto that will be seen in close-up by New Horizons on July 14. The three images together show the full extent of a continuous swath of dark terrain that wraps around Pluto's equatorial region between longitudes 40° and 160°. The western end of the swath, west of longitude 40°, breaks up into a series of striking dark regularly-spaced spots on the anti-Charon hemisphere (right image) that were first noted in New Horizons images taken on Pluto's previous rotation. Intriguing details are beginning to emerge in the bright material north of the dark region, in particular a series of bright and dark patches that are conspicuous just below the center of the disk in the right-hand image. In all three black-and-white views, the apparent jagged bottom edge of Pluto is the result of image processing. http://photojournal.jpl.nasa.gov/catalog/PIA19698

  14. Parallel Processing of Objects in a Naming Task

    ERIC Educational Resources Information Center

    Meyer, Antje S.; Ouellet, Marc; Hacker, Christine

    2008-01-01

    The authors investigated whether speakers who named several objects processed them sequentially or in parallel. Speakers named object triplets, arranged in a triangle, in the order left, right, and bottom object. The left object was easy or difficult to identify and name. During the saccade from the left to the right object, the right object shown…

  15. Extraction and Classification of Human Gait Features

    NASA Astrophysics Data System (ADS)

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee; Abdullah, Junaidi; Komiya, Ryoichi

    In this paper, a new approach is proposed for extracting human gait features from a walking human based on the silhouette images. The approach consists of six stages: clearing the background noise of image by morphological opening; measuring of the width and height of the human silhouette; dividing the enhanced human silhouette into six body segments based on anatomical knowledge; applying morphological skeleton to obtain the body skeleton; applying Hough transform to obtain the joint angles from the body segment skeletons; and measuring the distance between the bottom of right leg and left leg from the body segment skeletons. The angles of joints, step-size together with the height and width of the human silhouette are collected and used for gait analysis. The experimental results have demonstrated that the proposed system is feasible and achieved satisfactory results.

  16. The Night Sky on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. This time-lapse composite, acquired the evening of Spirit's martian sol 590 (Aug. 30, 2005) from a perch atop 'Husband Hill' in Gusev Crater, shows Phobos, the brighter moon, on the left, and Deimos, the dimmer moon, on the right. In this sequence of images obtained every 170 seconds, both moons move from top to bottom. The bright star Aldebaran forms a trail on the right, along with some other stars in the constellation Taurus. Most of the other streaks in the image mark the collision of cosmic rays with pixels in the camera.

    Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the six images that make up this composite using Spirit's panoramic camera with the camera's broadband filter, which was designed specifically for acquiring images under low-light conditions.

  17. 46. VIEW OF SAMPLING ROOM FROM SOUTHEAST. TO LEFT, SAMPLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. VIEW OF SAMPLING ROOM FROM SOUTHEAST. TO LEFT, SAMPLING ELEVATOR AND IN CENTER, SAMPLE BINS WITH DISCHARGE CHUTE AND THREE LABELS. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  18. Expeditions Two, Three and STS-105 crewmembers in group portrait in U.S. Laboratory

    NASA Image and Video Library

    2001-08-17

    STS105-717-032 (17 August 2001) --- The Expedition Three (white shirts), STS-105 (striped shirts), and Expedition Two (red shirts) crews assemble for this in-flight group portrait in the Destiny laboratory on the International Space Station (ISS). The Expedition Three crew members are, from bottom to top, astronaut Frank L. Culbertson, Jr., mission commander; and cosmonauts Vladimir N. Dezhurov and Mikhail Tyurin, flight engineers; STS-105 crew members are, from top left, Scott J. Horowitz, commander, Daniel T. Barry and Patrick G. Forrester (bottom left), both mission specialists, along with Frederick W. (Rick) Sturckow, pilot; Expedition Two crew members are, from bottom to top, are cosmonaut Yury V. Usachev, mission commander, and astronauts James S. Voss and Susan J. Helms, flight engineers. Dezhurov, Tyurin, and Usachev represent Rosaviakosmos.

  19. Space Radar Image of Giza Egypt - with Enlargement

    NASA Image and Video Library

    1999-04-15

    This radar image shows the area west of the Nile River near Cairo, Egypt. The Nile River is the dark band along the right side of the image and it flows approximately due North from the bottom to the right. The boundary between dense urbanization and the desert can be clearly seen between the bright and dark areas in the center of the image. This boundary represents the approximate extent of yearly Nile flooding which played an important part in determining where people lived in ancient Egypt. This land usage pattern persists to this day. The pyramids at Giza appear as three bright triangles aligned with the image top just at the boundary of the urbanized area. They are also shown enlarged in the inset box in the top left of the image. The Great Pyramid of Khufu (Cheops in Greek) is the northern most of the three Giza pyramids. The side-looking radar illuminates the scene from the top, the two sides of the pyramids facing the radar reflect most of the energy back to the antenna and appear radar bright; the two sides away from the radar reflect less energy back and appear dark Two additional pyramids can be seen left of center in the lower portion of the image. The modern development in the desert on the left side of the image is the Sixth of October City, an area of factories and residences started by Anwar Sadat to relieve urban crowding. The image was taken on April 19, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. The image is centered on latitude 29.72 degrees North latitude and 30.83 degrees East longitude. The area shown is approximately 20 kilometers by 30 kilometers. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01793

  20. The role of anxiety in stuttering: Evidence from functional connectivity.

    PubMed

    Yang, Yang; Jia, Fanlu; Siok, Wai Ting; Tan, Li Hai

    2017-03-27

    Persistent developmental stuttering is a neurologically based speech disorder associated with cognitive-linguistic, motor and emotional abnormalities. Previous studies investigating the relationship between anxiety and stuttering have yielded mixed results, but it has not yet been examined whether anxiety influences brain activity underlying stuttering. Here, using functional magnetic resonance imaging (fMRI), we investigated the functional connectivity associated with state anxiety in a syllable repetition task, and trait anxiety during rest in adults who stutter (N=19) and fluent controls (N=19). During the speech task, people who stutter (PWS) showed increased functional connectivity of the right amygdala with the prefrontal gyrus (the left ventromedial frontal gyrus and right middle frontal gyrus) and the left insula compared to controls. During rest, PWS showed stronger functional connectivity between the right hippocampus and the left orbital frontal gyrus, and between the left hippocampus and left motor areas than controls. Taken together, our results suggest aberrant bottom-up and/or top-down interactions for anxiety regulation, which might be responsible for the higher level of state anxiety during speech and for the anxiety-prone trait in PWS. To our knowledge, this is the first study to examine the neural underpinnings of anxiety in PWS, thus yielding new insight into the causes of stuttering which might aid strategies for the diagnosis and treatment of stuttering. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Status analysis of keyhole bottom in laser-MAG hybrid welding process.

    PubMed

    Wang, Lin; Gao, Xiangdong; Chen, Ziqin

    2018-01-08

    The keyhole status is a determining factor of weld quality in laser-metal active gas arc (MAG) hybrid welding process. For a better evaluation of the hybrid welding process, three different penetration welding experiments: partial penetration, normal penetration (or full penetration), and excessive penetration were conducted in this work. The instantaneous visual phenomena including metallic vapor, spatters and keyhole of bottom surface were used to evaluate the keyhole status by a double high-speed camera system. The Fourier transform was applied on the bottom weld pool image for removing the image noise around the keyhole, and then the bottom weld pool image was reconstructed through the inverse Fourier transform. Lastly, the keyhole bottom was extracted from the de-noised bottom weld pool image. By analyzing the visual features of the laser-MAG hybrid welding process, mechanism of the closed and opened keyhole bottom were revealed. The results show that the stable opened or closed status of keyhole bottom is directly affected by the MAG droplet transition in the normal penetration welding process, and the unstable opened or closed status of keyhole bottom would appear in excessive penetration welding and partial penetration welding. The analysis method proposed in this paper could be used to monitor the keyhole stability in laser-MAG hybrid welding process.

  2. Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Carder, Kendall L.; Chen, Robert F.; Peacock, Thomas G.

    2001-06-01

    Using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data as an example, we show in this study that the properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments in the water column. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom albedo image shows clear spatial patterns, with end-members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. Without bottom corrections, chlorophyll a retrievals were ˜50 mg m-3, while the retrievals after bottom corrections were tenfold less, approximating real values. These results suggest that the model and approach used work very well for the retrieval of subsurface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  3. Spirit Studies Rock Outcrop at 'Home Plate'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Exploration Rover Spirit acquired this false-color image at 11:48 local true solar time on Mars on the rover's 746th Martian day, or sol (Feb. 26, 2006), after using the rock abrasion tool to brush the surfaces of rock targets informally named 'Stars' (left) and 'Crawfords' (right). Small streaks of dust extend for several centimeters behind the small rock chips and pebbles in the dusty, red soils. Because the rover was looking southwest when this image was taken, the wind streaks indicate that the dominant wind direction was from the southeast.

    The targets Stars and Crawfords are on a rock outcrop located on top of 'Home Plate.' The outcrop is informally named 'James 'Cool Papa' Bell,' after a Negro Leagues Hall of Famer who played for both the Pittsburgh Crawfords and the Kansas City Stars. To some science team members, the two brushed spots resemble the eyes of a face, with rocks below and between the eyes as a nose and layered rocks at the bottom of the image as a mouth.

    The image combines frames taken by Spirit's panoramic camera through the camera's 753-nanometer, 535-namometer, and 432-nanometer filters. It is enhanced to emphasize color differences among the rocks, soils and brushed areas. The blue circular area on the left, Stars, was brushed on 761 (Feb. 22, 2006). The one on the right, Crawfords, was brushed on sol 763 (Feb. 25, 2006).

  4. Multi-Wavelength Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on individual images below for larger view

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this image from NASA's Spitzer Space Telescope. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years.

    The main image is a composite mosaic obtained with the multiband imaging photometer for Spitzer and the infrared array camera. Thermal infrared emission at 24 microns detected by the photometer (red, bottom left inset) is combined with camera data at 8.0 microns (green, bottom center inset) and 3.6 microns (blue, bottom right inset).

    A visible-light image of Messier 81, obtained at Kitt Peak National Observatory, a ground-based telescope, is shown in the upper right inset. Both the visible-light picture and the 3.6-micron near-infrared image trace the distribution of stars, although the Spitzer image is virtually unaffected by obscuring dust. Both images reveal a very smooth stellar mass distribution, with the spiral arms relatively subdued.

    As one moves to longer wavelengths, the spiral arms become the dominant feature of the galaxy. The 8-micron emission is dominated by infrared light radiated by hot dust that has been heated by nearby luminous stars. Dust in the galaxy is bathed by ultraviolet and visible light from nearby stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles are composed of silicates (chemically similar to beach sand), carbonaceous grains and polycyclic aromatic hydrocarbons and trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.

    The 24-micron multiband imaging photometer image shows emission from warm dust heated by the most luminous young stars. The infrared-bright clumpy knots within the spiral arms show where massive stars are being born in giant H II (ionized hydrogen) regions. Studying the locations of these star forming regions with respect to the overall mass distribution and other constituents of the galaxy (e.g., gas) will help identify the conditions and processes needed for star formation.

  5. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    ERIC Educational Resources Information Center

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  6. Microscopic Image of Martian Surface Material on a Silicone Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger version of Figure 1

    This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil.

    The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material.

    The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch).

    Zooming in on the Martian Soil

    In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander.

    The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles.

    The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing.

    The shadows at the bottom of image are of the beams of the Atomic Force Microscope.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Shaded Relief of Rio Sao Francisco, Brazil

    NASA Image and Video Library

    2000-02-14

    This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems. This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning. http://photojournal.jpl.nasa.gov/catalog/PIA02700

  8. ARC-1990-A91-2001

    NASA Image and Video Library

    1990-02-19

    Range : 60,000 miles These images are two versions of a near-infrafed map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft.The map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees F) ahining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about 170 degrees F, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slsivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of clocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and clocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps.

  9. ARC-1990-A91-2002

    NASA Image and Video Library

    1990-02-10

    Range : 60,000 miles These images are two versions of a near-infrafed map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft.The map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees F) ahining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about 170 degrees F, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slsivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of clocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and clocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps.

  10. Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content.

    PubMed

    Müller, Jürgen L; Sommer, Monika; Wagner, Verena; Lange, Kirsten; Taschler, Heidrun; Röder, Christian H; Schuierer, Gerhardt; Klein, Helmfried E; Hajak, Göran

    2003-07-15

    Neurobiology of psychopathy is important for our understanding of current neuropsychiatric questions. Despite a growing interest in biological research in psychopathy, its neural underpinning remains obscure. We used functional magnetic resonance imaging to study the influence of affective contents on brain activation in psychopaths. Series containing positive and negative pictures from the International Affective Picture System were shown to six male psychopaths and six male control subjects while 100 whole-brain echo-planar-imaging measurements were acquired. Differences in brain activation were evaluated using BrainVoyager software 4.6. In psychopaths, increased activation through negative contents was found right-sided in prefrontal regions and amygdala. Activation was reduced right-sided in the subgenual cingulate and the temporal gyrus, and left-sided in the dorsal cingulate and the parahippocampal gyrus. Increased activation through positive contents was found left-sided in the orbitofrontal regions. Activation was reduced in right medial frontal and medial temporal regions. These findings underline the hypotheses that psychopathy is neurobiologically reflected by dysregulation and disturbed functional connectivity of emotion-related brain regions. These findings may be interpreted within a framework including prefrontal regions that provide top-down control to and regulate bottom-up signals from limbic areas. Because of the small sample size, the results of this study have to be regarded as preliminary.

  11. Earth and Its Moon, as Seen From Mars

    NASA Image and Video Library

    2017-01-06

    This composite image of Earth and its moon, as seen from Mars, combines the best Earth image with the best moon image from four sets of images acquired on Nov. 20, 2016, by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. Each was separately processed prior to combining them so that the moon is bright enough to see. The moon is much darker than Earth and would barely be visible at the same brightness scale as Earth. The combined view retains the correct sizes and positions of the two bodies relative to each other. HiRISE takes images in three wavelength bands: infrared, red, and blue-green. These are displayed here as red, green, and blue, respectively. This is similar to Landsat images in which vegetation appears red. The reddish feature in the middle of the Earth image is Australia. Southeast Asia appears as the reddish area (due to vegetation) near the top; Antarctica is the bright blob at bottom-left. Other bright areas are clouds. These images were acquired for calibration of HiRISE data, since the spectral reflectance of the Moon's near side is very well known. When the component images were taken, Mars was about 127 million miles (205 million kilometers) from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA21260

  12. 1. Aerial view northnortheast, State Route 92 center left and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Aerial view north-northeast, State Route 92 center left and State Route 100 on right, duck pond, reservoir and farm complex buildings center bottom. - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  13. Simulation of Blast Loading on an Ultrastructurally-based Computational Model of the Ocular Lens

    DTIC Science & Technology

    2013-10-01

    gradient components in the axial ( F22 ) and radial (F11) directions. One can observe the very large deformation (approaching 800%) and 5 Figure 5...and (bottom left) show deformation gradient in axial ( F22 ) and radial (F11) directions. (bottom right) normalized force versus displacement curve for

  14. 64. NORTH WALL OF CRUSHED OXIDIZED ORE BIN. THE PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. NORTH WALL OF CRUSHED OXIDIZED ORE BIN. THE PRIMARY MILL FEEDS AT BOTTOM. MILL SOLUTION TANKS WERE TO THE LEFT (EAST) AND BARREN SOLUTION TANK TO THE RIGHT (WEST) OR THE CRUSHED ORE BIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  15. Tracking Boulders

    NASA Technical Reports Server (NTRS)

    2006-01-01

    13 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of a trough in the Sirenum Fossae region. On the floor and walls of the trough, large -- truck- to house-sized -- boulders are observed at rest. However, there is evidence in this image for the potential for mobility. In the central portion of the south (bottom) wall, a faint line of depressions extends from near the middle of the wall, down to the rippled trough floor, ending very near one of the many boulders in the area. This line of depressions is a boulder track; it indicates the path followed by the boulder as it trundled downslope and eventually came to rest on the trough floor. Because it is on Mars, even when the boulder is sitting still, this once-rolling stone gathers no moss.

    Location near: 29.4oS, 146.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  16. Soil disturbance by airbags

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Disturbance of the drift at the Pathfinder landing site reveals a shallow subsurface that is slightly darker but has similar spectral properties. The top set of images, in true color, shows the soils disturbed by the last bounce of the lander on its airbags before coming to rest and the marks created by retraction of the airbags. In the bottom set of images color differences have been enhanced. The mast at center is the Atmospheric Structure Instrument/Meteorology Package (ASI/MET). The ASI/MET is an engineering subsytem that acquired atmospheric data during Pathfinder's descent, and will continue to get more data through the entire landed mission. A shadow of the ASI/MET appears on a rock at left.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  18. PIA21258

    NASA Image and Video Library

    2016-12-20

    These five images from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter show different Martian features of progressively greater size and complexity, all thought to result from thawing of seasonal carbon-dioxide ice that covers large areas near Mars' south pole during winter. The sequence illustrates possible stages in development of a type of Martian terrain called "araneiform," from Latin for spider-shaped. They range from a depression with one trough (upper left) to a broad network of "spiders" (lower right). Each image has a scale bar in meters, from 20 meters (66 feet) in the upper-left image to 300 meters (984 feet) in the lower-right one. Each image also includes dark "fans" that result from the same thawing process. Carbon-dioxide ice, better known as "dry ice," does not occur naturally on Earth. On Mars, sheets of it cover the ground during winter in areas near both poles, including the south-polar regions with spidery terrain. The dark fans appear in these areas each spring. Spring sunshine penetrates the ice to warm the ground underneath, causing some carbon dioxide on the bottom of the sheet to thaw into gas. The trapped gas builds pressure until a crack forms in the ice sheet. Gas erupts out, and gas beneath the ice rushes toward the vent, picking up particles of sand and dust. This erodes the ground and also supplies the geyser with particles that fall back to the surface, downwind, and appear as the dark spring fans. These five images are excerpts from HiRISE observations PSP_002718_0950, taken Feb. 24, 2007, at 85 degrees south latitude, 82 degrees east longitude, and ESP_011842_0980, taken Feb. 4, 2009, at 81 degrees south latitude, 76 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA21258

  19. Pasadena, California Anaglyph with Aerial Photo Overlay

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This anaglyph shows NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. Red-blue glasses are required to see the 3-D effect. The surrounding residential areas of La Canada-Flintridge (to the left) and Altadena/Pasadena (to the right) are also shown. JPL is located at the base of the San Gabriel Mountains, an actively growing mountain range, seen towards the top of the image. The large canyon coming out of the mountains (top to bottom of image) is the Arroyo Seco, which is a major drainage channel for the mountains. Sand and gravel removal operations in the lower part of the arroyo (bottom of image) are removing debris brought down by flood and mudflow events. Old landslide scars (lobe-shaped features) are seen in the arroyo, evidence that living near steep canyon slopes in tectonically active areas can be hazardous. The data can also be utilized by recreational users such as hikers enjoying the natural beauty of these rugged mountains.

    This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. The detailed aerial image was provided by U. S. Geological Survey digital orthophotography. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

    Size: 2.2 km (1.4 miles) x 2.4 km (1.49 miles) Location: 34.16 deg. North lat., 118.16 deg. West lon. Orientation: looking straight down at land Original Data Resolution: SRTM, 30 meters; Aerial Photo, 3 meters. Date Acquired: February 16, 2000 Image: NASA/JPL/NIMA

  20. 13. Detail, downstream side of Bridge Number 310.58, showing lower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail, downstream side of Bridge Number 310.58, showing lower chord connection, view to southeast, 210mm lens. The riveted portion of the bottom chord is at left, joined at the pin connection to the eyebars. The vertical intermediate post is a compression member, and is attached to one end of a floor beam that spans transversely below the bridge floor. There are paired diagonals to the left of the intermediate post, with a turnbuckled counter to rising diagonally to the right. The diagonals below the floor are bottom lateral members. - Southern Pacific Railroad Shasta Route, Bridge No. 310.58, Milepost 310.58, Sims, Shasta County, CA

  1. Expedition 10 Landing

    NASA Image and Video Library

    2005-04-24

    Flight Engineer Salizhan Sharipov, bottom left, Expedition 10 Commander Leroy Chiao and European Space Agency astronaut Roberto Vittori, top left, arrive in Star City, Russia, Monday, April 25, 2005, after thet brought their Soyuz TMA-5 capsule to a pre-dawn landing northeast of Arkalyk, Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  2. Four Ways to See Saturn

    NASA Image and Video Library

    2004-04-22

    A montage of Cassini images, taken in four different regions of the spectrum from ultraviolet to near-infrared, demonstrates that there is more to Saturn than meets the eye. The pictures show the effects of absorption and scattering of light at different wavelengths by both atmospheric gas and clouds of differing heights and thicknesses. They also show absorption of light by colored particles mixed with white ammonia clouds in the planet's atmosphere. Contrast has been enhanced to aid visibility of the atmosphere. Cassini's narrow-angle camera took these four images over a period of 20 minutes on April 3, 2004, when the spacecraft was 44.5 million kilometers (27.7 million miles) from the planet. The image scale is approximately 267 kilometers (166 miles) per pixel. All four images show the same face of Saturn. In the upper left image, Saturn is seen in ultraviolet wavelengths (298 nanometers); at upper right, in visible blue wavelengths (440 nanometers); at lower left, in far red wavelengths just beyond the visible-light spectrum (727 nanometers; and at lower right, in near-infrared wavelengths (930 nanometers). The sliver of light seen in the northern hemisphere appears bright in the ultraviolet and blue (top images) and is nearly invisible at longer wavelengths (bottom images). The clouds in this part of the northern hemisphere are deep, and sunlight is illuminating only the cloud-free upper atmosphere. The shorter wavelengths are consequently scattered by the gas and make the illuminated atmosphere bright, while the longer wavelengths are absorbed by methane. Saturn's rings also appear noticeably different from image to image, whose exposure times range from two to 46 seconds. The rings appear dark in the 46-second ultraviolet image because they inherently reflect little light at these wavelengths. The differences at other wavelengths are mostly due to the differences in exposure times. http://photojournal.jpl.nasa.gov/catalog/PIA05388

  3. Auditory Attentional Control and Selection during Cocktail Party Listening

    PubMed Central

    Hill, Kevin T.

    2010-01-01

    In realistic auditory environments, people rely on both attentional control and attentional selection to extract intelligible signals from a cluttered background. We used functional magnetic resonance imaging to examine auditory attention to natural speech under such high processing-load conditions. Participants attended to a single talker in a group of 3, identified by the target talker's pitch or spatial location. A catch-trial design allowed us to distinguish activity due to top-down control of attention versus attentional selection of bottom-up information in both the spatial and spectral (pitch) feature domains. For attentional control, we found a left-dominant fronto-parietal network with a bias toward spatial processing in dorsal precentral sulcus and superior parietal lobule, and a bias toward pitch in inferior frontal gyrus. During selection of the talker, attention modulated activity in left intraparietal sulcus when using talker location and in bilateral but right-dominant superior temporal sulcus when using talker pitch. We argue that these networks represent the sources and targets of selective attention in rich auditory environments. PMID:19574393

  4. ARC-1989-A89-7025

    NASA Image and Video Library

    1989-08-24

    P-34687 Range : 530,000 km. ( 330,000 miles ) Smallest Resolvable Feature : 10 km or 6 miles This Voyager 2 image of Neptune's satellite Triton shows the first photo of Triton to reveal surface topography. The south pole, continuously illuminated by sunlight at this season, ia at bottom left. the boundary between bright southern hemisphere and the darker and the darker, northern hemisphere is clearly visible. Both the darker regions to the north and the very bright sub-equatorial band show a complex pattern of irregular topography that somewhat resembles 'fretted terrain' on parts of Venus and Mars. The pattern of dark and light regions over most of the southern hemisphere will require higher resolution images for interpretation. Also evident are long, straight lines that appear to be surface expressions of internal, tectonic processes. No large impact ctaters are visible, suggesting that the crust of Triton has been renewed relatively recently, that is, within the last bllion years or less.

  5. An Automated Human Factors Analysis System for Imaging Data.

    DTIC Science & Technology

    1983-04-01

    ITANKI.E0S.AUO.VALIS.E@.3)TUEK 164 FRECOGF-FRECOSFl 165 ELSE * 22 * 66 FALIEIDF&FALSEIDF.1 167 ENSIF log 90 TO I lot ENDIF 179 T1IME mFLOAT( IDA-2)’.G9.*󈨉...X.Y.XY(2).TOP.BOTTOM.LEFT.RIGHT.TB(2).LR(2) 20 EOUIVALENCEX YI.X).XC).Y.IRIG6G.XY(I)) 39 EQUIVALENCE(T(). BOTTON ,(TB2Z.TOP).( IRG(1).TBtl)) 45 EOulVALENCE...GOT01I lot ENDIF tog IFISEC.LT.TSEC(LI)OO TO I 115f C BOIN-ISHFTITIDAV(L).-12) 49 III C WRITE(6.34)SOXN.L 113 SOXN.C ISNFT(T1DAYtL).-12l-1)*4 114 C

  6. Accelerator Development for the NRL (Naval Research Laboratory) Free Electron Laser Program

    DTIC Science & Technology

    1988-06-01

    reset CHARGE light 24 grey reset CHARGE light 26 purple reset gap pressure ON light . 27 blue RESET GAP PRESSURE switch 0 (bottom left) 28 red RESET...GAP PRESSURE switch (bottom middle) and chassis wire # 13 (red) 29 blue reset trigger FIRED light 30 orange reset gap pressure OFF light 31, orange ALL

  7. 40. Photocopy of scale drawing (from Station 'L' office files, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Portland General Electric in house drawing, 12/6/1927 ELEVATION (TOP), SECTION (BOTTOM LEFT) AND PLAN (BOTTOM RIGHT) OF THE STEAM PIPING LEADING TO BOILER #13 BUILDING L4 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  8. 49 CFR 537.7 - Pre-model year and mid-model year reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... List the model types in order of increasing average inertia weight from top to bottom down the left... form. List the model types in order of increasing average inertia weight from top to bottom down the... trucks in your fleet that meet the mild and strong hybrid vehicle definitions. For each mild and strong...

  9. 49 CFR 537.7 - Pre-model year and mid-model year reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... List the model types in order of increasing average inertia weight from top to bottom down the left... form. List the model types in order of increasing average inertia weight from top to bottom down the... trucks in your fleet that meet the mild and strong hybrid vehicle definitions. For each mild and strong...

  10. Perspective View, New York State, Lake Ontario to Long Island

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From Lake Ontario and the St. Lawrence River (at the bottom of the image) and extending to Long Island (at the top), this perspective view shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania, New Jersey and Rhode Island. The high 'bumpy' area in the left foreground is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest rocks in the eastern United States. On the right side are the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills, A wide valley contains the Mohawk River and the Erie Canal. To the northwest (lower right) of the Catskills are the Finger Lakes of central New York . They were carved by the vast glacier that covered this entire area as recently as 18,000 years ago. The Hudson River runs along a straight valley from left center (near Glens Falls), widening out as it approaches New York City at the upper right on the image. The Connecticut River valley has a similar north-south trend further to the east (across the upper left corner of the image). The Berkshire Hills are between the Hudson and Connecticut valleys.

    This image was generated using a single swath of data acquired in 68 seconds by SRTM and an enhanced false-color mosaic of images from the Landsat 5 satellite. Lush vegetation appears green, water appears dark blue, and cities are generally light blue. White clouds occur in the upper left and lower left. Topographic shading in the image was enhanced with false shading derived from the elevation model. Topographic expression is exaggerated 5X.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 220 by 510 kilometers (135 by 315 miles) Location: 43 deg. North lat., 75 deg. West lon. Orientation: View southeast Colors: Landsat bands 2,4,7 in blue, green, and red Date Acquired: February 13, 2000 (SRTM); Various Dates (Landsat Mosaic) Image: NASA/JPL/NIMA

  11. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    NASA Astrophysics Data System (ADS)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  12. STS-56 Earth observation of Karakorum Range of north India

    NASA Image and Video Library

    1993-04-17

    STS-56 Earth observation shows of some of the highest mountain peaks in the world taken from Discovery, Orbiter Vehicle (OV) 103, as it passed over India and China. The top of the view shows one of the snow and ice-covered massifs in the great Karakorum Range of north India. A star-shaped peak at top left reaches 23,850 feet. Glaciers can be seen in valleys at these high elevations. The international border between India to the south (top) and China (bottom) snakes left to right along a river near the top of the scene, then veers into the muntains at top left. Larger valleys, despite their elevation (all in excess of 14,000 feet), are occupied by transport routes joining points in India, China and the southern republics of the CIS. The ancient Silk Route between China and the Middle East lies not far to the north (outside the bottom of the frame).

  13. SAR imaging and hydrodynamic analysis of ocean bottom topographic waves

    NASA Astrophysics Data System (ADS)

    Zheng, Quanan; Li, Li; Guo, Xiaogang; Ge, Yong; Zhu, Dayong; Li, Chunyan

    2006-09-01

    The satellite synthetic aperture radar (SAR) images display wave-like patterns of the ocean bottom topographic features at the south outlet of Taiwan Strait (TS). Field measurements indicate that the most TS water body is vertically stratified. However, SAR imaging models available were developed for homogeneous waters. Hence explaining SAR imaging mechanisms of bottom features in a stratified ocean is beyond the scope of those models. In order to explore these mechanisms and to determine the quantitative relations between the SAR imagery and the bottom features, a two-dimensional, three-layer ocean model with sinusoidal bottom topographic features is developed. Analytical solutions and inferences of the momentum equations of the ocean model lead to the following conditions. (1) In the lower layer, the topography-induced waves (topographic waves hereafter) exist in the form of stationary waves, which satisfy a lower boundary resonance condition σ = kC0, here σ is an angular frequency of the stationary waves, k is a wavenumber of bottom topographic corrugation, and C0 is a background current speed. (2) As internal waves, the topographic waves may propagate vertically to the upper layer with an unchanged wavenumber k, if a frequency relation N3 < σ < N2 is satisfied, here N2 and N3 are the Brunt-Wäisälä frequencies of middle layer and upper layer, respectively. (3) The topographic waves are extremely amplified if an upper layer resonance condition is satisfied. The SAR image of topographic waves is derived on the basis of current-modulated small wave spectra. The results indicate that the topographic waves on SAR images have the same wavelength of bottom topographic corrugation, and the imagery brightness peaks are either inphase or antiphase with respect to the topographic corrugation, depending on a sign of a coupling factor. These theoretical predictions are verified by field observations. The results of this study provide a physical basis for quantitative interpretation of SAR images of bottom topographic waves in the stratified ocean.

  14. Inner Milky Way Raging with Star Formation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    More than 444,580 frames from NASA's Spitzer Space Telescope were stitched together to create this portrait of the raging star-formation occurring in the inner Milky Way.

    As inhabitants of a flat galactic disk, Earth and its solar system have an edge-on view of their host galaxy, like looking a glass dish from its edge. From our perspective, most of the galaxy is condensed into a blurry narrow band of light that stretches completely around the sky, also known as the galactic plane.

    In this mosaic the galactic plane is broken up into five components: the far-left side of the plane (top image); the area just left of the galactic center (second to top); galactic center (middle); the area to the right of galactic center (second to bottom); and the far-right side of the plane (bottom). Together, these panels represent more than 50 percent of our entire Milky Way galaxy.

    The red haze that permeates the picture comes from organic molecules called polycyclic aromatic hydrocarbons, which are illuminated by light from massive baby stars. On Earth, these molecules are found in automobile exhaust, or charred barbeque grills anywhere carbon molecules are burned incompletely.

    The patches of black are dense, obscuring dust clouds impenetrable by even Spitzer's super-sensitive infrared eyes. Bright arcs of white throughout the image are massive stellar incubators. The bluish-white haze that hovers heavily in the middle panel is starlight from the older stellar population towards the center of the galaxy.

    This picture was taken with Spitzer's infrared array camera, as part of the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project. This is a four-color composite where blue is 3.6-micron light, green is 4.5 microns, orange is 5.8 microns and red is 8.0 microns.

  15. 'Blueberry' Exposed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic of five images taken by the microscopic imager on the Mars Exploration Rover Opportunity on sol 87 shows the hole drilled by the rover's rock abrasion tool into the rock dubbed 'Pilbara.' A sliced 'blueberry,' or spherule, which is darker and harder than the rest of the rock, can be seen near the center of the hole. The rock abrasion process left a pile of rock powder around the side of the hole, and to a lesser degree, inside the hole. The hole is 7.2 millimeters (about 0.28 inches) deep and 4.5 centimeters (about 1.8 inches) in diameter.

    Because the original images of this hole had areas of bright sunlight as well as shadow, the images making up this mosaic have been arranged to hide as much of the sunlit area as possible. The white spot is one area that could not be covered by other images. It is possible to stretch the image so that features in this white spot are visible, but this makes the rest of the mosaic harder to view. The bright streaks on the bottom part of the hole are most likely reflections from various parts of the robotic arm. The geometric and brightness seams have been corrected in this image.

  16. --No Title--

    Science.gov Websites

    :24px}@media(min-width:768px){.showcase{height:431px}.showcase .caption{left:0;right:0;bottom:0 ;position:absolute}.feature-secondary .link-tile{margin-top:0}}@media(min-width:992px){.showcase{height:545px}}@media -radius:0;border:none;box-shadow:none}h3 .fa{padding-bottom:4px}@media only screen and (max-width :767px

  17. 44. VIEW OF SOUTHWEST CORNER OF DRYER ROOM. DRYER FOUNDATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. VIEW OF SOUTHWEST CORNER OF DRYER ROOM. DRYER FOUNDATION AT BOTTOM OF VIEW, WITH 18 INCH REVERSIBLE BELT CONVEYOR (UPPER LEFT), AND 16 INCH BELT CONVEYOR FINES FEED TO CRUSHED OXIDIZED ORE BIN (CENTER TO UPPER RIGHT). DRYER EXHAUST IS BELOW FINES FEED BELT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  18. MISR Images Forest Fires and Hurricane

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These images show forest fires raging in Montana and Hurricane Hector swirling in the Pacific. These two unrelated, large-scale examples of nature's fury were captured by the Multi-angle Imaging SpectroRadiometer(MISR) during a single orbit of NASA's Terra satellite on August 14, 2000.

    In the left image, huge smoke plumes rise from devastating wildfires in the Bitterroot Mountain Range near the Montana-Idaho border. Flathead Lake is near the upper left, and the Great Salt Lake is at the bottom right. Smoke accumulating in the canyons and plains is also visible. This image was generated from the MISR camera that looks forward at a steep angle (60 degrees); the instrument has nine different cameras viewing Earth at different angles. The smoke is far more visible when seen at this highly oblique angle than it would be in a conventional, straight-downward (nadir)view. The wide extent of the smoke is evident from comparison with the image on the right, a view of Hurricane Hector acquired from MISR's nadir-viewing camera. Both images show an area of approximately 400 kilometers (250 miles)in width and about 850 kilometers (530 miles) in length.

    When this image of Hector was taken, the eastern Pacific tropical cyclone was located approximately 1,100 kilometers (680 miles) west of the southern tip of Baja California, Mexico. The eye is faintly visible and measures 25 kilometers (16 miles) in diameter. The storm was beginning to weaken, and 24hours later the National Weather Service downgraded Hector from a hurricane to a tropical storm.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    For more information: http://www-misr.jpl.nasa.gov

  19. The Xanadu Annex on Titan Denoised

    NASA Image and Video Library

    2016-09-07

    This synthetic-aperture radar (SAR) image was obtained by NASA's Cassini spacecraft on July 25, 2016, during its 'T-121' pass over Titan's southern latitudes. The improved contrast provided by the denoising algorithm helps river channels (at bottom and upper left) stand out, as well as the crater-like feature at left. The image shows an area nicknamed the "Xanadu annex" by members of the Cassini radar team, earlier in the mission. This area had not been imaged by Cassini's radar until now, but measurements of its brightness temperature from Cassini's microwave radiometer were quite similar to that of the large region on Titan named Xanadu. Cassini's radiometer is essentially a very sensitive thermometer, and brightness temperature is a measure of the intensity of microwave radiation received from a feature by the instrument. Radar team members predicted at the time that, if this area were ever imaged, it would be similar in appearance to Xanadu, which lies just to the north. That earlier hunch appears to have been borne out, as features in this scene bear a strong similarity to the mountainous terrains Cassini's radar has imaged in Xanadu. Xanadu -- and now perhaps its annex -- remains something of a mystery. First imaged in 1994 by the Hubble Space Telescope (just three years before Cassini's launch from Earth), Xanadu was the first surface feature to be recognized on Titan. Once thought to be a raised plateau, the region is now understood to be slightly tilted, but not higher than, the darker surrounding regions. It blocks the formation of sand dunes, which otherwise extend all the way around Titan at its equator. The image was taken by the Cassini Synthetic Aperture radar (SAR) on July 25, 2016 during the mission's 122nd targeted Titan encounter. The image has been modified by the denoising method described in A. Lucas, JGR:Planets (2014). http://photojournal.jpl.nasa.gov/catalog/PIA20714

  20. --No Title--

    Science.gov Websites

    ;] { float: left; margin-right: 3px; margin-left: 0; } .control-group { margin-bottom: 10px; } legend + .control-group { margin-top: 20px; -webkit-margin-top-collapse: separate; } .form-horizontal .control-group : 1px solid #999; page-break-inside: avoid; } thead { display: table-header-group; } tr, img { page

  1. --No Title--

    Science.gov Websites

    family:arial;width:100%;background-color:#fff;margin:0}form{margin:0;padding:0 %);background:-webkit-gradient(linear,left top,left bottom,color-stop(0%,#00527f),color-stop(100%,#00324d :16px;line-height:36px;color:white;font-weight:bold}#outer{width:100%;background-color:#eee;margin:0

  2. HUBBLE VIEWS OF THREE STELLAR JETS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These NASA Hubble Space Telescope views of gaseous jets from three newly forming stars show a new level of detail in the star formation process, and are helping to solve decade-old questions about the secrets of star birth. Jets are a common 'exhaust product' of the dynamics of star formation. They are blasted away from a disk of gas and dust falling onto an embryonic star. [upper left] - This view of a protostellar object called HH-30 reveals an edge-on disk of dust encircling a newly forming star. Light from the forming star illuminates the top and bottom surfaces of the disk, making them visible, while the star itself is hidden behind the densest parts of the disk. The reddish jet emanates from the inner region of the disk, and possibly directly from the star itself. Hubble's detailed view shows, for the first time, that the jet expands for several billion miles from the star, but then stays confined to a narrow beam. The protostar is 450 light-years away in the constellation Taurus. Credit: C. Burrows (STScI and ESA), the WFPC 2 Investigation Definition Team, and NASA [upper right] - This view of a different and more distant jet in object HH-34 shows a remarkable beaded structure. Once thought to be a hydrodynamic effect (similar to shock diamonds in a jet aircraft exhaust), this structure is actually produced by a machine-gun-like blast of 'bullets' of dense gas ejected from the star at speeds of one-half million miles per hour. This structure suggests the star goes through episodic 'fits' of construction where chunks of material fall onto the star from a surrounding disk. The protostar is 1,500 light- years away and in the vicinity of the Orion Nebula, a nearby star birth region. Credit: J. Hester (Arizona State University), the WFPC 2 Investigation Definition Team, and NASA [bottom] - This view of a three trillion mile-long jet called HH-47 reveals a very complicated jet pattern that indicates the star (hidden inside a dust cloud near the left edge of the image) might be wobbling, possibly caused by the gravitational pull of a companion star. Hubble's detailed view shows that the jet has burrowed a cavity through the dense gas cloud and now travels at high speed into interstellar space. Shock waves form when the jet collides with interstellar gas, causing the jet to glow. The white filaments on the left reflect light from the obscured newborn star. The HH-47 system is 1,500 light-years away, and lies at the edge of the Gum Nebula, possibly an ancient supernova remnant which can be seen from Earth's southern hemisphere. Credit: J. Morse/STScI, and NASA The scale in the bottom left corner of each picture represents 93 billion miles, or 1,000 times the distance between Earth and the Sun. All images were taken with the Wide Field Planetary Camera 2 in visible light. The HH designation stands for 'Herbig-Haro' object -- the name for bright patches of nebulosity which appear to be moving away from associated protostars.

  3. Space Radar Image of Manaus, Brazil

    NASA Image and Video Library

    1999-05-01

    These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. http://photojournal.jpl.nasa.gov/catalog/PIA01735

  4. Looking behaviour and preference for artworks: the role of emotional valence and location.

    PubMed

    Kreplin, Ute; Thoma, Volker; Rodway, Paul

    2014-10-01

    The position of an item influences its evaluation, with research consistently finding that items occupying central locations are preferred and have a higher subjective value. The current study investigated whether this centre-stage effect (CSE) is a result of bottom-up gaze allocation to the central item, and whether it is affected by item valence. Participants (n=50) were presented with three images of artistic paintings in a row and asked to choose the image they preferred. Eye movements were recorded for a subset of participants (n=22). On each trial the three artworks were either similar but different, or were identical and with positive valence, or were identical and with negative valence. The results showed a centre-stage effect, with artworks in the centre of the row preferred, but only when they were identical and of positive valence. Significantly greater gaze allocation to the central and left artwork was not mirrored by equivalent increases in preference choices. Regression analyses showed that when the artworks were positive and identical the participants' last fixation predicted preference for the central art-work, whereas the fixation duration predicted preference if the images were different. Overall the result showed that item valence, rather than level of gaze allocation, influences the CSE, which is incompatible with the bottom-up gaze explanation. We propose that the centre stage heuristic, which specifies that the best items are in the middle, is able to explain these findings and the centre-stage effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. SRTM Stereo Pair with Landsat Overlay: Los Angeles to San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    California's topography poses challenges for road builders. Northwest of Los Angeles, deformation of Earth's crust along the Pacific-North American crustal plate boundary has made transportation difficult. Direct connection between metropolitan Los Angeles (image lower left) and California's Central Valley (image top center) through the rugged terrain seen on the left side of this image was long avoided in favor of longer, but easier paths. However, over the last century, three generations of roads have traversed this terrain. The first was 'The Ridge Route', a two-lane road, built in 1915, which followed long winding ridge lines that included 697curves. The second, built in 1933, was to become four-lane U.S. Highway 99. It generally followed widened canyon bottoms. The third is the current eight lane Interstate 5 freeway, built in the 1960s, which is generally notched into hillsides, but also includes a stretch of several miles where the two directions of travel are widely separated and driving is 'on the left', a rarity in the United States. Such an unusual highway configuration was necessary in order to optimize the road grades for uphill and downhill traffic in this topographically challenging setting.

    This stereoscopic image was generated by draping a Landsat satellite image over a preliminary SRTM elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30 meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.

    The elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 141 by 107 kilometers (88 by 66 miles) Location: 34.5 deg. North lat., 118.7 deg. West lon. Orientation: North toward upper right Image: Landsat bands 1, 2&4, 3 as blue, green, and red, respectively Date Acquired: February 16, 2000 (SRTM), November 11, 1986 (Landsat) Image: NASA/JPL/NIMA

  6. Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging

    PubMed Central

    Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.

    2013-01-01

    A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321

  7. Detection of Microcracks in Trunnion Rods Using Ultrasonic Guided Waves

    DTIC Science & Technology

    2015-07-01

    49 Figure 40. Larger second echo from PMN-PT vs. PZT transducer. ........................................................ 50...Figure. 41 Nonlinear crack simulations: two polished ends pulled together (top left), fatigued aluminum (bottom left), nut coupled and shims hammered... fatigued rods, can go through opening and closing variations during their deterioration. Microcracked rods need to be detected and quantified

  8. Optical Wireless Communications

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi; Britz, David M.; Boucouvalas, Anthony C.; Kavehrad, Mohsen

    2005-01-01

    Call for Papers

    Optical Wireless Communications

    Submission Deadline: 1 February 2005

    Guest Editors:

  9. 1. AERIAL VIEW, LOOKING SOUTH, ALONG 20TH STREET NORTH WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, LOOKING SOUTH, ALONG 20TH STREET NORTH WITH EMPIRE BUILDING (CENTER RIGHT), WOODWARD BUILDING (CENTER), JOHN HAND BUILDING (TOP LEFT), BROWN MARX BUILDING (BOTTOM LEFT), THE FOUR BUILDINGS THAT COMPRISE THIS NATIONAL REGISTER HISTORIC DISTRICT - Heaviest Corner on Earth (Commercial), First Avenue, North & Twentieth (20th) Street, North, Birmingham, Jefferson County, AL

  10. --No Title--

    Science.gov Websites

    a#show-docs-search{display:inline;padding-left:2%}div.popover span{display:block}div.popover %}p.pub-note span{font-style:italic;padding-bottom:10px}#category-search input[type=submit]{margin-top :100px;margin-left:90px}div#search-header{padding:0 0 20px 0}div#search-header span.header{font-size

  11. THEMIS Art #101

    NASA Image and Video Library

    2013-06-24

    Do you see what I see in this image from NASA Mars Odyssey spacecraft? The connected craters at the top and bottom of this image look like bugs, perhaps a bumble bee at the top and a wasp at the bottom.

  12. Stereo Pair, Honolulu, Oahu

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Honolulu, on the island of Oahu, is a large and growing urban area. This stereoscopic image pair, combining a Landsat image with topography measured by the Shuttle Radar Topography Mission (SRTM), shows how topography controls the urban pattern. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope.

    Features of interest in this scene include Diamond Head (an extinct volcano near the bottom of the image), Waikiki Beach (just above Diamond Head), the Punchbowl National Cemetary (another extinct volcano, near the image center), downtown Honolulu and Honolulu harbor (image left-center), and offshore reef patterns. The slopes of the Koolau mountain range are seen in the right half of the image. Clouds commonly hang above ridges and peaks of the Hawaiian Islands, but in this synthesized stereo rendition appear draped directly on the mountains. The clouds are actually about 1000 meters (3300 feet) above sea level.

    This stereoscopic image pair was generated using topographic data from the Shuttle Radar Topography Mission, combined with a Landsat 7 Thematic Mapper image collected at the same time as the SRTM flight. The topography data were used to create two differing perspectives, one for each eye. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI)space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 11 by 20 kilometers (7 by 13 miles) Location: 21.3 deg. North lat., 157.9 deg. West lon. Orientation: North toward upper right Original Data Resolution: SRTM, 30 meters (99 feet); Landsat, 15 meters (50 feet) Date Acquired: SRTM, February 18, 2000; Landsat February 12, 2000 Image: NASA/JPL/NIMA

  13. Space Radar Image of Long Valley, California -Interferometry/Topography

    NASA Image and Video Library

    1999-05-01

    These four images of the Long Valley region of east-central California illustrate the steps required to produced three dimensional data and topographics maps from radar interferometry. All data displayed in these images were acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour during its two flights in April and October, 1994. The image in the upper left shows L-band (horizontally transmitted and received) SIR-C radar image data for an area 34 by 59 kilometers (21 by 37 miles). North is toward the upper right; the radar illumination is from the top of the image. The bright areas are hilly regions that contain exposed bedrock and pine forest. The darker gray areas are the relatively smooth, sparsely vegetated valley floors. The dark irregular patch near the lower left is Lake Crowley. The curving ridge that runs across the center of the image from top to bottom is the northeast rim of the Long Valley Caldera, a remnant crater from a massive volcanic eruption that occurred about 750,000 years ago. The image in the upper right is an interferogram of the same area, made by combining SIR-C L-band data from the April and October flights. The colors in this image represent the difference in the phase of the radar echoes obtained on the two flights. Variations in the phase difference are caused by elevation differences. Formation of continuous bands of phase differences, known as interferometric "fringes," is only possible if the two observations were acquired from nearly the same position in space. For these April and October data takes, the shuttle tracks were less than 100 meters (328 feet) apart. The image in the lower left shows a topographic map derived from the interferometric data. The colors represent increments of elevation, as do the thin black contour lines, which are spaced at 50-meter (164-foot) elevation intervals. Heavy contour lines show 250-meter intervals (820-foot). Total relief in this area is about 1,320 meters (4,330 feet). Brightness variations come from the radar image, which has been geometrically corrected to remove radar distortions and rotated to have north toward the top. The image in the lower right is a three-dimensional perspective view of the northeast rim of the Long Valley caldera, looking toward the northwest. SIR-C C-band radar image data are draped over topographic data derived from the interferometry processing. No vertical exaggeration has been applied. Combining topographic and radar image data allows scientists to examine relationships between geologic structures and landforms, and other properties of the land cover, such as soil type, vegetation distribution and hydrologic characteristics. http://photojournal.jpl.nasa.gov/catalog/PIA01770

  14. Lower cognitive reserve in the aging human immunodeficiency virus-infected brain.

    PubMed

    Chang, Linda; Holt, John L; Yakupov, Renat; Jiang, Caroline S; Ernst, Thomas

    2013-04-01

    More HIV-infected individuals are living longer; however, how their brain function is affected by aging is not well understood. One hundred twenty-two men (56 seronegative control [SN] subjects, 37 HIV subjects with normal cognition [HIV+NC], 29 with HIV-associated neurocognitive disorder [HAND]) performed neuropsychological tests and had acceptable functional magnetic resonance imaging scans at 3 Tesla during tasks with increasing attentional load. With older age, SN and HIV+NC subjects showed increased activation in the left posterior (reserve, "bottom-up") attention network for low attentional-load tasks, and further increased activation in the left posterior and anterior ("top-down") attention network on intermediate (HIV+NC only) and high attentional-load tasks. HAND subjects had only age-dependent decreases in activation. Age-dependent changes in brain activation differed between the 3 groups, primarily in the left frontal regions (despite similar brain atrophy). HIV and aging act synergistically or interactively to exacerbate brain activation abnormalities in different brain regions, suggestive of a neuroadaptive mechanism in the attention network to compensate for declined neural efficiency. While the SN and HIV+NC subjects compensated for their declining attention with age by using reserve and "top-down" attentional networks, older HAND subjects were unable to compensate which resulted in cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Yardangs near Olympus Mons

    NASA Image and Video Library

    2002-12-16

    In this region of the Olympus Mons aureole, located to the SW of the volcano, the surface has been eroded by the wind into linear landforms called yardangs. These ridges generally point in direction of the prevailing winds that carved them, in this case winds from the southeast. Yardangs typically occur on surfaces that are easily erodable, such as wind-blown dust or volcanic ash. The northeast - southwest trending ridges and valleys in the northwest corner of the image are typical of the Olympus Mons aureole. The varying concentration and shape of the yardangs in this area may be controlled by the motion of winds around these topographic features. Some crater outlines are visible near the top of this image. The rims of these craters appear to have been stripped away - indicating that the wind erosion is younger than these craters. There are two round knobs in the image, one on the bottom on the right side of the image and another about midway down on the left. These may be inverted craters, formed because the impacts caused materials underneath the crater to become harder to erode than the surrounding materials. http://photojournal.jpl.nasa.gov/catalog/PIA04036

  16. Earth Observations taken by Expedition 38 Crewmember

    NASA Image and Video Library

    2014-02-14

    ISS038-E-047388 (14 Feb. 2014) --- As the International Space Station passed over the deserts of central Iran, including Kavir, one of the Expedition 38 crew members used a digital camera equipped with a 200mm lens to record this image featuring an unusual pattern of numerous parallel lines and sweeping curves. The lack of soil and vegetation allows the geological structure of the rocks to appear quite clearly. According to geologists, the patterns result from the gentle folding of numerous, thin, light and dark layers of rock. Later erosion by wind and water, say the scientists, cut a flat surface across the folds, not only exposing hundreds of layers but also showing the shapes of the folds. The dark water of a lake (image center) occupies a depression in a more easily eroded, S-shaped layer of rock. The irregular light-toned patch just left of the lake is a sand sheet thin enough to allow the underlying rock layers to be detected. A small river snakes across the bottom of the image. In this desert landscape there are no fields or roads to give a sense of scale. In fact, the image width represents a distance of 65 kilometers.

  17. Asuncion, Paraguay

    NASA Image and Video Library

    1996-01-20

    STS072-730-079 (11-20 Jan. 1996) --- Asuncion, capital city of Paraguay, South America (population 1.2 million) appears as de-vegetated countryside, in this 70mm photograph from the Space Shuttle Endeavour. The frame is focused at the downtown area next to the major bend of the Paraguay river. As the intensity of land use declines away from the center, the countryside becomes greener. Large farm plots can be seen at the bottom of the view. Lake Ypacarai (at the bottom) is a resort location surrounded by second homes for Paraguay's more affluent citizens. The top left corner of the photograph is northernmost Argentina, a remote, underdeveloped part of the country. Ships carry Paraguay's small import and export traffic down the Paraguay and Parana Rivers to Buenos Aires, the major port of the region hundreds of miles to the south (left). This may be the best shot of Asuncion so far during the Shuttle Program. The area spans 45 miles across the base of the picture. The river flows south (right to left).

  18. High-Resolution View of Fires and Smoke near Sydney, Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Smoke obscures much of the landscape near Sydney, Australia, in the true-color image above (top). However, the areas with active fires are revealed by the false-color image (bottom), which was made using shortwave infrared data that are sensitive to heat and provide the ability to 'see' through smoke. In the bottom scene, the black areas show fresh burn scars, while greens show landscape untouched by fire. Apparently, the fire burned up to the edge of a road (the thin black line snaking from the lefthand side of the image and disappearing off the bottom) and was unable to jump across. The thick dark line along the bottom of the scene is a river. Both images were made using data acquired on December 28, 2001, by the Advanced Land Imager (ALI), flying aboard NASA's Earth Observing-1 (EO-1) satellite. For more images of the recent fires in Australia, read Smoke Blankets New South Wales, Australia, Fires Continue to Rage Near Sydney, Australia, and Severe Bush Fires Near Sydney, Australia. For more information about the effects of fire on the environment, read the Biomass Burning fact sheet. Images by Robert Simmon, based on data provided by Lawrence Ong, EO-1 Science Team

  19. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    PubMed

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  20. Surface Observation Climatic Summaries (SOCS) for Volk Field ANGB, Wisconsin.

    DTIC Science & Technology

    1989-05-01

    LIMIT(S), EITHER SEPARATELY OR IN ANY C󈧒RINATI"Pl. TOTALS PROGRESS FROM RIGHT Tl LEFT AND PRUM BOTTOM1 T2 TOP. TOJ OETER Iljt CEILINS ALINE, REFER TO...THE cATREME7 RIGTHAND CO]LUMN (ZER? VISI3ILITY). TO DETERM’INE VISIBI1LITY ALINE, R’EFER TO THE BOTTOM ROW (ZEkO CEILINGS). OETER 𔃾INE THE P9F THAT

    1. Musical training sharpens and bonds ears and tongue to hear speech better.

      PubMed

      Du, Yi; Zatorre, Robert J

      2017-12-19

      The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively.

    2. Musical training sharpens and bonds ears and tongue to hear speech better

      PubMed Central

      Du, Yi; Zatorre, Robert J.

      2017-01-01

      The idea that musical training improves speech perception in challenging listening environments is appealing and of clinical importance, yet the mechanisms of any such musician advantage are not well specified. Here, using functional magnetic resonance imaging (fMRI), we found that musicians outperformed nonmusicians in identifying syllables at varying signal-to-noise ratios (SNRs), which was associated with stronger activation of the left inferior frontal and right auditory regions in musicians compared with nonmusicians. Moreover, musicians showed greater specificity of phoneme representations in bilateral auditory and speech motor regions (e.g., premotor cortex) at higher SNRs and in the left speech motor regions at lower SNRs, as determined by multivoxel pattern analysis. Musical training also enhanced the intrahemispheric and interhemispheric functional connectivity between auditory and speech motor regions. Our findings suggest that improved speech in noise perception in musicians relies on stronger recruitment of, finer phonological representations in, and stronger functional connectivity between auditory and frontal speech motor cortices in both hemispheres, regions involved in bottom-up spectrotemporal analyses and top-down articulatory prediction and sensorimotor integration, respectively. PMID:29203648

    3. Flight deck rendezvous activities

      NASA Image and Video Library

      1997-05-16

      STS084-357-015 (15-24 May 1997) --- Astronaut Charles J. Precourt (right), STS-84 commander, controls the rate of the Space Shuttle Atlantis' approach to Russia's Mir Space Station during rendezvous operations. Carlos I. Noriega (left), Elena V. Kondakova (bottom center) and an unidentified crew member (far left) crowd into the scene -- typical of the busy rendezvous in-cabin scenarios on all Mir-Atlantis missions.

    4. 164. HISTORIC AMERICAN ENGINEERING RECORD SUMMER RECORDING TEAM, 1992. LEFT ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      164. HISTORIC AMERICAN ENGINEERING RECORD SUMMER RECORDING TEAM, 1992. LEFT TO RIGHT: JOE ELLIOTT, PHOTOGRAPHER; VIRGINIA BRUMBACK, ARCHITECT; DAVE EVE, HISTORIAN (ICOMOS, IRONBRIDGE INSTITUTE, ENGLAND); BOB ARZYWACZ, PROJECT SUPERVISOR; LEE ANN JACKSON, ARCHITECT; AND ALBERT AFLENZER, ICOMOS ARCHITECT (TECHNICAL UNIVERSITY, VIENNA, AUSTRIA). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    5. --No Title--

      Science.gov Websites

      ; border: 1px solid #ddd; padding: 0px 18px 0px 4px; color: #333; background-color: #0368a1 ; } .carpe_slider_top {background-color:#000;width:1px;margin-left:60px;height:4px;} .carpe_slider_bottom {background -color:#000;width:1px;margin-left:60px;height:4px;} .carpe_horizontal_slider_track .carpe_slider_slit

    6. Southern Australia

      NASA Technical Reports Server (NTRS)

      2002-01-01

      South-central Australia is home to several deserts, including the Simpson Desert, whose reddish-orange sands are seen in the upper left quadrant of this Moderate Resolution Imaging Spectroradiometer (MODIS) image from July 1, 2002. Several impermanent, salty, lakes stand whitely out against the arid terrain. The largest is North Lake Eyre, southwest of center. At bottom center, Spencer Gulf separates the triangular Eyre Peninsula from the Yorke Peninsula. The Gulf of St. Vincent separates Yorke Peninsula from the mainland. In Spencer Gulf, colorful blue-green swirls indicate the presence of a bloom of marine plants called phytoplankton, whose brightly colored photosynthetic pigments stain the water. Water quality in the Gulf is an ongoing problem for Australia, as irrigation projects have diverted the already small flow of freshwater that empties into the Gulf. Other problems include contamination with pesticides and agricultural and residential fertilizer. On both the Eyre Peninsula and in the Victoria Territory to the east of Spencer Gulf, dark-colored rectangles show the boundaries of parks and nature preserves where the natural, drought-tolerant vegetation thrives.

    7. Red River Flooding in North Dakota

      NASA Image and Video Library

      2017-12-08

      NASA Satellite image acquired March 21, 2010. To see a high res of this image go here: www.flickr.com/photos/gsfc/4455124807/in/photostream/ On March 21, 2010, the Red River crested at 36.99 feet (11.27 meters), according to the National Weather Service. The New York Times reported that the river’s crest was 1 foot (0.3 meters) below predictions and 4 feet (1 meter) below 2009’s record crest. A cold front passing through the area on March 19, 2010, slowed the rate of snowmelt feeding local rivers. That, combined with sandbags and dykes, spared the metropolitan area of Fargo, North Dakota, from serious flooding. North of town, however, agricultural fields and roads flooded. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured these images of fields north of Fargo on March 21, 2010. The top image uses shortwave infrared light, and the bottom image uses visible light. Muddy waters and fallow fields blend together in the true-color image (bottom), but the false-color image (top) distinguishes better between water and land. Blue indicates water and green indicates vegetation. Fallow fields, bare ground, and paved surfaces appear in shades of brown. Cyan suggests pale water and/or sediment. Wide swaths of blue show large areas of standing water. The Sheyenne, Red, and Buffalo Rivers all flow through the area pictured here. According to The New York Times, flooding in rural areas around Fargo resulted primarily from the Red River’s failure to absorb water from the tributaries feeding it. Much of the standing water apparent in this image occurs around the Sheyenne and Buffalo Rivers. Overflowing tributaries left several inches of standing water in agricultural fields and on highways. About 10 miles (16 kilometers) north of Fargo, flooding forced the closure of Interstate 29. NASA image created by Jesse Allen, using EO-1 ALI data provided courtesy of the NASA EO-1 team and the United States Geological Survey. Caption by Michon Scott.. Instrument: EO-1 - ALI. To learn more about this image go here: earthobservatory.nasa.gov/NaturalHazards/view.php?id=43211 To learn more about NASA's Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html

    8. Red River Flooding in North Dakota (high res)

      NASA Image and Video Library

      2017-12-08

      NASA Satellite image acquired March 21, 2010. To see a high res more detail of this image go here: www.flickr.com/photos/gsfc/4455125023/in/photostream/ On March 21, 2010, the Red River crested at 36.99 feet (11.27 meters), according to the National Weather Service. The New York Times reported that the river’s crest was 1 foot (0.3 meters) below predictions and 4 feet (1 meter) below 2009’s record crest. A cold front passing through the area on March 19, 2010, slowed the rate of snowmelt feeding local rivers. That, combined with sandbags and dykes, spared the metropolitan area of Fargo, North Dakota, from serious flooding. North of town, however, agricultural fields and roads flooded. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured these images of fields north of Fargo on March 21, 2010. The top image uses shortwave infrared light, and the bottom image uses visible light. Muddy waters and fallow fields blend together in the true-color image (bottom), but the false-color image (top) distinguishes better between water and land. Blue indicates water and green indicates vegetation. Fallow fields, bare ground, and paved surfaces appear in shades of brown. Cyan suggests pale water and/or sediment. Wide swaths of blue show large areas of standing water. The Sheyenne, Red, and Buffalo Rivers all flow through the area pictured here. According to The New York Times, flooding in rural areas around Fargo resulted primarily from the Red River’s failure to absorb water from the tributaries feeding it. Much of the standing water apparent in this image occurs around the Sheyenne and Buffalo Rivers. Overflowing tributaries left several inches of standing water in agricultural fields and on highways. About 10 miles (16 kilometers) north of Fargo, flooding forced the closure of Interstate 29. NASA image created by Jesse Allen, using EO-1 ALI data provided courtesy of the NASA EO-1 team and the United States Geological Survey. Caption by Michon Scott. Instrument: EO-1 - ALI. To learn more about this image go here: earthobservatory.nasa.gov/NaturalHazards/view.php?id=43211 To learn more about NASA's Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html

    9. Investigating Mars: Pavonis Mons

      NASA Image and Video Library

      2017-11-01

      This image shows part of the southern flank of Pavonis Mons. Several faults run from the left to the right side of the image. Lava flows, and the lava collapse features at the bottom of the image are aligned with the down hill direction (in this case from the top of the image to the bottom). Near the top of the image there are collapse features that run along the faults. The fault may have been been a location for lava tube development. Pavonis Mons is one of the three aligned Tharsis Volcanoes. The four Tharsis volcanoes are Ascreaus Mons, Pavonis Mons, Arsia Mons, and Olympus Mars. All four are shield type volcanoes. Shield volcanoes are formed by lava flows originating near or at the summit, building up layers upon layers of lava. The Hawaiian islands on Earth are shield volcanoes. The three aligned volcanoes are located along a topographic rise in the Tharsis region. Along this trend there are increased tectonic features and additional lava flows. Pavonis Mons is the smallest of the four volcanoes, rising 14km above the mean Mars surface level with a width of 375km. It has a complex summit caldera, with the smallest caldera deeper than the larger caldera. Like most shield volcanoes the surface has a low profile. In the case of Pavonis Mons the average slope is only 4 degrees. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 15457 Latitude: -1.03884 Longitude: 246.532 Instrument: VIS Captured: 2005-06-09 00:38 https://photojournal.jpl.nasa.gov/catalog/PIA22018

    10. Ready to Unfurl

      NASA Image and Video Library

      2008-05-27

      This frame a movie from NASA's Phoenix Mars Lander shows the spacecraft's robotic arm in its stowed configuration, with its biobarrier unpeeled. The arm is still folded up, with its "elbow" shown at upper left and its scoop at bottom right. The biobarrier is the shiny film seen to the left of the arm in this view. The barrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars. Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have come about during the final steps before launch, and during the journey to Mars, will not contact the robotic arm. After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy. The arm is scheduled to begin to unlatch on the second Martian day of the mission, or Sol 3 (May 28, 2008). This image was taken on Sol 1 (May 26, 2008) by the spacecraft's Surface Stereo Imager. http://photojournal.jpl.nasa.gov/catalog/PIA10708

    11. CLOSE-UP LOOK AT A JET NEAR A BLACK HOLE

      NASA Technical Reports Server (NTRS)

      2002-01-01

      [top left] - This radio image of the galaxy M87, taken with the Very Large Array (VLA) radio telescope in February 1989, shows giant bubble-like structures where radio emission is thought to be powered by the jets of subatomic particles coming from the the galaxy's central black hole. The false color corresponds to the intensity of the radio energy being emitted by the jet. M87 is located 50 million light-years away in the constellation Virgo. Credit: National Radio Astronomy Observatory/National Science Foundation [top right] - A visible light image of the giant elliptical galaxy M87, taken with NASA Hubble Space Telescope's Wide Field Planetary Camera 2 in February 1998, reveals a brilliant jet of high-speed electrons emitted from the nucleus (diagonal line across image). The jet is produced by a 3-billion-solar-mass black hole. Credit: NASA and John Biretta (STScI/JHU) [bottom] - A Very Long Baseline Array (VLBA) radio image of the region close to the black hole, where an extragalactic jet is formed into a narrow beam by magnetic fields. The false color corresponds to the intensity of the radio energy being emitted by the jet. The red region is about 1/10 light-year across. The image was taken in March 1999. Credit: National Radio Astronomy Observatory/Associated Universities, Inc.

    12. Saturn's Hot Spot

      NASA Technical Reports Server (NTRS)

      2005-01-01

      This is the sharpest image of Saturn's temperature emissions taken from the ground; it is a mosaic of 35 individual exposures made at the W.M. Keck I Observatory, Mauna Kea, Hawaii on Feb. 4, 2004.

      The images to create this mosaic were taken with infrared radiation. The mosaic was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The prominent hot spot at the bottom of the image is right at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected. The tropospheric temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole.

      Ring particles are not at a uniform temperature everywhere in their orbit around Saturn. The ring particles are orbiting clockwise in this image. Particles are coldest just after having cooled down in Saturn's shadow (lower left). As they orbit Saturn, the particles increase in temperature up to a maximum (lower right) just before passing behind Saturn again in shadow.

      A small section of the ring image is missing because of incomplete mosaic coverage during the observing sequence.

    13. Cosmic Interactions

      NASA Astrophysics Data System (ADS)

      2008-01-01

      An image based on data taken with ESO's Very Large Telescope reveals a triplet of galaxies intertwined in a cosmic dance. ESO PR Photo 02/08 ESO PR Photo 02/08 NGC 7173, 7174, and 7176 The three galaxies, catalogued as NGC 7173 (top), 7174 (bottom right) and 7176 (bottom left), are located 106 million light-years away towards the constellation of Piscis Austrinus (the 'Southern Fish'). NGC 7173 and 7176 are elliptical galaxies, while NGC 7174 is a spiral galaxy with quite disturbed dust lanes and a long, twisted tail. This seems to indicate that the two bottom galaxies - whose combined shape bears some resemblance to that of a sleeping baby - are currently interacting, with NGC 7176 providing fresh material to NGC 7174. Matter present in great quantity around the triplet's members also points to the fact that NGC 7176 and NGC 7173 have interacted in the past. Astronomers have suggested that the three galaxies will finally merge into a giant 'island universe', tens to hundreds of times as massive as our own Milky Way. ESO PR Photo 02/08 ESO PR Photo 02b/08 NGC 7173, 7174, and 7176 The triplet is part of a so-called 'Compact Group', as compiled by Canadian astronomer Paul Hickson in the early 1980s. The group, which is the 90th entry in the catalogue and is therefore known as HCG 90, actually contains four major members. One of them - NGC 7192 - lies above the trio, outside of this image, and is another peculiar spiral galaxy. Compact groups are small, relatively isolated, systems of typically four to ten galaxies in close proximity to one another. Another striking example is Robert's Quartet. Compact groups are excellent laboratories for the study of galaxy interactions and their effects, in particular the formation of stars. As the striking image reveals, there are many other galaxies in the field. Some are distant ones, while others seem to be part of the family. Studies made with other telescopes have indeed revealed that the HCG 90 group contains 16 members, most of them much smaller in size than the four members with an entry in the NGC catalogue.

    14. Earth Observations taken by the Expedition 14 crew

      NASA Image and Video Library

      2006-12-23

      ISS014-E-10499 (23 Dec. 2006) --- Caravelas strandplain, Bahia Province, Brazil is featured in this image photographed by an Expedition 14 crewmember on the International Space Station. This view highlights a flat coastal landform known as a strandplain, or ancient shoreline. The image is dominated by numerous, fine parallel lines (trending diagonally from upper left to lower right), each of which is an ancient shoreline made up of sand transported from rivers to the north. The strandplain has been generated by these narrow shorelines accumulating against one another, line by line in their dozens or even hundreds, over thousands of years. The shorelines can be grouped into at least four packets depending on the crosscutting relationships - younger packets will cut into or stratigraphically overlay older packets. These relationships indicate that the youngest packet lies nearest the coast (furthest right) and the oldest packet lies north of the city of Caravelas (bottom). The Caravelas River flows into the Atlantic Ocean at the bottom of the view. Sediment from this river, and from the current shoreline, produces the light browns and dun colors visible offshore. On the day this image was taken the river water was relatively clear; clear water (gray) is visible flowing out of the main river mouth, and also off to one side to the south over a levee. The Caravelas airport appears near the middle of the view, and is built on one of the ancient shoreline packets. Caravelas itself, a fishing town of about 20,000 inhabitants, lies on an estuary and was once a flourishing whaling center--the prominent cape at top right is known as Ponta da Baleia (Whale Point).

    15. Space Radar Image of Manaus Region of Brazil

      NASA Image and Video Library

      1999-05-01

      These L-band images of the Manaus region of Brazil were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour. The left image was acquired on April 12, 1994, and the middle image was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (top) and the Rio Solimoes (bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The differences in brightness between the images reflect changes in the scattering of the radar channel. In this case, the changes are indicative of flooding. A flooded forest has a higher backscatter at L-band (horizontally transmitted and received) than an unflooded river. The extent of the flooding is much greater in the April image than in the October image, and corresponds to the annual, 10-meter (33-foot) rise and fall of the Amazon River. A third image at right shows the change in the April and October images and was created by determining which areas had significant decreases in the intensity of radar returns. These areas, which appear blue on the third image at right, show the dramatic decrease in the extent of flooded forest, as the level of the Amazon River falls. The flooded forest is a vital habitat for fish and floating meadows are an important source of atmospheric methane. This demonstrates the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies obscure monitoring of floods. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. http://photojournal.jpl.nasa.gov/catalog/PIA01740

    16. Dynamic radionuclide determination of regional left ventricular wall motion using a new digital imaging device

      NASA Technical Reports Server (NTRS)

      Steele, P.; Kirch, D.

      1975-01-01

      In 47 men with arteriographically defined coronary artery disease comparative studies of left ventricular ejection fraction and segmental wall motion were made with radionuclide data obtained from the image intensifier camera computer system and with contrast cineventriculography. The radionuclide data was digitized and the images corresponding to left ventricular end-diastole and end-systole were identified from the left ventricular time-activity curve. The left ventricular end-diastolic and end-systolic images were subtracted to form a silhouette difference image which described wall motion of the anterior and inferior left ventricular segments. The image intensifier camera allows manipulation of dynamically acquired radionuclide data because of the high count rate and consequently improved resolution of the left ventricular image.

    17. Caspian Sea

      NASA Technical Reports Server (NTRS)

      2002-01-01

      In this Moderate-resolution Imaging Spectroradiometer (MODIS) image from December 3, 2001, winter sea ice can be seen forming in the shallow waters of the northern Caspian (left) and Aral (upper right) Seas. Despite the inflow of the Volga River (upper left), the northern portion of the Caspian Sea averages only 17 feet in depth, and responds to the region's continental climate, which is cold in winter and hot and dry in the summer. The southern part of the Sea is deeper and remains ice-free throughout the winter. The dirty appearance of the ice may be due to sediment in the water, but may also be due to wind-driven dust. The wind in the region can blow at hurricane-force strength and can cause the ice to pile up in hummocks that are anchored to the sea bottom. The eastern portion of the Aral Sea is also beginning to freeze. At least two characteristics of the Aral Sea 'compete' in determining whether its waters will freeze. The Sea is shallow, which increases the likelihood of freezing, but it is also very salty, which means that lower temperatures are required to freeze it than would be required for fresh water. With average December temperatures of 18oF, it's clearly cold enough to allow ice to form. As the waters that feed the Aral Sea continue to be diverted for agriculture, the Sea becomes shallower and the regional climate becomes even more continental. This is because large bodies of water absorb and retain heat, moderating seasonal changes in temperature. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

    18. 68. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      68. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND CLASSIFIER AT MIDDLE LEFT. PRIMARY MILL SURGE TANK AND LAUNDERS AT MIDDLE BOTTOM. STAIR TO TROJAN CLASSIFIER LEVEL BEHIND CRANE BENT, UPPER RIGHT. PAIRED PIPES FROM PRIMARY PULP PUMPS TO PRIMARY THICKENERS RISE VERTICALLY AT MIDDLE RIGHT AND RUN HORIZONTALLY ACROSS TOP OF VIEW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    19. 168. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      168. VIEW OF MILLING FLOOR FROM SOUTHEAST. SECONDARY MILL AND CLASSIFIER AT MIDDLE LEFT. PRIMARY MILL SURGE TANK AND LAUNDERS AT MIDDLE BOTTOM. STAIR TO TROJAN CLASSIFIER LEVEL BEHIND CRANE BENT, UPPER RIGHT. PAIRED PIPES FROM PRIMARY PULP PUMPS TO PRIMARY THICKENERS RISE VERTICALLY AT MIDDLE RIGHT AND RUN HORIZONTALLY ACROSS TOP OF VIEW - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    20. Earth Observation

      NASA Image and Video Library

      2014-06-23

      ISS040-E-017377 (23 June 2014) --- One of the Expedition 40 crew members aboard the International Space Station recorded this image showing several states in the USA and a small part of Mexico, including Baja California, on June 23, 2014. Parts of Nevada are visible in the bottom of the frame. The area in the Mojave Desert where many space shuttle missions successfully ended is visible near the scene's center. The Gulf of Cortez and several hundred miles of the Pacific coast line of Mexico and California are visible in the top portion of the photo. The heavily populated Los Angeles Basin is just above the Mojave site of shuttle landings, with the San Diego area partially obscured by the docked Russian Soyuz vehicle in the foreground. The Salton Sea is just above left center frame.

    1. Earth Observations taken by the Expedition 17 Crew

      NASA Image and Video Library

      2008-05-31

      ISS017-E-008290 (31 May 2008) --- Toshka Lakes in southern Egypt are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. In the late 1990s, Egypt's new manmade Toshka Lakes, fed from Lake Nasser via a new canal, grew and spilled into new basins to become four major and two smaller waterbodies extending 120 kilometers across the desert west of the Nile River in southern Egypt. Starting in 2002, astronauts have seen the lakes slowly decline, with the telltale ring of darker, moistened ground showing the previous higher water levels. The rise and fall of Toshka Lakes, and the economic development surrounding the region, are dependent on climate fluctuations and water agreements with upstream countries that, in turn, determine the long-term water flow in the lower Nile. This view, covering a distance of 11.3 kilometers from bottom to top, shows shoreline detail of the third large lake. Lake water appears deep blue to blue-green, and parallel with the shoreline is a wide brown zone which was under water until 2002. Most of the bright yellow sand dunes in the view are re-emerging as the lake level drops, most outlined visibly by thin wet margins. Still-submerged dunes can be seen as small gray blebs offshore (left center). The summit of the biggest horn-shaped dune (top left) was an island more than 5 kilometers off shore in images from 2001. The dune pattern gives a strong sense of dune migration southwards, from top left towards lower right (horns of crescent dunes point in the direction of dune movement). Dominant northerly winds drive the dunes southward, except, of course, when they are under water.

    2. Space Radar Image of Kiluchevskoi, Volcano, Russia

      NASA Technical Reports Server (NTRS)

      1994-01-01

      This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

    3. Properties of the Water Column and Bottom Derived from AVIRIS Data

      NASA Technical Reports Server (NTRS)

      Lee, Zhong-Ping; Carder, Kendall L.; Chen, F. Robert; Peacock, Thomas G.

      2001-01-01

      Using AVIRIS data as an example, we show in this study that the optical properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom-albedo image shows clear spatial patterns, with end members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. These results suggest that the model and approach used work very well for the retrieval of sub-surface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

    4. 12. INTERIOR VIEW, FIRST FLOOR SHOWING GRINDING STONES COVERED WITH ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      12. INTERIOR VIEW, FIRST FLOOR SHOWING GRINDING STONES COVERED WITH VATS (RIGHT STONE RUN BY 35' LEFFAL VERTICAL TURBINE; LEFT BY 23' 1EFFAL VERTICAL TURBINE). THE HOPPER ON THE VAT TO THE LEFT FUNNELS THE GRAIN IN. THE CHUTE AT THE BOTTOM OF THE CENTER VAT SENDS GROUND GRAIN TO THE CONVEYOR BELOW. - Schech's Mill, Beaver Creek State Park, La Crescent, Houston County, MN

    5. 92. VIEW OF PRECIPITATION AREA FROM SOUTHWEST. VACUUM CLARIFIER TANK ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      92. VIEW OF PRECIPITATION AREA FROM SOUTHWEST. VACUUM CLARIFIER TANK No. 1 AT LOWER LEFT, UNDER LAUNDER FEED TO GOLD TANK No. 2, AND VACUUM CLARIFIER TANK No. 2, AT MIDRIGHT. VACUUM RECEIVER TANK ON UPPER LEFT. PIPE TO TOP CENTER OF TANK TAKES OUTFLOW FROM CLARIFIER LEAVES. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    6. Image Augmentation for Object Image Classification Based On Combination of Pre-Trained CNN and SVM

      NASA Astrophysics Data System (ADS)

      Shima, Yoshihiro

      2018-04-01

      Neural networks are a powerful means of classifying object images. The proposed image category classification method for object images combines convolutional neural networks (CNNs) and support vector machines (SVMs). A pre-trained CNN, called Alex-Net, is used as a pattern-feature extractor. Alex-Net is pre-trained for the large-scale object-image dataset ImageNet. Instead of training, Alex-Net, pre-trained for ImageNet is used. An SVM is used as trainable classifier. The feature vectors are passed to the SVM from Alex-Net. The STL-10 dataset are used as object images. The number of classes is ten. Training and test samples are clearly split. STL-10 object images are trained by the SVM with data augmentation. We use the pattern transformation method with the cosine function. We also apply some augmentation method such as rotation, skewing and elastic distortion. By using the cosine function, the original patterns were left-justified, right-justified, top-justified, or bottom-justified. Patterns were also center-justified and enlarged. Test error rate is decreased by 0.435 percentage points from 16.055% by augmentation with cosine transformation. Error rates are increased by other augmentation method such as rotation, skewing and elastic distortion, compared without augmentation. Number of augmented data is 30 times that of the original STL-10 5K training samples. Experimental test error rate for the test 8k STL-10 object images was 15.620%, which shows that image augmentation is effective for image category classification.

    7. Spitzer Digs Up Hidden Stars

      NASA Technical Reports Server (NTRS)

      2007-01-01

      [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4

      Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope.

      The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image.

      The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is currently being heated by shockwaves from a previous stellar outburst. By the time these shockwaves reach the end of the jet, they have slowed down so significantly that the gas is only heated a little, and looks red. The combination of views also brings out some striking details that evaded visible-light detection. For example, the yellow dots scattered throughout the image are actually young stars forming inside BHR 71. Spitzer also uncovered another young star with jets, located to the right of the powerful jet seen in the visible-light image. Spitzer can see details that visible-light telescopes don't, because its infrared instruments are sensitive to 'heat.'

      The infrared image is made up of data from Spitzer's infrared array camera. Blue shows infrared light at 3.6 microns, green is light at 4.5 microns, and red is light at 8.0 microns.

    8. 3D View of Los Angeles

      NASA Technical Reports Server (NTRS)

      2002-01-01

      California's topography poses challenges for road builders. Northwest of Los Angeles, deformation of Earth's crust along the Pacific-North American crustal plate boundary has made transportation difficult. Direct connection between metropolitan Los Angeles (image lower left) and California's Central Valley (image top center) through the rugged terrain seen on the left side of this image was long avoided in favor of longer but easier paths. However, over the last century, three generations of roads have traversed this terrain. The first was 'The Ridge Route', a two-lane road, built in 1915, which followed long winding ridge lines that included 697 curves. The second, built in 1933, was to become four-lane U.S. Highway 99. It generally followed widened canyon bottoms. The third is the current eight lane Interstate 5 freeway, built in the 1960s, which is generally notched into hillsides, but also includes a stretch of several miles where the two directions of travel are widely separated and driving is 'on the left', a rarity in the United States. Such an unusual highway configuration was necessary in order to optimize the road grades for uphill and downhill traffic in this topographically challenging setting. This anaglyph was generated by first draping a Landsat satellite image over a preliminary topographic map from the Shuttle Radar Topography Mission (SRTM), then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30 meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size (of full images): 141 by 107 kilometers (88 by 66 miles) Location: 34.5 deg. North lat., 118.7 deg. West lon. Orientation: North toward upper right Image: Landsat bands 1, 2and4, 3 as blue, green, and red, respectively Date Acquired: February 16, 2000 (SRTM), November 11, 1986 (Landsat) Image courtesy NASA/JPL/NIMA

    9. Spirit Rover on 'Husband Hill'

      NASA Technical Reports Server (NTRS)

      2006-01-01

      [figure removed for brevity, see original site] Figure 1: Location of Spirit

      Two Earth years ago, NASA's Mars Exploration Rover Spirit touched down in Gusev Crater. The rover marked its first Mars-year (687 Earth days) anniversary in November 2005. Shortly before Spirit's Martian anniversary, the Mars Orbiter Camera on NASA's Mars Global Surveyor acquired an image covering approximately 3 kilometers by 3 kilometers (1.9 miles by 1.9 miles) centered on the rover's location at that time in the 'Columbia Hills.'

      'Husband Hill,' the tallest in the range, is just below the center of the image. The image has a resolution of about 50 centimeters (1.6 feet) per pixel. North is up; illumination is from the left. The location is near 14.8 degrees south latitude, 184.6 degrees west longitude.

      The image was acquired on Nov. 2, 2005. A white box (see Figure 1) indicates the location of an excerpted portion on which the location of Spirit on that date is marked. Dr. Timothy J. Parker of the Mars Exploration Rover team at the NASA's Jet Propulsion Laboratory, Pasadena, Calif., confirmed the location of the rover in the image. The region toward the bottom of the image shows the area where the rover is currently headed. The large dark patch and other similar dark patches are accumulations of windblown sand and granules.

    10. Stereo Pair of Height as Color & Shaded Relief, New York State, Lake Ontario to Long Island

      NASA Technical Reports Server (NTRS)

      2000-01-01

      From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom) this image shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania and New Jersey. The high 'bumpy' area in the middle to top right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest exposed rocks in the eastern U.S.

      On the left side is the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills is a wide valley that contains the Mohawk River and the Erie Canal. On the northwest (top) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire image as recently as 18,000 years ago.

      The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshires are between the Hudson and Connecticut valleys. Closer to the coast are the more deeply eroded rocks of the area around New York City, where several resistant rock units form topographic ridges.

      This image product is derived from a preliminary SRTM elevation model, processed with preliminary navigation information from the Space Shuttle. Broad scale and fine detail distortions in the model seen here will be corrected in the final elevation model.

      This stereoscopic image was generated by first creating and combining a shaded relief image and a height as color image, both of which were derived from the elevation model. Large water bodies were then masked, and the result was then draped back over the elevation model. Two differing perspectives were then calculated, one for each eye. This color image can be viewed in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing), or by downloading and printing the image pair, and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

      This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington DC.

      Size: 220 by 510 kilometers (135 by 315 miles) Location: 43 deg. North lat., 75 deg. West lon. Orientation: North toward the upper right Date Acquired: February 13, 2000

    11. HST, flyaround of the telescope after deployment on this second servicing mission

      NASA Image and Video Library

      1997-02-19

      STS082-746-071 (11-21 Feb. 1997) --- This nearly-vertical view, photographed from the Space Shuttle Discovery, shows the Hubble Space Telescope (HST) over Shark Bay. Shallowest parts of the bay appear light blue. In this view of Australia's arid west, sets of sand dunes are clearly visible on Peron Peninsula (lower center) from southwest to northeast (bottom left to top right), blown by the prevailing wind. Hartog Island lies bottom right.

    12. Investigating Mars: Arsia Mons

      NASA Image and Video Library

      2017-12-29

      This image shows part of the southeastern flank of Arsia Mons, including the flat lying flows around the base of the volcano. These flows are located at the bottom of the image. Numerous small lava channels are visible aligned sub-parallel to the base of the volcano. Several narrow, lobate flows show the downslope direction from the top left of the image towards the bottom right. Running against this elevation change are large paired faults called graben. Graben form by faults that have allowed the material between them to "slide" down. The resultant topography is a linear depression. None of the lobate flows enter and then run along the fault valley, indicating that the faulting occurred after the lava flows. Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17691 Latitude: -11.2622 Longitude: 241 Instrument: VIS Captured: 2005-12-09 23:06 https://photojournal.jpl.nasa.gov/catalog/PIA22154

    13. A self-adaptive algorithm for traffic sign detection in motion image based on color and shape features

      NASA Astrophysics Data System (ADS)

      Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng

      2007-06-01

      As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.

    14. Natural and False Color Views of Europa

      NASA Image and Video Library

      1997-11-18

      This image, taken on September 7, 1996 by NASA Galileo orbiter, shows two views of the trailing hemisphere of Jupiter ice-covered satellite, Europa. The left image shows the approximate natural color appearance of Europa. The image on the right is a false-color composite version combining violet, green and infrared images to enhance color differences in the predominantly water-ice crust of Europa. Dark brown areas represent rocky material derived from the interior, implanted by impact, or from a combination of interior and exterior sources. Bright plains in the polar areas (top and bottom) are shown in tones of blue to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named "Pwyll" for the Celtic god of the underworld. Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany. http://photojournal.jpl.nasa.gov/catalog/PIA00502

    15. Investigation of the performance of trackpoint and touchpads with varied right and left buttons function locations.

      PubMed

      Wu, Chih-Fu; Lai, Chih-Chun; Liu, Yen-Kou

      2013-03-01

      This study investigates the relationships of the following 5 factors with commonly-used task patterns: 4 (2 existing and 2 newly-designed) built-in cursor input devices of notebook PCs, usage experiences, genders, sensitivity of cursor movements, and 5 tasks of input applications (including click, drag-drop, click-select, select-drag-drop, and type-select-click). This experiment reveals that there are significant differences among these factors in the operating times and/or error rates of particular tasks. Although somewhat influenced by the task patterns, the results show that the touchpad with the cursor-tracking pad located on the bottom-center and the right and left buttons on the bottom-left beneath the keyboard, which avoids ulnar and radial deviation and hindrance of text-entry-pointer-manipulation switching, leads to higher performance and preference, while the trackpoint leads to lower performance and preference. In addition, the touchpads with sensitivity values of 10 and 12 for cursor movement are preferred over those with the value of 8. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

    16. Material Science

      NASA Image and Video Library

      2001-04-06

      This is a macro photograph of an etched surface of the Mundrabilla meteorite, a small piece of the approximately 3.9 billion-year-old meteorite that was first discovered in Western Australia in 1911. Two more giant chunks, together weighing about 17 tons, were found in 1966. Researchers can learn much from this natural crystal growth experiment since it has spent several hundred million years cooling, and would be impossible to emulate in a lab. This single slice, taken from a 6 ton piece recovered in 1966, measures only 2 square inches. The macro photograph shows a metallic iron-nickel alloy phase of kamcite (38% Ni) and taenite (6% Ni) at bottom right, bottom left, and top left. The darker material is an iron sulfide (FeS or troilite) with a parallel precipitates of duabreelite (iron chromium sulfide (FeCr2S4).

    17. Are consumers aware of top-bottom but not of left-right inferences? Implications for shelf space positions.

      PubMed

      Valenzuela, Ana; Raghubir, Priya

      2015-09-01

      We propose that the horizontal and vertical position of an item on a display is a source of information that individuals use to make judgments. Six experiments using 1 × 5 or 5 × 5 displays show that consumers judge that products placed at the bottom (vs. top) and on the left-hand (vs. middle and right-hand) side of a display are less expensive and of lower quality (Study 1a using a bar display, Study 1b using wine, and Study 1c using Swatch watches). Results support the claim that verticality effects (top-bottom) are attenuated when participants are less involved with the decision task (Study 2 using Swatch watches and chocolates) and when they are exposed to information that questions the diagnosticity of using vertical position as a cue (Study 3 using wine). However, the horizontality (left-right) effect is robust to both of these manipulations. Horizontality effects are exacerbated for participants primed with a number line (Study 4 also using wine), suggesting that exposure to the number line (where higher numbers are on the right) is a possible antecedent of the horizontality effect. The verticality effects may, on the other hand, reflect people's retail experience of seeing higher priced products on higher shelves, which leads to their forming a similar expectation. The paper concludes with a discussion of theoretical implications for visual information processing as well as practical implications for retail management. (c) 2015 APA, all rights reserved).

    18. Development of the Navy’s Next-Generation Nonhydrostatic Modeling System

      DTIC Science & Technology

      2013-09-30

      e.g. surface roughness, land- sea mask, surface albedo ) are needed by physical parameterizations. The surface values will be read and interpolated...characteristics (e.g. albedo , surface roughness) is now available to the model during the initialization stage. We have added infrastructure to the...six faces (Fig 3). 4 Figure 3: Topography (top left, in meters), surface roughness (top right, in meters), albedo (bottom left, no units

    19. Functional and structural comparison of visual lateralization in birds – similar but still different

      PubMed Central

      Ströckens, Felix

      2014-01-01

      Vertebrate brains display physiological and anatomical left-right differences, which are related to hemispheric dominances for specific functions. Functional lateralizations likely rely on structural left-right differences in intra- and interhemispheric connectivity patterns that develop in tight gene-environment interactions. The visual systems of chickens and pigeons show that asymmetrical light stimulation during ontogeny induces a dominance of the left hemisphere for visuomotor control that is paralleled by projection asymmetries within the ascending visual pathways. But structural asymmetries vary essentially between both species concerning the affected pathway (thalamo- vs. tectofugal system), constancy of effects (transient vs. permanent), and the hemisphere receiving stronger bilateral input (right vs. left). These discrepancies suggest that at least two aspects of visual processes are influenced by asymmetric light stimulation: (1) visuomotor dominance develops within the ontogenetically stronger stimulated hemisphere but not necessarily in the one receiving stronger bottom-up input. As a secondary consequence of asymmetrical light experience, lateralized top-down mechanisms play a critical role in the emergence of hemispheric dominance. (2) Ontogenetic light experiences may affect the dominant use of left- and right-hemispheric strategies. Evidences from social and spatial cognition tasks indicate that chickens rely more on a right-hemispheric global strategy whereas pigeons display a dominance of the left hemisphere. Thus, behavioral asymmetries are linked to a stronger bilateral input to the right hemisphere in chickens but to the left one in pigeons. The degree of bilateral visual input may determine the dominant visual processing strategy when redundant encoding is possible. This analysis supports that environmental stimulation affects the balance between hemispheric-specific processing by lateralized interactions of bottom-up and top-down systems. PMID:24723898

    20. Spatially quantitative seafloor habitat mapping: Example from the northern South Carolina inner continental shelf

      USGS Publications Warehouse

      Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.

      2004-01-01

      Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.

    1. Sea bottom topography imaging with SAR

      NASA Technical Reports Server (NTRS)

      Vanderkooij, M. W. A.; Wensink, G. J.; Vogelzang, J.

      1992-01-01

      It is well known that under favorable meteorological and hydrodynamical conditions the bottom topography of shallow seas can be mapped with airborne or spaceborne imaging radar. This phenomenon was observed for the first time in 1969 by de Loor and co-workers in Q-band Side Looking Airborne Radar (SLAR) imagery of sandwaves in the North Sea. It is now generally accepted that the imaging mechanism consists of three steps: (1) interaction between (tidal) current and bottom topography causes spatial modulations in the surface current velocity; (2) modulations in the surface current velocity give rise to variations in the spectrum of wind-generated waves, as described by the action balance equation; and (3) variations in the wave spectrum show up as intensity modulations in radar imagery. In order to predict radar backscatter modulations caused by sandwaves, an imaging model, covering the three steps, was developed by the Dutch Sea Bottom Topography Group. This model and some model results will be shown. On 16 Aug. 1989 an experiment was performed with the polarimetric P-, L-, and C-band synthetic aperture radar (SAR) of NASA/JPL. One scene was recorded in SAR mode. On 12 Jul. 1991 another three scenes were recorded, of which one was in the ATI-mode (Along-Track Interferometer). These experiments took place in the test area of the Sea Bottom Topography Group, 30 km off the Dutch coast, where the bottom topography is dominated by sand waves. In-situ data were gathered by a ship in the test area and on 'Measuring Platform Noordwijk', 20 km from the center of the test area. The radar images made during the experiment were compared with digitized maps of the bottom. Furthermore, the profiles of radar backscatter modulation were compared with the results of the model. During the workshop some preliminary results of the ATI measurements will be shown.

    2. Anaglyph with Landsat Overlay, Kamchatka Peninsula, Russia

      NASA Technical Reports Server (NTRS)

      2000-01-01

      This 3-D anaglyph shows an area on the western side of the volcanically active Kamchatka Peninsula, Russia. Red-blue glasses are required to see the 3-D effect. The topographic data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). Images from the optical Landsat satellite are overlain on the SRTM topography data. The meandering channel of the Tigil River is seen along the bottom of the image, at the base of steep cliffs. In the middle left of the image, a terrace indicates recent uplift of the terrain and downcutting by the river. High resolution SRTM topographic data will be used by geologists and hydrologists to study the interplay of tectonic uplift and erosion.

      This anaglyph was generated using topographic data from the Shuttle Radar Topography Mission to create two differing perspectives of a single image, one perspective for each eye. Each point in the image is shifted slightly, depending on its elevation. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter. The United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota, provided the Landsat data, which are overlain on the topography.

      The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

      Size: 5.3 km (3.3 miles) x 6.0 km (3.7 miles) Location: 57 deg. North lat., 159 deg. East lon. Orientation: North at left Original Data Resolution: SRTM 30 meters (99 feet); Landsat 15 meters (45 feet) Date Acquired: February 12, 2000

    3. SRTM Anaglyph with Landsat Overlay: Los Angeles to San Joaquin Valley, California

      NASA Technical Reports Server (NTRS)

      2000-01-01

      California's topography poses challenges for road builders. Northwest of Los Angeles, deformation of Earth's crust along the Pacific-North American crustal plate boundary has made transportation difficult. Direct connection between metropolitan Los Angeles (image lower left) and California's Central Valley (image top center) through the rugged terrain seen on the left side of this image was long avoided in favor of longer but easier paths. However, over the last century, three generations of roads have traversed this terrain. The first was 'The Ridge Route', a two-lane road, built in 1915, which followed long winding ridge lines that included 697curves. The second, built in 1933, was to become four-lane U.S. Highway 99. It generally followed widened canyon bottoms. The third is the current eight lane Interstate 5 freeway, built in the 1960s, which is generally notched into hillsides, but also includes a stretch of several miles where the two directions of travel are widely separated and driving is 'on the left', a rarity in the United States. Such an unusual highway configuration was necessary in order to optimize the road grades for uphill and downhill traffic in this topographically challenging setting.

      This anaglyph was generated by first draping a Landsat satellite image over a preliminary topographic map from the Shuttle Radar Topography Mission, then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30 meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.

      The elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

      Size: 141 by 107 kilometers (88 by 66 miles) Location: 34.5 deg. North lat., 118.7 deg. West lon. Orientation: North toward upper right Image: Landsat bands 1,2,3 averaged (visible light as grey) Date Acquired: February 16, 2000 (SRTM), November 11, 1986 (Landsat) Image: NASA/JPL/NIMA

    4. Hubble Eyes Galactic Refurbishment

      NASA Image and Video Library

      2015-04-30

      The smudge of stars at the center of this NASA/ESA Hubble Space Telescope image is a galaxy known as UGC 5797. UGC 5797 is an emission line galaxy, meaning that it is currently undergoing active star formation. The result is a stellar population that is constantly being refurbished as massive bright blue stars form. Galaxies with prolific star formation are not only veiled in a blue tint, but are key to the continuation of a stellar cycle. In this image UGC 5797 appears in front of a background of spiral galaxies. Spiral galaxies have copious amounts of dust and gas — the main ingredient for stars — and therefore often also belong to the class of emission line galaxies. Spiral galaxies have disk-like shapes that drastically vary in appearance depending on the angle at which they are observed. The collection of spiral galaxies in this frame exhibits this attribute acutely: Some are viewed face-on, revealing the structure of the spiral arms, while the two in the bottom left are seen edge-on, appearing as plain streaks in the sky. There are many spiral galaxies, with varying colors and at different angles, sprinkled across this image — just take a look. Credit: ESA/Hubble & NASA, Acknowledgement: Luca Limatola

    5. ARC-1989-A89-7015

      NASA Image and Video Library

      1989-08-21

      Range : 4.8 million km. ( 3 million miles ) P-34648 This Voyager 2, sixty-one second exposure, shot through clear filters, of Neptunes rings. The Voyager cameras were programmed to make a systematic search of the entire ring system for new material. The previously ring arc is visible as a long bright streak at the bottom of the image. Extening beyond the bright arc is a much fainter component which follows the arc in its orbit. this faint material was also visible leading the ring arc and, in total, covers at least half of the orbit before it becomes too faint to identify. Also visible in this image, is a continuous ring of faint material previously identified as a possible ring arc by Voyager. this continuous ring is located just outside the orbit of the moon 1989N3, which was also discovered by Voyager. This moon is visible as a streak in the lower left. the smear of 1989N3 is due to its own orbital motion during the exposure. Extreme computer processing of this image was made to enhance the extremely faint features of Neptunes moon system. the dark area surrounding the moon as well as the bright corners are due to this special processing.

    6. Cerebrospinal meningitis in a 30 -year -old patient as first manifestation of pituitary macroadenoma.

      PubMed

      Andrysiak -Mamos, Elżbieta; Żochowska, Ewa; Kaźmierczyk -Puchalska, Agnieszka; Sagan, Leszek; Sowińska -Przepiera, Elżbieta; Zając -Marczewska, Małgorzata; Kojder, Ireneusz; Syrenicz, Anhelli

      The most common clinical and neurological signs and symptoms of pituitary macroadenomas include headache, vision impairment and cranial nerve palsy. The patient presented in this article was admitted to the Intensive Care Unit at regional hospital; at admission, the patient was unconscious, he had convulsions and spasms, and a 3 -day history of headache and body temperature up to 41.5°C. The patient with suspected neuroinfection was transferred to the Department of Infectious Diseases of the Pomeranian Medical University in Szczecin (PMU), where cerebrospinal meningitis of bacterial etiology was established based on cerebrospinal fluid investigations and the presence of pituitary abscess was suggested based on magnetic resonance imaging (MRI). Magnetic resonance imaging findings included an extensive pathological lesion with the diameter of 27 × 28 × 38 mm located in the sellar-suprasellar region, with intensive peripheral contrast enhancement. The lesion protrudes into the sphenoid sinus through the lowered bottom of sella turcica and the fluid content has also been visualized in the sphenoid sinus. After 10 -day antibiotic therapy, the patient was transferred to neurosurgery ward for surgical treatment. The pathological lesion was partially evacuated during right frontotemporal craniotomy. The patient’s general condition after the surgery was moderately severe; the patient was conscious, able to follow simple commands, presenting hemiparesis of the left side of the body, particularly affecting left lower limb and with speech disturbances. The signs of hypopituitarism affecting all hormonal axes were also observed and the patient was transferred to the Department of Endocrinology of the PMU for further treatment. Follow -up MRI scan continued to show the presence of pathological mass in the sellar -suprasellar region, which penetrated into the sphenoid sinus through damaged sellar bottom. After correction of reduced hormone levels and several weeks of antibiotic therapy, the patient was transferred to the Department of Neurosurgery of the PMU for further surgical treatment. Transsphenoidal resection of the sellar -suprasellar tumor and sphenoid sinus reconstruction were performed. Histopathology report confirmed the diagnosis of pituitary adenoma. The patient in relatively good condition, with partial hemiparesis on the left side of the body, able to stand with support, not able to walk, with speech disturbances and able to follow commands was transferred to the rehabilitation center. One year later, follow- -up MRI scan showed deepened sella turcica, filled with a mass corresponding to postoperative material. No evidence of disease progression has been found. Neuroinfection may be the first manifestation of pituitary macroadenoma.

    7. Smoke from Canadian Fires Blankets Eastern U.S.

      NASA Technical Reports Server (NTRS)

      2002-01-01

      Smoke from multiple large wildfires in Quebec is blanketing the southern portion of the Canadian province and extending southward over the Great Lakes and eastern United States. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on July 7, 2002, and shows dozens of active fire detections (red dots) east of James Bay at upper left. The enormous smoke plume is almost 200 miles wide where it enters the United States over the New York and Vermont state lines. The thick pall is affecting air quality in places well to the south, including New York, Baltimore, and Washington, D.C. The image shows the smoke drifting out over the Atlantic Ocean, and then curling back in over North Carolina (bottom right). On Sunday, July 7, the Canadian Interagency Forest Fire Center reported 15 new fires in Quebec in the preceding 24 hours, bringing the total to more than 40 fires in the region, at least 7 which were burning out of control. Most of the fires are believed to have been caused by lightning, more of which is expected on Monday. According to news reports, several hundred people remain evacuated from their homes. Image by Jesse Allen, NASA Earth Observatory, based upon data provided by the MODIS Land Rapid Response Team at NASA GSFC

    8. TIGER Burned Brightly in JAMIC

      NASA Technical Reports Server (NTRS)

      Olson, Sandra L.; Kashiwagi, Takashi

      2001-01-01

      The Transition From Ignition to Flame Growth Under External Radiation in 3D (TIGER- 3D) experiment, which is slated to fly aboard the International Space Station, conducted a series of highly successful tests in collaboration with the University of Hokkaido using Japan's 10-sec JAMIC drop tower. The tests were conducted to test engineering versions of advanced flight diagnostics such as an infrared camera for detailed surface temperature measurements and an infrared spectroscopic array for gas-phase species concentrations and temperatures based on detailed spectral emissions in the near infrared. Shown in the top figure is a visible light image and in the bottom figure is an infrared image at 3.8 mm obtained during the microgravity tests. The images show flames burning across cellulose samples against a slow wind of a few centimeters per second (wind is from right to left). These flow velocities are typical of spacecraft ventilation systems that provide fresh air for the astronauts. The samples are ignited across the center with a hot wire, and the flame is allowed to spread upwind and/or downwind. As these images show, the flames prefer to spread upwind, into the fresh air, which is the exact opposite of flames on Earth, which spread much faster downwind, or with the airflow, as in forest fires.

    9. Stellar Metamorphosis:

      NASA Technical Reports Server (NTRS)

      2002-01-01

      [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae edge-on, where the direct starlight is blocked by the dusty cocoon. Otherwise, the starlight would overwhelm the nebular light, making it very difficult to see the butterfly-shaped nebula. In a few hundred years, intense ultraviolet radiation from the central star will energize the surrounding gas, causing it to glow brightly, and a planetary nebula is born. These observations were made with the Wide Field and Planetary Camera 2 using three filters: yellow-green, blue, and near-infrared. The images were taken in 1997 by Sun Kwok and in 1996 by Matt Bobrowsky. Credits: Sun Kwok and Kate Su (University of Calgary), Bruce Hrivnak (Valparaiso University), and NASA ----------------- The Hubble Space Telescope Sees Remarkable Structure in the Heart of a Planetary Nebula [BOTTOM LEFT AND RIGHT] This Wide Field and Planetary Camera 2 image of NGC 6818 shows two distinct layers of gas (with dust): a spherical outer region and a brighter, vase-shaped interior 'bubble.' Astronomers believe that a fast wind - material propelled by radiation from the hot central star - is creating the inner elongated shape. The central star of the planetary nebula appears as a tiny blue dot. The material in the wind is traveling so fast that it smashes through older, slower-moving stellar debris, causing a 'blowout' at both ends of the bubble (lower right and upper left). This nebula looks like a twin of NGC 3918, another planetary nebula that has been observed by the Hubble telescope. The structure of NGC 3918 is remarkably similar to that of NGC 6818. It has an outer spherical envelope and an inner, brighter, elongated bubble. A fast-moving wind also appears to have created an orifice at one end (bottom right-hand corner) of the inner bubble. There are even faint wisps of material that were probably blown out of this hole. In the opposite direction (top left-hand corner), there is a protrusion that seems on the verge of breaking through to form a hole. By finding and studying such similar objects, astronomers hope to learn crucial details about the evolutionary history of planetary nebulae. The Hubble telescope observation was taken March 10, 1997. This picture is a composite of images taken with three filters that are representative of the true colors of the object. Two of these are, respectively, in the light of a red and a blue spectral line of hydrogen - the major constituent of the nebula. The third image is in the light of a luminous green line due to doubly ionized oxygen. NGC 6818 is about 6,000 light-years away in the constellation Sagittarius. The nebula has a diameter of about 0.5 light-years. Credits: Robert Rubin (NASA Ames Research Center), Reginald Dufour and Matt Browning (Rice University), Patrick Harrington (University of Maryland), and NASA

    10. Small and Young

      NASA Image and Video Library

      2015-03-20

      Small graben, narrow linear troughs, have been found associated with small scarps (bottom left, white arrows) on Mercury and the Moon. These graben (bottom right, white arrows) likely resulted from the bending and extension of the upper crust in response to scarp formation (bottom illustration) and are only tens of meters wide. On the basis of the rate of degradation and infilling of small troughs on the Moon by continuous meteoroid bombardment, small lunar graben and their associated scarps are less than 50 Myr old! It is likely that Mercury's small graben and their associated scarps are younger still, because the cratering rate on Mercury is greater than on the Moon. http://photojournal.jpl.nasa.gov/catalog/PIA19254

    11. A Simple Probabilistic Model for Estimating the Risk of Standard Air Dives

      DTIC Science & Technology

      2004-12-01

      Decompression Models Table Al. Decompression Table Based on the StandAir Model and Comparison with the VVaI-1 8 Algorithm. A-l-A-4 Table A2. The VVaI-1 8...cannot be as strong as might be desired - especially for dives with long TDTs. Comparisons of the positions of the dive-outcome symbols with the... comparisons for several depth/bottom-time combinations. The three left-hand panels, for dives with short bottom times, show that the crossover point

    12. ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      ETR COMPLEX. CAMERA FACING SOUTH. FROM BOTTOM OF VIEW TO TOP: MTR, MTR SERVICE BUILDING, ETR CRITICAL FACILITY, ETR CONTROL BUILDING (ATTACHED TO ETR), ETR BUILDING (HIGH-BAY), COMPRESSOR BUILDING (ATTACHED AT LEFT OF ETR), HEAT EXCHANGER BUILDING (JUST BEYOND COMPRESSOR BUILDING), COOLING TOWER PUMP HOUSE, COOLING TOWER. OTHER BUILDINGS ARE CONTRACTORS' CONSTRUCTION BUILDINGS. INL NEGATIVE NO. 56-4105. Unknown Photographer, ca. 1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

    13. Hartwell Lake Project, Savannah River, Georgia and South Carolina. Rehabilitation of Clemson Upper Diversion Dam. Construction Foundation Report. Volume 2. Appendices B thru E

      DTIC Science & Technology

      1989-08-01

      remove by gravity -washed out 585.8 i -- 89. 2 gneiss from inner - ibarrel Bottom of hole 89.2’ Tape depth 89.0’ 90 -0 I-Note: 6-7-84 water level after...barrel and5 _-_89.3 washed all meterial Bottom of hole 89.3’ left in outer barrel- 90 out of barrel befor- drilling for pull I Tape depth 89.0’ Note

    14. 51. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS BAKER COOLER ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      51. VIEW OF CRUSHER ADDITION FROM EAST. SHOWS BAKER COOLER AT LOWER LEFT, AND FOUNDATIONS FOR ROD MILL BETWEEN COOLER AND STEPHENS-ADAMSON INCLINED BUCKET ELEVATOR. THE BELT CONVEYOR TO RIGHT OF ELEVATOR FED ELEVATOR FROM ROD MILL. 100-TON ORE BIN AND DUST COLLECTOR IS BEHIND FRAMING BENT. NOTE CONVEYOR EMERGING FROM BOTTOM OF ORE BIN, THIS AND THE INCLINED ELEVATOR FED THE SYMONS SCREEN (MISSING). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    15. iss053e180226

      NASA Image and Video Library

      2017-11-12

      iss053e180226 (Nov. 12, 2017) --- The six-member Expedition 53 crew poses for a portrait inside the Japanese Kibo laboratory module with a spacesuit hand-painted by cancer patients from the M.D. Anderson Cancer Center in Houston. On the left (from top to bottom) are NASA astronauts Joe Acaba and Mark Vande Hei with cosmonaut Alexander Misurkin of Roscosmos. On the right (from top to bottom) are European Space Agency astronaut Paolo Nespoli, cosmonaut Sergey Ryazanskiy of Roscosmos and Expedition 53 Commander Randy Bresnik of NASA.

    16. Layered Deposits on the floor of Ganges Chasma

      NASA Technical Reports Server (NTRS)

      2002-01-01

      (Released 29 March 2002) The Science The Story These layered deposits are located on the floor of a large canyon called Ganges Chasma which is a part of the Valles Marineris. Dramatic layering can be seen throughout the deposit. Different styles of erosion are manifest in these different layers and at different locations within the layered material. For example, the southern portion of these deposits have a pronounced fluting, whereas in other areas the same layers are more intact. Relatively dark dunes and sand sheets can be observed surrounding the relatively brighter layered material in the upper right and lower portions of the image. Darker material also appears to mantle select areas of the layered deposits. The formation of the dunes is influenced by topography; this influence is best illustrated in the upper left of the image where a small hillock has interfered with the local wind flow. Impact craters of all sizes are noticeably absent in this image, indicating a relatively young age for this surface. This image is approximately 22 km wide and 60 km in length; north is toward the top. The Story If this wonderfully textured landform were on Earth, it would have to be designated as a 'national park,' much like the popular canyon parklands of the American Southwest. Look for the oblong plateau at the center right of this image, and see how the terrain descends from it on all sides. The southerly canyon wall (bottom third of the image) displays a visually beautiful canyon slope, with descending erosional flutes that cut pathways through the differently hued rock and mineral layers. While the northern side of the plateau might not look as dramatic, don't miss the dark-colored sand dunes that lie at the base of the canyon. Why did they form in just that place? To find out, look for the small hillock in the top left of the image that has interfered with the wind's flow, causing the ripply dunes to form. With so many interesting and physically stunning features, this spot will no doubt attract eager Mars tourists some day far in the future.

    17. Pluto Badlands

      NASA Image and Video Library

      2015-12-05

      This highest-resolution image from NASA's New Horizons spacecraft shows how erosion and faulting has sculpted this portion of Pluto's icy crust into rugged badlands. The prominent 1.2-mile-high cliff at the top, running from left to upper right, is part of a great canyon system that stretches for hundreds of miles across Pluto's northern hemisphere. New Horizons team members think that the mountains in the middle are made of water ice, but have been modified by the movement of nitrogen or other exotic ice glaciers over long periods of time, resulting in a muted landscape of rounded peaks and intervening sets of short ridges. At the bottom of this 50-mile-wide image, the terrain transforms dramatically into a fractured and finely broken up floor at the northwest margin of the giant ice plain informally called Sputnik Planum. The top of the image is to Pluto's northwest. These images were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, in a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto -- from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual "point and shoot," LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images. http://photojournal.jpl.nasa.gov/catalog/PIA20199

    18. Press-fit stability of an osteochondral autograft: Influence of different plug length and perfect depth alignment.

      PubMed

      Kock, Niels B; Van Susante, Job L C; Buma, Pieter; Van Kampen, Albert; Verdonschot, Nico

      2006-06-01

      Osteochondral autologous transplantation is used for the treatment of full-thickness articular cartilage lesions of a joint. Press-fit stability is an important factor for good survival of the transplanted plugs. 36 plugs of three different lengths were transplanted in fresh-frozen human knees. On one condyle, 3 plugs were exactly matched to the depth of the recipient site ("bottomed" plugs) and on the opposite condyle 3 plugs were 5 mm shorter than the depth of the recipient site ("unbottomed" plugs). Plugs were left protruding and then pushed in until flush, and then to 2 mm below flush level, using a loading apparatus. Longer plugs needed higher forces to begin displacement. At flush level, bottomed plugs needed significantly higher forces than unbottomed plugs to become displaced below flush level (mean forces of 404 N and 131 N, respectively). Shorter bottomed plugs required higher forces than longer bottomed ones. Bottomed plugs generally provide much more stability than unbottomed ones. Short bottomed plugs are more stable than long bottomed plugs. Thus, in clinical practice it is advisable to use short bottomed plugs. If, however, unbottomed plugs are still chosen, the longer the plug the higher the resulting stability will be because of higher frictional forces.

    19. Earth Observations

      NASA Image and Video Library

      2010-08-28

      ISS024-E-012749 (28 Aug. 2010) --- Maseru, Lesotho is featured in this image photographed by an Expedition 24 crew member on the International Space Station. Maseru is the capital city of the Kingdom of Lesotho and is located along the northwestern border of the country with the Republic of South Africa. The footprint of the urban area, recognizable by street grids and distinctive blue-roofed industrial buildings at center, is only just visible against the surrounding landscape. The city has expanded eightfold (to 230,000 today) since independence from the United Kingdom of Great Britain and Northern Ireland in 1966, and is now home to one in five inhabitants in the country. The Caledon (or Mohokare) River flows adjacent to Maseru and forms a part of the border between Lesotho and South Africa. Locally, the border extends from approximately top center left to bottom center right, with the cities of Ladybrand and Manyatseng located in South Africa. Moshoeshoe I International Airport (left) provides access to the capital. Major industries in the city include flour mills, and footwear and textile companies. Tourism is also a growing part of the local economy. The Kingdom of Lesotho is completely landlocked by the surrounding Republic of South Africa. Major landforms visible in the image near Maseru include the Qeme and Berea Plateaus to the south and east respectively; these are erosional remnants of widespread horizontally layered sedimentary rocks that formed in the Karoo Basin during the Upper Triassic Period (approximately 200–229 million years ago), according to scientists.

    20. STS-119 Group Photo in Node 2 Harmony

      NASA Image and Video Library

      2009-03-24

      S119-E-007770 (24 March 2009) --- STS-119 crewmembers pose for a group photo following a joint news conference in the Harmony node of the International Space Station while Space Shuttle Discovery remains docked with the station. From the left (bottom row) are NASA astronauts Tony Antonelli, pilot; Lee Archambault, commander; and Joseph Acaba, mission specialist. From the left (top row) are astronauts Steve Swanson, Richard Arnold and John Phillips, all mission specialists.

    1. STS-119 Group Photo in Node 2 Harmony

      NASA Image and Video Library

      2009-03-24

      S119-E-007775 (24 March 2009) --- STS-119 crewmembers pose for a group photo following a joint news conference in the Harmony node of the International Space Station while Space Shuttle Discovery remains docked with the station. From the left (bottom row) are NASA astronauts Tony Antonelli, pilot; Lee Archambault, commander; and Joseph Acaba, mission specialist. From the left (top row) are astronauts Steve Swanson, Richard Arnold and John Phillips, all mission specialists.

    2. STS-119 Group Photo in Node 2 Harmony

      NASA Image and Video Library

      2009-03-24

      S119-E-007763 (24 March 2009) --- STS-119 crewmembers pose for a group photo following a joint news conference in the Harmony node of the International Space Station while Space Shuttle Discovery remains docked with the station. From the left (bottom row) are NASA astronauts Tony Antonelli, pilot; Lee Archambault, commander; and Joseph Acaba, mission specialist. From the left (top row) are astronauts Steve Swanson, Richard Arnold and John Phillips, all mission specialists.

    3. Astronaut John Young collecting samples at North Ray crater during EVA

      NASA Image and Video Library

      1972-04-23

      AS16-117-18825 (23 April 1972) --- Astronaut John W. Young, Apollo 16 commander, with a sample bag in his left hand, moves toward the bottom part of the gnomon (center) while collecting samples at the North Ray Crater geological site. Note how soiled Young's Extravehicular Mobility Unit (EMU) is during this the third and final Apollo 16 extravehicular activity (EVA). The Lunar Roving Vehicle (LRV) is parked at upper left.

    4. Hatch closing between Mir and Shuttle

      NASA Image and Video Library

      1996-03-28

      S76-E-5222 (28 March 1996) --- One would take this triumvirate of thumbs-up symbols to refer to a successful hatch closing, as the Space Shuttle Atlantis is about to be separated from its link with Russia's Mir Space Station. Hold photo with frame number and clock at bottom left. Astronaut Kevin P. Chilton, mission commander, is at lower left. Others are astronauts Richard A. Searfoss (top), pilot, and Michael R. (Rich) Clifford, mission specialist.

    5. Earth Observations taken by Expedition 30 crewmember

      NASA Image and Video Library

      2012-01-22

      ISS030-E-048067 (22 Jan. 2012) --- With hardware from the Earth-orbiting International Space Station appearing in the near foreground, a night time European panorama reveals city lights from Belgium and the Netherlands at bottom center, the British Isles partially obscured by solar array panels at left, the North Sea at left center, and Scandinavia at right center beneath the end effector of the Space Station Remote Manipulator System or Canadarm2.

    6. Ready to Unfurl

      NASA Technical Reports Server (NTRS)

      2008-01-01

      [figure removed for brevity, see original site] Click on image for animation

      This movie from NASA's Phoenix Mars Lander shows the spacecraft's robotic arm in its stowed configuration, with its biobarrier unpeeled. The arm is still folded up, with its 'elbow' shown at upper left and its scoop at bottom right. The biobarrier is the shiny film seen to the left of the arm in this view.

      The barrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars.

      Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have come about during the final steps before launch, and during the journey to Mars, will not contact the robotic arm.

      After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy. The arm is scheduled to begin to unlatch on the second Martian day of the mission, or Sol 3 (May 28, 2008).

      This image was taken on Sol 1 (May 26, 2008) by the spacecraft's Surface Stereo Imager.

      The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

    7. How to Take a Picture of A Robotic Arm

      NASA Technical Reports Server (NTRS)

      2008-01-01

      [figure removed for brevity, see original site] Click on image for animation

      This movie first shows an artist's animation of NASA's Phoenix Mars Lander snapping a picture of its arm, then transitions to the actual picture of the arm in its stowed configuration, with its biobarrier unpeeled.

      The arm is still folded up, with its 'elbow' shown at upper left and its scoop at bottom right. The biobarrier is the shiny film seen to the left of the arm in this view.

      The barrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars.

      Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have come about during the final steps before launch, and during the journey to Mars, will not contact the robotic arm.

      After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy. The arm is scheduled to begin to unlatch on the third Martian day of the mission, or Sol 3 (May 28, 2008).

      This image was taken on Sol 1 (May 26, 2008) by the spacecraft's Surface Stereo Imager.

      The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

    8. KSC-2012-1824

      NASA Image and Video Library

      2012-01-30

      HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Lee Archambault, and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

    9. Windblown Dunes and Ripples

      NASA Technical Reports Server (NTRS)

      2003-01-01

      MGS MOC Release No. MOC2-411, 4 July 2003

      July 4, 2003, is the 6th anniversary of the Mars Pathfinder landing. One of the elements carried to the red planet by Pathfinder was the Wind Sock Experiment. This project was designed to measure wind activity by taking pictures of three aluminum 'wind socks.' While the winds at the Mars Pathfinder site did not blow particularly strong during the course of that mission, dust storms seen from orbit and Earth-based telescopes attest to the fact that wind is a major force of change on the dry, desert surface of Mars today. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle image shows dark sand dunes and lighter-toned ripples trapped among the mountainous central peak of an old impact crater in Terra Tyrrhena near 13.9oS, 246.7oW. The dune slip faces--the steepest slope on the larger dunes--indicate sand transport is from the top/upper left toward the bottom/lower right. North is toward the top/upper right; the picture is 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left. This picture was obtained in April 2003.

    10. 53. VIEW OF CRUSHED OXIDIZED ORE BIN FROM EAST. SHOWS ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      53. VIEW OF CRUSHED OXIDIZED ORE BIN FROM EAST. SHOWS ACCESS STAIR TO FEED LEVEL; DUST COLLECTOR ON LEFT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    11. Galapagos Islands taken by the STS-109 crew

      NASA Image and Video Library

      2002-03-10

      STS109-718-102 (1-12 March 2002) --- The astronauts on board the Space Shuttle Columbia took this 70mm picture featuring the Galapagos Islands. For orientation purposes, north is towards the bottom of the view. Most of the largest island in the Galapagos group, Isla Isabela, stretches across the middle of the frame. The circular feature on this island at bottom is Volcano Wolf (1707 meters in altitude). Volcano Darwin (1280 meters in sea level) is the next volcano above and to the left, partly ringed with cloud. The single island top right is Isla Fernandina, the top of another volcano (1547 meters). Recent lava flows appear as darker surfaces and the older surfaces appear green, as a result of unusual rains and vegetational greening in this normally arid part of the world. The Equator passes exactly through Volcano Wolf, roughly left to right.

    12. Finding regions of interest in pathological images: an attentional model approach

      NASA Astrophysics Data System (ADS)

      Gómez, Francisco; Villalón, Julio; Gutierrez, Ricardo; Romero, Eduardo

      2009-02-01

      This paper introduces an automated method for finding diagnostic regions-of-interest (RoIs) in histopathological images. This method is based on the cognitive process of visual selective attention that arises during a pathologist's image examination. Specifically, it emulates the first examination phase, which consists in a coarse search for tissue structures at a "low zoom" to separate the image into relevant regions.1 The pathologist's cognitive performance depends on inherent image visual cues - bottom-up information - and on acquired clinical medicine knowledge - top-down mechanisms -. Our pathologist's visual attention model integrates the latter two components. The selected bottom-up information includes local low level features such as intensity, color, orientation and texture information. Top-down information is related to the anatomical and pathological structures known by the expert. A coarse approximation to these structures is achieved by an oversegmentation algorithm, inspired by psychological grouping theories. The algorithm parameters are learned from an expert pathologist's segmentation. Top-down and bottom-up integration is achieved by calculating a unique index for each of the low level characteristics inside the region. Relevancy is estimated as a simple average of these indexes. Finally, a binary decision rule defines whether or not a region is interesting. The method was evaluated on a set of 49 images using a perceptually-weighted evaluation criterion, finding a quality gain of 3dB when comparing to a classical bottom-up model of attention.

    13. Left Panorama of Spirit's Landing Site

      NASA Technical Reports Server (NTRS)

      2004-01-01

      Left Panorama of Spirit's Landing Site

      This is a version of the first 3-D stereo image from the rover's navigation camera, showing only the view from the left stereo camera onboard the Mars Exploration Rover Spirit. The left and right camera images are combined to produce a 3-D image.

    14. Full-color reflective cholesteric liquid crystal display

      NASA Astrophysics Data System (ADS)

      Huang, Xiao-Yang; Khan, Asad A.; Davis, Donald J.; Podojil, Gregg M.; Jones, Chad M.; Miller, Nick; Doane, J. William

      1999-03-01

      We report a full color 1/4 VGA reflective cholesteric display with 4096 colors. The display can deliver a brightness approaching 40 percent reflected luminance, far exceeding all other reflective technologies. With its zero voltage bistability, images can be stored for days and months without ny power consumption. This property can significantly extend the battery life. The capability of displaying full color complex graphics and images is a must in order to establish a market position in this multimedia age. Color is achieved by stacking RGB cells. The top layer is blue with right chirality, the middle layer is green with left chirality, and the bottom layer is red with right chirality. The choice of opposite chirality prevents the loss in the green and red spectra from the blue layer on the top. We also adjusted the thickness of each layer to achieve color balance. We implement gray scale in each layer with pulse width modulation. This modulation method is the best choice consideration of lower driver cost, simpler structure with fewer cross talk problems. Various drive schemes and modulation methods will be discussed in the conference.

    15. Intermediate view synthesis algorithm using mesh clustering for rectangular multiview camera system

      NASA Astrophysics Data System (ADS)

      Choi, Byeongho; Kim, Taewan; Oh, Kwan-Jung; Ho, Yo-Sung; Choi, Jong-Soo

      2010-02-01

      A multiview video-based three-dimensional (3-D) video system offers a realistic impression and a free view navigation to the user. The efficient compression and intermediate view synthesis are key technologies since 3-D video systems deal multiple views. We propose an intermediate view synthesis using a rectangular multiview camera system that is suitable to realize 3-D video systems. The rectangular multiview camera system not only can offer free view navigation both horizontally and vertically but also can employ three reference views such as left, right, and bottom for intermediate view synthesis. The proposed view synthesis method first represents the each reference view to meshes and then finds the best disparity for each mesh element by using the stereo matching between reference views. Before stereo matching, we separate the virtual image to be synthesized into several regions to enhance the accuracy of disparities. The mesh is classified into foreground and background groups by disparity values and then affine transformed. By experiments, we confirm that the proposed method synthesizes a high-quality image and is suitable for 3-D video systems.

    16. Featured Image: A Slow-Spinning X-Ray Pulsar

      NASA Astrophysics Data System (ADS)

      Kohler, Susanna

      2017-05-01

      This image (click for a closer look!) reveals the sky location of a new discovery: the slowest spinning X-ray pulsar a spinning, highly magnetized neutron star ever found in an extragalactic globular cluster. The pulsar, XB091D (circled in the bottom left inset), lies in the globular cluster B091D in the Andromeda galaxy. In a recent study led by Ivan Zolotukhin (University of Toulouse, Moscow State University, and Special Astrophysical Observatory of the Russian Academy of Sciences), a team of scientists details the importance of this discovery. This pulsar is gradually spinning faster and faster a process thats known as recycling, thought to occur as a pulsar accretes material from a donor star in a binary system. Zolotukhin and collaborators think that this particular pairing formed relatively recently, when the pulsar captured a passing star into a binary system. Were now seeing it in a unique stage of evolution where the pulsar is just starting to get recycled. For more information, check out the paper below!CitationIvan Yu. Zolotukhin et al 2017 ApJ 839 125. doi:10.3847/1538-4357/aa689d

    17. First Complete Look at Ceres Poles

      NASA Image and Video Library

      2015-11-20

      Researchers from NASA's Dawn mission have composed the first comprehensive views of the north (left) and south pole regions (right) of dwarf planet Ceres, using images obtained by the Dawn spacecraft. The images were taken between Aug. 17 and Oct. 23, 2015, from an altitude of 915 miles (1,470 kilometers). The region around the south pole appears black in this view because this area has been in shade ever since Dawn's arrival on March 6, 2015, and is therefore not visible. At the north polar region, craters Jarovit, Ghanan and Asari are visible, as well as the mountain Ysolo Mons. Near the south pole, craters Attis and Zadeni can be seen. Detailed maps of the polar regions allow researchers to study the craters in this area and compare them to those covering other parts of Ceres. Variations in shape and complexity can point to different surface compositions. In addition, the bottoms of some craters located close to the poles receive no sunlight throughout Ceres' orbit around the sun. Scientists want to investigate whether surface ice can be found there. http://photojournal.jpl.nasa.gov/catalog/PIA20126

    18. Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda.

      PubMed

      Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E

      2014-12-15

      In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.

    19. Differently Aged Terrain

      NASA Image and Video Library

      2010-07-09

      NASA Cassini spacecraft examines old and new terrain on Saturn fascinating Enceladus, a moon where jets of water ice particles and vapor spew from the south pole. Newly created terrain is at the bottom, in the center and on the left of this view.

    20. AERIAL OVERVIEW, LOOKING NORTH, WITH FORMER TCIUS STEEL ORE MINE ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      AERIAL OVERVIEW, LOOKING NORTH, WITH FORMER TCI-US STEEL ORE MINE HEADQUARTERS (BOTTOM) AND SUPERINTENDENT'S AND FOREMAN HOUSING ALONG MINNESOTA AVENUE AT CREST OF RED MOUNTAIN (TOP LEFT). - Muscoda Red Ore Mining Community, Bessemer, Jefferson County, AL

    1. SKYLAB (SL) - MANUFACTURING (FOOD)

      NASA Image and Video Library

      1971-12-30

      S72-15409 (1972) --- A close-up view of a food tray which is scheduled to be used in the Skylab program. Several packages of space food lie beside the tray. The food in the tray is ready to eat. Out of tray, starting from bottom left: grape drink, beef pot roast, chicken and rice, beef sandwiches and sugar cookie cubes. In tray, from back left: orange drink, strawberries, asparagus, prime rib, dinner roll and butterscotch pudding in the center. Photo credit: NASA

    2. 28. VIEW EAST FROM DECKING ON SOUTHWEST CORNER OF PIVOT ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      28. VIEW EAST FROM DECKING ON SOUTHWEST CORNER OF PIVOT PIER, DRIVE SYSTEM FOR SWING-SPAN INCLUDES: (from left to right) ELECTRIC LINE FROM SHORE (bottom left), TRACK AND RAIL ON CONCRETE PIER, ELECTRIC MOTOR, GASOLINE MOTOR, SHAFTS TO WEDGE DRIVE CRANKS, WEDGE DRIVE DRIVE SHAFT, WEDGE DRIVE GEAR BOX, AND (on right) GEARING FOR MANUAL WEDGE DRIVE ACCESSED THROUGH BRIDGE DECK - Tipers Bridge, Spanning Great Wicomico River at State Route 200, Kilmarnock, Lancaster County, VA

    3. View of food tray to be used in Skylab program

      NASA Technical Reports Server (NTRS)

      1972-01-01

      A close-up view of a food tray which is scheduled to be used in the Skylab program. Several packages of space food lie beside the tray. The food in the tray is ready to eat. Out of tray, starting from bottom left: grape drink, beef pot roast, chicken and rice, beef sandwiches and sugar cookie cubes, In tray, from back left: orange drink, strawberries, asparagus, prime rib, dinner roll and butterscotch pudding in the center.

    4. Perceptual video quality comparison of 3DTV broadcasting using multimode service systems

      NASA Astrophysics Data System (ADS)

      Ok, Jiheon; Lee, Chulhee

      2015-05-01

      Multimode service (MMS) systems allow broadcasters to provide multichannel services using a single HD channel. Using these systems, it is possible to provide 3DTV programs that can be watched either in three-dimensional (3-D) or two-dimensional (2-D) modes with backward compatibility. In the MMS system for 3DTV broadcasting using the Advanced Television Systems Committee standards, the left and the right views are encoded using MPEG-2 and H.264, respectively, and then transmitted using a dual HD streaming format. The left view, encoded using MPEG-2, assures 2-D backward compatibility while the right view, encoded using H.264, can be optionally combined with the left view to generate stereoscopic 3-D views. We analyze 2-D and 3-D perceptual quality when using the MMS system by comparing items in the frame-compatible format (top-bottom), which is a conventional transmission scheme for 3-D broadcasting. We performed perceptual 2-D and 3-D video quality evaluation assuming 3DTV programs are encoded using the MMS system and top-bottom format. The results show that MMS systems can be preferable with regard to perceptual 2-D and 3-D quality and backward compatibility.

    5. Thunderheads on Jupiter

      NASA Image and Video Library

      1997-09-08

      Scientists have spotted what appear to be thunderheads on Jupiter bright white cumulus clouds similar to those that bring thunderstorms on Earth - at the outer edges of Jupiter's Great Red Spot. Images from NASA's Galileo spacecraft now in orbit around Jupiter are providing new evidence that thunderstorms may be an important source of energy for Jupiter's winds that blow at more than 500 kilometers per hour (about 300 miles per hour). The photos were taken by Galileo's solid state imager camera on June 26, 1996 at a range of about 1.4 million kilometers (about 860,000 miles). The image at top is a mosaic of multiple images taken through near-infrared filters. False coloring in the image reveals cloud-top heights. High, thick clouds are white and high, thin clouds are pink. Low-altitude clouds are blue. The two black-and-white images at bottom are enlargements of the boxed area; the one on the right was taken 70 minutes after the image on the left. The arrows show where clouds have formed or dissipated in the short time between the images. The smallest clouds are tens of kilometers across. On Earth, moist convection in thunderstorms is a pathway through which solar energy, deposited at the surface, is transported and delivered to the atmosphere. Scientists at the California Institute of Technology analyzing data from Galileo believe that water, the most likely candidate for what composes these clouds on Jupiter, may be more abundant at the site seen here than at the Galileo Probe entry site, which was found to be unexpectedly dry. http://photojournal.jpl.nasa.gov/catalog/PIA00506

    6. Solar System Portrait - Views of 6 Planets

      NASA Image and Video Library

      1996-09-13

      These six narrow-angle color images were made from the first ever portrait of the solar system taken by NASA’s Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). http://photojournal.jpl.nasa.gov/catalog/PIA00453

    7. Sojourner's First Images From Mars

      NASA Technical Reports Server (NTRS)

      2003-01-01

      These images are views of the Mars Pathfinder Lander's forward ramp before (top image) and after (bottom image) deployment. Some data from the before image was lost due to rover-lander communication problems.

    8. Oil Fire Plumes Over Baghdad

      NASA Technical Reports Server (NTRS)

      2003-01-01

      Dark smoke from oil fires extend for about 60 kilometers south of Iraq's capital city of Baghdad in these images acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on April 2, 2003. The thick, almost black smoke is apparent near image center and contains chemical and particulate components hazardous to human health and the environment.

      The top panel is from MISR's vertical-viewing (nadir) camera. Vegetated areas appear red here because this display is constructed using near-infrared, red and blue band data, displayed as red, green and blue, respectively, to produce a false-color image. The bottom panel is a combination of two camera views of the same area and is a 3-D stereo anaglyph in which red band nadir camera data are displayed as red, and red band data from the 60-degree backward-viewing camera are displayed as green and blue. Both panels are oriented with north to the left in order to facilitate stereo viewing. Viewing the 3-D anaglyph with red/blue glasses (with the red filter placed over the left eye and the blue filter over the right) makes it possible to see the rising smoke against the surface terrain. This technique helps to distinguish features in the atmosphere from those on the surface. In addition to the smoke, several high, thin cirrus clouds (barely visible in the nadir view) are readily observed using the stereo image.

      The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 17489. The panels cover an area of about 187 kilometers x 123 kilometers, and use data from blocks 63 to 65 within World Reference System-2 path 168.

      MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

    9. Scrambled Ice

      NASA Technical Reports Server (NTRS)

      1998-01-01

      This complex area on the side of Europa which faces away from Jupiter shows several types of features which are formed by disruptions of Europa's icy crust. North is to the top of the image, taken by NASA's Galileo spacecraft, and the Sun illuminates the surface from the left. The prominent wide, dark bands are up to 20 kilometers (12 miles) wide and over 50 kilometers (30 miles) long. They are believed to have formed when Europa's icy crust fractured, separated and filled in with darker, 'dirtier' ice or slush from below. A relatively rare type of feature on Europa is the 15-kilometer-diameter (9.3-mile) impact crater in the lower left corner. The small number of impact craters on Europa's surface is an indication of its relatively young age. A region of chaotic terrain south of this impact crater contains crustal plates which have broken apart and rafted into new positions. Some of these 'ice rafts' are nearly 1 kilometer (about half a mile) across. Other regions of chaotic terrain are visible and indicate heating and disruption of Europa's icy crust from below. The youngest features in this scene are the long, narrow cracks in the ice which cut across all other features. One of these cracks is about 30 kilometers (18 miles) to the right of the impact crater and extends for hundreds of miles from the top to the bottom of the image.

      The image, centered near 23 degrees south latitude and 179 degrees longitude, covers an area about 240 by 215 kilometers (150 by 130 miles) across. The finest details that can be discerned in this picture are about 460 meters (500 yards) across. The image was taken as Galileo flew by Europa on March 29, 1998. The image was taken by the onboard solid state imaging system camera from an altitude of 23,000 kilometers (14,000 miles).

      The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

      This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

    10. Space Radar Image of Florence, Italy

      NASA Image and Video Library

      1999-04-15

      This radar image shows land use patterns in and around the city of Florence, Italy, shown here in the center of the image. Florence is situated on a plain in the Chianti Hill region of Central Italy. The Arno River flows through town and is visible as the dark line running from the upper right to the bottom center of the image. The city is home to some of the world's most famous art museums. The bridges seen crossing the Arno, shown as faint red lines in the upper right portion of the image, were all sacked during World War II with the exception of the Ponte Vecchio, which remains as Florence's only covered bridge. The large, black V-shaped feature near the center of the image is the Florence Railroad Station. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the Space Shuttle Endeavour on April 14, 1994. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 43.7 degrees north latitude and 11.15 degrees east longitude with North toward the upper left of the image. The area shown measures 20 kilometers by 17 kilometers (12.4 miles by 10.6 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. http://photojournal.jpl.nasa.gov/catalog/PIA01795

    11. Natural and False Color Views of Europa

      NASA Technical Reports Server (NTRS)

      1996-01-01

      This image shows two views of the trailing hemisphere of Jupiter's ice-covered satellite, Europa. The left image shows the approximate natural color appearance of Europa. The image on the right is a false-color composite version combining violet, green and infrared images to enhance color differences in the predominantly water-ice crust of Europa. Dark brown areas represent rocky material derived from the interior, implanted by impact, or from a combination of interior and exterior sources. Bright plains in the polar areas (top and bottom) are shown in tones of blue to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named 'Pwyll' for the Celtic god of the underworld.

      Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany.

      The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

      This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo

    12. Short-term EEG dynamics and neural generators evoked by navigational images

      PubMed Central

      Leroy, Axelle; Cevallos, Carlos; Cebolla, Ana-Maria; Caharel, Stéphanie; Dan, Bernard

      2017-01-01

      The ecological environment offered by virtual reality is primarily supported by visual information. The different image contents and their rhythmic presentation imply specific bottom-up and top-down processing. Because these processes already occur during passive observation we studied the brain responses evoked by the presentation of specific 3D virtual tunnels with respect to 2D checkerboard. For this, we characterized electroencephalograhy dynamics (EEG), the evoked potentials and related neural generators involved in various visual paradigms. Time-frequency analysis showed modulation of alpha-beta oscillations indicating the presence of stronger prediction and after-effects of the 3D-tunnel with respect to the checkerboard. Whatever the presented image, the generators of the P100 were situated bilaterally in the occipital cortex (BA18, BA19) and in the right inferior temporal cortex (BA20). In checkerboard but not 3D-tunnel presentation, the left fusiform gyrus (BA37) was additionally recruited. P200 generators were situated in the temporal cortex (BA21) and the cerebellum (lobule VI/Crus I) specifically for the checkerboard while the right parahippocampal gyrus (BA36) and the cerebellum (lobule IV/V and IX/X) were involved only during the 3D-tunnel presentation. For both type of image, P300 generators were localized in BA37 but also in BA19, the right BA21 and the cerebellar lobule VI for only the checkerboard and the left BA20-BA21 for only the 3D-tunnel. Stronger P300 delta-theta oscillations recorded in this later situation point to a prevalence of the effect of changing direction over the proper visual content of the 3D-tunnel. The parahippocampal gyrus (BA36) implicated in navigation was also identified when the 3D-tunnel was compared to their scrambled versions, highlighting an action-oriented effect linked to navigational content. PMID:28632774

    13. Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

      NASA Technical Reports Server (NTRS)

      Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)

      2018-01-01

      A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.

    14. AERIAL OVERVIEW, LOOKING SOUTH ACROSS INTERSTATE 2059 (BOTTOM RIGHT) TO ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      AERIAL OVERVIEW, LOOKING SOUTH ACROSS INTERSTATE 20-59 (BOTTOM RIGHT) TO THE ORIGINAL PLANNED INDUSTRIAL COMMUNITY WHOSE MAJOR ACCESS (CENTER) LEADS FROM THE TENNESSEE COAL & IRON CO. - US STEEL - US STEEL FAIRFIELD WORKS (NOT PICTURED) ACROSS GARY AVENUE AND THE COMMERCIAL DISTRICT TO THE CIVIC CENTER PLAZA WHICH IS SURROUNDED BY RESIDENTIAL DISTRICTS TO THE FORMER TCI-US STEEL EMPLOYEES (NOW LLOYD NOLAND) HOSPITAL (TOP CENTER). TO LEFT OF HOSPITAL IS PARKWAY, ONE OF THE MODEL INDUSTRIAL TOWN'S PRINCIPAL LANDSCAPED THOROUGHFARES. - City of Fairfield, Fairfield, Jefferson County, AL

    15. Investigation of Acoustic Vector Sensor Data Processing in the Presence of Highly Variable Bathymetry

      DTIC Science & Technology

      2014-06-01

      shelf 10 region to the north of the canyon. The impact of this 3-dimensional (3D) variable bathymetry, which may be combined with the effects of...weaker arrivals at large negative angles, consistent with the earliest bottom reflections on the left. The impact of the bottom-path reflections from...nzout*(nrout+1)*ny))),’bof’); for ifr =1:64, for ir=1:nrout+1, for iy=1:ny, data=fread(fid3,2*nzout,’float32’); fwrite(fid,data

    16. 48. INTERIOR VIEW FROM THE WEST END OF THE AMALGAMATION ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      48. INTERIOR VIEW FROM THE WEST END OF THE AMALGAMATION TABLES LOOKING NORTH TOWARDS THE STAMP BATTERIES WITH AMALGAM TRAPS SHOWN IN THE BOTTOM FOREGROUND. NOTE THE EXTANT EQUIPMENT IN THE FOREGROUND THAT THE PARK USES TO INTERPRET THE MILL. FROM LEFT TO RIGHT, A SCREEN FROM THE MORTAR BOX, A STAMP STOP. A (HUMAN'S) SHOE, A DIE FROM THE BOTTOM OF A MORTAR BOX, AN AMALGAM SCRAPPER AND AN AMALGAM BUCKET. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

    17. External view of Zarya and Zvezda taken during the STS-106 mission

      NASA Image and Video Library

      2000-09-11

      S106-E-5116 (11 September 2000) --- This view of the International Space Station (ISS) was taken while it was docked with the Space Shuttle Atlantis and shows parts of all but one of the current components. From the top are the Progress supply vehicle, the Zvezda service module, and the Zarya functional cargo block (FGB). The Unity, now linked to the docking system of the Atlantis in the cargo bay, is out of view at bottom. A multicolored layer signals a sunset or sunrise on Earth at bottom left.

    18. Spectrally based mapping of riverbed composition

      USGS Publications Warehouse

      Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.

      2016-01-01

      Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range of fluvial environments is needed to substantiate our initial results, this case study suggests that bed composition in shallow, clear-flowing rivers potentially could be mapped remotely.

    19. Interactions of Top-Down and Bottom-Up Mechanisms in Human Visual Cortex

      PubMed Central

      McMains, Stephanie; Kastner, Sabine

      2011-01-01

      Multiple stimuli present in the visual field at the same time compete for neural representation by mutually suppressing their evoked activity throughout visual cortex, providing a neural correlate for the limited processing capacity of the visual system. Competitive interactions among stimuli can be counteracted by top-down, goal-directed mechanisms such as attention, and by bottom-up, stimulus-driven mechanisms. Because these two processes cooperate in everyday life to bias processing toward behaviorally relevant or particularly salient stimuli, it has proven difficult to study interactions between top-down and bottom-up mechanisms. Here, we used an experimental paradigm in which we first isolated the effects of a bottom-up influence on neural competition by parametrically varying the degree of perceptual grouping in displays that were not attended. Second, we probed the effects of directed attention on the competitive interactions induced with the parametric design. We found that the amount of attentional modulation varied linearly with the degree of competition left unresolved by bottom-up processes, such that attentional modulation was greatest when neural competition was little influenced by bottom-up mechanisms and smallest when competition was strongly influenced by bottom-up mechanisms. These findings suggest that the strength of attentional modulation in the visual system is constrained by the degree to which competitive interactions have been resolved by bottom-up processes related to the segmentation of scenes into candidate objects. PMID:21228167

    20. Measurement of left ventricular mass in vivo using gated nuclear magnetic resonance imaging.

      PubMed

      Florentine, M S; Grosskreutz, C L; Chang, W; Hartnett, J A; Dunn, V D; Ehrhardt, J C; Fleagle, S R; Collins, S M; Marcus, M L; Skorton, D J

      1986-07-01

      Alterations of left ventricular mass occur in a variety of congenital and acquired heart diseases. In vivo determination of left ventricular mass, using several different techniques, has been previously reported. Problems inherent in some previous methods include the use of ionizing radiation, complicated geometric assumptions and invasive techniques. We tested the ability of gated nuclear magnetic resonance imaging to determine in vivo left ventricular mass in animals. By studying both dogs (n = 9) and cats (n = 2) of various sizes, a broad range of left ventricular mass (7 to 133 g) was examined. With a 0.5 tesla superconducting nuclear magnetic resonance imaging system the left ventricle was imaged in the transaxial plane and multiple adjacent 10 mm thick slices were obtained. Endocardial and epicardial edges were manually traced in each computer-displayed image. The wall area of each image was determined by computer and the areas were summed and multiplied by the slice thickness and the specific gravity of muscle, providing calculated left ventricular mass. Calculated left ventricular mass was compared with actual postmortem left ventricular mass using linear regression analysis. An excellent relation between calculated and actual mass was found (r = 0.95; SEE = 13.1 g; regression equation: magnetic resonance mass = 0.95 X actual mass + 14.8 g). Intraobserver and interobserver reproducibility were also excellent (r = 0.99). Thus, gated nuclear magnetic resonance imaging can accurately determine in vivo left ventricular mass in anesthetized animals.

    1. 39. West tile gauge on south pier. Each square tile ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      39. West tile gauge on south pier. Each square tile is 4' in size. Bottom left hand corner of west tile - Duluth Ship Canal, South Pier, North end of Minnesota Point & Canal Park, Duluth, St. Louis County, MN

    2. Mars At Opposition

      NASA Technical Reports Server (NTRS)

      1995-01-01

      These NASA Hubble Space Telescope views provide the most detailed complete global coverage of the red planet Mars ever seen from Earth. The pictures were taken on February 25, 1995, when Mars was at a distance of 65 million miles (103 million km).

      To the surprise of researchers, Mars is cloudier than seen in previous years. This means the planet is cooler and drier, because water vapor in the atmosphere freezes out to form ice-crystal clouds. Hubble resolves Martian surface features with a level of detail only exceeded by planetary probes, such as impact craters and other features as small as 30 miles (50 kilometers) across.

      [Tharsis region] - A crescent-shaped cloud just right of center identifies the immense shield volcano Olympus Mons, which is 340 miles (550 km) across at its base. Warm afternoon air pushed up over the summit forms ice-crystal clouds downwind from the volcano. Farther to the east (right) a line of clouds forms over a row of three extinct volcanoes which are from north to south: Ascraeus Mons, Pavonis Mons, Arsia Mons. It's part of an unusual, recurring 'W'-shaped cloud formation that once mystified earlier ground-based observers.

      [Valles Marineris region] - The 16 mile-high volcano Ascraeus Mons pokes through the cloud deck along the western (left) limb of the planet. Other interesting geologic features include (lower left) Valles Marineris, an immense rift valley the length of the continental United States. Near the image center lies the Chryse basin made up of cratered and chaotic terrain. The oval-looking Argyre impact basin (bottom) appears white due to clouds or frost.

      [Syrtis Major region] - The dark 'shark fin' feature left of center is Syrtis Major. Below it the giant impact basin Hellas. Clouds cover several great volcanos in the Elysium region near the eastern (right) limb. As clearly seen in the Hubble images, past dust storms in Mars' southern hemisphere have scoured the plains of fine light dust and transported the dust northward. This leaves behind a relatively coarser, and less reflective sand in, predominantly, the southern hemisphere.

      The pictures were taken with Hubble's Wide Field Planetary Camera 2.

      This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http:// oposite.stsci.edu/pubinfo/

    3. Storms and Moons

      NASA Technical Reports Server (NTRS)

      2007-01-01

      The New Horizons Long Range Reconnaissance Imager (LORRI) took this 2-millisecond exposure of Jupiter at 04:41:04 UTC on January 24, 2007. The spacecraft was 57 million kilometers (35.3 million miles) from Jupiter, closing in on the giant planet at 41,500 miles (66,790 kilometers) per hour. At right are the moons Io (bottom) and Ganymede; Ganymede's shadow creeps toward the top of Jupiter's northern hemisphere.

      Two of Jupiter's largest storms are visible; the Great Red Spot on the western (left) limb of the planet, trailing the Little Red Spot on the eastern limb, at slightly lower latitude. The Great Red Spot is a 300-year old storm more than twice the size of Earth. The Little Red Spot, which formed over the past decade from the merging of three smaller storms, is about half the size of its older and 'greater' counterpart.

    4. Galileo view of Moon orbiting the Earth taken from 3.9 million miles

      NASA Technical Reports Server (NTRS)

      1992-01-01

      Eight days after its encounter with the Earth, the Galileo spacecraft was able to look back and capture this remarkable view of the Moon in orbit about the Earth, taken from a distance of about 6.2 million kilometers (3.9 million miles). The picture was constructed from images taken through the violet, red, and 1.0-micron infrared filters. The Moon is in the foreground, moving from left to right. The brightly-colored Earth contrasts strongly with the Moon, which reflects only about one-third as much sunlight as the Earth. Contrast and color have been computer-enhanced for both objects to improve visibility. Antarctica is visible through clouds (bottom). The Moon's far side is seen; the shadowy indentation in the dawn terminator is the south-Pole/Aitken Basin, one of the largest and oldest lunar impact features. Alternate Jet Propulsion Laboratory (JPL) number is P-41508.

    5. Timing and patterns of basin infilling as documented in Lake Powell during a drought

      USGS Publications Warehouse

      Pratson, Lincoln F.; Hughes-Clarke, John; Anderson, Mark; Gerber, Thomas; Twitchell, David C.; Ferrari, Ronald; Nittrouer, Charles A.; Beaudoin, Jonathan D.; Granet, Jesse; Crockett, John

      2008-01-01

      Between 1999 and 2005, drought in the western United States led to a >44 m fall in the level of Lake Powell (Arizona-Utah), the nation's second-largest reservoir. River discharges to the reservoir were halved, yet the rivers still incised the tops of deltas left exposed along the rim of the reservoir by the lake-level fall. Erosion of the deltas enriched the rivers in sediment such that upon entering the reservoir they discharged plunging subaqueous gravity flows, one of which was imaged acoustically. Repeat bathymetric surveys of the reservoir show that the gravity flows overtopped rockfalls and formed small subaqueous fans, locally raising sediment accumulation rates 10–100-fold. The timing of deep-basin deposition differed regionally across the reservoir with respect to lake-level change. Total mass of sediment transferred from the lake perimeter to its bottom equates to ~22 yr of river input.

    6. KSC-2013-3522

      NASA Image and Video Library

      2013-07-12

      CAPE CANAVERAL, Fla. -- This graphic depicts the patriotic endeavor of NASA's three Commercial Crew Program, or CCP, partners. The Boeing Company of Houston, Sierra Nevada Corporation, or SNC, of Louisville, Colo., and Space Exploration Technologies, or SpaceX, of Hawthorne, Calif., are working under the agency's Commercial Crew Integrated Capability, or CCiCap, initiative and Certification Products Contract, or CPC, phase to develop spaceflight capabilities that eventually could provide launch services to transport NASA astronauts to the International Space Station from U.S. soil. Shown along the bottom, from left, are: Boeing's integrated CST-100 spacecraft and United Launch Alliance, or ULA, Atlas V rocket SNC's integrated Dream Chaser spacecraft and Atlas V and SpaceX's integrated Dragon spacecraft and Falcon 9 rocket. In the center are artist depictions of company spacecraft in orbit. At the top is NASA's destination for crew transportation in low-Earth orbit, the International Space Station. For more information, visit www.nasa.gov/commercialcrew. Image credit: NASA

    7. Earth Observation

      NASA Image and Video Library

      2014-06-20

      ISS040-E-016422 (20 June 2014) --- One of the Expedition 40 crew members aboard the International Space Station used a 28mm focal length to record this long stretch of California's Pacific Coast on June 20, 2014. Guadalupe Island and the surrounding von Karman cloud vortices over the Pacific can be seen just above frame center. San Diego is visible in upper left and the Los Angeles Basin is just to the left of center frame. Much of the Mojave Desert is visible in bottom frame.

    8. A User’s/Programmer’s Manual for TWAKE.

      DTIC Science & Technology

      1988-05-06

      subroutines sorted according to primary function Inout OutDut Utjiitv Ean. Solve LDDOEL CALORD GETBAT ASSMAT EDATA COMOC LINKI ASMSQ BDINPT DRVBUG LINK2 BANCHO...beginning at the left most node (no. 1) and continuing to the last node in that row (no. 19). IBORD LEFT 2 BOTTOM 2 RIGHT 2 TOP 2 DONE LINKI 2 T call...LINK1 3 T GEOMFL Call SUBROUTINE NODELM again to compute element thickness and area from data calculated in GEOMFL. LINKI 2 T NODELM Call SUBROUTINE

    9. Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics 1988

      DTIC Science & Technology

      1989-09-01

      The II between the neck " anterior point halfway (right trapezius point) I between the top and and the tip of the ’ bottom of the right ,. shoulder...point on the Thumbtip: The tip of head when the head is the right thumb . in the Frankfort plane. Tragion, right and Trapezis point, right left: The...superior and left: The point at point on the juncture which the anterior of the cartilaginous border of the trapezius flap (trag..) of the • muscle crosses

    10. Grinding Wheel Profile

      NASA Technical Reports Server (NTRS)

      2004-01-01

      This graphic dubbed by engineers as the 'Grinding Wheel Profile' is the detective's tool used by the Opportunity team to help them understand one of the processes that formed the interior of a rock called 'McKittrick.' Scientists are looking for clues as to how layers, grains and minerals helped create this rock, and the engineers who built the rock abrasion tool (RAT) wanted to ensure that their instrument's handiwork did not get confused with natural processes.

      In the original microscopic image underlaying the graphics, engineers and scientists noticed 'layers' or 'scratches' on the spherical object nicknamed 'blueberry' in the lower right part of the image. The designers of the rock abrasion tool noticed that the arc length and width of the scratches were similar to the shape and size of the rock abrasion tool's grinding wheel, which is made out of a pad of diamond teeth.

      The scrapes on the bottom right blueberry appear to be caused by the fact that the berry got dislodged slightly and its surface was scraped with the grinding pad. In this image, the largest yellow circle is the overall diameter of the hole ground by the rock abrasion tool and the largest yellow rectangular shape is the area of the grinding wheel bit. The smaller yellow semi-circle is the path that the center of the grinding tool follows. The orange arrow arcing around the solid yellow circle (center of grinding tool) indicates the direction that the grinding tool spins around its own center at 3,000 revolutions per minute. The tool simultaneously spins in an orbit around the center of the hole, indicated by the larger orange arrow to the left.

      The grinding tool is 22 millimeters (0.9 inches) in length and the actual grinding surface, which consists of the diamond pad, is 1.5 millimeters (0.06 inches) in length, indicated by the two smaller rectangles. You can see that the smaller bottom rectangle fits exactly the width of the scrape marks.

      The grooves on the blueberry are also the same as the curvature of the arced pathway in which the grinding tool spins.

      By overlaying appropriately scaled representations of the rock abrasion tool schematics, the evidence reveals a strong indication that the scrapes on the blueberry were induced by the tool, rather than caused by some natural geologic process.

      The two rectangular boxes in the lower left and upper middle parts of this image are 'drop outs,' where the data packets inadvertently did not make it back to Earth during the initial communications relay via the Deep Space Network antennas. The missing data packets should be resent to Earth within the next few days. Just above each of the black 'drop out' rectangles is another rectangular area filled with a cluster of smaller rectangles in different shades of gray, which are image compression artifacts.

      The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

    11. SRTM Stereo Pair: Bhuj, India, Two Weeks After earthquake

      NASA Technical Reports Server (NTRS)

      2001-01-01

      On January 26, 2001, the city of Bhuj suffered the most deadly earthquake in India's history. About 20,000 people were killed, and more than one million homes were damaged or destroyed. Shortly after the quake, geologists conducted field investigations to inventory and analyze the natural effects of the event. Stereoscopic views, similar to this image, aided the geologists in locating landforms indicative of long-term (and possibly ongoing) deformation. Soon, elevation data from the Shuttle Radar Topography Mission (SRTM) will be used in the study of a wide variety of natural hazards worldwide.

      In this image, the city of Bhuj appears as a gray area at the scene center, and the city airport is toward the north (top). Vegetation appears green. Rugged but low relief hills of previously folded and faulted bedrock appear south (bottom) and northwest (upper-left) of the city.

      This stereoscopic image was generated by draping a Landsat satellite image (taken just two weeks after the earthquake) over a preliminary SRTM elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing) or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions.

      Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM project by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, South Dakota.

      Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

      Size: 13.5 x 20.6 kilometers ( 8.4 x 12.8 miles) Location: 23.3 deg. North lat., 69.7 deg. East lon. Orientation: North toward the top Image Data: Landsat Bands 1, 2+4, 3 as blue, green, red, respectively Date Acquired: February 2000 (SRTM), February 9, 2001 (Landsat)

    12. Earth Observations

      NASA Image and Video Library

      2010-09-11

      ISS024-E-014233 (11 Sept. 2010) --- A smoke plume near the northern Caspian Sea, Kazakhstan is featured in this image photographed by an Expedition 24 crew member on the International Space Station. This broad view of the north coast of the Caspian Sea shows a smoke plume (left) and two river deltas (bottom and lower right). The larger delta is that of the Volga River which appears prominently here in sunglint (light reflected off a water surface back towards the observer), and the smaller less prominent delta is that of the Ural River. Wide angle, oblique views ? taken looking outward at an angle, rather than straight down towards Earth ? such as this give an excellent impression of how crew members onboard the space station view Earth. For a sense of scale, the Caucasus Mts. (across the Caspian, top right) are approximately 1,100 kilometers to the southwest of the International Space Station?s nadir point location ? the point on Earth directly underneath the spacecraft ? at the time this image was taken. The smoke plume appears to be sourced in the dark-toned coastal marsh vegetation along the outer fringe of the Ural River delta, rather than in a city or at some oil storage facility. Although even small fires produce plumes that are long and bright and thus easily visible from space, the density of the smoke in this plume, and its 350-kilometer length across the entire north lobe of the Caspian Sea, suggest it was a significant fire. The smoke was thick enough nearer the source to cast shadows on the sea surface below. Lines mark three separate pulses of smoke, the most recent, nearest the source, extending directly south away from the coastline (lower left). With time, plumes become progressively more diffuse. The oldest pulse appears to be the thinnest, casting no obvious shadows (center left).

    13. Top-down and bottom-up attention-to-memory: mapping functional connectivity in two distinct networks that underlie cued and uncued recognition memory.

      PubMed

      Burianová, Hana; Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris

      2012-11-15

      The objective of this study was to examine the functional connectivity of brain regions active during cued and uncued recognition memory to test the idea that distinct networks would underlie these memory processes, as predicted by the attention-to-memory (AtoM) hypothesis. The AtoM hypothesis suggests that dorsal parietal cortex (DPC) allocates effortful top-down attention to memory retrieval during cued retrieval, whereas ventral parietal cortex (VPC) mediates spontaneous bottom-up capture of attention by memory during uncued retrieval. To identify networks associated with these two processes, we conducted a functional connectivity analysis of a left DPC and a left VPC region, both identified by a previous analysis of task-related regional activations. We hypothesized that the two parietal regions would be functionally connected with distinct neural networks, reflecting their engagement in the differential mnemonic processes. We found two spatially dissociated networks that overlapped only in the precuneus. During cued trials, DPC was functionally connected with dorsal attention areas, including the superior parietal lobules, right precuneus, and premotor cortex, as well as relevant memory areas, such as the left hippocampus and the middle frontal gyri. During uncued trials, VPC was functionally connected with ventral attention areas, including the supramarginal gyrus, cuneus, and right fusiform gyrus, as well as the parahippocampal gyrus. In addition, activity in the DPC network was associated with faster response times for cued retrieval. This is the first study to show a dissociation of the functional connectivity of posterior parietal regions during episodic memory retrieval, characterized by a top-down AtoM network involving DPC and a bottom-up AtoM network involving VPC. Copyright © 2012 Elsevier Inc. All rights reserved.

    14. Investigating Mars: Coprates Chasma

      NASA Image and Video Library

      2017-10-03

      Coprates Chasma is one of the numerous canyons that make up Valles Marineris. The chasma stretches for 960 km (600 miles) from Melas Chasma to the west and Capri Chasma to the east. Landslide deposits, layered materials and sand dunes cover a large portion of the chasma floor. This image is located in central Coprates Chasma. In this image, there is a landslide deposit at the bottom of the image. The brighter material to the left of the landslide appears to be a rough surface likely etched by wind action. The chasma contains numerous regions of sand dunes, indicating that the wind plays a part in the erosion and deposition of fine materials in the canyon. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 35820 Latitude: -12.793 Longitude: 297.407 Instrument: VIS Captured: 2010-01-10 16:39 https://photojournal.jpl.nasa.gov/catalog/PIA21996

    15. E4 True and False Color Hot Spot Mosaic

      NASA Image and Video Library

      1998-03-06

      True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial "hotspot" on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter. North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. http://photojournal.jpl.nasa.gov/catalog/PIA00602

    16. Triple Crescents

      NASA Image and Video Library

      2015-06-22

      A single crescent moon is a familiar sight in Earth's sky, but with Saturn's many moons, you can see three or even more. The three moons shown here -- Titan (3,200 miles or 5,150 kilometers across), Mimas (246 miles or 396 kilometers across), and Rhea (949 miles or 1,527 kilometers across) -- show marked contrasts. Titan, the largest moon in this image, appears fuzzy because we only see its cloud layers. And because Titan's atmosphere refracts light around the moon, its crescent "wraps" just a little further around the moon than it would on an airless body. Rhea (upper left) appears rough because its icy surface is heavily cratered. And a close inspection of Mimas (center bottom), though difficult to see at this scale, shows surface irregularities due to its own violent history. This view looks toward the anti-Saturn hemisphere of Titan. North on Titan is to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on March 25, 2015. The view was obtained at a distance of approximately 2.7 million miles (4.3 million kilometers) from Titan. Image scale at Titan is 16 miles (26 kilometers) per pixel. Mimas was 1.9 million miles (3.0 million kilometers) away with an image scale of 11 miles (18 kilometers) per pixel. Rhea was 1.6 million miles (2.6 million kilometers) away with an image scale of 9.8 miles (15.7 kilometer) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18322

    17. A COLLISION IN THE HEART OF A GALAXY

      NASA Technical Reports Server (NTRS)

      2002-01-01

      The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has uncovered a collision between two spiral galaxies in the heart of the peculiar galaxy called Arp 220. The collision has provided the spark for a burst of star formation. The NICMOS image captures bright knots of stars forming in the heart of Arp 220. The bright, crescent moon-shaped object is a remnant core of one of the colliding galaxies. The core is a cluster of 1 billion stars. The core's half-moon shape suggests that its bottom half is obscured by a disk of dust about 300 light-years across. This disk is embedded in the core and may be swirling around a black hole. The core of the other colliding galaxy is the bright round object to the left of the crescent moon-shaped object. Both cores are about 1,200 light-years apart and are orbiting each other. Arp 220, located 250 million light-years away in the constellation Serpens, is the 220th object in Halton Arp's Atlas of Peculiar Galaxies. The image was taken with three filters. The colors have been adjusted so that, in this infrared image, blue corresponds to shorter wavelengths, red to longer wavelengths. The image was taken April 5, 1997. Credits: Rodger Thompson, Marcia Rieke, Glenn Schneider (University of Arizona) and Nick Scoville (California Institute of Technology), and NASA Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

    18. Earth observation taken by the Expedition 42 crew

      NASA Image and Video Library

      2015-02-11

      ISS042E241898 (02/11/2015) --- Texas and the Gulf Coast at night as seen by the International Space Stations Earth observation cameras. This wide-angle, nighttime image was taken by astronauts looking out southeastward over the Gulf of Mexico. Lower center left shows the twin lights of San Antonio Texas with a short string of lights to Austin (further left). Houston, the home of the Johnson Space Center is the brightest directly above (Center left). Moonlight reflects diffusely off the waters of the gulf (image center left) making the largest but diffused illuminated area in the image. The sharp edge of light patterns of coastal cities trace out the long curve of the gulf shoreline—from New Orleans at the mouth of the Mississippi River, to Houston (both image left), to Brownsville (image center) in the westernmost gulf. City lights at great distances in Florida (image top left) and on Mexico’s Yucatán peninsula (image center right) suggest the full extent of the gulf basin, more than 930 miles, from Brownsville to Florida.

    19. 32. DETAIL OF WALL SHOWN IN SD231. BEHIND WALL FRAMING ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      32. DETAIL OF WALL SHOWN IN SD-2-31. BEHIND WALL FRAMING IS SAMPLING ROOM WITH WOOD SAMPLING ELEVATOR. CRUSHED OXIDIZED ORE BIN ON LEFT (SOUTH). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    20. 25. VIEW OF MILL FROM UPPER TAILINGS POND. SHOWS ROASTER ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      25. VIEW OF MILL FROM UPPER TAILINGS POND. SHOWS ROASTER ON LEFT EDGE OF VIEW. THE SECONDARY THICKENER No. 7 IS OFF VIEW TO THE RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    1. Habitat Distribution on the Inner Continental Shelf of Northern South Carolina Based on Sidescan Sonar and Submarine Video Data

      NASA Astrophysics Data System (ADS)

      Ojeda, G. Y.; Gayes, P. T.; van Dolah, R. F.; Schwab, W. C.

      2002-12-01

      Assessment of the extent and variability of benthic habitats is an important mission of biologists and marine scientists, and has supreme relevance in monitoring and maintaining the offshore resources of coastal nations. Mapping `hard bottoms', in particular, is of critical importance because these are the areas that support sessile benthic habitats and associated fisheries. To quantify the extent and distribution of habitats offshore northern South Carolina, we used a spatially quantitative approach that involved textural analysis of side scan sonar images and training of an artificial neural network classifier. This approach was applied to a 2 m-pixel image mosaic of sonar data collected by the USGS in 1999 and 2000. The entire mosaic covered some 686 km2 and extended between the ~6 m and ~10+ m isobaths off the Grand Strand region of South Carolina. Bottom video transects across selected sites provided 2,119 point observations which were used for image-to-ground control as well as training of the neural network classifier. A sensitivity study of 52 space-domain textural features indicated that 12 of them provided reasonable discriminating power between two end-member bottom types: hard bottom and sand. The selected features were calculated over 5 by 5 pixel windows of the image where video point observations existed. These feature vectors were then fed to a 3-layer neural network classifier, trained with a Levenberg-Marquardt backpropagation algorithm. Registration and display of the output habitat map were performed in GIS. Results of our classification indicate that outcropping Tertiary and Cretaceous strata are exposed over a significant portion of northern South Carolina's inner shelf, consistent with a sediment-starved margin type. The combined surface extent classified as hard bottom was 405 km2 -or 59 % of the imaged area-, while only 281 km2 -or 41 % of the area were classified as sand. In addition, our results provided constraints on the spatial continuity of nearshore benthic habitats. The median surface area of the regions classified as hard bottom (n= 190,521) and sand (n= 234,946) were both equal to the output cell size (100 m2), confirming the `patchy' nature of these habitats and suggesting that these medians probably represent upper bounds rather than estimates of the typical extent of individual patches. Furthermore, comparison of the interpretive habitat map with available swath bathymetry data suggests positive correlation between bathymetry `highs' and the major sandy-bottom areas interpreted with our routine. In contrast, the location of hard bottom areas does not appear to be significantly correlated with major bathymetric features. Our findings are in agreement with published qualitative estimates of hard bottom areas on neighboring North Carolina's inner shelf.

    2. The Minerals of Candor Chasma

      NASA Technical Reports Server (NTRS)

      2008-01-01

      The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this image of sulfate- and pyroxene-containing deposits in the Candor Chasma region of Mars at 0747 UTC (2:47 a.m. EST) on December 2, 2006, near 6.7 degrees south latitude, 75.8 degrees west longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The image is about 10 kilometers (6.2 miles) wide at its narrowest point.

      Candor Chasma is a deep, elongated, steep-sided depression some 813 kilometers (505 miles) long. It is one of two large chasmata that make up the northern end of the Valles Marineris system.

      The top panel in the montage above illustrates the location of CRISM data on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). CRISM data cover an area centered on the southwestern part of Candor Chasma, where highland crust was depressed by faulting and buried by a kilometers-thick stack of layered deposits.

      The bottom two images are views of CRISM data. The lower left image is an infrared false color image, while at lower right is a spectral image that illustrates the distribution of sulfates in the layered deposits, the olivine and pyroxene that make up the faulted highland crust, and high-calcium pyroxene in the highland crust.

      The northern part of CRISM's data swath covers interior deposits formed after the canyon floor was faulted and depressed. This lighter region in the infrared image at lower left exhibits the spectral signatures of sulfates (blues) in the CRISM spectral image at lower right. The southern end of CRISM's data reveals volcanic minerals (pyroxene and olivine) that make up the older, underlying highland crust. The strongest signature comes from the common diopside-hedenbergite series of pyroxenes a group of silicate materials rich in iron, magnesium, and calcium.

      CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

    3. The effect of stimulus intensity on the right ear advantage in dichotic listening.

      PubMed

      Hugdahl, Kenneth; Westerhausen, René; Alho, Kimmo; Medvedev, Svyatoslav; Hämäläinen, Heikki

      2008-01-24

      The dichotic listening test is non-invasive behavioural technique to study brain lateralization and it has been shown, that its results can be systematically modulated by varying stimulation properties (bottom-up effects) or attentional instructions (top-down effects) of the testing procedure. The goal of the present study was to further investigate the bottom-up modulation, by examining the effect of differences in the right or left ear stimulus intensity on the ear advantage. For this purpose, interaural intensity difference were gradually varied in steps of 3 dB from -21 dB in favour of the left ear to +21 dB in favour of the right ear, also including a no difference baseline condition. Thirty-three right-handed adult participants with normal hearing acuity were tested. The dichotic listening paradigm was based on consonant-vowel stimuli pairs. Only pairs with the same voicing (voice or non-voiced) of the consonant sound were used. The results showed: (a) a significant right ear advantage (REA) for interaural intensity differences from 21 to -3 dB, (b) no ear advantage (NEA) for the -6 dB difference, and (c) a significant left ear advantage (LEA) for differences form -9 to -21 dB. It is concluded that the right ear advantage in dichotic listening to CV syllables withstands an interaural intensity difference of -9 dB before yielding to a significant left ear advantage. This finding could have implications for theories of auditory laterality and hemispheric asymmetry for phonological processing.

    4. From the First to the Last

      NASA Image and Video Library

      2015-04-30

      On March 18, 2011, MESSENGER made history by becoming the first spacecraft ever to orbit Mercury. Eleven days later, the spacecraft captured the first image ever obtained from Mercury orbit, shown here on the left. Originally planned as a one-year orbital mission, the MESSENGER spacecraft orbited Mercury for more than four years, accomplishing technological firsts and making new scientific discoveries about the origin and evolution of the Solar System's innermost planet. Check out the Top 10 Science Results. Dates acquired: March 29, 2011; April 30, 2015 Image IDs: 65056, 8422953 Instrument: Mercury Dual Imaging System (MDIS) Left Image Center Latitude: -53.3° Left Image Center Longitude: 13.0° E Left Image Resolution: 2.7 kilometers/pixel Left Image Scale: The rayed crater Debussy has a diameter of 80 kilometers (50 miles) Right Image Center Latitude: 72.0° Right Image Center Longitude: 223.8° E Right Image Resolution: 2.1 meters/pixel Right Image Scale: This image is about 1 kilometers (0.6 miles) across On April 30, 2015, MESSENGER again made history, becoming the first spacecraft to impact the planet. In total, MESSENGER acquired and returned to Earth more than 277,000 images from orbit about Mercury. The last of those images is shown here on the right. http://photojournal.jpl.nasa.gov/catalog/PIA19449

    5. Creating Concepts from Converging Features in Human Cortex

      PubMed Central

      Coutanche, Marc N.; Thompson-Schill, Sharon L.

      2015-01-01

      To make sense of the world around us, our brain must remember the overlapping features of millions of objects. Crucially, it must also represent each object's unique feature-convergence. Some theories propose that an integration area (or “convergence zone”) binds together separate features. We report an investigation of our knowledge of objects' features and identity, and the link between them. We used functional magnetic resonance imaging to record neural activity, as humans attempted to detect a cued fruit or vegetable in visual noise. Crucially, we analyzed brain activity before a fruit or vegetable was present, allowing us to interrogate top-down activity. We found that pattern-classification algorithms could be used to decode the detection target's identity in the left anterior temporal lobe (ATL), its shape in lateral occipital cortex, and its color in right V4. A novel decoding-dependency analysis revealed that identity information in left ATL was specifically predicted by the temporal convergence of shape and color codes in early visual regions. People with stronger feature-and-identity dependencies had more similar top-down and bottom-up activity patterns. These results fulfill three key requirements for a neural convergence zone: a convergence result (object identity), ingredients (color and shape), and the link between them. PMID:24692512

    6. NASA astronauts and industry experts check out the crew accommod

      NASA Image and Video Library

      2012-01-30

      HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Lee Archambault, and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

    7. 37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING SYSTEM. NOTE SPIGOT UNDER BOARD AT UPPER LEFT INSERTS INTO HOLE IN PIPE AT BOTTOM OF FRAME. CYANIDE SOLUTION WAS PUMPED INTO THE TANKS AND THE PREGNANT SOLUTION DRAINED OUT OF THE TANKS THROUGH THIS PIPE, AND BACK INTO A SEPARATE HOLDING TANK ON THE EAST SIDE OF THE MILL. TAILINGS WERE REMOVED FROM THE TANKS THROUGH THE ROUND DRAIN DOOR IN THE BOTTOM OF THE TANK (MISSING) SEEN AT TOP CENTER. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

    8. Crew portrait during 51-B mission

      NASA Image and Video Library

      1985-05-02

      51B-101-025 (29 April-6 May 1985) --- A new twist to the traditional on-orbit group portrait was added by the 51-B/Spacelab 3 crewmembers. Note the Gold T-shirts of ?Gold? team members Robert F. Overmyer (bottom left), Don L. Lind (behind Overmyer), William E. Thornton (bottom right) and Taylor G. Wang (behind Thornton). Posting ?upside down? are ?silver? team members (L-R) Frederick D. Gregory, Norman E. Thagard and Lodewijk van den Berg. The seven are in the Long Science Module for Spacelab 3 in the cargo bay of the earth-orbiting Space Shuttle Challenger.

    9. Forward/up directional incompatibilities during cursor placement within graphical user interfaces.

      PubMed

      Phillips, James G; Triggs, Thomas J; Meehan, James W

      2005-05-15

      Within graphical user interfaces, an indirect relationship between display and control may lead to directional incompatibilities when a forward mouse movement codes upward cursor motions. However, this should not occur for left/right movements or direct cursor controllers (e.g. touch sensitive screens). In a four-choice reaction time task, 12 participants performed movements from a central start location to a target situated at one of four cardinal points (top, bottom, left, right). A 2 x 2 x 2 design varied directness of controller (moving cursor on computer screen or pen on graphics tablet), compatibility of orientation of cursor controller with screen (horizontal or vertical) and axis of desired cursor motion (left/right or up/down). Incompatibility between orientation of controller and motion of cursor did not affect response latencies, possibly because both forward and upward movements are away from the midline and go up the visual field. However, directional incompatibilities between display and controller led to slower movement with prolonged accelerative phases. Indirect relationships between display and control led to less efficient movements with prolonged decelerative phases and a tendency to undershoot movements along the bottom/top axis. More direct cursor control devices, such as touch sensitive screens, should enhance the efficiency of aspects of cursor trajectories.

    10. THEMIS Images as Art #1

      NASA Technical Reports Server (NTRS)

      2004-01-01

      Released 2 February 2004

      Humanity is a very visual species. We rely on our eyes to tell us what is going on in the world around us. Put any image in front of a person and that person will examine the picture looking for anything familiar. Even if the examiner has no idea what he/she is looking at in a picture, he/she will still be able to make a statement about the picture, usually preceded by the words 'it looks like...' The image above is part of the surface of Mars, but is presented for its artistic value rather than its scientific value. When first viewed, this image solicited a statement that 'it looks like...' something seen in everyday life.

      This particular image contains an interesting symbol in the bottom-left corner; perhaps it's a peace sign.

      Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

      NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    11. E4 True and false color hot spot mosaic

      NASA Technical Reports Server (NTRS)

      1997-01-01

      True and false color views of Jupiter from NASA's Galileo spacecraft show an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles). The top mosaic combines the violet and near infrared continuum filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

      North is at the top. The mosaic covers latitudes 1 to 10 degrees and is centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging camera system aboard Galileo. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

      This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

    12. Strait of Gibraltar, Perspective with Landsat Image Overlay

      NASA Image and Video Library

      2003-10-24

      This perspective view shows the Strait of Gibraltar, which is the entrance to the Mediterranean Sea from the Atlantic Ocean. Europe (Spain) is on the left. Africa (Morocco) is on the right. The Rock of Gibraltar, administered by Great Britain, is the peninsula in the back left. The Strait of Gibraltar is the only natural gap in the topographic barriers that separate the Mediterranean Sea from the world's oceans. The Sea is about 3700 kilometers (2300 miles) long and covers about 2.5 million square kilometers (one million square miles), while the Strait is only about 13 kilometers (8 miles) wide. Sediment samples from the bottom of the Mediterranean Sea that include evaporite minerals, soils, and fossil plants show that about five million years ago the Strait was topographically blocked and the Sea had evaporated into a deep basin far lower in elevation than the oceans. Consequent changes in the world's hydrologic cycle, including effects upon ocean salinity, likely led to more ice formation in polar regions and more reflection of sunlight back to space, resulting in a cooler global climate at that time. Today, topography plays a key role in our regional climate patterns. But through Earth history, topographic change, even perhaps over areas as small as 13 kilometers across, has also affected the global climate. This image was generated from a Landsat satellite image draped over an elevation model produced by the Shuttle Radar Topography Mission (SRTM). The view is eastward with a 3-times vertical exaggeration to enhance topographic expression. Natural colors of the scene (green vegetation, blue water, brown soil, white beaches) are enhanced by image processing, inclusion of some infrared reflectance (as green) to highlight the vegetation pattern, and inclusion of shading of the elevation model to further highlight the topographic features. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (99-feet) resolution of most Landsat images and will substantially help in analyses of the large Landsat image archive. Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. http://photojournal.jpl.nasa.gov/catalog/PIA03397

    13. Shaded Relief of Rio Sao Francisco, Brazil

      NASA Technical Reports Server (NTRS)

      2000-01-01

      This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

      This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.

      The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    14. Top-down processing of symbolic meanings modulates the visual word form area.

      PubMed

      Song, Yiying; Tian, Moqian; Liu, Jia

      2012-08-29

      Functional magnetic resonance imaging (fMRI) studies on humans have identified a region in the left middle fusiform gyrus consistently activated by written words. This region is called the visual word form area (VWFA). Recently, a hypothesis, called the interactive account, is proposed that to effectively analyze the bottom-up visual properties of words, the VWFA receives predictive feedback from higher-order regions engaged in processing sounds, meanings, or actions associated with words. Further, this top-down influence on the VWFA is independent of stimulus formats. To test this hypothesis, we used fMRI to examine whether a symbolic nonword object (e.g., the Eiffel Tower) intended to represent something other than itself (i.e., Paris) could activate the VWFA. We found that scenes associated with symbolic meanings elicited a higher VWFA response than those not associated with symbolic meanings, and such top-down modulation on the VWFA can be established through short-term associative learning, even across modalities. In addition, the magnitude of the symbolic effect observed in the VWFA was positively correlated with the subjective experience on the strength of symbol-referent association across individuals. Therefore, the VWFA is likely a neural substrate for the interaction of the top-down processing of symbolic meanings with the analysis of bottom-up visual properties of sensory inputs, making the VWFA the location where the symbolic meaning of both words and nonword objects is represented.

    15. A dipping, thick Farallon slab below central United States

      NASA Astrophysics Data System (ADS)

      Sun, D.; Gurnis, M.; Saleeby, J.; Helmberger, D. V.

      2015-12-01

      It has been hypothesized that much of the Laramide orogeny was caused by dynamic effects induced by an extensive flat slab during a period of plateau subduction. A particularly thick block containing the Shatsky Rise conjugate, now in the mid-mantle, left a distinctive deformation footprint from southern California to Denver, Colorado. Thus mid-mantle, relic slabs can provide fundamental information about past subduction and the history of plate tectonics if properly imaged. Here we find clear evidence for a northeastward dipping (35° dip), slab-like, but fat (up to 400-500 km thick) seismic anomaly within the top of the lower mantle below the central United States. Using a deep focus earthquake below Spain with direct seismic paths that propagate along the top and bottom of the anomaly, we find that the observed, stacked seismic waveforms recorded with the dense USArray show multi-pathing indicative of sharp top and bottom surfaces. Plate tectonic reconstructions in which the slab is migrated back in time suggest strong coupling of the slab to North America. In combination with the reconstructions, we interpret the structure as arising from eastward dipping Farallon subduction at the western margin of North America during the Cretaceous, in contrast with recent interpretations. The slab could have been fattened through a combination of pure shear thickening during flat-slab subduction and a folding instability during penetration into the lower mantle.

    16. The left ventricle in aortic stenosis--imaging assessment and clinical implications.

      PubMed

      Călin, Andreea; Roşca, Monica; Beladan, Carmen Cristiana; Enache, Roxana; Mateescu, Anca Doina; Ginghină, Carmen; Popescu, Bogdan Alexandru

      2015-04-29

      Aortic stenosis has an increasing prevalence in the context of aging population. In these patients non-invasive imaging allows not only the grading of valve stenosis severity, but also the assessment of left ventricular function. These two goals play a key role in clinical decision-making. Although left ventricular ejection fraction is currently the only left ventricular function parameter that guides intervention, current imaging techniques are able to detect early changes in LV structure and function even in asymptomatic patients with significant aortic stenosis and preserved ejection fraction. Moreover, new imaging parameters emerged as predictors of disease progression in patients with aortic stenosis. Although proper standardization and confirmatory data from large prospective studies are needed, these novel parameters have the potential of becoming useful tools in guiding intervention in asymptomatic patients with aortic stenosis and stratify risk in symptomatic patients undergoing aortic valve replacement.This review focuses on the mechanisms of transition from compensatory left ventricular hypertrophy to left ventricular dysfunction and heart failure in aortic stenosis and the role of non-invasive imaging assessment of the left ventricular geometry and function in these patients.

    17. iss054e012391

      NASA Image and Video Library

      2018-01-01

      iss054e012391 (Jan. 1, 2018) --- Despite the cloudiness during this nighttime photograph taken by Expedition 54 crew members aboard the International Space Station, the Caribbean islands of (from top left to bottom right) Puerto Rico, Cuba, Haiti and the Dominican Republic are seen from an altitude of 250 miles.

    18. A Complete System for Automatic Extraction of Left Ventricular Myocardium From CT Images Using Shape Segmentation and Contour Evolution

      PubMed Central

      Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen

      2014-01-01

      The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531

    19. Left main coronary artery stenosis: severity evaluation and implications for management.

      PubMed

      Habibi, Susan E; Shah, Rahman; Berzingi, Chalak O; Melchior, Ryan; Sumption, Kevin F; Jovin, Ion S

      2017-03-01

      The significant stenosis of the left main coronary artery is associated with poor outcomes and is considered a strong indication for revascularization. However, deciding whether the stenosis is significant can sometimes be challenging, especially when the degree of stenosis is intermediate, and can necessitate additional tests and imaging modalities. Areas covered: We did a literature search using keywords like 'left main', 'imaging', 'intravascular ultrasound', 'fractional flow reserve', 'computed tomographic angiography' and 'magnetic resonance imaging'. The most commonly used methods for better characterizing intermediate left main coronary stenoses are intravascular ultrasound and fractional flow reserve, while optical coherence tomography is the newer technique that provides better images, but for which not as much data is available. The noninvasive techniques are coronary computed tomographic angiography and, to a lesser degree, coronary magnetic resonance imaging. Expert commentary: Accurately determining the severity of left main coronary stenosis can mean the difference between a major intervention and conservative therapy. The reviewed newer imaging modalities give us greater confidence that patients with left main stenosis are assigned to the right treatment modality.

    20. Fretted Terrain Valley in Coloe Fossae Region

      NASA Technical Reports Server (NTRS)

      2006-01-01

      [figure removed for brevity, see original site] Figure 1 Click on image for larger version

      The image in figure 1 shows lineated valley fill in one of a series of enclosed, intersecting troughs known as Coloe (Choloe) Fossae. Lineated valley fill consists of rows of material in valley centers that are parallel to the valley walls. It is probably made of ice-rich material and boulders that are left behind when the ice-rich material sublimates. Very distinct rows can be seen near the south (bottom) wall of the valley. Lineated valley fill is thought to result from mass wasting (downslope movement) of ice-rich material from valley walls towards their centers. It is commonly found in valleys near the crustal dichotomy that separates the two hemispheres of Mars. The valley shown here joins four other valleys with lineated fill near the top left corner of this image. Their juncture is a topographic low, suggesting that the lineated valley fill from the different valleys may be flowing or creeping towards the low area (movement towards the upper left of the image). The valley walls appear smooth at first glance but are seen to be speckled with small craters several meters in diameter at HiRISE resolution (see contrast-enhanced subimage). This indicates that at least some of the wall material has been stable to mass wasting for some period of time. Also seen on the valley wall are elongated features shaped like teardrops. These are most likely slightly older craters that have been degraded due to potentially recent downhill creep. It is unknown whether the valley walls are shedding material today. The subimage is approximately 140 x 400 m (450 x 1280 ft).

      Image PSP_001372_2160 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 11, 2006. The complete image is centered at 35.5 degrees latitude, 56.8 degrees East longitude. The range to the target site was 290.3 km (181.4 miles). At this distance the image scale ranges from 58.1 cm/pixel (with 2 x 2 binning) to 116.2 cm/pixel (with 4 x 4 binning). This image has been map-projected to 50 cm/pixel and north is up. The image was taken at a local Mars time of 3:23 PM and the scene is illuminated from the west with a solar incidence angle of 48 degrees, thus the sun was about 42 degrees above the horizon. At a solar longitude of 133.8 degrees, the season on Mars is Northern Summer.

      NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

    1. Method used to test the imaging consistency of binocular camera's left-right optical system

      NASA Astrophysics Data System (ADS)

      Liu, Meiying; Wang, Hu; Liu, Jie; Xue, Yaoke; Yang, Shaodong; Zhao, Hui

      2016-09-01

      To binocular camera, the consistency of optical parameters of the left and the right optical system is an important factor that will influence the overall imaging consistency. In conventional testing procedure of optical system, there lacks specifications suitable for evaluating imaging consistency. In this paper, considering the special requirements of binocular optical imaging system, a method used to measure the imaging consistency of binocular camera is presented. Based on this method, a measurement system which is composed of an integrating sphere, a rotary table and a CMOS camera has been established. First, let the left and the right optical system capture images in normal exposure time under the same condition. Second, a contour image is obtained based on the multiple threshold segmentation result and the boundary is determined using the slope of contour lines near the pseudo-contour line. Third, the constraint of gray level based on the corresponding coordinates of left-right images is established and the imaging consistency could be evaluated through standard deviation σ of the imaging grayscale difference D (x, y) between the left and right optical system. The experiments demonstrate that the method is suitable for carrying out the imaging consistency testing for binocular camera. When the standard deviation 3σ distribution of imaging gray difference D (x, y) between the left and right optical system of the binocular camera does not exceed 5%, it is believed that the design requirements have been achieved. This method could be used effectively and paves the way for the imaging consistency testing of the binocular camera.

    2. Dynamic stimuli: accentuating aesthetic preference biases.

      PubMed

      Friedrich, Trista E; Harms, Victoria L; Elias, Lorin J

      2014-01-01

      Despite humans' preference for symmetry, artwork often portrays asymmetrical characteristics that influence the viewer's aesthetic preference for the image. When presented with asymmetrical images, aesthetic preference is often given to images whose content flows from left-to-right and whose mass is located on the right of the image. Cerebral lateralization has been suggested to account for the left-to-right directionality bias; however, the influence of cultural factors, such as scanning habits, on aesthetic preference biases is debated. The current research investigates aesthetic preference for mobile objects and landscapes, as previous research has found contrasting preference for the two image types. Additionally, the current experiment examines the effects of dynamic movement on directionality preference to test the assumption that static images are perceived as aesthetically equivalent to dynamic images. After viewing mirror-imaged pairs of pictures and videos, right-to-left readers failed to show a preference bias, whereas left-to-right readers preferred stimuli with left-to-right directionality regardless of the location of the mass. The directionality bias in both reading groups was accentuated by the videos, but the bias was significantly stronger in left-to-right readers. The findings suggest that scanning habits moderate the leftward bias resulting from hemispheric specialization and that dynamic stimuli further fluent visual processing.

    3. Earth observation taken by the Expedition 43 crew

      NASA Image and Video Library

      2015-04-01

      ISS043E080914 (04/01/2015) --- This Earth view from the International Space Station Apr. 1, 2015 (bottom left corner) is Soyuz TMA-15M which carried NASA astronaut Terry Virts, ESA (European Space Agency) astronaut Samantha Cristoforetti and Russian cosmonaut Anton Shkaplerov to the ISS back in No. 2014 and will remain until May 2015. The further one (top left corner) is Progress 57 a Russian supply spaceship which launched and docked in October last year and will undock at the end of April to return to Earth.

    4. STS-85 crew portraits in the middeck hatch and in front of lockers

      NASA Image and Video Library

      1997-08-26

      STS085-320-020 (7 - 19 August 1997) --- For their traditional in-flight crew portrait, the six crew members for this mission float on the mid-deck of the Space Shuttle Discovery. On top, left to right, are Bjarni Tryggvason, payload specialist of the Canadian Space Agency (CSA); along with astronauts Stephen K. Robinson, mission specialist; and Curtis L. Brown, Jr., mission commander. On bottom, from the left, are astronauts Robert L. Curbeam, Jr., mission specialist; N. Jan Davis, payload commander; and Kent V. Rominger, pilot.

    5. 41. VIEW NORTH OF UPPER LEVEL OF CRUSHER ADDITION. DINGS ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      41. VIEW NORTH OF UPPER LEVEL OF CRUSHER ADDITION. DINGS MAGNETIC PULLEY AT CENTER. ALSO SHOWS 100-TON CRUSHED UNOXIDIZED ORE BIN (RIGHT), PULLEY FORM 18 INCH BELT CONVEYOR CRUSHED OXIDIZED ORE BIN FEED AND STEPHENSADAMSON 25 TON/HR BUCKET ELEVATOR (UPPER CENTER). THE UPPER PORTION OF THE SAMPLING ELEVATOR IS ABOVE THE MAGNETIC PULLEY (CENTER LEFT) WITH THE ROUTE OF THE 16 INCH BELT CONVEYOR FINES FEED TO CRUSHED OXIDIZED ORE BIN TO ITS LEFT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    6. 46. VIEW LOOKING NORTHEAST OF CONDENSER NUMBER 2 (LEFT BACKGROUND) ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      46. VIEW LOOKING NORTHEAST OF CONDENSER NUMBER 2 (LEFT BACKGROUND) AND MOTOR FOR PUMPING CONDENSER HOT WELL (LOWER CENTER OF PHOTOGRAPH). SPENT STEAM EXHAUSTED FROM THE TURBINE WAS CONDENSED BY A SPRAY OF BRACKISH WATER. THIS CREATED A PARTIAL VACUUM WHICH IMPROVED TURBINE EFFICIENCY. THE MIXTURE OF CONDENSED STEAM AND COOL BRACKISH WATER FELL TO THE BOTTOM OF THE CONDENSER INTO A HOT WELL. FROM THE WELL IT WAS PUMPED TO THE MAIN DISCHARGE FLUME. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

    7. Perspective View, New York State, Long Island to Lake Ontario

      NASA Technical Reports Server (NTRS)

      2000-01-01

      From Lake Ontario and the St. Lawrence River (at the top of the image) and extending to Long Island (at the bottom), this perspective view shows the varied topography of eastern New York State and parts of Massachusetts, Connecticut, Pennsylvania, New Jersey and Rhode Island. The high'bumpy' area in the upper right is the southern and western Adirondack Mountains, a deeply eroded landscape that includes the oldest rocks in the eastern United States. On the left side are the Catskill Mountains, a part of the Appalachian Mountain chain, where river erosion has produced an intricate pattern of valleys. Between the Adirondacks and Catskills, a wide valley contains the Mohawk River and the Erie Canal. To the northwest (upper left) of the Catskills are several long, narrow lakes, some of the Finger Lakes of central New York that were carved by the vast glacier that covered this entire area as recently as 18,000 years ago. The Hudson River runs along a straight valley from right center (near Glens Falls), widening out as it approaches New York City at the lower left on the image. The Connecticut River valley has a similar north-south trend further to the east (across the lower right corner of the image). The Berkshire Hills are between the Hudson and Connecticut valleys.

      This image was generated using a single swath of data acquired in 68 seconds by SRTM and an enhanced false-color mosaic of images from the Landsat 5 satellite. Lush vegetation appears green, water appears dark blue, and cities are generally light blue. White clouds occur in the upper right and lower right. Topographic shading in the image was enhanced with false shading derived from the elevation model. Topographic expression is exaggerated 5X.

      Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.

      Size: 220 by 510 kilometers (135 by 315 miles) Location: 43 deg. North lat., 75 deg. West lon. Orientation: View northwest Colors: Landsat bands 2, 4, 7 in blue, green, and red Date Acquired: February 13, 2000 (SRTM); Various Dates (Landsat Mosaic)

    8. After Rasping by Phoenix in 'Snow White' Trench, Sol 60

      NASA Technical Reports Server (NTRS)

      2008-01-01

      NASA's Phoenix Mars Lander used the motorized rasp on the back of its robotic arm scoop during the mission's 60th Martian day, or sol, (July 26, 2008) to penetrate a hard layer at the bottom of a trench informally called 'Snow White.' This view, taken by the lander's Surface Stereo Imager and presented in approximately true color, shows the trench later the same sol.

      Most of the 16 holes left by a four-by-four array of rasp placements are visible in the central area of the image.

      A total 3 cubic centimeters, or about half a teaspoon, of material was collected in the scoop. Material in the scoop was collected both by the turning rasp, which threw material into the scoop through an opening at the back of the scoop, and by the scoop's front blade, which was run over the rasped area to pick up more shavings.

      The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

    9. 30 CFR 18.32 - Fastenings-additional requirements.

      Code of Federal Regulations, 2014 CFR

      2014-07-01

      ... preclude improper assembly. (d) Holes for fastenings shall not penetrate to the interior of an explosion...-inch of stock shall be left at the center of the bottom of each hole drilled for fastenings. (f...-tensile strength fastening(s) specified by the applicant. (i) Coil-thread inserts, if used in holes for...

    10. 30 CFR 18.32 - Fastenings-additional requirements.

      Code of Federal Regulations, 2013 CFR

      2013-07-01

      ... preclude improper assembly. (d) Holes for fastenings shall not penetrate to the interior of an explosion...-inch of stock shall be left at the center of the bottom of each hole drilled for fastenings. (f...-tensile strength fastening(s) specified by the applicant. (i) Coil-thread inserts, if used in holes for...

    11. 30 CFR 18.32 - Fastenings-additional requirements.

      Code of Federal Regulations, 2011 CFR

      2011-07-01

      ... preclude improper assembly. (d) Holes for fastenings shall not penetrate to the interior of an explosion...-inch of stock shall be left at the center of the bottom of each hole drilled for fastenings. (f...-tensile strength fastening(s) specified by the applicant. (i) Coil-thread inserts, if used in holes for...

    12. 30 CFR 18.32 - Fastenings-additional requirements.

      Code of Federal Regulations, 2012 CFR

      2012-07-01

      ... preclude improper assembly. (d) Holes for fastenings shall not penetrate to the interior of an explosion...-inch of stock shall be left at the center of the bottom of each hole drilled for fastenings. (f...-tensile strength fastening(s) specified by the applicant. (i) Coil-thread inserts, if used in holes for...

    13. 144. VIEW OF EAST WALL OF CONTROL ROOM (214), LSB ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      144. VIEW OF EAST WALL OF CONTROL ROOM (214), LSB (BLDG. 751). PNEUMATIC SUPPLY PANEL ON LEFT; NITROGEN AND HELIUM PIPING AT TOP; PURGE PANEL AT BOTTOM OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

    14. Microgravity

      NASA Image and Video Library

      2004-04-15

      Typical picture of a dendrite: Notice how the branch on the left has no arms coming off the top. This is because of the convective forces (hot liquid rises) that the top of the branch is not solidifying (growing arms) like the bottom, cooler area. The is a gravitational effect. This does not happen in space.

    15. 19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION GARMENT (LCVG), SUIT GLOVES, WAIST INSERTS, UPPER AND LOWER ARMS (LEFT, FROM TOP TO BOTTOM), LOWER TORSO ASSEMBLIES (LTA) (MIDDLE RIGHT TO LOWER RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

    16. STS-120 crew on Discovery middeck

      NASA Image and Video Library

      2007-10-31

      S120-E-007889 (1 Nov. 2007) --- Astronauts Pam Melroy (left), STS-120 commander; George Zamka (bottom right), pilot; and European Space Agency's (ESA) Paolo Nespoli, mission specialist, sleep in their sleeping bags, which are secured on the middeck of the Space Shuttle Discovery while docked with the International Space Station.

    17. The Value of Performance in Physical Education Teacher Education

      ERIC Educational Resources Information Center

      Johnson, Tyler G.

      2013-01-01

      The current philosophical paradigm in higher education, where theory transcends practice, consigns physical education to the bottom of a hierarchy of educational content (Kretchmar, 2005). Leaders of physical education teacher education programs are left with three difficult choices: (a) accept physical education's lowly position in the…

    18. 36. VIEW OF FRAMING BENT BETWEEN SECONDARY THICKENER No. 3 ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      36. VIEW OF FRAMING BENT BETWEEN SECONDARY THICKENER No. 3 AND PRIMARY THICKENER No. 2 FROM WEST. NOTE MECHANISM ON PRIMARY No. 2 ON LEFT, BARREN SOLUTION FEED PIPE AT LOWER RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    19. --No Title--

      Science.gov Websites

      NREL TRANSPORTATION stylesheet*/ .content-list-widget .header-box .title { color: #fff; } .content -list-widget .header-box { background-color: #0079C2; border-bottom: 5px solid #00A4E4 ) ************************************************************/ .greybg { background-color: #E3E6E8; } .hide-bullets { list-style:none; margin-left: -40px; margin-top

    20. Venus - Cycle 1, 2, and 3 Images of Imdr Region

      NASA Technical Reports Server (NTRS)

      1992-01-01

      This set of three Magellan images shows a small volcano, lava plains distorted into 'wrinkle ridges', and some unusual wispy-appearing surface deposits. The images were acquired during the first, second and third mapping cycles of the mission, in March 1991, November 1991 and July 1992, respectively. The area shown is about 400 kilometers by 100 kilometers (248 by 62 miles) and is centered near 47.5 degrees south latitude, 226 degrees east longitude, in the Imdr region of Venus. The middle image, from the second cycle, was acquired with the spacecraft facing toward the west (left), while the other images were acquired with an identical east-looking geometry. The differing appearance of the second image has intrigued Magellan scientists, because of the possibility that the bright patches observed in cycle 2 may have been caused by rearrangement of loose soil material between March and November, 1991. However, by duplicating the cycle 1 viewing geometry in cycle 3, the surface change theory has been tentatively ruled out. Instead, the radar brightness variations are attributed to reflections from an undulating surface, such as sand ripples or small dunes, that have an asymmetry in the east-west direction. The deposits are apparently associated with a 78 kilometers (48 miles) diameter impact crater, Stowe, which lies about 500 kilometers (310 miles) to the northeast. The fine-grained material created during the impact event may have settled out to form the unusual surface deposits observed here. Scientists are now trying to determine if the proposed ripple structures formed at the time of the impact, or are the result of ongoing wind action at the surface. Data quality during portions of cycle 3 was adversely affected by a faulty transmitter aboard the spacecraft, leading to the missing strips in the bottom image.

    1. Space Radar Image of Mammoth Mountain, California

      NASA Image and Video Library

      1999-05-01

      This false-color composite radar image of the Mammoth Mountain area in the Sierra Nevada Mountains, California, was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 67th orbit on October 3, 1994. The image is centered at 37.6 degrees north latitude and 119.0 degrees west longitude. The area is about 39 kilometers by 51 kilometers (24 miles by 31 miles). North is toward the bottom, about 45 degrees to the right. In this image, red was created using L-band (horizontally transmitted/vertically received) polarization data; green was created using C-band (horizontally transmitted/vertically received) polarization data; and blue was created using C-band (horizontally transmitted and received) polarization data. Crawley Lake appears dark at the center left of the image, just above or south of Long Valley. The Mammoth Mountain ski area is visible at the top right of the scene. The red areas correspond to forests, the dark blue areas are bare surfaces and the green areas are short vegetation, mainly brush. The purple areas at the higher elevations in the upper part of the scene are discontinuous patches of snow cover from a September 28 storm. New, very thin snow was falling before and during the second space shuttle pass. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput Synthetic Aperture Radar processing in preparation for upcoming data-intensive SAR missions. The image released here was produced as part of this experimental effort. http://photojournal.jpl.nasa.gov/catalog/PIA01746

    2. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

      NASA Astrophysics Data System (ADS)

      Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

      2017-08-01

      The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

    3. Salient region detection by fusing bottom-up and top-down features extracted from a single image.

      PubMed

      Tian, Huawei; Fang, Yuming; Zhao, Yao; Lin, Weisi; Ni, Rongrong; Zhu, Zhenfeng

      2014-10-01

      Recently, some global contrast-based salient region detection models have been proposed based on only the low-level feature of color. It is necessary to consider both color and orientation features to overcome their limitations, and thus improve the performance of salient region detection for images with low-contrast in color and high-contrast in orientation. In addition, the existing fusion methods for different feature maps, like the simple averaging method and the selective method, are not effective sufficiently. To overcome these limitations of existing salient region detection models, we propose a novel salient region model based on the bottom-up and top-down mechanisms: the color contrast and orientation contrast are adopted to calculate the bottom-up feature maps, while the top-down cue of depth-from-focus from the same single image is used to guide the generation of final salient regions, since depth-from-focus reflects the photographer's preference and knowledge of the task. A more general and effective fusion method is designed to combine the bottom-up feature maps. According to the degree-of-scattering and eccentricities of feature maps, the proposed fusion method can assign adaptive weights to different feature maps to reflect the confidence level of each feature map. The depth-from-focus of the image as a significant top-down feature for visual attention in the image is used to guide the salient regions during the fusion process; with its aid, the proposed fusion method can filter out the background and highlight salient regions for the image. Experimental results show that the proposed model outperforms the state-of-the-art models on three public available data sets.

    4. Image of a line is not shrunk but neglected. Absence of crossover in unilateral spatial neglect.

      PubMed

      Ishiai, Sumio; Koyama, Yasumasa; Nakano, Naomi; Seki, Keiko; Nishida, Yoichiro; Hayashi, Kazuko

      2004-01-01

      Patients with left unilateral spatial neglect following right hemisphere lesions usually err rightward when bisecting a horizontal line. For very short lines (e.g. 25 mm), however, leftward errors or seemingly 'right' neglect is often observed. To explain this paradox of crossover in the direction of errors, rather complicated models have been introduced as to the distribution of attention. Neglect may be hypothesized to occur in representational process of a line or estimation of the midpoint on the formed image, or both. We devised a line image task using a computer display with a touch panel and approached the representational image of a line to be bisected. Three patients with typical left neglect were presented with a line and forced to see its whole extent with cueing to the left endpoint. After disappearance of the line, they pointed to the right endpoint, the left endpoint, or the subjective midpoint according to their representational image. The line image between the reproduced right and left endpoints was appropriately formed for the 200 mm lines. However, the images for the shorter 25 and 100 mm lines were longer than the physical lengths with overextension to the left side. These results proved the context effect that short lines may be perceived longer when they are presented in combination with longer lines. One of our patients had an extensive lesion that involved the frontal, temporal, and parietal lobes, and the other two had a lesion restricted to the posterior right hemisphere. The image for a fully perceived line may be represented far enough into left space even when left neglect occurs after a lesion that involves the right parietal lobe. The patients with neglect placed the subjective midpoint rightward from the centre of the stimulus line for the 100 and 200 mm lines and leftward for the 25 mm lines. This crossover of bisection errors disappeared when the displacement of the subjective midpoint was measured from the centre of the representational line image. Left neglect may occur consistently in estimation of the subjective midpoint on the representational image, which may be explained by a simple rightward bias of attentional distribution.

    5. SRTM Anaglyph: Corral de Piedra, Argentina

      NASA Technical Reports Server (NTRS)

      2001-01-01

      Volcanism and erosion are prominently seen in this view of the eastern flank of the Andes Mountains taken by Shuttle Radar Topography Mission (SRTM). The area is southeast of San Martin de Los Andes, Argentina. Eroded peaks up to 2,210-meter-high (7,260-foot) are seen on the west (left), but much of the scene consists of lava plateaus that slope gently eastward. These lava flows were most likely derived from volcanic sources in the high mountains. However, younger and more localized volcanic activity is evident in the topographic data as a cone surrounding oval-shaped flow near the center of the scene.

      The plateaus are extensively eroded by the Rio Limay (bottom of the image) and the Rio Collon Cura and its tributaries (upper half). The larger stream channels have reached a stable level and are now cutting broad valleys. Few terraces between the levels of the high plateaus and lower valleys (bottom center and upper right of the volcanic cone) indicate that stream erosion had once temporarily reached a higher stable level before eroding down to its current level. In general, depositional surfaces like lava flows are progressively younger with increasing elevation, while erosional surfaces are progressively younger with decreasing elevation.

      This anaglyph was produced by first shading a preliminary SRTM elevation model. The stereoscopic effect was then created by generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

      Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

      Size: 57.6 x 40.5 kilometers (35.7 x 25.1 miles) Location: 40.4 deg. South lat., 70.8 deg. West lon. Orientation: North toward the top Image Data: Shaded SRTM elevation model Date Acquired: February 2000

    6. Transport Imaging in the One Dimensional Limit

      DTIC Science & Technology

      2006-06-01

      Spatial luminescence from single bottom-up GaN and ZnO nanowires deposited by metal initiated metal -organic CVD on Au and SiO2 substrates is imaged. CL...this thesis were deposited by metal initiated metal -organic CVD on Au and SiO2 substrates . The process was carried out with different reagents in...are reported. Spatial luminescence from single bottom-up GaN and ZnO nanowires deposited by metal initiated metal -organic CVD on Au and SiO2

    7. Using multiple gears to assess acoustic detectability and biomass of fish species in lake superior

      USGS Publications Warehouse

      Yule, D.L.; Adams, J.V.; Stockwell, J.D.; Gorman, O.T.

      2007-01-01

      Recent predator demand and prey supply studies suggest that an annual daytime bottom trawl survey of Lake Superior underestimates prey fish biomass. A multiple-gear (acoustics, bottom trawl, and midwater trawl) nighttime survey has been recommended, but before abandoning a long-term daytime survey the effectiveness of night sampling of important prey species must be verified. We sampled three bottom depths (30, 60, and 120 m) at a Lake Superior site where the fish community included all commercially and ecologically important species. Day and night samples were collected within 48 h at all depths during eight different periods (one new and one full moon period during both early summer and late summer to early fall over 2 years). Biomass of demersal and benthic species was higher in night bottom trawl samples than in day bottom trawl samples. Night acoustic collections showed that pelagic fish typically occupied water cooler than 15°C and light levels less than 0.001 lx. Using biomass in night bottom trawls and acoustic biomass above the bottom trawl path, we calculated an index of acoustic detectability for each species. Ciscoes Coregonus artedi, kiyis C. kiyi, and rainbow smeltOsmerus mordax left the bottom at night, whereas bloaters C. hoyi stayed nearer the bottom. We compared the biomass of important prey species estimated with two survey types: day bottom trawls and night estimates of the entire water column (bottom trawl biomass plus acoustic biomass). The biomass of large ciscoes (>200 mm) was significantly greater when measured at night than when measured during daylight, but the differences for other sizes of important species did not vary significantly by survey type. Nighttime of late summer is a period when conditions for biomass estimation are largely invariant, and all important prey species can be sampled using a multiple-gear approach.

    8. 25. Typical valves used to control flow into and out ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      25. Typical valves used to control flow into and out of filtration bed. Left valve (painted red) drains the bed, and center valve (painted green) admits water into the bed. The right valve is a cross over valve which is used to admit water into a dry bed from the bottom. This bottom fill excludes entrapped air as the bed is filled. When the water reached to top of the bed, filling is continued from the top of the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

    9. Frost in Charitum Montes

      NASA Technical Reports Server (NTRS)

      2003-01-01

      MGS MOC Release No. MOC2-387, 10 June 2003

      This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle view of the Charitum Montes, south of Argyre Planitia, in early June 2003. The seasonal south polar frost cap, composed of carbon dioxide, has been retreating southward through this area since spring began a month ago. The bright features toward the bottom of this picture are surfaces covered by frost. The picture is located near 57oS, 43oW. North is at the top, south is at the bottom. Sunlight illuminates the scene from the upper left. The area shown is about 217 km (135 miles) wide.

    10. Yalode Crater on Ceres

      NASA Image and Video Library

      2017-06-28

      Yalode crater is so large -- at 162 miles, 260 kilometers in diameter -- that a variety of vantage points is necessary to understand its geological context. This view of the northern portion of Yalode is one of many images NASA's Dawn spacecraft has taken of this crater. The large impact that formed the crater likely involved a lot of heat, which explains the relatively smooth crater floor punctuated by smaller craters. A couple of larger craters in Yalode have polygonal shapes. This type of crater shape is frequently found on Ceres and may be indicative of extensive underground fractures. The larger crater to the right of center in this image is called Lono (12 miles, 20 kilometers in diameter) and the one below it is called Besua (11 miles, 17 kilometers). Some of the small craters are accompanied by ejecta blankets that are more reflective than their surroundings. The strange Nar Sulcus fractures can be seen in the bottom left corner of the picture. Linear features seen throughout the image may have formed when material collapsed above empty spaces underground. These linear features include linear chains of craters called catenae. Dawn took this image on September 27, 2015, from 915 miles (1,470 kilometers) altitude. The center coordinates of this image are 32 degrees south latitude and 300 degrees east longitude. Yalode gets its name from a goddess worshipped by women at the harvest rites in the Dahomey culture of western Africa. Besua takes its name from the Egyptian grain god, and Lono from the Hawaiian god of agriculture. https://photojournal.jpl.nasa.gov/catalog/PIA21410

    11. Earth Observations

      NASA Image and Video Library

      2011-06-11

      ISS028-E-008604 (11 June 2011) --- A night view of the southern Italian Peninsula is featured in this image photographed by an Expedition 28 crew member on the International Space Station. The Earth’s surface at night is covered with a delicate tracery of lights, particularly in regions – such as Europe – that have a long history of urban development. Large urban areas are recognizable from orbit due to extensive electric lighting and distinct street patterns; with smaller urban areas spread across the land surface and coastlines, the outlines of continental landmasses are easily discernable at night. This photograph highlights the night time appearance of the southern Italian Peninsula; the toe and heel of Italy’s “boot” are clearly defined by the lights of large cities such as Naples, Bari, and Brindisi as well as numerous smaller urban areas. The bordering Adriatic, Tyrrhenian, and Ionian Seas appear as dark regions to the east, west, and south of the boot. The city lights of Palermo and Catania on the island of Sicily are visible at image bottom center. The space station was located over an area of Romania close to the capital city of Bucharest – approximately 945 kilometers to the northeast—at the time this image was taken. Part of a docked Russian spacecraft solar panel array is visible in the foreground at left. The distance between the image subject area and the position of the photographer, as well as the viewing angle looking outwards from the space station, contributes to the distorted appearance of the Italian Peninsula and Sicily in the image.

    12. Snow Depth Depicted on Mt. Lyell by NASA Airborne Snow Observatory

      NASA Image and Video Library

      2013-05-02

      A natural color image of Mt. Lyell, the highest point in the Tuolumne River Basin top image is compared with a three-dimensional color composite image of Mt. Lyell from NASA Airborne Snow Observatory depicting snow depth bottom image.

    13. Bottom Topographic Changes of Poyang Lake During Past Decade Using Multi-temporal Satellite Images

      NASA Astrophysics Data System (ADS)

      Zhang, S.

      2015-12-01

      Poyang Lake, as a well-known international wetland in the Ramsar Convention List, is the largest freshwater lake in China. It plays crucial ecological role in flood storage and biological diversity. Poyang Lake is facing increasingly serious water crises, including seasonal dry-up, decreased wetland area, and water resource shortage, all of which are closely related to progressive bottom topographic changes over recent years. Time-series of bottom topography would contribute to our understanding of the lake's evolution during the past several decades. However, commonly used methods for mapping bottom topography fail to frequently update quality bathymetric data for Poyang Lake restricted by weather and accessibility. These deficiencies have limited our ability to characterize the bottom topographic changes and understanding lake erosion or deposition trend. To fill the gap, we construct a decadal bottom topography of Poyang Lake with a total of 146 time series medium resolution satellite images based on the Waterline Method. It was found that Poyang Lake has eroded with a rate of -14.4 cm/ yr from 2000 to 2010. The erosion trend was attributed to the impacts of human activities, especially the operation of the Three Gorge Dams, sand excavation, and the implementation of water conservancy project. A decadal quantitative understanding bottom topography of Poyang Lake might provide a foundation to model the lake evolutionary processes and assist both researchers and local policymakers in ecological management, wetland protection and lake navigation safety.

    14. When Art Moves the Eyes: A Behavioral and Eye-Tracking Study

      PubMed Central

      Massaro, Davide; Savazzi, Federica; Di Dio, Cinzia; Freedberg, David; Gallese, Vittorio; Gilli, Gabriella; Marchetti, Antonella

      2012-01-01

      The aim of this study was to investigate, using eye-tracking technique, the influence of bottom-up and top-down processes on visual behavior while subjects, naïve to art criticism, were presented with representational paintings. Forty-two subjects viewed color and black and white paintings (Color) categorized as dynamic or static (Dynamism) (bottom-up processes). Half of the images represented natural environments and half human subjects (Content); all stimuli were displayed under aesthetic and movement judgment conditions (Task) (top-down processes). Results on gazing behavior showed that content-related top-down processes prevailed over low-level visually-driven bottom-up processes when a human subject is represented in the painting. On the contrary, bottom-up processes, mediated by low-level visual features, particularly affected gazing behavior when looking at nature-content images. We discuss our results proposing a reconsideration of the definition of content-related top-down processes in accordance with the concept of embodied simulation in art perception. PMID:22624007

    15. When art moves the eyes: a behavioral and eye-tracking study.

      PubMed

      Massaro, Davide; Savazzi, Federica; Di Dio, Cinzia; Freedberg, David; Gallese, Vittorio; Gilli, Gabriella; Marchetti, Antonella

      2012-01-01

      The aim of this study was to investigate, using eye-tracking technique, the influence of bottom-up and top-down processes on visual behavior while subjects, naïve to art criticism, were presented with representational paintings. Forty-two subjects viewed color and black and white paintings (Color) categorized as dynamic or static (Dynamism) (bottom-up processes). Half of the images represented natural environments and half human subjects (Content); all stimuli were displayed under aesthetic and movement judgment conditions (Task) (top-down processes). Results on gazing behavior showed that content-related top-down processes prevailed over low-level visually-driven bottom-up processes when a human subject is represented in the painting. On the contrary, bottom-up processes, mediated by low-level visual features, particularly affected gazing behavior when looking at nature-content images. We discuss our results proposing a reconsideration of the definition of content-related top-down processes in accordance with the concept of embodied simulation in art perception.

    16. Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors

      NASA Astrophysics Data System (ADS)

      Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar

      2015-06-01

      Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.

    17. Acoustic Profiling of Bottom Sediments in Large Oil Storage Tanks

      NASA Astrophysics Data System (ADS)

      Svet, V. D.; Tsysar', S. A.

      2018-01-01

      Characteristic features of acoustic profiling of bottom sediments in large oil storage tanks are considered. Basic acoustic parameters of crude oil and bottom sediments are presented. It is shown that, because of the presence of both transition layers in crude oil and strong reverberation effects in oil tanks, the volume of bottom sediments that is calculated from an acoustic surface image is generally overestimated. To reduce the error, additional post-processing of acoustic profilometry data is proposed in combination with additional measurements of viscosity and tank density distributions in vertical at several points of the tank.

    18. 9. THIRD IMAGE OF THE PANORAMIC SERIES WITH CONSIDERABLE OVERLAP. ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      9. THIRD IMAGE OF THE PANORAMIC SERIES WITH CONSIDERABLE OVERLAP. A SETTLING TANK, SMOKESTACK FROM THE MILL'S BOILER ROOM, MILL ANNEX AND OTHER MILL OUT BUILDINGS ARE IN THE MIDDLE RIGHT OF THE IMAGE THE SUPERINTENDENTS HOUSE IS IN THE MIDDLE LEFT OF THE IMAGE SPANNING FROM LEFT TO RIGHT IN THE BACKGROUND IS THE TOWN OF BODIE. IN THE FAR BACKGROUND LEFT IS THE ROAD THAT IS THE ACCESS PARK. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

    19. My Body Looks Like That Girl’s: Body Mass Index Modulates Brain Activity during Body Image Self-Reflection among Young Women

      PubMed Central

      Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong

      2016-01-01

      Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress among overweight or obese young females. PMID:27764116

    20. My Body Looks Like That Girl's: Body Mass Index Modulates Brain Activity during Body Image Self-Reflection among Young Women.

      PubMed

      Gao, Xiao; Deng, Xiao; Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong

      2016-01-01

      Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress among overweight or obese young females.

    1. Information Extraction in Tomb Pit Using Hyperspectral Data

      NASA Astrophysics Data System (ADS)

      Yang, X.; Hou, M.; Lyu, S.; Ma, S.; Gao, Z.; Bai, S.; Gu, M.; Liu, Y.

      2018-04-01

      Hyperspectral data has characteristics of multiple bands and continuous, large amount of data, redundancy, and non-destructive. These characteristics make it possible to use hyperspectral data to study cultural relics. In this paper, the hyperspectral imaging technology is adopted to recognize the bottom images of an ancient tomb located in Shanxi province. There are many black remains on the bottom surface of the tomb, which are suspected to be some meaningful texts or paintings. Firstly, the hyperspectral data is preprocessing to get the reflectance of the region of interesting. For the convenient of compute and storage, the original reflectance value is multiplied by 10000. Secondly, this article uses three methods to extract the symbols at the bottom of the ancient tomb. Finally we tried to use morphology to connect the symbols and gave fifteen reference images. The results show that the extraction of information based on hyperspectral data can obtain a better visual experience, which is beneficial to the study of ancient tombs by researchers, and provides some references for archaeological research findings.

    2. Erratum: Erratum to: "Numerical simulation of the two-phase flow produced by spraying a liquid by a nozzle"

      NASA Astrophysics Data System (ADS)

      Simakov, N. N.

      2018-04-01

      Page 1010, left column, line 4 from bottom should read "radius R APP" instead of "diameter D APP" Page 1010, right column, before the formula (19) should read " R APP" instead of " D APP" Page 1010, in the caption to Fig. 5 should read "radius R APP" instead of "diameter D APP" Page 1011, in the caption to Fig. 6 should read "radius R APP" instead of "diameter D APP" Page 1011, left column, second paragraph after Fig. 6, line 4 from top should read "radius R APP" instead of "diameter D APP" Page 1011, the same paragraph, lines 1, 2 from bottom, in the expression for Qm and after it should read "radius R APP" instead of "diameter D APP" Page 1011, left column, paragraph 3 after Fig. 6, last two lines should read " R APP =" instead of " D APP =" Page 1011, Fig. 7, the notation on the abscissa axis should read " R APP" instead of " D APP" Page 1011, in the caption to Fig. 7 should read "radius R APP" instead of "diameter D APP" Page 1011, in caption to Fig. 8 should read "for both radii R APP" instead of "for both diameters D APP" Page 1012, in caption to Fig. 9 should read "for both radii R APP" instead of "for both diameters D APP"

    3. Chinese Children's Statistical Learning of Orthographic Regularities: Positional Constraints and Character Structure

      ERIC Educational Resources Information Center

      Tong, Xiuli; McBride, Catherine

      2014-01-01

      This study examined how Chinese children acquire the untaught positional constraints of stroke patterns that are embedded in left-right structured and top-bottom structured characters. Using an orthographic regularity pattern elicitation paradigm, 536 Hong Kong Chinese children at different levels of reading (kindergarten, 2nd, and 5th grades)…

    4. Demonstration of ROV-based Underwater Electromagnetic Array Technology

      DTIC Science & Technology

      2017-05-25

      Volume Magnetic Source Model that Was Modified to Address EM Propagation through a Conductive Seawater Medium...16  Figure 7. Still Shots of the Integrated ROV- EM System (left) and the EM Sensor (right) Performing Bottom Following...of Defense DVL Doppler Velocity Log E Easting EOD Explosive Ordnance Disposal EM Electromagnetic EMI Electromagnetic Induction EMF

    5. Mir survey just before docking

      NASA Image and Video Library

      1997-05-16

      STS084-730-002 (15-24 May 1997) --- A Space Shuttle Atlantis point-of-view frame showing the docking port and target during separation from with Russia's Mir Space Station. The picture should be held with the retracted Kristall solar array at right. Other elements partially visible are Kvant-2 (top), Spektr (bottom) and Core Module (left).

    6. 46. Photocopy of scale drawing (from Station 'L' office files, ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      46. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Portland General Electric in house drawing, 1937 PIPING ARRANGEMENT OF BOILER #16 BUILDING LB SHOWN IN ELEVATION (LEFT), PLAN (TOP RIGHT) AND ELEVATION (BOTTOM RIGHT) - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

    7. 42. Photocopy of scale drawing (from Station 'L' office files, ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      42. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Portland General Electric in house drawing, 3/1/1927 SECTION (LEFT), ELEVATION (TOP RIGHT) AND PLAN (BOTTOM RIGHT) OF BOILER #13 BUILDING L4 - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

    8. 2. Photocopy of photograph (original photograph in possession of Atlanta ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      2. Photocopy of photograph (original photograph in possession of Atlanta Housing Authority, Atlanta, GA). Photographer unknown, circa 1940. Aerial view of Clark Howell Homes, center, Techwood Homes, left, Georgia Institute of Technology, bottom. - Clark Howell Homes (Public Housing), Bounded by North Avenue, Lovejoy Street, Mills Street & Luckie Street, Atlanta, Fulton County, GA

    9. 167. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      167. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN FROM EAST. THE DUCTWORK TO TOP OF COLLECTOR (OPEN END, MIDDLE LEFT) CONNECTED TO HOODS OVER SYMONS SCREEN, ROD MILL, AND BAKER COOLER DISCHARGE - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    10. 54. VIEW OF ROASTER ADDITION FROM SOUTHEAST. SHOWS ELEVATOR/ORE BIN ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      54. VIEW OF ROASTER ADDITION FROM SOUTHEAST. SHOWS ELEVATOR/ORE BIN ADDITION ON LEFT WITH BASE OF EXHAUST STACK, PORTION OF TOPPLED STACK ON LOWER RIGHT IN VIEW, AND UPPER TAILINGS POND BEYOND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    11. 52. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      52. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN FROM EAST. THE DUCTWORK TO TOP OF COLLECTOR (OPEN END, MIDDLE LEFT) CONNECTED TO HOODS OVER SYMONS SCREEN, ROD MILL, AND BAKER COOLER DISCHARGE. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    12. 28. VIEW OF CENTRAL SECTION OF MILL FROM NORTH. COMPRESSOR ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      28. VIEW OF CENTRAL SECTION OF MILL FROM NORTH. COMPRESSOR ROOM BELOW PRECIPITATION FLOOR IS VISIBLE AT LOWER LEFT; THE SECONDARY THICKENER ADDITION IS TO THE RIGHT WITH SECONDARY THICKENER No. 7 OFF VIEW TO RIGHT. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

    13. Responses in the right posterior superior temporal sulcus show a feature-based response to facial expression.

      PubMed

      Flack, Tessa R; Andrews, Timothy J; Hymers, Mark; Al-Mosaiwi, Mohammed; Marsden, Samuel P; Strachan, James W A; Trakulpipat, Chayanit; Wang, Liang; Wu, Tian; Young, Andrew W

      2015-08-01

      The face-selective region of the right posterior superior temporal sulcus (pSTS) plays an important role in analysing facial expressions. However, it is less clear how facial expressions are represented in this region. In this study, we used the face composite effect to explore whether the pSTS contains a holistic or feature-based representation of facial expression. Aligned and misaligned composite images were created from the top and bottom halves of faces posing different expressions. In Experiment 1, participants performed a behavioural matching task in which they judged whether the top half of two images was the same or different. The ability to discriminate the top half of the face was affected by changes in the bottom half of the face when the images were aligned, but not when they were misaligned. This shows a holistic behavioural response to expression. In Experiment 2, we used fMR-adaptation to ask whether the pSTS has a corresponding holistic neural representation of expression. Aligned or misaligned images were presented in blocks that involved repeating the same image or in which the top or bottom half of the images changed. Increased neural responses were found in the right pSTS regardless of whether the change occurred in the top or bottom of the image, showing that changes in expression were detected across all parts of the face. However, in contrast to the behavioural data, the pattern did not differ between aligned and misaligned stimuli. This suggests that the pSTS does not encode facial expressions holistically. In contrast to the pSTS, a holistic pattern of response to facial expression was found in the right inferior frontal gyrus (IFG). Together, these results suggest that pSTS reflects an early stage in the processing of facial expression in which facial features are represented independently. Copyright © 2015 Elsevier Ltd. All rights reserved.

    14. Ash Plume from Shiveluch

      NASA Image and Video Library

      2012-10-09

      When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

    15. Mount Sharp 'Photobombs' Curiosity

      NASA Image and Video Library

      2018-01-31

      This self-portrait of NASA's Curiosity Mars rover shows the vehicle on Vera Rubin Ridge, which it's been investigating for the past several months. Directly behind the rover is the start of a clay-rich slope scientists are eager to begin exploring. In the coming week, Curiosity will begin to climb this slope. North is on the left and west is on the right, with Gale Crater's rim on the horizon of both edges. Poking up just behind Curiosity's mast is Mount Sharp, photobombing the robot's selfie. Curiosity landed on Mars five years ago with the intention of studying lower Mount Sharp, where it will remain for all of its time on Mars. The mountain's base provides access to layers formed over millions of years. These layers formed in the presence of water -- likely due to a lake or lakes that sat at the bottom of the mountain, which sits inside of Gale Crater. This mosaic was assembled from dozens of images taken by Curiosity's Mars Hands Lens Imager (MAHLI). They were all taken on Jan. 23, 2018, during Sol 1943. The view does not include the rover's arm nor the MAHLI camera itself, except in the miniature scene reflected upside down in the parabolic mirror at the top of the mast. That mirror is part of Curiosity's Chemistry and Camera (ChemCam) instrument. MAHLI appears in the center of the mirror. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. A full-resolution image is available at https://photojournal.jpl.nasa.gov/catalog/PIA22207

    16. Jupiter's Southern Hemisphere in the Near-Infrared (Time Set 1)

      NASA Technical Reports Server (NTRS)

      1997-01-01

      Mosaic of Jupiter's southern hemisphere between -10 and -80 degrees (south) latitude. In time sequence one, the planetary limb is visible in near the bottom right part of the mosaic.

      Jupiter's atmospheric circulation is dominated by alternating eastward and westward jets from equatorial to polar latitudes. The direction and speed of these jets in part determine the brightness and texture of the clouds seen in this mosaic. Also visible are several other common Jovian cloud features, including two large vortices, bright spots, dark spots, interacting vortices, and turbulent chaotic systems. The north-south dimension of each of the two vortices in the center of the mosaic is about 3500 kilometers. The right oval is rotating counterclockwise, like other anticyclonic bright vortices in Jupiter's atmosphere. The left vortex is a cyclonic (clockwise) vortex. The differences between them (their brightness, their symmetry, and their behavior) are clues to how Jupiter's atmosphere works. The cloud features visible at 756 nanometers (near-infrared light) are at an atmospheric pressure level of about 1 bar.

      North is at the top. The images are projected onto a sphere, with features being foreshortened towards the south and east. The smallest resolved features are tens of kilometers in size. These images were taken on May 7, 1997, at a range of 1.5 million kilometers by the Solid State Imaging system on NASA's Galileo spacecraft.

      The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

      This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

    17. Aerial photos of KSC

      NASA Technical Reports Server (NTRS)

      2000-01-01

      Looking northeast, several elements of the Shuttle Landing Facility (SLF) can be seen. The road on the bottom left corner is the tow-way road, connecting the Orbiter Processing Facility with the landing strip, seen at upper left. The building in the center is the remote launch vehicle (RLV) hangar, still under construction, at the south end of the SLF. Next to the multi- purpose RLV hangar are facilities for related ground support equipment and administrative/technical support. Beyond them is the parking tarmac with its mate-demate device. The lush grounds of the Merritt Island National Wildlife Refuge, which shares a boundary with KSC, extend beyond.

    18. Crew Meal in Node 1 Unity

      NASA Image and Video Library

      2009-09-07

      S128-E-007979 (7 Sept. 2009) --- Crew members onboard the International Space Station share a meal in the Unity node while Space Shuttle Discovery remains docked with the station. Pictured from the left (bottom) are NASA astronauts Rick Sturckow, STS-128 commander; Tim Kopra and Jose Hernandez, both STS-128 mission specialists; along with Kevin Ford, STS-128 pilot; and John “Danny” Olivas, STS-128 mission specialist. Pictured from the left (top) are NASA astronaut Nicole Stott (mostly out of frame) and Canadian Space Agency astronaut Robert Thirsk, both Expedition 20 flight engineers; along with NASA astronaut Patrick Forrester, STS-128 mission specialist.

    19. Emotional face expression modulates occipital-frontal effective connectivity during memory formation in a bottom-up fashion.

      PubMed

      Xiu, Daiming; Geiger, Maximilian J; Klaver, Peter

      2015-01-01

      This study investigated the role of bottom-up and top-down neural mechanisms in the processing of emotional face expression during memory formation. Functional brain imaging data was acquired during incidental learning of positive ("happy"), neutral and negative ("angry" or "fearful") faces. Dynamic Causal Modeling (DCM) was applied on the functional magnetic resonance imaging (fMRI) data to characterize effective connectivity within a brain network involving face perception (inferior occipital gyrus and fusiform gyrus) and successful memory formation related areas (hippocampus, superior parietal lobule, amygdala, and orbitofrontal cortex). The bottom-up models assumed processing of emotional face expression along feed forward pathways to the orbitofrontal cortex. The top-down models assumed that the orbitofrontal cortex processed emotional valence and mediated connections to the hippocampus. A subsequent recognition memory test showed an effect of negative emotion on the response bias, but not on memory performance. Our DCM findings showed that the bottom-up model family of effective connectivity best explained the data across all subjects and specified that emotion affected most bottom-up connections to the orbitofrontal cortex, especially from the occipital visual cortex and superior parietal lobule. Of those pathways to the orbitofrontal cortex the connection from the inferior occipital gyrus correlated with memory performance independently of valence. We suggest that bottom-up neural mechanisms support effects of emotional face expression and memory formation in a parallel and partially overlapping fashion.

    20. Galileo view of Moon orbiting the Earth taken from 3.9 million miles

      NASA Image and Video Library

      1992-12-16

      Eight days after its encounter with the Earth, the Galileo spacecraft was able to look back and capture this remarkable view of the Moon in orbit about the Earth, taken from a distance of about 6.2 million kilometers (3.9 million miles). The picture was constructed from images taken through the violet, red, and 1.0-micron infrared filters. The Moon is in the foreground, moving from left to right. The brightly-colored Earth contrasts strongly with the Moon, which reflects only about one-third as much sunlight as the Earth. Contrast and color have been computer-enhanced for both objects to improve visibility. Antarctica is visible through clouds (bottom). The Moon's far side is seen; the shadowy indentation in the dawn terminator is the south-Pole/Aitken Basin, one of the largest and oldest lunar impact features. Alternate Jet Propulsion Laboratory (JPL) number is P-41508. View appears in the Space News Roundup v32 n1 p1, 01-11-93.

    1. Earth - Moon Conjunction

      NASA Technical Reports Server (NTRS)

      1992-01-01

      On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. The composite photograph was constructed from images taken through visible (violet, red) and near-infrared (1.0-micron) filters. The Moon is in the foreground; its orbital path is from left to right. Brightly colored Earth contrasts strongly with the Moon, which reacts only about one-third as much sunlight as our world. To improve the visibility of both bodies, contrast and color have been computer enhanced. At the bottom of Earth's disk, Antarctica is visible through clouds. The Moon's far side can also be seen. The shadowy indentation in the Moon's dawn terminator--the boundary between its dark and lit sides--is the South Pole-Aitken Basin, one of the largest and oldest lunar impact features. This feature was studied extensively by Galileo during the first Earth flyby in December 1990.

    2. Effective connectivities of cortical regions for top-down face processing: A Dynamic Causal Modeling study

      PubMed Central

      Li, Jun; Liu, Jiangang; Liang, Jimin; Zhang, Hongchuan; Zhao, Jizheng; Rieth, Cory A.; Huber, David E.; Li, Wu; Shi, Guangming; Ai, Lin; Tian, Jie; Lee, Kang

      2013-01-01

      To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis. PMID:20423709

    3. Composite View of Asteroid Braille from Deep Space 1

      NASA Image and Video Library

      1999-08-03

      The two images on the left hand side of this composite image frame were taken 914 seconds and 932 seconds after the NASA Deep Space 1 encounter with the asteroid 9969 Braille. The image on the right was created by combining the two images on the left.

    4. Influence of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing.

      PubMed

      Karimi, Zanyar; Allahyari, Teimour; Azghani, Mahmood Reza; Khalkhali, Hamidreza

      2016-03-01

      The present study was an attempt to investigate the effect of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. Ten healthy subjects were recruited to stand for 2 h in three footwear conditions: barefoot, flat-bottomed shoe and unstable shoe. During standing, lower leg discomfort and EMG activity of medial gastrocnemius (MG) and tibialis anterior (TA) muscles were continuously monitored. Changes in lower leg volume over standing time also were measured. Lower leg discomfort rating reduced significantly while subjects standing on unstable shoe compared to the flat-bottomed shoe and barefoot condition. For lower leg volume, less changes also were observed with unstable shoe. The activity level and variation of right MG muscle was greater with unstable shoe compared to the other footwear conditions; however regarding the left MG muscle, significant difference was found between unstable shoe and flat-bottomed shoe only for activity level. Furthermore no significant differences were observed for the activity level and variation of TA muscles (right/left) among all footwear conditions. The findings suggested that prolonged standing with unstable footwear produces changes in lower leg muscles activity and leads to less volume changes. Perceived discomfort also was lower for this type of footwear and this might mean that unstable footwear can be used as ergonomic solution for employees whose work requires prolonged standing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

    5. Detection of Animal Viruses in Coastal Seawater and Sediments

      PubMed Central

      De Flora, Silvio; De Renzi, Giuseppe P.; Badolati, Giuseppe

      1975-01-01

      Animal viruses, predominantly enteroviruses, were detected in shallow waters at bottom depths and in clastic marine sediments. Viruses accumulated in sandy and slimy deposits of the sea bottom near the shore and could be easily released into water by means of simple mechanical shaking. Images PMID:170859

    6. Three-dimensional profile extraction from CD-SEM image and top/bottom CD measurement by line-edge roughness analysis

      NASA Astrophysics Data System (ADS)

      Yamaguchi, Atsuko; Ohashi, Takeyoshi; Kawasaki, Takahiro; Inoue, Osamu; Kawada, Hiroki

      2013-04-01

      A new method for calculating critical dimension (CDs) at the top and bottom of three-dimensional (3D) pattern profiles from a critical-dimension scanning electron microscope (CD-SEM) image, called as "T-sigma method", is proposed and evaluated. Without preparing a library of database in advance, T-sigma can estimate a feature of a pattern sidewall. Furthermore, it supplies the optimum edge-definition (i.e., threshold level for determining edge position from a CDSEM signal) to detect the top and bottom of the pattern. This method consists of three steps. First, two components of line-edge roughness (LER); noise-induced bias (i.e., LER bias) and unbiased component (i.e., bias-free LER) are calculated with set threshold level. Second, these components are calculated with various threshold values, and the threshold-dependence of these two components, "T-sigma graph", is obtained. Finally, the optimum threshold value for the top and the bottom edge detection are given by the analysis of T-sigma graph. T-sigma was applied to CD-SEM images of three kinds of resist-pattern samples. In addition, reference metrology was performed with atomic force microscope (AFM) and scanning transmission electron microscope (STEM). Sensitivity of CD measured by T-sigma to the reference CD was higher than or equal to that measured by the conventional edge definition. Regarding the absolute measurement accuracy, T-sigma showed better results than the conventional definition. Furthermore, T-sigma graphs were calculated from CD-SEM images of two kinds of resist samples and compared with corresponding STEM observation results. Both bias-free LER and LER bias increased as the detected edge point moved from the bottom to the top of the pattern in the case that the pattern had a straight sidewall and a round top. On the other hand, they were almost constant in the case that the pattern had a re-entrant profile. T-sigma will be able to reveal a re-entrant feature. From these results, it is found that T-sigma method can provide rough cross-sectional pattern features and achieve quick, easy and accurate measurements of top and bottom CD.

    7. KSC-2012-2692

      NASA Image and Video Library

      2012-04-25

      HAWTHORNE, Calif. -- NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. On top, from left, are NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA astronauts Tony Antonelli and Eric Boe and SpaceX Mission Operations Engineer Laura Crabtree. On bottom, from left, are SpaceX Thermal Engineer Brenda Hernandez and NASA astronauts Rex Walheim and Tim Kopra. This is the second crew accommodation check that allowed passengers to get a feel for Dragon’s interior, including displays and simulated control panels. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

    8. Temporal Fourier analysis applied to equilibrium radionuclide cineangiography. Importance in the study of global and regional left ventricular wall motion.

      PubMed

      Cardot, J C; Berthout, P; Verdenet, J; Bidet, A; Faivre, R; Bassand, J P; Bidet, R; Maurat, J P

      1982-01-01

      Regional and global left ventricular wall motion was assessed in 120 patients using radionuclide cineangiography (RCA) and contrast angiography. Functional imaging procedures based on a temporal Fourier analysis of dynamic image sequences were applied to the study of cardiac contractility. Two images were constructed by taking the phase and amplitude values of the first harmonic in the Fourier transform for each pixel. These two images aided in determining the perimeter of the left ventricle to calculate the global ejection fraction. Regional left ventricular wall motion was studied by analyzing the phase value and by examining the distribution histogram of these values. The accuracy of global ejection fraction calculation was improved by the Fourier technique. This technique increased the sensitivity of RCA for determining segmental abnormalities especially in the left anterior oblique view (LAO).

    9. Recommendations for standards in transthoracic two-dimensional echocardiography in the dog and cat. Echocardiography Committee of the Specialty of Cardiology, American College of Veterinary Internal Medicine.

      PubMed

      Thomas, W P; Gaber, C E; Jacobs, G J; Kaplan, P M; Lombard, C W; Moise, N S; Moses, B L

      1993-01-01

      Recommendations are presented for standardized imaging planes and display conventions for two-dimensional echocardiography in the dog and cat. Three transducer locations ("windows") provide access to consistent imaging planes: the right parasternal location, the left caudal (apical) parasternal location, and the left cranial parasternal location. Recommendations for image display orientations are very similar to those for comparable human cardiac images, with the heart base or cranial aspect of the heart displayed to the examiner's right on the video display. From the right parasternal location, standard views include a long-axis four-chamber view and a long-axis left ventricular outflow view, and short-axis views at the levels of the left ventricular apex, papillary muscles, chordae tendineae, mitral valve, aortic valve, and pulmonary arteries. From the left caudal (apical) location, standard views include long-axis two-chamber and four-chamber views. From the left cranial parasternal location, standard views include a long-axis view of the left ventricular outflow tract and ascending aorta (with variations to image the right atrium and tricuspid valve, and the pulmonary valve and pulmonary artery), and a short-axis view of the aortic root encircled by the right heart. These images are presented by means of idealized line drawings. Adoption of these standards should facilitate consistent performance, recording, teaching, and communicating results of studies obtained by two-dimensional echocardiography.

    10. Thermographic imaging for high-temperature composite materials: A defect detection study

      NASA Technical Reports Server (NTRS)

      Roth, Don J.; Bodis, James R.; Bishop, Chip

      1995-01-01

      The ability of a thermographic imaging technique for detecting flat-bottom hole defects of various diameters and depths was evaluated in four composite systems (two types of ceramic matrix composites, one metal matrix composite, and one polymer matrix composite) of interest as high-temperature structural materials. The holes ranged from 1 to 13 mm in diameter and 0.1 to 2.5 mm in depth in samples approximately 2-3 mm thick. The thermographic imaging system utilized a scanning mirror optical system and infrared (IR) focusing lens in conjunction with a mercury cadmium telluride infrared detector element to obtain high resolution infrared images. High intensity flash lamps located on the same side as the infrared camera were used to heat the samples. After heating, up to 30 images were sequentially acquired at 70-150 msec intervals. Limits of detectability based on depth and diameter of the flat-bottom holes were defined for each composite material. Ultrasonic and radiographic images of the samples were obtained and compared with the thermographic images.

    11. Picking up Clues from the Discard Pile (Stereo)

      NASA Technical Reports Server (NTRS)

      2008-01-01

      As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil.

      On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through its left eye and right eye that have been combined into this stereo view. The image appears three dimensional when seen through red-blue glasses.

      This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench.

      Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches.

      For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench.

      The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil.

      The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

    12. NASA Spacecraft Images Cambodian Flooding

      NASA Image and Video Library

      2011-08-29

      This image acquired by NASA Terra spacecraft shows unusually heavy rains over the upper Mekong River in Laos and Thailand that led to severe flooding in Cambodia in mid-August 2011. The city of Phnom Penh is at the bottom center of the image.

    13. Unsupervised tattoo segmentation combining bottom-up and top-down cues

      NASA Astrophysics Data System (ADS)

      Allen, Josef D.; Zhao, Nan; Yuan, Jiangbo; Liu, Xiuwen

      2011-06-01

      Tattoo segmentation is challenging due to the complexity and large variance in tattoo structures. We have developed a segmentation algorithm for finding tattoos in an image. Our basic idea is split-merge: split each tattoo image into clusters through a bottom-up process, learn to merge the clusters containing skin and then distinguish tattoo from the other skin via top-down prior in the image itself. Tattoo segmentation with unknown number of clusters is transferred to a figureground segmentation. We have applied our segmentation algorithm on a tattoo dataset and the results have shown that our tattoo segmentation system is efficient and suitable for further tattoo classification and retrieval purpose.

    14. Left-Right Conversions in a Plane Mirror.

      ERIC Educational Resources Information Center

      Galili, Igal; Goldberg, Fred

      1993-01-01

      Expands upon the popular belief that mirrors cause the left-right reversal of objects placed in front of them. The image-location rule and image-symmetry rule are applied throughout the article to help summarize some important properties of mirror images. (ZWH)

    15. Dextroposition of the Heart

      DTIC Science & Technology

      2007-10-01

      The atrial chamber that is connected to the inferior vena cava is typically the right atrium . The pulmonary veins typically empty into the left ...only “a left chest wall 6 cm scar consistent with surgical history.” The screening chest x-ray is presented below (Fig 1A). Technical limitations...Cardiac MRI images further define the internal cardiac anatomy. On a coronal bright blood MRI image (Fig. 1B; LA = left atrium ; LPA = left

    16. [Evaluation of left ventricular diastolic function in canine acute myocardial ischemia using velocity vector imaging and quantitative tissue velocity imaging].

      PubMed

      Zhang, Chuan; Zha, Dao-Gang; DU, Rong-Sheng; Hu, Feng; Li, Sheng-Hui; Wu, Xiao-Yuan; Liu, Yi-Li

      2009-07-01

      To assess the value of velocity vector imaging (VVI) and quantitative tissue velocity imaging (QTVI) in assessing left ventricular diastolic function of the dogs with acute myocardial ischemia. Six healthy mongrel dogs were subjected to ligation of the left circumflex artery or left anterior descending artery to induce coronary artery stenosis of varying degrees. The mean peak diastolic velocity (Em) of the ventricular walls around the mitral annulus was recorded with VVI or QTVI in the coronary blood flow. The left ventricular end diastolic pressure (LVEDP) was measured with pigtail catheter in the left ventricle. As the coronary blood flow decreased, LVEDP was gradually increased, and Em measured by VVI or QTVI were also gradually decreased. A good linear correlation was shown between Em measured by VVI or QTVI and LVEDP (r=-0.834, P<0.001, and r=-0.68, P<0.001, respectively). A significant difference was observed in the correlation coefficient between VVI and QTVI (Z=2.625, P=0.0087). VVI and QTVI both provide good noninvasive means for measuring left ventricular diastolic function. VVI, a new echocardiographic modality without angular dependence, is better than QTVI in evaluating left ventricular diastolic function.

    17. Sharpening of Hierarchical Visual Feature Representations of Blurred Images.

      PubMed

      Abdelhack, Mohamed; Kamitani, Yukiyasu

      2018-01-01

      The robustness of the visual system lies in its ability to perceive degraded images. This is achieved through interacting bottom-up, recurrent, and top-down pathways that process the visual input in concordance with stored prior information. The interaction mechanism by which they integrate visual input and prior information is still enigmatic. We present a new approach using deep neural network (DNN) representation to reveal the effects of such integration on degraded visual inputs. We transformed measured human brain activity resulting from viewing blurred images to the hierarchical representation space derived from a feedforward DNN. Transformed representations were found to veer toward the original nonblurred image and away from the blurred stimulus image. This indicated deblurring or sharpening in the neural representation, and possibly in our perception. We anticipate these results will help unravel the interplay mechanism between bottom-up, recurrent, and top-down pathways, leading to more comprehensive models of vision.

    18. A Jovian Hotspot in True and False Colors (Time set 3)

      NASA Technical Reports Server (NTRS)

      1997-01-01

      True and false color views of an equatorial 'hotspot' on Jupiter. These images cover an area 34,000 kilometers by 11,000 kilometers. The top mosaic combines the violet (410 nanometers or nm) and near-infrared continuum (756 nm) filter images to create an image similar to how Jupiter would appear to human eyes. Differences in coloration are due to the composition and abundances of trace chemicals in Jupiter's atmosphere. The bottom mosaic uses Galileo's three near-infrared wavelengths (756 nm, 727 nm, and 889 nm displayed in red, green, and blue) to show variations in cloud height and thickness. Bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the deep cloud with an overlying thin haze. The light blue region to the left is covered by a very high haze layer. The multicolored region to the right has overlapping cloud layers of different heights. Galileo is the first spacecraft to distinguish cloud layers on Jupiter.

      North is at the top. The mosaics cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees West. The planetary limb runs along the right edge of the image. Cloud patterns appear foreshortened as they approach the limb. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

      The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

      This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

    19. Charon Surprising Youthful and Varied Terrain

      NASA Image and Video Library

      2015-07-15

      Remarkable new details of Pluto's largest moon Charon are revealed in this image from New Horizons' Long Range Reconnaissance Imager (LORRI), taken late on July 13, 2015 from a distance of 289,000 miles (466,000 kilometers). A swath of cliffs and troughs stretches about 600 miles (1,000 kilometers) from left to right, suggesting widespread fracturing of Charon's crust, likely a result of internal processes. At upper right, along the moon's curving edge, is a canyon estimated to be 4 to 6 miles (7 to 9 kilometers) deep. Mission scientists are surprised by the apparent lack of craters on Charon. South of the moon's equator, at the bottom of this image, terrain is lit by the slanting rays of the sun, creating shadows that make it easier to distinguish topography. Even here, however, relatively few craters are visible, indicating a relatively young surface that has been reshaped by geologic activity. In Charon's north polar region, a dark marking prominent in New Horizons' approach images is now seen to have a diffuse boundary, suggesting it is a thin deposit of dark material. Underlying it is a distinct, sharply bounded, angular feature; higher resolution images still to come are expected to shed more light on this enigmatic region. The image has been compressed to reduce its file size for transmission to Earth. In high-contrast areas of the image, features as small as 3 miles (5 kilometers) across can be seen. Some lower-contrast detail is obscured by the compression of the image, which may make some areas appear smoother than they really are. The uncompressed version still resides in New Horizons' computer memory and is scheduled to be transmitted at a later date. The image has been combined with color information obtained by New Horizons' Ralph instrument on July 13. New Horizons traveled more than three billion miles over nine-and-a-half years to reach the Pluto system. http://photojournal.jpl.nasa.gov/catalog/PIA19709

    20. Boattail Plates With Non-Rectangular Geometries For Reducing Aerodynamic Base Drag Of A Bluff Body In Ground Effect

      DOEpatents

      Ortega, Jason M.; Sabari, Kambiz

      2006-03-07

      An apparatus for reducing the aerodynamic base drag of a bluff body having a leading end, a trailing end, a top surface, opposing left and right side surfaces, and a base surface at the trailing end substantially normal to a longitudinal centerline of the bluff body, with the base surface joined (1) to the left side surface at a left trailing edge, (2) to the right side surface at a right trailing edge, and (3) to the top surface at a top trailing edge. The apparatus includes left and right vertical boattail plates which are orthogonally attached to the base surface of the bluff body and inwardly offset from the left and right trailing edges, respectively. This produces left and right vertical channels which generate, in a flowstream substantially parallel to the longitudinal centerline, respective left and right vertically-aligned vortical structures, with the left and right vertical boattail plates each having a plate width defined by a rear edge of the plate spaced from the base surface. Each plate also has a peak plate width at a location between top and bottom ends of the plate corresponding to a peak vortex of the respective vertically-aligned vortical structures.

    1. Alignment by Maximization of Mutual Information

      DTIC Science & Technology

      1995-06-01

      Davi Geiger, David Chapman, Jose Robles, Tao Alter, Misha Bolotski, Jonathan Connel, Karen Sarachik, Maja Mataric , Ian Horswill, Colin Angle...the same pose. These images are very different and are in fact anti-correlated: bright pixels in the left image correspond to dark pixels in the right...image; dark pixels in the left image correspond to bright pixels in the right image. No variant of correlation could match these images together

    2. The Tadpole and the Wriggler

      NASA Image and Video Library

      2014-04-14

      A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057, but dubbed "the Tadpole," this clump of gas and dust has given birth to a bright, "protostar," one of the earliest steps in building a star. This image was taken by NASA's Hubble Space Telescope, and released publicly, in 2012. There are actually multiple protostars within this tadpole's 'head," but the glowing yellow one in this image is the most luminous and massive. When this protostar has gathered together enough mass from its surroundings, it will eventually emerge as a fully-fledged young star. The intense blue glow is caused by nearby stars firing ultraviolet radiation at IRAS 20324+4057, which also sculpts its tail into a long, wiggly shape. In total, this clump spans roughly a light-year from head to tail-tip, and contains gas weighing almost four times the mass of the sun. Framed against a background of distant stars, IRAS 20324+4057 is making its way through the Cygnus OB2 association, a loose cluster of stars some 4,700 light-years from Earth in the constellation Cygnus. This association is one of the largest clusters known, and is famed for its heavyweight members. It contains some of the hottest, most massive and most luminous stars known, some of which are about two million times more luminous than the sun. The Tadpole is not alone in this interstellar pond. Just out of view, to the bottom right of this image, lies another curious object dubbed "the Goldfish" by astronomers. The Goldfish is about half the length of IRAS 20324+4057, and is also thought to be a globule of gas that is being both lit up and sculpted by radiation from cluster stars. Completing this trio is a small clump of blue gas, informally nicknamed "the Wriggler" by some astronomers, visible in the bottom left of this Hubble image. All three objects have the same orientation in the sky and appear to be brighter on their northern sides, leading astronomers to believe they are being shaped by aggressive winds and radiation flowing from hot Cygnus OB2 stars towards the top right of the frame. http://photojournal.jpl.nasa.gov/catalog/PIA18168

    3. 2. CLOSEUP OF THE ORNAMENTAL LIGHTS, THE CENTRAL BIFOLD DOORS, ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      2. CLOSEUP OF THE ORNAMENTAL LIGHTS, THE CENTRAL BIFOLD DOORS, AND THE EXAGGERATED TRIGLYTHS ABOVE THE DOOR, LOOKING WEST. NOTE THE PERSONNEL DOOR COMPRISED OF THE BOTTOM THREE PANELS IN THE LEFT BIFOLD DOOR. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

    4. 10. INTERIOR OF SOUTH SIDE ENCLOSED SCREEN PORCH SHOWING 1/2 ...

      Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

      10. INTERIOR OF SOUTH SIDE ENCLOSED SCREEN PORCH SHOWING 1/2 SCREEN DOOR TO EXTERIOR AND DOUBLE FRENCH DOORS TO DINING ROOM. HOLE AT BOTTOM LEFT OF 1/2 SCREEN DOOR WAS A CAT DOOR. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 8, Operator Cottage, Big Creek, Big Creek, Fresno County, CA

    5. Evaluation of Resuspension from Propeller Wash in DoD Harbors

      DTIC Science & Technology

      2016-09-01

      sand , silt, clay, and dissolved fractions. Information in the middle represents the filtration sequence, information to the left are...San Diego Bay. Each metal is provided as the percentage fraction for clay (grey), silt (green), sand (red) and total (blue), the same pattern is...middle), and sand (bottom) concentrations for the three locations (see Figure 6-33

    6. Views of the Mir Space Station during rendezvous

      NASA Image and Video Library

      1997-05-16

      STS084-350-023 (15-24 May 1997) --- A Space Shuttle point-of-view frame showing the docking port and target during rendezvous with Russia's Mir Space Station. The picture should be held horizontally with the retracted Kristall solar array at top. Other elements partially visible are Kvant-2 (left), Spektr (right) and Core Module (bottom).

    7. iss042e306480

      NASA Image and Video Library

      2015-03-07

      ISS042E306480 (03/07/2015) --- A meeting of the minds aboard the International Space Station on Mar. 7, 2015 with members of Expedition 42; astronauts US, Barry Wilmore (Commander) Top, Upside down, to the right cosmonaut Elena Serova, & ESA European Space Agency Samantha Cristoforetti. Bottom center US astronaut Terry Virts, top left cosmonauts Alexander Samokutyaev and Anton Shkaplerov.

    8. Frick, Melvin and Love in the U.S. Lab

      NASA Image and Video Library

      2008-02-13

      S122-E-008251 (13 Feb. 2008) --- Astronauts Steve Frick (top left), STS-122 commander; Leland Melvin (bottom) and Stanley Love, both mission specialists, take a moment for a photo while working the controls of the station's robotic Canadarm2 in the Destiny laboratory of the International Space Station while Space Shuttle Atlantis is docked with the station.

    9. --No Title--

      Science.gov Websites

      -color:rgba(0,121,194,.9);color:#fff;font-family:Roboto;position:absolute;bottom:0;left:0;line-height:1.2 {color:#fff;text-decoration:none}a.white:hover,a.white:active,a.white:focus{color:#fff;text }.carousel-caption .headline{color:#fff;font-size:16px;margin:0}@media (min-width:768px){.carousel-caption

    10. Venus - Lower-level Clouds As Seen By NIMS

      NASA Technical Reports Server (NTRS)

      1990-01-01

      These images are two versions of a near-infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft as it approached the planet February 10, 1990. Taken from an altitude of about 60,000 miles above the planet, at an infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) the map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees Fahrenheit) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about -30 degrees Fahrenheit, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of blocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopically analyze atmospheres and surfaces and construct thermal and chemical maps. Designed and operated by scientists and engineers at the Jet Propulsion Laboratory, NIMS involves 15 scientists in the U.S., England, and France. The Galileo Project is managed for NASA's Office of Space Science and Applications by JPL; its mission is to study the planet Jupiter and its satellites and magnetosphere after multiple gravity-assist flybys at Venus and the Earth.

    11. Role of early visual cortex in trans-saccadic memory of object features.

      PubMed

      Malik, Pankhuri; Dessing, Joost C; Crawford, J Douglas

      2015-08-01

      Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.

    12. Transcallosal, Transchoroidal Resection of a Recurrent Craniopharyngioma.

      PubMed

      Jean, Walter C

      2018-04-01

      Objective  To demonstrate the transchoroidal approach for the resection of a recurrent craniopharyngioma. Design  Video case report. Setting  Microsurgical resection. Participant  The patient was a 27-year-old woman with a history of a craniopharyngioma, resected twice during the year prior to presentation to our unit. Both operations were done via the left anterolateral corridor, and afterward, she was blind in the left eye and was treated with Desmopressin (DDAVP) for diabetes insipidus (DI). Serial magnetic resonance imaging (MRI) showed progression of the tumor residual, and she was referred for further surgical intervention. Main Outcome Measures  Pre- and postoperative MRIs measured the degree of resection. Results  For this, her third surgery, a transcallosal, transchoroidal approach, was chosen to offer the widest possible exposure. Given her history, an aggressive total resection was the best strategy. The patient was placed supine with the head neutral. A right frontal craniotomy allowed access to the interhemispheric fissure. By opening the corpus callosum, the left lateral ventricle was entered. The transchoroidal approach started with dissection of the tenia fornicis to open the choroidal fissure. After this, sufficient exposure to the posterior parts of the tumor was gained. Resection proceeded to the bottom of the tumor, exposing the basilar apex and interpeduncular cistern, and continued back anteriorly. In the end, a microscopic total resection was achieved. With a long hospital stay to treat her brittle DI, the patient slowly returned to neurological baseline. Conclusion  The transchoroidal approach is an effective way to remove large tumors in the third ventricle. The link to the video can be found at: https://youtu.be/2-Aqjaay8dg .

    13. First Images from NASA's New Moon Mission

      NASA Image and Video Library

      2009-07-02

      These images show cratered regions near the moon's Mare Nubium region, as photographed by the Lunar Reconnaissance Orbiter's LROC instrument. Each image shows a region 1,400 meters (0.87 miles) wide. the bottoms of both images face lunar north. The image below shows the location of these two images in relation to each other. Credit: NASA/Goddard Space Flight Center/Arizona State University

    14. nacl000000fd_boxes_small

      NASA Image and Video Library

      2009-07-02

      These images show cratered regions near the moon's Mare Nubium region, as photographed by the Lunar Reconnaissance Orbiter's LROC instrument. Each image shows a region 1,400 meters (0.87 miles) wide. the bottoms of both images face lunar north. The image below shows the location of these two images in relation to each other. [Locator Image] Credit: NASA/Goddard Space Flight Center/Arizona State University

    15. Language Dysfunction After Stroke and Damage to White Matter Tracts Evaluated Using Diffusion Tensor Imaging

      PubMed Central

      Breier, J.I.; Hasan, K.M.; Zhang, W.; Men, D.; Papanicolaou, A.C.

      2011-01-01

      BACKGROUND AND PURPOSE Knowledge of the anatomic basis of aphasia after stroke has both theoretic and clinical implications by informing models of cortical connectivity and providing data for diagnosis and prognosis. In this study we use diffusion tensor imaging to address the relationship between damage to specific white matter tracts and linguistic deficits after left hemisphere stroke. MATERIALS AND METHODS Twenty patients aged 38–77 years with a history of stroke in the left hemisphere underwent diffusion tensor imaging, structural MR imaging, and language testing. All of the patients were premorbidly right handed and underwent imaging and language testing at least 1 month after stroke. RESULTS Lower fractional anisotropy (FA) values in the superior longitudinal and arcuate fasciculi of the left hemisphere, an indication of greater damage to these tracts, were correlated with decreased ability to repeat spoken language. Comprehension deficits after stroke were associated with lower FA values in the arcuate fasciculus of the left hemisphere. The findings for repetition were independent of MR imaging ratings of the degree of damage to cortical areas of the left hemisphere involved in language function. There were no findings for homotopic tracts in the right hemisphere. CONCLUSION This study provides support for a specific role for damage to the superior longitudinal and arcuate fasciculi in the left hemisphere in patients with deficits in repetition of speech in aphasia after stroke. PMID:18039757

    16. Digital shaded relief image of a carbonate platform (northern Great Bahama Bank): Scenery seen and unseen

      NASA Astrophysics Data System (ADS)

      Boss, Stephen K.

      1996-11-01

      A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise.

    17. Stellar Snowflake Cluster

      NASA Technical Reports Server (NTRS)

      2005-01-01

      [figure removed for brevity, see original site] Figure 1 Stellar Snowflake Cluster Combined Image [figure removed for brevity, see original site] Figure 2 Infrared Array CameraFigure 3 Multiband Imaging Photometer

      Newborn stars, hidden behind thick dust, are revealed in this image of a section of the Christmas Tree cluster from NASA's Spitzer Space Telescope, created in joint effort between Spitzer's infrared array camera and multiband imaging photometer instruments.

      The newly revealed infant stars appear as pink and red specks toward the center of the combined image (fig. 1). The stars appear to have formed in regularly spaced intervals along linear structures in a configuration that resembles the spokes of a wheel or the pattern of a snowflake. Hence, astronomers have nicknamed this the 'Snowflake' cluster.

      Star-forming clouds like this one are dynamic and evolving structures. Since the stars trace the straight line pattern of spokes of a wheel, scientists believe that these are newborn stars, or 'protostars.' At a mere 100,000 years old, these infant structures have yet to 'crawl' away from their location of birth. Over time, the natural drifting motions of each star will break this order, and the snowflake design will be no more.

      While most of the visible-light stars that give the Christmas Tree cluster its name and triangular shape do not shine brightly in Spitzer's infrared eyes, all of the stars forming from this dusty cloud are considered part of the cluster.

      Like a dusty cosmic finger pointing up to the newborn clusters, Spitzer also illuminates the optically dark and dense Cone nebula, the tip of which can be seen towards the bottom left corner of each image.

      This combined image shows the presence of organic molecules mixed with dust as wisps of green, which have been illuminated by nearby star formation. The larger yellowish dots neighboring the baby red stars in the Snowflake Cluster are massive stellar infants forming from the same cloud. The blue dots sprinkled across the image represent older Milky Way stars at various distances along this line of sight. This image is a five-channel, false-color composite, showing emission from wavelengths of 3.6 and 4.5 microns (blue), 5.8 microns (cyan), 8 microns (green), and 24 microns (red).

      The top right (fig. 2) image from the infrared array camera show that the nebula is still actively forming stars. The wisps of red (represented as green in the combined image) are organic molecules mixed with dust, which has been illuminated by nearby star formation. The infrared array camera picture is a four-channel, false-color composite, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red).

      The bottom right image (fig. 3) from the multiband imaging photometer shows the colder dust of the nebula and unwraps the youngest stellar babies from their dusty covering. This is a false-color image showing emission at 24 microns (red).

    18. Software for Verifying Image-Correlation Tie Points

      NASA Technical Reports Server (NTRS)

      Klimeck, Gerhard; Yagi, Gary

      2008-01-01

      A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.

    19. Evaluation of training nurses to perform semi-automated three-dimensional left ventricular ejection fraction using a customised workstation-based training protocol.

      PubMed

      Guppy-Coles, Kristyan B; Prasad, Sandhir B; Smith, Kym C; Hillier, Samuel; Lo, Ada; Atherton, John J

      2015-06-01

      We aimed to determine the feasibility of training cardiac nurses to evaluate left ventricular function utilising a semi-automated, workstation-based protocol on three dimensional echocardiography images. Assessment of left ventricular function by nurses is an attractive concept. Recent developments in three dimensional echocardiography coupled with border detection assistance have reduced inter- and intra-observer variability and analysis time. This could allow abbreviated training of nurses to assess cardiac function. A comparative, diagnostic accuracy study evaluating left ventricular ejection fraction assessment utilising a semi-automated, workstation-based protocol performed by echocardiography-naïve nurses on previously acquired three dimensional echocardiography images. Nine cardiac nurses underwent two brief lectures about cardiac anatomy, physiology and three dimensional left ventricular ejection fraction assessment, before a hands-on demonstration in 20 cases. We then selected 50 cases from our three dimensional echocardiography library based on optimal image quality with a broad range of left ventricular ejection fractions, which was quantified by two experienced sonographers and the average used as the comparator for the nurses. Nurses independently measured three dimensional left ventricular ejection fraction using the Auto lvq package with semi-automated border detection. The left ventricular ejection fraction range was 25-72% (70% with a left ventricular ejection fraction <55%). All nurses showed excellent agreement with the sonographers. Minimal intra-observer variability was noted on both short-term (same day) and long-term (>2 weeks later) retest. It is feasible to train nurses to measure left ventricular ejection fraction utilising a semi-automated, workstation-based protocol on previously acquired three dimensional echocardiography images. Further study is needed to determine the feasibility of training nurses to acquire three dimensional echocardiography images on real-world patients to measure left ventricular ejection fraction. Nurse-performed evaluation of left ventricular function could facilitate the broader application of echocardiography to allow cost-effective screening and monitoring for left ventricular dysfunction in high-risk populations. © 2014 John Wiley & Sons Ltd.

    20. South Africa, Namibia, and Botswana

      NASA Technical Reports Server (NTRS)

      2002-01-01

      Pale green vegetation and red-brown deserts dominate this MODIS image of Namibia (left), Botswana (upper right), and the Republic of South Africa (bottom) acquired on June3, 2002. In central Namibia the mountainous terrain of Namaqualand is sandwiched between the Namib Desert on the Atlantic Coast and the Kalahari Desert to the interior, where white dots mark the location of small, impermanent lakes and ponds. Namaqualand is home to numerous rare succulent plants that can survive on the region.s scant rainfall as well as fog that blows in off the ocean. Namaqualand extends south of the Orange River, which runs along the border of Namibia and South Africa and into that country.s Northern Cape region. The Orange River extends almost all the way back through the country, and where it makes a sharp southward dip in this image (at lower right), it runs through the Asbestos Mountains, names for the naturally-occurring asbestos they contain. In southwestern South Africa, high plateaus, such as the Great Karoo become mountain ridges near the coast, and the city of Cape Town is visible as a grayish area of pixels on the north shores of the horseshoe-shaped False Bay at the Cape of Good Hope. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

    Top